Practical Declarative Network Management

Timothy L. Hinrichs
University of Chicago
Computer Science
Chicago, IL USA
thinrich@cs.uchicago.edu

John C. Mitchell
Stanford University
Computer Science
_Stanford, CA USA
mitchell@cs.stanford.edu

ABSTRACT

We present Flow-based Management Language (FML), a
declarative policy language for managing the configuration
of enterprise networks. FML was designed to replace the
many disparate configuration mechanisms traditionally used
to enforce policies within the enterprise. These include ACLs,
VLANSs, NATSs, policy-routing, and proprietary admission
control systems. FML balances the desires to express poli-
cies naturally and enforce policies efficiently. We have im-
plemented FML and have used it to manage multiple oper-
ational enterprise networks for over a year.

Categories and Subject Descriptors

D.4.6 [Software]: Security and Privacy Protection; D.1.6
[Programming Techniques]: Logic Programming

General Terms

Design, Languages

Keywords

Network, Policy, Security, Performance

1. INTRODUCTION

In recent years, high-level declarative management lan-
guages have gained traction in the commercial world. Exam-
ples include XACML [16] for declaring access-controls over
middleware and webservices, and P3P [8, 9] for declaring
privacy policies in web environments. In addition, many e-
mail readers use declarative languages for message filtering.

These and other successes provide evidence for the utility
of declarative management techniques. However, the adop-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WREN’09, August 21, 2009, Barcelona, Spain.

Copyright 2009 ACM 978-1-60558-443-0/09/08 ...$10.00.

Natasha S. Gude
Stanford University
Computer Science
Stanford, CA USA

ngude@cs.stanford.edu

Martin Casado
Stanford University
Computer Science
Stanford, CA USA
casado@cs.stanford.edu

Scott Shenker
U.C. Berkeley and ICSI
Electrical Engineering and
Computer Science
Berkeley, CA USA
shenker@icsi.berkeley.edu

tion of these languages has been almost entirely at the appli-
cation layer and above. In contrast, enterprise networks con-
tinue to be managed through a number of disparate low-level
mechanisms, including the use of VLANs and subnetting for
isolation, ACLs for access control, NAT for client protection,
and policy routing for source-based policies and the inte-
gration of middleboxes. As has been frequently lamented
in the literature [7, 19, 14], these traditional approaches
for network configuration result in networks whose connec-
tivity is dictated by thousands of lines of brittle, low-level
configuration code that grows stale as the network evolves.
Thus, enterprise networks provide an ideal example of where
declarative management techniques could provide substan-
tial benefits.

In this paper, we present Flow-based Management Lan-
guage (FML), a high-level declarative language for express-
ing network-wide policies about a variety of different man-
agement tasks within a single, cohesive framework. While
there have been numerous authorization languages proposed
in the literature (e.g., [1, 4, 6, 12, 15, 18] among many
others), we believe FML has a unique position in the aca-
demic design space as it was purpose-built to replace existing
network configuration practices, and has been extensively
tested in practice. More specifically, the contributions of
this work are as follows:

e With FML we present a simple language that can be
used to express many common configurations used in
networks today. We demonstrate its expressibility with
a series of example applications and by presenting our
experiences running FML in multiple operational net-
works over the last year.

e FML was designed to admit efficient implementation,
suitable for large enterprise networks. In particular, its
implementation is polynomial time in general, and the
fragment discussed in this paper requires linear time,
thus supporting network-speed decisions. We present
performance numbers from our operational implemen-
tation that demonstrate its scaling properties.

In what follows, we describe FML and provide some of
the logical foundations of the language. We then describe
how FML can be used to express common network configura-
tions. In the subsequent sections, we describe our implemen-

tation of FML, and provide an analysis of its performance as
well as our experiences deploying it within two operational
networks. Finally we present related work and conclude.

2. FML

2.1 Background

The granularity on which FML operates is a unidirec-
tional network flow (hereafter when referring to flows, we
refer specifically to unidirectional flows). This means that a
resulting policy decision applies equally to all packets within
the same flow, and a policy may be constructed that treats
each flow differently (and thus the policy must be consulted
at least once per flow).

We have designed and built FML as the underlying policy
language for NOX [10], a network-wide control plane that
enforces policies on every flow in the network. Similar to
its predecessor, Ethane [7], NOX checks the first packet of
every flow against the network policy before admitting the
flow onto the network. The result of the check may deny
or otherwise dictate how the flow is to be handled by the
network.

In addition to performing per-flow policy checks, NOX au-
thenticates all network principals including switches, users,
and hosts. This is done via standard mechanisms such as
802.1x. NOX then maintains name to address bindings of all
authenticated principals, and thus given a flow, it can map
the flow to its sending and receiving host and user names.

For concreteness, the descriptions of FML in this paper
are derived from our specific implementation environment
within NOX. However, we believe the principles general-
ize to any flow-based network architecture. We assume the
network policy engine can derive the associated high-level
names for all flows on the network. As shown in Table 1,
these include the sending and receiving host name, the send-
ing and receiving user, the sending and receiving access
points (physical ports), and the protocol. In addition, we
assume that the policy engine is invoked for each flow on the
network and can determine whether the flow is a request or
a response.

Property | Description

us and u¢ Source and Target Users

hs and h; | Source and Target Hosts

as and a¢ Source and Target Access Points
prot Protocol

request Whether or not flow is a request.

Table 1: The properties characterizing a unidirec-
tional flow.

2.2 Overview

FML is a language for specifying policies about flows.
FML is based on nonrecursive DATALOG with negation. A
FML policy is a set of statements, each representing a simple
if-then relationship. The statements dictate that a specified
constraint should be applied to the matching flows.

For example, the following three statements say that todd
and michelle are superusers, and a superuser has no com-
munication restrictions.

allow(Us, Hs, As, Uz, Hy, Ay, Prot, Req) <
superuser(Us)

superuser(todd)

superuser(michelle)

The arguments to allow are all variables (denoted by sym-
bols starting with a capital letter) and correspond to the
eight fields of a flow. The remaining two rules make simple
declarative statements. The constraints (such as allow) are
named by keywords. Each application of FML can define its
own set of keywords.

