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Abstract

Until recently, Internet routers and ATM switches were generally built around a central 

pool of shared memory buffers and a fast, shared-bus backplane. However, limitations in 

both memory and bus bandwidth have led to the use of input queues and switched back­

planes. Input queues relieve the bottleneck by distributing the memory over each switch 

input; and a switched backplane allows packet transfers to take place simultaneously.

This thesis focuses on the design of switched backplanes with input queues. In partic­

ular, we focus on the design of schedulers for switched backplanes. The scheduler decides 

the order in which packets, or cells, may traverse the backplane. Studies have shown that 

existing scheduling algorithms are either too complex to operate at high speed or lack the 

intelligence to perform well over a wide range of traffic patterns.

In this thesis, we present two new algorithms that are fast, simple and efficient. Using 

the methods of Lyapunov, we prove that both algorithms can achieve 100% throughput for 

all traffic patterns with independent arrivals. We also demonstrate heuristics that can be 

implemented in fast and relatively simple hardware.

Our exploratory design work shows that the heuristics can make a scheduling decision 

within 10-20 nanoseconds when implemented using 0.25 \im CMOS technology. At this 

scheduling speed, it is possible to design switches or routers with more than one terabit 

per second of aggregate bandwidth.
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I

CHAPTER 1

Introduction

1 Background

Congestion in high-speed backbone networks, most notably the Internet, has created a 

real need for high-speed switches and routers with high aggregate bandwidth. In an 

attempt to alleviate congestion, the networking research community has focused its effort 

on the development of high-bandwidth switches [2][6][12][15][50][61]. Advances in data 

transmission technology, particularly the deployment of optical technology, has provided 

abundant transmission bandwidth at a relatively low cost. Yet neither switches or routers 

have kept pace with this development. Hence, the bottlenecks in today’s high-bandwidth 

networks are often switches and routers, not transmission links. The lack of network 

switching capacity, coupled with an explosive growth in both the number of users and the 

amount of traffic per user [20] [44] [55] [56], has created excessive congestion on the Inter­

net. As a consequence, real-time applications on the Internet often perform poorly because 

of excessive delay and packet loss as well as large delay variation [5] [43].

High-bandwidth switches can increase network switching capacity in a number of 

ways. In addition to being used directly to form a fast network, high-bandwidth switches
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CHAPTER I Introduction 2

can be used to improve routers. Increasingly, routers are designed around a central 

switched backplane [2][6][12][15][50][61]. Aggregate switching bandwidth as high as 

one Tb/s is achievable using cost-effective CMOS components [50]. But this does not 

come without a problem: limited memory bandwidth means that high-bandwidth switches 

must employ input-queueing [12][27][53]. However, as we will see in Section 1.2, input- 

queueing was once thought to be constrained to a 2 -  J l  = 58% throughput limit due to 

head of line (HOL) blocking [30]. Fortunately, in recent years, there has been a consider­

able amount of work showing that a form of input-queueing (called virtual output-queue- 

ing1 (VOQ)) can eliminate HOL blocking [2][51][66]. A switch employing such a 

queueing discipline is known as a VOQ switch.

VOQ switches, however, introduce another set of problems [33]. One of these prob­

lems is that VOQ switches require the use of a scheduler to configure the switch, deciding 

which input to connect to which output in each packet-time. Because the scheduler deter­

mines exactly when each packet is transferred across the switch, the scheduler essentially 

determines the performance of the switch. In this case, performance includes the through­

put of the switch, the delay experienced by each packet and the number of packets lost due 

to buffer overflow. Unfortunately for high-bandwidth VOQ switches, all existing schedul­

ing algorithms are either too complex to run at high speed [49] or only perform well under 

restricted and unrealistic conditions [54]. This thesis presents two new algorithms to solve 

both problems.

Before discussing the detail of these new algorithms, we first review the background 

and related issues of VOQ switches as well as introduce necessary definitions used later. 

Collectively, the following subsections give a comprehensive overview of various aspects 

of high-bandwidth switch design.

1. Also known as Dynamically-allocated multi-queue (DAMQ) [65].
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CHAPTER I Introduction 3

Figure L.I An example of a packet switched network. The nodes in the network cloud can be switches or 
routers. As they arrive at each node, packets sent from host A to host B get switched onto a path which leads 
them to host B.

1.1 Packet Switch Overview

In a packet switched network, the delivery of packets from point A to point B as illus­

trated in Figure l .l  involves two basic tasks: routing and switching. Routing is done to 

determine a path which the packets must take to reach the destination. Switching, which 

takes place at every node on the path, is to switch — to place — the packets onto the path 

determined by a prior routing decision.

As shown by Figure 1.2, packet switching at each node (whether it is an Internet Pro­

tocol (IP) router [69] or a switch such as an ATM switch [3]) in a network includes packet 

buffering and packet forwarding. In this thesis, we often refer to a device which can per­

form both tasks as a packet switch or simply a switch. Upon its arrival at an input port, 

each packet is examined by the switch. From the header of a packet,1 the switch deter­

l. A packet consists a header and a payload (data) [69].
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CHAPTER 1 Introduction 4
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Figure 1.2 A packet switch. As packets arrive via the incoming links, the switch determines which output 
ports they should leave from and then tries to forward the packets to the outputs. Queues to buffer packets 
must be placed at every contention point to prevent packet dropping. Packet forwarding can be implemented 
using a space switch or a shared bus backplane.

mines to which output port the packet should be forwarded. Depending on its architecture, 

a switch may or may not be able to immediately forward all arriving packets to the out­

puts. Switches that cannot immediately forward all incoming packets must maintain 

queues at the inputs to buffer the remaining packets. Similarly, switches need to maintain 

some queues at the outputs if they cannot immediately place all forwarded packets onto 

the outgoing links. More detail of queueing considerations is discussed in the following 

subsection.

Because a packet switch implements the two tasks that a router also needs to perform 

[12][33][61], a router can take advantage of the high switching bandwidth already offered 

by a switch. Increasingly, high performance routers use a switch as a backplane to handle 

packet buffering and packet forwarding [2] [ 12] [53 ] [61 ]. While packets arriving at a router 

may be of variable length, most high performance routers internally use fixed size packets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER I Introduction 5

[2][12][31][53][61] that we shall refer to as cells}  Using cells simplifies the system 

design, allowing switches to run faster. In order to switch variable length packets, routers 

simply segment all incoming packets into cells as soon as the packets arrive at the input 

ports, and reassemble cells back into variable length packets at the outputs before the 

packets are sent out onto the transmission links.

1.2 Input vs. Output Queueing

One of the central concerns in designing a high-bandwidth switch is limited memory 

bandwidth [3][33][50]. For switches operating at high speed, the speed of the memory, 

which is a basic building block of queues, becomes a limiting factor. Switch speed is often 

limited by the rate at which the memory can operate [27][53]. Under this condition, a 

switch that makes an efficient use of memory bandwidth can run faster than one that does 

not. The memory bandwidth requirement varies widely across queueing disciplines

[3][11]. Depending on switch architecture, queueing can take place at different parts of the 

switch: at the inputs, at the outputs, at both inputs and outputs, or at a centralized location. 

The following compares three queueing techniques: output-queueing, centralized shared 

memory and input-queueing.

Output-queueing is referred to as a queueing technique in which all queues are placed 

at the outputs as shown in Figure 1.3 (a) [3][64][69]. Switches employing this queueing 

technique are known as output-queued (OQ) switches. While it is known for its high 

throughput and ability to guarantee quality-of-service (QoS) [11][15][29][72], output- 

queueing does not make efficient use of memory bandwidth. Because there are no queues 

at the inputs, all arriving cells must be immediately delivered to their outputs. Being able 

to deliver every cell to the output immediately is both desirable and undesirable. In terms 

of the throughput and the QoS guarantee, it is advantageous because all cells immediately 

appear at the outputs ready to be considered for transmission, making QoS guarantee pos- 

L. The term cell is borrowed from ATM. In this thesis, a cell size is not restricted to S3 bytes as in ATM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER I Introduction

a) Output queueing. b) Input queueing.

Shared Memory

c) Centralized shared memory.

Figure 1.3 Various queueing techniques to buffer packets in a packet switch.

sible [I6][72]. A major disadvantage, however, is that simultaneous delivery of all arriv­

ing cells to the outputs requires too much internal interconnection bandwidth and memory 

bandwidth. For an N x N switch, there can be up N cells, one from every input, arriving 

for any one output simultaneously. To be able to receive all N cells at one time, a memory 

implementing an output queue has to support N write accesses in a cell-time, as does the 

interconnection feeding into the memory. This requirement is known as internal speedup 

of a switch [11]. An output-queued switch, thus, has an internal speedup of N . With one 

read to send one cell to the outgoing link every cell-time, a memory implementing an out­

put queue must operate N+ I times faster than the line rate.

Centralized shared memory is another queueing technique, commonly used in low 

bandwidth switches [14][19]. As shown in Figure 1.3 (c), the centralized memory is
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CHAPTER I Introduction 7

shared by all inputs and all outputs. The access to the memory is time multiplexed. Each 

input and each output accesses the memory one at a time via a shared bus. Logically, the 

memory is partitioned into multiple queues, one for each output.1 The partition can be 

static or dynamic [10]. In one cell-time, each input can write one cell into a queue corre­

sponding to the output destination of the cell, and each output can read one cell, the HOL 

cell, from its queue. A switch employing this type of queueing is often known as a shared 

bus/shared memory switch [14][19]. This queueing technique has advantages and disad­

vantages. One of the advantages is that it has the same cell-by-cell behavior of output- 

queueing: logically, a shared memory scheme can be viewed as a form of output-queueing 

with all the output queues moved to a central location. Another advantage of a shared 

memory scheme is lower cell loss probability. With memory sharing, buffers that are 

unused by other outputs can be given to outputs under heavy load. A major disadvantage, 

however, is the speed at which a shared memory has to operate. Similar to output-queue­

ing, a shared memory scheme is constrained by an internal speedup requirement. For an 

N x N switch, the memory and the bus must be able to support N read accesses by all the 

outputs and N write accesses by all the inputs in a cell-time, i.e., the bus and memory 

must operate IN  times faster than the line rate.

Input-queueing, on the other hand, has no speedup requirement. Queues at the inputs 

need not to be able to receive or send more than one cell simultaneously because at most 

one cell can arrive at and depart from each input in one cell-time. Thus, the memory is 

only required to operate at twice the line rate, making input-queueing of interest for high- 

bandwidth switches. Unfortunately, it is previously known that an input-queued (IQ) 

switch with a single FIFO queue at each input performs poorly due to head-of-Iine (HOL) 

blocking [30]. Nonetheless, this problem can be completely eliminated by a simple queue­

ing technique.

I. The memory may be partitioned further for example, one queue for each flow.
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CHAPTER I Introduction 8

13 Overcoming Head-of-Line Blocking

Despite a long-standing practice of avoiding input-queueing because of an HOL 

blocking problem [3] [69], recent work has found a simple technique to completely elimi­

nate HOL blocking [2] [49] [66]. HOL blocking occurs because cells for different outputs 

share the same FIFO queue. When cells for different outputs share a FIFO queue, a cell 

which is destined to a free output can be blocked by a cell in front of it that is destined to a 

different output but has to remain in the queue because its output is busy. As a result, some 

inputs and outputs are unnecessarily left idle. Karol et al. showed that under certain condi­

tions, HOL blocking results in a (2 -  J2) = 58.6% throughput limit [30].

Since then various techniques have been suggested to reduce HOL blocking 

[7][24][29], However, one technique called virtual output queueing (VOQ) can com­

pletely eliminate HOL blocking. In a VOQ switch, an example of which is shown in Fig­

ure 1.4, all inputs maintain a simple queue structure consisting of multiple FIFO queues, 

one for each output. Now that all cells in each FIFO queue are destined for the same out­

put, no cell can be blocked by a cell in front of it that is destined to a different output; in 

other words, no HOL blocking can occur. Although VOQ may appear complicated, mem­

ory bandwidth required to implement VOQ remains the same as a single FIFO queue 

because at most one cell can arrive at and depart from each input at a time. Using head and 

tail pointers, all queues at an input can share the same physical memory. Logical partition­

ing of the memory can be either static or dynamic [10].

Efficient memory bandwidth utilization, together with HOL blocking elimination, 

makes VOQ a viable solution for high-bandwidth switch design. However, the scheduling 

problem in VOQ switches is more complex than the one in single FIFO switches because 

VOQ switches maintain more queues at each input than single FIFO switches.
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Input 1

Crossbar switch Output 1 
Dj(t)

QLIM

Input N

Output N

Scheduler

Figure 1.4 A simple model of VOQ switch consisting of three major components: a non-blocking switch 
fabric (e.g. crossbar) [3][25][69], a centralized scheduler and input-output ports.

1.4 Virtual Output-Queued Switch

A base-line VOQ switch is as shown in Figure 1.4. It consists of three main compo­

nents: (i) N inputs and N outputs, (ii) a nonblocking switching fabric, and (iii) a sched­

uler. Input i maintains N FIFOs, Qt p Q( 2, ..., Qi N, one for each output. Aj: j(n) is the 

discrete-time arrival process of cells at input i for output j  while Afn)  is the aggregate 

arrival process at the input. Time is slotted into cell-times which we shall, hereafter, refer 

to as slots. During each slot, at most one cell can arrive at each input. Upon arrival, every 

cell identifies its output destination and thus is queued according to its output destination. 

Q. . is a FIFO queue at input i to buffer cells waiting to go to output j . X. . is the arrival
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CHAPTER I Introduction LO

rate of A. i n ) , and A(n)  = {A .  (n);l < i < N, 1 <j < N}  is the set of all arrival processes,1 
* » y  u j

which throughout this thesis is often referred to as the arrival traffic.

Definition 1: An arrival process is said to be admissible when no input or output is
N  N

oversubscribed, i.e., when V  X. .< I, V  X. < I, A.. .>0.
Z - r  i.j rLi i .j  t.j

i = i j  = i

Definition 2: The traffic is uniform if  all arrival processes have the same arrival
rate, and destinations are uniformly distributed over all outputs, oth­
erwise the traffic is non-uniform.

