
PROACTIVE CONGESTION CONTROL

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Lavanya Jose

January 2019

c© Copyright by Lavanya Jose 2019

All Rights Reserved

ii

Lavanya Jose

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in

scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Nick McKeown) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in

scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Mohammad Alizadeh)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in

scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Sachin Katti)

Approved for the Stanford University Committee on Graduate Studies

iii

Abstract

Most congestion control algorithms rely on a reactive control system that detects congestion and then marches

carefully toward a desired operating point (e.g., by modifying the window size or picking a rate). These

algorithms often take hundreds of RTTs to converge—an increasing problem in networks with short-lived

flows.

Motivated by the need for fast congestion control, this thesis focuses on a different class of congestion

control algorithms, called proactive explicit rate-control (PERC) algorithms, which decouple the rate calcu-

lation from congestion signals in the network. The switches and NICs exchange control messages to run a

distributed algorithm to pick explicit rates for each flow. PERC algorithms proactively schedule flows to be

sent at certain explicit rates. They take as input the set of flows and the network link speeds and topology,

but not a congestion signal. As a result, they converge faster and their convergence time depends only on

fundamental ”dependency chains,” essentially couplings between links that carry common flows, that are a

property of the traffic matrix and the network topology. We argue that congestion control should converge in

a time limited only by fundamental dependency chains.

Our main contribution is s-PERC: a new practical distributed proactive scheduling algorithm. It is the

first PERC algorithm to provably converge in bounded time without requiring per-flow state or network

synchronization. It converges to the exact max-min fair allocation in 6N rounds (where N is the number

of links in the longest dependency chain). In simulation and on a P4-programmed FPGA hardware test bed,

s-PERC converges an order of magnitude faster than reactive schemes such as TCP, DCTCP, and RCP. Long

flows complete in close to the ideal time, while short-lived flows are prioritized, making it relevant for data

centers and wide-area networks (WANs).

iv

To my parents.

v

Acknowledgments

Doing a Ph.D. is simultaneously the most difficult and the most enriching experience I have undertaken. I

am deeply indebted to my adviser, Nick McKeown, for supporting me in every step of this journey and for

providing just the right balance of independence and guidance. Nick, thank you for looking out for me. I

have learned a lot from you—to take no assumption for granted, to distill every problem down to its essence,

and many other valuable lessons which will hold me in good stead for my next adventure. I am glad to say

that I have inherited from you a taste for real, practical problems and simple solutions that are grounded in

theory.

I am grateful to Mohammad Alizadeh for the many insightful discussions we have had on congestion

control in the last few years. Mohammad, thank you for introducing me to message passing algorithms, and

for all the practical advice and feedback you have given. I also want to thank you for inviting me to the

Dagstuhl workshop on “Network Latency Control in Data Centres.” The breakout session on “Congestion

Control in 100 Gb/s Networks,” inspired by PERC, helped me to see the problem from expert perspectives

across industry and academia.

I must also thank Sachin Katti for all the support from the beginning of my time at Stanford, when he

reached out first to let me know I was accepted, until the very end, when he agreed to be my thesis reader.

Sachin, thank you for taking me under your wing in my first quarter and advising my first rotation project,

where I learned as much about the cellular packet core as I did about writing papers and working efficiently.

Many thanks to professors Balaji Prabhakar and Ramesh Johari for the insightful discussions during

the last few months, which have enriched this thesis. Prof. Prabhakar, I would have loved to start our

collaboration sooner. I have come away much wiser from each of our meetings, amazed at how good notation

and ordering of arguments can make all the difference. Prof. Johari, thank you for sharing your optimization-

theory perspective of the problem and for discussions that gave me much food for thought.

I am also grateful to George Varghese for mentoring me in my first two years at Stanford when we worked

on the compiler project and the Fair (PERC) algorithm. George, your passion for problems is infectious, and

vi

I thank you for the voice in the back of my head that nudges me to reach out across disciplines and find new

perspectives.

The PERC approach started from discussions back in 2015, with Nick, Mohammad, George, Lisa Yan,

and Isaac Keslassy about using the network in cool and interesting ways. Thanks to Isaac for conscientiously

reading through early drafts of the proofs of the Fair algorithm. Thank you also to Steve Ibanez and Jonathan

Perry for being a sounding board for my ideas about a practical PERC algorithm.

I count myself very lucky to have found a collaborator like Steve to work with me on s-PERC. Steve, this

thesis wouldn’t have been possible without your help. Thank you for helping to make s-PERC a reality with

the P4-NetFPGA prototype and test bed; for demoing our work at Florianopolis, despite many bugging issues

(Zika included) at the last minute; for reading through the first draft of this thesis; for being an unflappable,

cheerful and super hard-working team mate through different iterations of s-PERC; and for being a great

office mate with an inspiring work ethic.

I would like to extend my sincere thanks to Radhika Mittal, Srinivas Narayana, Sundar Iyer, Mani Kotaru,

KK Yap, Lisa Yan, Sean Choi, Vimalkumar Jeyakumar, and Nandita Dukkipati for reading my drafts carefully

and critically and providing invaluable feedback. I would like to thank Sabrina Leroe, for proofreading the

final version of my thesis.

I would like to thank Rui Zhang, Jahangir Hasan, and Yaogong Wang for hosting me during my intern-

ships at Google, which helped me understand networking in the wild and see where it fits in the big picture.

Many thanks to Jahangir and Yaogong for letting me try proactive congestion control in a real data-center

network; it convinced me that I was on the right track with PERC. I also learned a lot from discussions with

Hassan Wassel, Nandita Dukkipati, Abdul Kabbani, David Wetherall, Dina Papagiannaki, KK, Jon Zolla, and

Amin Vahdat at Google.

A special thank you to Nandita for mentoring me through my time at Google over summers and beyond.

Nandita, thank you for all your advice on life and work. I still cherish the day trip with Rong Pan and you

following the Dagstuhl workshop, when I realized with awe—here are two women who were in my shoes 10

years ago, getting their Ph.D. in networking at Stanford, and are now making the Internet faster for everyone,

through their contributions to networking, whether in the Cloud or in home routers across the world. Thank

you, Nandita and Rong, for being inspiring role models for me.

I was lucky to have overlapped with many academic siblings during my time at Stanford and made lasting

friendships—a huge thanks to James Zeng, Peyman Kazemian, KK, TY Huang, Glen Gibb, Yiannis Yiak-

oumis, Lisa, Steve, Sean Choi, Eyal Cidon, Catalin Voss, and Bruce Spang for all the ways you have enriched

my Ph.D. journey. Lisa, thank you for being the best (and only!) office mate and sounding board during the

vii

early years, and for collaborating with me on the compiler and PERC papers. Many thanks to my current

officemates Colleen Josephson, Steve, Mani, Catalin and Jenny Han for making Gates 314 my favorite place

to work. I’d like to recognize all the efforts of Lancy Nazaroff and our former group admin, Chris Hartung

for making everything work smoothly.

I was a lucky undergraduate before I came to Stanford—I am deeply indebted to professors Jennifer

Rexford, Christiane Fellbaum, and Moses Charikar for introducing me to research, and to the thrill of working

on open problems that can give you (great) sleepless nights.

Finally, I would like to acknowledge how grateful I am for having a group of people in my life who are

always ready to listen to my rants about research with a smile on their face. Sravya, Xiaoyang, Ramya, and

Arun: thank you for all the wonderful conversations and for boosting my motivation by sharing your own

Ph.D. stories with me. Ben: thanks for helping me put things in perspective. Thalia: it’s finally done! I’m

glad we kept in touch after the Tech Venture Formation class, our conversations about life, startups, poetry,

and everything under the sun made my life much more colorful. A huge huge thank you to my sister, Betty,

thank you for more than 65,000 minutes of pep talk and wisecracks over FaceTime over the last six years. As

you know, all of it was completely unsolicited but absolutely essential to help me finish. Last but not least, I

would like to thank my parents, to whom I dedicate this thesis. Thank you for believing in me more than I

believe in myself. Thank you for encouraging me to make crazy life decisions, such as coming to the United

States for college, all by myself, and then embarking on a roller-coaster journey that is a Ph.D., decisions that

left me wiser and more grateful than ever before—for all the lessons I have learned, for all the mentors I have

met, and for all the friends I have made.

viii

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 The Congestion Control Problem . 2

1.2 The Solution Landscape . 3

1.3 Distributed Algorithms and Dependency Chains . 5

1.4 Why PERC Algorithms Converge Quickly . 5

1.5 Why PERC Algorithms Now? . 7

1.6 Why Do We Need New PERC Algorithms? . 8

1.7 Overview of s-PERC . 9

1.8 High-Speed Programmable Switches . 10

1.8.1 Practical Considerations at High Speeds . 11

1.9 Related Work . 12

1.10 Outline . 13

1.11 Previously Published Material . 14

2 Fair: A PERC Algorithm with Per-Flow State 15

2.1 Proactive (PERC) Algorithms . 15

2.1.1 Model . 16

2.1.2 Max-Min Fairness . 17

2.2 Fair: a Max-Min PERC Algorithm with Per-Flow State . 20

2.2.1 Description . 20

2.3 The Fair Algorithm in Action . 22

ix

2.4 Properties of the Fair Algorithm . 23

2.5 Convergence of the Fair Algorithm . 24

2.6 A Tighter Convergence Bound for the Fair Algorithm . 28

2.6.1 Invariants of Fair based on the Induction Order 28

2.6.2 The CPG Algorithm to Find Max-Min Fair Rates 29

2.6.3 Dependencies from the CPG Algorithm . 31

2.7 Simulation Results . 32

2.7.1 Convergence Times . 33

2.7.2 Flow Completion Times . 34

2.7.3 Dependency Chains . 36

2.8 Problem with the Fair Algorithm . 38

3 s-PERC: A PERC Algorithm that Does Not Need Per-Flow State 39

3.1 n-PERC: a Naive PERC Algorithm Without Per-Flow State 39

3.1.1 The n-PERC Algorithm in Action . 41

3.1.2 Transient Problems With n-PERC . 43

3.2 s-PERC: a Stateless PERC Algorithm with a Known Bounded Convergence Time 44

3.2.1 Variables in the s-PERC Algorithm . 44

3.2.2 The s-PERC Algorithm . 46

3.2.3 When Should We Propagate the Bottleneck Rate? 49

3.2.4 How Do We Approximate the Maximum Ê Allocation? 50

3.2.5 s-PERC in Action . 53

3.3 Simulations of n-PERC and s-PERC . 55

3.4 Convergence Proof of s-PERC . 56

3.4.1 Centralized Water-Filling Algorithms . 56

3.4.2 Partitioning Bottleneck Links Using WFk Algorithms 57

3.4.3 Why Do We Need Different WFk Algorithms? . 61

3.4.4 Using WF2 to Reason About s-PERC . 62

3.4.5 Properties of the WF2 Algorithm . 63

3.4.6 Invariants of s-PERC Based on the WF2 Order . 67

3.4.7 Why Limit Rates of Flows Are at Least R(l) at Link l and Neighbors 70

3.4.8 Why Flows Are Updated Correctly at Bottleneck Links 71

3.4.9 Why Flows are Updated Correctly at Non-Bottleneck Links 72

x

3.4.10 Dependencies from the WF2 Algorithm . 74

4 Evaluating s-PERC for Data Centers 80

4.1 Practical Design Considerations . 80

4.2 Hardware s-PERC Prototype . 86

4.2.1 NetFPGA s-PERC Switch . 86

4.2.2 MoonGen s-PERC End Host . 87

4.3 Evaluating s-PERC? for Data Centers . 87

4.3.1 Convergence Times . 87

4.3.2 Flow Completion Times . 88

4.3.3 Micro-Benchmarks . 92

4.4 NetFPGA Hardware Evaluation . 93

5 Future Work on PERC Algorithms 97

5.1 Future Avenues for Research . 97

5.2 Summary . 100

6 Enabling Other Algorithms in Programmable Switches 101

6.1 Introduction . 101

6.1.1 Packet Processing Languages . 103

6.1.2 Characteristics of Switches . 104

6.1.3 Approach and Contributions . 105

6.2 Problem Statement . 106

6.2.1 Table Dependency Graph . 106

6.3 Target Switches . 109

6.4 Integer Linear Programming . 111

6.4.1 Common Constraints . 111

6.4.2 Objective Functions . 112

6.4.3 Switch-Specific Constraints . 113

6.5 Greedy Heuristics . 115

6.5.1 Ordering Tables . 116

6.5.2 Single-Metric Heuristics . 117

6.5.3 Multi-Metric Heuristics . 117

6.6 Experiments . 118

xi

6.7 Analysis of Results . 121

6.7.1 ILP vs Greedy . 121

6.7.2 Comparing Greedy Heuristics . 122

6.7.3 Sensitivity Experiments . 124

6.8 Related Work on Compilers . 125

6.9 Summary . 126

A Supplementary Material for Chapter 2 (Fair) 127

A.1 Fair v/s d-CPG . 127

A.2 Dependencies from the CPG Algorithm . 128

B Supplementary Material for Chapter 3 (s-PERC) 130

Bibliography 132

xii

List of Tables

1.1 Initial control packet for a flow in s-PERC. 10

2.1 Commonly used notation. 18

2.2 Initial Control Packet for Flow fG in Fair. 20

3.1 Initial Control Packet for Flow fG in n-PERC. 40

3.2 Initial Control Packet for Flow fG in s-PERC. 45

3.3 Commonly used notation in the context of a WFk algorithm. 57

4.1 Initial Control Packet for Flow fW in s-PERC?. 84

4.2 Results for incast experiments using a NetFPGA test bed. 95

5.1 Convergence times for RCP and s-PERC in a WAN topology. 98

6.1 Mapping switch compiler dependencies to traditional compiler dependencies. 108

6.2 Logical program benchmarks for RMT and Flexpipe. N is the number of tables. 119

6.3 Benchmark results for 5-stage FlexPipe. 120

6.4 Benchmark results for RMT for L2L3-Complex. 120

6.5 Benchmark results for 32-stage RMT for L2L3-simple, L2L3-Mtag, and L3DC. 120

xiii

List of Figures

1.1 The congestion control problem. 2

1.2 Reactive control system. 3

1.3 Example topology, workload, and convergence behavior. 6

2.1 Example setup. 18

2.2 Local max-min fair calculation at link l for flow f . 22

2.3 Control packet updates for the first two rounds of the Fair algorithm. 23

2.4 Example of CPG Algorithm for Fair. 32

2.5 Setup for convergence time experiments. 33

2.6 CDF of convergence times on an 8-link topology with 100 Gb/s links. 34

2.7 Spread FCTs on 10 Gb/s link with 60% load and 12 µs RTT. 35

2.8 Spread FCTs on 100 Gb/s link with 60% load and 12 µs RTT. 36

2.9 Spread FCTs on 10 Gb/s link with 60% load and 120 µs RTT. 36

2.10 Spread FCTs on 100 Gb/s link with 60% load and 120 µs RTT. 37

2.11 A dependency chain of three. 37

2.12 Time series of flow transmission rates in 3-level-bottleneck scenario. 38

3.1 Example setup for n-PERC in action. 42

3.2 Control packet updates for first three rounds of the n-PERC algorithm. 42

3.3 Example setup for s-PERC in action. 53

3.4 Control packet updates for first three rounds of the s-PERC algorithm. 53

3.5 An example for which n-PERC takes a long time to converge. 56

3.6 Three different WFk algorithms, their respective partitions, and dependency graphs. 61

3.7 Examples of direct precedent links based on the WF2 algorithm. 76

3.8 Examples of indirect precedent links based on the WF2 algorithm. 78

xiv

4.1 CDF of convergence times. 88

4.2 FCT results at 60% load for search, and data-mining workloads. 90

4.3 FCT results at 80% load for search workload. 91

4.4 FCT results at 80% load for data-mining workload. 92

4.5 CDF of convergence times for for approximate division. 94

4.6 The topology and traffic pattern used for the two-level dependency chain experiment. 94

4.7 Example convergence behavior for TCP, DCTCP, and s-PERC running on a NetFPGA test

bed. 96

6.1 A top-down switch design. 102

6.2 Compiler input and output. 103

6.3 A packet processing program named L2L3 describing a simple L2/L3 IPv4 switch. 105

6.4 TDG for the L2L3 program. 107

6.5 Switch configurations for RMT and FlexPipe. 108

6.6 Block layout features in different switches. 110

6.7 Dependency types and latency delays in RMT. 111

6.8 FlexPipe table sharing in detail. 114

6.9 Multiple-metric heuristics. 116

6.10 Greedy performing much worse than ILP (RMT.) . 118

6.11 Greedy performing much worse than ILP (FlexPipe.) . 118

6.12 FFL-16 and ILP solutions for L2L3-Complex. 123

6.13 FFLS and FFL solutions for L2L3-Mtag. 124

A.1 Sequence of updates in the CPG algorithm where it takes 1.5 round-trips for new information

to propagate. 128

A.2 Dependent links in CPG that are not precedent links. 129

A.3 Dependent links in CPG that are not precedent links. 129

xv

Chapter 1

Introduction

Congestion control algorithms allow different applications to share network bandwidth efficiently without

oversubscribing any link. Congestion happens when a network link is oversubscribed by multiple applica-

tions: the buffers fill up, packets are dropped and retransmitted, and applications see a spike in latency or

a drop in goodput. User-facing applications such as search and interactive web services care about latency,

while back-end applications like e-mail backups care about goodput. There are different ways of sharing

the network bandwidth to further adapt to the application mix; these correspond to different objectives for

congestion control algorithms (max-min fairness, shortest-flow-first, etc.). Congestion control is important

when the network is heavily loaded—that is, when bandwidth demands are high and there are always multi-

ple applications that want to use the same links simultaneously. This thesis is motivated by the need for fast

congestion control, by which we mean three things.

First, we want to control congestion even before it happens. This is important when the network speed

or round-trip delay is high and buffers fill up quickly even before there is time to react. Consider two flows

with 100 µs RTTs that share a single 100 Gb/s bottleneck link with 125 KB of buffering. It only takes 10

µs of line rate traffic to fill the buffers, whereas the servers can adjust their rates only at 100 µs time-scale,

which is how long it takes to measure and react to congestion. When the reaction time is long, relative to the

buffer size, it becomes hard to control congestion reactively. As the RTTs get longer or the link capacity gets

higher, as in a WAN, without a corresponding increase in the buffer size, this problem only gets worse.

Second, we want to control congestion quickly relative to the lifetime of the network flows. For example,

if most flows are short enough to finish in a few round-trip times (RTTs), a congestion control algorithm must

quickly find a way to share the network bandwidth amongst all the flows, within this time budget. This is

especially relevant in data centers today—a typical flow in a search workload would finish in less than 10

1

CHAPTER 1. INTRODUCTION 2

RTTs in an unloaded 100 Gb/s network.1 Even if there are a few contending flows, it should still be able

to finish in a few dozens of RTTs. As the link capacities increase and more flows become short-lived, fast

congestion control becomes more important.

Finally, the time that it takes to control congestion should be independent of how dynamic the network

traffic is—that is, a congestion control algorithm should be able to respond quickly to flash crowd scenarios,

where a large number of flows start at once, or ON/OFF traffic patterns, where the network utilization varies

between 1 and 0, just as quickly as it would given more stable workloads (such as Poisson arrivals at constant

load.) As applications become more distributed, it is not uncommon to see such traffic patterns in data centers

because of tightly synchronized network traffic between different servers. Data-center applications that stand

to gain from fast congestion control include disaggregated storage and large-scale data processing, which

demand high throughput and low latency and often involve network traffic between tightly coupled servers

(or storage devices) where a large number of flows start at once.

In this thesis we explore a new class of fast congestion control algorithms that network operators can

deploy in order to use the network at high loads, even as link speeds increase to hundreds of Gb/s. We call

these “Proactive Explicit Rate Control" algorithms, or PERC algorithms. As we will see, PERC algorithms

quickly converge to their objective even before congestion happens. This allows them to keep buffers close

to empty while using the links efficiently, which in turn helps applications get low latency and high goodput

in general.

1.1 The Congestion Control Problem

Link	1	
70	Gb/s	

Link	2	
30	Gb/s	

Link	3	
10	Gb/s	

Figure 1.1: The congestion control problem. Ideal flow rates in parenthesis.

At its core, the congestion control problem is as follows. We are given a network with links of different

capacities and a set of flows, where each flow crosses a subset of the links. We need to find a rate allocation

for each flow that is fair, for some notion of fairness, and use link capacity efficiently. Figure 1.1 shows

1A 1 MB flow would be larger than about 75% of all flows in a search workload[12] and finish in 80 µs if sent at 100 Gb/s, which is
roughly 8 RTTs, assuming an RTT is 10 µs.

CHAPTER 1. INTRODUCTION 3

a network with two long-lived flows and three links, as well as a set of rates for the flows that satisfy the

max-min fair objective. Flow C is bottlenecked to 10 Gb/s at Link 3, while Flow B is bottlenecked to 20

Gb/s at Link 2. If the flows are sent at these rates, they use Links 2 and 3 fully without causing congestion.

Moreover, the applications sending these flows see high goodput, while any short flows (e.g., < 1 RTT) that

also use the links see low latency. The question is therefore this: how do we figure out these rates?

There is a simple solution: Suppose we have a centralized controller that has full knowledge of the traffic

matrix (i.e., which links are used by which flows and the individual link capacities). Then, we can run a

simple program (e.g., the water-filling algorithm [22] for max-min fair rates, NUM for α-fair rates, or a

greedy algorithm [19] for SRPT schedules) at the controller to calculate the ideal rates and communicate

these rates back to the servers that send the flows. Although this solution is conceptually simple, it is hard to

implement at scale and is therefore hardly used in today’s networks.

1.2 The Solution Landscape

Adjust	
Flow	Rate	

Measure	
Conges4on	

Figure 1.2: Reactive control system.

Reactive control-systems: Let’s contrast the simple solution with a majority of existing algorithms (e.g.,

TCP [14], BBR [26], DCTCP [12], TIMELY [62], RCP [36], or XCP [53]). Almost all existing algorithms

are completely distributed, either running at the servers or running at the servers and switches. However, the

more important point of contrast is that the algorithms do not use explicit global information. That is, neither

the servers nor the switches use any explicit knowledge of the traffic matrix or the link capacities. Instead,

the servers independently start with arbitrary rates (or window sizes) and adjust these rates iteratively based

on congestion signals. The congestion signals come in a variety of forms, ranging from packet drops and

congestion markings (ECN), end-to-end delays measured at the end hosts as in TCP, DCTCP, or TIMELY, to

traffic arrival or queuing rate measured at the individual links, as in RCP or XCP.

CHAPTER 1. INTRODUCTION 4

These algorithms, although seemingly very different, are in essence reactive control systems. They mea-

sure a congestion signal and react to it by adjusting the window size (TCP, DCTCP) or an explicit rate

(TIMELY, RCP, XCP). This feeds back into the system, generating new congestion signals and so on (Figure

1.2). Because reactive control systems do not need to know anything about the network (size, capacity, etc.)

or the number of flows, they are robust to a variety of operating conditions. However, this comes at a huge

cost.

Reactive congestion control systems have two well-understood disadvantages. First, the control system

needs to cause congestion in order to control it, which means we are constantly worried about queue occu-

pancy, increased latency for short flows, and buffer overflows. Second, the control loop can only make small

adjustments during each RTT to prevent the control loop from becoming unstable. Proceeding in small steps

means the control system is always playing catch-up with current network conditions. As networks get faster,

and more data fit into a few RTTs, more and more flows will finish before the congestion control loop has

time to react, rendering the approach less useful in the future, particularly for short flows.

PERC algorithms: Notice that in the centralized solution, we decouple the rate calculation from the

actual data traffic. We do not need to send data traffic or cause congestion in order to figure out the ideal

rates. We calculate the ideal rates before the flows even start. We call this a centralized proactive approach.

Flowtune [70], a recent proposal, implements such a system, where a central rate allocator receives requests

from end hosts, calculates feasible and close-to-ideal rates, and communicates these rates to the servers. The

rate allocator does the rate calculation again each time a flow departs or a new flow joins. Flowtune and

proactive algorithms, in general, try to avoid congestion in the first place by scheduling rates for flows (or

departure times for packets, as in Fastpass [71]) that do not depend on congestion signals, but instead fit

within the known constraints of the network link speeds and topology.

Centralized proactive approaches like Flowtune are problematic at scale because the computation and

bandwidth at the central allocator become bottlenecks. In this thesis, we focus on distributed proactive rate

allocation algorithms, which we call Proactive Explicit Rate Control (PERC) algorithms. PERC algorithms

distribute the rate calculation amongst the different links2 and end hosts. Whenever a flow arrives or departs,

the switches and end hosts exchange short messages, running a distributed algorithm to explicitly allocate

a rate to each flow, including ongoing flows, to fit within the capacity constraint of the links. The end host

then sends flows at the allocated rate. We use “data traffic" to refer to the flowsâĂŹ packets on the network

and the term “control packets" to refer to the short messages that are exchanged to calculate rates. Unlike a

reactive control system (such as RCP), a PERC algorithm does not depend on measuring congestion in order

2For each link, the link-specific calculations are performed by the switch at the head of the link, but we will refer to the link, rather
than the switch, as a distributed agent for convenience.

CHAPTER 1. INTRODUCTION 5

to iteratively adjust rates. The distributed algorithm implemented by the control packets is decoupled from

the data traffic because it is a rate calculation based on the set of flows and the network constraints, rather

than any congestion signal. As a result, it can converge to the right rate allocation quickly.

1.3 Distributed Algorithms and Dependency Chains

Note that because the rate calculation is distributed, we will need multiple rounds of communication amongst

the switches in order to propagate bottleneck information from one link to another. Consider Figure 1.1

again. Flow C is bottlenecked to 10 Gb/s at Link 3, while Flow B is bottlenecked to 20 Gb/s at Link 2. If

we consider a distributed rate calculation from a link’s point of view, Link 2 cannot compute a bottleneck

rate of 20 Gb/s for Flow B unless it knows that Flow C is limited to 10 Gb/s at Link 3. This is a coupling or

dependency between the two links because they carry a common flow. We will rigorously describe different

kinds of dependencies in the context of max-min fair rates in §3.4.10. For now, we say that link l depends

on link k if they carry a common flow and the flow is bottlenecked at link k; for instance, Link 2 depends on

Link 3 because they carry a common flow, C, which is bottlenecked at Link 3.

Such dependencies can span many links to form a dependency chain [76]. Typical heavily loaded data

center topologies have dependency chains that span dozens of links. Any distributed rate calculation algo-

rithm is fundamentally limited by the time (e.g., 1 RTT) it takes to carry bottleneck information from one

link to another in a dependency chain [76]. In terms of convergence speed, a PERC algorithm is only limited

by the dependency chain, whereas a reactive control system is limited by the dependency chain and the slow

control loop. For a control system, it takes time to measure congestion in each control loop, and it takes many

small adjustments over multiple control loops to move toward the fixed point in a stable way. Therefore, a

PERC rate calculation should converge more quickly than a reactive control system. In the next section, we

will walk through a simple example with a longer dependency chain to contrast the two kinds of convergence

behavior.

1.4 Why PERC Algorithms Converge Quickly

The lower bound on the convergence time for a distributed max-min fair algorithm is dictated by the longest

dependency chain [76] and is key to understanding how PERC algorithms work.

Figure 1.3a shows our original network with three flows. Flows B and C are still bottlenecked to 20 Gb/s

and 10 Gb/s, respectively, while Flow A is bottlenecked to 50 Gb/s at Link 1. This setup with three flows has

a longer dependency chain. Link 2 still depends on Link 1 because they carry Flow C, bottlenecked at Link

CHAPTER 1. INTRODUCTION 6

Link	1	
70	Gb/s	

Link	2	
30	Gb/s	

Link	3	
10	Gb/s	

(a) 3-Level Dependency Chain Example.

1
2

3

4
5

6

t	(RTTs)

10

30

50

70

10

30

50

70

10

30

50

70

10

30

50

70

t

Ra
te

Ra
te

(b) Example reactive algorithm rate behavior.

1
2

3

4
5

6

t	(RTTs)

10

30

50

70

10

30

50

70

10

30

50

70

10

30

50

70

t

Ra
te

Ra
te

(c) Example PERC algorithm rate behavior.

Figure 1.3: Example topology, workload, and convergence behavior.

1. In addition, Link 3 depends on Link 2 because they carry Flow B, bottlenecked at Link 2. Hence, we have

a dependency chain that spans all three links.

We will examine how reactive algorithms and PERC algorithms behave when flows A, B, and C are

added one at a time. Note that we do not assume a particular reactive algorithm here, but just the general

class, represented by, say, TCP, RCP, or DCTCP. The actual rates and shape of the convergence will depend

on the algorithm. But for our purposes here, we treat them as a single class.

Figure 1.3b sketches how flow rates adapt with a reactive scheme. When flow A starts on Link 1, it ramps

up to fill the link capacity 70 Gb/s; this is illustrated in event 1 in Figure 1.3b. When flow B is added (event

2), it is bottlenecked to 30 Gb/s by Link 2, leaving 40 Gb/s of capacity at Link 1 for flow A. Initially, however,

CHAPTER 1. INTRODUCTION 7

flow A moves toward a fair-share rate of 35 Gb/s on Link 1, before flow B finds its rate of 30 Gb/s on Link

2. Looking at it from the links’ perspective, as Link 1 begins to indicate its fair-share rate to flow B, the

bottleneck of flow B shifts to Link 2. While the flows are finding the correct rates, there is a dependency:

flow A cannot converge before flow B. Notice that the dependency chain is a function of the set of flows and

the network. At this point in time, with only flows A and B in the network, there is only a single dependency.

The situation gets more complicated when flow C is added. Flows A, B, and C eventually converge to 50

Gb/s, 20 Gb/s, and 10 Gb/s, respectively. Flow C is bottlenecked to 10 Gb/s by Link 3, leaving 20 Gb/s spare

capacity for flow B at Link 2, which leaves a spare capacity of 50 Gb/s for flow A at Link 1. The dependency

chain is that Link 2 cannot determine the spare capacity until Link 3 has converged. Similarly, Link 1 cannot

converge before Link 2 has converged.

This is an example of a three-level dependency chain that spans three links. How quickly the algorithms

will converge on the final rates depends on how quickly they detect the congestion (e.g., TCP will detect a

drop or duplicate ACK; DCTCP a queue threshold crossing and ECN markings; RCP a different fair-share

rate); but all algorithms take a sequence of steps toward the stable operating point. As we will see later, this

is typically over 100 RTTs, even for relatively simple topologies and traffic patterns.

In contrast, a PERC algorithm running in this topology can converge in three RTTs. Figure 1.3c illustrates

the sequence, exposing the dependency chain more clearly. When flow A starts, it tells the switches, and the

Link 1 switch can immediately tell it to send at 70 Gb/s; this is illustrated in event 4 in Figure 1.3c. When

flow B starts, Link 1 and Link 2 update their fair-share rates to 35 Gb/s and 30 Gb/s, respectively, which is

just their capacity divided evenly among the active flows. As a result, flow A’s rate drops from 70 Gb/s to 35

Gb/s, and flow B is told the (final) rate of 30 Gb/s from Link 2. When this new rate is seen by Link 1, the link

knows that flow B is limited at another link and can update its own fair share to 40 Gb/s (event 5). This new

fair share can be picked by flow A 1 RTT after flow B is updated.

When flow C starts, a slightly longer chain of updates happens. First, flow C is told to send at 10 Gb/s by

Link 3, and at the same time Link 2 gives flow B a fair-share rate of 15 Gb/s. One RTT later, Link 2 learns

that flow C is bottlenecked elsewhere to 10 Gb/s and therefore increase its fair-share rate from 15 Gb/s to 20

Gb/s and tells flow B. Next, Link 1 learns that flow B is bottlenecked elsewhere to 20 Gb/s and will therefore

decrease its fair-share rate from 55 Gb/s to 50 Gb/s (event 6).

1.5 Why PERC Algorithms Now?

Although a PERC algorithm was first proposed several decades ago for calculating a max-min fair-rate allo-

cation [22], and many variants were explored for ATM virtual circuits in the 1990s [27], [76], [21], [11], it

CHAPTER 1. INTRODUCTION 8

was always considered too complicated to run in the network.

Three recent trends encourage a revival of research into PERC algorithms:

1. Programmable switches: Programmable switches make it possible to deploy and evolve new algo-

rithms in switches (§1.8).

2. Faster networks: Faster networks, especially when coupled with small buffers, create a more pressing

need for congestion control algorithms that avoid congestion rather than react to it (§1.2). This trend

is particularly relevant to data center networks that have relatively small and fixed µs RTTs but whose

network speeds have increased from 50x to 100x over the last ten years, driven by increasing demands

from applications like disaggregated storage, large-scale data-processing, and interactive web service.

Bandwidth per server is predicted to reach 100 Gb/s in the coming years.

3. Data center build-out: Cloud operators are building out even more data centers to be closer to the user

and to comply with recent privacy laws that mandate that citizens’ data stay within the country [81],

[61], [20]. This calls for more distributed approaches for controlling the inter-data center traffic than

those offered in existing solutions [56], [46]. PERC algorithms would allow network operators to use

their expensive high-speed, high-RTT WAN links efficiently (at high loads) even as many more data

centers are added to the network.

1.6 Why Do We Need New PERC Algorithms?

If a network could practically incorporate a PERC algorithm into its forwarding plane, then congestion could

be more tightly controlled, without concern for stability. Before deploying such an algorithm in the network,

the operator naturally expects that the algorithm demonstrably converges to the max-min fair rates in a known

bounded time.

Unfortunately, all previous PERC algorithms with known convergence bounds [22], [76], [27], [21], [60]

have limitations that make them impractical to deploy:

1. They require switches to either be synchronized3 or to maintain state for individual flows, neither of

which is scalable.

2. Almost4 all of them allocate a max-min fair rate to each flow. While this makes sense for long-lived

flows, we often want short-lived flows to have priority [45], [13], [43], especially in data centers.

3That is, the algorithm proceeds in iterations that have to be synchronized across all flows and switches.
4[60] allocates α-fair rates.

CHAPTER 1. INTRODUCTION 9

3. They do not address concerns about robustness (e.g., what happens if a scheduling message gets

dropped, or if the rate calculations are imprecise?).

A recent PERC algorithm called PDQ [45] addresses some but not all of these issues. PDQ is asyn-

chronous, aims to emulate shortest-job-first, and is shown to be robust. However, it needs to maintain state

for individual flows.

Hence, we need new PERC algorithms for different objectives that provably converge in bounded time

and are practical to deploy at high speeds.

1.7 Overview of s-PERC

In this thesis we introduce a practical PERC algorithm for max-min fair rates that can give priority to short

flows as needed.

To the best of our knowledge, s-PERC (“stateless Proactive Explicit Rate Control”) is the first practical

PERC algorithm that converges to exact max-min rates in a known bounded time. This algorithm does not

require switches to be synchronized or to maintain per-flow state, and it can be proved to converge in at

most 6N RTTs (§3.4), where N is the length of the longest dependency chain. In addition, s-PERC can be

implemented in hardware (e.g., a programmable switch) to run at 5 ns clock speeds (as evidenced by our 40

Gb/s NetFPGA prototype [85]), and we see no fundamental limitations that prevent it from running at 1 ns

clock speeds (§4.2).

s-PERC runs in the switches and end-host NICs. The end-host NICs periodically send a control packet

for each flow, which follows the same path as the flow for as long as the flow is active. The switches modify

the control packets as they pass, but the switches do not maintain per-flow state. All flow-specific information

is carried in the control packets.

A control packet is specific to a flow and carries four types of information for each link (Table 1.1). The

fields are updated in the control packet as it passes each link: (1) Each link keeps a running estimate of its

own bottleneck rate. (2) Links classify each flow depending on whether it is bottlenecked at this link or at

another link; a flow may change classification as the algorithm converges. (3) Based on the classification, the

link allocates bandwidth to the flow. (4) The link indicates its confidence in its fair-share rate. This is key

to how s-PERC converges without per-flow state: if a link detects that its fair-share rate is too small, it alerts

other links using the ignore bit. All four pieces of information are updated in control packets as they pass by.

The end hosts use the allocations computed by the switches to adjust the rate at which they send the flows.

CHAPTER 1. INTRODUCTION 10

Table 1.1: Initial control packet for a flow in s-PERC. The control packet carries information for each link
that the flow crosses. Each row corresponds to a link, while each entry in the row corresponds to different
pieces of information about the link. For example, the first row corresponds to Link 1, and the first entry of
the first row carries the bottleneck rate of Link 1, which is initially set to 0 at the end host.

Link Bottleneck State (s) Bottleneck rate (b) Ignore bit (ignore)
Allocation (a)

1 E @ 0 0 1
2 E @ 0 0 1

Deployment: Note that s-PERC is a clean-slate design and requires significant changes to existing com-

modity fixed-function switch chips, and programmable switches may provide an easier avenue for testing

new algorithms like s-PERC. We believe that because s-PERC requires new protocols at both the servers and

switches, it will initially be deployed in private networks where a single entity owns both the servers and

switches. As we have seen with DCTCP [12], TIMELY [62], and BBR [26], network operators can and do

deploy new congestion control algorithms in their data centers and private WANs to help their applications

perform better. In this thesis, we will delve more deeply into the practical benefits of s-PERC for data center

networks. We focus on data center networks because this is where most research is happening today. There

is nothing about s-PERC that makes it specific to data centers. On the contrary, given how well it works for

long-lived flows, we suspect s-PERC would be very well suited to long-haul networks where there is a need

for well-behaved, non-congested networks that are fair among flows.

In the next section, we’ll briefly discuss programmable switches and their advantages and highlight some

constraints of running an algorithm in a programmable switch (or any hardware pipeline) at 1 ns clock speeds.

1.8 High-Speed Programmable Switches

Almost all commodity switches from the late 1990s to the early 2010s were made of fixed-function switch

chips. Functions or protocols like ACL lookup and IP routing were baked into the switch chip. This made

it hard to evolve an existing protocol (e.g., switch to IPv6) or deploy new protocols (e.g., MPLS) at scale

quickly. A programmable switch requires more logic and wiring than a fixed-function chip. However, the

overhead is modest (e.g., [24] shows that a programmable 64x10 Gb/s 28 nm switch chip imposes an area

and power overhead of less than 15% over commodity fixed-function switch chips). Because transistors have

gotten smaller, one can fit more logic in the same area, and the price of programmability has decreased. As

a result, switches that run at Tb/s speeds and use programmable switch chips [2], [1] are already available.

Such switches would allow network operators to implement new features and protocols easily and iterate

CHAPTER 1. INTRODUCTION 11

more quickly.

To understand the difference between a fixed-function switch and a programmable switch, we can view the

fixed-function switch chip as a pipeline of stages, where each stage performs a fixed function. For example,

a typical fixed-function switch has a Layer-2 switching function, followed by Layer-3 routing, followed by

access control. Furthermore, each fixed function can be viewed as a match-action table; it matches on a fixed

field of the packet header (e.g., match src and dst IP address) and then performs a fixed action (e.g., decide

egress link).