Throughout this section, we use four keywords from the
access control application discussed in Section 3: allow,
deny, waypoint, and avoid. Intuitively, deny blocks a flow;
waypoint requires a flow to pass through a particular node in
the network; and avoid forbids a flow from passing through
a particular node in the network.

A basic FML policy consists of statements like those seen
above, and while such a language can easily represent a wide
variety of information, sometimes not all the information
pertinent to a policy can or should be represented within a
single file. For example, user names and associated groups
are often maintained in an external authentication store
(such as LDAP or AD), and maintaining a copy within a
policy file may be impractical. Consequently, FML policies
can include external references to, for example, SQL queries
over local or remote databases, hash tables, or arbitrary pro-
cedural code.

One of the benefits of FML is that it natively supports
distributed authorship, making it easy for disparate parties
to collaborate on policy decisions.

As with any network configuration language, FML must
assume the possibility of distributed authorship within a
single policy domain. This can lead to policies with con-
flicts (simultaneously allowing and denying a uniflow); con-
sequently, FML includes two conflict resolution mechanisms.
One mechanism is under the control of application develop-
ers and resolves conflicts at the level of keywords, while the
other (a FML cascade) is under the control of policy writers
and is built into the language itself. Below we formalize the
design of our language. We leave a more detailed treatment
to [13].

2.3 Formal definition

The formal syntax for FML rules and FML policies is
given below. We use standard terminology. A predicate is a
symbol associated with a fixed number of arguments: its ar-
ity. A term is a variable (starting with an upper-case letter)
or an object constant (starting with a lower-case letter). An
atom is a predicate of arity n applied to n terms. A literal
is an atom or its negation (indicated by —). An expression
is ground if it contains no variables.

DEFINITION 1 (FML RULE). A FML rule in the con-
text of external references G takes the following form.
h<[-]bi A+ - A[-]bn
e h, the head, and every b;, collectively called the body,
are atoms.

e Fwvery variable in the body must appear in the head.

o When a keyword with more than eight arguments ap-
pears in the head, the extra arguments are object con-
stants.

e h does not contain any predicate g € G.

It is worth noting that the second condition differs from
the traditional safety® restriction in DATALOG and signifi-
cantly simplifies FML’s implementation. See Section 4 for
more information. In addition, it guarantees polynomial-
time evaluation. We include the proof in Appendix A.

A FML policy is simply a collection of FML rules that are
nonrecursive: if predicate A’s definition depends on B, then
B’s definition does not depend on A.

DEFINITION 2 (FML Poricy). A FML policy is a set
of FML rules A that is nonrecursive. (See, for example, [17]
for a formalization.)

The formal semantics of FML is straightforward and can
be defined using the usual stratified semantics [17] of logic
programming or database theory. For the sake of brevity
we omit the definitions. It suffices to say that the obvious
if-then intuition for each rule is exactly right, with the only
complication arising in the context of sets of statements in
which a single flow can match multiple rules. In an FML pol-
icy, the order of statements is irrelevant—reorder the state-
ments in any policy, and the meaning of the policy is entirely
unchanged.

Order irrelevance in a policy language offers two benefits
over languages in which statement order matters, e.g., fire-
wall configuration languages [20]. First, combining a set of
independently authored policies is straightforward: collect
all statements made in the policies. By contrast, it is not
immediately clear how to automatically combine policies in
which statement order matters, thus requiring an algorithm
that will likely be unintuitive to the user. Second, large or-
dered policies can be difficult to understand because a rule
only applies to a flow if none of the previous rules apply.
Conversely, every statement in an FML policy applies to
every flow; finding a single statement that allows a flow
guarantees that one of the constraints on that flow is allow.

The practical consequence of order-irrelevance is that a
policy can impose multiple constraints on the same flow.
For example, an access control policy can force a flow to
pass through two different intermediate waypoints while re-
quiring it to avoid yet another waypoint. While this feature
makes expressing certain policies more natural, it also ad-
mits policies that are unenforceable. For example, a policy
could dictate that a flow should be both allowed and denied.
No real system can simultaneously allow and deny an access
control request; consequently, FML must support schemes
for resolving conflicts. Formally, conflict resolution acts as
a layer of semantics that is defined on top of the core (strat-
ified) semantics of FML.

2.4 Conflict Resolution

FML conflict resolution varies depending on the applica-
tion, a necessity because the keywords differ from applica-
tion to application. In the access control example, the con-
flict resolution scheme prioritizes the keywords: deny takes
precedence over everything; waypoint and avoid are of equal
priority and take precedence over allow. allow has the low-
est priority. The resolution mechanism throws away all con-
straints except those with the highest priority. For example,
if a flow were allowed and denied, the resolution mechanism
would throw away the allow constraint.

LAll variables must occur in a positive literal in the body.

One benefit of permitting conflicts is that administrators
can leverage the resolution scheme to write more concise
policies. For example, in the access control setting, it is
easy to write an open authorization policy—one that allows
everything not explicitly denied.

allow(Us, Hs, As, U, Hy, At, Prot, Req)
deny(Us, Hs, As, U, Hy, A¢, Prot, Req) <= (1)
blacklist(Us)

These two rules deny all communication initiated by a black-
listed user and allow everything else. To further restrict
access, an administrator need only include additional deny
rules.

While open policies are easy to represent, closed policies
(those where everything not explicitly allowed is denied) are
problematic. Adding allow statements does not affect a pol-
icy where every flow is denied because deny takes precedence
over allow. Closed policies thus present a scenario in which
ordered semantics would make declaration easier. Conse-
quently, FML supports an ordering mechanism. Named for
the cascading style sheets used on the web, an FML cascade
is a prioritized series of FML policies, written P} < --- < P,.
Intuitively, any policy in the ordering overrides all of the
policies less than it. A conflict between two policies is re-
solved to what the higher priority policy dictates.