Definition 3: Traffic is called independent and identically distributed (i.i.d.) i f  and 
only if:

1. Every arrival is independent o f all other arrivals both at the same 
input and at different inputs.

2. All arrivals at each input are identically distributed.

During every slot, the scheduler examines all of the virtual output queues in the sys­

tem. By considering only the non-empty queues, the scheduler selects a set of conflict-free 

paths from the set of inputs to the set of outputs. By “conflict-free,” we mean that each 

input in connected to at most one output, and each output is connected to at most one 

input. The selected queues are then served, which causes them to dequeue their HOL cells 

and send them along the pre-established paths to the corresponding outputs where the cells 

can be transmitted on the outgoing link.

I. Unless otherwise stated, all arrival processes are stationary and ergodic.
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Request graph, G 

Inputs, I Outputs. J

2.1

NJ

Matching, M  

Inputs, I Outputs, J

N •

a) Example of G for |I| = N and |J| = N. b) Example of matching M  on G.

Figure 1.5 A request graph and a matching graph of an N  x  N  switch. Define G = [V,E] as an undirected 
graph connecting the set of vertices V with the set of edges E. The edge connecting vertices i, l<i<N and j, 
1 <j<N has an associated weight denoted wK j. Graph G is bipartite if the set of inputs I = {i: l</</V} and 
outputs J = {/: l<j<N) partition V such that every edge has one end in I and one end in J. Matching M o n G  
is any subset of E such that no two edges in M  have a common vertex.

1.5 Cell Scheduling

1.5.1 Scheduling Problem

Since in one slot each input can send at most one cell, and each output can receive at 

most one cell, the goal in cell scheduling is to find a one-to-one match between a non­

empty VOQ and a free output. In other words, the scheduler matches an unmatched input 

to an unmatched output. In this scenario, every unmatched input makes requests to the 

scheduler telling it which outputs it wants to be matched, and along with every request it 

can give a weight to indicate its preference. Conceptually, the set of requests can be repre­

sented by a bipartite graph, called a request graph, illustrated in Figure 1.5 (a). Associated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER I Introduction 12

with every edge is a weight w. .. Consequently, cell scheduling is equivalent to finding a 

bipartite graph matching [13][67].

Given a request graph G , the scheduling algorithm solves a bipartite graph matching 

problem to find a match graph M . To satisfy one-to-one matching, every node in M  can 

have at most one edge incident as illustrated in Figure 1.5 (b). In M ,  a node is matched if 

it has an edge incident; otherwise it is unmatched.

M  N

Let S. Xn) be a service indicator such that V  S. Xn) < 1 and V  S. Xn) < 1 ; a valueI.J I.J I.J
i = I j  = I

of one indicates that input i is matched to output j , i.e., Q. . is allowed to forward one cell 

to its output.

Definition 4: A maximum size matching algorithm is an algorithm that finds a max­

imum size match, i.e., maximizes Jin), the number o f  connec­
t s

tions.

Definition 5: A maximum weight matching algorithm is an algorithm  that finds a

maximum weight match, i.e., maximizes Sf. Jin)wi Jin) , the total
i j

weight.

Definition 6: For brevity, we shall refer to a maximum size matching algorithm as 
maxsize algorithm, and a maximum size match as maxsize match.
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HV, W u Wun 1 0 1 . . .  o

W,_j — 1 0 0 . . .  o

W u W'j.N 0 1 0 . . .  1

i
:

• * •
: : •

• *. •

HV, Wnj - 0 0 1 . . .  0

- __ __

a) A weight matrix, co(n), indicating a b) A raw request matrix containing only
weight value assigned to each queue. i ’s and 0’s to denote whether queues are
Empty queues may have non-zero non-empty or empty, i.e., whether they
weights. make a request or not.

f u 0 M>,J - 0

0 0 0

0 Wy2 0 H 'j.v

. .
• •

0 0 - 0

c) A weighted request matrix whose elements are the 
product of the corresponding elements of a raw re­
quest matrix and a weight matrix.

Figure 1.6 Request matrix formation of a N x N  switch.

Definition 7: For brevity, we shall refer to a maximum weight matching algorithm 
as maxweight algorithm, and a maximum weight match as max- 
weight match.

Each request can be represented as the t.y'th element of a request matrix, examples of 

which are shown in Figure 1.6 (b) and Figure 1.6 (c). We call a request matrix containing 

weighted requests a weighted request matrix, denoted as R(J.n), and one containing un­

weighted requests a un-weighted request matrix or raw request matrix, denoted as R(n).
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1.5.2 Non-weighted vs. Weighted Scheduling Algorithms

Scheduling algorithms can be divided into two classes: weighted and non-weighted. 

Weighted algorithms consider request weights when making scheduling decisions while 

non-weighted algorithms do not. An example of a non-weighted algorithm is a maximum 

size matching algorithm [13][67], and an example for a weighted algorithm is a maximum 

weight matching algorithm [13][51][67].

For uniform traffic, ignoring request weights does not greatly affect the performance 

of the switch because all queues are likely to experience the same degree of congestion 

when traffic is uniform and hence likely to request the same preference. For non-uniform 

traffic, however, this is not the case. When the traffic is non-uniform, queue occupancies 

and cell delays can differ greatly from queue to queue. Queues experiencing heavy traffic 

can overflow while other queues with light traffic are empty most of the time. This circum­

stance is not only undesirable, but can result in a low throughput [51 ] [54]. In order to pre­

vent this, a scheduling algorithm should consider congestion conditions by giving 

preference to highly congested queues. But without considering request weights, non- 

weighted algorithms cannot give such preference. Weighted algorithms, on the other hand, 

can be made to consider congestion conditions. For instance, each request weight can 

reflect the occupancy of the corresponding queue or the waiting time of the cell at the head 

of the queue, and preference is then given to requests with high weights [51] [52].

2 Previous Scheduling Work

Since the introduction of VOQ [65], a variety of scheduling algorithms have been pro­

posed for VOQ switches [ 1 ] [2] [8] [42] [46] [49] [52] [54] [60] [66]. Among these algorithms, 

Parallel Iterative matching (PIM) [2], /SLIP [49] and wave front arbiter (WFA) [8][66] 

were demonstrated to be practical for high-bandwidth switches and shown to achieve 

100% or close to 100% throughput when the traffic is uniform. Introduced in 1993, PIM is
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used in DEC’s AN2, a giga-bit switch [2]. However, the use of randomizers, as we will 

discuss shortly, makes PIM too slow for tera-bit switches [15][50].1 During the same time 

frame, Tamir proposed WFA [66]. As discussed in Section 2.4, WFA is relatively simple 

to implement and fast enough to operate in tera-bit switches. Then in 1995, McKeown 

proposed another simple, fast, and efficient algorithm called iSLIP, which overcomes the 

complexity problem of PIM and outperforms PIM in several ways [40][49]. Other deriva­

tive algorithms were also proposed in an attempt to improve upon these three algorithms 

[42] [46].

Unfortunately, these algorithms were developed under the assumption that traffic is 

uniform. Thus, they are not equipped to handle non-uniform traffic: they are all non- 

weighted algorithms. As Section 3 will demonstrate, these algorithms can experience low 

throughput when traffic becomes non-uniform. Despite the differences in implementation 

and performance, all of these algorithms attempt to approximate a maxsize algorithm.

2.1 Maxsize

Among non-weighted matching algorithms, a maxsize algorithm is the one that 

achieves a maximum instantaneous throughput2 for the same given set of requests. It 

always finds a match of maximum cardinality [67]. If more than one maximum size match 

exists, ties are broken randomly. For uniform traffic, a maxsize algorithm offers good per­

formance: as shown by simulation results, it can achieve 100% throughput with the lowest 

a v e r a ge  ce l l  de lay  as c o m p a re d  to o t h e r  n o n - w e i g h t e d  a lg o r i t h m s  

[1][2][8][46][49][60][66]. However, it is only of theoretical value: it is too slow for any 

practical use in high-bandwidth switches. For an N x N switch, the most efficient algo­

rithm takes OiN1'5) time to run [23]. Nonetheless, there are a number of algorithms

1. We refer to a tera-bit switch as a switch that have an aggregate bandwidth of close to or more than one Tb/s.
2. Defined as a number of cell forwarded in one slot.
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approximating a maxsize algorithm which are fast and simple to implement in hardware. 

WFA, PIM and /SLIP are examples of such algorithms.

As proved in [51], a maxsize algorithm can lead to a low throughput under non-uni- 

form traffic. Hence, all algorithms which attempt to approximate a maxsize algorithm suf­

fer the same fate. In addition, selecting a maximum size match can lead to a starvation 

problem, in which some queues receive very little or no service [49].

2.2 PIM

The Parallel Iterative Matching (PIM) algorithm attempts to approximate a maximum 

size matching algorithm by iteratively matching the inputs to the outputs until it finds a 

maximal1 size match [2][41]. In each iteration, it successively matches additional inputs 

and outputs until no more matches can be found. The first iteration begins with all inputs 

and outputs unmatched, and each iteration of PIM consists of the following three steps:

Step 1. Request. Every unmatched input sends a request to every output for which 
it has a queued cell.

Step 2. Grant. Among all received requests, an unmatched output chooses one 
randomly with equal probability.

Step 3. Accept. Each unmatched input, then, randomly accepts one granted 
request with equal probability.

Simulation2 shows PIM to achieve 100% throughput for uniform traffic [2]. On aver­

age, PIM converges in log2N iterations, although in the worst case it may take up to N 

iterations [2][49]. For high-bandwidth switches, the number of iterations required 

becomes a deciding factor because there may not be enough time to complete them 

[40][50]. This is one of the areas in which /SLIP outperforms PIM [49]. Nonetheless, the 

main problem of PIM lies in randomizers required in the grant and accept steps. At high

1. A maximal size match is one which leaves no input unmatched unless all of the outputs it requests are matched.
2. For a 16x16 switch and 16 iterations.
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speed, randomizers are relatively expensive and slow compared to the schemes used in 

/SLIP and WFA.

2.3 /SLIP

Similar to PIM, /SLIP approximates a maxsize algorithm by finding a maximal size 

match. It has been shown to achieve 100% throughput for uniform traffic with indepen­

dent arrivals [49], yet it can be implemented using very simple hardware. Furthermore, 

/SLIP can achieve maximum throughput in just a single iteration, making it of interest for 

high-bandwidth switches. Additional iterations help reduce cell delay. Simulation results 

suggest that log2N iterations are sufficient for an iVx/V switch: more iterations beyond 

log2N do not substantially reduce cell delay [49].

/SLIP replaces the randomizers of PIM with round robin arbiters. Each input and each 

output has one round robin arbiter, and each arbiter uses a pointer to point to the highest 

priority output or input [49]. The use of round robin arbiters allows /SLIP to be simpler in 

hardware implementation and faster than PIM [2] [40]. /SLIP’s ability to achieve 100% 

throughput in one iteration, however, is based entirely on the way in which each indepen­

dent round robin pointer is updated. McKeown observed that pointer synchronization — 

pointers point to the same input or output — can result in 1 -  i  = 63 % throughput limit for 

a single iteration [49]. /SLIP resolves the pointer synchronization while maintaining fair­

ness by causing the pointers to slip with respect to each other [49].

Similar to PIM, /SLIP is an iterative algorithm and can be briefly described as follows. 

In each iteration, the arbitration is carried out in three steps:

Step 1. Request. Every unmatched input sends a request to every output for which 
it has a queued cell.

Step 2. Grant. An unmatched output, starting from the highest priority input, 
searches in round-robin fashion and chooses the first requesting input. The output, 
then, notifies each input whether or not its request was granted.
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Step 3. Accept. An unmatched input, similarly, starting from the highest priority 
output, searches in round-robin fashion and accepts the first granting output. At 
this step, the pointer updating takes place. Only if this step is part of the first itera­
tion, then the pointer at every accepting input is moved to one location beyond the 
output it accepted and the pointer at every accepted output is also moved to one 
location beyond its accepting input.

Because each output can grant to only one input and each input can only accept one 

output, the new location of each pointer is unique with respect to other newly updated 

pointers. This means that the larger the size of a match is, the more pointers are updated to 

unique locations, and the less synchronized the pointers become. Less pointer synchroni­

zation leads to a larger match size in the next cell-time.

Similar to a maxsize algorithm, which it attempts to approximate, /SLIP can achieve a 

low throughput when traffic is non-uniform. In an attempt to prevent a throughput loss 

under non-uniform traffic, threshold /SLIP and weighted /SLIP have been introduced [49]. 

However, no analysis has been carried out to suggest their performance under non-uni­

form traffic.

2.4 Wave Front Arbiter

Wave front arbiter (WFA) [8][9][66] is another algorithm to achieve 100% throughput 

for uniform traffic. Similar to /SLIP, WFA also approximates a maxsize algorithm and is 

simple to implement. For an N x N switch, the arbiter is made up of a two dimensional, 

Afx N  interconnected array of simple cells. An example for a 4 x 4 switch is illustrated by 

Figure 1.7 (a). The simplest implementation of WFA is as follows. Each cell contains a 

register holding a request indicator. Cell i,j  is for VOQ Qt j .  Priority is given strictly 

based on cell location. Cells above have higher priority than cells below, and cells to the 

left have higher priority than cells to the right. As shown in Figure 1.7 (a), each cell has 

two inputs: the top input indicating that some cell above has been matched, thereby cap­

turing the output, and the left input indicating that some cell to the left has been matched,
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thereby capturing the input. If none of its inputs is asserted and the cell has a request, the 

cell is then matched, i.e., the input and the output to which the cell belonged are matched. 

Each cell also has two outputs: the bottom output and the right output. The bottom output 

is asserted when there is a matched cell above, including itself, to signal to all cells below. 

The right output is asserted when there is a matched cell to the left, including itself, to sig­

nal to all cells to the right.

2.4 23

4.4

1.4

4.1

3,4

4.3

2.3

4.1

1.3

4.2

2.2

3 3

12

4.2 4.4

2.2 2,4

1.4

3.2 32 3.43.3

a) Wave Front Arbiter. b) Wrapped Wave Front Arbiter.

Figure L.7 A simple diagram of Wave Front Arbiter and Wrapped Wave Front Arbiter fora 4 x 4 switch.

Because of the cell dependency described above, the arbitration time is (2 N - 1 ) T  time 

units, where T  is the time for each cell to assert its outputs after receiving the inputs. 