In contrast, a programmable switch involves a pipeline of stages in which the memory and computation

resources in each stage can be reallocated across different functions. This is possible because each stage

is programmable: it contains modular memories that can be used to implement look-up tables that match

any part of the header, and it contains modular action units (such as addition and subtraction) that modify

different parts of the packet header simultaneously. Each stage also contains stateful registers that persist

across packets and can be read/modified by the action units.

Together, the modular memories and action units provide the abstraction of a sequence (or tree) of match-

action tables, each of which can be configured to match an arbitrary fixed part of the header and perform

actions that modify the packet or stateful registers. In this abstraction, each tableâĂŹs action may actually be

a composition of many primitive actions applied one after another.

Programming languages such as P4 provide a way to define custom packet headers and express the switch-

chip logic using the abstraction of match-action tables that modify the packet header.

To implement a PERC algorithm such as s-PERC in a programmable switch, one would decompose the

switch local algorithm into a series of match-action tables (possibly with trivial matches) that read or modify

the control packet and stateful registers. As we will see later, match-action tables can be used to implement

intermediate steps such as an approximate division.

A compiler figures out how to map the P4 program to a set of actual match-action tables [51] and sequence

of primitive actions [80] that fit within the constraints (e.g., number of stages, size, and width of memories)

of the target switch pipeline. Towards the end of this thesis, after we have discussed PERC algorithms, we

will dig deeper into the problem of compiling general P4 programs to a programmable switch.

1.8.1 Practical Considerations at High Speeds

Although many distributed algorithms can be written as a P4 program, not all P4 programs can fit a given

target switch. A P4 program must be compatible with the strict resource constraints imposed by the high-

speed switch.

CHAPTER 1. INTRODUCTION 12

Memory and computation are obvious constraints. Look-up tables may be too large to fit in the switch

memory. The computation (actions) may require more pipelined stages than are available in the switch. There

may be a limit on the number of header fields that can be parsed at line rate. There may also be architecture-

specific constraints (e.g., in some architectures, the stateful registers are private to a pipeline stage) [1].

Consequently, an innocuous step such as r = r/(r − 1), where r is a local register, would be infeasible

because the new value of r depends on a computationally expensive function of the old value, which cannot

fit in a single stage (or clock cycle). Such constraints may apply to both programmable switches and custom

fixed-function pipelines that need to run at high line rates.

In §4.2, we discuss how we make s-PERC practical for Tb/s speeds given such constraints. Our P4→NetFPGA

[85], [6] hardware prototype proves that it is easy to implement s-PERC in hardware at 4x10 Gb/s.

1.9 Related Work

Distributed proactive scheduling algorithms were first explored for ATM networks. Some schemes provably

converge to the exact max-min rate allocation in a known bounded time [27], [76], [21], [11], [64], but all

previous algorithms with bounded convergence time required per-flow state or synchronization [44], [48],

[39], [60], [38], [11], [41], making them impractical in today’s networks.

For example, in 1998, the authors of [17] proposed an approach without per-flow state that converges, but

not necessarily to the exact max-min fair allocation. In 2008 the authors of [33] showed that an algorithm

without per-flow state can stabilize, but they did not find an upper bound on the time it takes. Other schemes

without per-flow state are not proved to converge [63], [54], [73], [52]. Ros-Giralt and Tsai [76] used the

theory of dependency chains to establish a lower bound on the convergence times of a class of max-min

fair schemes, which use per-flow state, and proposed a scheme that converges within twice the lower bound.

Chrysos and Katevenis [30] use the theory of dependency chains to establish the stabilization time of a

buffered cross-bar using a weighted fair-queuing (scheduler), following changes in offered load or weights.

Their characterization of dependency chains, namely as a chain of flows in non-decreasing order of max-min

rates, follows directly from Ros-Giralt and Tsai’s definition of precedence links and the resulting chain of

precedence links in a constrained precedence graph (CPG).

s-PERC builds upon [21], removing its dependence on per-flow state. Our opinion is that before deploying

a new algorithm, an operator would require no per-flow state but would require proof the algorithm will

converge in bounded time.

For data centers: pFabric [13] and PIAS[18] leverage priority queues in switches to approximate SRPT or

SJF. The approach is complementary to s-PERC, and we borrow it for short flows.

CHAPTER 1. INTRODUCTION 13

PDQ [45] and D3 [83] are proactive congestion control algorithms, although their goal is to minimize

mean FCT and the number of missed deadlines by dynamically prioritizing some flows over others. PDQ [45]

is particularly interesting— it can emulate centralized scheduling algorithms such as shortest-job-first and

earliest-deadline-first. PDQ requires some per-flow state for the top active flows, and in a general setting this

state could be very large.

PASE [65] is a hybrid scheme, where flows get an initial rate from a software controller at the TOR switch

and then switch to a reactive scheme.

NDP [43] is a receiver-driven transport protocol, where the sender’s flow rate is dictated by the receiver,

based on the sender’s demand as well as the over-subscription at the receiver. s-PERC can complement NDP

by providing explicit flow rates that also take into consideration hot spots within the network, not just at the

edge.

ExpressPass [29] is a credit-based congestion control scheme that uses credit packets that traverse the

same path as the data traffic, to aim for fast convergence. The difference is that in s-PERC the control packets

are used by the network to calculate explicit rates directly, while in ExpressPass the credit packets must

themselves go through a reactive but relatively aggressive feedback control loop in order to converge to credit

rates that the data traffic can use.

1.10 Outline

PERC algorithms are based on the insight that we can calculate ideal rates quickly if we decouple the rate

calculation from the actual data traffic and use explicit information (e.g., set of flows, network constraints)

instead of congestion signals. In this paper, we assume the ideal rate allocation is the max-min fair allocation.

The remainder of the thesis is organized as follows:

Chapter 2. Fair: A PERC algorithm with a per-flow state. In §2.1, we define explicitly what we mean

by PERC algorithms and review max-min fairness for networks. We consider various PERC algorithms in this

thesis in order to motivate s-PERC. We start with the Fair PERC algorithm in §2.2, which is able to converge

to a global max-min fair rate allocation based only on local max-min fair calculations of the bottleneck rate

at each link. While Fair is simple and fast, the local max-min fair calculation requires a per-flow state at the

link, which does not scale to meet our needs.

Chapter 3. s-PERC: An algorithm that does not need a per-flow state. Our first attempt to get rid

of the per-flow state is a simple algorithm called n-PERC, or “naive” PERC, in §3.1, where we replace the

per-flow state of Fair with a few aggregate variables. As the name suggests, n-PERC has transient problems

with the bottleneck rate calculations, and we cannot bound its convergence time. This leads us to s-PERC, or

CHAPTER 1. INTRODUCTION 14

“stateless” PERC, in §3.2, which overcomes the transient problems of n-PERC and converges in a provably

bounded time. The trick is to recognize transient bad bottleneck rates and not propagate them. In §3.4, we

present the formal proof of convergence for s-PERC.

Chapter 4. Evaluating s-PERC for data centers: In §4.1, we explain some design choices to make

s-PERC practical and deployable and describe our 4x10 Gb/s NetFPGA prototype. In §4.3, we present our

simulation results for s-PERC, particularly flow completion times (FCTs) in §4.3.2, compared to RCP, p-

Fabric, and an ideal max-min rate allocator. We find that s-PERC is very close to an ideal max-min rate

allocator for medium to large flows and provides the shortest flow completion times possible to the smallest

flows. In §4.4, we describe real measurements of s-PERC, TCP, and DCTCP from our 40 Gb/s NetFPGA test

bed. We find that for small incasts and traffic matrices with multiple bottlenecks, s-PERC converges 40–150

times faster than DCTCP.

Chapter 5. Future work In §5.1, we describe open questions and avenues for future research in PERC

algorithms. We briefly discuss how s-PERC might be applicable in other networks such as private WANs or

adapted for other objectives.

Chapter 6. Enabling other algorithms in programmable switches: Lastly, in §6, we dive into pro-

grammable switches and describe a compiler that can enable other algorithms such as s-PERC to run on

a programmable switch. We describe how to map P4 programs (without state) to a programmable switch

pipeline using the concept of a Table Dependency Graph and tools such as greedy heuristics and ILP.

1.11 Previously Published Material

• Chapter 2 revises a previous publication [50]: Jose, Lavanya, Lisa Yan, Mohammad Alizadeh, George

Varghese, Nick McKeown, and Sachin Katti. “High speed networks need proactive congestion control.”

In Proceedings of the 14th ACM Workshop on Hot Topics in Networks, p. 14. ACM, 2015.

• Chapter 6 revises a previous publication [51]: Jose, Lavanya, Lisa Yan, George Varghese, and Nick

McKeown. “Compiling Packet Programs to Reconfigurable Switches.” In NSDI, pp. 103-115. 2015.

Chapter 2

Fair: A PERC Algorithm with Per-Flow

State

2.1 Proactive (PERC) Algorithms

PERC (“Proactive Explicit Rate Control”) algorithms figure out the max-min fair rate allocations by proac-

tively exchanging messages (control packets) with switches along the path, over multiple rounds. The flow

allocations are carried as explicit rates in the control packets. In this thesis we consider PERC algorithms

for the max-min fairness objective. We first describe a set of standard assumptions about the setup for PERC

algorithms and review the notion of max-min fairness, which allows us to prove properties about how and

when different PERC algorithms will converge. In this chapter, we consider a simple PERC algorithm called

Fair, which performs local max-min fair calculations at every link (based on “demands” of flows) in order to

converge to the exact global max-min allocation. Fair follows from an existing algorithm, called d-CPG, by

Ros-Giralt et al. from 2001 [76].1 Fair, however, requires per-flow state at the links and is not practical for

networks with a large number of flows. Most of the memory in a switch is devoted to routing and forwarding

while memory available for other functionality is at a premium. Moreover, it is hard to manipulate a large

amount of memory at nanosecond time-scales, which is the norm for high-speed switches today. A practical

solution should be able to scale to any number of flows, and not worry about per-flow state management.

1There are minor differences between Fair and d-CPG, which we describe in section A.1 in the Appendix. These are related to
assumptions about the setup and an edge case in the local switch algorithm. We use Fair instead of the existing algorithm because it is
easier to contrast with other PERC algorithms we consider.

15

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 16

2.1.1 Model

We make a set of simplifying assumptions about the setup for PERC algorithms. We can show that two PERC

algorithms we consider— Fair and s-PERC— can converge to exact max-min rates in 4N and 6N rounds

(1 round ≈ 1 RTT), respectively, where N is the number of bottleneck links in the longest dependency chain.

Some assumptions are stricter than others (e.g., the set of flows is fixed, a control packet is never dropped).

In §4.1 we will describe how to relax the stricter assumptions (marked ∗) for a practical deployment (of

s-PERC).

1. We are given an arbitrary network topology in the form of a graph, G(V,E), where V is the set of

switches and E is the set of links. The topology is fixed, and the links have fixed capacities defined by

C: E → R>0.

∗ 2. The network carries a fixed set of flows, F , where each flow f ∈ F traverses a subset Pf of the links

and each link l ∈ E carries a subset Ql of the flows. We use J = |F | to refer to the number of flows

and K = |E| to refer to the number of links. We use the shorthand N(l) = |Ql| to refer to the number

of flows carried by link l.

∗ 3. Data packets of flows are sent from a sender end-host to a receiver end-host at rates X: F → R≥0,

where the rate of a flow f ∈ F is limited only by the capacity of links in Pf . Hence, for all links l, we

must have
∑
f∈Ql

X(f) ≤ C(l). However, there are no limits imposed at the source or destination of

the flows.

4. Each flow has exactly one outstanding control packet. The set of fields in the control packet vary from

one algorithm to another. The control packet goes back and forth between the sender and the receiver

and crosses the same set of links Pf as the flow’s data packets. The control packet is seen and updated

at each link in Pf as long as the flow is active. At any time t ∈ R≥0, we will use the notation xf (t) to

refer to instantaneous value that flow f ’s control packet carries in field x.

∗ 5. A control packet is never dropped or garbled.

6. A flow’s control packet starts at the sender at some time t0 and thereafter sees a random delay d ∼ D at

each hop as it goes back and forth between the sender and the destination. Hence, every flow’s control

packet is seen (and modified) at discrete times tn, n ∈ N, where tn = tn−1 + d.

We use Tf to refer to all the discrete times when a control packet from flow f is seen at some link on

its path Pf . We use Tfl ⊂ Tf to refer to the times when the control packet is seen at a specific link

l ∈ Pf . Control packets from different flows can be seen in any order at each link.

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 17

7. We assume that there is a finite upper bound to the time it takes for every flow’s control packet to be

seen at every link on the flow’s path at least once. We use the term round to refer to this upper bound.

A typical value of round would be one round-trip time (RTT).

∗ 8. For s-PERC, we assume that such an upper bound round is known ahead of time.

Note that there is no coordination between the links, and the arrival order of control packets at the links

does not matter. The state associated with a flow f and link l ∈ Pf is modified each time the flow’s control

packet crosses the link, and control packets from different flows arrive at a link independently. This model

has been used in several previous works [27], [76], [21] and is easier to implement in practice than alternate

models such as [44], [48], [39], [60], [41] or [38], [11], in which the algorithm proceeds in iterations t ∈ N,

or in atomic steps, that need to be synchronized across switches and flows.

We will analyze the convergence time of algorithms in rounds. Notice that the definition of round in (7)

also implies that for any link l we can expect to see at least one control packet from every flow f ∈ Ql in any

interval [s, s+ round].

Additionally, in all the algorithms we introduce in this thesis, it happens to be the case that the control

packet is only modified by the links; the end host does not modify the control packet, except to signal that

a flow is starting or ending. One of the fields in the control packet is the bandwidth allocated to the flow

by each link. The source end host simply updates the rate X(f) at which it sends data packets to match the

smallest allocation carried in the latest packet and then reflects the control packet back as is.

2.1.2 Max-Min Fairness

We start with an example of a max-min fair rate allocation. Consider the setup in Figure 2.1. There are J = 2

flows and K = 3 links. The max-min fair allocation is 12 Gb/s for flow fG, which is bottlenecked at link l12,

and 18 Gb/s for flow fB , which is bottlenecked at link l30. Link l20 has spare capacity since the only flow it

carries, fB , is bottlenecked at another link.

Definition: We say that flow f is bottlenecked at link l, we mean that the link l is fully used and the flow

f gets the maximum rate of all flows in Ql. We say that a rate allocation for the flows is max-min fair iff

every flow is bottlenecked at some link l. We note that there always exists a unique max-min fair allocation

[58].

We note that there are several equivalent definitions of max-min fairness in literature including the fol-

lowing by Bertsekas et al [22]: a feasible rate allocation X is max-min fair if and only if for any other

feasible allocation Y , if Y (f) > X(f) for some flow f , then there must exist some other flow f ′ such that

X(f ′) ≤ X(f) and Y (f ′) < X(f ′) (see [58] for proof that the two definitions are equivalent).

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 18

Link	l12	
12	Gb/s	

Link	l30	
30	Gb/s	

Link	l20	
20	Gb/s	

Figure 2.1: Example setup. There are J = 2 flows and K = 3 links. Each flow crosses a subset of the links.
The green flow fG is bottlenecked to 12 Gb/s at link l12, while the blue flow fB is bottlenecked to 18 Gb/s at
link l30. We show here the link capacities and the max-min fair rate allocations for the flows.

Table 2.1: Commonly used notation for a given set of flows and links. The second set of rows contain notation
relevant to the max-min fair allocation for the given set of flows and links.

C(l) capacity of link l
Pf path of flow f
Ql flows carried by link l (or by set of links l)

N(l) number of flows carried by link l
J Total number of flows
K Total number of links

A(f) max-min fair allocation of flow f
B(l) set of flows bottlenecked at link l
E(l) set of flows carried by l, bottlenecked elsewhere
R(l) max-min fair rate of link l (or set of links l, when they have identical rates)

SumE(l) sum of max-min fair allocations of E(l) flows
NumB(l) number of flows bottlenecked at link l
Li set of links with ith smallest max-min fair rate, by convention L0 is the empty set
N total number of bottleneck links
W total number of distinct max-min fair rates
LLn set of links with max-min fair rates less than or equal to the first n rates, that is, L0, L1, .., Ln
FLn set of flows carried by links in LLn
FLn(l) subset of flows in FLn carried by link l
LGn set of links with max-min fair rates greater than the first n rates, that is, Ln+1, .., LW , LW+1

FGn set of flows carried by links in LGn that don’t cross LLn
FGn(l) subset of flows in FGn carried by link l

Notation: See Table 2.1 for a summary of commonly used notation. We use A(f) to refer to the max-min

fair allocation of a flow f . If the rate allocation is max-min fair, then all flows crossing a link belong to one

of two sets. We use B(l) to refer to the set of flows bottlenecked at link l (“Bottlenecked here”) and E(l) to

refer to the set of flows bottlenecked at other links (“not bottlenecked here, but bottlenecked Elsewhere”).

The max-min rate of a link l, R(l), refers to the max-min fair allocation of its bottleneck flows, B(l). This

is well defined for links that are fully used. If a link is not fully used, we define by convention that R(l) =∞.

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 19

We can write the max-min rate of a link l as follows:

R(l) =
C(l)−

∑
f∈E(l) A(f)

|B(l)|
. (2.1)

We use the shorthand SumE(l) =
∑
f∈E(l) A(f) for the total allocation of flows bottlenecked elsewhere,

and NumB(l) = |B(l)| for the number of flows bottlenecked at link l to get:

R(l) =
C(l)− SumE(l)

NumB(l)
. (2.2)

In other words, each bottleneck flow gets an equal share of the remaining capacity after we remove the

flows bottlenecked elsewhere.

We use l1, l2, ..., lK to refer to links in increasing order of their max-min fair rates, with ties broken

arbitrarily. Since multiple links may have the same max-min rate, we use Li to refer to the group of links

with the ith max-min rate (1 ≤ i ≤ W when there are W distinct max-min rates) and R(Li) to refer to the

ith max-min rate. We use the convention that L0 is just the empty set. Additionally, we will use QLi to refer

to the flows carried by links in Li i.e., QLi
=
⋃
l∈Li

Ql.

LGn is the set of links with max-min rates greater than the first n rates. FGn is the set of flows carried

by links in LGn, that do not cross any link in L0, ..., Ln. We use FGn(l) to refer to the subset of FGn flows

carried by link l— that is, FGn(l) = FGn ∩ Ql. Analogous to LGn and FGn, we use LLn and FLn to

refer to the set of links with the n smallest max-min rates (rates less than or equal to the nth max-min rate),

and the set of flows carried by them. We use the convention that LL0 is just the empty set.

LGn = Ln+1, ..., LW+1

LLn = L0, ..., Ln

FGn = QLGn
\QLLn

FLn = QLLn

An operational definition: We can use Equation 2.1 to define the max-min fair rate of link l ∈ Ln+1 in

terms of the rates of the previous links. Any flow in Ql that is bottlenecked elsewhere to a smaller max-min

rate must be a flow that is carried by links in LLn. All other flows in Ql, namely FGn(l), are bottlenecked

at the link. Substituting E(l) = FLn(l) and B(l) = FGn(l), we get the bottleneck rate of link l ∈ Ln+1 and

the allocation of its B flows:

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 20

Table 2.2: Initial Control Packet for Flow fG from Figure 2.1 in Fair, that uses per-flow state at links and in
control packet

Link Allocation (a) Bottleneck Rate(b)

l30 0 0
l12 0 0

R(l) =
C(l)−

∑
f∈FLn(l)

A(f)

|FGn(l)|
,

A(f) = R(l) for f ∈ FGn(l).

For l ∈ L1, all flows in Ql are bottlenecked at the link, and we have:

R(l) =
C(l)

N(l)
,

A(f) = R(l) for f ∈ Ql.

Later, we will prove that the distributed algorithms we consider converge to exactly these expressions,

and hence we will conclude that they converge to the max-min fair rates.

2.2 Fair: a Max-Min PERC Algorithm with Per-Flow State

Fair is an algorithm that uses per-flow state at each link to calculate local max-min fair rates at every link.

The algorithm provably converges to the global max-min fair rates in 4N rounds, where N is the number

of bottleneck links.2 Fair and its dependency-chain based analysis follow directly from existing work by

Ros-Giralt et al. [76], [75], [74].

2.2.1 Description

The control packet (Table 2.2) carries two fields for each link l: the allocation a[l] and the bottleneck rate

b[l].

2There are K links in the network, of which N are bottleneck links that are fully used.

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 21

The state at the link is a table of limit rates for every flow in Ql. The limit rate e[f] for a flow f is stored

at link l and indicates the rate that the flow is limited to, by other links in its path Pf \ l.

The algorithm at the link (Algorithm 2) is as follows. Consider the update of flow f ’s control packet at

link l. The link l computes a bottleneck rate b for f (Lines 4—5). In order to compute the bottleneck rate,

the link first assumes the flow is not limited anywhere. Then it does a “local max-min fair rate” calculation

given the limit rates of all flows in Ql. For a given flow f , the “local max-min fair rate” is a max-min

fair rate of the link in a topology in which the flow f is limited only by link l, and all other flows traverse

both link l and an additional link that has capacity equal to their limit rate. It is the unique solution to

b = (C(l)−
∑
f :e[f]<b e[f])/(

∑
f :e[f]≥b 1) after we replace e[f] =∞. The rate can be computed explicitly

at the link using Algorithm 1. To summarize the algorithm, the link first sorts limit rates in increasing order,

and then iteratively expands its estimate of the set of flows that are bottlenecked at other links, until it gets

the maximum rate for its own bottleneck flows. The final bottleneck rate satisfies b =
C−

∑
f:e[f]<b e[f]∑
f:e[f]≥b 1 .

Algorithm 1 Algorithm to compute a local max-min rate b at link l given N(l) limit rates e. Note that we
assume that the sum of the limit rates exceeds the link capacity and hence a local max-min rate is well defined.

1: Step 1: Sort all N(l) limit rates in increasing order from e1 to eN(l)

2: Step 2: Iteratively add flows toE(l) as long asR exceeds their limit rates

3: SumE ← 0

4: NumB ← N(l)

5: R← (C(l)− SumE)/NumB

6: i← 1

7: while ei < R do
8: SumE ← SumE + ei

9: NumB ← NumB − 1

10: R← (C(l)− SumE)/NumB

11: i← i+ 1
return R

Next, the link calculates the latest limit rate of the flow (Line 6). Note that the limit rate e of the flow is

the smallest bottleneck rate that it gets from any other link (as deduced from the control packet). The actual

bandwidth allocated to the flow is a = min(e, b), which is e if the flow is limited to a smaller bottleneck rate

elsewhere, and b if the flow is bottlenecked at link l (Line 7). Finally, the link updates the local limit rate

stored for the flow, and the bottleneck rate and allocation stored in the flow’s control packet.

Note that only the end hosts look at the allocations stored in the control packet. Over time, we expect the

bottleneck rates and allocations to converge to the max-min fair rates.

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 22

Link	l	
	

C(l)	Gb/s	

Lin
k	l 1	

	e[
f 1]	
Gb
/s	

Link	lN(l)		 e[fN(l)]	Gb/s	

Flow	f	

Flow	f1	

Flow	fN(l)	

Flow	fi	Link	li	
e[fi]	Gb/s	

Figure 2.2: Local max-min fair calculation at link l for flow f given limit rates e : Ql → R≥0 and capacity
C(l). We defined it as the max-min fair rate of link l in a topology, where flow f is limited only by link l,
and all other flows traverse both link l and an additional link that has capacity equal to their limit rate. It is
the unique solution to b = (C(l)−

∑
f :e[f]<b e[f])/(

∑
f :e[f]≥b 1) after we replace e[f] =∞.

Algorithm 2 Control Packet Processing at Link l for Fair.

1: e = {}: table of limit rates for flows that cross link l . Initial State at link l

2: e[f]←∞ . Update link state to assume flow is going to be bottlenecked

3: Find b such that b =
C(l)−

∑
f:e[f]<b e[f]∑

f:e[f]≥b 1 . Local max-min fair calculation, see Algorithm 1

4: e← min{l∈Pf\this link} b[l] (or∞ if there is no other link in Pf) . Find flow’s new limit rate

5: a← min(b,e) . Find flow’s new allocation

6: b[l]← b, a[l]← a . Update control packet

7: if flow is leaving then delete e[f] . Update link state to remove flow

8: else e[f]← e . Update link state to reflect flow’s new limit rate

Let’s walk through an example to understand how the rates evolve in the Fair algorithm (see Figure 2.3).

We will later contrast this with how the rates evolve (badly) when we don’t have per-flow state.

2.3 The Fair Algorithm in Action

Flow fB is first seen at link l20. The link assumes the flow is not limited anywhere else, computes a bottleneck

rate of 20 Gb/s, and allocates this to the flow. Flow fB is then seen at link l30 during update 2. The link

computes a bottleneck rate of 30 Gb/s, sees that the flow is limited to 20 Gb/s, and allocates 20 Gb/s.

When flow fG is seen at link l30 during update 3, the link knows that there is one other flow limited

to 20 Gb/s. It assumes flow fG is not limited (e = ∞), and a local max-min fair calculation yields 15

Gb/s for each flow. In terms of Equation 2.2, the link concludes that both flows are bottlenecked at the link

(NumB = 2, SumE = 0, R = C − 0/2). Since the bottleneck rate is smaller than the flow’s limiting rate,

the link allocates 15 Gb/s. Then when the flow is seen at link l12, its limit rate 15 Gb/s exceeds the bottleneck

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 23

rate 12 Gb/s, and the flow gets it correct max-min fair allocation during update 4.

Round	 Time	 Event	 e	 b	 a	

1	 1	 Flow	fB	@	Link	l20	 ∞	 20	 20	

1	 2	 Flow	fB	@	Link	l30	 20	 30	 20	

1	 3	 Flow	fW	@	Link	l30	 ∞	 15	 15	

1	 4	 Flow	fW	@	Link	l12	 15	 12	 12	

l20:	e[fB]=∞	
l30:	e[fB]=20,	e[fW]=∞	
l12:	e[fW]=15	

fB:	b[l20]=20		b[l30]=30	
fW:	b[l30]=15		b[l12]=12	

2	 5	 Flow	fW	@	Link	l30	 12	 15	 12	

2	 6	 Flow	fW	@	Link	l12	 15	 12	 12	

2	 7	 Flow	fB	@	Link	l20	 30	 20	 20	

2	 8	 Flow	fB	@	Link	l30	 20	 18	 18	

l20:	e[fB]=30	
l30:	e[fB]=20,	e[fW]=12	
l12:	e[fW]=15	

fB:	b[l20]=20,		b[l30]=15	
fW:	b[l30]=18,	b[l12]=12	

Figure 2.3: Control packet updates for the first two rounds of the Fair algorithm. We show the link state
(limit rates) and the control packet state (just the bottleneck rates) at the end of each round.

We will skip the discussion of the subsequent updates for flow fB and directly proceed to discuss some

properties of the algorithm.

2.4 Properties of the Fair Algorithm

There are two properties of the Fair algorithm, which we will later see are lacking in algorithms that don’t

use per-flow state.

1. The bottleneck rate calculation at each link is locally max-min fair. During update 3, given a limit rate

of 20 Gb/s for flow fB and e = ∞ for flow fG, an allocation of the bottleneck rate 15 Gb/s for both

flows is max-min fair— they are both bottlenecked at the link.

2. Suppose we say that a link “estimates” a flow as bottlenecked here, that is, in B, if and only if its limit

rate exceeds its local max-min fair rate (which is a function of the link state in Fair). Then there can

be multiple flows, which in the link’s estimate, move from E to B during a single update. After update

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 24

3 at link l30, given the new limit rates, the link estimates both flows to be bottlenecked at the link (local

max-min fair rates are 15 Gb/s for each). Before the update however, given limit rate 20 Gb/s for flow

fB , the link estimated fB to be in E (e = 20 Gb/s is smaller than local max-min fair rate 30 Gb/s).

Hence, with update 3, not only did the link identify the new flow fG as bottlenecked, it also changed

its estimate of the other flow fB from E to B.

2.5 Convergence of the Fair Algorithm

Theorem 2.5.1. Once the set of flows in the network stabilizes, Fair is guaranteed to converge to the max-min

fair allocation in less than or equal to 4N rounds, where N is the number of bottleneck links in the max-min

fair allocation.

The proof follows by induction on the links in increasing order of their max-min fair rates. Hence, we

first define, recursively, what it means for a link to converge.

Definition 2.5.2. A link l has converged by time T if

• the bottleneck links of its E flows have converged by time T ;

• for its B flows, for all updates after time T ,

– at link l, the flow’s “limit rate elsewhere” is at least the max-min rate of link l, which is exactly

the value of the bottleneck rate at link l e ≥ R(l) = b;

– at other links m, the flow’s “limit rate elsewhere” is exactly the max-min rate of link l, which is

less than the bottleneck rate at link m e = R(l) ≤ b.

Note that Definition 2.5.2 is recursive because 1) for a link l ∈ L1, all flows in Ql are B flows; and 2)

when n ≥ 1, for a link l ∈ Ln+1 any E flow is bottlenecked at link(s) in L1, ..., Ln, which have smaller

max-min rates.

Proof. The proof follows by induction on the sets of links L0, L1, .., LW . Note that L0 is the empty set and

W is the number of distinct max-min rates, which is less than the total number of bottleneck links, that is,

W ≤ N .

Base case The base case for induction is that the links in L0 converge. This is trivially true.

Induction step We show that for 0 ≤ n < W , if L0, ..., Ln have converged by time T (induction hypothesis),

then any link l ∈ Ln+1 will converge within four rounds of T .

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 25

1. From time T , flows carried by L1, ..., Ln present limit rates at links m ∈ LGn, which are exactly their

max-min fair allocation. This follows directly from the induction hypothesis.

2. From time T + 1 round, the limit rates of all flows carried by L1, ..., Ln, as stored at links m ∈ LGn
equal their max-min rates. This is because every flow in Qm is seen at least once at link m in the

round following time T . Given this, we can show that from time T + 1 round, flows in B(l) pick

up bottleneck rates from other links in LGn, which are at least R(l). Consider an update of a flow

f ∈ B(l) at a link m ∈ LGn. Because link m is in LGn, it has at least R(l) for each of its flows that

remain after removing the max-min rates of flows crossing L1, ..., Ln (see Lemma 2.5.3). As a result,

the local max-min fair rate computed at m for f is at least R(l) (see Lemma 2.5.5).

3. From time T + 2 rounds, l’s B flows present limit rates at l, which are at least R(l). This is true

because the limit rate of l’s B flows is the smallest bottleneck rate that the flow gets at any other link

in LGn.

4. From time T + 3 rounds, the limit rates of all flows in B(l), as stored at link l, are at least R(l). This

is because every flow in Ql is seen at least once at link l in the round following time T + 2 rounds.

Given this, we can show that from time T + 3 rounds, flows in B(l) pick up a bottleneck rate from l

that is exactly R(l). Consider an update of flow f ∈ B(l) at link l. R(l) is exactly the value that a local

max-min fair calculation at l for f would yield, given that the B flows are limited to at least R(l) and

the E flows (carried by the first n links) are limited to their max-min rates (see Lemma 2.5.4). Hence,

from time T + 3 rounds, any update of a B(l) flow at l satisfies the condition e ≥ R(l) = b.

5. From time T + 4 rounds, l’s B flows present limit rates at other links that equal R(l), because the

bottleneck rate that they get at l is the smallest of all links on their path. Hence, from time T+4 rounds,

any update of a B flow at m ∈ LGn satisfies the condition e = R(l) ≤ b.

Lemma 2.5.3. For any link m ∈ LGn, define CRn(m) as the capacity of link m after removing the max-

min allocations of flows carried by L1, ..., Ln, namely, CRn(m) = C(m) −
∑
f∈FLn(m)A(f). Then links

l ∈ Ln+1 have the smallest remaining capacity per-flow CRn(l)/FGn(l) out of all links in LGn, and this is

exactly their max-min rate:

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 26

R(l) =
C(l)−

∑
f∈FLn(m)A(f)

|FGn(l)|

=
CRn(l)

|FGn(l)|

≤ CRn(m)

|FGn(m)|
,m ∈ LGn

Proof. We can observe from the water-filling algorithm [22] that the set of links with the n+1th smallest max-

min rates Ln+1 is exactly the set of links that have the smallest remaining capacity per-flow after removing

the max-min allocations of flows carried by L1, ..., Ln.

Lemma 2.5.4. Consider a local max-min fair calculation at link l ∈ Ln+1 for a flow f ∈ B(l) (Line 5 of

Algorithm 2). Given that the limit rates stored at l for flows crossing L1, ..., Ln are exactly their max-min

rates and for flows in FGn(l) are at least R(l), the local max-min fair rate b computed at link l for f is

exactly R(l).

Proof. We defined the max-min fair rate of link l ∈ Ln+1 as follows:

R(l) =
C(l)−

∑
f∈FLn(l)

A(f)

|FGn(l)|

The set of flows crossing L1, ..., Ln is exactly the set of flows whose max-min rates are smaller thanR(l).

Moreover, we are given that their limit rates equal their max-min rates and hence satisfy e[f] < R(l), while

the limit rates of other flows in Ql exceed R(l). So we can substitute
n⋃
i=1

Ql ∩ Li = {f ∈ Ql, e[f] < R(l)}

and for each of these flows A(f) = e[f] to get:

R(l) =
C(l)−

∑
f∈Ql,e[f]<R(l) e[f]

|FGn(l)|

We are given that the limit rates of flows in FGn(l) are at least R(l) and hence satisfy e[f] ≥ R(l), while

the limit rates of other flows in Ql are less than R(l). So we can substitute |FGn(l)| =
∑
f∈Ql,e[f]≥R(l) 1 to

get:

R(l) =
C(l)−

∑
f∈Ql,e[f]<R(l) e[f]∑

f∈Ql,e[f]≥R(l) 1

Hence, R(l) is also the local max-min fair rate at the link for the given limit rates.

Lemma 2.5.5. Let link l ∈ Ln+1. Consider a local max-min fair calculation at link m ∈ LGn for a flow

f ∈ B(l) (Line 5 of Algorithm 2). Given that the limit rates stored at m for flows crossing L1, ..., Ln are

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 27

exactly their max-min rates, the local max-min fair rate b computed at link m for f is at least R(l).

Proof. We know that the local max-min fair rate b computed at m for f ∈ B(l) satisfies:

b =
C(m)−

∑
f∈Qm,e[f]<b

e[f]∑
f∈Qm,e[f]≥b 1

C(m) =
∑

f∈Qm,e[f]≥b

b+
∑

f∈Qm,e[f]<b

e[f]

Some flows with limit rates at least b are in FGn(m), while others are carried by L0, ..., Ln:

∑
f∈Qm,e[f]≥b

b =
∑

e[f]≥b,f∈FGn(m)

b+
∑

e[f]≥b,f∈FLn(m)

b

≤
∑

e[f]≥b,f∈FGn(m)

b+
∑

e[f]≥b,f∈FLn(m)

e[f] (since e[f] ≥ b)

≤
∑

e[f]≥b,f∈FGn(m)

b+
∑

e[f]≥b,f∈FLn(m)

A(f) (using induction hypothesis) (2.3)

Some flows with limit rates less than b are in FGn(m), while others are carried by L0, ..., Ln:

∑
f∈Qm,e[f]<b

e[f] =
∑

e[f]<b,f∈FGn(m)

e[f] +
∑

e[f]<b,f∈FLn(m)

e[f]

≤
∑

e[f]<b,f∈FGn(m)

b+
∑

e[f]<b,f∈FLn(m)

A(f) (using induction hypothesis) (2.4)

Hence, we see that if we were to assign b to the FGn(m) flows and the max-min fair rates to flows in

FLn(m), then the total bandwidth used will be at least the link capacity.

If we assume that the local max-min fair rate b < R(l), we get a contradiction.

C(m) =
∑

f∈Qm,e[f]≥b

b+
∑

f∈Qm,e[f]<b

e[f] (property of local max-min rate b at m)

≤
∑

f∈FGn(m)

b+
∑

f∈FLn(m)

A(f) (using Equations 2.3 and 2.4)

<
∑

f∈FGn(m)

R(l) +
∑

f∈FLn(m)

A(f) (assuming b < R(l))

≤ C(m) (using Lemma 2.5.3

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 28

In the last step, we used Lemma 2.5.3, which says the link m has least R(l) for every flow in FGn(m)

after removing the max-min allocations of flows carried by L0, ..., Ln.

Hence, using a proof by contradiction, we showed that the local max-min fair rate b atm for flow f ∈ B(l)

must be at least R(l).

2.6 A Tighter Convergence Bound for the Fair Algorithm

In this section we describe how to get a tighter convergence bound for the Fair algorithm. This follows

directly from the proof in [74]. We present it here for instructional value because we will adapt this technique

to prove the convergence of the s-PERC algorithm in the next chapter.

2.6.1 Invariants of Fair based on the Induction Order

In the proof of Theorem 2.5.1, we used induction on the links ordered by their max-min rates, that is on

the sets L0, L1, .., LW , where W is the number of distinct max-min rates. We shall refer to this as the

water-filling order, since this is also the order in which links are bottlenecked in the classic centralized water-

filling [22] algorithm . The induction hypothesis assumes that links in L0, ..., Ln have converged by time T .

The proof of convergence uses this hypothesis to establish two invariants about updates at a link l ∈ Ln+1

and at its neighbors. First, l’s B flows pick up bottleneck rates from other links on their path that are at least

R(l) from T + 1 round. Second, l itself computes a bottleneck rate for its B flows that is exactly R(l) from

T + 3 rounds. We use ∪f∈B(l)Pf to denote the set of links that carry link l’s bottleneck flows. Note that

∪f∈B(l)Pf is a subset of LGn since by definition LGn is the set of links with max-min rates that are at least

R(l).

Lemma 2.5.5 shows that the first invariant follows specifically from the induction hypothesis that for any

m ∈ ∪f∈B(l)Pf , the limit rates stored at m for flows carried by L0, ..., Ln are exactly their max-min rates,

and the following property of m, which says that the remaining capacity per-flow of m after removing the

max-min rates of flows carried by L0, ..., Ln is at least the max-min rate of link l:

For m ∈ ∪f∈B(l)Pf ,

CR(m)/FGn(m) =
C(m)−

∑
f∈FLn(m)A(f)

|FGn(m)|

≥ R(l) (2.5)

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 29

Lemma 2.5.4 shows that the second result then follows specifically from the induction hypothesis that the

limit rates stored at l for flows carried by L0, ..., Ln are exactly their max-min rates, and for flows in B(l)

are at least R(l) and the following property of l, which says that the remaining capacity per-flow of l after

removing the max-min rates of flows carried by L0, ..., Ln is exactly the max-min rate:

For l ∈ Ln+1:

CR(l)/FGn(l) =
C(l)−

∑
f∈FLn(l)

A(f)

|FGn(l)|

= R(l) (2.6)

2.6.2 The CPG Algorithm to Find Max-Min Fair Rates

Ros-Giralt et al. [75] describe a parallel variant of the classic water-filling algorithm called the CPG (con-

strained precedence graph) algorithm that calculates max-min fair rates and identifies bottleneck links in D

(fewer than W) iterations (Algorithm 3). Both algorithms computer fair share rates for all links in every

iteration. The classic water-filling algorithm identifies and ‘freezes’ bottleneck links, one (rate) at a time, by

checking if a link’s fair share rate in a given iteration is smaller than any other link globally. This yields the

L1, .., LW partition of the bottleneck links, one set for each bottleneck rate. The CPG algorithm identifies

and ‘freezes’ bottleneck links, multiple links (and rates) at a time, by checking if a link’s fair share rate in a

given iteration is smaller than its neighbors. This yields a different smaller partition L1
1, ..., L

1
D, which we

shall call the CPG order. We shall use the notation R1
n[l] to refer to the the fair share rate computed by a link

l in iteration n of the CPG algorithm, and distinguish this from the link’s max-min rate R(l).