For example, to define a closed authorization policy, one
could construct a cascade with two policies: P1 < P3. P»
would describe all of the flows that should be allowed, and
P, would contain a single rule:

deny(Us, Hs, As, Uy, Hy, Ay, Prot, Req).

DEFINITION 3 (FML CASCADE). A FML cascade con-
sists of a finite set of FML policies {P1,..., P} and a total
ordering < over those policies. We denote a cascade with
P<-- <Py

In a cascade Pi < --- < P,, the highest ranked policy
that says anything about a particular flow is the only policy
that says anything about that flow. In other words, policy
P; determines the constraints on a flow if P; constrains the
flow in any way and there is no other P; that constrains that
flow where j > i. Formal definitions for this intuition can
be found in [13].

While conflict resolution could arguably serve to be as
confusing as ordered policy semantics, it provides the user
with a straightforward means to define how differing con-
straints should be merged. Forced order significance pre-
cludes this flexibility. Furthermore, any ordered set of FML
rules, declarable here using cascades, can be equivalently
expressed as an unordered set of FML rules in linear time,
eliminating the need for conflict resolution in environments
better-suited to ordered semantics. Appendix B details algo-
rithms for eliminating both cascades and keyword conflicts
from a policy.

3. EXAMPLES

To demonstrate how FML is used in practice, in the fol-
lowing section we apply it to several common network man-
agement tasks: access control, quality of service, NAT ad-
ministration, and admission control. Each FML application
will introduce a set of keywords, describe their meanings,
provide examples, discuss conflict resolution, and explain
policy enforcement issues at a high-level.

To simplify the presentation of the example policy state-
ments, rather than explicitly including the usual variables
for the eight flow fields as shown below,

allow(Us, Hs, As, Uy, Hy, Av, Prot, Req) < ...

we will denote those eight variables with a single vector
variable Flow, and write rules as allow(Flow) <
These applications assume that the network architecture
is such that the policy engine can intercept every flow on the
network, and can dictate its path and properties (such as
QoS parameters). FML could equally well be used to man-
age each switch individually (assuming the switch is flow-
based), in which case the application would be limited to
switch-local rather than network-wide functions.

3.1 Access Control

As briefly discussed in Section 2, in the access control
application of FML, administrators dictate whether flows
are allowed on the network, and if so, whether there are any
constraints on the routes. The keywords are described in
Table 2.

Keyword | Description

allowg Allow flow.

denyo Deny flow.

waypoint; | Route flow through network node.
avoid; Route flow to avoid network node.
ratelimit; | Limit flow’s maximum Mb/s.

Table 2: Keywords for access control policies. Sub-
scripts denote the number of arguments in addition
to the eight flow fields.

For example, to force wireless guest users to send all re-
quests through an IDS, one could write the following rules.
Note that below, guest is externally defined.

waypoint(Flow,ids) <
guest(Us) A wireless(As)

wireless(wapl)

wireless(wap2)

The keywords for this application admit a variety of con-
flicts: deny and any other keyword, waypoint and avoid if
they constrain a flow’s route to both include and exclude
the same intermediate node, and any keyword together with
allow.

To resolve conflicts, a most-restrictive scheme is sensible
given the desire for security. deny is more restrictive than
waypoint, avoid, and allow. If a flow is both required to pass
through a node via waypoint and forbidden to pass through
that same node via avoid, the flow is denied. Otherwise, the
waypoint and avoid constraints are enforced, and if there are
no deny, waypoint, or avoid constraints imposed on a flow,
it is allowed.

For a realistic example of an FML access control policy,
see Appendix C.

3.2 Quality of Service

For quality of service, administrators dictate how resources
should be allocated to different flow classes by specifying the
relative importance of certain properties: latency, jitter, and
bandwidth. The keywords are described in Table 3.

Keyword | Description

latency: Set maximum packet delay.

jittery Set maximum variance in packet delay.
band; Set minimum available kbits/s.

Table 3: Keywords for QoS policies. Subscripts de-
note the number of arguments in addition to the
eight flow fields.

For example, VOIP requires low latency and jitter, while
bandwidth is less important. Conversely, data backups re-
quire high bandwidth, but jitter and latency are less im-
portant. The following policy snippet uses protocol number
1233 to signify a data-backup flow.

latency(Flow, 100) < Prot = voip
jitter(Flow,5) <= Prot = voip
band(Flow,3000) < Prot = 1233

Conflicts arise when a single flow is assigned two or more
values for the same property, e.g., a latency of 100 and
200. To resolve such conflicts, we use the most-demanding
scheme, which given multiple values for a single property
chooses the one that is most difficult to enforce: the lowest
latency and jitter and the highest bandwidth.

Because all application statements follow the same logi-
cal model, multiple applications can be used to manage the
network from the same policy file (provided a sane conflict
resolution strategy exists). For example, if both QoS and ac-
cess controls statements are included in a policy, the lookup
could be performed as follows. Each time a flow is initiated,
the QoS and access control policies are queried to determine
the constraints on the flow. Max-flow algorithms could then
be used to choose a route through the network that satisfies
the access control constraints and is most likely to achieve
the QoS requirements (assuming the policy controller has a
reasonably accurate snapshot of the network state).

3.3 NAT

Network address translation (NAT) maps between two
pools of IP addresses and is generally used to allow mul-
tiple machines within a private IP range to share a single,
public address. Implementing such a translation requires al-
tering the IP and port number of each packet leaving and
entering the private network. NAT thus differs from appli-
cations previously discussed in that each packet in the flow
must be modified, therefore requiring the network switches
to support this functionality.

NAT also differs from the other applications by requiring
the maintenance of state between the request and response
flows of a connection. In particular, if a flow’s source IP and
port number have been overwritten, the return flow must
be modified to the original values for the originating host
to correctly receive the response. The mapping between the
new and old values can be stored in the same location as the
policy engine, which will be consulted upon initiation of the

return flow. The keywords for NAT are listed in Table 4.
For example, the following statements cause every packet

from private IP address 10.0.0.1 connected at the wireless
access point patio to appear to the rest of the network as
though they are from the public address 170.70.70.1 with a
modified port. The statements force switch sw to perform

Keyword Description

srcN AT» Set source IP and port.

dstN AT, Set destination IP and port.

unSrcN ATy | Set destination to match original source.
unDstN ATy | Set source to match original destination.
noChangeg Do not change flow.