Exploratory design-work suggests that a cell delay is approximately twice a two-input- 

NAND gate delay. Implemented in 0.25 \ im  CMOS technology with approximately 100- 

200 ps propagation delay for a two-input-NAND gate, the scheduling time for a 32 x 32 

switch is approximately 12-24 ns.
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Furthermore, the scheduling time can be reduced by half. By wrapping around the out­

puts of the bottom most cells and feeding them back to the inputs of the top most cells, and 

similarly wrapping and feeding the rightmost cells and leftmost cells as shown in Figure

1.7 (b), the wrapped wave front arbiter (WWFA) [8] is able to reduce the scheduling time 

to NT  time units. The loops created by the wrapping described above are broken diago­

nally, allowing cell arbitration to progress in parallel like a wave front sweeping across the 

cell array. The broken points can be shifted every cell-time to give equal preference to all 

cells [8].

The performance analysis in [8][66] shows WWFA to experience higher cell delay 

than WFA because parallel cell arbitration sometimes makes a premature decision. WFA 

and WWFA, however, unlike /SLIP, lack fairness for some non-uniform patterns [41]. 

Like /SLIP, WFA and WWFA can experience a low throughput under non-uniform traffic.

2.5 Deterministic Slot Allocation

The Deterministic slot allocation (DSA) algorithm is an example of how simple it is to 

achieve 100% throughput for uniform traffic. For an Nx. N  switch, DSA services each 

queue deterministically once every N  cell-times. One possible implementation is as fol­

lows. At cell-time n , input / is matched to output ( ( /  + n) mod N) regardless o f  whether 

the input has any cell fo r  the output o r  not.

For an i.i.d. arrival process, each queue can be thought of as an M/D/1 system with a

service rate of of the line rate. For uniform traffic, the maximum arrival rate at any 
N

queue is always less than ^  of the line rate, and therefore because the service rate is 

greater than the arrival rate, the system is stable [34].
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2.6 Performance Comparison of Previous Work.

Figure 1.8 illustrates the average latency as a function of the offered load to a 16 x 16 

switch, and compares the scheduling algorithms described above for uniform traffic.

•DSA’ ----
PIM1 

•WFA’ 
■WWFA’ 

SUP_16' - — 
'Maximum' - - -

100

50 60
Offered

70
Offered Load (%)

80 10030 40 90

Figure 1.8 A graph of latency as a function of offered load of a 16 x 16 switch using various scheduling 
algorithms under uniform traffic. Arrivals at each input are Bernoulli i.i.d.

Among them, a maxsize algorithm leads to lower average latency. WFA achieves slightly 

lower latency than /SLIP. Nevertheless, the latency of WFA, WWFA, and /SLIP do not 

differ greatly. A switch using DSA algorithm, on the other hand, experiences a higher 

average delay at low offered load.
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Apparently, this result shows this set of algorithms to achieve 100% throughput for 

uniform traffic. For non-uniform traffic, however, this is not the case: all of these algo­

rithms can achieve less than a maximum throughput when traffic is not uniform. More 

detailed discussion is given in Section 3.

3 M otivation o f Thesis

As VOQ switches have gained interest because of their ability to improve switching 

capacity by an order of magnitude [2][12][50][61], two problems with their existing 

scheduling algorithms have become known [49] [51] [52]. All existing algorithms either 

fail to maintain high throughput when the traffic becomes non-uniform [54] or are too 

complex to operate at high speed, becoming a speed bottleneck in the switch [33][40]. 

Shown in [51], a maxsize algorithm can experience low throughput when the traffic is 

non-uniform, so can algorithms approximating it as illustrated below. This problem is of 

concern because real traffic is always non-uniform.

Although there exist two algorithms that can avoid the low throughput problem 

[51][54], both, unfortunately, are too complex and too slow for high speed switches. As 

described in chapter 2, both algorithms are proved to achieve 100% throughput for all traf­

fic patterns (uniform or non-uniform) in part because they select a maxweight match. But 

a maxweight algorithm needed to find a maxweight match is too complex for high speed 

switches.1

As speed and efficiency go hand in hand in designing a high bandwidth switch, this 

thesis aims to address and provide solutions to both problems. The following subsections 

outline the two problems.

1. The fastest maxweight algorithm takes O(A^Iog^V) times to complete as compared to 0(N5/~) for the fastest max­
size algorithm.
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3.1 Low Throughput Due to Non-uniform Traffic

For a large switch, the problem of using computer simulation to identify all non-uni- 

form traffic patterns that would cause low throughput is extremely difficult: there are just 

too many patterns to simulate. For instance, consider a 32 x 32 switch with i.i.d. arrivals

N  N

and with a restriction that V  A.. . = 1, V  A.. . = I. A.. . = 1,0. There are 32! > 1035 traf-
U J  l . J  i . J

i= i  j = i

fic patterns to consider, and without the restriction the number of possible traffic patterns 

would be much larger.

Nonetheless, for a switch with a few ports, it is possible to find a simple non-uniform 

traffic pattern which will cause low throughput. For PIM, /SLIP, WFA, DSA, we found a 

non-uniform traffic pattern — not necessarily the worst pattern — that causes low 

throughput in a 3 x 3  switch. Without the ability to see the artifacts of traffic such as the 

number of cells waiting in each queue or the queueing times of cells, these algorithms can­

not tell which queues are likely to have traffic and which are not. So the 3 x3  non-uni- 

form traffic in Figure 1.9 (b) is created to confuse these algorithms by removing some 

flows from normally uniform traffic.

As expected and as indicated by the performance graph in Figure 1.10, these algo­

rithms perform poorly under this traffic pattern. WWFA achieves only 67% of maximum 

throughput while /SLIP performs only slightly better with throughput limited to 71%. PIM 

and WFA perform significantly better than WWFA and /SLIP, but still suffer a throughput 

loss of more than 20%. For DSA, since it always services each flow one third of the time 

without consideration for requests, the maximum throughput therefore is two thirds of the 

maximum achievable throughput, 66.6% — almost the same as that of WWFA. Overall, 

these non-weighted algorithms exhibit various degrees of difficulty in handling the traffic, 

which at a glance seems to be easy to service. However, the outcome is different for
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a) A uniform traffic pattern b) A non-uniform traffic
of a 3 x 3 switch. pattern of a 3 x 3 switch.

Figure 1.9 A construction of a non-uniform traffic pattern of a 3x3 switch. The pattern on the right is 
constructed by removing three flows, one from each input from the uniform pattern on the left. All flows 
between the inputs and outputs as indicated by the arrows are of an equal rate. Arrivals are Bernoulli i.i.d.

weighted algorithms. As will be shown later, iterative longest queue first1 (/LQF) [49]and 

iterative longest port first2 (/LPF) algorithms, both designed to handle non-uniform traffic, 

achieve 100% throughput for this traffic.

3.2 Scheduling Algorithm Complexity

In most cases, complexity is not of concern for non-weighted algorithms [8][9][53]. 

Complexity problems can arise in weighted algorithms due mainly to the need to consider 

request weights. Without careful consideration, weighted algorithms can be overly com­

plex, which is the case for existing algorithms [49].

To illustrate the problem, we evaluate the amount of hardware in terms of the silicon 

area and the speed of two existing algorithms: /SLIP, a non-weighted algorithm, and /LQF, 

a weighted algorithm. Particularly, we compare a component called an arbiter which is 

used in both algorithms. /SLIP’s arbiter does not consider or compare request weights 

while the other arbiter in /LQF does [40][49]. A logic synthesis result indicates that

1. Described in detail in Chapter 2.
2. Described in detail in Chapter 4.
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Delay vs. Throughput
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Figure 1.10 A graph of latency as a function of offered load of a 3 x 3  switch using various scheduling 
algorithms under non-uniform traffic pattern shown in Figure 1.9. Arrivals at each input are Bernoulli i.i.d.

/LQF’s arbiter is approximately five times larger and four times slower than /SLIP’s arbi­

ter. /SLIP’s arbiter takes 1.74 ns to run while /LQF’s arbiter takes 7.38 ns. In term of sili­

con area, the size of /SLEP’s arbiter is 603 units,1 and the size of /LQF’s arbiter is 3332.5 

units.

4 Outline o f Thesis

This thesis focuses mainly on cell scheduling for non-uniform traffic. Four algorithms 

are described in this thesis, and all are designed for non-uniform traffic. Our analysis 

shows that they all perform well under such traffic. In order to keep the chapters focused

1. One unit equals to the area of a two-input NAND gate.
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on the algorithms and the concepts, only the related theorems are presented in the chap­

ters, while the proofs are deferred to the appendices. An outline of each chapter is as fol­

lows.

Chapter 2 describes two maximum weight matching algorithms: the longest queue first 

(LQF) and the oldest cell first (OCF), which both achieve 100% throughput for all non- 

uniform traffic patterns with independent arrivals. They are the first algorithms proved to 

achieve such a throughput. LQF and OCF were initially proposed by McKeown [49]. 

McKeown proved that LQF can achieve 100% throughput under independent traffic both 

uniform and non-uniform [51 ], and conjectured that OCF can also achieve similar perfor­

mance [49]. In this chapter, we prove that OCF can indeed achieve 100% throughput. 

Unlike LQF, OCF can never starve any input queue. But LQF and OCF are of only theo­

retical value: because of their high complexity, LQF and OCF are not suitable for high­

speed implementation.

Chapter 3 presents a new algorithm called the longest port first (LPF), which is 

designed to overcome the complexity of LQF. By carefully selecting a weighting function, 

LPF always finds a match that is both a maxsize match and a maxweight match. Because 

of that, it is possible to implement LPF using a maxsize algorithm, which makes LPF less 

complex than LQF. Existing maxsize algorithms, however, cannot find an LPF match. In 

this chapter, we introduce a modified maxsize algorithm and prove that the algorithm, in 

fact, finds an LPF match. This chapter also looks at a pipelining technique to further 

reduce the running time of LPF. We find that it is possible to pipeline LPF and that the 

delay due to the number of pipeline stages does not lower the throughput. Using simula­

tion results, we compare the performance of LPF with LQF and OCF, and finally, we out­

line the starvation problem of LPF.
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Chapter 4 presents another new algorithm called the oldest port first (OPF), which is 

designed to lessen the starvation problem of LPF while maintaining the simplicity advan­

tage of LPF. Similar to OCF, OPF avoids starvation by considering how long cells have 

been waiting in the queues. Just as LPF is simpler than LQF, OPF is also much simpler 

than OCF. Since OPF inherits all of the techniques used in LPF, this chapter focuses only 

on the differences between the two algorithms such as the weighting mechanism, starva­

tion prevention, and performance comparison. Theorems concerning the stability of OPF 

are presented with the proofs deferred to the appendices.

Chapter 5 discusses implementable heuristic approximations to LPF and OPF. They 

are iterative algorithms called /LPF and /OPF, respectively. Accordingly, this chapter con­

centrates on design issues such as silicon area and speed. All design aspects from high- 

level architecture down to gate-level building blocks are presented in detail along with 

various design trade-offs.

5 Basic Definitions

The following definitions are used throughout this thesis.

1. The occupancy vector, representing the occupancy of each queue at time n:

2. The waiting time vector, representing the waiting time of an head-of-line cell at 
each queue at time n:

L(n) — (1<| |(^)l •••! Lj jy(n)| ..., Lyy j(̂ 0» •••» yy(/l)) ( 1.1)

d-2)

3. The (constant) arrival rate matrix:

A = [A. j ] , where: £  A. y. < 1, £  J < 1, A. y > 0 (1-3)
i= l j = L
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and the associated rate vector

i’ r  T■

4. The arrival matrix, representing the sequence of arrivals into each queue:

II if arrival occurs at Q (i,j) at time n
(1.5)

0 else

and the associated arrival vector:

A(ji) = (A| j(n), Aj yy(/i),Ayy j ( n ) , A j y  jy(w)) . (1.6)

5. The inter-arrive time vector whose each element represents the inter-arrival 
between the current HOL cell and the cell behind.

T(̂ ) = ( ĵ j(̂ )» •••» N (1*7)

6. The service matrix, indicating which queues are served at time n:

( 1 if Q (i,j) is served at time n 
S («) = [S. («)], where: S. An) = j (1.8)

'J ’J I 0 else

and S (n) e S , the set of service matrices.

N N

Note that: £  S{. y.(/i) = ^  S .y(n) = 1 
i = l  y = i

and hence S(n) e S is a permutation matrix.

We define the associated service vector as:

S(n)=  (5, L(n), ...,5 j ^(/i), —, SN {(n), ..., SN>/v(«)) r , (1.9)

hence ||5(/i)||2 = N.
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CHAPTER 2

The LQF and OCF 

Algorithms

1 Introduction

The Longest Queue First (LQF) algorithm was the first algorithm  that directly 

addressed the problem of low throughput due to non-uniform traffic, and is the first sched­

uling algorithm proven to enable input-queued switches to achieve the same throughput as 

output-queued switches [29][51]. LQF achieves 100% throughput for all independent 

arrival processes by giving preferential service to queues with high occupancies [51]. Giv­

ing preference to longer virtual output queues allows LQF to work well in keeping the 

occupancies relatively well-balanced, and reducing the possibility of overflow. Unfortu­

nately, the consequence of giving preference to high occupancy queues is that queues with 

low occupancies can receive very little or no service, i.e., they can be starved [49][52].

The Oldest Cell First (OCF) algorithm is also designed to provide high throughput 

when traffic is non-uniform and, like LQF, can achieve 100% throughput for all indepen­

dent arrival processes. Designed to overcome the starvation problem of LQF, OCF gives 

preferential service based on the waiting times of cells rather than queue occupancies. The 

reason for this is simple: no cell can wait for service indefinitely because all unserved cells
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will eventually become old enough to be served [52]. Despite the difference in the 

approaches, both algorithms share a common strategy: they maintain a maximum through­

put throughout a full range of traffic patterns by considering congestion indicators in the 

switch [51] [52].

Both algorithms were first introduced by McKeown in [49] where it was proved that 

LQF can achieve 100% throughput for any traffic pattern with independent arrivals [51]. 

Simulation results in [49] suggest that OCF can achieve 100% throughput. In this chapter, 

we prove that OCF can achieve 100% throughput for all independent arrival processes.

Although the practicality of LQF and OCF in a high-bandwidth switch is limited by 

their complexity [49][54], this chapter describes both LQF and OCF because of their 

importance in demonstrating the concept of scheduling non-uniform traffic.