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 30

Algorithm 3 CPG Algorithm for Fair. For any link l that is removed in round n, we allocate A[f] = R[l] =
C[l]/N [l] as computed in round n to each of its flows in Ql during round n, and remove the flow.

1: L : set of all links in the network that have at least one flow

2: C : remaining link capacities,N : number of flows . arrays indexed by link

3: R : remaining link capacity per-flow,Q: active flows . arrays indexed by link

4: A: bandwidth allocation to flow, P : array of links per flow . arrays indexed by flow

5: wfRound← 0

6: whileL is not empty do
7: wfRound← wfRound+ 1

8: for all l ∈ L doR[l]← C[l]/N [l]

9: links_to_remove← {}, f lows_to_remove← {}
10: for all l ∈ L do
11: minRate← minm: l,m share a flow R[m]

12: ifR[l] == minRate then
13: add l to links_to_remove
14: for all f ∈ Q[l] do
15: add f to flows_to_remove
16: A[f] = R[l]

17: for all f ∈ flows_to_remove do
18: for all l ∈ P [f] do
19: C[l]← C[l]−A[f]
20: N [l]← N [l]− 1

21: remove f fromQ[l]

22: remove links_to_remove fromL

If we replace Li with L1
i and replace FGn with FG1

n, which in the context of the CPG order, is defined

as the set of flows not carried by L1
1, ..L

1
n, then Equation 2.5 and Equation 2.6 follow immediately from the

CPG algorithm. As a result, one can show that the two invariants about the Fair algorithm hold in the context

of the CPG order as well. Hence, a proof by induction on the CPG order yields a tighter convergence bound

of 4D rounds where D is the number of iterations of the CPG algorithm:

Theorem 2.6.1. Once the set of flows in the network stabilizes, Fair is guaranteed to converge to the max-

min fair allocation in less than or equal to 4D rounds, where D is the number of iterations that the CPG

algorithm takes for the given set of flows and links.

Note that the analogous convergence theorem for the distributed d-CPG algorithm in [76] is in terms of

the number of levels in a constrained precedence graph, which they show is exactly equal to the number of

iterations in the CPG algorithm. In the next section, we review Ros-Giralt et al.’s definition of the constrained

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 31

precedence graph and their proof of why the depth of the graph is equal to the number of iterations in the

CPG algorithm.

2.6.3 Dependencies from the CPG Algorithm

It follows from the CPG algorithm that in order for a link l ∈ L1
n+1 to “converge” (in a centralized algorithm

or in a distributed algorithm like Fair), it is sufficient for links L1
0, .., L

1
n in the CPG order to converge, rather

than all links with smaller max-min rates than l. Ros-Giralt et al. further prove that it is in fact necessary for

at least one link in L1
n to converge. They call this the precedent link relationship. We paraphrase their result

here (Lemma 2 in [75])

(Precedent Link Relationship): For a given set of flows and links, let j be a link that is removed at iteration

n + 1 of the centralized CPG algorithm. Let i be a link that shares a flow with link j in iteration n so that

R1
n[i] < R1

n[l]. Note that such a link must exist, otherwise link j would be removed at iteration n. Then, it

must be that either link i becomes a bottleneck at iteration n or there exists at least one link k that shares at

least one flow with link i such that it becomes a bottleneck at iteration n.

The definitions of a direct/ indirect precedent link follow directly from this Lemma. If link i becomes a

bottleneck then i is called a direct precedent link of j. On the other hand, if i does not become a bottleneck

but the link k that shares at least one flow with link i does, then k is called an indirect precedent link of j (and

link i is called the medium link).

The precedent link relationship implies that for a link j ∈ L1
n+1 there is at least one precedent link

relationship with some link in L1
n. Hence, the precedent link relationships form a directed acyclic graph of

depth D, where D is the number of iterations that the CPG algorithm takes for the given set of flows and

links. This directed acyclic graph is called the constrained precedence graph (CPG).

The precedent link relationship is an example of a dependency, and any path in the constrained precedence

graph is a dependency chain. The precedent link relationship implies that in order for a link l to converge in

the Fair algorithm (to be removed in the centralized CPG algorithm), it is necessary for all ancestors of the

link in the constrained precedence graph to converge (to be removed) first. See Figure 2.4 for an example of

the CPG algorithm and the resulting constrained precedence graph for a set of flows and links. See §A.2 in

the Appendix for more notes on dependencies.

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 32

C	=	10	Gb/s	
N	=	2	
R	=	5	Gb/s	

C	=	15	Gb/s	
N	=	3	
R	=	7	Gb/s	

C	=	3	Gb/s	
N=	1	
R	=	3	Gb/s	

Link	1	 Link	2	 Link	3	

C	=	1	Gb/s	
N=	1	
R	=	1	Gb/s	

Link	4	

Link	1	 Link	2	 Link	3	 Link	4	 Ordering	(CPG)	

1)	R1		=	C1/N1	 5		=	10	/	2		 	5	=	15	/	3	 3	=	3	/	1	 1	=	1/	1	 L11		=	{Link	1,3,4}	
2)	R2		=	C2/N2	 7	=	7/	1	 L12		=	{Link	2}	

1	3	

2	

4	

Figure 2.4: Example of CPG Algorithm for Fair. We show the progress of the CPG algorithm for the given
set of flows and links. A cell in a row is bolded when a link is bottlenecked (i.e., it has the smallest rate
among neighbors, that is, links that share a flow) in the respective iteration. Link 3 is a direct precedent of
link 2 because link 2 is removed in iteration 2 while link 3 which is removed in iteration 1, shared a (green)
flow with link 2 in the iteration and had a smaller fair share rate (3 Gb/s vs 5 Gb/s).

2.7 Simulation Results

We performed small-scale packet-level simulations of the Fair algorithm to evaluate three main claims about

the benefits of PERC algorithms relative to reactive algorithms as well as a previous PERC algorithm we’ll

call Charny [27]. Before describing our evaluation, we contrast Fair and Charny. Like Fair, Charny

also requires per-flow state, and it has been proven to converge in the 4N RTTs. Charny differs from Fair

in the way that the bottleneck rate is calculated at the switch. A link l in maintains an estimate of whether

each flow is in B(l) of E(l) and computes a bottleneck rate that is consistent with the E(l) estimates but

not necessarily locally max-min fair. Another difference is that the Charny control packet carries a single

rate field that is updated by every link on the flow’s path. This can lead to slow updates, when a bottleneck

changes during the course of the Charny algorithm– typically the old bottleneck link must update (increase)

the rate carried in the packet before the new bottleneck link can fill in its rate.

We perform the following experiments to evaluate three main claims about PERC and reactive algorithms:

(1) Convergence Times: PERC algorithms converge faster than reactive algorithms; in particular Fair

converges faster other state-of-the-art PERC algorithms. We compared Convergence Times of Fair with

reactive algorithm RCP and Charny.

(2) Flow Completion Times (FCTs): Slow convergence times lead to long Flow Completion Times

(FCTs), especially with higher speeds and round-trip delays. We compared FCTs of Fair with reactive

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 33

Edge%Links%

1%TOR%

4%Hosts%

Figure 2.5: Setup for convergence time experiments: one TOR connected to four hosts with 100 Gb/s up/down
links.

algorithms RCP and DCTCP and PERC algorithm Charny.

(3) Dependency Chains: All algorithms take longer to converge when dependency chains between flows

get longer; but reactive algorithms perform worse than PERC algorithms.

Our evaluations are based on OMNET++ [82] implementations of reactive (RCP [36]), PERC (Fair,

Charny [27]), ideal algorithms for max-min rate allocation, and ns2 [4] simulations of DCTCP [12].

2.7.1 Convergence Times

Fair converges faster than reactive and state-of-the-art PERC algorithms.

Setup: We consider a topology with one TOR connected to four hosts (Figure 2.5). All 8 links— one up-link

and one down-link per host— have capacity 100 Gb/s each. The RTT between hosts is 12 µs. We start with

32 flows between random pairs of hosts, and then alternately add a new random flow or remove an old one

(randomly) after the transmission rates for the old set of flows have converged.

Metric: We define convergence as the first time when each of the flow rates has been within 10% of the

optimal value for at least ten consecutive RTTs. We look at the number of RTTs to converge for each of 3000

such flow changes.

Algorithms compared: We compare the empirical Cumulative Distribution Function (CDF) of convergence

times, as observed across all flow changes, for RCP and the two PERC algorithms Fair and Charny in

Figure 2.6.

Results and Analysis

Fair converges faster than other PERC algorithms: With Fair, more than 99% of the flow changes take

less than ten RTTs to converge, whereas with Charny convergence takes 50% longer. The median shows

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 34

0.
00

0.
20

0.
40

0.
60

0.
80

0.
99

0 10 20 40 60 80 100
RTTs to converge

C
D

F

PERC
CHARNY
RCP
Charny
RCP

Fair

Figure 2.6: CDF of convergence times for Fair, Charny, and RCP on an 8-link topology with 100 Gb/s links.
RTT is 12 µs.

a similar trend. Fair converges faster because in the Fair algorithm, control messages carrying demands

from flows to links carry more information. In Charny, control messages contain a single stamped rate for

all links, which is updated by a link if its fair share is smaller. On the other hand, in Fair, a flow expresses a

different demand for each link, which is the maximum it can send based on what it has heard from all other

links.

PERC algorithms converge faster than reactive algorithms: The median convergence time for RCP is 14

RTTs, which is twice that of Charny and more than three times that of Fair. The 99th percentile conver-

gence time of RCP is even worse; at 71 RTTs, it is more than 5 times longer than Charny and 7 times longer

than Fair. RCP’s tail performance is particularly poor if there are long dependency chains, as we show in

the next example.

2.7.2 Flow Completion Times

Slow convergence times lead to long (FCTs), especially with higher speeds and round-trip delays.

We test our claim by comparing FCTs of reactive and PERC algorithms for various flow sizes on a single

link. We explore the effect of higher link capacities and longer RTTs.

Setup: We use the same workload based on a Microsoft web search data center cluster used in prior work [12],

[13]. Flows arrive according to a Poisson process, and the flow size is chosen based on empirically observed

distributions. The workload has a diverse mix of small (1 kB-10 kB), medium (10 kB-1 MB), and large (1

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 35

Ta
il

FC
T

(n
or

m
. b

y
ID

EA
L)

M
ea

n
FC

T
(n

or
m

. b
y

ID
EA

L)

RCP
DCTCP
CHARNY
PERC

Small Flows Medium Flows Large Flows

0
1

2

0
1

2.
5

4
5

Fair

RCP
DCTCP
Charny

Figure 2.7: Spread FCTs on 10 Gb/s link with 60% load and 12 µs RTT: 99th percentile for small (< 10 kB)
and medium (10 kB- 1000 kB) flows, and mean for large (> 1 MB) flows. Normalized by respective statistics
for ideal instantaneous max-min rate allocation.

MB- 100MB) flows. By this definition, 14% of the flows are small, 56% are medium, and 30% are large. We

generate the workload over a simple dumbbell topology with a single bottleneck link. We present results for

an average load of 60%; the results at other loads are qualitatively similar.

Algorithms compared: We compare the FCT for small, medium, and large flows for reactive (RCP [36],

DCTCP [12]) and PERC (Charny [27], Fair) congestion control algorithms. We normalize the results for

each algorithm with an IDEAL reference algorithm in which all flows always transmit at the correct max-min

rate. The normalization gives us a common benchmark and lets us see how close different algorithms are to

the ideal max-min FCT. In all of our experiments, RCP uses a default initial advertised rate of 0.5 times the

link capacity, and the α and β parameters for the rate update are set to 0.5 each (as suggested in [36]).

Results and Analysis

Fair performs reasonably for moderate link speeds and round-trip times: With a 10 Gb/s link speed and 12

µs RTT (Figure 2.7), Fair’s FCT is comparable to that of RCP across all flow sizes. DCTCP performs

better than RCP and Fair in this case, but its performance degrades significantly at higher link speeds and

round-trip delays (see below).

Fair performs much better than RCP/DCTCP at higher link speeds: If we increase link speed to 100 Gb/s

(Figure 2.8), Fair outperforms the reactive algorithms, keeping the tail FCT very low for medium flows.

Because flows can be sent much faster, medium flows that previously took 60 RTTs now finish in as few as

6 RTTs. Fair quickly converges to the optimal rates within the shorter lifetime of flows, but the reactive

algorithms have a much harder time. For some flow rates DCTCP never reaches the fair share, and this shows

up in the long tail FCT. For RCP, all flows get the same rate, but it might be too low or too high (causing long

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 36

Ta
il

FC
T

(n
or

m
. b

y
ID

EA
L)

M
ea

n
FC

T
(n

or
m

. b
y

ID
EA

L)

RCP
DCTCP
CHARNY
PERC

Small Flows Medium Flows Large Flows0
2

0
2

4.
5

7
9 RCP

DCTCP
Charny
Fair

Figure 2.8: Spread FCTs on 100 Gb/s link with 60% load and 12 µs RTT: 99th percentile for small (< 10
kB) and medium (10 kB- 1000 kB) flows, and mean for large (> 1 MB) flows. Normalized by respective
statistics for ideal instantaneous max-min rate allocation.

Ta
il

FC
T

(n
or

m
. b

y
ID

EA
L)

M
ea

n
FC

T
(n

or
m

. b
y

ID
EA

L)

RCP
DCTCP
CHARNY
PERC

Small Flows Medium Flows Large Flows

0
1.

5

0
2

3.
5

5
7 RCP

DCTCP
Charny
Fair

Figure 2.9: Spread FCTs on 10 Gb/s link with 60% load and 120 µs RTT: tail statistics for small/medium
flows, and mean for large flows, normalized by respective statistics for an ideal max-min algorithm.

queues).

The difference in tail FCT between Fairand reactive algorithms is even more significant at higher RTTs: At

higher RTTs (Figure 2.9), reactive algorithms react more slowly since the time from measurement to reaction

increases. It takes more steps to converge, and FCT grows. Note that the large bandwidth-delay product at

100 Gb/s and 120 µs RTT causes DCTCP to completely break down because the ramp-up time for medium

and large flows becomes prohibitively slow.

2.7.3 Dependency Chains

Convergence times of reactive algorithms scale poorly with long dependency chains

While PERC algorithms scale linearly with the length of dependency chains [76], our initial simulations

suggest that reactive algorithms are much worse.

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 37

Ta
il

FC
T

(n
or

m
. b

y
ID

EA
L)

M
ea

n
FC

T
(n

or
m

. b
y

ID
EA

L)

RCP
DCTCP
CHARNY
PERC

Small Flows Medium Flows Large Flows0
2.

5
5

0
2.

5
5

7.
5

10

Fair

RCP
DCTCP
Charny

Figure 2.10: Spread FCTs on 100 Gb/s link with 60% load and 120 µs RTT: tail statistics for small/medium
flows, and mean for large flows, normalized by respective statistics for an ideal max-min algorithm.

Link%1%(60%G)% Link%2%(30%G)%

B"(25"G)"
A"(35"G)"

A*er"convergence"

Link%3%(10%G)%

D"(5"G)"
C"(5"G)"

Link%4%(100%G)%Link%0%(100%G)%

Figure 2.11: A dependency chain of three. A 60 Gb/s link is shared by flows A (orange) and B (green); a 30
Gb/s link by flows B (green) and C (red); a 10 Gb/s link by flows C (red) and D (blue). RTT is 24 µs.

For example, consider the three bottleneck-link scenario shown in Figure 2.11. Links 1—3 are each

shared by two flows, of which one is bottlenecked at a later link (except flow D). There is a dependency chain

that spans three links. Figure 2.12 shows the time series of the sending rates of the four flows for Fair, RCP,

and IDEAL.

Fair converges to the correct rates for all flows within 100 µs. At around 50 µs, flow C converges to 5

Gb/s at the bottleneck, and then at 100 µs, flows A and B use up all the spare capacity on the 30 Gb/s and 60

Gb/s links. As the dependency chains grow, the bottleneck information takes longer to propagate, growing

linearly with chain length.

RCP takes much longer to converge: flows C and D take almost 600 µs to converge, and flows A and B

oscillate within 20% of the target rates for milliseconds (Figure 2.12 only shows up to 1 ms). The bottleneck

information takes time to propagate in RCP too, but the convergence behavior is much worse with longer

dependency chains.

CHAPTER 2. FAIR: A PERC ALGORITHM WITH PER-FLOW STATE 38

0 200 400 600 800 1000

0
10

20
30

40
50

60

1

Time (us)

Tr
an

sm
is

si
on

 R
at

e
(G

bp
s)

50 120

PERC (solid)

 RCP (dashed)

Flow A (35G)
Flow B (25G)
Flow C (5G)
Flow D (5G)

Figure 2.12: Time series of flow transmission rates in 3-level-bottleneck scenario, for RCP (dashed), Fair
(solid), and IDEAL (dotted).

2.8 Problem with the Fair Algorithm

The small-scale simulations are encouraging and suggest that PERC algorithms like Fair converge much

faster than reactive algorithms, and this can yield better Flow Completion Times (FCTs) especially when link

speeds are high or round-trip delays are long. Additionally, it appears that proactive schemes scale well as

dependency chain lengths increase (our proof shows that the worst-case convergence time scales linearly with

the dependency chain length), while reactive algorithms perform worse.

However, the Fair algorithm is not practical. It requires per-flow state at the link for the local max-min

fair calculation. This is because the local max-min fair rate calculation in each update requires the link to

store the limit rates for each flow.

In the next chapter we explain how to eliminate per-flow state at the links in a way that the new algorithm

is still guaranteed to converge in a bounded time.

Chapter 3

s-PERC: A PERC Algorithm that Does

Not Need Per-Flow State

In this chapter, we introduce s-PERC, a PERC algorithm for max-min rates that does not need per-flow

state. We will start by describing the problems that arise when we eliminate per-flow state naively. Using an

algorithm called n-PERC, we will motivate s-PERC’s technique of propagating bottleneck rates only when

they are high enough. We will then walk through an example of s-PERC and contrast it with the n-PERC

example. We will present simulation results that indicate that n-PERC can take an arbitrarily long time to

converge in the worst case. Finally, we will present a convergence proof of s-PERC in terms of dependencies

that exist between links for a given set of flows.

3.1 n-PERC: a Naive PERC Algorithm Without Per-Flow State

The n-PERC algorithm eliminates per-flow state at the links. Each link l has an estimate of the set of flows

bottlenecked at the link and elsewhere, and we will call these B̂(l) and Ê(l) to distinguish them from the true

sets. Whether a flow is in B̂(l) or Ê(l) is carried in the control packet of the flow, for each link l.

The link does not need to store per-flow state. Recall that in the Fair algorithm the link uses per-flow

state to store the limit rate of every flow, that is, the rate that the flow is limited to by the rest of the network.

In the n-PERC algorithm, the link stores two aggregate values only, called SumE and NumB. SumE is

the sum of the allocations of flows in Ê(l), where each flow is allocated exactly its limit rate, and NumB is

the number of flows in B̂(l), which are all limited at l.

39

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 40

While these values of SumE and NumB may not yield the correct local max-min fair rate, they do yield

some rate R using Equation 2.2, replacing the actual values of SumE and NumB with SumE and NumB:

R =
C − SumE
NumB

.

This rateR in turn can be used to reclassify a flow into B̂ and Ê based on its latest limit rate. The question

to ask is whether the rates converge over time to the ideal max-min rates.

The control packet (Table 3.1) carries three fields for each link l: the bottleneck state s[l], which identifies

whether the flow is in B̂ or Ê, the allocation a[l], and the bottleneck rate b[l].

Table 3.1: Initial Control Packet for Flow fG in n-PERC. fG crosses two links l30 and l12, and the information
pertaining to each link is in the first and second row, respectively.

Link Bottleneck State (s) Bottleneck rate (b)
Allocation (a)

l30 E @ 0 ∞
l12 E @ 0 ∞

The control packet is only modified by the links; the end host does not modify the control packet, except

to indicate when the flow is finished. In the common case, it simply updates the rate at which it sends data

packets to match the lowest allocation carried in the control packet, and then reflects the control packet back

unmodified.

The algorithm at the link (Algorithm 4) is as follows. A link l starts with initial values of SumE = 0

andNumB = 0. When it sees a flow it uses Equation 2.2 to compute a bottleneck rate for the flow, assuming

it is going to be bottlenecked here. For a new flow f , this would be b = (C − SumE)/(NumB) after

NumB has been incremented (lines 3—6).

The limit rate e of the flow is the lowest bottleneck rate that it gets from any other link (line 7). If the link

computes a bottleneck rate that is strictly greater than the flow’s limit rate, the link classifies the flow into Ê;

otherwise it classifies the flow in B̂. Then it updates SumE and NumB based on the new classification. For

an Ê flow the limit rate e becomes part of SumE (line 16); otherwise the flow is remains in NumB (line 5).

For the next flow, the link uses the new values of SumE and NumB, which will yield a new bottleneck rate.

At the end of the update, the link l updates the bottleneck rate b, the allocation a, and the bottleneck state

field s in the control packet (line 11).

Note that other links (i.e., links other than l) only look at the bottleneck rate b[l] field of link l. The

allocation a[l] and bottleneck state s[l] fields are used only by link l to correctly update running estimates

NumB and SumE. For example, if the flow moves from E to B, the link looks up the flow’s old allocation

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 41

Algorithm 4 Control Packet Processing at Link l for n-PERC.

1: SumE = 0: sum of allocations of flows bottlenecked elsewhere . Initial state at link l

2: NumB = 0: number of flows bottlenecked here

3: if s[l] == E then . Flow was last bottlenecked elsewhere

4: SumE ← SumE − a[f] . Update link state to assume flow is going to be bottlenecked

5: NumB ← NumB + 1

6: b← C−SumE
NumB

7: e← minm∈Pf\lb[m] (or∞ if there is no other link in Pf) . Find flow’s new limit rate

8: a← min(b, e) . Find flow’s new allocation

9: if b <= e then s← B . Flow is now bottlenecked here; classify as B̂

10: else s← E . Flow is now bottlenecked elsewhere; classify as Ê

11: b[l]← b, a[l]← a, s[l]← s . Update control packet

12: if flow is leaving then . Update link state to remove flow

13: NumB ← NumB − 1

14: else if s == E then . Update link state to reflect flow is in Ê

15: NumB ← NumB − 1

16: SumE ← SumE + a

in the control packet, subtracts it from SumE, and increments NumB (lines 4—5).

Over time, we hope that sets Ê and B̂ at each link converge to the true E and B sets, and the bottleneck

rate b at the link converges to the correct max-min fair allocation for the B flows.

We call this algorithm n-PERC, for naive Proactive Explicit Rate Control.

3.1.1 The n-PERC Algorithm in Action

Let’s walk through an example to understand how the rates evolve in the n-PERC algorithm (see Figure 3.2).

We will use the same topology and workload that are used for demonstrating the Fair algorithm, and we

reproduce the figure here for convenience (Figure 3.1). We will examine the first four updates, which are

sufficient for the discussion that follows.

Flow fB is first seen at link l20. The link assumes the flow is not limited anywhere else, computes a

bottleneck rate of 20 Gb/s, and allocates this to the flow. Flow fB is then seen at link l30. The link computes

a bottleneck rate of 30 Gb/s, sees that the flow is limited to 20 Gb/s, and allocates 20 Gb/s. So far the

allocations are exactly the same as the Fair algorithm.

When Flow fG is seen at link l30 during update 3, the link knows that the total allocation of E flows

is 20 Gb/s. It assumes flow fG is not limited (e = ∞) and uses Equation 2.2—where NumB = 1, and

SumE = 20—to compute a bottleneck rate of b = 10 Gb/s for flow fG. Since the limit rate of flow fG

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 42

Link	l12	
12	Gb/s	

Link	l30	
30	Gb/s	

Link	l20	
20	Gb/s	

Figure 3.1: Example setup for n-PERC in action. There are J = 2 flows and K = 3 links. Each flow crosses
a subset of the links. The green flow fG is bottlenecked to 12 Gb/s at link l12, while the blue flow fB is
bottlenecked to 18 Gb/s at link l30. We show here the link capacities and the max-min fair rate allocations for
the flows.

Round	 Time	 Event	 e	 b	 a	 state	

1	 1	 Flow	fB	@	Link	l20	 ∞	 20	 20	 B	

1	 2	 Flow		fB	@	Link	l30	 20	 30	 20	 E	

1	 3	 Flow	fW	@	Link	l30	 ∞	 10	 10	 B	

1	 4	 Flow	fW	@	Link	l12	 10	 12	 10	 E	

l20:	NumB=1,SumE=0	
l30:	NumB=0,SumE=20	
	l12:	NumB=1,SumE=0	

fB:	b[l20]=20,	b[l30]=30	
fW:	b[l30]=10,	b[l12]=12	

2	 5	 Flow	fW	@	Link	l30	 12	 10	 10	 B	

2	 6	 Flow	fW	@	Link	l12	 10	 12	 10	 E	

2	 7	 Flow	fB		@	Link	l20	 30	 20	 20	 B	

2	 8	 Flow		fB		@	Link	l30	 20	 15	 15	 B	

l20:	NumB=1,SumE=0	
l30:	NumB=2,SumE=0	
l12:	NumB=1,SumE=0	

fW:	b[l30]=10,	b[l12]=12	
fB:	b[l20]=20,	b[l30]=15	

3	 9	 Flow	fW	@	Link	l30	 12	 15	 12	 E	

3	 10	 Flow	fW	@	Link	l12	 15	 12	 12	 B	

3	 11	 Flow	fB	@	Link	l30	 20	 18	 18	 B	

3	 12	 Flow	fB	@	Link	l20	 18	 20	 18	 E	

l20:	NumB=0,SumE=18	
l30:	NumB=1,SumE=12	
l12:	NumB=1,SumE=0	

fW:	b[l30]=15,	b[l12]=12	
fB:	b[l30]=18,	b[l20]=20	

Figure 3.2: Control packet updates for first three rounds of the n-PERC algorithm. We show the limit rate e
computed for the flow and the control packet state (the bottleneck rate b, allocation a, and the bottleneck state
s after the update). We also show the link state (NumB,SumE) at the end of each round.

is ∞, the link concludes that the flow is a bottleneck flow, allocates a = b = 10 Gb/s and updates the

control packet. Notice that this is different from Fair, which computed a bottleneck rate of b = 15 Gb/s and

allocated a = b = 15 Gb/s to the flow.

When flow fG is next seen at its actual bottleneck link l12 during update 4, its limit rate is e = 10 Gb/s,

which is the lowest bottleneck rate at any other link. This is lower than the link’s bottleneck rate b = 12 Gb/s

and the link fails to recognize its bottleneck flow. The link assumes the flow is bottlenecked elsewhere and

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 43

allocates only 10 Gb/s. This is a problem because despite having the lowest max-min rate of all links, l12

cannot immediately recognize it as a bottleneck flow.

The difference between n-PERC and Fair gives some insight into why it is hard to bound n-PERC’s

convergence time. If we consider flow fG’s update at link l30 (where it is labeled B and allocated b = 10

in update 3) and the subsequent update at l12 (where it is labeled E and allocated e = 10), then we can in

fact identify two transient problems with the n-PERC algorithm that we describe below. Extensive numerical

simulations suggest that the algorithm will still eventually stabilize despite the transient problems (see §3.3),

but there is no known upper bound for how long it can take. A similar algorithm has been proved to stabilize

eventually in [33], but it has no upper bound either.

3.1.2 Transient Problems With n-PERC

1. Suboptimal local rates: The first problem is that the rate allocation at a link can be suboptimal—that

is, it is not locally max-min fair. The B flows are allocated a lower rate than if the link had used per-

flow state to store the limit rates and calculate a local max-min fair rate. To see this, consider the rate

allocation at link l30 at the end of update 3. Link l30 considers flow fB bottlenecked elsewhere to 20

Gb/s and flow fG bottlenecked at the link to 10 Gb/s. A B flow is allocated less than an E flow. It is

not max-min fair given the limit rates, because we can increase fG’s allocation at the expense of flow

fB that gets more than fG.

2. Bad bottleneck rate propagation: The second problem is that when suboptimal bottleneck rates at

one link for a flow are propagated to the actual bottleneck of the flow, they may prevent the bottleneck

link from identifying that flow is indeed bottlenecked and thus delay its convergence. In the example,

fG is actually bottlenecked at link l12. However, it picks up a rate of b = 10 Gb/s from link l30, which

becomes its limit rate at l12. At l12, since the limit rate e = 10 Gb/s is even lower than the bottleneck

rate b = 12 Gb/s, the flow is wrongly labeled E and allocated only e = 10 Gb/s. Link l12 does not

immediately recognize the flow as a bottleneck flow and must wait until update 9, when l30’s bottleneck

rate for flow fG b = 15 Gb/s is high enough. It appears from [33] that the labels may oscillate for a

long time but they eventually stabilize.

While the first problem of suboptimal rates cannot be fixed unless we use per-flow state to store every

flow’s limit rate, we describe next how we can easily fix the problem of bad rate propagation.

The Fair algorithm does not propagate bad rates. Since l12 has the lowest max-min rate 12 Gb/s, by

definition any other link has at least 12 Gb/s available for each of its flows, including l12’s bottleneck flow.

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 44

So the local max-min fair rate at any other link is at least 12 Gb/s. Notice that the limit rates of the flows at

link l30 during update 3 are identical for both the Fair algorithm and n-PERC. Yet, while Fair computes

bottleneck rate 15 Gb/s, which is higher than l12’s max-min fair rate, n-PERC computes a bottleneck rate that

is lower. A local max-min fair rate is always a good bottleneck rate and high enough to propagate. But it is

impossible to calculate a local max-min fair rate without storing the rate of every flow.

An alternative is to identify bottleneck rates that may be too low and not propagate them. Suppose link

l ∈ Ln (using the notation from §2.1.2) is updating the control packet for a flow f . If f is a bottleneck

flow of l, we do want to propagate the bottleneck rate b once it is correct and equals R(l), in order to make

progress. If the rate is not correct yet, especially if f is bottlenecked at some other link l′ ∈ Lm, which has

a lower max-min rate (m < n), we would rather say that the flow is not limited by l than have l propagate a

low rate that could potentially delay the true bottleneck link l′ from correctly identifying its bottleneck flow.

This leads us to s-PERC.

3.2 s-PERC: a Stateless PERC Algorithm with a Known Bounded

Convergence Time

In s-PERC, we maintain an additional variable at each link calledMaxE that is updated each time l classifies

a flow as Ê. At any time MaxE is at least as high as the allocation of the highest Ê(l) flow. We propagate a

bottleneck rate b only when b ≥MaxE. Why might this work? The bottleneck is just the remaining capacity

after removing all Ê allocations C − SumE, divided evenly among the B̂ flows. We can see that if one of

the Ê allocations is more than the bottleneck rate (such as in the n-PERC example) then that flow in Ê may

actually need to be reclassified as a B̂ flow. In other words, a bottleneck link rate b < MaxE is inconsistent

with the set of flows we have assumed to be in Ê; hence, the bottleneck rate C−SumE
NumB might be too low to

propagate. We confirm this hypothesis in Lemma 3.2.2.

3.2.1 Variables in the s-PERC Algorithm

The control packet (Table 3.2) carries four fields for each link l. The first three are the same as in n-PERC:

the bottleneck state s[l], which identifies whether the flow is in B̂ or Ê, the allocation a[l], and the bottleneck

rate b[l]. In addition, the packet carries an “ignore” bit i[l], which is cleared if link l wants to propagate its

bottleneck rate.

We clarify some s-PERC specific notation:

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 45

Table 3.2: Initial Control Packet for Flow fG in s-PERC. fG crosses two links l30 and l12, and the information
pertaining to each link is in the first and second row, respectively.

Link Bottleneck State (s) Bottleneck rate (b) Ignore bit (ignore)
Allocation (a)

l30 E @ 0 0 1
l12 E @ 0 0 1

1. We say that the allocation of a flow f at link l at time t is the value of a[l] carried in the f ’s control

packet at time t, and we refer to it as alf (t). Similarly, the bottleneck state of a flow f at link l at time

t is the value of s[l] carried in f ’s control packet at time t, and we refer to it as slf (t). If the control

packet is modified at the link precisely at time t, we will use the convention that t− and t+ refer to the

time just before and just after an update respectively.

2. We will use Ê(t) to refer to the set of flows that are considered by link l to be in Ê or “bottlenecked

elsewhere” at time t. This information is carried in s[l] in the control packets of flows in Ql, where Ql

is the set of all flows that cross link l:

Ê(t) = {f : f ∈ Ql, slf (t) = E}.

3. We will use B̂(t) to refer to the set of flows that are considered by link l to be in B̂ or “bottlenecked

here” at the link l at time t. This information is carried in s[l] in the control packets of flows in Ql:

B̂(t) = {f : f ∈ Ql, slf (t) = B}.

The state at the link comprises four variables. The first two are the same as in n-PERC: SumE, the sum

of allocations of flows that are considered by link l to be bottlenecked elsewhere, and NumB, the number of

flows that are considered by link l to be bottlenecked at the link. There are two additional variables, MaxE

and MaxE′, which are used to estimate the maximum allocation of a flow that is considered by link l to be

bottlenecked elsewhere.

We characterize the link state for a link l at any time t, explicitly in terms of the information carried in

the control packets of link l’s flows (these relations follow from Algorithm 6):

1. SumE(t) is the sum of allocations of flows that are considered by link l to be in Ê or “bottlenecked

elsewhere” at time t. This information is stored in the SumE variable at the link:

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 46

SumE(t) =
∑
f∈Ê(t)

alf (t).

2. NumB(t) is the number of flows that are considered by link l to be in B̂ or “bottlenecked here” at the

link l at time t. This information is stored in the NumB variable at the link:

NumB(t) = |B̂(t)|.

3. We use M(t) to refer to the maximum allocation of an Ê flow at link l at time t. We do not track

this explicitly at the link because it would require per-flow state. Instead, we maintain two variables,

MaxE and MaxE′, at the link such that MaxE is an upper bound to M .

M(t) = max
f∈Ê(t)

alf (t).

3.2.2 The s-PERC Algorithm

Algorithm 6 describes the algorithm at the link that runs each time a control packet is seen. In addition,

Algorithm 5 is run periodically at the link algorithm to reset variables MaxE and MaxE′.

The per-packet algorithm at the link is similar to n-PERC except for the following differences. The limit

rate e of the flow is the lowest propagated bottleneck rate that it gets from any other link. If all other links

have their ignore bits set i[l] = 1, the limit rate is∞. After the update, the link checks if the bottleneck rate

is too low. If b < MaxE, it sets the ignore bit to True since the rate may be too low to propagate.

In order to estimate the maximum allocation of an Ê flow, the link needs MaxE and an additional

variable, MaxE′. Both MaxE′ and MaxE are updated when a flow is classified as Ê (lines 21–22 in

Algorithm 6) so that they both increase each time a flow is classified as Ê and are allocated a higher value.

They are also reset every round. MaxE′ is reset to 0, so that it starts afresh every round, while MaxE is

reset to the old value of MaxE′ so that it starts with the maximum Ê allocation seen in the last round. Since

we defined round to be long enough that every flow is seen at every link at least once, MaxE is an upper

bound to M . We formalize this in §3.2.4.

Algorithm 5 Timeout action at link l for s-PERC, every round starting from time T0(l)

1: MaxE ←MaxE′

2: MaxE′ ← 0

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 47

Algorithm 6 Control Packet Processing at Link l for s-PERC. See also Algorithm 5.

1: SumE = 0: sum of allocations of flows bottlenecked elsewhere, that is, in Ê . Initial state at link l

2: NumB = 0: number of flows bottlenecked here, that is, in B̂

3: MaxE = 0: maximum allocation of flows moved to Ê since last round

4: MaxE′ = 0: maximum allocation of flows moved to Ê in this round

5: if s[l] == E then . Flow was last bottlenecked elsewhere

6: SumE ← SumE − a[f] . Update link state to assume flow is going to be bottlenecked

7: NumB ← NumB + 1

8: b← C−SumE
NumB

9: e← minm∈Pf\l,
i[m]=0}

b[m] (or∞ if there is no other link in Pf with ignore bit unset) . Find flow’s new limit rate

10: a← min(b, e) . Find flow’s new allocation

11: if b <= e then s← B . Flow is now bottlenecked here, classify as B̂

12: else s← E . Flow is now bottlenecked elsewhere, classify as Ê

13: b[l]← b, a[l]← a, s[l]← s . Update control packet

14: if b < MaxE then i[l]← 1 . Bottleneck rate is low; do not propagate it

15: else i[l]← 0 . Bottleneck rate is high enough; propagate it

16: if flow is leaving then . Update link state to remove flow

17: NumB ← NumB − 1

18: else if s == E then . Update link state to reflect flow is in Ê

19: NumB ← NumB − 1

20: SumE ← SumE + a

21: MaxE ← max(MaxE, a)

22: MaxE′ ← max(MaxE′, a)

There are two properties of the s-PERC algorithm, which we will prove before diving into an example,

and then the convergence proof.

1. The bottleneck rate calculation (Lines 5–8 in Algorithm 5) ensures that when a flow is moved to Ê, the

new value of C − SumE/NumB at the link is consistent with (higher than) the limit rate of the flow,

even if it is not locally max-min fair and even if it is possibly inconsistent with (lower than or equal to)

the limit rates of flows previously moved to Ê (Lemma 3.2.1.)

2. The check before propagating a bottleneck rate (Lines 14–15 in Algorithm 5) ensures that propagated

bottleneck rates are high enough to allow the true bottleneck link to recognize its bottleneck flows,

that is, once links L1, ..Ln have converged, any rate propagated by links in LGn is at least R(l) for

l ∈ Ln+1, which is high enough for l to recognize its bottleneck flows (Lemma 3.2.2.)

As we have seen in the n-PERC example, the link state following an update need not be consistent with the

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 48

set of Ê flows at the link–the bottleneck rate can drop below the bandwidth allocated to an Ê flow previously.

However, because the bottleneck rate calculation for a flow assumes that the flow is going to bottlenecked,

we can at least guarantee that if a link classifies a flow f as Ê, the link state following an update is consistent

with flow f ’s allocation, even if it is inconsistent with flows previously classified as Ê. We will use this

property in s-PERC’s proof of convergence.

Lemma 3.2.1. If a flow f moves to Ê during an update at link l, after the update, either NumB = 0 and

C > SumE or R = (C − SumE)/NumB exceeds the flow’s limit rate. In the first case, all flows are in

Ê and there is spare capacity at the link. In the second case, the bandwidth available to the B̂ flows after

removing the allocations of the Ê flows exceeds the latest Ê flow’s limit rate.