Table 4: Keywords for NAT administration policy.
Subscripts denote the number of arguments in ad-
dition to the eight flow fields.

the address translation.

sreNAT (Flow,170.70.70.1, sw) <
As = patio AN IPs = 10.0.0.1

unSrcNAT (Flow) <
Ag=swAIP; =170.70.70.1

The sw argument corresponds to the NAT switch for the
private network—the switch that partitions the private IP
addresses from the public IPs. Since many private subnet-
works may exist within a network, the same private IP may
be used in different portions of the network, and the sw ar-
gument serves to differentiate which private network each
rule applies to.

This example includes a rule conditioned on the source
IP address of a flow, a field that was not included in the
definition of a flow (Table 1); however, that definition was
intended to be instructive, not exhaustive. Our actual im-
plementation includes several other flow properties not men-
tioned in Table 1, e.g., source and target IP addresses.

In this application, conflicts arise between noChange and
any other keyword, and when two changes require modi-
fying the same field, e.g., assigning two different addresses
to the same source IP. Our resolution mechanism takes the
most conservative action by prioritizing undoing of NAT
actions over everything else, and otherwise performing no
translation if conflicts exist. In particular, unSrcN AT and
unDstN AT take precedence over all other keywords, while
noChange does so over srcNAT and dstNAT. Conflicts
among srcNAT's or dstN AT's resolve to noChange.

3.4 Admission Control

Admission control allows the administrator to specify the
authentication requirements for hosts and users to gain ac-
cess to the network. Admission control can be achieved
through FML by using it to define what default connectivity
is allowed (for unauthenticated hosts), and which authenti-
cation mechanisms are to be used.

For example, we have recently deployed an admission con-
trol policy at a large university in which all users with pri-
vate addresses must authenticate via a captive web portal
before being given access to the network. Therefore we have
to provide default access from hosts to the web-servers, and
from the web-servers to the directory servers.

For example, the following policy cascade sets up default
connectivity for authentication, and redirects all unauthen-
ticated users to a captive web portal. Here we have Ps >
P> > P.

Policy Ps
allow(Flow) < Prot = arp
allow(Flow) < Prot = dhcp
)
)

allow(Flow) < Hy = auth_server A Prot = http
allow(Flow) < Hs = auth_server A Prot = http
Policy P2
hittpRedirect(Flow, 307, auth_server) <

Us = unknown A Prot = http
Policy P11
deny(Flow) < Us = unknown

The only reserved constant in FML, unknown, is used for
any flow field that has no known value. The policy above
allows ARP and DHCP messages, as well as HT'TP connec-
tions to and from the authentication server. In addition, an
HTTP flow with an unknown source user is redirected with
the status code 307 to the host auth_server. Finally, all
other flows are denied.

This example extends the access control application with
the keyword httpRedirect. For conflict resolution, deny
overrides everything, and httpRedirect overrides everything
except deny. Multiple httpRedirect target hosts causes a
multiple target redirect (status code 300), and multiple
httpRedirect status codes are resolved to a temporary redi-
rect (status code 307).

4. IMPLEMENTATION

In this section we describe our implementation of FML.
All language features are supported with the exception that
predicates (other than keywords) are restricted to one ar-
gument and are strongly typed (apply to hosts, users, or
access points). This restriction enables linear run-time eval-
uation, an improvement over polynomial time for arbitrary
FML. Speed critical operations (such as run-time policy
checking) are implemented in C++, while compilation and
various integration components are written in Python. Our
implementation is roughly 10,000 lines.

We have implemented (and deployed) all of the applica-
tions mentioned in the previous section except for QoS (in-
cluding access controls, NAT, and admission controls). In
what follows, we briefly describe our implementation and its
environment, our real-world experiences, and provide some
performance results.

4.1 Implementation Environment

As mentioned previously, we have implemented FML within
NOX. NOX is a general control platform on top of which
network-wide control applications can be built. NOX pro-
vides applications with a global view of the network topol-
ogy (links, nodes, and hosts) and the ability to be notified
on significant network events (e.g., a new flow has entered
the network, or a host has joined the network). In addi-
tion, through NOX, applications can control the behaviour
of the network by setting up flows in the network switches
(as the result of a policy decision, for example), and sending
packets.

FML operates within NOX by intercepting all new flows
on the network and checking them against the current policy.
If a flow is permitted, FML uses the NOX routing library to
calculate a compliant route (which may include waypoints)
and then adds the flow to the flow-table of each switch along

the path.

NOX builds the policy namespace, containing name to
address bindings, by handling the authentication of net-
work principals. When a principal authenticates, its name
is bound to the source access point, source MAC address,
and source IP address (if it exists), used during the authen-
tication exchange. The names and user credentials are gen-
erally retrieved from a remote authentication store (our im-
plementation supports both LDAP and AD). On successful
authentication, the names are cached by the policy engine
and indexed by address for quick retrieval on each new flow.

4.2 Policy Lookup and Evaluation

Since policy consultation occurs on every flow, the eval-
uation engine has been optimized for performance and is
comprised of two components: a decision tree intended to
minimize the number of rules evaluated per flow, and an al-
gorithm for evaluating a given set of rules. Given a flow’s
eight properties, the decision tree identifies the subset of the
original policy that needs to be evaluated, and the evalua-
tion algorithm computes the set of constraints imposed by
the selected rules on the given flow. Since the evaluation al-
gorithm is standard, we focus on the decision tree indexing
structure.

The tree partitions the rules by placing all rules that con-
strain the eight flow fields the same way into the same par-
tition. The result is a compact representation of the rule set
in an eight-dimensional space. Negative literals are ignored
by the indexer and evaluated at runtime.