2 LQF

LQF is a weighted algorithm: LQF uses a maxweight algorithm to give preference to 

more heavily occupied virtual output queues. Each request weight is set to the correspond­

ing queue occupancy and is defined as follows:

Wj jin) = LLj(n), (2.1)

where fin) is the current weight of a request from input / to output j . During every 

slot, LQF selects a match M  that maximizes the total weight of matched requests,

1,7 6 M

It is intuitive, perhaps obvious, that LQF will help alleviate congestion in a switch and 

hence reduce overflow by giving preference to longer queues. It is more difficult, however, 

to prove that LQF can maximize the throughput of the switch for all traffic patterns. As
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described in Chapter 1, this cannot be verified by exhaustively simulating all traffic pat­

terns; there are too many. The situation, thus, requires an analytical approach. Using the 

method of Lyapunov functions [22] [32], it was proved in [49] that LQF can achieve 100% 

throughput for all traffic patterns if arrivals are independent.

How LQF achieves high throughput for non-uniform traffic can be intuitively 

explained as follows. A switch is more able to transfer a large number of cells (i.e. connect 

a large number of inputs and outputs) in any one slot1 if:

1. The scheduler can find a large-sized match for the current request graph. This, 

in turn is aided by:

2. The presence of queued cells at as many inputs and for as many outputs as pos­

sible, creating a highly populated request graph. This makes it easier for the 

scheduler to match multiple input-output pairs (to transfer many cells simulta­

neously).

Figure 2.1 illustrates how a highly populated request graph (i.e. having many non-empty 

queues) can lead to a high throughput.

Therefore, to sustain high throughput (measured over a long period of time), it is desir­

able that a scheduler does not simply maximize the number of cells transferred in each 

slot. If it did, it may unnecessarily cause some queues to become empty while others con­

tain many cells. This has the effect of creating a sparse request graph like Figure 2.1 (b), 

hence making throughput lower in subsequent slots. By giving preference to more occu­

pied queues, LQF avoids this problem.

We may look at the problem of achieving high throughput another way. While it is 

tempting to assume that if we select the largest size match (i.e. the highest instantaneous 

throughput) in each slot, doing so would have a sparse request graph for future slots. Con-

1. As mentioned in Chapter 1. an instantaneous throughput is a number of cells transferred in the current slot.
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(a) (b)

Figure 2.1 Two request graphs for a 4 x 4  switch with the numbers (on the edges) indicated the queue 
occupancies. Although both graphs have the same number of total queued cells, the one on the left is more 
populated and hence permits a match size of four while the one on the right is sparsely populated and allows 
only a match size of one. Therefore, in the best case, it will take two slots to forward all the cells for the 
graph on the left, and eight slots for the graph on the right.

sider the bar graph in Figure 2.2 (a) that shows the queue occupancies of the switch in Fig­

ure 2.2 (b). If the scheduler chooses a maxsize match of size four, the VOQs (1,1), (2,2), 

(3,3), (4,4) will become empty, making the graph more sparse, and reducing the size of 

subsequent matches. If, instead, the scheduler maximizes the weight of the match, the 

“tall” VOQs are “pushed” downwards, while “shorter” VOQs are allowed to grow. Over 

time, this tends to balance the occupancies of the (active) VOQs, making large matches 

possible. In fact, when the occupancies are precisely balanced, the maximum weight 

match equals the maximum size match.

Unfortunately, LQF is impractical. Using a maxweight algorithm makes LQF too 

complex for high speed implementation in hardware. The fastest maxweight algorithm 

known to date has a running time complexity of 0(bP\ogN) [17]. Moreover, a maxweight 

algorithm needs multi-bit integer comparators in order to compare request weights [67]. 

As we will see later, the comparators are the primary source of the complexity problem.
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Figure 2.2 (a) A bar graph showing VOQ occupancies of a 4 x 4 switch; (b) The corresponding request 
graph. The arrows indicate that the corresponding VOQs are pushed downwards (serviced) if a maxweight 
match is chosen.

Another shortfall of LQF is its potential to cause starvation [49] [52]. Starvation is 

highly undesirable because cells can wait indefinitely in their queues and never reach their 

destinations. Starvation can be easily demonstrated using a simple example of a 2 x 2 

switch as shown in Figure 2.3.

3 OCF

Queue occupancies are not the only artifacts of congestion in a switch; other indicators 

such as the waiting times of cells in the queues also indicate the degree of congestion [34]. 

This is the principle on which OCF operates. Instead of giving preference to flows based 

on their queue occupancies, OCF gives preference by using the waiting times of HOL 

cells as request weights as defined below:

w ij(n) = W' j (n ) , (2.2)
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wu (n)=lInput I

e .
Input 2

D/(n) 

Output I

D^n) 
Output 2

Figure 2.3 An example of starvation in a 2 x 2 switch for which, using LQF, input queues may be starved. 
Begin with one cell in Qx , and g, 2, two cells in g, ., and Q,  , .  Assuming, no arrival to g, , and g, , , 
and one arrival to Qx , and g^ , in every slot, the occupancies of Qx , and g, , will never be more than 
one while the occupancies of g , , and 2 ,  ( will never be less than two. As a consequence, LQF always 
serves g, 2 and , because they give the largest total weight. The cells waiting in g, , and g, ,  are 
therefore starved.

where WLj{n) is the waiting time of the HOL cell of QUJ. Like LQF, OCF uses a max­

weight algorithm to find a match of a maxweight.

Giving preference based on the waiting times offers OCF a great benefit: no cell can 

remain unserved indefinitely because eventually every cell will become sufficiently old to 

warrant the service. Hence, by design, OCF can never starve a flow. To some degree, this 

makes OCF fairer than LQF: the variation of the waiting times of cells among different 

flows under OCF is smaller than that under LQF [49],

Although the service policy of OCF does not directly attempt to balance the occupan­

cies, OCF indirectly achieves the same goal by balancing the waiting times. As stated by
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Property 2 in Appendix 1, the waiting time of an HOL cell is always greater than or equal 

to the queue occupancy. Based on this principle. Appendix 1 shows that OCF can achieve 

100% throughput.

Theorem 1: Under the OCF algorithm, the queue occupancies are stable fo r  all admis­

sible and independent arrival processes, i.e., £[ || £,(«)(] l <c<°°.

Proof: The proof is given in Appendix 1.

As in the case of LQF, using a maxweight algorithm makes OCF too complex to 

implement in fast and simple hardware, and hence unsuitable for use in high-bandwidth 

switches. As we will see, even an iterative algorithm that approximates LQF and OCF is 

very complex.

4 Iterative Algorithm s: iLQF and *OCF

Like most theoretical scheduling algorithms, LQF and OCF can be adapted to operate 

at higher speed. In the same ways that existing algorithms such as PIM and /SLIP approx­

imate a maxsize algorithm, a maxweight algorithm used in LQF and OCF can be approxi­

mated by an iterative algorithm. In our iterative versions (called /LQF and /OCF), each 

iteration consists of three steps: request, grant and accept. Figure 2.4 outlines the algo­

rithms, which were first introduced in [49]. Initially, they look similar to /SLIP and PIM. 

However, the weight comparisons in step 2 and 3 make them more complex than /SLIP

[49].

4.1 Implementation of /LQF and iOCF

A direct implementation of the three-step algorithm in Figure 2.4 is shown in Figure 

2.5. Since speed is often the main concern for high-bandwidth switches and since the 

study of gate-count is already covered extensively in [49], the following discussion con­

centrates on the running time of the algorithm. For all iterative algorithms, the running
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/LQF and /OCF

Step 1. Request. Every unmatched input makes a request to every output for which 
it has a cell destined. Every request carries a weight equalling to the asso­
ciated queue length for /LQF or the waiting time of HOL cell for /OCF.

Step 2. Grant. Each output grants to the largest request. Ties are broken randomly.

Step 3. Accept. Each input accepts a grant to the largest request. Similarly, Ties are 
broken randomly.

Repeat Step 1-3 for N  iterations or until the previous iteration found no more 
matches.

Figure 2.4 An iterative algorithm approximating LQF or OCF. Each iteration consists of three steps: 
request, grant and accept. To approximate a maxweight algorithm, each output grants to a request with the 
largest weight, and each input accepts a granted request also with the largest weight. The iteration 
terminated when the previous iteration found no more matches or the N th iteration is completed.

time depends on two factors: the number of iterations and the time per iteration. For /LQF 

and /OCF, in the worst case, it can take up to N iterations to find an optimal match for an 

N x N  switch [49]. But in practice, it has been found that only log,/V iterations are needed 

to achieve close to the optimal performance [49].

The time per iteration, however, depends on the implementation. For the implementa­

tion in Figure 2.5, the iteration time can be simply calculated by adding up the running 

times of all functional blocks along the loop shown by the dotted lines. Among all compo­

nents in the loop, the grant arbiters and the accept arbiters dominate the iteration time.1 

Both arbiters, each a modified /V-input magnitude comparator, are slow due to the large 

number of input values that they need to compare and the relatively high complexity of the 

basic building block, a two-input integer comparator [71]. Figure 2.6 shows an example of

1. A logic synthesis result indicates that other blocks take less than 1 ns to complete while each grant and accept arbiter 
takes more than 7 ns (for a 32 x  32 switch with ten bits representing each weight implemented in Texas Instruments’
0.2S (i/n CMOS technology).
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Figure 2.5 A block diagram of /LQF. An iteration starts from the requests block containing registers that 
hold request indicators and is completed by the feedback from the matches block. Between the requests 
block and the matches block, the iteration progresses through the set of registers holding request weights 
(in this case, queue occupancies L-t j),  the grant arbiters, the decoder and the accept arbiters. Upon 
completion, the match result is fed back to clear the requests of matched inputs and all requests to matched 
outputs. The critical path of the iteration is shown by the dotted lines.

an arbiter for a 4 x 4 switch. For instance, in one design,1 the running time of the arbiters 

is approximately 75% of the iteration time. Even with the fastest implementation using 

carry-look-ahead, the two-input integer comparator still takes O(logfc) time units to com­

plete the comparison [13], where b is the number of bits of each input equalling to 

logLmax?  For a binary tree implementation, which is the fastest implementation, compar­

ing N  values requires log^N stages of two-input integer comparators [25]. Thus, for an

1. Fora 32 x 32 switch implemented in 0.25 pm CMOS technology.
2. Lmax is the queue size, which is also the maximum value of queue occupancies.
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Input or output number

Figure 2.6 A schematic of a 4-input grant or accept arbiter. The basic components are comprised of two- 
input integer comparators [71] and two-input MUXes [48][7l]. The four inputs to the arbiter are request 
weights which can be either queue occupancies or the waiting times of cells. The inputs are fed directly to 
the first stage integer comparators. The inputs into the first stage MUXes are the input or output numbers. 
Each comparator outputs the largest value of its inputs and then controls the selection of the MUX. For 
instance, if L, , > Z., , ,  the top left comparator outputs Z., , and signals the MUX above to select the first 
input or output number whose queue occupancy is Lx , .  Likewise, the second stage compares the given 
queue occupanies and outputs the input or output number associated with the largest queue occupancy.

N x N  switch, the best running time of each arbiter is 0(\ogb • log/V)> compared to 

O(logA0 for /SLIP [49].

4.1.1 Pipeline Technique

Despite the problem in the running time, there exists a simple improvement: a pipeline 

technique originally developed for /SLIP in the Tiny-Tera project [41]. Although it does 

not completely solve the problem, the technique can reduce the running time by almost 

half. This technique allows the grant arbiters and the accept arbiters to operate in parallel, 

effectively hiding the accept arbitration time. As shown in Figure 2.7, the basic concept is 

as follows.
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Normally, in the non-pipeline case, granting of the next iteration must wait for the 

accepting of the current iteration to complete so that the matching result can be used to 

clear the requests of recently matched inputs, i.e., previously matched inputs should not 

continue to make requests. But clearing the requests does not have to wait until the accept 

step has completed. In order to allow the grant arbiters to proceed, the only information 

needed is which inputs will be matched in the current accept phase. To determine which 

inputs will be matched, the scheduler does not need to wait for the completion of the 

accept arbitration. An input is definitely matched to some output if at least one output 

grants its requests. Therefore, a fast way to find out whether or not an input will be 

matched is to detect if it receives any grant. This can be simply accomplished by ORing 

all incoming grant signals prior to performing the accept arbitration as shown in Figure

2.7 using the grant detecting blocks.

Similarly, each matched output should not continue to grant in later iterations. Pre­

venting matched outputs from granting can be carried out in two ways. In the non-pipeline 

case, the approach is to clear all requests to all matched outputs at the request stage so that 

the outputs receive no request, and therefore do not grant. A drawback with this approach 

is that granting of the next iteration cannot proceed until a match of the current iteration is 

available, i.e., until the accept is complete. A more efficient approach is to allow the grant 

arbiters to continue regardless of the matching result. Stopping the grant arbiters from 

granting, in this case, is carried out by nulling their outputs after the accept arbitration has 

completed. As shown in Figure 2.7, nulling the grant outputs is accomplished by using 

maskable decoders. The added grant detectors and the maskable decoders do not add 

much silicon area or increase the arbitration time. Each grant detector is just an N -input 

OR gate, and masking the outputs of each decoder requires N  2-input AND gates.

In spite of the improvement above, /LQF and /OCF still remain slow for high-band- 

width switches. For a 32 x 32 switch, a logic synthesis result suggests that each arbiter
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Figure 2.7 iLQF with pipelining. The design is similar to the one in Figure 2.5 except for the use of the 
grant detectors and the maskable decoders to allow the pipelining of the scheduler. Each grant detector 
determines whether or not the input will be matched by detecting the presence of its all incoming grant 
signals. Once it detects that the input will be matched, the grant detector tells the request block to 
immediately clear all requests of the input. The granting of matched outputs is stopped by disabling the 
outputs of the grant arbiters at the decoders. With this added mechanism, the grant arbiters and the accept 
arbiters can operate in parallel.

would take a silicon area equivalent to approximately 6,000 standard inverters and a run­

ning time of more than 7 ns.1 As a result, log^V iterations, the scheduling time would be 

at least 35 ns for N  = 32. Arguably, this is not fast enough for high-bandwidth switches

[50], As mentioned in Chapter 1, our goal is to arrive at a scheduling decision within 10- 

20 ns.