Proof. Let NumB = NumB(t), SumE = SumE(t) represent the link state at line 8 in the Algorithm, as

they are used to compute b. Since the flow moved to Ê, we know that:

b =
C − SumE(t)

NumB(t)
> e

C − SumE(t) > NumB(t) · e (3.1)

Following the update, the new link state isNumB(t+) = NumB(t)−1 and SumE(t+) = SumE(t)+

e.

If there are no more flows marked bottlenecked, that is, NumB(t) = 1, then we are in the first case

since NumB(t) − 1 = 0 and C > SumE(t+), from Equation 3.1. Otherwise, the new value of (C −

SumE)/NumB following the update is:

C − SumE(t+)

NumB(t+)
=
C − (SumE(t) + e)

(NumB(t)− 1)

=
(C − SumE(t))− e
(NumB(t)− 1)

>
NumB(t) · e− e
(NumB(t)− 1)

(using Equation 3.1)

= e

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 49

3.2.3 When Should We Propagate the Bottleneck Rate?

Given that at any link MaxE is an upper bound to the maximum allocation of an Ê flow, we can show that

once the set of flows and links stabilize, within a round any propagated rate will be at least R(l), where l is

the link with the lowest max-min rate. This is helpful for l to recognize its bottleneck flows. More generally,

once links with the n lowest rates have converged, any propagated rate will be high enough to enable a link

l ∈ Ln+1 to recognize its bottleneck flows f ∈ B(l):

Lemma 3.2.2. Let l be any link in Ln+1 and f be any flow in B(l). Suppose L1, ..., Ln have converged at

time T . The bottleneck rate for f from a link x ∈ Pf is either not propagated or at least R(l) from time

T + 1 round.

Corollary 3.2.3. The limit rate of f at link l is at least R(l) from time T + 2 rounds.

Proof. Flow f is seen at every link in Pf at least once between times T + 1 round and T + 2 rounds and

picks up a bottleneck rate that is either not propagated or R(l). Flow f ’s limit rate at link l is the lowest

propagated bottleneck rate from any link in Pf \ l and hence is at least R(l) from time T + 2 rounds.

Proof of Lemma 3.2.2. Consider an update for a flow f ∈ B(l) at a link x ∈ Pf at some time after T +

1 round. Suppose b ≥ MaxE and the rate is propagated (line 15 of Algorithm 6). If MaxE ≥ R(l), the

proof is done. So let us consider the case when MaxE < R(l).

Let C be the capacity of link x and let SumE and NumB represent the link state of link x at line 8 of

Algorithm 6 just before it computes a bottleneck rate for f . We will break down aggregate link state in terms

of the contribution of the flows carried by L1, ..., Ln, that is, FLn(x), and the remaining flows FGn(x). The

bottleneck rate computed for the flow f satisfies the following (omitting x for simplicity):

b = (C − SumE)/NumB

b =
C −

∑
f∈Ê∩FLn

af −
∑
f∈Ê∩FGn

af

|B̂ ∩ FLn|+ |B̂ ∩ FGn|

=
C −

∑
f∈FLn

A(f)−
∑
f∈Ê∩FGn

af

|B̂ ∩ FGn|

In the last step, we used the fact that the flows carried by L1, ..., Ln are all classified correctly as Ê and

allocated their max-min rates at link x after time T + 1 round.

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 50

Rearranging the terms, we get:

C −
∑

f∈FLn

A(f) = b · |B̂ ∩ FGn|+
∑

f∈Ê∩FGn

af

≤ b · |B̂ ∩ FGn|+MaxE · |Ê ∩ FGn| (using Lemma 3.2.4, max
f∈Ê

af =M ≤MaxE)

≤ b · |B̂ ∩ FGn|+R(l) · |Ê ∩ FGn| (we are considering the case MaxE < R(l))

(3.2)

Since f is bottlenecked at link l, any other link x ∈ Pf must have a max-min rate of at least R(l). We again

use the property of link x, which we used in our analysis of the Fair algorithm—link x has at least R(l)

for each of the flows in FGn, after removing the max-min allocation of flows carried by L1, ..., Ln (Lemma

2.5.3):

C −
∑

f∈FLn

A(f) ≥ R(l) · |FGn| (3.3)

Combining Equations 3.2 and 3.3, and noting that when we compute b, there is at least one flow in B̂

(|B̂ ∩ FGn| > 0), we see that the bottleneck rate computed at link x for f ∈ B(l) is at least R(l), that is,

b ≥ R(l).

b · |B̂ ∩ FGn|+R(l) · |Ê ∩ FGn(x)| ≥ R(l) · |FGn| (from Equations 3.2 and 3.3)

b · |B̂ ∩ FGn| ≥ R(l) · |B̂ ∩ FGn|

b ≥ R(l) (since |B̂ ∩ FGn| > 0)

3.2.4 How Do We Approximate the Maximum Ê Allocation?

Why should MaxE be an upper bound to M? Maintaining the exact value of M at a link in an online

fashion requires per-flow state since the set of Ê flows and their allocations may be changing with every

control packet update at the link [15]. Instead, as described in §3.2.2 every link l maintains variables MaxE

and MaxE′, that are updated each time a flow is moved to Ê(l) and reset every round starting from some

time T0(l) (Algorithm 5.)

We will derive explicit expressions for MaxE(T) and MaxE′(T) in terms of the values carried by the

control packet at or before time T in order to prove two properties of MaxE(T): first, that it is an upper

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 51

bound to M(T), the maximum allocation of any flow in Ê(T); second, that it does reflect M(T) after the

set of Ê allocations stabilize. This allows us to show that the propagated rate is high enough, and once

the allocations and the bottleneck rate stabilize to their correct values, the propagated rate is exactly the

bottleneck rate.

Lemma 3.2.4. Consider a link l. MaxE(T) ≥ M(T) = maxf∈Ê(T) a
l
f (T) for all times T following

T0(l) + 1 round.

Lemma 3.2.5. Suppose the set of Ê allocations at link l stabilize by some time Ts. In other words, the value

of the maximum Ê allocation M is unchanged for all times from Ts. Then MaxE at link l stabilizes to the

maximum Ê allocation M(Ts) within two rounds of Ts. Moreover, if Tu < Ts is the last time that a flow was

classified as Ê and allocated more than M(Ts), then MaxE stabilizes to M(Ts) after two rounds following

Tu. (Note that for simplicity, we assume that Tu, Ts > T0(l) + 1 round, so that all flows have been seen at

least once following the link’s first reset.)

MaxE′(T) reflects the maximum bandwidth allocated to an Ê flow in the current round at the switch

(that is, since the last reset before time T) while MaxE(T) reflects the maximum bandwidth allocated to an

Ê flow in the last two rounds at the switch. We already offered an explanation for why this is true in §3.2.

Here, we formally derive explicit expressions for MaxE′(T) and MaxE(T) in terms of the allocations

carried in the control packets in the two rounds preceding T .

We consider MaxE′ first.

Notice that every link l starts independently at some time T0(l) before any of the flows have started

and resets MaxE′ and MaxE every round following T0(l). During the course of the algorithm, resets

at different links will be happening at different times; they are not synchronized. Given an arbitrary time

T ≥ T0(l), we use bT cl to refer to the most recent time of reset at link l at or before T .

bT cl = T0(l) + round.bT − T0(l)
round

c (3.4)

We shall use the notation Tfl to refer to the set of discrete times when a flow f carried by link l is updated

at the link.

Suppose we want to calculate the value ofMaxE andMaxE′ at some time T . When T < T0(l),MaxE

and MaxE′ reflect their initial value of 0. If T ≥ T0(l), we know from Algorithm 6 that MaxE′ was last

reset to 0 at time bT cl. Thereafter, it was updated every time a flow’s control packet was seen at the link and

the flow was labeled Ê. Hence, for T ≥ T0(l):

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 52

MaxE′(t) = max(MaxE′(bT cl),maxt∈Tlf ,f∈Ê(t+)
bTcl<t<T

alf (t))

= maxt∈Tlf ,f∈Ê(t+)
bTcl<t<T

alf (t) (replacing MaxE′(bT cl) = 0) (3.5)

Next, we derive an expression for MaxE. Given any time T , we know from Algorithm 6 that MaxE

was last reset to MaxE′ at time bT cl to the value of MaxE′ just before the reset. Thereafter, it was updated

every time a flow’s control packet was seen at the link and the flow was labeled Ê. Hence,

MaxE(t) = max(MaxE′(bT c−l),maxt∈Tlf ,f∈Ê(t+)
bTcl<t<T

alf (t))

= maxt∈Tlf ,f∈Ê(t+)
T0<t<T

alf (t)) (when bT cl = T0, then MaxE′(T−0) = 0)

(3.6)

= max t∈Tlf ,f∈Ê(t+)
bTcl−round<t<T

alf (t) (otherwise, replacing T = bT c−l in Equation 3.5)

(3.7)

This allows us to prove Lemma 3.2.4 and Lemma 3.2.5.

Proof of Lemma 3.2.4. From Equation 3.7, we can see that MaxE(T) includes all updates in the round

before T . Hence, it includes the latest allocations of flows that are in Ê(T). So MaxE(T) ≥M(T).

Proof of Lemma 3.2.5. From Equation 3.7, we can see that for T ≥ Ts + 2 rounds, MaxE(T) includes

all updates in the round preceding T . So it includes the latest allocations of flows that are in Ê(T) =

Ê(Ts). Moreover, we can see that it cannot include any update more than two-rounds-old. So it excludes

updates before time Ts that may be inconsistent with the final M(Ts). Hence, MaxE(T) = M(Ts) for

T ≥ Ts + 2 rounds. We define an inconsistent update with respect to M(Ts), as an update where a flow

is classified as Ê and allocated more than M(Ts). If the time of the last inconsistent update Tu is known,

then the same argument applies for T > Tu + 2 rounds as for T ≥ Ts + 2 rounds. Notice, however, that if

T < Tu+2 rounds and bT c− round < Tu then MaxE(T) would include the inconsistent allocation made

at time Tu and exceed M(Ts).

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 53

3.2.5 s-PERC in Action

Let’s walk through an example to understand how the rates evolve in the s-PERC algorithm (Figure 3.4). We

will use the same topology and workload we used for demonstrating n-PERC and Fair, which we reproduce

here for convenience (Figure 3.3.)

Link	l12	
12	Gb/s	

Link	l30	
30	Gb/s	

Link	l20	
20	Gb/s	

Figure 3.3: Example setup for s-PERC in action. There are J = 2 flows and K = 3 links. Each flow crosses
a subset of the links. The green flow fG is bottlenecked to 12 Gb/s at link l12, while the blue flow fB is
bottlenecked to 18 Gb/s at link l30. We show here the link capacities and the max-min fair rate allocations for
the flows.

Round	 Time	 Event	 	MaxE	 e	 b	 a	 state	 ignore	
bit	

1	 1	 Flow	fB	@	Link	l20	 0	 ∞	 20	 20	 B	

1	 2	 Flow	fB	@	Link	l30	 0	 20	 30	 20	 E	

1	 3	 Flow	fW	@	Link	l30	 20	 ∞	 10	 10	 B	 T	

1	 4	 Flow	fW	@	Link	l12	 0	 ∞	 12	 12	 B	
l20:	NumB=1,SumE=0,MaxE=0,MaxE’=0	
l30:	NumB=1,SumE=20,MaxE=20,MaxE’=0	
l12:	NumB=1,SumE=0,MaxE=0,MaxE’=0	

fB:	b[l20]=20,	b[l30]=30	
fW:	b[l30]=20(T),	b[l12]=12	

2	 5	 Flow	fW	@	Link	l30	 20	 12	 10	 10	 B	 T	

2	 6	 Flow	fW	@	Link	l12	 0	 ∞	 12	 12	 B	

2	 7	 Flow	fB	@	Link	l20	 0	 30	 20	 20	 B	

2	 8	 Flow	fB	@	Link	l30	 20	 20	 15	 15	 B	 T	
l20:	NumB=1,SumE=0,MaxE=0,MaxE’=0	
l30:	NumB=2,SumE=0,MaxE=0,MaxE’=0	
l12:	NumB=1,SumE=0,MaxeE=0,MaxE’=0	

fW:	b[l30]=10(T),	b[l12]=12	
fB:	b[l20]=20,	b[l30]=15(T)	

3	 9	 Flow	fW	@	Link	l30	 0	 12	 15	 12	 E	

3	 10	 Flow	fW	@	Link	l12	 0	 15	 12	 12	 B	

3	 11	 Flow	fB	@	Link	l30	 12	 20	 18	 18	 B	

3	 12	 Flow	fB	@	Link	l20	 0	 18	 20	 18	 E	
l20:	NumB=0,SumE=18,MaxE=18,MaxE’=0	
l30:	NumB=2,SumE=0,MaxE=12,MaxE’=0	
l12:	NumB=1,SumE=0,MaxE=0,MaxE’=0	

fW:	b[l30]=15,	b[l12]=12	
fB:	b[l20]=20,	b[l30]=18	

Figure 3.4: Control packet updates for first three rounds of the s-PERC algorithm. We show the link state
(MaxE before the update), the limit rate e computed for the flow, and the control packet state (the bottleneck
rate b, allocation a, bottleneck state s, and ignore bit after the update). We also show the link state (SumE,
NumB, MaxE) at the end of each round.

Flow fB is first seen at link l20. The link assumes the flow is not limited anywhere else, computes a

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 54

bottleneck rate of 20, and allocates this to the flow. Flow fB is then seen at link l30. The link computes a

bottleneck rate of 30 Gb/s, sees that the flow is limited to 20 Gb/s, and allocates 20 Gb/s. So far the updates

are exactly the same as the Fair algorithm.

When flow fG is seen at link l30 during update 3, the link knows that the total allocation of E flows

is 20 Gb/s. It assumes flow fG is not limited (e = ∞) and uses Equation 2.2—where NumB = 1 and

SumE = 20—to compute a bottleneck rate of b = 10 Gb/s for flow fG. Since the limit rate e = ∞ is

greater, the link concludes that the flow is bottlenecked at the link, and allocates a = b = 10 Gb/s. However,

because MaxE = 20 Gb/s is higher than b, the link guesses that b may be too low to propagate to the next

link and sets the ignore bit to True in the control packet.

When flow fG is next seen at its actual bottleneck link l12 during update 4, its bottleneck rate 10 Gb/s

from link l30 is ignored and the link assumes flow fG is not limited (e =∞). The link computes a bottleneck

rate b = 12 Gb/s. Since the limit rate is greater, the link correctly assumes the flow is bottlenecked at the link

and allocates b = 12 Gb/s. Hence, link l30 avoids propagating its bad bottleneck rate 10 Gb/s to link l12 and

enables link l12 to immediately identify its bottleneck flow fG.

The allocation at link l30 for flow fG is still 10 Gb/s however. It is not until after update 8 (when both

flows are B) that the bottleneck rate at link l30 for flow fG increases from b = 10 Gb/s to b = 15 Gb/s.

During update 9, b = 15 Gb/s exceeds e = 12 Gb/s and flow fG is correctly marked E at link l30. We say

the flow fG has converged at this point, since we can show that it is forever marked B at its bottleneck link

l12, E at link l30 and allocated exactly its max-min fair rate 12 Gb/s at both links.

Let’s consider flow fB next. Note that during update 8 at link l30, flow fB is allocated a locally max-

min fair rate based on the limit rates, but because MaxE > b = 15 Gb/s, the link does not propagate the

bottleneck rate to link l20.

MaxE is reset at the end of the round to 0 since no flows at link l30 were marked E. After update 9,

once flow fG is marked E, it stabilizes to MaxE = 12 Gb/s. During the next update of flow fB at link l30

(update 11), MaxE = 12 Gb/s is less than b = 18 Gb/s and not only does link l30 correctly mark flow fB as

B at b = 18 Gb/s, but it also propagates the bottleneck rate to link l20. As a result, during update 12 link l20

correctly marks the flow fB E at its max-min fair rate. We say flow fB has converged at this point, since we

can show that it is forever marked B at its bottleneck link l30, E at link l20 and allocated exactly its max-min

fair rate 18 Gb/s at both links.

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 55

3.3 Simulations of n-PERC and s-PERC

We used numerical simulations (in Python) of n-PERC and s-PERC in a fully connected network of K links,

where each link has a uniform capacity of 10 Gb/s and a uniform delay of 10 us (with some random jitter on

the order of a nanosecond to allow reordering of packets). For each workload, we randomly generate a set

of K long-lived flows, where each flow traverses the same number of links P (for simplicity.) Note that this

is not a packet-level simulation, and we only perform the calculations involved in control packet processing

at intervals dictated by the link delays and configured timeouts (e.g., every round) using an event-queue.

Moreover, we use a static value of round instead of dynamically adjusting it based on the number of flows.

We ran thousands of different network and flow setups for different configurations of J,K, P such as

J = K = 1000 and J = K = 100 and P ∈ {10, 40, 50, 80} and different random seeds for the ordering of

packets, and the paths of flows. We verified that s-PERC takes no more than six rounds per bottleneck link

rate to converge. For n-PERC, while we did not find a simulation that failed to converge, we did find that for

some setups, the convergence time can get much longer than six rounds for each bottleneck link. The worst

case convergence time we observed was 60 rounds for four bottleneck links (two distinct bottleneck rates)

(Figure 3.5).

Figure 3.5a shows a time series of the bottleneck rates at the links for n-PERC’s worst example. This

setup has K = 100 links carrying J = 100 flows. We used a uniform capacity of 10 Gb/s and a uniform

delay of 10µs for all links. Every flow crosses P = 80 random links. The value of round is configured

to 880µs. It turns out that all flows are bottlenecked at one of four links. The bottleneck rates are identical

for three of the four links. The n-PERC algorithm takes almost 60 rounds for all four links (two distinct

bottleneck rates) to converge, while s-PERC converges within six rounds total for the same example (Figure

3.5b).

(a) Time series of fair share rates (o) and MaxE (x) at bottleneck links for n-PERC.

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 56

(b) Time series of fair share rates (o) and MaxE (x) at bottleneck links for s-PERC.

Figure 3.5: An example for which n-PERC takes a long time to converge. Note that we use (C −
SumE/NumB) as the value of the fair share rate (−1 when NumB = 0). The faded disks (o) denote
the ideal max-min fair share rates.

3.4 Convergence Proof of s-PERC

3.4.1 Centralized Water-Filling Algorithms

The centralized water-filling algorithm [22] and the CPG algorithm [75] are two instances of a class of

centralized algorithms to compute max-min fair rates, which we call WFk algorithms. A WFk algorithm

is an iterative algorithm (see Algorithm 7), where in each iteration, links compute a fair share rate (which

we call WF rate to distinguish from the max-min rate), and then the algorithm picks a set of links to declare

bottlenecked and remove from the network. A link is removed in an iteration if it has the lowest WF rate of all

neighbors up to k-degrees, where a (first-degree) neighbor of a link l is defined as a link that shares a flow with

l in the given iteration. Hence, k = ∞ corresponds to the centralized water-filling algorithm, where a link

is removed if it has the lowest WF rate out of all links that remain in the iteration, while k = 1 corresponds

to the CPG algorithm, where a link is removed if it has the lowest rate of its first-degree neighbors. When

a link is removed, the flows carried by the link in that iteration are allocated the WF rate of the link from

that iteration and also removed from the network. The algorithm terminates when there are no more flows.

As we will show, all WFk algorithms compute max-min fair rates for the flows, and s-PERC’s convergence

behavior can be understood in terms of WF2.

Notation: We summarize notation related to WFk algorithms in Table 3.3. We use Rkn[l] to denote the fair

share rate computed by link l in iteration n of some WFk algorithm. In general, we use the term WF rate

when talking about Rkn[l] rather than the term “fair share rate,” to distinguish it from the max-min fair rate

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 57

Table 3.3: Commonly used notation in the context of a WFk algorithm run for a given set of flows and links,
where k = 1 for centralized water-filling algorithm, k = 1 for CPG algorithm, and k = 2 for the algorithm
we introduce to analyze s-PERC. We also note in brackets how these new terms relate to terms introduced
in §2.1, when we described the setup for PERC algorithms. The first set of rows correspond directly to
variables in the WFk algorithm.

Rkn[l] (WF rate) fair share rate computed by link l in iteration n
Nk
n [l] number of flows carried by link l in iteration n

Ckn[l] remaining capacity of link l in iteration n
A[f] bandwidth allocated to flow f
X1kn(l) (first-degree neighbors) set of links that share a flow with l in iteration n
X2kn(l) (second-degree neighbors) set of links that share a flow with links in X1kn(l)

W k total number of iterations (Note that W∞ =W and W 1 = D)
Lki set of links removed in iteration i, by convention Lk0 is the empty set

and LkWk+1 is the set of links that are never removed (Note that L∞i = Li)
LLkn set of links removed in iterations up to and including n, that is, Lk0 , ..., L

k
n

FLkn set of flows carried by links in LLkn
FLkn(l) subset of flows in FLkn carried by link l
LGkn set of links that remain in iteration n+ 1, that is, Lkn+1, ..., L

k
Wk+1

FGkn set of flows carried by links in LGkn that do not cross LLkn
FGkn(l) subset of flows in FGkn carried by link l

of the link. Notice that variables in the algorithm that describe links—such as the set of active links L, the

remaining capacity C, and the number of flows per active link N—are updated in every iteration while the

allocation of a flow f A[f] is filled in once, when the flow is removed. We use LGkn and FGkn to denote

the set of links and flows that remain at beginning of iteration n+1. Using FGkn(l) to denote the set of flows

carried by link l in iteration n+1, we define a first-degree neighbor of a link l in an iteration n+1 as the set

of links that share a flow with l in the iteration:

X1kn+1(l) = ∪f∈FGk
n(l)

Pf

A second-degree neighbor, which we denote using X2kn+1(l), shares a flow with a first-degree neighbor and

so on.

3.4.2 Partitioning Bottleneck Links Using WFk Algorithms

It can be shown that all WFk algorithms compute max-min fair rates for the flows, and the WF rate of a link

when it is removed is exactly the max-min fair rate of its bottleneck flows.

We can prove the following property of a WFk algorithm:

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 58

Algorithm 7 The WFk algorithm to compute max-min rates. For any link l that is removed in iteration n,
we allocate A[f] = R[l] = C[l]/N [l] as computed in iteration n to each of its flows in Ql during iteration n,
and remove the flow.
1: L : set of all links in the network that have at least one flow

2: C : remaining link capacities,N : number of flows . arrays indexed by link

3: R : remaining link capacity per flow,Q: active flows . arrays indexed by link

4: A: bandwidth allocation to flow, P : array of links per flow . arrays indexed by flow

5: iteration← 0

6: whileL is not empty do
7: iteration← iteration+ 1

8: for all l ∈ L doR[l]← C[l]/N [l]

9: links_to_remove← {}, f lows_to_remove← {}
10: for all l ∈ L do
11: if WFk == WF∞ thenminRate =← minx∈LR[x]

12: else minRate = min?i=1minx∈Xi(l)[R[x] . Xi(l) denotes ith degree neighbor of l

13: ifR[l] == minRate then
14: add l to links_to_remove
15: for all f ∈ Q[l] do
16: add f to flows_to_remove
17: A[f] = R[l]

18: for all f ∈ flows_to_remove do
19: for all l ∈ P [f] do
20: C[l]← C[l]−A[f]
21: N [l]← N [l]− 1

22: remove f fromQ[l]

23: remove links_to_remove fromL

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 59

Lemma 3.4.1. [Monotonic Rate Behavior] Let link l ∈ Lkn. The WF rate computed for link l (line 8 of

Algorithm 7) is non-decreasing from iterations 1 through n.

Proof. Consider any iteration i between 1 and n. There are two possibilities. If no flows are removed from

link l during iteration i, the rate is unchanged. Otherwise, let F = FGki−1(l) ∩ QLk
i

denote the set of flows

carried by l that are removed in iteration i and let f be one such flow, removed because of some link z ∈ Lki .

We know thatA[f] = Rki [z] and from lines 12–13 thatRki [z] ≤ Rki [l] because link l is a first-degree neighbor

of z. Hence, for all flows f carried by l that are removed in iteration i, A[f] ≤ Rki [l]. Link l’s allocation in

the next iteration is:

Rki+1[l] =
Cki+1[l]

Nk
i+1[l]

=
Cki [l]−

∑
f∈F A[f]

Nk
i [l]− |F |

≥
Cki [l]−

∑
f∈F Ri[l]

Nk
i [l]− |F |

(using A[f] ≤ R[l])

=
Nk
i [l]Ri[l]−

∑
f∈F Ri[l]

Nk
i [l]− |F |

(replacing Ri[l] = Cki [l]/N
k
i [l])

= Rki [l]

This result will allow us to prove that the algorithm does compute max-min fair rates.

Theorem 3.4.2. The WFk algorithm (Algorithm 7) terminates after a finite number of iterations W 2, and

all flows in the network are allocated their max-min fair rates.

Corollary 3.4.3. If a link is removed in some iteration n, the WF rate computed for the link in iteration n is

the max-min rate of its bottleneck flows.

Proof of Theorem 3.4.2. We will prove that every flow is bottlenecked at some link. This implies that the rate

allocation of the flows is max-min fair because in order to increase the rate of a flow f , one must decrease the

rate of another flow e that crosses f ’s bottleneck link and gets a lower or equal rate [58].

In each iteration, a link is removed if it has the lowest rate of its neighbors (as defined in lines 11–13).

So at least one link (e.g., the link with the minimum rate of L) is removed in each iteration. The algorithm

proceeds until there are no more links with active flows. So every flow gets a rate.

Consider a flow f that is removed in iteration n and allocated A[f] = Rkn[l] because of some link l (line

17). We will show that flow f is bottlenecked at link l. In other words, link l is fully used and the flow f gets

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 60

the maximum allocation of all flows in Ql. Link l is fully used because when it is removed, its capacity is

shared equally among all flows that it carries in iteration n.

To show that flow f gets the maximum allocation, we note that any flow f ′ that is removed from link in

an iteration m < n because of some link z is allocated A[f ′] = Rkm[z] ≤ Rkm[l] ≤ Rkn[l]. The first inequality

follows from lines 12–13 of the algorithm since l and z share f ′, and the second inequality follows from the

Monotonic Rate Behavior of link l (Lemma 3.4.1).

Hence, a WFk algorithm partitions the set of bottleneck links in the network into Lk1 , ..., L
k
Wk , where Lki

is the set of links removed in iteration i and W k is the number of iterations until the algorithm terminates.

The links that remain in the network when the algorithm terminates are not bottlenecked, and we use LkWk+1

to refer to them. We use the convention that Lk0 is the empty set. Analogous to LGkn and FGkn, we use LLkn

and FLkn to refer to the set of links and flows that were removed in iterations up to (and including) n (and the

convention that LLk0 is the empty set):

LGkn = Lkn+1, ..., L
k
Wk+1

LLkn = Lk0 , ..., L
k
n

FGkn = QLGk
n
\QLLk

n

FLkn = QLLk
n

Different WFk algorithms generate different partitions of the bottleneck links. For example, water-filling

or WF∞ generates the partition L∞1 , ..., L
∞
W∞ . On the other hand, CPG or WF1 generates the partition

L1
1, ..., L

1
W 1 . In this section, we will introduce a new WFk algorithm called WF2 and focus on its partition

L2
1, .., L

2
W 2 . The WF2 algorithm removes a link if it has the lowest WF rate of its first- and second-degree

neighbors (hence k = 2 in the superscript.)

Because a WFk algorithm computes max-min fair rates, the WF rate computed for a link l in iteration

n+1 is exactly the remaining capacity per flow that the link has after removing the flows carried by Lk1 , ..., L
k
n

and subtracting their max-min rates from the link capacity. Using FLkn(l) to denote the subset of flows in

FLkn that cross link l, we have:

Rkn+1[l] =
C −

∑
f∈FLk

n(l)
A(f)

|FGkn|
(3.8)

This is useful in analyzing the dynamic state of the s-PERC algorithm. Consider, for example, the proof

of Lemma 3.2.2, where we used the partition from the water-filling algorithm and showed that once links in

L∞1 , .., L
∞
n have converged by time T , the rate propagated by any neighbor of link l ∈ L∞n+1 is at least R(l)

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 61

by time T + 1 round. We used the fact that the “remaining capacity per flow” of any neighbor x of link l

is at least R(l), after removing the max-min rates of flows carried by L∞1 , ..., L
∞
n . This fact follows directly

from the water-filling algorithm (WF∞) because the criterion for removing link l in iteration n+1 of WF∞

is exactly that it has the lowest rate of all links that remain in iteration n+ 1 (line 11).

3.4.3 Why Do We Need Different WFk Algorithms?

C	=	10	Gb/s	
N	=	2	
R	=	5	Gb/s	

C	=	15	Gb/s	
N	=	3	
R	=	7	Gb/s	

C	=	3	Gb/s	
N=	1	
R	=	3	Gb/s	

Link	1	 Link	2	 Link	3	

Link	1	 Link	2	 Link	3	 Link	4	 Ordering	(WF-2)	

1)	R1		=	C1/N1	 5		=	10	/	2		 5	=	15	/	3	 3	=	3	/	1	 1	=	1/	1	 L21		=	{Link	3,	4}	

2)	R2		=	C2/N2	 5		=	10	/	2		 6	=	12	/	2	 L22		=	{Link	1}	

3)	R3		=	C3/N3	 7	=	7/	1	 L23		=	{Links	2}	

C	=	1	Gb/s	
N=	1	
R	=	1	Gb/s	

Link	4	

Link	1	 Link	2	 Link	3	 Link	4	 Ordering	(WF-∞)	

1)	R1		=	C1/N1	 5		=	10	/	2		 5	=	15	/	3	 3	=	3	/	1	 1	=	1/	1	 L∞1		=	{Link	4}	
2)	R2		=	C2/N2	 5		=	10	/	2		 5	=	15	/	3	 3	=	3	/	1	 L∞2		=	{Link	3}	
3)	R3		=	C3/N3	 5		=	10	/	2		 6	=	12	/	2	 L∞3		=	{Links	1}	
4)	R4		=	C4/N4	 7	=	7/	1	 L∞4		=	{Links	2}	

Link	1	 Link	2	 Link	3	 Link	4	 Ordering	(WF-1)	

1)	R1		=	C1/N1	 5		=	10	/	2		 	5	=	15	/	3	 3	=	3	/	1	 1	=	1/	1	 L11		=	{Link	1,3,4}	
2)	R2		=	C2/N2	 7	=	7/	1	 L12		=	{Link	2}	

3	

1	

2	

4	

3	

1	

2	

4	

3	1	

2	

4	

Figure 3.6: Three different WFk algorithms, their respective partitions (last column of each table), and their
dependency graphs.

As we saw, different WFk algorithm have different criteria for removing a link l in some iteration n+ 1

(lines 12–13). The criteria naturally establish different relations between the remaining capacity per flow

of the link and of its neighbors, after removing the max-min rates of flows carried by links in Lk1 , .., L
k
n.

Figure 3.6 shows the WF rates computed by three different WFk algorithms for a toy example. Consider link

1. When it is removed in WF1 (third table, first row), its WF rate is lower than or equal to its first-degree

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 62

neighbor link 2 but higher than its second-degree neighbor link 3. It turns out that it is enough for neighbors

of link 1 to have a remaining capacity per flow of at least 5 Gb/s in order for link 1’s (bottleneck) flows to be

correctly updated at link 1 in the s-PERC algorithm. As we saw in the proof of Lemma 3.2.2, this ensures

that they propagate bottleneck rates that are at least R(l), which would allow link l to recognize its bottleneck

flows.

However, in order for link 1’s flow to be correctly updated at link 2, which has a higher max-min rate,

we also need the property that link 1’s WF rate when removed is lower than or equal to any second-degree

neighbor’s WF rate. We will explain the reason later (see Lemmas 3.4.15 and 3.4.17 in §3.4.6). This is a

property we get from WF2 and WF∞ but not WF1. In WF1, link 1’s WF rate when removed is higher

than the rate of link 3, which is also active in the same iteration. Notice, that when link 1 is removed in

WF2 (second table, second row), link 3 has already been removed in a previous iteration and is no longer a

second-degree neighbor. What this means for the s-PERC algorithm is that link 3 must converge before link

1’s flows are correctly updated at link 2. We say that link 1 depends on link 3. We will define precedence

relationships (or dependencies) for WF2 (and s-PERC) in §3.4.10. In the figure, we have shown precedence

relationships for the WFk algorithms on the right. As is evident, the WF1 algorithm, where a link need

only have rates lower than or equal to its first-degree neighbors, has shorter dependency chains and needs the

fewest iterations to converge.

3.4.4 Using WF2 to Reason About s-PERC

In the next section, §3.4.5, we describe the properties of the WF rates in the WF2 algorithm. In addition to

the tautological property that a link has the smallest rate of its first- and second-degree neighbors when it is

removed, we show that when an E flow of a link is removed in some iteration from the network, the link’s

WF rate for the same iteration strictly exceeds the max-min rate of the flow. We also show that the WF rate

of a link l in iteration n+1 of the WF2 algorithm is equal to the remaining capacity per flow of the link after

removing the allocations of E(l) flows carried by links L2
1, ..., L

2
n.

In §3.4.6 we state some invariants about updates at a link l ∈ L2
n+1 and its neighbors in the s-PERC

algorithm, following the convergence of links in L2
0, ..., L

2
n. Note that L2

0 is the empty set of links. The

invariants rely on properties of the WF rates and we prove the invariants in Sections 3.4.7–3.4.9.

This enables us to prove, by induction on the setsL2
0, ..., L

2
W 2 , that s-PERC converges in a known bounded

time:

Theorem 3.4.4. Once the set of flows and links stabilize1 at some time, the s-PERC algorithm converges to

1That is, all the links have started their resets, and following this, the set of flows has been the same for at least one round and is

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 63

the max-min fair rates for all flows within 6W 2 rounds, where W 2 is the number of iterations that the WF2

algorithm takes for the given set of flows and links.

Like the CPG algorithm (WF1) provides a tighter convergence bound for the Fair algorithm, the WF2

algorithm provides a tighter convergence bound for the s-PERC algorithm. It shows that in order for a

link l with the highest max-min rate to converge in the s-PERC algorithm, if l happens to be in L2
n+1 it is

sufficient for links in L2
0, ..., L

2
n to converge, rather than all links with smaller max-min rates than l, that

is L∞0 , ..., L
∞
W∞−1. Moreover, it is necessary for at least one link in L2

n to converge before l can converge

(§3.4.10). This leads to a new definition of Precedent Link Relationship. The new definition is relevant for

algorithms like s-PERC, where a link depends on properties of both first- and second-degree neighbors to

converge.

3.4.5 Properties of the WF2 Algorithm

Definition 3.4.5. Consider the WF2 algorithm. Let link l ∈ L2
n, that is l is removed from L in iteration

n. There exists at least one iteration from 1 to n when link l has the smallest rate among its first-degree

neighbors (e.g., iteration n). We define the “freeze-iteration” m of link l as the first iteration when link l has

the smallest rate among its first-degree neighbors:

m = min(1 ≤ i ≤ n : R2
i [l] = min

x∈X1i[l]
R2
i [x]) (3.9)

Corollary 3.4.6. Suppose link l ∈ L2
n+1, then link has freeze-iteration m for some 1 ≤ m ≤ n.

Consider the freeze-iteration m. Since the rate of link l in this iteration is no more than the rate of its

neighbors, and because the rates of the neighbors are non-decreasing (Lemma 3.4.1), we can show that link

l’s rate plateaus or is “frozen” from iteration m onward:

Lemma 3.4.7. [Plateau Rate Behavior] Let link l ∈ L2
n have freeze-iteration m.

1. Flows carried by l that are removed in iterations i where 1 ≤ i < m are removed and allocated

A[f] < Ri[l] and cause link l’s rate to increase in the next iteration Ri[l] < Ri+1[l].

2. Flows carried by l that are removed in iterations i where m ≤ i < n are removed at allocated

A[f] = Ri[l] and cause link l’s rate to remain the same in the next iteration Ri[l] = Ri+1[l].

Corollary 3.4.8. The rate computed for link l in iterations m through n is exactly its max-min rate R(l),

while the rate computed before iteration m (when m > 1) is strictly smaller than the max-min rate R(l).

guaranteed to stay the same in the future.

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 64

Hence, any flow f ∈ E(l) is removed in iteration i where 1 ≤ i < m and allocated A(f) < R2
i (l), while

any B(l) flow is removed in iteration i where m ≤ i < n and allocated A(f) = R2
i (l) = R(l).

In other words, a link’s rate “freezes” or “plateaus” at the max-min rate from the freeze-iteration until it

is finally removed.

Proof of Lemma 3.4.7. Consider an iteration i < m. Let the shorthand F = FGki−1(l) ∩QLk
i

denote the set

of flows carried by l that are removed in iteration i. Let f be one such flow removed because of some link

z ∈ Lki . We know that A[f] = R2
i [z], and for any first-degree neighbor of l, let’s call it x, R2

i [z] ≤ R2
i [x]

because x is a second-degree neighbor of link z (lines 12–13 in Algorithm 7). But we also know by the

definition of the freeze-iteration m (Definition 3.4.5), that for i < m, l has a first-degree neighbor x′ with a

smaller rate than l R2
i [x
′] < R2

i [l]. Hence, A[f] ≤ R2
i [x
′] < R2

i [l]. Link l’s allocation in the next iteration is:

R2
i+1[l] =

C2
i+1[l]

N2
i+1[l]

=
C2
i [l]−

∑
f∈F A[f]

N2
i [l]− |F |

>
C2
i [l]−

∑
f∈F R

2
i [l]

N2
i [l]− |F |

(using A[f] < R[l])

=
N2
i [l]R

2
i [l]−

∑
f∈F R

2
i [l]

N2
i [l]− |F |

(replacing C2
i [l] = N2

i [l]R
2
i [l])

= R2
i [l]

Consider iteration i = m. If no flows carried by link l are removed, then link l’s rate is unchanged.

Otherwise, again let the shorthand F = FGki−1(l) ∩QLk
i

be the set of flows carried by l that are removed in

iteration i. Let f be one such flow removed because of some link z ∈ Lki . We know from lines 12–13 that

A[f] = R2
i [z] ≤ R2

i [l] since l and z share a flow. We also know by definition of m (Definition 3.4.5) that any

first-degree neighbor of l must satisfy R2
i [z] ≥ R2

i [l]. Hence, A[f] = R2
i [z] = R2

i [l]. Link l’s allocation in

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 65

the next iteration is

R2
i+1[l] =

C2
i+1[l]

N2
i+1[l]

=
C2
i [l]−

∑
f∈F A[f]

N2
i [l]− |F |

=
C2
i [l]−

∑
f∈F R

2
i [l]

N2
i [l]− |F |

(using A[f] = R[l])

=
N2
i [l]R

2
i [l]−

∑
f∈F R

2
i [l]

N2
i [l]− |F |

(replacing R2
i [l] = C2

i [l]/N
2
i [l])

= R2
i [l]

In iteration i + 1, link l still has rate R2
i [l], while any link x that shares a flow with l has rate R2

i+1[x] ≥

R2
i [x] ≥ R2

i [l]. The first inequality follows from Lemma 3.4.1, which says that the rate computed for a link

is non-decreasing. So we can repeat the same argument for iterations i, where m+ 1 ≤ i < n.