Each node in the decision tree has one child for each possi-
ble matching value for the dimension that node represents,
e.g., a node representing U, has one child for each value
assigned to Us in the subtree’s policy rules. In addition,
because some of a subtree’s rules may not constrain the di-
mension a node represents, e.g., Prot in the rule below, each
node includes an ANY child for such rules to be placed in.
Each node in the decision tree is implemented using a hash
table with chaining to ensure that each of its children can
be found in near constant time. The decision as to which of
the eight attributes to branch on at any point in the tree is
made by finding the dimension that most widely segments
a subtree’s rule set. In particular, we select the dimension
that minimizes the average number of rules at each child
node plus the number of ANY rules in the subtree.

For example, the rule

allow(Us, Hs, As, Uy, Hy, A¢, Prot, Req) <
Us = alice N Uy = bob

mentions the source user Us and the target user U;. This
rule would belong to the node in the decision tree where
Us is alice and Uy is bob. Figure 1 shows one possible tree
(branch), where the rule above is located in the node marked
with an asterisk. (Our decision tree also handles rules that
require a uniflow field to be true of a user-defined predicate,
but our simple example conveys the basic premise. See [13]
for more details.)

Notice that the size of the tree is dependent only on the
size of the policy, not on the number of users or hosts in
the network. For example, the source user node only has as
many children as there are constants ¢ where the constraint
Us = c occurs in some rule body. Thus FML evaluation is
dependent only on the size of the policy (assuming appro-
priate indexing for external references).

bob

aie o Uy
S\

Figure 1: Example decision tree

The total cost of FML evaluation is the cost of finding the
pertinent rules in the tree index plus the cost of evaluating
those rules. Rule evaluation is performed in the usual way.
Conflict resolution is handled by the system directly: actions
of all matching rules are collected, and the conflict resolu-
tion scheme is applied. A FML cascade is implemented by
evaluating rules in priority order; once a match is found,
only the remaining rules of the same priority are evaluated.

4.3 Deployments

FML is currently being used to manage two operational
networks. The first is a small business with roughly 70 hosts
connected through 4 switches. The second deployment is
at a large medical university where FML is being used to
enforce policy over a roughly 200 host network. We describe
each of these deployments in more detail below.

Within the small business network, FML is being used
to enforce both admission and access control policies. The
admission policy requires users on workstations and lap-
tops to authenticate via a captive web-portal (against an
LDAP authentication store) before being permitted access
to the network. The access policy is roughly as follows. Ap-
plication servers are allowed unrestricted access, while test
servers are unable to connect to the Internet. Servers and
printers should only allow inbound connections (except for
outgoing SSH sessions on server), providing protection sim-
ilar to a DMZ. Laptops and mobile devices (such as mobile
phones supporting Wi-Fi) are not allowed inbound connec-
tions (similar to NAT). We also have a few rules that allow
monitoring and diagnostic traffic between an administrative
host and all switches. The policy file for this network is just
over 40 lines.

Like the small business network, the deployment at the
medical university enforces basic admission and access poli-
cies. However, it also makes use of NAT and waypointing.
The policy dictates that all laptops must be NAT’d (pro-
tecting them from inbound traffic). It also requires that all
HTTP traffic traverse a proxy before leaving the campus
network.

Flow setup latencies (involving two permission checks,
route calculations, and flow-entry setups) are generally un-
der 20ms. In our deployments, there is not enough traffic
to stress our implementation (we generally see less than 100
new flow setups/s even in the larger network). However
in benchmarks using generated traffic, our implementation
running with our internal policy file supports permission
checks on over 30,000 flows/s, over three times that of any
network we have measured. We present more performance
tests of the system under load below.

4.4 Performance

We tested the performance and memory overhead of our

implementation with policy files of increasing size (Table 5).
All policies (except those with 0 rules) forced a maximum
depth tree once constructed. For each incoming flow, on
average logz(#rules) matched and had to be evaluated by
the system. Table 6 shows the same test using policies in
which 10% of the rules contain ANY fields (the number of
fields containing ANYs is evenly distributed between 1 and
the maximum number of fields). In this case, the increased
number of rules matching a given flow due to the number
of ANYs causes a performance degradation in larger policy
files.

The goal of this analysis is not to provide an exhaustive
investigation of the performance of our implementation, but
rather to gain some insight into its handling of load under
various rule sets. As shown in [7], even large enterprise net-
works of tens of thousands of hosts generally have less than
10,000 flow requests per second, far below the performance
capabilities of our implementation for the rule sets tested.

flows/s Mbytes avg. matches
0 rules 103,699 0 0
100 rules 78,808 0 4
1,000 rules 75,414 2 7
10,000 rules | 67,843 56 9

Table 5: Performance and memory overhead of our
FSL implementation over policies with increasing
rule count. The rightmost column contains the av-
erage number of matching rules per flow.

flows/s Mbytes avg. matches
0 rules 103,699 0 0
100 rules 100,942 1 2
1,000 rules 76,336 2 10
10,000 rules 46,956 38 52

Table 6: Performance and memory overhead of our
FSL implementation over policies declared over 1000
principals in which 10% of the rules contain ANYs.
The rightmost column contains the average number
of matching rules per flow.

S. RELATED WORK

Declarative languages have been proposed for numerous
applications by the security and artificial intelligence com-
munities. Here we summarize which language features FML
includes; other features were left out most often because
of the severe performance requirement (10_4 seconds per
query).

FML is based on a restricted form of DATALOG with nega-
tion, e.g., [15], allows conflicts, e.g., [18], admits automated
detection of conflicts, e.g., [3], and adheres to a fixed conflict
resolution scheme, e.g., [18, 15]. As is standard in database
applications, FML policies reference external sources, e.g.,
[5]; it also employs a sequential semantics operator (called
“overrides” in [5] and “exceptions” in [4]) via FML Cascades.
For a more comprehensive treatment of related work, see
[13].