1. Using 0.25 p/n CMOS process.
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4.2 Performance of iLQF and iOCF

Despite their implementation complexity, /LQF and /OCF can achieve good perfor­

mance. As compared to the non-weighted algorithms discussed in Chapter 1, /LQF and 

/OCF achieve high throughput for a broad range of traffic patterns. Shown by simulation 

results in [49], /LQF and /OCF perform well under both uniform traffic and nonuniform 

traffic. To illustrate the performance of /LQF and /OCF under non-uniform traffic, Figure

2.8 compares the average cell delay of /LQF and /OCF to /SLIP and WFA using the same

ILQF -----
IOCF -—  
’PIM’

•WFA’ ----
1SUF - —100

0.1
60 90 10040 50 70

Offered Load (%)
80

Figure 2.8 Performance comparison of /LQF and /OCF to PIM, WFA and /'SLIP. The graph shows 
simulation results of the average cell latencies as a function of offered load of 3 x 3 switches under non- 
uniform traffic described in Chapter I. Arrivals at each input are Bernoulli i.i.d. The number of iterations 
is three for /LQF, /'OCF, PIM and /SLIP.
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non-uniform traffic pattern used in Chapter 1. While iSLIP and WFA suffer low through­

put as a result of the non-uniformity of the pattern, /LQF and /OCF achieve 100% 

throughput. Simulation results for other traffic patterns can be found in [49].

In summary, although too complex and too slow for high speed switches, LQF and 

OCF demonstrate the importance of considering the congestion in the switch when mak­

ing scheduling decisions. Their approach (in using queue occupancies or the waiting times 

of cells to weight requests and selecting a maxweight match to ensure 100% throughput 

for all non-uniform traffic patterns) provides a basis on which the faster algorithms 

described in the next two chapters rely to achieve the same throughput.
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CHAPTER 3

The LPF Algorithm

1 Introduction

This chapter introduces a new weighted scheduling algorithm called the Longest Port 

First (LPF) algorithm. By definition, LPF is a maxweight algorithm similar to LQF 

described in the previous chapter. Like LQF, LPF considers the occupancies of VOQs. It 

reduces congestion in the switch by giving preferential service to backlogged queues 

based on a specific function of all queue occupancies. Doing so, LPF can achieve 100% 

throughput for all independent arrival processes as LQF.

More importantly, LPF is much more readily implemented than LQF. Unlike LQF, 

which requires the use of a maxweight algorithm, LPF can be implemented using a max- 

size algorithm. This arises from the following important property of LPF. By a careful def­

inition of request weights, an LPF match is found to be both a maxweight and a maxsize 

match.

In terms of complexity, it is an advantage to use a maxsize algorithm. A maxsize algo­

rithm does not need to compare request weights. The running time of the most efficient
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maxweight algorithm known to date is 0{fP  log AO [67] [37] while the running time of the 

most efficient maxsize algorithm is OiN2-5) [22][67]. Furthermore, approximating LPF is 

relatively straightforward since a maxsize algorithm is already well approximated by a 

variety of existing algorithms which are fast and simple to implement in hardware 

[2] [50] [66]. An iterative algorithm to approximate LPF, called /LPF, is discussed in detail 

in Chapter 5.

Selecting a match that is of both a maxsize and a maxweight also gives LPF another 

advantage over LQF. As explained in Chapter 2, maximizing the number of cells for­

warded depends on two criteria: selecting a maxsize match and maintaining a richly con­

nected request graph. While both LQF and LPF accomplish the second criterion by 

selecting a maxweight match in an attempt to balance queue occupancies, LQF does not 

accomplish the first. As we shall see in Section 5, this difference leads LPF to achieve 

lower average cell latency than LQF.

This chapter begins with a description of LPF in Section 2. Section 3 describes the 

techniques required to implement LPF using a maxsize algorithm, including the need for a 

special form of maxsize algorithm. Section 4 presents our maxsize algorithm: a modified 

Edmonds-Karp, which is specifically developed to work with the techniques described in 

Section 3.

Sections 5 and 6 discuss the performance of LPF using both a theoretical analysis and 

simulation results. Section 5, assuming the ideal condition, proves that LPF can achieve 

100% throughput for both uniform and non-uniform traffic. Considering that approxima­

tion algorithms including /LPF can take advantage of pipelined implementation to speed 

up their scheduling decisions, Section 6 analyzes the effect of a pipeline delay on LPF and 

proves that the delay has no effect on the throughput.
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Lastly, Section 7 discusses the starvation problem of LPF. Like LQF and any maxsize 

algorithm [13][22], LPF can cause starvation to queues with low traffic.

The Longest Port First (LPF) algorithm is a weighted algorithm giving preference 

based on queue occupancies. Like all maxweight algorithms, LPF weights each request 

and then finds a maxweight match, i.e., a match that maximizes the total weight.

at its output. To accomplish this, LPF uses queue occupancies to form what are called 

input occupancies and output occupancies. The input occupancy for input / is defined as 

the number of cells waiting to leave the input one at a time, i.e., the sum of all queue occu-

v
pancies at the input, ^  LiJin ) . Likewise, the output occupancy for output /  is defined as

j= i

the total number of cells at all inputs competing for transmission to the output, i.e., the

N

sum of the occupancies of all queues for the output, ^  L-t p i ) . LPF uses input occupan-
i = i

cies and output occupancies to determine the request weights. A request weight, w ^pi) , 

for a request from input i to output j  is defined as follows:

1. A flow is defined as a traffic from one input to one output whose arrival rate is A.f j  as defined in Chapter 1.

2 The LPF Algorithm

2.1 Request Weighting

LPF gives preference to each flow1 based on the degree of congestion at its input and

R£n) + Cpt), p i)  > 0 

0, otherwise,
(3.1)
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N N

where Rfjri) = ^  Lt p i)  and Cj(n) = ^  which are the row sum and column
j  = 1 / = i

sum, respectively, of the occupancy matrix, L(n), defined in Chapter 1.

Definition 1: An LPF match is any maximum weight match with request weights as 

defined by Equation 3.1.

Property 1: The total weight o f an LPF match is equal to the sum o f the occupancies o f  

all matched inputs and outputs, i.e, ^ 5 f j ( n ) wpi )  = ^ R i + ^  Cy , where I and J
i . j  i s  I j e  J

are the set o f matched inputs and matched outputs respectively.

Since an LPF match is a maxweight match, it can be directly found by using a max­

weight algorithm. As we will see shortly, this is not the most efficient approach.

2.2 An LPF Match: a Maxsize and a Maxweight Match

Theorem 1: The maximum weight match found by LPF is also a maximum size match.

Proof: The proof is in Appendix 3.

The proof is straightforward and based on Property 1 and the Max-flow min-cut theo­

rem [13][67].

3 Using a M axsize Algorithm to Find an LPF M atch

Although Theorem 1 suggests the possibility of using a maxsize algorithm, the theo­

rem does not imply the reverse, i.e., not every maxsize match is a maxweight match (with 

weights as defined in Equation 3.1). Figure 3 .1 illustrates this fact with a counter-example.
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As a result, if more than one maxsize match exists, the LPF algorithm must choose the 

one that has the largest total weight. This is, however, not what existing maxsize algo­

rithms can do: by definition they do not consider request weights [13]. There may be a 

number of ways to modify existing maxsize algorithms so that they can find an LPF 

match; but requiring a maxsize algorithm to be able to consider and compare request 

weights would not be an efficient approach. Such requirement would add more complexity 

and perhaps make the maxsize algorithm as complex as a maxweight algorithm.

Instead, we propose a simple technique that we call input and output presorting, which 

allows our maxsize algorithm to find an LPF match without comparing request weights. It 

gives our maxsize algorithm sufficient knowledge about the weight relationship of 

requests so that it does not need to compare the actual weight values.

4 •

LPF Request 
Graph

M axsize

1 •

2 • -  

3 • -

•  L

- I I ------- •  2

- I I -------» 3

4 •  •  4
(size = 2, weight =  22)

(size =  2, weight =  38)

Figure 3.1 An illustration of finding an LPF match from all possible maxsize matches from a given LPF 
request graph. In this example, there exist two maxsize matches, but only one of them is also a maxweight 
LPF match.
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3.1 Input and Output Presorting

The proposed technique rearranges the requests in the request matrix so that each 

request is larger than its neighbors below and to the right, i.e., sorts the matrix row-rise 

and column-wise in a decreasing order. Hence, our maxsize algorithm needs not compare 

request weight values. Section 4 describes a modified maxsize algorithm that can take 

advantage of this rearrangement to find an LPF match.

For LPF, such rearrangement is possible because each request weight is the sum of the 

corresponding input occupancy and output occupancy. Thus, we can observe that an LPF 

request matrix has the following properties:

Property 2: For an LPF request matrix, if  the output occupancies are in a sorted order 

in any one row, so are the requests within every row.

Property 3: For an LPF request matrix, i f  the input occupancies are in a sorted order 

in any one column, so are the requests within every column.

Property 2 is true for LPF because requests in the same row of the request matrix share 

the same input occupancies and hence their orders in the row are determined only by their 

output occupancies. So, if the output occupancies are sorted (for instance, in a decreasing 

order), then requests within every row follow the same order. A similar argument applies 

to Property 3.

Because of Properties 2 and 3, sorting the request matrix row-wise (left-to-right) and 

column-wise (top-to-bottom) becomes possible, and is simply a matter of sorting the out­

put occupancies by permuting the columns and sorting the input occupancies by permut­

ing the rows. Figure 3.2 illustrates these rearrangement steps.

As a result of the top-to-bottom and left-to-right sorting, the request at the top left cor­

ner of the matrix has the largest weight while the one at the lower right comer has the
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12 6 16 1

10 22 16 26 11

20 32 26 36 21

1 13 7 17 2

4 16 10 20 5

a) An LPF request matrix

C
c:

12 6 16 I

10 22 16 26 11

20 32 26 36 21

1 13 7 17 2

4 16 10 20 5

t
b) Row permutation

16 12 6 1 12 6 16 1

20 36 32 26 21 20 32 26 36 21

10 26 22 16 11 10 22 16 26 11
--------

4 20 16 10 5 4 16 10 20 5

1 _ 17 13 7 2 1 _ 13 7 17 2 _

d) Sorted matrix c) Column permutation

Figure 3.2 An illustration of input and output presorting and request matrix permutation, (a) A request 
matrix of a 4 x 4 switch: Each row represents an input, and each column represents an output. The number 
above each column is its output occupancy, and the number to the left of each row is its input occupancy. 
Each request weight is a sum of the associated input and output occupancies, (b) Row permutation: Based 
on the input occupancies, sorting the requests within each column is accomplished by switching row 1 and 
2 and by switching row 3 and 4. (c) Column permutation: Based on the output occupancies, sorting the 
requests within the same row is accomplished by permuting the columns as shown by the arrows.

smallest weight as shown in Figure 3.2 (d). It is worth noting that neither the above row 

and column permutations or the modified maxsize algorithm require each individual 

request weight.1 The request weights in Figure 3.2 are calculated for an illustration pur­

pose only. In the actual implementation, LPF does not calculate the weights.

1. Input and output presorting relies on input and output occupancies, and the modified maxsize algorithm does not 
compare nor consider request weights.
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In addition to eliminating the need for a maxsize algorithm to compare the request 

weights, the input and output presorting technique also reduces the complexity of magni­

tude comparison. Instead of comparing all N~ request weights (as in LQF), the presorting 

only involves comparing N  input and N  output occupancies. This reduces the complexity 

of magnitude comparison from O it^logN) to 0(A/log/V).

3.2 Implementation Using a Maxsize Algorithm

Figure 3.3 shows an implementation of LPF using a maxsize algorithm. The imple­

mentation consists of two sorters, two crossbar switches and a block implementing a mod­

ified maxsize algorithm described in the next section. The inputs to the scheduler are a 

non-weighted (raw) request matrix and the occupancies of all inputs and all outputs. The 

output from the scheduler is a matching. The sorters and the crossbars work together to 

presort the request matrix according to the input and output occupancies. The two sorters 

perform input and output presorting. The input rank and the output rank are then used to 

configure the two crossbars to reorder the requests by permuting the request matrix first 

row-wise then column-wise. The presorted request matrix (with no weights attached) is 

then passed to the maxsize matching block, which is designed to give preference to 

requests from left-to-right and top-to-bottom. Because of the request permutation, the out­

put of the maxsize matching block must be permuted back to its original order.

4 M odified M axsize A lgorithm

In order to find a maxsize match that is also a maxweight LPF match, the maxsize 

algorithm must give appropriate preference to requests when searching for a match. The 

problem, however, is that existing maxsize algorithms generally do not take preference 

into consideration when finding a match [13][18][23][67]. Nonetheless, it is possible to 

modify an existing maxsize algorithms to find an LPF match. Specifically, the search algo-
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Output OccupanciesInput Occupancies
{20, 25, 15}{10,20, 30}

SorterSorter

Raw Requests
{2, 1,3} Permuted Requests

Maxsize
Matching

X Bar X Bar
Input permutation Output permutation Permuted Match

Match

Figure 3.3 A block diagram of LPF. Based on their occupancies, the inputs and outputs are presorted by 
the two sorters. Raw requests (requests with weights removed) are given in a matrix form. Request 
reordering is done by the two crossbars, which are configured by the sorting results. Working on permuted 
requested, the maxsize matching block, which implements a modified maxsize algorithm described in 
Section 4 finds an LPF match. The match needs to be permuted back to its original order.

rithms may be changed so as to favor a request based on input and output occupancies. As 

an example, we choose to modify the well-known Edmonds-Karp algorithm [13][18]. We 

later prove that the modified algorithm finds a maxsize match which is also a maxweight 

LPF match. Moreover, we show that the modification does not increase the complexity 

either of the running time or of the arithmetic. The analysis of the running time is 

described later in the section.
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Theorem 2: For the request weighting defined in Equation 3.1, there exists a maximum 

size matching algorithm which finds a match that is both maximum size and maximum 

weight.

Proof: Such an algorithm is the modified Edmonds-Karp algorithm defined and proved 

in Section 4.1.

4.1 The Modified Edmonds-Karp Algorithm

Because the construction and the analysis of our modified Edmonds-Karp algorithm 

rely heavily on the concept of a flow network, it is useful to first overview this concept. In 

principle, a matching problem can be transformed into a network flow problem [13][67], 

an example of which is shown in Figure 3.4. First, a source s and a sink t are added to the

(a)

s

(b)

Figure 3.4 A transformation of a request graph into a flow network: (a) A weighted request graph; (b) The 
corresponding flow network.
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request graph. Every input is then connected to s , and every output is connected to t by an 

edge of zero cost. The costs of all other edges are set to the negated values of the corre­

sponding weights. All edges have a unity flow capacity in a direction as indicated by the 

arrows. Then, from a flow network, solving a maximum size matching problem is equiva­

lent to finding a maximum flow on the network while a maximum weight match is 

obtained by finding a flow of a minimum cost [13][37][67].

Before describing our modified Edmonds-Karp algorithm, we first review the original 

Edmonds-Karp algorithm.