We can think of links with freeze-iteration i as the set of links whose rates first froze in iteration i. For

such a link, any flow removed before round i is in E(l), while any flow removed in round i or later is in

B(l). Consider the example in Figure 3.6 (second table): link 1 has freeze-iteration 1, since it had a rate of 5

Gb/s, which equals the rate of its first-degree neighbor (link 1) in iteration 1. However, it was not removed in

iteration 1, because link 3, which shares a flow with link 1’s neighbor, had a rate of 3 Gb/s, which was still

smaller.

While Equation 3.8 holds for WF2, it will also be useful to look at the remaining capacity per flow after

removing allocations of E(l) flows only.

Lemma 3.4.9. Suppose link l ∈ L2
n+1 has freeze-iteration m+ 1 for some m ≤ n < W 2.

When 1 ≤ k ≤ m, the remaining capacity per flow of link l, after removing the max-min fair rates of E(l)

flows carried by L2
1, ..., L

2
k, is the WF rate of l in iteration k + 1. When k > m, it is the WF rate in iteration

m+ 1.

C −
∑
f∈E(l)∩FL2

k(l)
A(f)

|FG2
k ∪ B(l)|

= R2
k+1[l] when k ≤ m

= R2
m+1[l] = R(l) otherwise

Proof. Corollary 3.4.8 says that any flow removed before the freeze-iteration must be in E(l) and the WF rate

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 66

is frozen at R(l) thereafter. We have the first result when 1 ≤ k ≤ m because any flow removed in iteration

k must be in E(l). We have the second result when m + 1 ≤ k, because all E flows have been removed by

iterationm, at which point the remaining capacity per flow, after removing the E(l) flows, is just the max-min

rate R(l).

We summarize the properties of the WF2 algorithm that we shall use in our proof of convergence for

s-PERC. Suppose link l ∈ L2
n+1 has freeze-iterationm for somem ≤ n. We will state some properties of the

intermediates rates in the WF2 algorithm and use Lemma 3.4.9 to infer properties of the remaining capacity

per flow at link l and its neighbors with respect to some subset of links in the WF2 order :

(1) For any first-degree neighbor in iterationm+1, x ∈ ∪f∈FG2
m(l)Pf , the rate of link x in iterationm+1

of the WF2 algorithm is at least R(l). Hence, the remaining capacity per flow of link x, after removing

the max-min fair rates of E(x) flows carried by ∪mi=1L
2
i , is at least R(l).

(2) The rate of link l in round m+1 is exactly R(l). Hence, the remaining capacity per flow of link l, after

removing the max-min fair rates of E(l) flows carried by ∪mi=1L
2
i , is exactly R(l).

(3) For any second-degree neighbor in iteration n+1, y ∈ ∪f∈FG2
n(x)

Pf , where the link x ∈ ∪f∈FG2
n(l)

Pf ,

the rate of link y in round n+1 is at least R(l). Hence, the remaining capacity per flow of link y, after

removing the max-min fair rates of E(y) flows carried by ∪ni=1L
2
i , is at least R(l).

(4) For any flow f ∈ FG2
n(l) and any link x ∈ Pf , if flow f ∈ E(x), then the rate of link x when f is

removed in round n+ 1 is strictly greater than A(f) = R(l) and less than its max-min rate. Hence, all

flows of x carried by ∪ni=1L
2
i are in E(x), and the remaining capacity per flow of link x, after removing

the max-min fair rates of these flows, is strictly greater than R(l).

Property (1) is true because link l has the smallest rate out of all its first-degree neighbors in its freeze-

iteration, by definition. Property (2) is true because the rate computed for link l starting from its freeze-

iteration is exactly its max-min rate. Property (3) is true because link l has the smallest rate out of all its

neighbors (both first- and second-degree) when it is removed. Property (4) is true because we know that flow

f ∈ E(x) is removed in iteration n and we can use Corollary 3.4.8 to conclude that x freezes after iteration n;

we can further use Lemma 3.4.7 to see that x’s rate in iteration nmust exceed flow f ’s allocation A[f], which

equals R(l). Note that for all these properties, we use Lemma 3.4.9 to relate a link’s remaining capacity per

flow to the link’s WF rate computed in an iteration of the WF2 algorithm.

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 67

3.4.6 Invariants of s-PERC Based on the WF2 Order

In this section, we will consider a link l ∈ L2
n+1 and state invariants about l and its neighbors that hold

after links ∪mi=0L
2
i (or ∪ni=0L

2
i) have converged. We will also show how we can tie the invariants together to

show that the flow allocations in the s-PERC algorithm converge to max-min fair rates within 6W 2 rounds

of when the flows and links stabilize, where W 2 is the number of iterations that the WF2 algorithm takes.

In the three sections that follow this section (§3.4.7–§3.4.9) we will show how to prove the invariants using

properties of the WF2 ordering.

The first set of invariants are about link l, which should recognize its FG2
n(l) flows as B̂(l). The first step

is that limit rates of the flows at link l must be high enough, that is at least R(l).

Lemma 3.4.10. Let l have freeze-iteration m + 1 and f be any flow in FG2
m(l). Suppose L2

1, ..., L
2
m have

converged at time T . The bottleneck rate for f from a link x ∈ Pf is either not propagated or at least R(l)

from time T + 1 round.

Corollary 3.4.11. The limit rate of f at link l is at least R(l) from time T + 2 rounds.

Note that Lemma 3.2.2 shows a similar result but is weaker because it assumes that for l’s neighbors to

propagate high enough rates, we need all links with smaller max-min rates than R(l) to have converged. We

state the proof in §3.4.7. Next, we define what it means for a flow to be updated correctly at its bottleneck

link.

Definition 3.4.12. We say that a flow f ∈ B(l) is updated correctly at l from time T , if for all updates after

T , the limit rate is at least R(l), the bottleneck rate is exactly R(l), and MaxE is smaller than the bottleneck

rate.

Corollary 3.4.11 allows link l to recognize its own bottleneck flows:

Lemma 3.4.13. Consider any link l with freeze-iteration m+ 1. If L2
1, ..., L

2
m have converged by time T ,

then any flow f ∈ FG2
m(l) is updated correctly at l from time T + 5 rounds.

We state the proof in §3.4.8. It uses Property (2), which says that the remaining capacity per flow at link

l is exactly the max-min rate R(l), when l is frozen.

We outline why the worst case scenario needs five rounds: it takes two rounds from T for the limit rates

of B(l) flows at l to be at least R(l) (Lemma 3.4.10), a third round for the value of C − SumE/NumB at l

to drop below (or equal) R(l), a fourth round for all B(l) to be permanently moved to B̂ at l, and finally, as

late as some time during the fifth round, MaxE at l drops below R(l) so that the bottleneck rate is correctly

propagated. Hence, from time T + 5 rounds all updates of B(l) flows at l are correct.

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 68

The next set of invariants are about link l’s neighbors, with max-min rates greater than R(l), which should

recognize link l’s bottleneck flows as ˆE(x). We first define what it means for a flow to be updated correctly

at a non-bottleneck link.

Definition 3.4.14. We say that a flow f ∈ E(x) is updated correctly at x from time T , if for all updates after

T , the limit rate is exactly A(f) and the bottleneck rate exceeds A(f).

To show that flows in FG2
n(l) are updated correctly at non-bottleneck links x, we need an analog of

Lemma 3.4.10 and its corollary, which says that the limit rates of flows at the neighbor link x are high

enough.

Lemma 3.4.15. Let l be any link in L2
n+1, x be any link in ∪f∈FG2

n(l)
Pf , and f be any flow in FG2

n(x). If

L2
1, ..., L

2
n have converged by time T , the bottleneck rate for f from a link y ∈ Pf is either not propagated or

at least R(l) from time T + 1 round.

Corollary 3.4.16. The limit rate of f at link x is at least R(l) from time T + 2 rounds.

We include the proof in the Appendix. It is identical to that of Lemma 3.4.10 and its corollary but uses

Property (3), which says that neighbors of link l’s neighbors have at least R(l), when l is removed2, whereas

Lemma 3.4.10 uses Property (1), which says that the remaining capacity per flow at neighbors of link l is at

least R(l), when l is frozen. Property (3) is unique to the WF2 algorithm and is not true in the context of the

WF1 algorithm.

Then we can show that the bottleneck rate at links x where f ∈ E(x) does exceed the flow’s max-min

rate A(f) = R(l).

Lemma 3.4.17. Consider any link l ∈ L2
n+1. If L2

1, ..., L
2
n have converged by time T , then for any link x that

is a non-bottleneck link for a bottleneck flow of l, that is, |E(x)∩FG2
n(l)| ≥ 1, at any time t > T+4 rounds,

either NumB(t) = 0 or (C−SumE(t))/NumB(t) > R(l). In the first case, there are no flows in B̂(x),

while in the second case, the flows in B̂(x) have strictly more than R(l) each, after removing the allocations

of the Ê flows.

Corollary 3.4.18. The bottleneck rate computed for f ∈ FG2
n(x), which includes any flow shared with link

l and in FG2
n(l), is strictly greater than R(l) from time T + 4 rounds.

We outline why the worst case scenario needs four rounds: it takes two rounds from T for the limit

rates of FG2
n(x) flows to be at least R(l) at x (Lemma 3.4.15), which is required to show that the value of

2i.e., after removing the max-min allocations of flows carried by links in L2
1, ..., L

2
n, where n is link l’s rank in the WF2 order.

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 69

C−SumE/NumB at x exceeds R(l) during some update; a third round is needed to ensure that the previous

allocation any FG2
n(x) flow was at least R(l), which is required to show that once C − SumE/NumB at

x exceeds R(l), it remains higher. Hence, from time T + 4 rounds all updates of FG2
n(x) flows at x see

bottleneck rates that exceed R(l).

We state the proof in §3.4.9. It relies on Property (4), which says that the remaining capacity per flow

at first-degree neighbor x, which has a greater max-min rate than l, is strictly greater than R(l) when l is

removed.

We can put the above results together to prove Theorem 3.4.4.

Proof of 3.4.4. We prove by induction on the WF2 remove ordering L2
0, ..., L

2
W 2+1.

Base case: The base case is trivial since L2
0 is the empty set of links and has converged as soon as the set of

flows and links stabilize.

Induction hypothesis: The induction hypothesis is that the L2
0, ..., L

2
n have converged by time T .

Induction step: Consider any link l ∈ L2
n+1. Given the induction hypothesis, we will show that l will

converge by time T +6 rounds. We need to show that any flow f ∈ FG2
n(l) is updated correctly at all links

x ∈ Pf from time T + 6 rounds. Any flow f carried by L2
0, ..., L

2
n is already updated correctly at all its

links, because of the induction hypothesis.

Consider any flow f ∈ FG2
n(l). We will consider each kind of link x ∈ Pf that f might traverse and

show that f is updated correctly at the link from time T + 6 rounds.

1. Consider some link x ∈ Pf where f ∈ B(x). By definition, since f ∈ FG2
n(l) and l ∈ L2

n+1, both l

and f are removed in iteration n+1 of the WF2 algorithm. Since f ∈ B(x), we can use Lemma 3.4.7

to see that x is already frozen by round n + 1, that is, the freeze-iteration is m+ 1 for some m ≤ n.

Since links in L2
0, ..., L

2
m have converged by time T , we can use Lemma 3.4.13 to prove that any flow

in FG2
m(x) is updated correctly at x from time T + 5 rounds, including f ∈ FG2

n(x) ⊂ FG2
m(x).

2. Consider some link x ∈ Pf where f ∈ E(x). Since f ∈ E(x), we can use Corollary 3.4.18 to see that

the the bottleneck rate computed for f by x is strictly greater than R(l) from time T + 4 rounds. We

have already explained that f is updated correctly at its bottleneck links from T + 5 rounds. Hence,

the limit rate of f at link x from time T + 6 rounds is exactly R(l). So f is updated correctly at x

from time T + 6 rounds.

Hence, f ∈ FG2
n(l) is updated correctly at all x ∈ Pf from time T + 6 rounds.

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 70

3.4.7 Why Limit Rates of Flows Are at Least R(l) at Link l and Neighbors

We present here why the limit rates of flows in FG2
m(l) are at least R(l) at any link l with freeze-iteration

m+ 1, after links in L2
0, ..., L

2
m have converged.

Proof of Lemma 3.4.10. Let l be any link with freeze-iteration m+ 1 and f be any flow in FG2
m(l). Suppose

L2
0, ..., L

2
m have converged at time T . The bottleneck rate for f from a link x ∈ Pf is either not propagated

or at least R(l) from time T + 1 round.

Consider an update for a flow f ∈ FG2
m(l) at a link x ∈ Pf at some time after t + 1 round. Suppose

b ≥ MaxE and the rate is propagated (line 15 of Algorithm 6). If MaxE ≥ R(l), the proof is done. So let

us consider the case when MaxE < R(l).

Let SumE, NumB and MaxE represent the link state of link x at line 8 of Algorithm 6 just before it

computes a bottleneck rate for f . Note that because of lines 5–7, we can take for granted that there is at least

one flow in B̂, namely f . We will break down the aggregate link state in terms of the contribution of E(x)

flows carried by L2
0, ..., L

2
m, that is, E(x) ∩ FL2

m(x), and the remaining flows. The remaining flows, which

we represent as B(x) ∪ FG2
m(x), include both B(x) flows carried by L2

0, ..., L
2
m as well as flows carried

by the remaining links. The bottleneck rate computed for the flow f satisfies the following (omitting x for

simplicity):

b =
C − SumE
NumB

=
C −

∑
f∈Ê af

|B̂|

=
C −

∑
f∈E∩FL2

m
A(f)−

∑
f∈Ê∩(B∪FG2

m) af

|B̂|

In the last step, we used the induction hypothesis that L2
0, ..., L

2
m have converged by time T , which

implies that their flows are updated correctly at x from time T . In particular, the subset of flows in E(x) are

all correctly classified as belonging to Ê(x) and allocated their max-min rate from time T + 1 round (hence

the second term of the numerator). The remaining flows may also be classified as belonging to Ê(x) (hence

the third term of the numerator). Since flows in E(x) ∩ FL2
m(x) are classified correctly, flows classified as

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 71

B̂(x) must be a subset of B(x) ∪ FG2
m(x). Rearranging the terms, we get:

b · |B̂| = C −
∑

f∈E∩FL2
m

A(f)−
∑

f∈Ê∩(B∪FG2
m)

af

≥ R(l) · |B∪FG2
m| −

∑
f∈Ê∩(B∪FG2

m)

af (using Property (1))

≥ R(l) · |B∪FG2
m| −MaxE · |Ê ∩ (B∪FG2

m)| (using Lemma 3.2.4)

≥ R(l) · |B∪FG2
m| − R(l) · |Ê ∩ (B∪FG2

m)| (we are considering the case MaxE < R(l))

≥ R(l) · |B̂ ∩ (B∪FG2
m)|

= R(l) · |B̂| (since B̂(x) ⊂ B(x) ∪ FG2
m(x))

b ≥ R(l) (since |B̂| > 0)

Proof of Corollary 3.4.11. The limit rate of f at link l is at least R(l) from time T + 2 rounds.

Flow f is seen at every link in Pf at least once between times T + 1 round and T + 2 rounds and

picks up a bottleneck rate that is either not propagated or R(l). Flow f ’s limit rate at link l is the smallest

propagated bottleneck rate from any link in Pf \ l and hence is at least R(l) from time T + 2 rounds.

3.4.8 Why Flows Are Updated Correctly at Bottleneck Links

Consider a link l ∈ L2
n+1, which has freeze-iteration m+ 1 for some m ≤ n. We present here the proof for

why l’s bottleneck flows f ∈ FG2
m(l) are updated correctly at link l. The only precondition is that links in

L2
0, ..., L

2
m have converged.

Proof of Lemma 3.4.13. Consider any link l with freeze-iteration m+ 1. If L2
0, ..., L

2
m have converged by

time T , then any flow f ∈ FG2
m(l) is updated correctly at l from time T + 5 rounds.

During any update after T + 3 rounds, the bottleneck rate for flow f at link l is at most R(l). We can

explain this by looking at how the E(l) flows carried by L2
0, ..., L

2
m contribute to the aggregate state. We shall

use Corollary 3.4.8, which says that for link l with freeze-iteration m+ 1, the set of E(l) flows carried by

L2
0, ..., L

2
m is exactly E(l), while the set of remaining flows is exactly B(l).

Let SumE, NumB and Ê represent the link state at line 8 of Algorithm 6, as they are used to compute

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 72

the bottleneck rate. For all updates at time t after T + 3 rounds (omitting l for simplicity):

b =
C−SumE
NumB

=
C−

∑
f∈EA(f)−

∑
f∈B∩Ê af

|B∩B̂|
(induction hypothesis)

=
R(l) · B−

∑
f∈B∩Ê af

|B∩B̂|
(using Property (2))

≤ R(l) · |B| − R(l) · |B∩Ê|
|B∩B̂|

(using Corollary 3.4.11)

= R(l)

In the second-to-last step we used Corollary 3.4.11, which says that limit rates of FG2
m(l) flows (equal

to B(l)) at l are at least R(l) from T + 2 rounds. Since every flow is seen once between T + 3 rounds and

T + 3 rounds, we conclude that the allocation of the FG2
m(l) flows are at least R(l) after T + 3 rounds.

Hence, every flow in B(l), including f , is moved to B̂(l) once and for all, and the B̂ and Ê sets stabilize

to the correct values latest by T + 4 rounds. During any update after T + 4 rounds, the bottleneck rate for

any flow f ∈ B(l) at link l is exactly R(l). But the bottleneck rate may not be propagated since the set of Ê

allocations could have stabilized to E as late as T +4 rounds and the last inconsistent allocation could have

been made as late as T + 3 rounds. MaxE can take up to two additional rounds to reflect the maximum Ê

allocation and drop below R(l) (Lemma 3.2.5). Hence, the bottleneck rate must be propagated correctly after

T + 5 rounds. So flow f ∈ FG2
m(l) is “correctly updated” at link l from time T + 5 rounds.

3.4.9 Why Flows are Updated Correctly at Non-Bottleneck Links

Consider a link l ∈ L2
n+1 with freeze-iteration m+ 1 for some m ≤ n. We present here why the bottleneck

rate computed for l’s FG2
n(l) flows at their non-bottleneck links exceeds R(l), their max-min rate. The

precondition here is that links in L2
0, ..., L

2
n have converged.

Proof of Lemma 3.4.17. Consider any link l ∈ L2
n+1. If L2

0, ..., L
2
n have converged by time T , then for

any link x that is a non-bottleneck link for a bottleneck flow of l, that is, |E(x) ∩ FG2
n(l)| ≥ 1, at any

t > T + 4 rounds, either NumB(t) = 0 or (C−SumE(t))/NumB(t) > R(l). In the first case, there

are no flows in B̂(x), while in the second case, the flows in B̂(x) have strictly more than R(l) each, after

removing the allocations of the Ê flows.

First, we show that the condition must hold following some update between T + 3 rounds and T +

4 rounds. Consider all the updates during this interval. We shall use Property (4), which says that all flows

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 73

of x carried by L2
1, ..., L

2
n are in E(x) so we can replace E(x) ∩ FL2

n(x) = FL2
n(x) and express the set of

remaining flows as FG2
n(x)∪B(x) = FG2

n(x). It also says that the rate of x when link l’s flow f ∈ E(x) is

removed, exceeds R(l).

If any of the flows in FG2
n(x) is classified as Ê, the condition holds after the update because of Corollary

3.4.11, which says that the flow’s limit rate is at least R(l), and Lemma 3.2.1, which says that following an

update when a flow is moved to Ê, either NumB = 0 or C−SumE/NumB exceeds the flow’s limit rate.

If, on the other hand, all of the flows in FG2
n(x) are classified into B̂, then after the last of these updates we

have (omitting x for simplicity):

C−SumE(t)

NumB(t)
=

C−
∑
f∈FL2

n
A(f)−

∑
f∈Ê∩FG2

n
af

|B̂ ∩ FG2
n|

(induction hypothesis)

=
C−

∑
f∈FL2

n
A(f)

|FG2
n|

(considering case where FG2
n(x) ⊂ B̂)

> R(l) (using Property (4))

Next, we show that once this condition becomes true at some time between T + 3 rounds and T +

4 rounds, it remains true thereafter. If a flow in FG2
n(x) is marked Ê, then we have already explained why

the condition holds after the update. Otherwise, if a flow in FG2
n(x) moves from Ê to B̂, the intuition is that

it makes its old allocation, which was at least R(l), available to the B̂ flows. Since the B̂ flows already had

more than R(l) each, the new value of C−SumENumB remains higher. We formalize this intuition below:

Let SumE(t), NumB(t) represent the link state at line 5 in the Algorithm, before they are adjusted to

compute b for some flow f ∈ FG2
n(x). We know thatC−SumE(t) > NumB(t)R(l), since we assume that

the condition holds before the update. Now we show why the condition would hold after the update as well.

After the flow moves to B̂ there is at least one flow marked in B̂, and the value of (C−SumE(t))/NumB(t)

is:

C − (SumE(t)− e)
(NumB(t) + 1)

=
(C − SumE(t)) + e

(NumB(t) + 1)

>
NumB(t) · R(l) + e

(NumB(t) + 1)
(condition holds before update)

≥ NumB(t) · R(l) + R(l)

(NumB(t) + 1)
(using Corollary 3.4.16)

= R(l)

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 74

Proof of Corollary 3.4.18. The bottleneck rate computed for f ∈ FG2
n(x), which includes any flow shared

with link l and in FG2
n(l), is strictly greater than R(l) from time T + 4 rounds.

If the flow was previously in B̂, the bottleneck rate computed is exactly b = C−SumE
NumB > R(l). If the flow

was previously in Ê, the bottleneck rate computed is b =
C−(SumE(t)−alf (t

−)

NumB+1 >
R(l)NumB+alf (t

−)

NumB+1 ≥ R(l).

The first inequality follows from Lemma 3.4.17 above. The second inequality follows from Corollary 3.4.16,

which says that that for any flow f ∈ FG2
n(x), the limit rate at x is at least R(l) from T + 2 rounds, which

implies that the allocation at x is at least R(l) from T + 3 rounds, in particular alf (t
−) ≥ R(l).

3.4.10 Dependencies from the WF2 Algorithm

It follows from the WF2 algorithm that in order for a link l ∈ L2
n+1 to “converge” (in a distributed algorithm

like s-PERC), it is sufficient for links L2
0, ..., L

2
n, rather than all links with lower max-min rates than l. The

following lemma shows that it is in fact necessary for at least one link in L2
n to converge. This is analogous

to the precedent link relationship for the CPG algorithm defined in [75].

Theorem 3.4.19. (WF2 Precedent Link Relationship) Let l be a link removed in iteration n+ 1 of the WF2

algorithm, that is, l ∈ L2
n+1. Then one of the following statements must be true about iteration n:

1. There exists a link x that shared a flow with link l in iteration n and had a lower WF rate than link l,

and

(a) either x was removed in iteration n

(b) or x was not removed but a link z that shared a flow with link x in iteration n and had a lower

WF rate than link x was removed in iteration n.

2. All links that share a flow with link l in iteration n have rates that are at least link l’s WF rate in

iteration n. However, there exists a link y that shared a flow with a neighbor x of link l in iteration n,

where y had a lower WF rate than link l, and

(a) either y was removed in iteration n

(b) or y was not removed but a link z that shared a flow with link y in iteration n and had a lower

WF rate than link y was removed in iteration n.

Proof. Since link l was removed in iteration n + 1 of the WF2 algorithm, it had the lowest rate among its

neighbors in the iteration (lines 12–13 of Algorithm 7), that is:

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 75

R2
n+1[l] ≤ R2

n+1[x], for all x ∈ X1n+1[l]

R2
n+1[l] ≤ R2

n+1[y], for all y ∈ X2n+1[l]

This means that in iteration n, link l did not have the lowest rate among its neighbors; otherwise it would

have been removed in iteration n. Hence, either a first-degree neighbor x ∈ X1n(l) or a second-degree

neighbor y ∈ X2n(l) had a lower rate than R2
n(l), the rate of link l in iteration n, that is:

R2
n[l] < R2

n[x], for some x ∈ X1n[l] or

R2
n[l] < R2

n[y], for some y ∈ X2n[l]

Suppose x ∈ X1n(l), which had R2
n(x) < R2

n(l), was not removed in iteration n—that is, suppose 1(a)

does not hold. We will show then that 1(b) must hold. Since R2
n+1(x) ≥ R2

n+1(l) and the rates are non-

decreasing, we know that the rate of x must have increased from iteration n to n+1. From Lemma 3.4.7, we

know that for the rate of link x to increase, a flow carried by x must have been removed in iteration n with

allocation A[f] < R2
n(x). The flow must have been removed because it was carried by a neighbor z of link

x that was removed with rate R2
n[z] = A[f] < R2

n(x). Hence, we see that if there exists x ∈ X1n(l), which

had R2
n(x) < R2

n(l), either x was removed in iteration n or a neighbor z of x with a lower rate than link l

was removed R2
n[z] < R2

n[x] < R2
n[l].

If there is no first-degree neighbor with a lower rate than l, then we can use a similar argument to show

that there exists a second-degree neighbor y ∈ X2n(l), which had R2
n(y) < R2

n(l), either y was removed in

iteration n (i.e., 2(a) holds) or a neighbor z of y with a lower rate than link l was removed R2
n[z] < R2

n[y] <

R2
n[l] (i.e., 2(b) holds).

The definitions of precedent links follow directly:

Definition 3.4.20. For a link l ∈ L2
n+1,

1. we say that a link x is a direct precedent of l if x, l share a flow in iteration n, such that R2
n(x) < R2

n(l)

and x is removed in iteration n;

2. a link z is an indirect precedent of l via medium link x if z, x and x, l share a flow in iteration n, such

that R2
n(z) < R2

n(x) < R2
n(l) and x is not removed but z is;

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 76

3. a link y is a second-degree direct precedent of l if for all x where y, x and x, l share a flow in iteration

n, R2
n(x) ≥ R2

n(l), and R2
n(y) < R2

n(l) and y is removed in iteration n; and

4. a link z is a second-degree indirect precedent of l via medium link y if for all x where z, y, y, x and

x, l share a flow in iteration n, R2
n(x) ≥ R2

n(l), and R2
n(z) < R2

n(y) < R2
n(l) and y is not removed

but z is.

Figure 3.7 shows an example of direct precedent links based on the WF2 algorithm. There are three links

and four flows. The green flow is bottlenecked to 3 Gb/s at link 3, the purple and blue flows are bottlenecked

to 5 Gb/s at link 1, and the orange flow is bottlenecked to 7 Gb/s at link 2. In the WF2 algorithm, link 3 is

removed in the first iteration because it has the smallest WF rate of its first- and second-degree neighbors.

Links 1 and 2 are removed in the second and third iterations, respectively.

C	=	10	Gb/s	
N	=	2	
R	=	5	Gb/s	

C	=	15	Gb/s	
N	=	3	
R	=	7	Gb/s	

C	=	3	Gb/s	
N=	1	
R	=	3	Gb/s	

Link	1	 Link	2	 Link	3	

Link	1	 Link	2	 Link	3	 Ordering	(WF2)	

1)	R1		=	C1/N1	 5		=	10	/	2		 5	=	15	/	3	 3	=	3	/	1	 L21		=	{Link	3}	
	

2)	R2		=	C2/N2	 5		=	10	/	2		 6	=	12	/	2	 L22		=	{Link	1}	
	

2)	R3		=	C3/N3	 7	=	7	/	1	 L23		=	{Link	2}	

3	

1	

2	

Figure 3.7: Examples of direct precedent links based on the WF2 Algorithm. Link 1 is a direct precedent
of link 2, while link 3 is a second-degree direct precedent of link 1. The WF2 precedence graph is in the
top-right corner (double-solid: direct, dashed: second-direct).

We say that link 3 is a second-degree direct-precedent of link 1, because in the first iteration, link 1’s

only first-degree neighbor, link 2, has a rate equal to that of link 1 (5 Gb/s), whereas link 3, a second-degree

neighbor, has a lower rate 3 Gb/s and is removed by the end of the iteration. In s-PERC, it is only after

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 77

link 3 converges and the green flow is correctly classified as Ê and allocated 3 Gb/s at link 2, that link 2’s

bottleneck rate for link 1’s (blue) bottleneck flow can be shown to exceed link 1’s max-min rate of 5 Gb/s (to

at least 6 Gb/s). This is necessary so that link 1’s (blue) bottleneck flow can be correctly classified as Ê at

(its non-bottleneck) link 2. Hence, link 1 depends on link 3 to converge.

We say that link 1 is a direct-precedent of link 2, because in the second iteration, it shares a (blue) flow

with link 2, has a smaller WF rate than link 2, and is removed by the end of the iteration. In s-PERC, it is

only after link 1 converges and its (blue) bottleneck flow is correctly classified as Ê and allocated 5 Gb/s at

link 2, that link 2 can update its bottleneck rate for its own (orange) bottleneck flow from 6 Gb/s to exactly 7

Gb/s. Hence, link 2 depends on link 1 to converge.

Figure 3.8a shows an example of indirect precedent links based on the WF2 algorithm. There are four

links and four flows. The orange flow is bottlenecked to 1 Gb/s at link 4, the green flow to 5 Gb/s at links 2

and 3, the blue flow to 5 Gb/s at links 2 and 1, and the purple flow to 5 Gb/s at link 1. In the WF2 algorithm,

link 4 is removed in the first iteration because it has the smallest WF rate of its first- and second-degree

neighbors. Note that link 1 is not removed in the first iteration because a second-degree neighbor—that is,

link 3 has a lower WF rate (3 Gb/s) in iteration 1 than link 1, which has 5 Gb/s. Rather, links 1–3 are all

removed in the second iteration, when they each have a WF rate of 5 Gb/s.

We say that link 4 is an indirect precedent of link 2 via medium link 3, because in the first iteration, link 4

shares a (orange) flow with link 3, which shares a (green) flow with link 2, and link 4 has a smaller rate than

link 3, which has a smaller rate than link 2, and lastly link 3 is not removed but link 4 is. In s-PERC, it is only

after link 4 converges and its (orange) flow is correctly classified as Ê and allocated 1 Gb/s at link 3, that

the bottleneck rate propagated from link 3 to link 2 (via the green flow) can be guaranteed to be at least link

2’s max-min rate 5 Gb/s (which in this case happens to be same as link 3). This allows link 2 to recognize

its (green) bottleneck flow (which in this case also happens to be a bottleneck flow of link 3). Hence, link 2

depends on link 4 to converge.

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 78

C	=	10	Gb/s	
N	=	2	
R	=	5	Gb/s	

C	=	10	Gb/s	
N	=	2	
R	=	5	Gb/s	

C	=	6	Gb/s	
N=	2	
R	=	5	Gb/s	

Link	1	 Link	2	 Link	3	 Link	4	

C	=	1	Gb/s	
N	=	1	
R	=	1	Gb/s	

Link	1	 Link	2	 Link	3	 Link	4	 Ordering	(WF2)	

1)	R1		=	C1/N1	 5		=	10	/	2		 5	=	10	/	2	 3	=	6	/	2	 1	=	1/	1	 L21		=	{Link	4}	
	

2)	R2		=	C2/N2	 5		=	10	/	2		 5	=	10	/	2	 5	=	5	/	1	 L22		=	{Links	1,	2,	3}	
	

4	

1	 2	 3	

(a) Link 4 is an indirect precedent of link 2 (via medium link 3) and a second-degree indirect precedent of
link 1 (via medium link 3 again). Note that link 4 is a direct precedent of link 3.

C	=	10	Gb/s	
N	=	2	
R	=	5	Gb/s	

C	=	18	Gb/s	
N	=	3	
R	=	8	Gb/s	

C	=	6	Gb/s	
N=	2	
R	=	5	Gb/s	

Link	1	 Link	2	 Link	3	 Link	4	

C	=	1	Gb/s	
N	=	1	
R	=	1	Gb/s	

Link	1	 Link	2	 Link	3	 Link	4	 Ordering	(WF2)	

1)	R1		=	C1/N1	 5		=	10	/	2		 6	=	18	/	3	 3	=	6	/	2	 1	=	1/	1	 L21		=	{Link	4}	
	

2)	R2		=	C2/N2	 5		=	10	/	2		 6	=	18	/	3	 5	=	5	/	1	 L22		=	{Links	1,	3}	
	

3)	R3		=	C3/N3	 8	=	8	/	1	 L23		=	{Link	2}	

4	

1	

2	

3	

(b) Link 4 is a second-degree indirect precedent of link 1 via medium link 3. Note that link 4 is also direct
precedent of link 3, while links 1 and 3 are direct precedents of link 2.

Figure 3.8: Examples of indirect precedent links based on the WF2 Algorithm. The WF2 precedence graph
is in the top-right corner of each example (double-solid: direct, dashed: second-direct, single-solid: indirect,
dotted: second-indirect).

Figure 3.8b shows another example of an indirect precedent link based on the WF2 algorithm. We

describe the setup first. There are four links and five flows. The orange flow is bottlenecked to 1 Gb/s at link

CHAPTER 3. S-PERC: A PERC ALGORITHM THAT DOES NOT NEED PER-FLOW STATE 79

4, the green flow to 5 Gb/s at link 3, the blue and purple flows to 5 Gb/s at link 1, and the brown flow to 8

Gb/s at link 2. In the WF2 algorithm, link 4 is removed in the first iteration because it has the smallest WF

rate of its first- and second-degree neighbors. Note that link 1 is not removed in the first iteration because a

second-degree neighbor, that is, link 3 has a lower WF rate (3 Gb/s) in iteration 1 than link 1, which has 5

Gb/s. Rather, links 1 and 3 are removed in the second iteration, when they each have a WF rate of 5 Gb/s,

while link 2 is removed in the third iteration when it has a WF rate of 8 Gb/s.

We say that link 4 is a second-degree indirect-precedent of link 1 via medium link 3, because in the first

iteration, link 1’s only first-degree neighbor, link 2, had a rate greater than (or equal) to that of link 1, whereas

link 3, a second-degree neighbor had a lower rate 3 Gb/s, and link 3 was not removed but link 3’s first-degree

neighbor link 4 was removed. In s-PERC, it is only after link 4 converges, and its (orange) flow is correctly

classified as Ê and allocated 1 Gb/s at link 3, that the bottleneck rate propagated from link 3 to link 2 (via the

green flow) can be guaranteed to be at least link 1’s max-min rate 5 Gb/s. This allows one to guarantee that

when link 2 computes a bottleneck rate for link 1’s bottleneck flows, the rate exceeds link 1’s max-min rate.

This is necessary so that link 1’s (blue) bottleneck flow can be correctly classified as Ê at (its non-bottleneck)

link 2. Hence, link 1 depends on link 4 to converge.

The precedent link relationship implies that for a link j ∈ L2
n+1, there is at least one precedent link in L2

n.

Hence, the precedent link relationships form a directed acyclic graph of depth W 2. Following the example

of [75], we call this the WF2 Precedence Graph.

The precedent link relationship is an example of a dependency where we define a dependent link of link

l as any link that must converge before link l can converge. For example, notice that in Figure 3.7, link 3 is a

direct precedent of link 1, and link 1 depends on link 3 to converge, because it is only after link 3 is removed

in iteration 1 that link 1 has the lowest rates of its first- and second-degree neighbors. The WF2 algorithm

implies that any dependent link of link j ∈ L2
n+1 must be among links in L2

1, .., L
2
n so that the dependencies,

which are a superset of the precedent link relationships, also form a directed acyclic graph of depth W 2.

Chapter 4

Evaluating s-PERC for Data Centers

In this chapter, we will describe how s-PERC can be practically deployed. We focus on the data-center

setting, though many design considerations are relevant to other settings like enterprise networks or WANs.

We will use s-PERC? to distinguish the implementation of the s-PERC algorithm from the basic algorithm

itself. We will describe how we deployed s-PERC in a 4x10 Gb/s NetFPGA test bed, which validates that

it is easy to implement in hardware. We will use simulations to evaluate benefits that s-PERC? can provide

for data-center workloads, especially relative to reactive algorithms that converge fast (represented by RCP)

and scheduling algorithms that prioritize short flows (represented by p-Fabric). We will also describe real

measurements of s-PERC, TCP, and DCTCP from our 4 x 10 Gb/s NetFPGA test bed, where we compare

s-PERC’s convergence times relative to TCP and DCTCP for small incasts and traffic matrices with multiple

bottlenecks.

4.1 Practical Design Considerations

We made several design and implementation choices to make s-PERC? simple, practical, and robust for data

centers.

Dynamic flow arrivals and departures: In real networks, flows come and go. But so far, the s-PERC

algorithm has been described as if the number of flows is constant. Let us see how s-PERC? works when

flows are arriving and departing. A new flow’s control packet carries s[l] = E and a[l] = 0 (bottlenecked

elsewhere and allocated 0 Gb/s) for every link l so that the link will increase NumB during the update (see

Table 3.2). The last control packet of a flow that is terminating will be tagged with a FIN so that the links

that carry the flow can remove its contribution to the aggregate state at the link (NumB or SumE).

80

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 81

Limiting control overhead: We want control packets to zip through the network in order to calculate

rates quickly. However, we do not want the control packets to take too much bandwidth away from the data

packets. Hence, control packets are prioritized at every link, but rate-limited to some fraction (2%-5%) of

the link capacity. For a given fraction of link capacity, say Cctrl = 2 Gb/s, and an observed number of

flows at a link, say N = 100, each control packet is limited to the rate Cctrl/N = 20 Mb/s. This means,

for example, that a host can send a 64 byte control packet no more frequently than one every Txctrl = 64

bytes/(Cctrl/N) = 25.6µs. Notice that Txctrl can exceed the unloaded RTT in a network. To implement

this simple rate-limiting scheme, s-PERC? maintains an additional variable N at the switch for each link

(similar to NumB) to track the number of flows traversing the link in either direction, and calculate Txctrl.

The s-PERC? control packet carries the smallest value of Txctrl seen at any link in the flow’s path. We do not

expect the control packets to see queues since they are strictly prioritized over data packets and limited to a

small fraction of the link capacity. Also, we do not expect the control packets to starve data-packets because

they are rate-limited.1

Adjusting round automatically: We wantMaxE andMaxE′ to be reset only after every flow has been

seen at the link at least once. This ensures that when MaxE is reset to MaxE′, it is at least the allocation of

any flow in Ê at the time. Otherwise, the link may wrongly propagate a bottleneck rate that is inconsistent

with the Ê allocations and delay convergence. As mentioned above, a control packet’s period Txctrl can

exceed the unloaded RTT in a network, and moreover it can change as the number of flows changes. Hence,

in s-PERC?,MaxE andMaxE′ are reset once every round, rather than every RTT, where round is adjusted

dynamically to be at least max(Txctrl, RTT), which is the time it takes to see a control packet from every

flow at least once. At each link, the variable round starts with an initial value of 2 RTTs. Thereafter, it is

multiplicatively adjusted based on the current number of flows. Any time when max(Txctrl, RTT) exceeds

the current value, round is doubled. When max(Txctrl, RTT) has been smaller than the current value for at

least MaxRound seconds, round is halved (but to no less than 1 RTT). We fixed the value of MaxRound

to about 10 RTTs in our simulations and (passively) checked that it never exceeded the period of a control

packet.