The highest-level design decision was to base FML on DAT-
ALOG instead of, for example, first-order logic [12], modal
logic [1], or linear logic [6]. Besides efficient implementa-
tion, two features of DATALOG stand out. First, its similarity
to traditional programming languages makes it accessible to

our target audience: network operators (who may be logic
novices). Second, its semantics guarantees that true disjunc-
tion is inexpressible. If true disjunction were expressible, a
FML policy could deny one of two flows without specify-
ing which. Such expressiveness has questionable utility and
makes enforcement especially problematic.

There have been a number of approaches proposed for
making firewall configuration more manageable. These in-
clude the use of entity relationship modeling [2] and high-
level language design (e.g., [11]). Our work has similar ob-
jectives, yet we broaden the scope of the configuration be-
yond filtering policies for firewalls to include other common
network configurations such as QoS, route control, NAT,
and broadcast isolation.

6. CONCLUSION AND FUTURE WORK

In this paper we described FML a new langauge for declar-
ing network connectivity policies as a set of ordered con-
straints. FML allows succinct, structured, high-level spec-
ification of various management tasks, freeing network ad-
ministrators from the drudgery of configuring myriad router
ACLs, firewalls, NATs and VLANSs to achieve comprehensive
and conceptually straightforward network usage policies.

FML is a declarative policy language based on nonrecur-
sive DATALOG with structured negation. The declarative na-
ture of FML enables administrators to focus on policy deci-
sions instead of implementation details. In addition, logic-
based algorithms that detect and resolve conflicts in pre-
dictable and reliable ways may be incorporated into policy
development environments. FML also supports prioritized
policy combination, which is a natural way to express many
policies and enables incremental policy updates.

FML is not merely a paper design. We have used it in
several operational networks, and have subjected it to addi-
tional tests using much more demanding artificially gener-
ated loads. This operational experience demonstrates that
our implementation has modest memory requirements and
can scale to very large networks while supporting policy files
of tens of thousands of rules.

In the future we plan to investigate how FML policies
can automatically be decomposed to support distributed en-
forcement, thereby lessening the impact of a centralized con-
troller. Such a scheme would enable centralized, authorita-
tive policy authoring and analysis yet retain the robustness
of today’s networks. While our current infrastructure suf-
fices to address small and medium networks, automatic de-
composition could enlarge the applicability of FML to large,
international networks as well.

We also plan to develop a tool suite for analyzing FML
policies. For example, FML supports both developer and
administrator supplied forms of conflict resolution, both of
which can make understanding large FML policies difficult.
While the algorithms in Appendix B demonstrate that con-
flicts can be removed automatically, the resulting policies
are far from user-friendly. A suite of sophisticated, user-
friendly tools would help operators debug and feel confident
about their FML policies.

Finally, FML relies heavily on developer-chosen keywords
that encode all the possible constraints that may be imposed
on a flow for a given application. To implement a new ap-
plication, a developer must write custom software that im-
plements each of the keywords, as well as conflict resolution.

It would be preferable if FML allowed administrators to in-
vent new keywords by writing additional policy statements
axiomatizing the meaning of those keywords, and the FML
implementation would compile those statements to impera-
tive code. This would enable administrators to impose con-
straints on flows not anticipated by the NOX developers.

7. ACKNOWLEDGEMENTS

We would like to thank Michael Genesereth and Jad Naous
for their helpful feedback during the FML design process.
We would also like to thank the Nox development team,
particularly Dan Wendlandt and Teemu Koponen for sig-
nificant contributions towards the implementation. Finally,
we would like to thank the anonymous reviewers for their
comments.

8. REFERENCES

[1] M. Abadi, M. Burrows, and B. Lampson. A calculus
for access control in distributed systems. ACM
Transactions on Programming Languages and
Systems, 15(4), 1993.

[2] Y. Bartal, A. Mayer, K. Nissim, and A. Wool.
Firmato: A novel firewall management toolkit. ACM
Trans. Comput. Syst., 22:381-420, 2004.

[3] A. Barth, J. C. Mitchell, and J. Rosenstein. Conflict
and combination in privacy policy languages. In Proc.
of the ACM Workshop on Privacy in the Electronic
Society, 2004.

[4] E. Bertino, S. Jajodia, and P. Samarati. A flexible
authorization mechanism for relational data
management systems. ACM Transactions on
Information Systems, 17(2), 1999.

[5] P. A. Bonatti, S. D. di Vimercati, and P. Samarati. A
modular approach to composing access control
policies. In In ACM CCS, 2000.

[6] K. D. Bowers, L. Bauer, D. Garg, F. Pfenning, and
M. K. Reiter. Consumable credentials in logic-based
access-control systems. In Proc. of the NDSS, 2007.

[7] M. Casado, M. J. Freedman, J. Pettit, J. Luo,

N. McKeown, and S. Shenker. Ethane: Taking control
of the enterprise. In Proc. ACM SIGCOMM
Conference, Kyoto, Japan, Aug. 2007.

[8] L. Cranor, M. Langheinrich, M. Marchiori,

M. Presler-Marshall, and J. Reagle. The platform for
privacy preferences 1.0 (P3P1.0) specification, 2002.

[9] S. Egelman, L. F. Cranor, and A. Chowdhury. An
analysis of p3p-enabled web sites among top-20 search
results. In ICEC ’06: Proceedings of the 8th
international conference on Electronic commerce, New
York, NY, USA, 2006.

[10] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards and
operating system for networks. In ACM SIGCOMM
Computer Communication Review, July 2008.

[11] J. D. Guttman. Filtering postures: Local enforcement
for global policies. In In Proceedings, 1997 IEEE
Symposium on Security and Privacy, pages 120—129.
IEEE Computer Society Press, 1997.

[12] J. Y. Halpern and V. Weissman. Using first-order logic
to reason about policies. In Proc. of the IEEE
Computer Security Foundations Symposium, 2003.

[13] T. Hinrichs, N. Gude, M. Casado, J. Mitchell, and
S. Shenker. Expressing and enforcing flow-based
network security policies. Technical report, University
of Chicago, 2008.