4.1.1 The Original Edmonds-Karp Algorithm

Described in the pseudocode in Figure 3.5 is the Edmonds-Karp algorithm [13][18]. 

G is a flow network, and E  [G] is the set of all edges in G . u , v are vertices in G , which 

represent an input or an output; («, v) is an edge from u to v; c [ h ,  v ] is the flow capac­

ity of the network from u to v; f [u,  v] denotes the current flow from u to v. For a spe­

cific flow / ,  a residual network G^, also known as a residual graph, consists of edges 

indicating excess capacities which can admit more flow [13]. The residual capacity of 

each edge in Gf  can be calculated as follows:

cf [u, v] = c [w, v ] - f [ u ,  v] . (3.2)

Because a flow network has unit capacity and the algorithm considers only an on-off 

flow, all flows and residual capacities can take only the following set of values:

The Edmonds-Karp algorithm finds a maximum flow (a maxsize match) by continuing 

to increase the flow through the network by performing flow augmentation to find an aug-
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Edmonds-Karp algorithm

1 for each edge (u,v)  e  £[G1

2 do f [u,  v] = 0

3 f [v,  m] = 0

4 while BFS finds the shortest path p from s to t  in the residual network Gf

5 for each edge (u, v) in p

6 doif/[M , v] = 0 then f[u,  v] = c[u,  v]

7 else/O , u \  <— 0

8 f [u,  v] = - f [v ,  w]

Figure 3.5 The original Edmonds-Karp algorithm [13][181. G is a flow network or graph constructed as 
described in Figure 3.4. E [G] is the set of all edges in G; l i ,  v are vertices in G representing an input 
or an output: (it, v) is an edge from u to v; /  is the total flow through the network; f [u,  v] denotes a 
flow from it to v . G f is a residual network [13][67]._____________________________________________

menting path1 on Gf  until no such path exists [13][18]. Using the Max-flow min-cut theo­

rem [13][67], which states that a flow is a maximum flow if and only if the residual 

network contains no augmenting path, it can be easily verified that a flow found by the 

Edmonds-Karp algorithm is indeed a maximum flow.

The Edmonds-Karp algorithm uses a breath-first search (BFS) to find the shortest aug­

menting path. Choosing the shortest path does not necessarily yield a maxweight match 

because an input may be matched to the worst output, the smallest one, which happens to 

be the nearest, even though there are other larger unmatched outputs further away. For a 

similar reason, using depth-first search (DFS) does not lead to a maxweight match.

L. An augmenting path is a path on which an addition flow can be carried from s tor .
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4.1.2 The Modified Algorithm

Like the original Edmonds-Karp algorithm, our modified algorithm finds a maxsize 

match by performing flow augmentation on Gf  until no augmenting path exists. However, 

unlike the Edmonds-Karp algorithm, which uses BFS to find the shortest augmenting path, 

our modified algorithm uses largest-unmatched-port-first search (LPFS) in finding a dif­

ferent augmenting path to ensure that a match it finds is of a maxweight as well as a max­

size. The following is the pseudocode of our modified algorithm, which only differs from 

the original Edmonds-Karp algorithm at line 4 where a search for an augmenting path 

takes place.

Modified Edmonds-Karp algorithm

1 for each edge (u,v) e  E [ G]

2 do / [« ,  v] = 0

3 f [v ,u]  = 0

4 while LPFS finds a path p  from s to t in the residual network Gf

6

5 for each edge (u, v) in p

do if f [u,  v] = 0 then f [u,  v] = c [u, v]

8

7 else f [v,  u\ <— 0 

f [u, v]  = - f [v,  u]

Figure 3.6 A modified Edmonds-Karp algorithm.
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4.13 Largest-unmatched-Port-First Search (LPFS)

LPFS differs from BFS and DFS in the following way. BFS and DFS do not consider 

the sizes of the inputs and the outputs when building a tree from the root to all leaves in 

the process of augmenting the flow [13]. LPFS, on the other hand, gives preference to the 

largest undiscovered [13] input and output by exploring them first at every step of expand­

ing the tree. For the purpose of understanding the algorithm, consider a forward tree with 

s as its root. For LPFS, a search for an augmenting path (from s to t ) in a residual graph 

begins at the largest unmatched input and ends at the largest unmatched output. If no path 

is found, the search explores another path to the next smaller unmatched output. The 

search continues until an unmatched output is found or all unmatched outputs are 

explored. If no unmatched output is found, the input is dropped from a set of to-be- 

matched inputs since it cannot be matched in any later step, and another search begins 

from the next smaller input. Searching is terminated after an augmenting path is found or 

the set of to-be-matched inputs is exhausted.

However, for implementation simplicity, an implementation of LPFS may differ from 

its conceptual description above. Instead of a forward search from an unmatched input, a 

reverse search from an unmatched output to find the largest unmatched input may be used. 

Now a reverse tree with t as its root is constructed. This approach allows LPFS to reuse 

most parts of the well optimized and analyzed DFS algorithm; only a minor change to the 

original DFS is required. To maximize the reuse, we construct LPFS as follows.

1. The direction of every edge in a residual graph is reversed to allow a reverse 

search from t to unmatched inputs.

2. A modified DFS begins from t to find the largest unmatched input, starting with 

the largest unmatched output and then going through all unmatched outputs in 

the order of their sizes.
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3. The largest unmatched input is dropped from the unmatched set regardless of 

whether it is matched or not since it cannot be matched in later steps. Any 

matched output is also dropped from the set.

4. Step 2 is repeated until the unmatched input set is empty or an augmenting path 

is found.

We modify the original DFS to perform LPFS as follows. As shown in Figure 3.7, 

Line 2 of DFS-Visit is modified to explore the largest unmatched input or output first, 

instead of an arbitrary unmatched input or output. The same notations as described in Sec­

tion 4.1.1 are also used here. Every input or output is initially colored white — undiscov­

ered — then grayed when it is discovered, and finally blackened when it is finished. 7t [v] 

is the predecessor of v . First, LPFS builds a tree with t as its root. From the tree, if it 

exists, a path from any unmatched input to t can be found by walking the predecessor list 

which begins at the input.

4.1.4 Running Time

Since all inputs and outputs have been presorted prior to LPFS, the modification at line 

2 of LPFS-Visit in Figure 3.7 does not require extra computation: that is, it requires no 

magnitude comparison. Hence, the running time of LPFS remains the same as DFS and 

BFS, which is O (AT) . Therefore, the complexity of the modified algorithm is not differ­

ent from the original Edmonds-Karp algorithm, which uses BFS. For an N  x N  switch, 

there are at most N  path augmentations [13], each with a running time of O (AT) leading 

to a total running time of O (AT3) . Like the Edmonds-Karp algorithm, the modified algo­

rithm performs only one-bit logical operations: true or false, and so there is no increase in 

arithmetic complexity.
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LPFS(G)
1 for each vertex u G V [ G ]

2 do c o / o r  [ a ]  <— white

3 7t[w] <— nil

4 LPFS-Visit(t)

LPFS-Visittu)
1 color  [n] <— gray

2 for each v E Adjacent [a] , starting the largest to the smallest.

3 do if color [v ] =  white

4  then 7t [v] «— u

5 LPFS-Visit(v)

6 color [u] =  black

Figure 3.7 A iargest-unmatched-port first search (LPFS). First. LPFS builds a tree with t  as its root. 
Initially every input and output is colored white — undiscovered — then grayed when it is discovered, and 
finally blackened when it is finished. K [ v] is the predecessor of V. From the tree, an augmenting path 
from j  to t  which must go through an unmatched input can be found by walking the predecessor list 
which begins at a selected unmatched input.

4.1.5 Equivalency to LPF.

From the Max-flow min-cut theorem, it is given by construction that a match found by 

the modified Edmonds-Karp algorithm is also a maxsize match. Yet for it to be an LPF 

match, the match must also be of maximum weight. Therefore, we need to prove that a 

maxsize match found by the modified Edmonds-Karp is also a maxweight match in order 

to establish that the algorithm is equivalent to LPF. We prove the theorem below by using 

a method of a network flow.
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Theorem 3: A match found by the modified Edmonds-Karp algorithm is also a maxi­

mum weight match whose weights are as defined in Equation 3.1.

Proof: The proof is in Appendix 3.

5 Performance Analysis of LPF without the Pipeline Delay

This section discusses both theoretical analysis and simulation results of LPF without 

pipelining in comparison to other existing algorithms.

5.1 Stability Analysis

LPF can achieve 100% throughput for all traffic patterns with independent arrivals. 

We prove that using the notion of stability [38]. We define a switch to be stable for a par­

ticular arrival process if the expected length of the input queues does not grow without 

bound, i.e.,

Definition 2: A switch can achieve 100% throughput i f  it is stable fo r all independent 

and admissible arrival processes.

Theorem 4: Under the LPF algorithm, the queue occupancies are stable for all admis­

sible and independent arrival processes, i.e., £[||£,(n)||i < C < ° ° .

Proof: The proof is in Appendix 2.

5.2 Simulation Results

To complement the above theoretical analysis, we present simulation results to illus­

trate the performance of LPF. We simulated LPF under uniform and non-uniform traffic.

(3.3)
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5.2.1 Uniform Traffic

Shown in Figure 3.8 is an average cell latency comparison of LPF with LQF and a 

conventional maxsize algorithm [18][23]. The latency of output-queueing is used as a 

lower bound. LPF is shown by the graph to achieve slightly lower latency than both LQF 

and a standard maxsize algorithm. This improvement in the latency is possibly due to the 

fact that LPF selects a match that is of both maxweight and maxsize. By choosing a max­

size match, LPF can immediately maximize the number of queued cells transferred even 

though it still attempts to balance queue occupancies. LQF, on the other hand, cannot 

achieve this. As discussed in Chapter 2, it must wait until queue occupancies become bal­

anced before a maxweight match it chooses is also a maxsize match.

•LPF ----
LQF —- 

'Output1 
'Maxsize' .....
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Figure 3.8 Performance comparison of LPF with LQF, a conventional maxsize algorithm and output- 
queueing. The graph shows the simulation results of the average cell latency as a function o f offered load 
of 16 x 16 switches under uniform traffic. Arrivals at each input are Bernoulli i.i.d.
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5.2.2 Non-uniform Traffic

The performance difference between weighted algorithms and non-weighted algo­

rithm is much clearer under non-uniform traffic. Using the non-uniform traffic patterns 

shown in Figure 3.9, the simulation result in Figure 3.10 shows that a conventional max­

size algorithm, as predicted in [51], performs poorly. It achieves less than 90% through­

put. Under light load, the latency of LQF is not very distinguishable from that of a 

conventional maxsize algorithm. However, under heavy load, LQF continues to perform 

well and thus achieves the maximum throughput. Unlike the uniform traffic case, in this 

case, the simulation result clearly shows that LPF achieves lower latency than both LQF 

and a conventional maxsize algorithm across the range of offered load. Perhaps surpris­

ingly, LPF achieves almost the same latency as output queueing for this traffic pattern.

Figure 3.9 A non-uniform traffic pattern for a 3 x 3 switch, under which a maxsize algorithm is shown to 
perform poorly [51). All flows have the same arrival rate.
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Figure 3.10 Performance comparison of LPF with LQF, a conventional maxsize algorithm and output 
queueing. The graph shows simulation results of the average cell latency as a function of offered load of 
3 x 3  switches under non-uniform traffic shown in Figure 3.9. Arrivals at each input are Bernoulli i.i.d.

The second non-uniform traffic pattern that we considered is for a 16 x 16 switch as 

shown in Figure 3.11. Similar to the traffic pattern in Figure 3.9, this traffic pattern is 

deliberately constructed to cause a low throughput for a conventional maxsize algorithm. 

From the pattern, we can observe that input 1 and output I are the hot spots with sixteen 

times more traffic than all other inputs and outputs. Similar to the result for the traffic pat­

tern in Figure 3.9, both LPF and LQF achieve 100% throughput while a conventional
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1 1

Figure 3.11 A non-uniform traffic pattern for a 16 x 16 switch. From input 1, there is a flow to every 
output. From all other inputs, there is a flow to output I only. Like the pattern in Figure 3.9, all flows have 
the same arrival rate.

maxsize algorithm achieves only 94%. In terms of the latencies, LPF achieves lower 

latency than both LQF and a conventional maxsize algorithm. Like the case of the traffic 

in Figure 3.9, the latency of LPF is almost identical to that of output queueing.

Although these two traffic patterns do not represent “the worst non-uniform pattern,” 

their simulation results support the result in the uniform traffic case that selecting a match 

that is of both a maxsize and maxweight essentially leads LPF to outperform LQF in terms 

of achieving lower latency.
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Figure 3.12 Performance comparison of LPF with LQF, a conventional maxsize algorithm and output 
queueing. The graph shows simulation results of the average cell latency as a function of offered load of 
16 x 16 switches under non-uniform traffic shown in Figure 3.11. Arrivals at each input are Bernoulli i.i.d.

6 Performance Analysis of LPF with the Pipeline Delay

6.1 Improving Scheduling Time by Pipelining

One way to increase the frequency of scheduling decisions is to pipeline the design. 

For the implementation shown in Figure 3.3, without pipelining, the total scheduling time 

is the sum of the sorting time, the crossbar configuration time and the maxsize matching 

time. Exploratory design work suggests that the crossbar configuration time is negligible
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compared to the other two.1 As we will see later, the matching time can also be kept small. 

The sorting time can be overlapped with the maxsize algorithm using pipelining. Further­

more, the sorters can be broken up into several pipeline stages. As a result of the pipelin­

ing, the sorter outputs needed to configure the crossbars are “out of date” by a number of 

slots equal to the number of the pipeline stages. As a consequence of the delay, the cross­

bars may be incorrectly configured and thus reorder the requests incorrectly. For instance, 

using the k  slot late outputs, the sorters might mis-configure the crossbars to move row 1 

to the bottom row even though row 1 has the largest input occupancy. This can happen 

because the input occupancy of row 1 may have been the smallest one k slots ago. Incor­

rect configuration of the crossbars essentially causes the matching block to give the wrong 

preference to some requests.

Giving incorrect preference can affect performance. As chapter 2 demonstrated, 

weighted algorithms rely on the ability to give preference to requests based on congestion 

conditions in order to maintain high throughput under non-uniform traffic. We might 

expect that the pipeline delay, which causes LPF to give the wrong preference to some 

requests, may result in low throughput. However, and somewhat surprisingly, we will see 

from our analysis below that this is not the case.