Handling dropped control packets: If a flow’s control packet gets dropped, the end-host will not re-

ceived any more rate updates, and the s-PERC algorithm is stalled because the flow’s bottleneck rate infor-

mation is no longer carried between its links. Moreover, the links on the path of the flows would continue to

allocate the same bandwidth to the flow forever. In s-PERC?, the source end-host detects the dropped control

1The only exception is when a large number of flows start at once; the control traffic could exceed the link capacity in the unlikely
event that first control packet of 2000 different flows arrive at a link in precisely the same RTT (assuming a control packet size of 64
bytes, a link capacity of 100 Gb/s and an unloaded RTT of 10.2 µs).

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 82

packet using a timeout RTOctrl, stops sending any new data packets and restarts the flow. The timeout is

long enough for the links to have cleared any state corresponding to the flow (as described below). When

the source end-host restarts the flow, it sends an initial control packet to request a new rate. It would resume

transmitting data-packets starting from the last unacknowledged packet.

In order to allow the s-PERC algorithm to make progress, the per-link state in the active control packets

must be consistent with the aggregate NumB and SumE at the links. For example, a link on the path of the

affected flow should remove the flow’s contribution to NumB or SumE since the flow’s control packet is

no longer active. In s-PERC?, the links use shadow variables NumB′ and SumE′ to re-compute the latest

values of NumB and SumE on the side (lines 11–13 and 30–33 in Algorithm 8) and sync up periodically

(Algorithm 9) every round, right after MaxE and MaxE′ are reset. To implement this consistency scheme,

in addition to the shadow variables, the links also keep count of their local roundNumber and copy this to a

per-link field roundNumber[l] in the control packet so that they can identify if they have already accounted

for the flow in a particular round (Table 4.1). A similar consistency scheme for a different max-min algorithm

was first described in [33], with a proof of correctness. For an example of why this works, consider a flow f

whose control packet was dropped at some time T right after it had been classified as Ê at some link l. The

shadow SumE′ at the link will not include flow f ’s allocation two rounds from T , since the flow’s control

packet was dropped and not retransmitted until later. However, after the source detects the packet drop at

some time following T + 2 rounds, it will retransmit a control packet, initialized as for a new flow, with

roundNumber[l] = 0. This new control packet will be in sync with the aggregate and shadow link state at l.

We have verified using numerical simulations that this mechanism allows links to converge to the right

allocation for a static set of flows, despite random packet drops (e.g., packet drop probability 1e-4, see §4.3.3

for details). The proof of correctness is left to future work.

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 83

Algorithm 8 Control Packet Processing at link l for s-PERC?. We show the steps that make s-PERC? robust
to control packet drops (Lines 5–7, 11–16, 27 and 33–36). For simplicity, we do not show the steps that
calculate rate-limits for control packets and automatically adjust the value of round. See also Algorithm 9.

1: SumE = 0: sum of allocations of flows in Ê in this round . Initial state at link l

2: NumB = 0: number of flows in B̂ in this round

3: MaxE = 0: maximum allocation of flows moved to Ê since last round

4: MaxE′ = 0: maximum allocation of flows moved to Ê in this round

5: SumE′ = 0: sum of allocations of flows in Ê since last round . Shadow state

6: NumB′ = 0: number of flows in B̂ since last round . Shadow state

7: roundNumber = 1 . Interval for resetting aggregate variables

8: if s[l] == E then . Flow was last bottlenecked elsewhere

9: SumE ← SumE − a[f] . Update link state to assume flow is going to be bottlenecked

10: NumB ← NumB + 1

11: if roundNumber[l] == roundNumber then . Flow has been seen in this round

12: if s[l] == E then . Update shadow link state to assume flow is going to be bottlenecked

13: SumE′ ← SumE′ − a[f] . SumE’ includes previous allocation of flow

14: NumB′ ← NumB′ + 1

15: else . Flow has not been seen in this round

16: NumB′ ← NumB′ + 1 . Update shadow link state to assume flow is going to be bottlenecked

17: b← C−SumE
NumB

18: e← minm∈Pf\l,
i[m]=0}

b[m] (or∞ if there is no other link in Pf with ignore bit unset) . Find flow’s new limit rate

19: a← min(b, e) . Find flow’s new allocation

20: if b <= e then s← B . Flow is now bottlenecked here, classify as B̂

21: else s← E . Flow is now bottlenecked elsewhere, classify as Ê

22: b[l]← b, a[l]← a, s[l]← s . Update control packet

23: if b < MaxE then i[l]← 1 . Bottleneck rate is low; do not propagate it

24: else i[l]← 0 . Bottleneck rate is high enough; propagate it

25: if flow is leaving then . Update link state to remove flow

26: NumB ← NumB − 1

27: NumB′ ← NumB′ − 1 . Update shadow link state

28: else if s == E then . Update link state to reflect flow is in Ê

29: NumB ← NumB − 1

30: SumE ← SumE + a

31: MaxE ← max(MaxE, a)

32: MaxE′ ← max(MaxE′, a)

33: NumB′ ← NumB′ − 1 . Update shadow link state

34: SumE′ ← SumE′ + a . Update shadow link state

35: if roundNumber[l] < roundNumber then . Flow has not been seen in this round

36: roundNumber[l]← roundNumber[l] + 1 . Update control packet

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 84

Table 4.1: Initial Control Packet for Flow fW of size 10 KB in s-PERC?, after it has left the end-host. The
control packet carries information for each link that the flow crosses. The first row corresponds to the virtual
link l0, which carries size information that is relevant for short flows. Note that the bottleneck state, allocation
and roundNumber for this virtual link are optional and can simply be stored at the end-host, or even ignored.

Link Bottleneck State (s) Bottleneck rate (b) Ignore bit roundNumber
Allocation (a)

l0 (E @ 0) 10 MB / 1 RTT 0 (0)
l30 E @ 0 0 1 0
l12 E @ 0 0 1 0

Txctrl :∞
FIN : 0

Algorithm 9 Timeout action at link l for s-PERC?, every round starting from time T0(l).

1: MaxE ←MaxE′,MaxE′ ← 0

2: SumE ← SumE′, SumE′ ← 0

3: NumB ← NumB′,NumB′ ← 0

4: roundNumber ← roundNumber + 1

Reverse-path symmetry of control packets: A control packet must traverse the same links as the data

packets in both the forward and reverse directions. In a fat-tree or spine-leaf topology (and in our data-

center simulations), s-PERC? enforces path-symmetry of the forward and reverse control packets using a

non-standard ECMP (as in [29]) where the hashing is done on the sorted src, dst tuple, and the same hash

functions are used at all switches that are in the same layer of the spine-leaf topology. This way, they will hash

to the same switch in the next layer of the topology, for packets between a given pair of end hosts and there

is no packet overhead. Note that such modifications should be relatively easy with programmable switches.

In an arbitrary topology (and in our WAN simulations), s-PERC? allows links to update control packets only

when the packets traverse in their forward direction, from source to destination end-host. This requires no

changes to routing but doubles the convergence time in the worst case. Alternatively, one can log the path of

the control packet in the forward direction and then use source routing for the reverse direction.

Accounting for bandwidth used by short flows: Short flows may not have enough bytes to send at the

allocated rate for a full RTT. To avoid allocating more bandwidth than necessary, the s-PERC? control packet

carries an additional field for a virtual link l0 (unique to each flow) on the flow’s path, which has a capacity

equal to remaining bytes/RTT (similar to [50]) (row 1 of Table 4.1). Concretely, this means that the packet

must carry an additional bottleneck rate b[l0] = remaining bytes/RTT and ignore bit i[l0] = 0, which the

other links consider when calculating a limit rate for the flow.

Optimizing latency for short flows: s-PERC? starts short flows at line rate and prioritizes them at every

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 85

link (with priority second to control packets, for a total of three priority levels for all traffic). This optimization

provides minimum possible latencies for short flows in heavy tail workloads (e.g., web search, data mining)

where they contribute a small fraction of the total bytes (see §4.3.2).

Control packet size: The s-PERC? control packet carries five pieces of per-link information: the allo-

cation a (4 bytes) and bottleneck state s (1 bit), bottleneck rate b (4 bytes) and ignore bit (1 bit), and the

roundNumber (1 byte) (Table4.1). Together with the flow size information (4 bytes for b[l0] and 1 bit for

i[l0]), the FIN tag (1 bit) and the control-packet sending rate Txctrl (4 bytes), this requires 46 bytes for

a two-level data-center with four hops. The convergence bound of s-PERC is unchanged if we replace the

per-link bottleneck rate with the minimum and additionally carry the identifier of the link with the minimum

rate. This requires a total of 30 bytes and fits within a minimum-size packet. We believe it is possible to

optimize the control packet state further to carry only the bottleneck state as a per-link variable, similar to

[63]. The global control packet state would include the allocation, common to all links where the flow is Ê

in each direction, and the bottleneck rate, which carries the minimum bottleneck rate at any link. We leave

this optimization to future work.

Headroom: We want transient queues to drain quickly when a link is over-subscribed for extended pe-

riods of time. A transient queue can build up, when a flow’s end-host is asked to increase its rate by a

bottleneck link, before other flows that share the link have decreased their rates. Consider the example of two

flows sharing a single 100 Gb/s bottleneck link. The first flow to start gets an initial rate of 100 Gb/s, while

the second flow gets an initial rate of 50 Gb/s. At the instant when the second flow’s source sees the initial

rate of 50 Gb/s, the first flow’s source may still be sending at 100 Gb/s. The first flow would get a new rate of

50 Gb/s within a round-trip but a transient queue can build up while the second flow sends traffic at 50 Gb/s

and the first flow is yet to decrease its rate. The s-PERC? algorithm allows links to leave some fraction (e.g.,

1%-2%) of the capacity unallocated as headroom, to allow transient queues to drain quickly.

Implementing s-PERC in hardware: The next two points describe how to approximate the s-PERC

algorithm to implement it in hardware. These techniques were used in our 40 Gb/s NetFPGA prototype and

are relevant for programmable switches.

Atomic read-modify-write updates: Control packets need to be processed at line-rate (i.e., less than the

arrival time of a minimum-size packet) in case they arrive back to back. The most demanding computation

is to check whether b ≤ e, line 8 of Algorithm 6, which we simplify to (C − SumE) <= e ∗NumB. This

requires an integer multiplication, a subtraction, and a comparison, and because the state (NumB,SumE)

is updated as a read-modify-write, the computation must finish in one cycle (one minimum-packet time).

While multiplication is not typically supported natively in fixed-function switch ASICs, newer programmable

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 86

switches include integer ALUs for read-modify-write state updates [1] running at faster than 1 GHz.

Approximating division: In order to classify a flow as B or E, the switch needs to calculate b =

(C − SumE)/NumB, which requires a division, which is harder to do in one cycle. Fortunately, the

division can be pipelined (i.e., can take more than one clock cycle) as it does not need to modify the switch

state atomically. Following [79] we can use look-up tables to approximate the division. Switch ASICs have

hundreds of megabytes of look-up tables already, and so it is reasonable to assume we could use a small

fraction (say, fewer than 1%) of the tables to perform a division. In our micro-benchmark results (see §4.3.3)

we explore practical tables sizes that work well for s-PERC.

4.2 Hardware s-PERC Prototype

We implemented the s-PERC switch data plane in hardware using the 4x10 Gb/s NetFPGA SUME plat-

form [85]. The end host is implemented using the MoonGen DPDK packet processing library [37]. The

prototype demonstrates that s-PERC can be deployed at high link speeds. We use it to evaluate s-PERC’s

performance.

4.2.1 NetFPGA s-PERC Switch

We programmed the switch’s packet processing logic in P4 [23] and compiled it to the NetFPGA platform

using the P4→NetFPGA workflow [6], built on top of the Xilinx SDNet [9] compiler. The NetFPGA switch

has a core clock frequency of 200 MHz and a 256-bit datapath; fast enough to support more than 40 Gb/s.

The P4 pipeline is as follows: after the standard L2 forwarding logic, the switch processes control and data

packets differently. Data packets are marked as low priority, whereas control packets pass through a series of

processing steps in order to implement the computations described in Algorithm 6. Two steps perform atomic

operations on state variables stored in the switches (SumE,NumB, and MaxE). They are not expressed

in P4, but implemented in Verilog and included in the processing pipeline using P416’s extern interface.

The most challenging part of the switch prototype design is implementing the 32-bit division at line rate.

We use the lookup technique described in §4.1. We required fewer than 2048 TCAM entries (32-bit key,

10-bit result), and about 32 Kb of exact-match memory. These requirements fit comfortably within an FPGA

and are tiny compared to the memories in line-rate switch ASICs.

Each output port of our NetFPGA switch maintains two 128 Kb queues: a high-priority queue for control

packets and a low-priority queue for data traffic.

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 87

4.2.2 MoonGen s-PERC End Host

The s-PERC end host performs two main tasks: (1) receives and resends s-PERC control packets for each

flow, and (2) uses the bandwidth demands stamped in received control packets to perform per-flow rate

limiting. Our prototype uses a timing wheel to limit flow rates, based on Carousel [77]. For our prototype,

we reserve 1 Gb/s of bandwidth for control traffic, leaving 9 Gb/s for data traffic.

4.3 Evaluating s-PERC? for Data Centers

First, we compare convergence times of s-PERC? with (the reactive) RCP algorithm [36] in §4.3.1. Second,

we compare flow completion times (FCTs) of s-PERC? with reactive schemes RCP, a scheduling-based

scheme p-Fabric and an ideal max-min fair allocator in §4.3.2. Both convergence time and FCT results in

this section use the ns-2 [4] simulator. Third, we perform micro-benchmarks to verify that s-PERC? is robust

to dropped control packets and to imprecise calculations that may be done in switch hardware. These micro-

benchmarks use numerical simulations of s-PERC? in Python and are reported in §4.3.3. Finally, in §4.4 we

evaluate our 4 x 10 Gb/s NetFPGA hardware prototype, comparing s-PERC? convergence times with TCP

and DCTCP.

Setup for convergence Time and FCT experiments: We use a three-tier topology with 100 Gb/s edge links

from 144 servers to nine TORs, with 400 Gb/s uplinks to four aggregation switches. The propagation delay

of each link is 0.2 µs, end-host delay is 2.5 µs, and the longest RTT between any two hosts is 11.6 µs for

four hops (4 x 0.2 µs + 4 x 2.5 µs). The switch buffer size is set to 128 KB per port for RCP and s-PERC?

and 2.25 MB per port for p-Fabric. To load balance traffic across different paths, the switches use a modified

ECMP as described in §4.1 (for s-PERC? and RCP2) and standard ECMP for p-Fabric.

4.3.1 Convergence Times

Our first experiments evaluate how the algorithms converge after a fraction of the flows are replaced with new

ones; something we refer to as “churn.”

Workload: We start flows between random pairs of hosts, with 20 flows per server on average. After the

rates have converged, we replace 40% of the flows. We replace all flows at once to evaluate convergence

times of the scheme, as well as robustness to sudden changes in traffic matrix. Our graphs show results for

ten changes per run, over 100 runs, for a total of 1000 convergence tests. The number of flows per server is

the same order of magnitude as the number of simultaneously active flows we observed on congested links

2s-PERC? requires symmetric forward and reverse paths though RCP does not.

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 88

Figure 4.1: CDF of convergence times for 40% churn for RCP and s-PERC?. Note difference in x-axis scales.
Settings- RCP α : 0.4, β : 0.2. s-PERC? initial timeout : 20 us, control overhead : 4%, headroom : 2%.

in simulations of realistic workloads (such as search and data mining) using Poisson arrivals at 80% load (for

FCT experiments in §4.3.2).

Metrics: We say that the flow rates have converged when most of the flows remain within a small distance of

the ideal max-min values for at least 100 consecutive RTTs. Figure 4.1 compares the convergence times for

s-PERC? with RCP when we change 40% of the flows each time the flows converge during the run. We look

at different degrees of accuracy, from when 95% of flows are within 20% of ideal to when 99% of flows are

within 10% of ideal.3

Results: As Figure 4.1 shows, s-PERC? converges ten times faster than RCP. In order to get within 10% of

the ideal rates for at least 99% of flows s-PERC? takes 14 RTTs at the median while RCP needs 174 RTTs. In

fact, it only takes s-PERC? 4 RTTs (median) in order to get within 20% of the ideal rates for at least 95% of

flows; RCP, on the other hand, needs 45 RTTs. Regardless of the metric, s-PERC? is at least ten times faster

than RCP.

4.3.2 Flow Completion Times

Workload: We use flow size distributions from two realistic workloads from data centers running search and

data mining applications with loads of 60% and 80% ([13]) and assume that flow arrival times are Poisson.

Metrics: We look at the normalized flow Completion times (FCTs) of different groups of flows. The actual

3For s-PERC?, we typically only allocate 95% of the capacity for data packets, but we still require it to converge to within 10% of
the ideal, which uses 100% of the capacity for data packets.

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 89

flow completion times are normalized by the time it would take to transmit the flow on an unloaded network.

We group flows based on their size and the fraction of total bytes they carry. We sort the flows in increasing

order of size. The first bin contains the smallest flows that contribute 1% of the total bytes. The remaining

bins contain equal fractions (by bytes contributed) of the remaining flows.

Both workloads we consider are heavy-tailed, where a few flows are extremely large and carry most of

the bytes. Most flows are small and end up in the first bin. For the search workload, the first bin contains 53%

of flows (max flow size: 79 KB, which is roughly half the BDP); for the data-mining workload, the first bin

contains 94% of flows (max flow size: 2381 KB, which is roughly 16 times the BDP). For search, we divide

the remaining flows into three equal groups, each contributing 33% of total bytes. For data-mining, we have

one group that contributes 99.5% of total bytes and carries 8% of the flows.4

Schemes compared: We compare RCP, s-PERC?, p-Fabric, and an ideal max-min allocator. RCP and s-

PERC? are fast rate-allocation schemes that target max-min fairness, and the ideal max-min allocator serves

as reference for both. On the other hand, p-Fabric is a state-of-the-art congestion control scheme that seeks

to emulate SRPT (shortest remaining processing time)– switches schedule packets in increasing order of

remaining flow size, while end hosts use a minimal rate-control scheme (a TCP variant). We evaluate two

versions of s-PERC?. The first version, s-PERC? basic, does not optimize latency for short flows— all flows

must wait to get a rate from the control packets before sending any packets and all flows get the same priority

at all links. In the second version s-PERC? short, we start short flows at line rate and prioritize them at all

links. We define short as flows that are < 1 BDP5.

Results: Consider the search workload at 60% load (Figure 4.2a). First we compare the max-min fair

schemes. For the smallest flows (bin 1), basic s-PERC? and RCP both start at x = 2, because of the ex-

tra RTT it takes to get a starting rate. For the smallest flows, s-PERC? basic is 25-50% better than RCP

because of shorter queues. For the remaining flows that carry 99% of the bytes, both are close to the ideal

max-min allocator and to each other. The optimized version, s-PERC? short, however, is 400% better than

RCP for the smallest flows. The smallest flows start at line rate and see no queues with s-PERC?; hence, they

can get the smallest flow completion time possible. Because these flows finish in less than 1 RTT, we do not

send any control packets to schedule bandwidth for them. As a result, the s-PERC? algorithm allocates all

the link capacity to the remaining larger flows. The additional “schedulable” bandwidth (about 2%) for the

large flows makes s-PERC? short slightly more efficient than s-PERC? basic for the large flows. This effect

is more evident at 80% load.

Next, we compare s-PERC? short with p-Fabric. Note that they try to achieve different global objectives,

4So that the CDF plot is statistically significant given the total number of flows in each experiment (100,000.)
5A BDP is defined as the product of the server’s up-link capacity and the longest RTT in an unloaded network.

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 90

(a) 60% load running web-search workload. Note that there are not enough flows in the fourth bin for the empirical CDF
to be accurate above the horizontal dotted-line (fewer then 30 samples for the 95th percentile.)

(b) 60% load running data-mining workload.

Figure 4.2: FCT results for RCP, s-PERC? (with and without optimizing for short flows), ideal max-min and
p-Fabric at 60% load for search, and data-mining workloads. Normalized FCT on x-axis. Settings– RCP
α : 0.4, β : 0.2. s-PERC? initial timeout : 20 µs, control overhead : 2%, headroom : 2%.

that is, max-min vs SRPT. p-Fabric aims to emulate a greedy SRPT-based algorithm, which is known to

achieve close to optimal average FCTs [13], [19]. This may come at the expense of hurting the largest flows.

As a result, while the middle 66% of flows get better FCTs under p-Fabric, the largest flows get almost 200%

worse throughput. For the smallest flows, optimized s-PERC? is better than p-Fabric at the tail, and both are

close to the minimum possible at the median.

Results at 80% load (Figure 4.3) are qualitatively similar except for two differences. First, the difference

between ideal (and s-PERC?) and p-Fabric for flows in the third bin is larger. Second, for the search workload,

while optimized s-PERC? matches RCP for the large flows, basic s-PERC? is about 5% worse (at the median).

This is because it becomes more important at high loads to have additional “schedulable” bandwidth, which

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 91

Figure 4.3: FCT results for RCP, s-PERC? (with and without optimizing for short flows), ideal max-min and
p-Fabric at 80% load for search workload. Settings– RCP α : 0.4, β : 0.2. Normalized FCT on x-axis.
s-PERC? initial timeout : 20 µs, control overhead : 2%, headroom : 2%. Note that there are not enough
flows in the fourth bin for the empirical CDF to be accurate above the horizontal dotted-line (fewer then 30
samples for the 95th percentile.)

the large flows use efficiently.

Next, consider the data-mining workload at 60% load (Figure 4.2b). Flows that are less than 1 BDP

are part of the first bin and make up less 1% of the total bytes. Hence, optimized s-PERC? can easily send

the short flows at line rate and high priority to obtain the minimum possible flow completion times. The

remaining flows get a rate from the switches so that their FCT curve closely tracks the ideal max-min curve.

This explains the sharp bend for optimized s-PERC? at the 90th percentile for the 1% bin. Results at 80%

load are similar (Figure 4.4).

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 92

Figure 4.4: FCT results for RCP, s-PERC? (with and without optimizing for short flows), ideal max-min and
p-Fabric at 80% load for data-mining workload. Normalized FCT on x-axis. Settings– RCP α : 0.4, β : 0.2.
s-PERC? initial timeout : 20 µs, control overhead : 2%, headroom : 2%.

4.3.3 Micro-Benchmarks

We used numerical simulations of s-PERC? (in Python) to verify that it is robust to control packet drops

and to imprecise rate calculations in hardware. Our simulations use a fully connected network with K links,

where each link has a uniform delay of 10 us (with some random jitter on the order of a nanosecond to

allow reordering of packets). We use static workloads where for each workload, we randomly generate a

set of long-lived flows, where each flow traverses the same number of links (for simplicity.) Note that this

is not a packet-level simulation, and we only perform the calculations involved in control packet processing

at intervals dictated by the link delays and configured timeouts (e.g., every round) using an event-queue.

Moreover, we use a static value of round instead of dynamically adjusting it based on the number of flows.

Robustness to control packet drops

Control packets in s-PERC? are limited to a small fraction (2%-5%) of the link capacity and prioritized so

we expect packet drops to be rare. However, as described in §4.1, s-PERC? can recover from packet drops by

recomputing the aggregate state using shadow variables NumB′ and SumE′ on the side, which are synced

with NumB and SumE every round. We used a fully connected network of ten switches (K = 100 links).

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 93

We fixed the values of round = 200µs (roughly 1.2 RTTs) at every link and RTOctrl = 360µs (almost 2

rounds) at every source. In each run, we started with a randomly generated set of a 400 long lived flows and

let the algorithm run for 200 RTTs with the control packet drop probability at all links set to 0.01% for the

first half of the run (on average, there are at least a few tens of drops in each run.) We observed that in the

time following the last packet drop until the end of the run, s-PERC? converged to the max-min allocation

for all flows in every run.

Calculation precision

We cannot implement infinite precision floating point division at line rate in the switches. However, it is

possible to implement approximate division using lookup tables with mean errors of less than 1% at the cost

of hundreds of Kilobytes of SRAM and tens of entries in the TCAM [34]. We present results from numerical

simulations (in Python) to understand the errors in flow rates due to approximate divisions. We approximated

division by using look-up tables of different sizes. We used a fully connected network of eight to twelve

switches (K = 56 to K = 132 links) and simulated a total of 1500 different static workloads where each

workload has an average of 20 flows per link (140–264 flows). We ran each simulation for 1000 RTTs and

tried three versions of s-PERC? where division is implemented using 32-bit integer look-up tables of different

sizes (13 KB, 52 KB, and 340 KB). We define convergence as the first time when each of the flow rates has

been within T% of the optimal value for at least 200 consecutive RTTs and until the end of the run. We

observed that as the table sizes get smaller the flows stabilize to values that are farther from the optimal or

have wider oscillations around the optimal. Hence we looked at different thresholds for convergence, ranging

from T = 10% to T = 40%.

We found that a table size of at least 52 KB was needed in order for all the workloads to converge

to within 30% of the optimal rates. As shown in Figure 4.5, there isnâĂŹt a significant difference in the

convergence times as we switched from a table of size 52 KB to a table of size 340 KB. This result indicates

that s-PERCâĂŹs precision requirements are easily met in todayâĂŹs switch hardware, which typically have

hundreds of megabytes of look-up tables.

4.4 NetFPGA Hardware Evaluation

We compared TCP Reno, DCTCP, and s-PERC on a test bed with three NetFPGA switches, connecting four

servers using 10 Gb/s links. For each congestion control algorithm, we ran two experiments: (1) an incast

experiment with three senders transmitting to one receiver; (2) a dependency chain experiment in which

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 94

Figure 4.5: CDF of convergence times (to within 30% of ideal) for approximate division with different lookup
table sizes.

multiple bottleneck links depend on each other in order to converge.

The goal of the evaluation is twofold: first, to confirm that s-PERC can be implemented in hardware at

40 Gb/s using the NetFPGA SUME platform (4 x 10 Gb/s); second, to evaluate how much faster a practical

implementation of s-PERC converges compared to existing reactive algorithms.

Setup: Figure 4.6 shows the topology used for both experiments with 10 Gb/s links. For the incast experi-

ment, hosts H1, H2, and H3 send some number of flows to host H4, all starting at approximately the same

time. For the dependency chain experiment, we create a chain of length two: The green and blue flows start

first and then the red flows are added. Before the red flows start, the bottleneck is link B1, which changes to

link B2 when the red flows are added, which in turn allows the green flow to increase its rate.

��IORZV�
I��I�

��IORZV�
I��I�

��IORZ�
I�

%�

%�

+� +� +� +�

Figure 4.6: The topology and traffic pattern used for the two-level dependency chain experiment. Once the
red flows are added, the bottleneck rate of f1 (the green flow) increases as the bottleneck link for f2-f5 (the
blue flows) moves from B1 to B2.

Each of the servers has one dual port 10 GE network interface card. Three 10 GE ports of the NetFPGA

SUME are used for data and control packets, and one 10 GE port is used to monitor traffic through the

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 95

switch. The monitor receives a copy of all packets that pass through the switch, trimmed to about 80 bytes

and appended with a 5 ns resolution timestamp. The servers are synchronized using PTP (to within ten

microseconds) so that we can accurately coordinate the flows across the servers. We use iperf to generate

TCP and DCTCP flows and the DPDK-based application to generate flows for s-PERC.

Metrics: For TCP and DCTCP, convergence is defined as the time from the last flow change until the be-

ginning of a 50 ms window during which an exponentially weighted moving average of each flow rate has

stabilized to within 20% of their respective stable value. For s-PERC, we reserve 1 Gb/s of each link’s band-

width for control traffic and 9 Gb/s for data traffic. Hence, we define convergence relative to max-min rates,

assuming link capacities of 9 Gb/s. Specifically, we measure convergence time as the time from the last flow

change until the control packets of all flows specify a bandwidth demand that is within 20% of their max-min

rates for at least 50 ms.

Results: Table 4.2 shows that s-PERC converges at least 500 times faster than TCP and at least 150 times

faster than DCTCP in small incast scenarios. Furthermore, as the size of the incast increases, the convergence

time for TCP and DCTCP becomes less consistent and in some cases, they fail to converge. On the other

hand, the convergence time of s-PERC in this scenario is solely dictated by the round trip time of the control

packets. Hence it is not significantly affected by the size of the incast as long as there is sufficient bandwidth

for control packets.

Table 4.2: Results for incast experiments using a NetFPGA test bed. Average and standard deviation of
convergence times, where each result is a summary of 10 runs.

Convergence Time (ms)

flows TCP DCTCP s-PERC

2 137 ± 165 45 ± 12 0.27 ± 0.36

3 483 ± 496 44 ± 14 0.23 ± 0.55

10 N/A N/A 0.21 ± 0.29

In the dependency chain experiment, s-PERC achieves a convergence time of 1.56±0.23 ms, and DCTCP

achieves a convergence time of 65 ± 30 ms. TCP, on the other hand, failed to converge for this experiment.

For the workload applied in this experiment, the performance of s-PERC is largely dictated by the timeout

used in the switch to reset MaxE. This timeout must be chosen to be as long as the maximum possible control

packet RTT, which in the case of these experiments was 1 ms. According to Theorem 3.4.4, when the longest

dependency chain is of length two and the maximum RTT is 1 ms, s-PERC’s convergence time is upper-

bounded by 14 ms. Note that this is still almost five times faster than DCTCP’s average convergence time.

CHAPTER 4. EVALUATING S-PERC FOR DATA CENTERS 96

We expect that s-PERC would converge even faster if control packets were prioritized at the NIC.

Figure 4.7: Example convergence behavior for TCP, DCTCP, and s-PERC running on a NetFPGA test bed.
Two flows share a 10 Gb/s link. The first vertical dashed line is the time the second flow is added to the
bottleneck link; the second dashed line is when the flow rates are declared converged.

Figure 4.7 shows a comparison of the convergence behavior for TCP, DCTCP, and s-PERC during a two-

flow incast experiment. TCP generally takes longer than DCTCP for the flow rates to stabilize, and both are

about an order of magnitude slower than s-PERC for this example run. Note that the s-PERC plot shows

convergence of the measured flow rates, which is necessarily longer than the convergence of the bandwidth

demands within the control packets, as listed in Table 4.2.

Chapter 5

Future Work on PERC Algorithms

In this chapter we discuss some future avenues of research that build on s-PERC and PERC algorithms.

5.1 Future Avenues for Research

While our experiments in the previous chapter focused on the data center setting, the s-PERC algorithm

is general enough to work in arbitrary networks. Preliminary simulations of s-PERC for a wide-area net-

work (WAN) suggests that it can converge 10–15 times faster than reactive alternatives. Table 5.1 shows

convergence-time statistics for s-PERC and RCP in a topology similar to Google’s inter–data-center WAN

called B4 [56]. There are 18 different data-center sites, and links connecting different sites have uniform

capacity but heterogeneous propagation delays. Unlike the intra–data-center setting, RTTs of different flows

in a WAN can be very different, ranging from one to hundreds of milliseconds, depending on the flow’s path.

Additionally, the bandwidth-delay–product (BDP) for a 100 ms long path in a 10 Gb/s WAN network is three

orders of magnitude more than the BDP for a 10 µs long path in a 100 Gb/s data-center network. Our exper-

iment is as follows. In each run, we start 100 long-lived flows from every site (toward a randomly selected

destination site) and measure the flow rates (as configured at the source end-host) every millisecond. We run

the simulation for a preconfigured number of seconds. We say that the flow rates have converged when at

least x% of the flows remain within y% of the ideal max-min values for at least ten consecutive RTTs and

until the end of the simulation for a given value of x and y. In Table 5.1, we report the average convergence

times over all runs that converged, for different degrees of convergence, from when 80% of flows are within

30% of ideal to when 99% of flows are within 10% of ideal. The convergence time of each run is normalized

by the average RTT (2 x propagation delay) of flows in the run (for reference, the average RTT of flows over

97

CHAPTER 5. FUTURE WORK ON PERC ALGORITHMS 98

Table 5.1: Convergence times for RCP and s-PERC in a WAN topology for different link rates and conver-
gence metrics. The first table reports results for a WAN with 1 Gb/s links. The first entry of the first table
indicates that when using RCP, in all 100 out of 100 runs, at least 80% of the flows converged to rates that
were within 30% of their max-min fair allocations before the end of the run. The second entry indicates that
the mean convergence time was 78.9 RTTs. Settings—RCP α : 0.4, β : 0.2, header-size: 40 B, simulated
time : 30 and 60 s for 1 and 10 Gb/s respectively. s-PERC initial round : 100 ms, control overhead : 4%,
headroom : 2%, control-packet size: 64 B1, simulated time : 4 s. Common settings—buffer size: 125 KB,
100 flows per server (site).

all 100 runs is 76 ms.) The convergence times of s-PERC are similar at 1 Gb/s and 10 Gb/s whereas that of

RCP gets worse from 1 Gb/s to 10 Gb/s. Note that as the link capacity increases, congestion can build up

more quickly, whereas the time it takes to react to congestion is fixed to RTT time-scale. Further experiments

are needed to understand how s-PERC can improve flow completion times in the WAN.

We note some avenues for further optimization of s-PERC.

• The per-link state in the s-PERC control packet can become a cause for concern in networks with long

paths. The s-PERC control packet (Figure 4.1) carries five pieces of state (roughly eight bytes) for

each link on the path of the flow. It is an open question if one can re-factor the control packet state

(following the example of SLBN [63]) to carry only the bottleneck state (one bit) as per-link state (plus

a constant number of other fields), while maintaining the convergence guarantees of s-PERC.

• The s-PERC algorithm does not take software bottlenecks into account and assumes that servers will

enforce the rates calculated by the network. However, it is possible that because of software bot-

tlenecks, the server may not actually be able to send at the allocated rate. One possible solution is to

model the bottleneck as an additional link (unique to each flow) on the flow’s path, which has a capacity

that varies over time to reflect the software bottleneck rate. We have not implemented this optimization

in our simulations or prototype and leave this to future work.

• When RTTs are not homogeneous, such as in the WAN setting, some flows may be asked to increase
1The maximum path length has seven hops. This would require a 64 B s-PERC header, but we use a minimum-size packet, assuming

that one can optimize the control packet state further.

CHAPTER 5. FUTURE WORK ON PERC ALGORITHMS 99

their rates long before other flows (with longer RTTs) that share the same links have decreased their

rates. This can result in queuing at the shared links. In s-PERC?, the end hosts change their rates

as soon as they receive the control packets. In the data-center setting, it was sufficient to allow a

1%–2% headroom when allocating the link capacity to allow transient queues to drain. However, the

end-host strategy may need to be modified for settings where RTTs are not homogeneous to ensure

that the sending rates at the end-hosts are feasible all times. Charny et al. [28] describe a strategy

that guarantees feasibility of transmission rates for a PERC algorithm, wherein the end host responds

immediately when it is asked to decrease the sending rate but delays any rate increases by a certain

time. Further experiments are needed to understand the benefits of this optimization for s-PERC.

PERC algorithms as presented in this thesis have separate control and data packets with bandwidth re-

served for each. It would be interesting to consider alternate frameworks such as those where control infor-

mation is piggybacked on data packets to understand how they trade off link utilization with convergence

speed.

PERC algorithms can benefit from advances in other areas of networking. We noted earlier that pro-

grammable switches allow an easier path to deployment. New abstractions in the software stack can also be

useful. For example, recent work [77] on new abstractions for rate-limiting individual flows at high speeds

makes it easier to deploy rate-based PERC algorithms in a world where many congestion control algorithms

are window-based. Alternatives to socket-based interfaces can provide PERC algorithms with richer infor-

mation (such as flow sizes or estimate of software bottlenecks) to make better rate allocations.

Another avenue for future research is an incremental deployment strategy for PERC algorithms. One

option to incrementally deploy a PERC algorithm would be to partition the network such that one subset uses

PERC for finding rates for all flows, whereas the other partition uses a legacy congestion control algorithm.

An alternative is a hybrid deployment, where a PERC algorithm and a legacy reactive algorithm coexist in the

same network and serve different sets of applications. For the latter, it is an open question how to dynamically

share bandwidth between the two kinds of algorithms in the same network.

PERC algorithms can also converge quickly to objectives beyond max-min fairness. For example, by

using s-PERC as an underlying weighted max-min fabric for NUMFabric [66], one can converge quickly

to general alpha-fair objectives. It is an open question if there is a PERC algorithm, like s-PERC, that can

achieve the SRPT objective without keeping any individual flow state. Another open question is how to

extend s-PERC to the multi-path setting.

CHAPTER 5. FUTURE WORK ON PERC ALGORITHMS 100

5.2 Summary

The majority of existing congestion control algorithms are essentially reactive control systems, which must

figure out rates purely by reacting to congestion signals typically at RTT time scales, then taking small steps

over many iterations toward convergence.

As networks get faster and more data can fit into each RTT, buffers can fill up quickly even before there is

time to react. Hence, in this thesis, we focused on a different class of algorithms: PERC algorithms, which do

not rely on congestion signals but instead use explicit global information (like the number of flows crossing

a link) to proactively compute rates for all flows.

We believe that congestion control should converge in a time limited only by fundamental dependency

chains, which are a property of the traffic matrix and the network topology. Prior attempts to proactively

calculate the fair-share rates in the network were not successful, because they required per-flow state, and the

algorithms were not proved to converge.

With s-PERC, we have introduced a PERC algorithm that is practical (it does not require per-flow state,

and the calculations are possible at line rate in relatively simple hardware) and guaranteed to converge; our

results from simulations and a hardware prototype show that s-PERC is robust to churn and converges several

times faster than other algorithms.

We have evaluated s-PERC in a data-center setting to validate that s-PERC achieves flow completion

times that are closer to an ideal max-min scheme than a reactive algorithm, because of its faster convergence.

For realistic workloads, s-PERC competes favorably with schemes that favor short flows, such as p-Fabric,

yielding low latencies for short flows and high throughput for large flows. Preliminary simulations indicate

that fast-converging PERC algorithms like s-PERC would be very well suited to long-haul networks where

there is a need for fair bandwidth allocation between flows that that is predictable and avoids congestion. As

we have mentioned in this chapter, there is more work to be done, and so we believe that this is only the first

word about PERC algorithms in high-speed networks, not the last.

Chapter 6

Enabling Other Algorithms in

Programmable Switches

In this chapter, we take a step back from congestion control and explore how to enable other algorithms like

s-PERC to run in programmable switches. We look at the problem of compiling the logical look-up tables in

a P4 program to physical resources in a target programmable switch pipeline while meeting data and control

dependencies in the program. We study the interplay between Integer Linear Programming (ILP) and greedy

algorithms to generate solutions optimized for latency, pipeline occupancy, or power consumption.

6.1 Introduction

The Internet pioneers called for “dumb, minimal and streamlined” packet forwarding [32]. However, over

time, switches have grown complex with the addition of access control, tunneling, overlay formats, etc.,

specified in over 7,000 RFCs. Programmable switch hardware called NPUs [31], [10] were an initial attempt

to address changes. Yet NPUs, while flexible, are too slow: the fastest fixed-function switch chips today

operate at over 2.5Tb/s, an order of magnitude faster than the fastest NPU, and two orders faster than a CPU.