[14] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and
J. M. Smith. Implementing a distributed firewall. In
ACM Conference on Computer and Communications
Security, 2000.

[15] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A
logical language for expressing authorizations. In Proc.
IEEE Symposium on Security and Privacy, 1997.

[16] B. Parducci, H. Lockhart, R. Levinson, J. B. Clark,
and M. McRae. eXtensible Access Control Markup
Language (XACML) specification, 2005.

[17] J. Ullman. Principles of Database and
Knowledge-Base Systems. 1989.

[18] D. Wijesekera and S. Jajodia. Policy algebras for
access control - the predicate case. In Proc. ACM
CCs, 2001.

[19] G. Xie, J. Zhan, D. A. Maltz, H. Zhang,

A. Greenberg, and G. Hjalmtysson. Routing design in
operational networks: A look from the inside. In Proc.
ACM SIGCOMM °04, New York, NY, USA, 2004.

[20] L. Yuan and H. Chen. FIREMAN: A toolkit for
firewall modeling and analysis. In Proc. of the IEEE
Symposium on Security and Privacy, 2006.

APPENDIX
A. PROOFS

THEOREM 1
a policy written in a FML language and a query of the form
key(ti,...,tn), evaluating the query takes polynomial time.

Proor. FML is a syntactic variant of nonrecursive DAT-
ALOG with negation where the variables in the body of every
rule must appear in the head. It is simple to see by induc-
tion on the number of extension (backward-chaining) opera-
tions needed to evaluate the query that the number of argu-
ments to every predicate participating in that evaluation is
no greater than n (the number of arguments to key). This is
important because n is a constant (independent of the pol-
icy), and a well-known result of DATALOG guarantees that
if all of the predicates take no more than a constant num-
ber of arguments, evaluation is polynomial. Thus, evalua-
tion of the query is polynomial because the fragment of the
policy used during evaluation obeys the constant-argument
assumption.

Here we sketch a proof of the well-known result: if all of
the predicates in the rule set take no more than c arguments,
then evaluation is polynomial in the size of the rule set and
data. Consider any rule.

p(t) <= [Flba(t) A -+ A [H)om (Em)

The number of ground instances of this rule is at most |U|°,
where U is the universe, because once every variable in the
head of the rule is bound, every variable in the body is
bound also. Because c is a constant, |U|¢ is a polynomial;
consequently, grounding a rule set takes polynomial time.
To determine whether a ground set of rules entails a ground
atom, one can use a variant of the context-free grammar
(CFG) marking algorithm for determining whether a given
grammar is empty.

(FML LANGUAGES ARE POLYNOMIAL). Given

If negation does not occur in the rules, the CFG marking
algorithm is exactly the right algorithm to use. This algo-
rithm runs in time polynomial in the size of the input, which
is polynomial in the size of the original sentences.

If negation does occur, the marking algorithm needs to
be altered so that it only marks negative literals once all
the positive consequences have been marked. The result is
an algorithm that runs the CFG algorithm no more times
than the number of the original sentences, which again is a
polynomial algorithm. [

B. ALGORITHMS

The algorithms presented in this section demonstrate that
both keyword and cascade conflicts can be removed auto-
matically from FML. For the sake of brevity, the algorithms
are illustrated using just the keywords allow and deny; gen-
eralizing to an arbitrary set of keywords is straightforward.
The first section introduces a special form for FML poli-
cies that simplifies the presentation of the subsequent algo-
rithms. In the examples that follow, we use Flow to repre-
sent the usual sequence of variables:

Us,Hs, As, U, He, A¢, Prot, Regq.

B.1 Inline Normal Form

For the upcoming algorithms, it is convenient if a FML
policy mentions no intermediate predicates. An intermedi-
ate predicate is any predicate that is not an external refer-
ence, a keyword, or =. We say that a policy where the only
predicates are non-intermediaries is in Inline Normal Form
(INF).

For example, the following policy uses the intermediate
symbols host and private.

allow(Flow) < host(Hs)
host(X) <= private(X)
host(X) < server(X)
private(X) <= desktop(X)
private(X) < laptop(X)

An equivalent policy, written in INF is shown below.

allow(Flow) < server(Hy)
allow(Flow) <= desktop(H.) (2)
allow(Flow) <= laptop(Hy)

Transforming a policy into INF is straightforward. We
say that the definition for a predicate p is the disjunction of
all the rule bodies where p occurs in the head (after canoni-
calizing the head of each rule). To compute INF, repeat the
following procedure until all of the intermediate predicates
in rule bodies have been removed: each time an intermediate
predicate occurs in the body of a rule, inline the definition
for that predicate. Afterwards, every predicate in the body
of a rule is an external reference or =.

In the above example, it takes two iterations of inlining
before all of the intermediate predicates have been removed.
Concentrating on just the allow rule, the result of replacing
host with its definition is

allow(Flow) <= (private(Hs) V server(Hy))
The result of replacing private with its definition is:

allow(Flow) < ((desktop(Hs) V laptop(Hs)) V server(Hy))

This procedure produces rules with arbitrary boolean for-
mulae in the body. Such rules are sometimes convenient,
even though they do not change the expressiveness of the
language. A set of rules where the bodies can include arbi-
trary boolean formulae and the only predicates mentioned
are the keywords, external group symbols, and =, is in Ex-
tended Inline Normal Form (EINF).

To convert EINF rules into INF requires converting to
conjunctive normal form (CNF) (without introducing inter-
mediate predicates). The standard recursive-descent clausal
form conversion algorithm does just this.

B.2 Flattening a FML Cascade

FML was designed so that administrators could indepen-
dently author pieces of a security policy for a network and
then automatically combine those pieces. FML cascades
make expressing and editing certain policies easier; conse-
quently, we expect that sometimes administrators will ex-
press their policies as cascades. Thus, despite the order-
relevance of a cascade, we need algorithms that automati-
cally combine them while preserving their semantics. Our
approach transforms each FML cascade into an equivalent
FML policy and then combines the resulting policies in the
usual way.