6.2 Stability Analysis

In this subsection, we consider the effect of the pipeline delay on the performance of 

LPF. The following analysis includes the stability of LPF with the pipeline delay.

Referring to Figure 3.3, as a consequence of having k pipeline stages in the sorters, 

the outputs of the sorters are k slots late, causing incorrect preference to be given to some 

requests. In fact, the effect of the k slot pipeline delay is simply equivalent to attaching k

1. The configuration time of each crossbar is less than 1 ns for a 32 x 32 crossbar implemented in 0.25 pm CMOS.
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slot old weights to current requests and giving them to non-pipelined LPF. Effectively, 

non-pipelined LPF, therefore, sees k slot old weights, wf J n  -  k) , instead of the current 

weights, vvf f n ) . Hence, it finds the match based on the wrong weights, i.e., maximizes

5 X /i« )w , j(n -  k) . Normally, this can have an adverse effect on the throughput since it
‘•j

impairs the ability of a scheduler to see congestions in the switch. For LPF, however, 

using out-of-date weights only results in slightly higher average latency not lower 

throughput. Pipelined LPF still achieves 100% throughput.

Theorem 5: Using k slot old weights, the LPF algorithm is stable fo r  all admissible 

independent arrival processes, 0 <k<°° .

Proof: Theorem is proved in Appendix 2.

6.3 Sim ulation Results

Even though the pipeline delay has no effect on the throughput, it degrades the perfor­

mance by increasing the queueing delay. We study this effect using computer simulation.

6.3.1 Uniform Traffic

Shown in Figure 3.13 is the average latency graph of LPF with different values of the 

pipeline delay under uniform traffic. Apparently, the increase of queueing delays as a 

result of the pipeline delay is relatively small and difficult to differentiate from the graph. 

Figure 3.14 gives a close-up of the graph in Figure 3.13 in a region where the queueing 

delays differ the most. From the close-up in Figure 3.14, the increase of the average 

latency graph of LPF with one slot pipeline delay is relatively small. For a pipeline delay 

of eight slots, there is a noticeable increase in the average latency, but nonetheless the 

latency is still lower than that of LQF. LPF with thirty-two slot pipeline delay experiences 

slightly higher latency than the latency of LQF. In summary, this simulation’s results sug­
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gest no significant adverse effect of the pipeline delay on the performance of LPF under 

uniform traffic.

'LPF w/ no delay" ----
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Figure 3.13 Performance comparison of pipelined LPF with various pipeline delays with LQF, a 
conventional maxsize algorithm and output queueing. The graph shows simulation results of the average 
cell latency as a function of offered load of 16 x 16 switches under uniform traffic. Arrivals at each input 
are Bernoulli i.i.d.
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Figure 3.14 A close-up of the graph in Figure 3.13 from 60% to 80% offered load showing a small 
increase in cell delay as a result of the pipeline delay.

6.3.2 Non-uniform Traffic

The effect of the pipeline delay for non-uniform traffic is greater than for uniform traf­

fic as indicated by the graph in Figure 3.15 (the graph is for the 3 x 3 traffic pattern in Fig­

ure 3.9). This is mainly because, for non-uniform traffic, weighted scheduling algorithms 

rely on request weights to give proper service to the queues according to current traffic 

conditions. The degradation in latency is very noticeable across pipeline delay values. But
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overall, the increase is not severe; the latency of LPF with thirty two slot delay is lower 

than that of LQF except between 85% and 95% offered load.

100

LPF w/ no delay" ----
'LPF w/ 1 slot delay1 —
LPF w/ 8 slot delay* .....

LPF w/ 32 slot delay*
LOF* - - -  

'Maxsize* - - • 
'Output* ......

0
1 
©

3
<0

a0
1

0.1
30 60

Offered
70

Offered Load (%)
8040 50 90 100

Figure 3.15 Performance comparison of pipelined LPF with various pipeline delays with LQF, a 
conventional maxsize algorithm and output queueing. The graph shows simulation results of the average 
cell latency as a function of offered load of 3 x 3 switches under non-uniform traffic shown in Figure 3.9. 
Arrivals at each input are Bernoulli i.i.d.

For the traffic pattern in Figure 3.11, however, the effect of the pipeline delay on the 

latency is difficult to observe. As shown by the graph in Figure 3.16. the latencies of LPF 

with eight and thirty-two pipeline delay lie between the latencies of LQF and LPF with no 

pipeline delay, which do not differ much to begin with. Nevertheless, this simulation result
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for a 16 x 16 switch supports the previous result for a smaller switch that the pipeline 

delay does not severely increase the latency.

’LPF w/ no delay* ----
LPF w/ 8 slot delay* .....

.'LPF w/ 32 slot delay’ .....
'LQF - - -  

'Maxsize' - - - 
'Outpuf .....

maCJ
ITo

1a
I

SO 55 60 65 70 80 8575 90 95 100
Offered Load (%)

Figure 3.16 Performance comparison of pipelined LPF with various pipeline delays with LQF, a 
conventional maxsize algorithm and output queueing. The graph shows simulation results of the average 
cell latency as a function of offered load of 16 x 16 switches under non-uniform traffic shown in Figure 
3.11. Arrivals at each input are Bernoulli i.i.d.

7 Starvation Problem

Like any other algorithm that does not consider the waiting times of cells in the 

queues, LPF can cause starvation. With LPF, it is possible that a cell remains unserved for
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an indefinite time. Since LPF selects a match that is both a maxsize match and a max- 

weight match, it can cause starvation in the same way as a maxsize algorithm [49] or in a 

similar way as LQF [49] [52]. The following two examples illustrate each of the cases.

Figure 3.17 illustrates a situation in which LPF can cause starvation in a 2 x  2 switch 

in the same way as a maxsize algorithm by selecting a maxsize match. Consider the fol­

lowing scenario. At the beginning Qx x has three cells while Q2 2 has none, and the other 

two queues have one cell waiting in each. Assume that both Qx t and 2 have no arrival

Input 1

Input 2

Dj(n) 
Output I

d2m

Output 2

Figure 3.17 An example of a 2 x 2  switch for which, using the LPF algorithm, an input queue may be 
starved as a result of LPF selecting a maxsize match. W{- p i )  indicates a request weight defined by 
Equation 3.1. In this example, Qx , is starved even though it has three cells waiting while the other two 
active queues each have only one cell.
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in any slot while the other two queues always have arrivals in every slot. As a result, the 

occupancies of Qx 2 and QZI will never fall below one. Consequently, LPF always 

serves Q u2 and Q2 , because it sees a larger size and hence a larger weight match1 even 

though there are three cells waiting in Qx x. Since Qul is never served, the three cells 

remain in the queue indefinitely.

Another example illustrates the case in which LPF starves a queue in the same way 

that LQF does. Consider the example in Figure 3.18. The switch starts with one cell in 

Qx [ and two ceils in QX1. In every subsequent slot, there is always one arrival at £2 2, 1 

but none at any other queues. Hence, there are only two queues that can make requests: 

Qx [ and Q^ ,. Consequently, the maximum match size is always one, and LPF can

Input I 1*1.1 (n)=4 Dl(n> ^  
Output 1

*2.1 (n) =5

< 2 i /

Input 2
Output 2

Figure 3.18 An example of a 2 x 2 switch for which, using the LPF algorithm, an input queue may be 
starved as a result of LPF selecting a maxweight match. W(- p i )  indicates a request weight defined by 
Equation 3.1. As a result of the traffic pattern, Q, , is starved while Q-, t continuously get served.

1. Refer to Property 1 on page 46.
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choose to match either Qul or Qz l  but not both. As a result of such arrivals, the occu­

pancy of Q j t will never increase while the occupancy of Qz  t will never decrease. This 

means that the occupancy of Q{ t is never greater than one and that the occupancy of 

Qz  j is never less than two. This condition forces LPF to always choose to match l 

because it gives a larger weight match, leaving Qu , unserved indefinitely, i.e., being 

starved.

Although it does not affect the throughput, starvation is highly undesirable 

[8][49][52]. Presented in the following chapter is another new algorithm that is designed 

to eliminate the starvation caused by giving preferential service based on queue occupan­

cies.
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CHAPTER 4

The OPF Algorithm

1 Introduction

This chapter introduces another new algorithm called the Oldest Port First (OPF) 

designed to address the starvation problem of LPF. Following a similar approach as OCF, 

OPF uses the waiting times of cells to form request weights in order to avoid the problem 

of starvation due to giving preferential service based on queue occupancies. As discussed 

in Chapter 2, using the waiting times has a desirable property in preventing starvation 

because all unserved cells age every cell-time, hence increasingly being given a higher 

preference by the algorithm and becoming more likely to be served as a result. Besides the 

use of the waiting times instead of queues occupancies, OPF weights requests in the same 

way that LPF does: it uses the same function to derive request weights from the waiting 

times. As a result, OPF retains all the properties and the advantages of LPF including the 

implementation.

This chapter begins with the introduction of OPF. Section 2 describes an OPF request 

weighting scheme and discusses its rationale. Section 3 outlines implementing OPF using 

a maxsize algorithm.
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As in the case of LPF, OPF also benefits greatly from pipelined implementation to 

speed up its scheduling decisions. Accordingly, we analyze OPF’s performance under 

both conditions: with and without the pipeline delay. Section 4 considers the performance 

of OPF without the pipeline delay, showing that OPF can achieve 100% throughput for 

both uniform and non-uniform traffic.

Section 5 considers the impact of the pipeline delay on OPF’s performance. First, we 

prove that, in the presence of a finite pipeline delay, OPF still achieves 100% throughput. 

Then, using simulation results, we show that the delay has an insignificant impact on the 

performance of OPF in terms of cell delay.

2 The OPF Algorithm

Although eventually OPF will be proved to be both a maxsize and a maxweight algo­

rithm like LPF, for an analytical purpose, it is simpler to start by considering OPF as a 

maxweight algorithm.1 By definition, OPF is a maxweight algorithm, giving preference 

based on the waiting times of cells instead of queue occupancies. Each request weight is a 

function of the waiting times of HOL cells. Like LPF, OPF does not use an individual 

waiting time to weight a request, but instead uses what we call an input waiting time and 

an output waiting time. The waiting time of input i , Rt , is defined as the waiting time sum 

of all HOL cells at the input, and the waiting time of output j , C ■, is defined as the waiting 

time sum of all HOL cells destined for the output. In the same fashion as LPF, an input 

waiting time serves as a congestion indicator of cells competing for the outgoing link of 

the input, and an output waiting time serves as a congestion indicator of the incoming link 

of the output. Accordingly, a request weight, w'^pi) , of every non-empty queue consists 

of two quantities as defined below:

1. The proof in Appendix 4 relies on an OPF match to be a maxweight match.
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0, otherwise,
(4.1)

where /?, = ^  M7. y(n) and Cy = ^  W ^/n), which are the row sum and column sum of

the waiting-time matrix, W(n) , defined in Chapter 1.

Definition 1: An OPF match is any maximum weight match with request weights as 

defined by Equation 4.1.

Property 1: The total weight o f an OPF match is equal to the waiting time sum o f all 

matched inputs and outputs, i.e, ^ S ij(n)w(fri) = ^  /?, + ^  C- , where I and J are
i . j  i e  I j e  J

the set o f matched inputs and matched outputs respectively.

3 Using a  M axsize A lgorithm  to F ind a n  O PF  M atch

As in the case of LPF, using a maxweight algorithm to implement OPF would not be 

of interest because of its high complexity [49] [54]. With the request weights depending on 

the input and output waiting times, an OPF match is found to be both a maxweight and a 

maxsize match. Thus, to avoid the complexity problem, an efficient way to implement 

OPF is to use a maxsize algorithm as done for LPF.

Theorem 1: The maximum weight match found by OPF is also a maximum size match.

Proof: The proof is the same as the proof o f Theorem 1 in Chapter 3.

A maxsize algorithm can be adapted to find an OPF match using the same techniques 

used for LPF. Shown in Figure 4.1 is a block diagram of OPF, which is nearly identical to 

the block diagram of LPF shown in Chapter 3, except the inputs to the two sorters are now
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input and output waiting times instead of input and output occupancies. OPF still benefits 

from input and output presorting in the same way as LPF. There is only a minor change in 

the way the input and output presorting and request reordering is done. Instead of being 

sorted based on their occupancies, the inputs and the outputs are now sorted based on their 

waiting times. The maxsize algorithm is also the same one used for LPF. For example, it 

could use the modified Edmonds-Karp algorithm described in Chapter 3. OPF can also be

Input Waiting Times Output Waiting Times

Raw Requests

0 o 1

Sorter

i o o 
0 1 0 
.0 o I

Match

.----0 —►
^  A

'iEtar

o o I
i o

1 i o

{20,25, 15}

Sorter

[2, 1,3}

In p u t perm utation

0 o 1 
0 1 0
1 0 0 ; tar

Permuted Requests

M axsize
M atching

O utpu t perm utation  ' —  Permuted Match

0 o i
1 1 0 
1 I 0

0 0 I
i 0 0
0 I 0

Figure 4.1 A block diagram of OPF. Similar to LPF, the inputs and the outputs are ranked based on their 
waiting times by the two sorters. Raw requests (requests with weights removed) are given in a matrix 
form. Request reordering is done by the two crossbars which are configured by the sorting results. The 
maxsize matching block, which implements the modified algorithm described in Chapter 3, finds a 
maxsize match that is also a maxweight match. Before being sent out, the match needs to be permuted 
back to its original order.
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pipelined in the same way as LPF. Overall, there is no significant difference from LPF in 

the way OPF is implemented using a maxsize algorithm.

4 Perform ance Analysis o f OPF w ithout the Pipeline Delay

4.1 Stability Analysis

As designed, OPF performs well under non-uniform traffic. Similar to the service pol­

icies of LQF, OCF and LPF, OPF gives preferential service to backlogged queues, result­

ing in queue occupancies remain relative well-balanced. As outlined in Chapter 2, having 

queue occupancies balanced is a desirable property because it allows a scheduling algo­

rithm to achieve high throughput for non-uniform traffic.

Like LPF, we use the notion of stability [38] to prove that OPF can achieve 100% 

throughput for all traffic patterns with independent arrivals. The stability criteria and the 

definition of achieving 100% throughput are described in Chapter 3.

Theorem 2: Under the OPF algorithm, the queue occupancies are stable fo r  all admis­

sible and independent arrival processes, i.e., £[||£(/i)||i s c < » .

Proof: The proof is in Appendix 4.