As a consequence, almost all switching today is done by chips like Broadcom’s Trident [25]; arriving

packets are processed by a fast sequence of pipeline stages, each dedicated to a fixed function. While these

chips have adjustable parameters, they fundamentally cannot be reprogrammed to recognize or modify new

header fields. Fixed-function processing chips have two major disadvantages: first, it can take 2–3 years

before new protocols are supported in hardware. For example, the VxLAN field [59]—a simple encapsulation

101

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 102

Packet	 processing	 program	 configura2on	 (P4,	 POF)	

Compiler	
Table	 	 configura2on	 Parser	 configura2on	

Parser	

Target	 reconfigurable	 switch	

Packet	 Metadata	

Queues/
Scheduling	

Match+Ac2on	 Tables	

Figure 6.1: A top-down switch design.

header for network virtualization—was not available as a chip feature until three years after its introduction.

Second, if the switch pipeline stages are dedicated to specific functions but only a few are needed in a given

network, many of the switch table and processing resources are wasted.

A subtler consequence of fixed-function hardware is that networking equipment today is designed bottom-

up rather than top-down. The designer of a new router must find a chip datasheet conforming to her require-

ments before squeezing her design bottom-up into a predetermined use of internal resources. By contrast, a

top-down design approach would enable a network engineer to describe how packets are processed and adjust

the sizes of various forwarding tables, oblivious to the the underlying hardware capabilities (Figure 6.1). Fur-

ther, if the engineer changes the switch mid-deployment, she can simply install the existing program onto the

new switch. The bottom-up design style is also at odds with other areas of high technology: for example, in

graphics, the fastest DSPs and GPU chips [68], [84] provide primitive operations for a variety of applications.

Fortunately, three trends suggest the imminent arrival of top-down networking design:

1. Software-Defined Networking (SDNs): SDNs [49], [69] are transforming network equipment from a

vertically integrated model towards a programmable software platform where network owners and operators

decide network behavior once deployed.

2. Reconfigurable Chips: Emerging switch chip architectures are enabling programmers to reconfigure the

packet processing pipeline at runtime. For example, the Intel FlexPipe [3], the RMT [24], and the Cav-

ium XPA [2] follow a flexible match+action processing model that maintains performance comparable to

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 103

Compiler	

Table	
configura2on	

Parser	
configura2on	

Program	 Configura2on	
P4	 Program	

Intermediate	 representa2on	

...	

Target	 switch	

Parser	

,	

Figure 6.2: Compiler input and output.

fixed-function chips. Yet to accommodate flexibility, the switches have complex constraints on their pro-

grammability.

3. Packet Processing Languages: Recently, new languages have been proposed to express packet process-

ing, like Huawei’s Protocol Oblivious Forwarding [8] and P4 [23], [7], [5]. Both POF and P4 describe how

packets are to be processed abstractly—in terms of match+action processing—without referencing hardware

details. P4 can be thought of as specifying control flow between a series of logical match+action tables.

With the advent of programmable switches and high-level switch languages, we are close to programming

networking behavior top-down. However, a top-down approach is impossible without a compiler to map the

high-level program down to the target switch hardware. In this chapter, we the design of such a compiler,

which maps a given program configuration—using an intermediate representation called a Table Dependency

Graph, or TDG (§6.2.1)—to a target switch. The compiler should create two items: a parser configuration,

which specifies the order of headers in a packet, and a table configuration, which is a mapping that assigns

the match+action tables to memory in a specific target switch pipeline (Figure 6.2). Previous research has

shown how to generate parsing configurations [42]; the second aspect, table configuration, is our focus.

To understand the compilation problem, we first need to understand what a high-level packet processing

language specifies and how an actual switch constrains feasible table configurations.

6.1.1 Packet Processing Languages

High-level packet processing languages such as P4 [23] must describe four things:

• Abstract Switch Model: P4 uses the abstract switch model in Figure 6.1 with a programmable parser

followed by a set of match+action tables (in parallel and/or in series) and a packet buffer.

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 104

• Headers: P4 declares names for each header field, so the switch can turn incoming bit fields into typed

data the programmer can reference. Headers are expressed using a parse graph, which can be compiled

into a state machine using the methods of [55], [42].

• Tables: P4 describes the logical tables of a program, which are match+action tables with a maximum

size; examples are a 48-bit Ethernet address exact match table with at most 32,000 entries, or an 8K-

entry table of 256-bit wide ACL matches.

• Control Flow: P4 specifies the control flow that dictates how each packet header is to be processed,

read, and modified. A compiler must map the program while preserving control flow; we give a more

detailed example of this requirement in §6.2.1.

6.1.2 Characteristics of Switches

Once we have a high-level specification in a language, the compiler must work within the constraints of a

target switch, which include the following:

• Table sizes: Hardware switches contain memories that can be accessed in parallel and whose number

and granularity are constrained.

• Header field sizes: The width of the bus carrying the headers limits the size and number of headers

that the switch can process.

• Matching headers: There are constraints on the width, format, and number of lookup keys to match

against in each match+action stage.

• Stage Diversity: A stage might have limited functionality; for example, one stage may be designed for

matching IP prefixes, and another for ACL matching.

• Concurrency: The biggest constraints often come from concurrency options. The three recent flexible

switch ASICs (FlexPipe, RMT, XPA) are built from a sequential pipeline of match+action stages,

with concurrency possible within each stage. A compiler must analyze the high-level program to find

dependencies that limit concurrency; for example, a data dependency occurs when a piece of data in

a header cannot be processed until a previous stage has finished modifying it. We follow the lead of

Bosshart, et al. [24] and express dependencies using a TDG (§6.2.1).

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 105

ethernet	
dMAC:	 48	
sMAC:	 48	
etherType:	 16	 vlan_tag	

pcp:	 3	
cfi:	 1	
vlan:	 12	
etherType:	 16	

ipv4	
ver+ihl+diff:	 16	
totalLen:	 16	
id+flags+frag:	 32	
Dl:	 8	

std_meta	
ig_port:	 8	
eg_port:	 8	
mcast_idx:	 16	
drop_code:	 8	 <end>

protocol: 8
checksum: 16
dIP: 32
sIP: 32

(a) The parse graph specifies the order of the packet headers (green); the meta-
data (blue)
is separate. All field names and lengths (in bits) are also specified.

Table name l Match type el nl

MAC learning 1 exact 4000 (2)
Routable 2 exact 64 (3, 4, 5)
Unicast 3 prefix 2000 (5)

Multicast 4 prefix 500 (6)
Switching 5 exact 4000 (7)

IGMP 6 ternary 500 (to CPU)
ACL 7 ternary 1000 (exit)

(b) Each logical table l has a table name,
maximum entry count el, and next table
addresses nl.

Exit to CPU MAC	 Learning	 (1)	
f1:	 	 ethernet.sMac,	
	 	 	 	 	 	 vlan_tag.vlan	
a1:	 	 null	

Routable (2)
f2:	 	 ethernet.sMac,	
	 	 	 	 	 	 ethernet.dMac,	
	 	 	 	 	 	 	 	 vlan_tag.vlan	
a2:	 	 null	

Unicast	 Rou@ng	 (3)	
f3: 	 ipv4.dIPasdfsadfas	 	
a3:	 	 ethernet.sMac,	

	 ethernet.dMac,	
	 vlan_tag.vlan	

Switching	 (5)	
f5:	 	 ethernet.dMac,	

	 vlan_tag.vlan	
a5:	 	 std_meta.mcast_index,	

ACL	 (7)	
f7:	 	 <all>	
a7:	 	 std_meta.drop_code	

ucast?

mcast? Mul@cast	 Rou@ng	 (4)	

f4: 	 ipv4.dIPasdfsadfas	 	
a4:	 	 std_meta.mcast_idx	

IGMP	 (5)	
f6: 	 ipv4.dIP,	

	 vlan_tag.vlan,	
	 std_meta.ig_portsadfas	 	

a6:	 	 std_meta.mcast_idx	

Exit
LA

N?

(c) The control flow program. Each table l has match fields fl and modified fields al.

Figure 6.3: A packet processing program named L2L3 describing a simple L2/L3 IPv4 switch.

6.1.3 Approach and Contributions

We define and systematically explore how to build a switch compiler by using abstractions to hide hard-

ware details while capturing the essence required for mapping (§6.2 and §6.3). Ideally we would like a

switch-dependent front-end preprocessor, and a switch-independent back-end; we show how to relegate some

switch-specific features to a preprocessor. We identify key issues for any switch compiler: table sizes, pro-

gram control flow, and switch memory restrictions. In a sense, we are adapting instruction reordering [57], a

standard compilation mechanism, to efficiently configure a packet-processing pipeline. We reinterpret tradi-

tional control and data dependencies [57] in a match+action context using a Table Dependency Graph (TDG).

A second contribution is to compare greedy heuristic designs to Integer Linear Programming (ILP) ones;

ILP is a more general approach that lets us optimize across a variety of objective functions (e.g., minimizing

latency or power). We analyze four greedy heuristics and several ILP solutions on two switch designs,

FlexPipe and RMT. For the smaller FlexPipe architecture, we show that ILP can often find a solution when

greedy fails. For RMT, the best greedy solutions can require 38% more stages, 42% more cycles, or 45%

more power than ILP. We argue that with more constrained architectures and more complex programs (§6.6),

ILP approaches will be needed.

A third contribution is exploring the interplay between ILP and greedy, given ILP’s optimal mappings

despite its longer runtime. For each switch architecture, we design a tailored greedy algorithm to use when

a quick fit suffices. Further, by analyzing the ILP for the “tightest" constraints, we find we can improve the

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 106

greedy heuristics. Finally, a sensitivity analysis shows that the most important chip constraints that limit

mapping for our benchmarks are the degree of parallelism and per-stage memory.

We proceed as follows. §6.2 defines the mapping problem and TDG, §6.3 abstracts FlexPipe and RMT

architectures, §6.4 presents our ILP formulation, and §6.5 describes greedy heuristics. §6.6 presents experi-

mental results, and §6.7.3 describes sensitivity analysis to determine critical constraints.

6.2 Problem Statement

Our objective is to solve the table configuration problem in Figure 6.2. We focus on mapping P4 programs to

FlexPipe and RMT, while respecting hardware constraints and program control flow. Since the abstract switch

model in Figure 6.1 does not model realistic constraints such as concurrency limits, finite table space, and

finite processing stages, the compiler needs two more pieces of information. First, the compiler creates a table

dependency graph (TDG) from the P4 program to deduce opportunities for concurrency, described below.

Second, the compiler must be given the physical constraints of the target switch; we consider constraints for

specific chips in §6.3.

6.2.1 Table Dependency Graph

We describe program control flow using an example P4 program called L2L3. Figure 6.3 describes the

program by showing three of the four items described in §6.1.1: headers, tables, and control flow. The fourth

item, the abstract switch model, is described in §6.3.

Our L2L3 program supports unicast and multicast routing, Layer 2 forwarding and learning, IGMP snoop-

ing, and a small access control list (ACL) check. Figure 6.3a is a parse graph declaring three different header

fields (Ethernet, IPv4, and VLAN) and the metadata used during processing. The features and control flow

of the six logical tables in L2L3 are shown in Figure 6.3b and 6.3c.

Table l has attributes (fl, el, al, nl) that determine how a program should be allocated onto a target switch.

A set of match fields fl, from the packet header or metadata, are matched against el table entries. For example,

the IPv4 unicast routing table in L2L3 matches a 32-bit IPv4 destination address and holds up to 2,000 entries.

In practice, table l may have much fewer than el entries, but the programmer provides el as an upper bound.

Tables can have different match types: exact, prefix (longest prefix match), or ternary (wildcard). If the match

type is ternary or prefix, the set fl also specifies a bit mask. Based on the match result, the table performs

actions on modified fields al and jumps to one of the tables specified in the set of next table addresses, nl.

Figure 6.3c illustrates how header fields are processed by logical tables in an imperative control flow

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 107

Match dependency
Action dependency

Switching	 ACL	 MAC	
learning	

Successor dependency
Reverse Match dependency

Unicast	
Rou7ng	

IGMP	 Mul7cast	
Rou7ng	 Exit to CPU Routable	

Figure 6.4: Table dependency graph for the L2L3 program.

program. For example, the unicast routing table sets a new destination MAC address and VLAN tag before

visiting the switching table, which sets the egress port, and so on. The compiler must ensure that the matched

and modified headers in each table correctly implement the control flow program.

We define a table dependency graph (TDG) as a directed acyclic graph (DAG) of the dependencies (edges)

between the N logical tables (vertices) in the control flow. Dependencies arise between logical tables that lie

on a common path through the control flow, where table outcomes can affect the same packet.

Figure 6.4 shows the TDG for our L2L3 program, which is generated directly from the P4 control flow

and table description in Figure 6.3. From the next table addresses it is evident that some tables precede others

in an execution pipeline; more precisely, Table A would precede Table B in an execution pipeline if there is

a chain of tables l1, l2, . . . , lk from A to B, where l1 ∈ nA, l2 ∈ nl1 , etc., and B ∈ nlk . If the result of Table

A affects the outcome of Table B, we say that Table B has a dependency on Table A. In this case, there is an

edge from Table A to Table B in the table dependency graph.

Different types of dependencies affect both the arrangement of tables in a pipeline and the pipeline la-

tency.We present the three dependencies described in [24] and introduce a fourth below.

1. Match dependency: Table A modifies a field that a subsequent Table B matches.

2. Action dependency: Tables A and B both change the same field, but the end result should be that of

Table B, which modifies later.

3. Successor dependency: Table A’s match result determines whether Table B should be executed or

not. More formally, there is a chain of tables l1, . . . , lk from A to B, where l1 ∈ nA, l2 ∈ nl1 , etc., and

B ∈ nlk , such that every table li 6= A in this chain is followed by B in each possible execution path.

Additionally, there is a chain of next table addresses from A that does not go through B. For example, the

routable table’s outcome determines whether multicast routing and IGMP will be executed. Thus, both have

successor dependencies on routable. On the other hand, IGMP does not have a successor dependency on

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 108

106 blocks
1K (80b)
SRAM

16 blocks 2K
(160b) TCAM

...

106 blocks
1K (80b)
SRAM

16 blocks 2K
(160b) TCAM

(a) RMT switch as described in [24].

2 blocks
64(48b)
Mapper

12 blocks
1K (36b) FFU

12 blocks
1K (36b) FFU

4 blocks
16K (36b)
BST

4 blocks
16K (72b)
Hash table

(b) Intel FlexPipe switch as described in [3].

RMT

s
Mem. Type m bm wm dmName

1-32 SRAM exact 1 106 80b 1K
TCAM ternary 2 16 40b 2K

(c) Memory information for RMT.

FlexPipe

s
Mem. Type m bs,m wm dmName

1 Mapper exact 1 1 48b 64
2-3 FFU ternary 2 12 36b 1K
4 BST prefix 3 4 36b 16K

5
Hash exact 4 4 72b 16K
Table

(d) Memory information for FlexPipe.

Figure 6.5: Switch configurations for RMT and FlexPipe. The tuple (s,m) refers to memory type m (m ∈
{1, ...,K}) in the stage indexed by s ∈ {1, ...,M}. Each (s,m) has attributes (bs,m, wm, dm), where bs,m is
the number of blocks of the m-th memory type, and each of these blocks can match dm words (the “depth”
of each block) of maximum width wm bits.

multicast routing, or vice versa.

4. Reverse match dependency: Table A matches on a field that Table B modifies, and Table A must

finish matching before Table B changes the field. This often occurs, as in our example, where source MAC

learning is an item that occurs early on, but the later Unicast table modifies the source MAC for packet exit.

Note that these dependencies roughly map to control and data dependencies in traditional compiler lit-

erature [16], where a match on a packet header field (or metadata) corresponds to a read and an action that

updates a packet header (or metadata) corresponds to a write (Table 6.1).

Switch compiler Traditional compiler

Match dependency Read-After-Write

Action dependency Write-After-Write

Successor dependency Control dependence

Reverse-match dependency Write-After-Read

Table 6.1: Mapping switch compiler dependencies to traditional compiler dependencies.

While the TDG is strictly a multigraph, as there can be multiple dependencies between nodes, the mapping

problem only depends on the strictest dependency that affects pipeline layout; the other dependencies can be

removed to leave a graph. In summary, a TDG is a DAG of N logical tables (vertices) and dependencies

(edges), where table l ∈ {1, . . . , N} has match fields, maximum match entries, modified fields, and next

table addresses, denoted by fl, el, al, and nl, respectively.

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 109

6.3 Target Switches

The two backends we use—RMT [24] and Intel’s FlexPipe [3]—represent real high-performance, programmable

switch ASICs. Both conform to our abstract forwarding model (Figure 6.1) by implementing a pipeline of

match+action stages and can run the L2L3 program in Figure 6.3. While both switches have different con-

straints, we can define hardware abstractions common to both chips: a pipeline DAG, memory types, and

assignment overhead. We describe these abstractions and switch-specific features, and highlight how our

compiler represents each chip’s constraints.

Pipeline Concurrency: We model the physical pipeline of each switch using a DAG of stages as shown in

Figures 6.5a and 6.5b; a path from the i-th stage to the j-th stage implies that stage i starts execution before

stage j. In the FlexPipe model (Figure 6.5b), the second Frame Forwarding Unit (FFU) stage and the Binary

Search Tree (BST) stage can execute in parallel because there is no path between them.

Memory types: Switch designers decide in advance the allocation of different memory blocks based on

programs they anticipate supporting. We abstract each memory block as having a memory type that supports

various logical match types (§6.2.1). For example, in RMT, the TCAM allows ternary match type tables,

while SRAM supports exact match only; in FlexPipe, FFU, hash tables, and BST memory types support

ternary, exact, and prefix match, respectively.

Memory information for RMT and FlexPipe are in Tables 6.5c and 6.5d. We annotate the DAG to show

the number, type and size of the memory blocks in each stage.

Assignment overhead: A table may execute actions or record statistics based on match results; these actions

and statistics are also stored in the stage they are referenced. The number of blocks for action and statistics

memory, collectively referred to as assignment overhead, is linearly dependent on the amount match memory

a table has in a stage. In RMT, both TCAM and SRAM match memory store their overhead memory in

SRAM; we ignore action and statistics memory in FlexPipe.

Combining entries: RMT allows a field to efficiently match against multiple words in the same memory

block at a time, a feature we call word-packing. Different packing formats allow match entries to be efficiently

stored in memory; for example, a packing format of 3 creates a packing unit that strings together two memory

blocks and allows a 48b MAC address field to match against three MAC entries simultaneously in a 144b word

(Figure 6.6a). FlexPipe only supports stringing together the minimum number of blocks required to match

against one word, but does allow table-sharing in which multiple logical tables share the same block of

SRAM or BST memory, provided the two tables are not on the same execution path. Table-sharing is shown

in Figure 6.6b: since routing tables make decisions on either IPv4 or IPv6 prefixes, both sets of prefixes can

share memory.

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 110

1K words/
 1 block

3K words/
 2 block

5K words/
 3 block

 (80b)
48b

48b

48b

(a) Word-packing for SRAM blocks
with (wm, dm) = (80b, 1000).

IPv6 network prefix
(64b)

IPv4
(32b)

IPv4
(32b)

flag: match on IPv6 or IPv4

(b) Table-sharing.

Figure 6.6: Block layout features in different switches.

Per-stage resources: RMT uses three crossbars per stage to connect subsets of the packet header vector to

the match and action logic. Matches in SRAM and TCAM, and actions all require crossbars composed of

eight 80b-wide subunits for a total of 640 bits. A stage can match on at most 8 tables and modify at most 8

fields. There appears to be no analogous constraints for FlexPipe.

Latency: Generally, processing will begin in each pipeline stage as soon as data is ready, allowing for

overlapping execution. However, logical dependencies restrict the overlap (Figure 6.7). In RMT, a match

dependency means no overlap is possible, and the delay between two stages will be the latency of match

and action in a stage: 12 cycles. Action dependent stages can have their match phases overlap, and so the

minimum delay is 3 cycles between the stages. Successor and reverse-match dependencies can share stages,

provided that tables can be run speculatively [24]. Note that even if there are no dependencies there is a one

cycle delay between successive stages.

While RMT’s architecture requires that match or action dependent tables be in strictly separate stages,

FlexPipe’s architecture resolves action dependencies at the end of each stage, and thus only match depen-

dencies require separate stages. In summary, the compiler models specific switch designs abstractly using a

DAG, multiple memory blocks per stage, constraints on packing, per-stage resources and latency characteris-

tics. While we have described how to model RMT and FlexPipe, newer switches can be described using the

same model if they use some form of physical match+action pipeline.

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 111

Time	 (cycles)	

match	 ac/on	

12	

Stage	 1	

Stage	 2	 match	 ac/on	

match	 ac/on	 Stage	 1	

Stage	 2	 match	 ac/on	 3

match	 ac/on	 Stage	 1	

Stage	 2	 match	 ac/on	 1

Match	

Ac/on	

Successor,	
Reverse,	 None	

Figure 6.7: Dependency types and latency delays in RMT. In this figure, TableB in Stage 2 depends on Table
A in Stage 1.

6.4 Integer Linear Programming

To build a compiler, we must map programs (parse graphs, table declarations, and control flow) to target

switches (modeled by a DAG of stages with per-stage resources) while maximizing concurrency and re-

specting all switch constraints. Because constraints are integer-valued (table sizes, crossbar widths, header

vectors), it is natural to use integer linear programming (ILP). If all constraints are linear constraints on in-

teger variables and we specify an objective function (e.g., “use the least number of stages" or “minimize

latency"), then fast ILP solvers (like CPLEX [47]) can find an optimal mapping.

We now explain how to encode switch and program constraints and specify objective functions. We divide

the ILP-based compiler into a switch-specific preprocessor (for switch-specific resource calculation) and a

switch-dependent compiler. We start with switch-independent common constraints.

6.4.1 Common Constraints

The following constraints are common to both switches:

Assignment Constraint: All logical tables must be assigned somewhere in the pipeline. For example, if a

table l has el = 5000 entries, the total number of entries assigned to that logical table, or Ws,l,m over all

memory types m and stages s, should be at least 5000. Hence, we require:

∀l :
∑
s,m

Ws,l,m ≥ el. (6.1)

Capacity Constraint: For each memory type m, the aggregate memory assignment of table l to stage s,

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 112

Us,l,m, must not exceed the physical capacity of that stage, bs,m:

∀s,m :
∑
l

Us,l,m ≤ bs,m. (6.2)

We define the assignment overhead as λm,l, which denotes the necessary number of action or statistics blocks

required for assigning one match block of table l in memory type m. Thus the aggregate memory assignment

is the sum of match memory blocks µs,l,m and assignment overhead blocks:

Us,l,m = µs,l,m
(
1 + λl,m

)
.

Dependency Constraint: The solution must respect dependencies between logical tables. We use boolean

variable DA,B to indicate whether Table B depends on Table A and the start- and end-stage numbers of any

table l are denoted by Sl and El, respectively. If table B depends on Table A’s results, then the first stage of

Table B’s entries, SB , must occur after the match results of Table A are known, which is at the earliest EA

(tables are allowed to span multiple pipeline stages):

∀DA,B > 0 : EA ≤ SB . (6.3)

If A must completely finish executing before B begins (e.g., match dependencies), then the inequality in

Equation 6.3 becomes strict.

6.4.2 Objective Functions

A key advantage of ILP is that it can find an optimal solution for an objective function. We focus our attention

on three objective functions.

Pipeline stages: To minimize the number of pipeline stages a program uses, σ, we ask ILP to minimize:

min σ, (6.4)

where for all stages s:

If
∑
l,m

Us,l,m > 0 : σ ≥ s.

Latency: We can alternatively pick an objective function to minimize the total pipeline latency, which is

more involved. Consider RMT, in which match and action dependencies both affect when a pipeline stage

can start (whereas successor and reverse-match dependencies do not affect when a stage starts). If a table in

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 113

stage s has a match or action dependency on a table in stage s′, then s′ cannot start until 12 or three clock

cycles, respectively, after s. Building on how we expressed dependencies in Equation 6.3, we assign stage s

a start time, ts, where ts is strictly increasing with s. Now consider two tables A and B, and assume Table B

has a match dependency (i.e., 12-cycle wait) on Table A. EA is the last stage A resides in, and SB is the first

stage B resides in. We constrain SB as follows:

tEA
+ 12 ≤ tSB

.

We write the same constraints for all pairs of tables with action dependencies (three-cycle wait). Then we

minimize the start time of the last stage, stage M :

min tM . (6.5)

Power: Our third objective function minimizes power consumption by minimizing the number of active

memory blocks, and where possible, uses SRAM instead of TCAM. The objective function is therefore as

follows:

min
∑
m

gm

(∑
s,l

Us,l,m

)
, (6.6)

where gm(·) returns the power consumed for memory type m.

6.4.3 Switch-Specific Constraints

Our ILP model requires switch-specific constraints, and we push as many details as possible to our prepro-

cessor.

RMT: We start with RMT’s ability to pack memory words together to create wider matches. Recall from §6.3

that a packing format p packs together pwords in a single wide match;Bl,m,p specifies the number of memory

type m blocks required for p words of table l in a single wide match. While Bl,m,p is precomputed by the

preprocessor from the widths of the table entries and memory blocks, the ILP solver decides the number

of packing units Ps,l,m,p for each stage. We can thus find the number of match memory blocks µs,l,m and

number of assigned entries Ws,l,m for each stage:

µs,l,m =

pmax∑
p=1

Ps,l,m,pBl,m,p.

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 114

b: 1 b: 2 b: 3 b: 4

ord:	 3	 (sl	 1);	 ord:	 2	 (sl	 2)	
(20	 rows)	

ord:	 1	 (1	 row)	
ord:	 2	
(5	 rows)	

ord:	 1	
(3	 rows)	

ord:	 1	
(26	 rows)	

row 1
row 2

row 6

Figure 6.8: FlexPipe table sharing in detail. The pink table occupies the first two memory blocks, but different
sets of tables share the first two memory blocks.

Ws,l,m =

pmax∑
p=1

Ps,l,m,p(p · dm),

where p ·dm is the number of table l’s entries that can fit in a single packing unit of format p in memory type

m.

Per-Stage Resource Constraints: We must incorporate RMT-specific constraints such as the input action

and match crossbars. The preprocessor can compute the number of input and action subunits needed for a

logical table as a function of the width of the fields on which it matches or modifies, respectively.

FlexPipe: FlexPipe can share memory blocks at a finer granularity than RMT, and so we need to preprocess

the constraints differently for FlexPipe.

To support configurations as in Figure 6.8, we need to know which rows within a set of blocks are assigned

to each logical table. This is because multiple tables can share a block, and different blocks associated with

the same table can have very different arrangements of tables, such as blocks 1 and 2 assigned to the pink

table.

Note that this issue does not arise in RMT; all memory blocks that contain a logical table will be uniform,

and a solution can be rearranged to group together all memory blocks of a particular table assignment in a

stage. We thus index the memory blocks b ∈ 1, . . . , bs,m, where bs,m is the maximum number of blocks of

type m in stage s.

The solver decides how many logical table entries to assign to each block in each stage. For the remain-

der of this discussion, we differentiate between logical table entries and physical memory block entries by

referring to the latter as rows, where row 1 and row em are the first and last rows, respectively, of a block of

memory type m.

For table l assigned to start in the bth block of memory type m, we use the variable r̂l,m,b to denote the

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 115

starting row, and the variable rl,m,b to denote the number of consecutive rows that follow.1 To make sure

rows do not overlap within a block, we constrain their placement by introducing the notion of order. Order

is defined by the variable θ ∈ {1, . . . , θmax}, where θmax is the maximum number of logical tables that can

share a given memory block. In Figure 6.8, the light-blue assignment has order θ = 1, because it has the

earliest row assignment. We define two additional variables, ρ̂m,b,θ and ρm,b,θ, the start row and the number

of rows of table with order θ, and we prevent overlaps by constraining the assignment as follows.

If θ-th order is assigned:

ρ̂m,b,θ−1 + ρm,b,θ ≤ ρ̂m,b,θ

To calculate the assignment constraint (Equation 6.1), the total number of words assigned to table l in stage

s is:

Ws,l,m =

bs,m∑
b=1

rl,m,b.

where rl,m,b denotes the number of rows assigned for table l in all orders θ in block b of memory type m.

While the capacity constraint in Equation 6.2 is per stage, in FlexPipe we must also implement a capacity

constraint per block. We restrict the number of rows we can assign to a block by checking the last row of the

last order, θmax:

ρ̂m,b,θmax
+ ρm,b,θmax

≤ dm.

Dependency Constraints: Fortunately, the dependency analysis is similar to RMT in §6.4.3, with the addi-

tional feature that only match dependencies require a strict inequality; action, successor, and reverse-match

dependencies can be resolved in the same stage.

Objectives: Since FlexPipe has a short pipeline, we minimize the total number of blocks used across all

stages.

6.5 Greedy Heuristics

Since a full-blown optimal ILP algorithm takes a long time to run, we also explored four simpler greedy

heuristics for our compiler: First Fit by Level (FFL), First Fit Decreasing (FFD), First Fit by Level and Size

(FFLS), and Most Constrained First (MCF). All four greedy heuristics work as follows: First, sort the logical

tables according to a metric. For each logical table in sorted order, pick the first set of memory blocks in

1Note that if a second table, l′, has entries in an adjacent block b′, but the entries are wide and overflow into block b, r̂l′,m,b = 0
because the starting row for l′ was not assigned in this block; similarly, rl,m,b is irrelevant.

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 116
S

R
A

M
 TC

A
M

(a) FFL: Tables are placed in order of level. This configuration takes five stages and wastes all of the TCAMs in the
second stage.

S
R

A
M

TC

A
M

(b) FFLS: The first purple table with a large ternary table following it is placed first, even though the blue table has more
match dependencies following it. This configuration uses only four stages.

Figure 6.9: Multiple-metric heuristics. A toy RMT example where a table with a single, dependent large
ternary table must be placed before a table with a longer dependency chain.

the first pipeline stage the table can fit in without violating any capacity constraints, dependencies, or switch-

specific resources. If it cannot fit, the heuristic finds the next available memory blocks, in the same stage or

a subsequent stage. Like ILP, we leave switch-specific resource calculation like crossbar units and packing

formats to a preprocessor. A heuristic terminates when all tables have been assigned or when it runs out of

resources.

6.5.1 Ordering Tables

The quality of the mapping depends heavily on the sort order. Three sorting metrics seem to matter most in

our experiments, described in more detail below.

Dependency: Tables that come early in a long dependency chain should be placed first because we need

at least as many stages left as there are match or action dependencies. We thus define the level of a table to

be the number of match or action dependencies in the longest path of the TDG from the table to the end.

Word width: In RMT, tables with wide match or action words use up a large fraction of the fixed resources

(action/input crossbars) and should be prioritized; they may not have room if smaller tables are assigned first.

In FlexPipe, tables with larger match word width should be assigned first because there is less memory per

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 117

stage.

Memory types: While blocks with memory types like TCAM, BST, and FFU can also fit exact-match

tables, exact memory like SRAM is generally more abundant than flexible memory due to switch costs.

Thus, in FlexPipe, heuristics should prioritize the assignment of more restrictive tables, or tables that can

only go in ternary or prefix memories; otherwise, assigning exact match tables to flexible memories first can

quickly lead to memory shortage. In RMT, restrictive tables go into TCAM, available in every stage. But

large TCAM tables in a long dependency chain push back tables that follow them. So we should prioritize

tables that imply high TCAM usage in their dependency chain.

6.5.2 Single-Metric Heuristics

Two of our greedy heuristics sort on a single metric: FFL is inspired by bin packing with dependencies [40]

and sorts on table level, where tables at the head of long dependency chains are placed earlier. FFD is based

on the First Fit Decreasing Heuristic for bin packing [40]. In our case, we prioritize tables that have wider

action or match words and consequently use more action or input crossbar subunits. This heuristic should

work well when fixed switch resources—not program table sizes—are the limiting factor.

6.5.3 Multi-Metric Heuristics

Some programs fit well if we consider only one metric: if there are plenty of resources at each stage, we need

only worry about long dependency chains. Our next two heuristics sort on multiple metrics. Sometimes being

greedy on just one metric might not work, as shown in Figure 6.9: here, our first multi-metric heuristic FFLS

incorporates dependencies and TCAM usage, where tables with larger TCAM tables in their dependency

chains are assigned earlier.

Our other multi-metric heuristic, MCF, is motivated by FlexPipe’s smaller pipeline with more varied

memory types. We pick the “most constrained" table first: a table restricted to a particular memory type and

with a high level should have higher priority. Ties are broken by placing the table with wider match words

first. FFL and FFD that ignore the memory type do not work well for FlexPipe, which does not have uniform

memory layout per stage like RMT; for example, ternary match tables can only go in stages 2 or 3 in FlexPipe.

Variations: Each of the basic four heuristics has two variants: by default, an exact match table spills into

TCAMs if it runs out of SRAMs in a stage. Our first variant prevents the spillage to preserve the TCAMs

for ternary tables. Second, by default, when we reserve space for a TCAM table, we do not reserve space in

SRAM to hold the associated action data, which means we may run out of SRAM and not be able to use the

TCAM. Our second variant sets aside SRAM for action memory from yet-to-be allocated ternary tables; in

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 118

our experiments we fix the amount to be 16 SRAMs.

There can be cases where the best combination of metrics is unclear, as in Figure 6.10 for RMT and

Figure 6.11 for FlexPipe. Our experiments in §6.6 seek the right combination of metrics for an efficient

greedy compiler.

FFD

FFL

Optimal

Figure 6.10: Greedy performing much worse than ILP (RMT). In this toy example, the blue and purple tables
form separate match dependency chains. The initial (blue) table in the optimal mapping is narrower and has
a lower level than the purple table, counterintuitive to both FFD and FFL metrics.

exact
exact
ternary exact exact

(a) Toy example program. The ternary (green) table has the most restrictive memory type, while the exact (blue) table is
least restrictive. The violet/pink tables form a match dependency chain.

ternary	 prefix	 exact	

(b) MCF solution (infeasible). The ternary stage is initially filled with the higher priority (green and pink) tables, leaving
no room for the wider blue table.

ternary	 prefix	 exact	

(c) Optimal solution. The pink table is split across ternary blocks, leaving enough room for the blue table.

Figure 6.11: Greedy performing much worse than ILP (FlexPipe.)

6.6 Experiments

We tested our algorithms by compiling the four benchmark programs listed in Table 6.2 for the RMT and

FlexPipe switches.

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 119

Name Switch N
Dependencies

Match Action Other

L2L3
RMT 24 23 2 10

-Complex

L2L3 RMT 16 4 0 15

-Simple FlexPipe 13 12 0 4

L2L3 RMT 19 6 1 16

-Mtag FlexPipe 11 9 1 3

L3DC RMT 13 7 3 1

Table 6.2: Logical program benchmarks for RMT and Flexpipe.
N is the number of tables.

The benchmarks are in Table 6.2: L2L3-Simple, a simple L2/L3 program with large tables; L2L3-Mtag,

which is L2L3-Simple plus support for the mTag toy example described in [23]; L2L3-Complex, a complex

L2/L3 program for an enterprise DC aggregation router with large host routing tables, and L3DC, which is

a program for Layer 3 switching in a smaller enterprise DC switch. Differently sized, smaller variations of

the L2L3-Simple and L2L3-Mtag programs are used for FlexPipe. L2L3-Complex and L3DC cannot run on

Flexpipe because the longest dependency chain for each program needs 9 and 6 stages respectively, exceeding

FlexPipe’s 5-stage pipeline.

ILP: We used three ILP objective functions for RMT: number of stages (ILP-Stages), pipeline latency (ILP-

Latency), and power consumption (ILP-Power). For FlexPipe, since we struggle to fit the program, we simply

looked for a feasible solution that fit the switch. All of our ILP experiments were run using IBM’s ILP solver,

CPLEX. Note that CPLEX has a gap tolerance parameter, which sets the acceptable gap between the best

integer objective and the current solution’s objective. For ILP-Stage, we required zero-gap tolerance. For

ILP-Latency and ILP-Power, we set the gap tolerance to be within 70% and 5%, respectively, of the best

integer value; we found that lower gaps highly increased runtime with little improvement in objective value.

Greedy heuristics: For each RMT program, we ran all four greedy heuristics (FFD, FFL, FFLS, MCF). We

also ran the variant that set aside 16 SRAM blocks for ternary action memory (labeled as FFD-16, etc.) and a

combination of the two variants to also avoid spilling exact match tables into TCAM (labeled as FFD-exact16,

etc.). For each FlexPipe program, we simply ran the greedy heuristic MCF. The other three heuristics do not

combine enough metrics to fit either of our FlexPipe benchmarks.

All of our experiments were run on an Amazon AWS EC2 c3.4xlarge instance with 16 processor cores

and 30 GB of memory. For FlexPipe, we generated 20 and 10 versions of the L2L3-Simple and L2L3-

Mtag programs, respectively, with varying table sizes and checked how many greedy and ILP mappings fit

the switch (Table 6.3). For RMT, we compiled every program 10 times for each of the greedy heuristics

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 120

and the ILP objective functions and report the medians of the number of stages used, pipeline latency, and

power consumed for each algorithm. We show in detail L2L3-Complex results in Table 6.4. To facilitate

presentation, for all other programs we display results for ILP and the “-exact16” greedy variant only (Table

6.5), since this variant generally tended to have better stage and power usage than other greedy heuristics.

Solver
L2L3-Simple L2L3-Mtag

% solved % solved

MCF 75 60

ILP 75 80

Table 6.3: Benchmark results for 5-stage FlexPipe.

Solver
L2L3-Complex

St. Lat. Pwr RT.

FFD 22 135 4.98 0.25

FFD-16 21 135 5.51 0.27

FFD-exact16 21 135 4.62 0.27

FFL 19 131 5.61 0.25

FFL-16 19 131 6.09 0.27

FFL-exact16 17 132 4.61 0.24

FFLS 19 130 5.66 0.33

FFLS-16 19 130 6.42 0.35

FFLS-exact16 17 131 4.66 0.32

MCF 20 132 4.67 0.26

MCF-16 19 132 6.43 0.27

MCF-exact16 18 132 4.67 0.25

ILP-Latency 32 104 7.78 233.84

ILP-Stages 16 131 6.66 12.13

ILP-Power 32 131 4.44 147.10

Table 6.4: Benchmark results for RMT for L2L3-Complex. All greedy heuristics and variants are shown (St:
number of stages occupied, Lat.: Latency (cycles), Pwr.: Power (watts), RT.: Time to run solver (s).

Solver
L2L3-simple L2L3-Mtag L3DC

St. Lat. Pwr RT. St. Lat. Pwr RT. St. Lat. Pwr RT.

FFD-exact16 21 64 7.54 0.18 22 75 7.65 0.21 7 88 2.34 0.08

FFL-exact16 19 55 7.55 0.19 19 66 7.66 0.21 7 88 2.34 0.08

FFLS-exact16 20 64 7.88 0.23 21 75 8.10 0.27 7 88 2.34 0.12

MCF-exact16 19 55 7.54 0.18 19 66 7.65 0.21 7 88 2.34 0.09

ILP-Latency 32 51 9.18 2.22 32 53 9.65 3.62 32 62 3.21 23.16

ILP-Stages 19 55 7.52 2.57 19 72 9.62 3.52 7 88 2.46 1.88

ILP-Power 32 62 7.55 2.27 32 71 7.63 2.53 9 86 2.34 1.87

Table 6.5: Benchmark results for 32-stage RMT for L2L3-simple, L2L3-Mtag, and L3DC. See Table 6.4 for
units.