To illustrate how a FML cascade can be flattened into
a single FML policy, consider a simple example with two
policies, each with a single rule. Policy P; says that wireless
users cannot connect to the Human Resources (HR) server,
and policy P, which overrides P, says that the CEO can
do as he pleases. The ordering is P < P».

Py : deny(Flow) < wireless(As) A Hy = hrserver
P, : allow(Flow) < Us = ceo

This cascade says that every wireless guest user except for
the CEO is denied from accesssing the HR server, and the
CEOQO can access everything. To write this cascade as a single
policy, it is sufficient to negate the conditions under which
the rule in P> applies and add the result to the conditions
in the P; rule.

deny(Flow) < wireless(As) N Hy = hrserver A Us # ceo
allow(Flow) < Us = ceo

In general, suppose the two policies are written in Ex-
tended Inline Normal Form with exactly one rule for allow
and one rule for deny. In policy Pi, there are exactly two
rules.

deny(Flow) < ¢1(Flow)
allow(Flow) < 91 (Flow)

Likewise, policy P> contains two rules, denoted by subscript-
ing with a two instead of a one. In the cascade P; < P,
a rule in P; only applies if none of the rules in P» apply.
The rules in P> apply when either ¢2(Flow) or ¥2(Flow) is
true; the rules in P» do not apply when neither of those sen-
tences is true. Such a policy can be constructed by adding
constraints to each rule in Py, the result of which is shown
below, while including the rules in P> as they are.

deny(Flow) < ¢1(Flow) A =¢2(Flow) A =2 (Flow)
allow(Flow) <= 1 (Flow) A =2 (Flow) A —pa(Flow)

Generalizing to n policies is straightforward, and it turns out
that by using intermediate predicates, there is an algorithm
that flattens a FML policy in linear time.

B.3 Conflict Conditions

One of the features of FML, introduced to facilitate col-
laborative policy authoring, is the ability to express conflicts
using keywords. One administrator may want to deny a class
of flows, and another administrator may want to allow that
class. Algorithms for detecting conflicts are important be-
cause people who contributed conflicting statements can be
made aware of their conflicting intentions.

Certain types of conflicts can always be detected at compile-
time (static conflicts), but other types of conflicts can only
be detected at run-time because they depend on the exter-
nal references. In general, the best we can hope for are the
conditions on the external references (expressed as logical
formulae) that characterize the conflicts.

Consider an example. The following rules rely on the ex-
ternal references ¢ and r.

allow(Flow) <= q(Us)
deny(Flow) < r(Us)

These rules conflict only when there is some user that be-
longs to both the groups ¢ and r. Since we do not know
at compile-time whether there is such a user, the best we
can do is state the conditions under which there is a conflict
between these two rules: ¢(Us) A r(Us).

To construct the conditions under which a policy is con-
flicting, suppose the policy has been written in EINF with
one rule for allow and one rule for deny.

deny(Flow) < ¢(Flow)
allow(Flow) < ¢ (Flow)

The conditions under which a conflicts occurs is given by
the following expression.

¢(Flow) A (Flow)

Admittedly, such an expression needs to be simplified be-
fore being presented to a real person, but conceptually, com-
puting the conditions under which conflicts occur is straight-
forward.

B.4 Conflict-free Normal Form

The fact that FML policies allow keyword conflicts is a
powerful property because it enables the system to under-
stand more fully the users’ intentions; however, because a
real system can only enforce a conflict-free policy, those con-
flicts are resolved automatically. The downside to this ap-
proach is that a person looking at the current policy may
have a hard time understanding why the system constrains a
given flow the way it does. Finding a single rule that says a
flow is allowed is insufficient for concluding that the system
will allow that flow. There may be another rule that says to
deny that flow, and the deny rule takes precedence.

The algorithm outlined next transforms a given policy P
into a new policy P’ such that P’ is conflict free and P
and P’ are equivalent when deny overrides allow. When
examining P’, finding a rule that allows a flow is sufficient
for determining that policy as a whole allows that flow. We
say that a policy without conflicts is in Conflict-free Normal
Form (CFNF).

Suppose the policy has been written in Extended Inline
Normal Form with exactly one rule for allow and for deny.

deny(Flow) < ¢(Flow)
allow(Flow) < ¢ (Flow)

The conflict resolution policy says that deny overrides
allow; thus, the allow rule only applies when the deny rule
body is false. The transformation to CENF is accomplished
by conjoining the negation of the deny rule body to the
allow rule body. The deny rule need not be altered.

allow(Flow) < (Flow) A —¢(Flow)

C. EXAMPLE POLICY

The policy cascade shown in Figure 2 is the one used
for access control in our internal network. The policies are
shown from highest to lowest priority: Pi < P> < P3 < Px.

Policy Py
allow ARP and DHCP
allow(Flow) < Prot = arp
allow(Flow) < Prot = dhcps A Hy = gateway

allow computers to ssh anywhere
allow(Flow) < Prot = ssh A computer(Hs)

allow internal monitoring flows:
proprietary protocols registered with the system
allow(Flow) < Prot = 1616 A Hs = badwater

allow(Flow) < Prot = 1717 A Hs = badwater
allow(Flow) < Prot = 1818 A Hs = badwater
allow(Flow) < Prot = 1616 A H; = badwater
allow(Flow) < Prot = 1717 A Hy = badwater
allow(Flow) < Prot = 1818 A H; = badwater

Policy Ps
dissallow external communications for
testing machines
deny(Flow) < testing(H,)
deny(Flow) < testing(H;)

servers should be inbound-only
deny(Flow) < Req = true A server(H,)
deny(Flow) < Req = true A printer(Hy)

laptops and mobile devices

should be outbound-only

deny(Flow) < Req = true A\ mobile(Hy)
deny(Flow) < Req = true A laptop(H,)

Policy P»
allow known devices to communicate as long as
they abide by the previous rules.
allow(Flow) < all(Hs)

Policy P1
default deny
deny(Flow)

Figure 2: Cascaded policy for internal network.