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 121

6.7 Analysis of Results

We analyze Tables 6.3, 6.4, and 6.5 for major findings. A salient observation is that the MCF heuristic

for FlexPipe fits 16 out of the 20 versions of L2L3-Simple. For some programs where the heuristic could

not fit, it was difficult to manually analyze the incomplete solution for feasibility. However, ILP can both

detect infeasible programs and find a fitting when feasible (assuming match tables are reasonably large2, for

instance, if they occupy at least 5% of a hash table memory block).

Another important observation for reconfigurable chips where one can optimize for different objectives

is that the best greedy heuristic can perform 25% worse on the objectives than ILP; for example, the optimal

104-cycle latency for ILP in the second column of Table 6.4 is far better than the best latency of 130 cycles

by FFLS. A detailed comparison follows.

6.7.1 ILP vs Greedy

The following observations can be made after closely comparing ILP and greedy solutions in Figure 6.12.

1. Global versus local optimization: For the L2L3-Complex use case (Figure 6.12a), even the best greedy

heuristic FFL-exact16 takes 17 stages, while ILP takes only 16 stages. Figures 6.12c and 6.12d show FFL-16

and ILP solutions, respectively. ILP breaks up tables over stages to pack them more efficiently, whereas

greedy tries to assign as many words as possible in each stage per table, eventually wasting some SRAMs in

some stages and using up more stages overall.

In switch chips with shorter pipelines than RMT’s, this could be the difference between fitting and not

fitting. If all features in a program are necessary, then infeasibility is not an option. Unlike register allocation,

there is no option to “spill to memory"; on the other hand, the longer runtime for ILP may be acceptable

when adding a new router feature. Therefore, it seems very likely that programmers will resort to optimal

algorithms, such as ILP, when they really need to squeeze a program in.

2. Greedy poor for pipeline latency: Our greedy heuristics minimize the stages required to fit the program

and are good at minimizing power—the best greedy is only 4% worse than optimal (for L2L3-Complex,

FFL-exact16 consumes 4.61W, versus ILP’s 4.44W); technically, this is true only because the “-exact” variant

avoids using power-hungry TCAMs. But greedy heuristics are much worse for pipeline latency; minimizing

latency with greedy algorithms will require improved heuristics.

1The minimum table size constraint helps us scale the ILP to handle FlexPipe, where a table can be assigned any number of rows
in each memory block. Since the size of logical tables and memory blocks are at least on the order of hundreds, it seems reasonable to
impose a minimum match table size of at least a hundred in these memory blocks.

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 122

6.7.2 Comparing Greedy Heuristics

1. Prioritize dependencies, not table sizes: In L2L3-Mtag, both FFL and FFLS assign the exact-match

tables in the first stage, but they differ in how they assign ternary tables. FFLS prioritizes the larger ACL

table over the IPv6-Prefix and IPv6-Fwd tables, which are early tables in the long (red) dependency chain

in Figure 6.13a. As a result, the IPv6-Prefix and IPv6-Fwd tables cannot start until stages 16 and 17, and

FFLS ends up using two more stages than FFL. Although FFLS prioritizes large TCAM tables and avoids the

problem discussed in Figure 6.9, it is not sophisticated enough to recognize other opportunities for sharing

stages between dependency chains.

2. Sorting metrics matter: FFD results show that incorrect sorting order can be expensive (22 stages

versus the optimal 16 for L2L3-Complex). We predict that FFD will only be useful for use cases with many

wide logical tables or more limited per-stage switch resources, neither of which was a limiting factor in our

experiments.

3. Set aside SRAM for TCAM actions: The “-16” variation of our greedy heuristics estimates the number of

SRAMs needed for ternary tables (for their action memory) in each stage and blocks them off when initially

assigning SRAMs to exact match tables. Our experiments show that this local optimization usually avoids

having to move a ternary table to a new stage because it does not have enough SRAMs for action memory.

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 123

Ipv6-
Ecmp

IPv6-
Mcast

EG-
ACL EG-Phy-

Meta IG-
Agg-
Intf

IG-
Dmac

IPv4-
Mcast

IPv4-
Nexthop

IPv6-
Nexthop

IG-
Props

IG-
Router
-Mac

Ipv4-
Ecmp

IG-
Smac

Ipv4-
Ucast-
LPM Ipv4-

Ucast-
Host

Ipv6-
Ucast-
Host

Ipv6-
Ucast-
LPM

IG_ACL2

IG_Bcast
_Storm

Ipv4_
Urpf

Ipv6_
Urpf

IG_ACL1 EG_Props
IG_
Phy_
Meta

(a) TDG for L2L3-Complex. Solid and dashed arrows indicate match/action and successor de-
pendencies, respectively, while solid and dashed blocks are exact and ternary tables, respectively.

Ipv6_Mcast

Ipv4_Mcast

Ipv4_Ucast_LPM

Ipv6_Ucast_LPM

(b) Number of TCAMs required to fit the wide match words of ternary IP routing tables in L2L3Complex with packing
factor 1.

(c) FFL-16 solution (19 stages). FFL-16 uses five 3-wide packing units to assign IPv4-Mcast in stages 7 to 9, leaving one
TCAM per stage that cannot be used by any other ternary table. Overall, FFL-16 wastes a total of six TCAMs between
stages 3 and 10.

(d) ILP solution (16 stages). ILP utilizes all TCAMs in stages 4, 7, 8, and 11 by sharing the TCAMs between IPv4-Mcast
(four 3-wide packing units) and IPv6-Mcast (one 4-wide packing unit).

Figure 6.12: FFL-16 and ILP solutions for L2L3-Complex. In assigning packing units to the ternary IP
routing tables, FFL-16 locally maximizes the number of words per stage, whereas ILP optimizes over a set
of stages. Each stage has 106 SRAMs (top row) and 16 TCAMs (bottom row) and is colored according to the
amount of match memory assigned to each logical table in the program TDG; all action memory is colored
in black.

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 124

NextHop

ACL
(10 st)

Ipv6-Fwd

Ipv4-Fwd (5 st)

Smac-Vlan

Ipv6-Prefix
Check-Ipv6 Check- uCast

ipv4

Routable
Dmac-
Vlan Eg-Mtag

Vrf

Mtag

UrpfV4

UrpfV6

Igmp

IPv4-Xcast

IPv6-Xcast Source-check

(a) TDG for L2L3-Mtag. Red arrows mark a long dependency chain.

(b) FFLS solution (21 stages). FFLS places the ACL and IPv4-Fwd tables in stages 1 through 15, leaving no room for
the smaller IPv6-Prefix and IPv6-Fwd tables until stages 16 and 17.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
(c) FFL solution (19 stages). FFL prioritizes the IPv6-Prefix and IPv6-Fwd tables and fits them in stages 1 and 2, allowing
earlier assignment of Nexthop and other dependent tables. As a result, FFL needs two stages fewer than FFLS.

Figure 6.13: FFLS and FFL solutions for L2L3-Mtag. FFL prioritizes dependencies over table sizes and uses
two fewer stages than FFLS.

6.7.3 Sensitivity Experiments

In this section, we analyze ILP solutions by ignoring and relaxing various constraints in order to improve

the running time of ILP and the optimality of greedy heuristics. We run these ILP experiments for our most

complicated use case (L2L3-Complex) on the RMT chip, for two different objectives: minimum stages and

minimum pipeline latency. For reference, the original ILP yields a solution that uses 16 stages in 12.13 s, and

a solution that uses 104 cycles in 233.84 s, respectively, for the two objectives.

To improve ILP runtime, we measure how long the ILP solver takes while ignoring or relaxing each

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 125

constraint, which is a proxy for how hard it is to fit programs in the switch. This helps us identify constraints

that are currently “bottlenecks" in runtime for the ILP solver and also helps us understand how future switches

can be designed to expedite ILP-based compilation.

We identify candidate metrics for greedy heuristics to optimize a given objective by ignoring constraints

and identifying which have a significant impact on the quality of the solution. Our experiments also help

identify the critical resources needed in the chip for typical programs, so chipmakers can design for better

performance.

Sensitivity results for optimality of greedy heuristics: We discovered that the dependency constraint for

ILP has the largest impact on the minimum stages objective. If we remove dependencies from the TDGs,

we can reduce the number of stages used from 16 to 13 and pipeline latency by two cycles. This explains

why greedy heuristics focusing on the dependency metric (i.e., FFL and FFLS) do particularly well. Ignoring

other constraints (like resource constraints) makes no difference to the number of stages used or latency. In

addition, relaxing various resource constraints showed that some resources affect fitting more than others.

For example, doubling the number of TCAM blocks per stage reduced the number of stages needed from

16 to 14. But doubling the number (or width) of crossbars made no difference. This explains why our FFD

greedy heuristic (which focuses on non-limiting resources in the RMT switch) performs worse than other

algorithms.

Lessons for chipmakers: Our results above indicate that chipmakers can improve turnaround for optimal

ILP compilers by carefully selecting memory width. Moreover, if flexible memory is a rare resource, then

increasing a non-limiting resource like crossbar complexity will not improve performance.

6.8 Related Work on Compilers

Compiling packet programs to reconfigurable switches differs from compiling to FPGAs [72], other spatial

architectures such as PLUG [35], or to NPUs [34]. We focus on packing match+action tables into memories

in pipelined stages while satisfying dependencies. Nowatzki et al. [67] developed an ILP scheduler for a

spatial architecture that maps instructions entailed by program blocks to hardware, by allocating computa-

tional units for instructions and routing data between units. The corresponding problems for reconfigurable

switches—assigning action units and routing data among the packet header, memories, and action units—are

less challenging once we have a table placement. Sivaraman et al. [80] propose implementing the action unit

in a match-action table as a digital circuit called an “atom” such that non-trivial stateful data-plane algorithms

can be compiled to run on a sequence of atoms over multiple stages of a target switch pipeline. Because of

the focus on the action unit, this work is complementary to our compiler. NPUs such as the IXP network

CHAPTER 6. ENABLING OTHER ALGORITHMS IN PROGRAMMABLE SWITCHES 126

processor architecture [10] have multi-threaded packet processing engines that can be pipelined. Approaches

like that of Dai et al. [34] map a sequential packet processing application into pipelined stages. However, the

processing engines have a large shared memory; thus, NPU compilers do not need to address the problem

of packing logical tables into physical memories. Schlesinger et al. [78] develop a new packet processing

language called Concurrent NetCore (CNC) and a compiler that maps a CNC program to a target switch ar-

chitecture like RMT. The table fitting phase of their compiler also has the goal of mapping logical to physical

tables and implements a dynamic programming algorithm to minimize the number of physical tables with a

formal type-theory based proof of correctness. In contrast, we develop and implement greedy and ILP ap-

proaches to target different objectives and use the concept of table-dependencies to justify reordering tables

in the pipeline.

6.9 Summary

We defined the problem of mapping logical tables in packet processing programs. We evaluated greedy

heuristics and ILP approaches for mapping logical tables on realistic benchmarks. While fitting tables is the

main criterion, we also computed how well solvers minimize pipeline latency on the long RMT pipeline. We

found that for RMT, there are realistic configurations where greedy approaches can fail to fit and need up to

38% more memory resources on the same benchmark. Three situations when ILP outperforms greedy are

when there are multiple conflicting metrics, multiple memory types and complicated objectives. We believe

future packet programs will get more complicated with more control flows, more different size tables, more

dependencies and more complex objectives, arguing for an ILP-based approach. Further, sensitivity analysis

of critical ILP constraints provides insight into designing fast tailored greedy approaches for particular targets

and programs, marrying compilation speed to optimality.

Appendix A

Supplementary Material for Chapter 2

(Fair)

A.1 Fair v/s d-CPG

There are three differences between Fair and the distributed algorithm called d-CPG described by Ros-

Giralt et al. (see Chapter IV Figures 1–4 in [74]). First, the “limit rate” calculation in Fair and d-CPG have

different implementations albeit the results are the same. Second, the “bottleneck rate” calculation in Fair is

slightly different from d-CPG–when a link l computes a bottleneck rate for a flow f , it temporarily assumes

that the flow is not limited. Without this change, the bottleneck rate calculation in d-CPG (“ComputeAR()”

procedure in Figure 8 of [74]) is undefined when the sum of limit rates is less than the link capacity. Finally,

the proof of the CPG algorithm claims that it takes no more than half a round trip for information about

a change in the state of one link to propagate to another (Proof of Theorem 4.1 in [74]), whereas we we

can easily show a counter-example that suggests it can take up to 1.5 RTTs (see Figure A.1). For the Fair

algorithm, we assume that it can take up to 2 RTTs (or rounds) for new information to propagate between

links rather than half a round trip. Hence, the convergence bound of Fair in Theorem 2.6.1 is four times

longer than the convergence bound of d-CPG as stated in Theorem 4.1 in [74].

127

APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2 (FAIR) 128

C	=	10	Gb/s	
N	=	2	
R	=	5	Gb/s	

C	=	8	Gb/s	
N=	1	
R	=	∞	

Link	1	 Link	2	

Time	 Link	1	 Link	2	 Ordering	

0	 Purple	(fwd.):	UB	=	∞,	ER	=	∞	10	Gb	/	s	

0.001	RT	 Blue	(fwd.):	UB	=	∞,	ER	=	∞	5	Gb/s	 Link	state	changes	at	Link	1–	number	of	flows	
increases	from	1	to		2	

0.5	RT	 Purple	(fwd.):	UB	=	∞	10	Gb/s,	ER	=	10	8	Gb/s	 Link	2	learns	about	old	state	of	Link	1	i.e.,	
purple	flow	is	limited	to	10	Gb/s	

0.501	RT	 Purple	(rvs.):	DB	=	∞,	ER	=	∞	8	Gb/s	
	

0.999	RT	 Purple	(rvs.):	DB	=	∞	8	Gb/s	,	ER	=	8	5	Gb	/	
s	

Purple	flow	picks	up	new	rate	from	Link	1	in	
rvs.	direcQon	

1	RT	 Purple	(fwd.):	ER	=	∞	5	Gb	/	s	 Purple	flow	picks	up	new	rate	from	Link	1	in	
fwd.	direcQon	

1.5	RT	 Purple	(fwd.):	UB	=	10		5	Gb/s,	ER	=	5	Gb/s	 Link	2	learns	about	new	state	of	Link	1	i.e.,	
purple	flow	is	limited	to	5	Gb/s	

Figure A.1: An example of a sequence of updates in the CPG algorithm where it takes 1.5 round-trips for
new information to propagate from one link to another via the control packet of a shared flow.

A.2 Dependencies from the CPG Algorithm

The precedent link relationship is an example of a dependency, and any path constraint precedence graph is

a dependency chain, where we define a dependent link of link l as any link that must converge before link

l can converge. We have found that there may be other kinds of dependencies that do not fit the precedent

link definition (e.g., a link j ∈ Ln+1 may depend on a link removed before round n, that is not in its CPG

graph, see Figure A.2; or a link j ∈ Ln+1 may depend on a link removed in round n that is not quite an

indirect precedent, because the rate of the “Medium” link in round n exceeded the rate of link j in round n,

see Figure A.3). However, the CPG algorithm implies that any dependent link of link j ∈ Ln+1 must be

among links in L1, .., Ln so that the dependencies, which are a super-set of the precedent link relationships,

also form a directed acyclic graph of depth D.

APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2 (FAIR) 129

C	=	1	Gb/s	
N	=	1	
R	=	1	Gb/s	

C	=	15	Gb/s	
N	=	3	
R	=	8	Gb/s	

C	=	12	Gb/s	
N=	2	
R	=	12	Gb/s	

Link	1	 Link	2	 Link	3	 Link	4	

C	=	21	Gb/s	
N	=	3	
R	=	14	Gb/s	

Link	1	 Link	2	 Link	3	 Link	4	 Link	5	 Ordering	
(CPG)	

1)	R1		=	C1/N1	 1		=	1	/	1		 5	=	15	/	3	 6	=	12	/	2	 7	=	21	/	3	 1	=	1	/	1	 L1		=	{Links	1,	5}	

2)	R2		=	C2/N2	 7	=	14	/	2	 6	=	12	/	2	 10	=	20	/	2	 L2		=	{Link	3}	

2)	R3		=	C3/N3	 8	=	8	/	1	 14	=	14	/	1	 L3		=	{Link	2}	

C	=	1	Gb/s	
N	=	1	
R	=	1	Gb/s	

Link	5	

Figure A.2: Dependent links that are not precedent links: We show the progress of the CPG algorithm for this
setup. A cell in a row is bolded when a link is bottlenecked (i.e., it has the smallest rate among neighbors)
in the respective iteration. Link 4 depends on link 5 to calculate the correct rate but link 5 is an ancestor in
the precedence graph containing 4. We have drawn solid/ dotted arrows in the table to denote direct/ indirect
precedent edges, where the color of the arrow corresponds to the color of the precedent link’s bottleneck flow.

C	=	1	Gb/s	
N	=	1	
R	=	1	Gb/s	

C	=	22	Gb/s	
N	=	2	
R	=	21	Gb/s	

C	=	30	Gb/s	
N=	3	
R	=	12.5	Gb/s	

Link	1	 Link	2	 Link	3	 Link	4	

C	=	5	Gb/s	
N	=	1	
R	=	5	Gb/s	

Link	1	 Link	2	 Link	3	 Link	4	 Ordering	(CPG)	

1)	R1		=	C1/N1	 1		=	1	/	1		 11	=	22	/	2	 10	=	30	/	3	 5	=	5/	1	 L1		=	{Links	1,	4}	
	

2)	R2		=	C2/N2	 21		=	21	/	1		 12.5	=	25	/	2	 L2		=	{Link	3}	
	

Figure A.3: Dependent links that are not precedent links: We show the progress of the CPG algorithm for this
setup. A cell in a row is bolded when a link is bottlenecked (i.e., it has the smallest rate among neighbors)
in the respective iteration. Link 3 depends on link 1, because unless link 1 converges, Link 2’s rate cannot
exceed link 3’s max-min rate of 12.5 Gb/s. However, link 1 is not an indirect precedent link of link 3 as
defined in [75]. Notice that in round 1, link 3 shares a flow with link 2, which has R1(3) < R1(2) ≤ R(3)
(rather than R1(3) > R1(2)) and is not bottlenecked in round 1, but link 1 that shares a flow with link 2 is
bottlenecked in round 1.

Appendix B

Supplementary Material for Chapter 3

(s-PERC)

Proof of Corollary 3.4.16. Flow f is seen at every link in Pf at least once between times T + 1 round and

T + 2 rounds and picks up a bottleneck rate that is either not propagated or R(l). Flow f ’s limit rate at

link x is the smallest propagated bottleneck rate from any link in Pf \ x and hence is at least R(l) from time

T + 2 rounds.

Proof of Lemma 3.4.10. Consider an update for a flow f ∈ FG2
n(x) at a link y ∈ Pf at some time after

t + 1 round. Suppose b ≥ MaxE and the rate is propagated (Line 15 of Algorithm 6). If MaxE ≥ R(l),

we’re done. So let us consider the case when MaxE < R(l)

Let SumE, NumB, MaxE represent the link state of link y at Line 8 of Algorithm 6 just before it

computes a bottleneck rate for f . Note that because of Lines 5–7, we can take for granted that there is at

least one flow in B̂, namely f . We will break down the aggregate link state in terms of the contribution

of E(y) flows carried by L2
0, ..., L

2
n and the remaining flows. The remaining flows, which we represent as

B(y)∪FG2
n(y), include both B(y) flows carried by L2

0, ..., L
2
n as well as flows carried by the remaining links

130

APPENDIX B. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 (S-PERC) 131

LG2
n. The bottleneck rate computed for the flow f satisfies the following:

b = (C − SumE)/NumB

= (C −
∑
f∈Ê

af)/|B̂|

= (C −
∑

f∈E(y)∩FL2
n(y)

A(f)−
∑

f∈Ê∩(B(y)∪FG2
n(y))

af)/|B̂|

In the last step, we used the induction hypothesis that links in L2
0, ..., L

2
n have converged by time T , which

implies that their flows FL2
n are updated correctly at y from time T . In particular, the subset of FL2

n flows

that are in E(y) are all correctly classified as belonging to Ê(y) and allocated their max-min rate from time

T + 1 round. This also means that B̂ ⊂ B(y) ∪ FG2
n(y). Rearranging the terms we get:

b.|B̂| = C −
∑

f∈E(y)∩FL2
n(y)

A(f)−
∑

f∈Ê∩(B(y)∪FG2
n(y))

af

≥ R(l).|B(y) ∪ FG2
n(y)| −

∑
f∈Ê∩(B(y)∪FG2

n(y))

af (using Property (3))

≥ R(l).|B(y) ∪ FG2
n(y)| −

∑
f∈Ê∩(B(y)∪FG2

n(y))

MaxE (using Lemma 3.2.4)

≥ R(l).|B̂ ∩ B(y) ∪ FG2
n(y)| (assuming R(l) ≥MaxE)

= R(l).|B̂| (since B̂ ⊂ B(y) ∪ FG2
n(y))

b ≥ R(l) (since |B̂| > 0)

Bibliography

[1] Barefoot Networks. barefootnetworks.com/technology/#tofino. Accessed: 2017-09-

19.

[2] Cavium. cavium.com/xpliant-ethernet-switch-CNX680XX-and-CNX780XX-

family.html. Accessed: 2018-10-01.

[3] Intel Flexpipe. intel.com/content/dam/www/public/us/en/documents/product-

briefs/ethernet-switch-fm6000-series-brief.pdf.

[4] The network simulator (ns-2). https://www.isi.edu/nsnam/ns/. Accessed: 2018-12-1.

[5] P4 language spec version 1.0.0-rc2. http://www.p4.org/spec/p4-latest.pdf. Accessed:

2014-09-22.

[6] P4-NetFPGA Wiki. https://github.com/NetFPGA/P4-NetFPGA-public/wiki. Ac-

cessed: 2017-09-19.

[7] P4 website. http://www.p4.org/. Accessed: 2014-09-22.

[8] Protocol oblivious forwarding (pof) website. http://www.poforwarding.org/. Accessed:

2014-09-22.

[9] Xilinx SDNet. xilinx.com/sdnet. Accessed: 2017-09-19.

[10] White paper: IntelÂő processors in industrial control and automation applications. Technical report,

2014.

[11] Yehuda Afek, Yishay Mansour, and Zvi Ostfeld. Convergence complexity of optimistic rate-based

flow-control algorithms. Journal of Algorithms, 30(1):106–143, January 1999.

132

BIBLIOGRAPHY 133

[12] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-

hakar, Sudipta Sengupta, and Murari Sridharan. Data center tcp (dctcp). In Proceedings of the SIG-

COMM 2010 Conference, SIGCOMM ’10, pages 63–74, New York, NY, USA, 2010. ACM.

[13] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown, Balaji Prabhakar,

and Scott Shenker. pfabric: Minimal near-optimal datacenter transport. In Proceedings of the ACM

SIGCOMM 2013 Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communication, SIGCOMM ’13, pages 435–446, New York, NY, USA, 2013. ACM.

[14] Mark Allman, Vern Paxson, and Ethan Blanton. Tcp congestion control. Technical report, 2009.

[15] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency

moments. Journal of Computer and System Sciences, 58(1):137–147, February 1999.

[16] Andrew Appel. Modern compiler implementation in C. Cambridge University Press, 2004.

[17] B. Awerbuch and Y. Shavitt. Converging to approximated max-min flow fairness in logarithmic time. In

Proceedings. IEEE INFOCOM ’98, the Conference on Computer Communications. Seventeenth Annual

Joint Conference of the IEEE Computer and Communications Societies. Gateway to the 21st Century

(Cat. No.98, volume 3, pages 1350–1357 vol.3, March 1998.

[18] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. Pias: Practical information-

agnostic flow scheduling for commodity data centers. IEEE/ACM Transactions on Networking,

25(4):1954–1967, August 2017.

[19] Amotz Bar-Noy, Magnús M Halldórsson, Guy Kortsarz, Ravit Salman, and Hadas Shachnai. Sum

multicoloring of graphs. Journal of Algorithms, 37(2):422–450, 2000.

[20] Jeff Barr. In the works âĂŞ aws region in the middle east. https://aws.amazon.com/blogs/

aws/in-the-works-aws-region-in-the-middle-east/. Accessed: 2018-10-17.

[21] Yair Bartal, Martin Farach-Colton, Shibu Yooseph, and Lisa Zhang. Fast, fair and frugal bandwidth

allocation in atm networks. Algorithmica, 33(3):272–286, 2002.

[22] Dimitri Bertsekas and Robert Gallager. Data Networks. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1987.

[23] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger,

Dan Talayco, Amin Vahdat, George Varghese, et al. P4: Programming protocol-independent packet

processors. ACM SIGCOMM Computer Communication Review, 44(3):87–95, 2014.

BIBLIOGRAPHY 134

[24] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando

Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast programmable match-action processing

in hardware for sdn. In Proceedings of the ACM SIGCOMM 2013 Conference on Applications, Tech-

nologies, Architectures, and Protocols for Computer Communication, SIGCOMM ’13, pages 99–110,

New York, NY, USA, 2013. ACM.

[25] Broadcom Corporation. Broadcom BCM56850 StrataXGS R© Trident II Switching Technology. Broad-

com, 2013.

[26] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson. Bbr:

Congestion-based congestion control. Queue, 14(5):50, 2016.

[27] Anna Charny, David D Clark, and Raj Jain. Congestion control with explicit rate indication. In Commu-

nications, 1995. ICC’95 Seattle,’Gateway to Globalization’, 1995 IEEE International Conference on,

volume 3, pages 1954–1963. IEEE, 1995.

[28] Anna Charny, KK Ramakrishnan, and Anthony Lauck. Time scale analysis scalability issues for explicit

rate allocation in atm networks. IEEE/ACM Transactions on Networking, 4(4):569–581, 1996.

[29] Inho Cho, Keon Jang, and Dongsu Han. Credit-scheduled delay-bounded congestion control for data-

centers. In Proceedings of the 2017 ACM Conference on Special Interest Group on Data Communica-

tion, SIGCOMM ’17, pages 239–252, New York, NY, USA, 2017. ACM.

[30] Nikos Chrysos and Manolis Katevenis. Transient behavior of a buffered crossbar converging to weighted

max-min fairness. 2002.

[31] Cisco Systems. Deploying Control Plane Policing. Cisco White Paper, 2005.

[32] David Clark. The design philosophy of the darpa internet protocols. ACM SIGCOMM Computer Com-

munication Review, 18(4):106–114, 1988.

[33] Jorge A. Cobb and Mohamed G. Gouda. Stabilization of max-min fair networks without per-flow state.

Theoretical Computer Science, 412(40):5562–5579, September 2011.

[34] Jinquan Dai, Bo Huang, Long Li, and Luddy Harrison. Automatically partitioning packet processing

applications for pipelined architectures. In Proceedings of the 2005 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’05, pages 237–248, New York, NY, USA,

2005. ACM.

BIBLIOGRAPHY 135

[35] Lorenzo De Carli, Yi Pan, Amit Kumar, Cristian Estan, and Karthikeyan Sankaralingam. Plug: Flexible

lookup modules for rapid deployment of new protocols in high-speed routers. In Proceedings of the

2009 ACM Conference on Special Interest Group on Data Communication, SIGCOMM ’09, pages

207–218, New York, NY, USA, 2009. ACM.

[36] Nandita Dukkipati. Rate Control Protocol (Rcp): Congestion Control to Make Flows Complete Quickly.

PhD thesis, Stanford University, Stanford, CA, USA, 2008. AAI3292347.

[37] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and Georg Carle. Moongen:

A scriptable high-speed packet generator. In Proceedings of the 2015 ACM Conference on Internet

Measurement Conference, pages 275–287. ACM, 2015.

[38] Eli Gafni and Dimitri Bertsekas. Dynamic control of session input rates in communication networks.

IEEE Transactions on Automatic Control, 29(11):1009–1016, 1984.

[39] Eliezer M Gafni. The integration of routing and flow-control for voice and data in a computer commu-

nication network. PhD thesis, Massachusetts Institute of Technology, 1982.

[40] Michael R Garey, Ronald L Graham, David S Johnson, and Andrew Chi-Chih Yao. Resource con-

strained scheduling as generalized bin packing. Journal of Combinatorial Theory, Series A, 21(3):257–

298, 1976.

[41] Dimitris Giannopoulos, Nikos Chrysos, Evangelos Mageiropoulos, Giannis Vardas, Leandros Tzanakis,

and Manolis Katevenis. Accurate congestion control for rdma transfers. In 2018 Twelfth IEEE/ACM

International Symposium on Networks-on-Chip (NOCS), pages 1–8. IEEE, 2018.

[42] Glen Gibb, George Varghese, Mark Horowitz, and Nick McKeown. Design principles for packet parsers.

In Architectures for Networking and Communications Systems (ANCS), 2013 ACM/IEEE Symposium

on, pages 13–24. IEEE, 2013.

[43] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W Moore, Gianni Antichi,

and Marcin Wójcik. Re-architecting datacenter networks and stacks for low latency and high perfor-

mance. In Proceedings of the 2017 ACM Conference on Special Interest Group on Data Communication,

pages 29–42. ACM, 2017.

[44] Howard P Hayden. Voice flow control in integrated packet networks. PhD thesis, Massachusetts Institute

of Technology, 1981.

BIBLIOGRAPHY 136

[45] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. Finishing flows quickly with preemptive

scheduling. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Ar-

chitectures, and Protocols for Computer Communication, SIGCOMM ’12, pages 127–138, New York,

NY, USA, 2012. ACM.

[46] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan Nanduri, and Roger

Wattenhofer. Achieving high utilization with software-driven wan. In Proceedings of the ACM SIG-

COMM 2013 Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communication, SIGCOMM ’13, pages 15–26, New York, NY, USA, 2013. ACM.

[47] IBM. IBM ILOG CPLEX Optimization Studio V12.4.

[48] Jeffrey Jaffe. Bottleneck flow control. IEEE Transactions on Communications, 29(7):954–962, 1981.

[49] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh, Subbaiah

Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin Vah-

dat. B4: Experience with a globally-deployed software defined wan. In Proceedings of the ACM SIG-

COMM 2013 Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communication, SIGCOMM ’13, pages 3–14, New York, NY, USA, 2013. ACM.

[50] Lavanya Jose, Lisa Yan, Mohammad Alizadeh, George Varghese, Nick McKeown, and Sachin Katti.

High speed networks need proactive congestion control. In Proceedings of the 14th ACM Workshop on

Hot Topics in Networks, HotNets-XIV, pages 14:1–14:7, New York, NY, USA, 2015. ACM.

[51] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. Compiling packet programs to recon-

figurable switches. In Proceedings of the 12th USENIX Conference on Networked Systems Design and

Implementation, NSDI’15, pages 103–115, Berkeley, CA, USA, 2015. USENIX Association.

[52] Shivkumar Kalyanaraman, Raj Jain, Sonia Fahmy, Rohit Goyal, and Bobby Vandalore. The erica

switch algorithm for abr traffic management in atm networks. IEEE/ACM Transactions on Network-

ing, 8(1):87–98, 2000.

[53] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high bandwidth-delay product

networks. In Proceedings of the 2002 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications, SIGCOMM ’02, pages 89–102, New York, NY, USA, 2002.

ACM.

BIBLIOGRAPHY 137

[54] Yuseok Kim, Wei Kang Tsai, Mahadevan Iyer, and Jordi Ros-Giralt. Minimum rate guarantee with-

out per-flow information. In Network Protocols, 1999.(ICNP’99) Proceedings. Seventh International

Conference on, pages 155–162. IEEE, 1999.

[55] C. Kozanitis, J. Huber, S. Singh, and G. Varghese. Leaping multiple headers in a single bound: Wire-

speed parsing using the kangaroo system. In 2010 Proceedings IEEE INFOCOM, pages 1–9, March

2010.

[56] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasinadhuni, Enrique Cauich Zer-

meno, C. Stephen Gunn, Jing Ai, Björn Carlin, Mihai Amarandei-Stavila, Mathieu Robin, Aspi Sigan-

poria, Stephen Stuart, and Amin Vahdat. Bwe: Flexible, hierarchical bandwidth allocation for wan

distributed computing. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data

Communication, SIGCOMM ’15, pages 1–14, New York, NY, USA, 2015. ACM.

[57] Monica Lam, Ravi Sethi, JD Ullman, and AV Aho. Compilers: Principles, techniques, and tools.

Addison-Wesley, 2006.

[58] Jean-Yves Le Boudec. Rate adaptation, congestion control and fairness: A tutorial, 2000.

[59] D. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell, and C. Wright.

Vxlan: A framework for overlaying virtualized Layer 2 networks over Layer 3 networks. Internet-Draft

draft-mahalingam-dutt-dcops-vxlan-00, IETF, 2011.

[60] Jelena Marasevic, Cliff Stein, and Gil Zussman. A fast distributed stateless algorithm for alpha-fair

packing problems. arXiv preprint arXiv:1502.03372, 2015.

[61] Microsoft. Microsoft to deliver cloud services from new datacentres in germany in 2019 to meet evolv-

ing customer needs. https://news.microsoft.com/europe/2018/08/31/microsoft-

to-deliver-cloud-services-from-new-datacentres-in-germany-in-2019-

to-meet-evolving-customer-needs/. Accessed: 2018-10-17.

[62] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi, Amin

Vahdat, Yaogong Wang, David Wetherall, and David Zats. Timely: Rtt-based congestion control for the

datacenter. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communi-

cation, SIGCOMM ’15, pages 537–550, New York, NY, USA, 2015. ACM.

BIBLIOGRAPHY 138

[63] Alberto Mozo, Jose Luis López-Presa, and Antonio Fern’ndez Anta. Slbn: A scalable max-min fair

algorithm for rate-based explicit congestion control. In Network Computing and Applications (NCA),

2012 11th IEEE International Symposium on, pages 212–219. IEEE, 2012.

[64] Alberto Mozo, Jose Luis López-Presa, Antonio Fern, et al. B-neck: A distributed and quiescent max-

min fair algorithm. In Network Computing and Applications (NCA), 2011 10th IEEE International

Symposium on, pages 17–24. IEEE, 2011.

[65] Ali Munir, Ghufran Baig, Syed M. Irteza, Ihsan A. Qazi, Alex X. Liu, and Fahad R. Dogar. Friends,

not foes: Synthesizing existing transport strategies for data center networks. In Proceedings of the 2014

ACM Conference on Special Interest Group on Data Communication, SIGCOMM ’14, pages 491–502,

New York, NY, USA, 2014. ACM.

[66] Kanthi Nagaraj, Dinesh Bharadia, Hongzi Mao, Sandeep Chinchali, Mohammad Alizadeh, and Sachin

Katti. Numfabric: Fast and flexible bandwidth allocation in datacenters. In Proceedings of the 2016

ACM Conference on Special Interest Group on Data Communication, pages 188–201. ACM, 2016.

[67] Tony Nowatzki, Michael Sartin-Tarm, Lorenzo De Carli, Karthikeyan Sankaralingam, Cristian Estan,

and Behnam Robatmili. A general constraint-centric scheduling framework for spatial architectures. In

Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’13, pages 495–506, New York, NY, USA, 2013. ACM.

[68] NVIDIA Corporation. NVIDIA’s Next Generation CUDATM Compute Architecture: FermiTM. NVIDIA

White Paper, 2009.

[69] Open Networking Foundation. Software-Defined Networking: The new norm for networks. Open Net-

working Foundation White Paper, 2012.

[70] Jonathan Perry, Hari Balakrishnan, and Devavrat Shah. Flowtune: Flowlet control for datacenter net-

works. In Proceedings of the 14th USENIX Conference on Networked Systems Design and Implemen-

tation, NSDI’17, pages 421–435, Berkeley, CA, USA, 2017. USENIX Association.

[71] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans Fugal. Fastpass: A

centralized "zero-queue" datacenter network. In Proceedings of the 2014 ACM Conference on Special

Interest Group on Data Communication, SIGCOMM ’14, pages 307–318, New York, NY, USA, 2014.

ACM.

BIBLIOGRAPHY 139

[72] Teemu Rinta-Aho, Mika Karlstedt, and Madhav P. Desai. The click2netfpga toolchain. In Proceed-

ings of the 2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12, pages 7–7,

Berkeley, CA, USA, 2012. USENIX Association.

[73] Larry Roberts. Enhanced prca (proportional rate-control algorithm). In ATM Forum, 1994.

[74] Jordi Ros-Giralt. A Theory of Lexicographic Optimization for Computer Networks. PhD thesis, Univer-

sity of California, Irvine, 2003.

[75] Jordi Ros-Giralt and Wei K Tsai. A lexicographic optimization framework to the flow control problem.

IEEE Transactions on Information Theory, 56(6):2875–2886, 2010.

[76] Jordi Ros-Giralt and Wei Kang Tsai. A theory of convergence order of maxmin rate allocation and an

optimal protocol. In Proceedings IEEE INFOCOM 2001 Conference on Computer Communications,

pages 717–726. IEEE, 2001.

[77] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo Contavalli, and Amin

Vahdat. Carousel: Scalable traffic shaping at end hosts. In Proceedings of the 2017 ACM Conference

on Special Interest Group on Data Communication, SIGCOMM ’17, pages 404–417, New York, NY,

USA, 2017. ACM.

[78] Cole Schlesinger, Michael Greenberg, and David Walker. Concurrent netcore: From policies to

pipelines. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Pro-

gramming, ICFP ’14, pages 11–24, New York, NY, USA, 2014. ACM.

[79] Naveen Kr. Sharma, Antoine Kaufmann, Thomas Anderson, Changhoon Kim, Arvind Krishnamurthy,

Jacob Nelson, and Simon Peter. Evaluating the power of flexible packet processing for network re-

source allocation. In Proceedings of the 14th USENIX Conference on Networked Systems Design and

Implementation, NSDI’17, pages 67–82, Berkeley, CA, USA, 2017. USENIX Association.

[80] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh, Hari Balakr-

ishnan, George Varghese, Nick McKeown, and Steve Licking. Packet transactions: High-level program-

ming for line-rate switches. In Proceedings of the 2016 ACM Conference on Special Interest Group on

Data Communication, SIGCOMM ’16, pages 15–28, New York, NY, USA, 2016. ACM.

[81] Brian Stevens. Google cloud platform sets a course for new horizons. https://cloud.google.

com/blog/products/gcp/google-cloud-platform-sets-a-course-for-new-

horizons. Accessed: 2018-10-17.

BIBLIOGRAPHY 140

[82] András Varga and Rudolf Hornig. An overview of the omnet++ simulation environment. In Proceedings

of the 1st international conference on Simulation tools and techniques for communications, networks

and systems & workshops, page 60. ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering), 2008.

[83] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. Better never than late: Meeting

deadlines in datacenter networks. In Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM

’11, pages 50–61, New York, NY, USA, 2011. ACM.

[84] Xilinx, Inc. DSP: Designing for Optimal Results. Xilinx, Inc., 2005.

[85] Noa Zilberman, Yury Audzevich, G Adam Covington, and Andrew W Moore. Netfpga sume: Toward

100 gbps as research commodity. IEEE Micro, 34(5):32–41, 2014.