4.2 Simulation Results

In addition to the above theoretical analysis, we also use simulation results to gain 

more understanding on OPF’s performance in terms of queueing delay. We simulated OPF 

under both traffic conditions: uniform and non-uniform. For non-uniform traffic, we 

choose the same traffic patterns used in Chapter 3, under which a maxsize algorithm per­

forms poorly [51].
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4.2.1 Uniform Traffic

The latency graph in Figure 4.2 shows that OPF performs as well as LPF under uni­

form traffic: the average latency of OPF under uniform traffic is almost indistinguishable 

from that of LPF. Both achieve slightly lower latency than a conventional maxsize algo­

rithm. However, the performance difference between OPF and OCF is substantial: the 

average latency of OPF is much lower than that of OCF across the range of offered load. 

The difference can be attributed to the fact that an OPF match is both a maxweight and 

maxsize match while an OCF match is only a maxweight match. In this case where a con-

OPF ----
OCF -—  
’LPF — 

'Maximum' 
'Output*----

10

a t9o
§■
©

3OCD
Sa><

1

30 40 50 60
Ottered

70
Ottered Load (%)

80 90 100

Figure 4.2 Performance comparison o f non-pipelined OPF with LPF, OCF, a conventional maxsize 
algorithm and output queueing. The graph shows simulation results of the average cell latency as a 
function of offered load of 16 x 16 switches under uniform traffic. Arrivals at each input are Bernoulli 
i.i.d.
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ventional maxsize algorithm performs much better than OCF, this outcome supports our 

early observation that there is an added benefit in selecting a maxweight match that is also 

a maxsize match.

As for the variance of cell latency, the simulation results in Figure 4.3 show that the 

variance is lower for OPF than LPF, an outcome similar to comparison of LQF and OCF 

[49]. This is as a result of OPF giving preference to cells based on their waiting times.

1000

LPF
OPF
LQF
OCF

100

o  10

90SO 80 10030 40 60
Offered

70
Offered Load (%)

Figure 4.3 Performance comparison of non-pipelined OPF with LPF, LQF and OCF. The graph shows 
simulation results of the variance of cell latency as a function of offered load of 16 x 16 switches under 
uniform traffic. Arrivals at each input are Bernoulli i.i.d.
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4.2.2 Non-uniform Traffic

As in the case of LPF, OPF, by far outperforms a conventional maxsize algorithm for 

the 3 x 3 traffic pattern in Figure 3.9. As shown by the graph in Figure 4.4, a conventional 

maxsize algorithm [18][23] achieves less than 90% throughput for this traffic pattern 

while OPF achieves 100% throughput. However, similar to an OCF vs. LQF comparison 

[49], OPF incurs slightly higher latency than LPF. Nonetheless, for this traffic pattern, 

OPF still achieves lower latency than OCF, just as it does in the uniform traffic case.

100

-OPF
OCF
-LPF

'Maxsize*
'Output*

*5O
>*
©
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30 8040 SO 60

Offered
70
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Figure 4.4 Performance comparison of non-pipelined OPF with LPF, OCF, a conventional maxsize 
algorithm and output queueing. The graph shows simulation results of the average cell latency as a 
function of offered load of 3 x 3 switches under the non-uniform traffic pattern shown Figure 3.9. Arrivals 
at each input are Bernoulli i.i.d.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4 The OPF Algorithm 82
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Figure 4.5 Performance comparison of non-pipelined OPF with LPF, LQF and OCF. The graph shows 
simulation results of the variance of cell latency as a function of offered load of 3 x 3 switches under the 
non-uniform traffic pattern shown Figure 3.9. Arrivals at each input are Bernoulli i.i.d.

For the 16 x 16 traffic pattern in Figure 3.11, OPF achieves lower latency than OCF 

but slightly higher than LPF as shown by the graph in Figure 4.6.
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Figure 4.6 Performance comparison of non-pipelined OPF with LPF, OCF, a conventional maxsize 
algorithm and output queueing. The graph shows simulation results of the average cell latency as a 
function of offered load of 16 x 16 switches under the non-uniform traffic shown Figure 3.11. Arrivals at 
each input are Bernoulli i.i.d.

5 Perform ance Analysis o f OPF with the Pipeline Delay

5.1 Stability Analysis

OPF can also benefit greatly from pipelined implementation to speed up its scheduling 

decisions. As proved below, OPF, like LPF, can tolerate a finite pipeline delay with no 

throughput loss.
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Exactly the same as LPF, the effect of the k slot pipeline delay1 is equivalent to attach­

ing k slot old weights, wt //z -  k) , to current requests before passing them to non-pipe- 

lined OPF. N on-pipelined OPF, hence, faultily selects a match that maximizes 

IX j{n)wLf n  -  k) rather than the optimum one that maximizes ’̂ lS ij(n)wi j (n) . It is
i.j ‘.j

also true for OPF that using out-of-date weights does not lower the throughput. Pipelined

OPF still achieves 100% throughput.

Theorem 3: Using k slot old weights, the OPF algorithm is still stable for all admissi­

ble independent arrival processes, 0 <k<°° .

Proof: Theorem is proved in Appendix 4.

5.2 Sim ulation Results

We use simulation to examine the impact of the pipeline delay on the performance in 

terms of cell delay. We evaluate the effect of the pipeline delay for both uniform and non- 

uniform traffic using the same patterns as in the non-pipelined case.

5.2.1 Uniform Traffic

Figure 4.7 shows the performance comparison of OPF with various pipeline delay val­

ues ranging from zero to thirty two slots. Remarkably, OPF with a pipeline delay of thirty 

two slots still by far outperforms OCF: the latency of OPF with thirty two slot delay is 

much lower than the latency of OCF. Overall, for uniform traffic, the pipeline delay has a 

minor impact on the average latency across the range of the offered load. An explanation 

for the small impact has to do with the fact that the queues statistically experience the 

same level of congestion when traffic is uniform and hence are more likely to have the 

same request weight. When all requests have the same weight, it does not matter which

1. k is the number of pipeline stages of the sorters.
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maxsize match OPF (with or without the pipeline delay) selects: all maxsize matches give 

the same total weight, the maximum weight.

OPF w/ no delay" ----
'OPF w/ 2 slot delay" ----
'OPF w/ 8 slot delay" .....

'OPF w/ 32 slot delay —  
OCF’ —-  

'Maxsize' - - - 
'Output” ......
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©O
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©
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1

70 80 9050 6030 40 100
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Figure 4.7 Performance comparison of pipelined OPF with various pipeline delays with OCF, a 
conventional maxsize algorithm and output queueing. The graph shows simulation results of the average 
cell latency as a function of offered load of 16 x 16 switches under uniform traffic. Arrivals at each input 
are Bernoulli i.i.d. The graph indicates that OPF queueing delay gradually increases as a function of the 
number of pipeline stages.

5.2.2 Non-uniform Traffic

The impact of the pipeline delay is more noticeable for non-uniform traffic than for 

uniform traffic. For the 3 x 3 traffic pattern in Figure 3.9, pipelined OPF exhibits a signif­

icant increase in the average latency under a heavy load as shown in Figure 4.8. In all, the
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impact is not severe: the latency of OPF with thirty two slot delay is not much worst than 

that of OCF.

For the 16 x 16 traffic pattern in Figure 3.11, the increase in latency due to the pipe­

line delay is difficult to observe as in the case of LPF. From the graph in Figure 4.9, OPF 

with thirty two slot delay experiences noticeably higher latency than non-pipelined OPF 

but lower latency than OCF from 70% to 90% offered load.
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OPF w/ no delay’ - 
'OPF w/ 8 slot delay1 -• 

'OPF w/ 32 slot delay*
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’Output1 -

JO
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10070 80 9040 SO 60

Offered Load (%)
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Figure 4.8 Performance comparison of pipelined OPF with various pipeline delays with OCF, a 
conventional maxsize algorithm and output queueing. The graph shows simulation results of the average 
cell latency as a function of offered load of 3 x 3 switches under non-uniform traffic. Arrivals at each 
input are Bernoulli i.i.d.
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Figure 4.9 Performance comparison of pipelined OPF with various pipeline delays with OCF, a 
conventional maxsize algorithm and output queueing. The graph shows simulation results of the average 
cell latency as a function of offered load of 16 x 16 switches under non-uniform traffic. Arrivals at each 
input are Bernoulli i.i.d.

6 Starvation Problem

OPF solves part of the starvation problem. It prevents starvation that is caused by 

selecting a maxweight match in the same way that OCF does. Among all matches of the
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same size, OPF selects one with the largest total weight to favor old cells, preventing star­

vation due to selecting a maxweight match.

However, it cannot prevent starvation due to selecting a maxsize match as explained in 

Chapter 3 because OPF always selects a maxsize match.
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CHAPTER 5

The /LPF and 

/OPF Algorithms

1 Introduction

In this chapter, we introduce two iterative algorithms for approximating LPF and OPF. 

The algorithms are referred to as /LPF when approximating LPF and as /OPF when 

approximating OPF. LPF and OPF, though simpler than LQF and OCF, are still too com­

plex and slow for high-bandwidth switches.1 For high speed applications, we need to find 

ways to closely approximate LPF and OPF. Unlike the approximation of LQF and OCF, 

/LPF and /OPF are more practical for high-bandwidth switches. Because LPF and OPF 

use a maxsize algorithm, /LPF and /OPF can use a variety of fast and efficient algorithms 

(such as /SLIP and WFA) that approximate a maxsize algorithm [49][66]. As we will see 

in this chapter, /LPF and /'OPF perform well under non-uniform traffic and are as fast as 

/SLIP and WFA.

For both /LPF and /'OPF, we also present a detailed hardware design along with perfor­

mance and complexity analysis.

1. With today's technologies, and fora switch of a moderate size, the modified maximum size matching that LPF uses 
cannot find a match within a 10-40 ns range.
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2 Approxim ating LPF and OPF

As shown in Figure 5.1, the implementation of the approximating algorithm is very 

similar to that of the original algorithm. It still consists of two sorters, two crossbars, and a 

block that now finds a maximal size match.1 The block can be implemented in a number 

of ways [2][53][63][66]. As in the case of LPF and OPF, the heuristic algorithm cannot 

use any maximal size matching algorithm: it must give preference to presorted requests as 

described in Chapter 3. However, we can borrow heavily from existing techniques.

Input Occupancies Output Occupancies

Raw Requests

1 1 0

10, 20, 30}

Sorter

{3, 2, 1}

1 o o
0 I 0 
.0 0 I.

Match

.----- ij---- ►

n

y: etar

0 0 1
L I 0
t I 0

{20,25, 15}
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2, 1 ,3

o o 1
0 I 0
1 0 0 ;tE tar

In p u t perm utation O utput perm utation  '—  Permuted Match

Permuted Requests
0  o I
1 i o 
i i o

Maximal Size 
Matching

0 o i
1 o o 
o i o

Figure 5.1 A block diagram of /LPF (for /OPF the inputs to the sorters are the waiting times rather than the 
occupancies). Except for the matching block, all blocks are functionally identical to the ones for LPF. 
Instead of finding a maxsize in accordance with LPF requirement, the matching block finds a maximal size 
match that approximates an LPF match.

1. One that leaves no request from an unmatched input to an unmatched output [2].
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Borrowing from /SLIP, the first heuristic algorithm is a three-step iterative algorithm; 

the three steps are request, grant and accept. Our second heuristic algorithm is also itera­

tive. It uses a double for-loop instead of a three-step approach. There are a number of 

ways to implement this algorithm, for example, using the arbiter array used in the Wave 

Front Arbiter (WFA) [8][9][66].

2.1 Three-step Algorithm

The three-step algorithm shown in Figure 5.2 is a simplified version of /SLIP. Essen­

tially, it is /SLIP with preference always given to the lowest numbered input and output. 

Each output searches for a request from top to bottom, and each input searches for a 

granted request from left to right. As we shall see in Section 3, removing the pointers from 

/SLIP makes the three-step algorithm faster and simpler to implement (i.e. less logic). 

Otherwise, the algorithm is very similar to /SLIP. The implementation techniques utilized

3-STEP Algorithm.

Step I Request. Every unmatched input sends a request to every output 
for which it has a queued cell.

Step 2 Grant. Each unmatched output grants to the first requesting input.
The output then notifies each input whether or not its request was 
granted.

Step 3 Accept. Each unmatched input accepts the first granting request, 
therefore completing its matching.

Repeat Steps 1-3 The algorithm stops after N  iterations or if the previous 
step 3 found no match.

Figure 5.2 Similar to /SLIP, every input and output searches in round robin fashion. But unlike /SLIP, the 
round robin pointers do not move since the requests are presorted as described in Chapter 3: the pointers 
either point to the first input or the first output of a presorted request matrix. Fixing the pointers gready 
simplifies hardware implementation, resulting in a faster and smaller arbiter. Instead of using a 
programmable priority encoder to perform grant and accept arbitration as in /SLIP [40][50], both /LPF and 
/OPF can use a much simpler priority encoder.
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for /SLIP can also be applied to the three-step algorithm. This includes the grant and 

accept pipelining technique used for /SLIP, /LQF and /OCF described in Chapter 2.

Performance-wise, the three-step algorithm is not without its shortcomings. The algo­

rithm is greedy: no connection made in an earlier iteration is removed even if doing so 

would result in a larger match. As we will see, this sub-optimality causes the algorithm to 

experience higher average latency when compared to less greedy algorithms, such as a 

maximum size matching algorithm.

2.2 Double For-Loop Algorithm

The double for-loop heuristic is as shown in Figure 5.3. Because one input and one 

output are considered at a time, the double for-loop is less greedy than the three-step algo­

rithm. Although at first the algorithm appears to have the running time of O(AT), concur­

rency is possible, allowing the reduction to 0{N ) . The concurrency behaves as follows. 

As illustrated using WFA’s block diagram in Figure 5.4, while an output is considering 

input / , its next smaller output (its right neighbor) can begin to consider any input which 

is larger than input / without waiting for the larger output to finish examining all inputs.

Pouble-For Loop Algorithm

1 for each output from the first to the last

2 for each input from the first to the last

3 if (there is a request) and (both input and output are unmatched)

4 then match them

Figure 5.3 An iterative algorithm approximating LPF or OPF using a double for-loop.
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2.3
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3.43.2
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4.442

Figure 5.4 A block diagram of the Wave Front Arbiter for a 4 x 4 switch demonstrating the concurrency of 
the double for-loop. This figure shows that while output 1 is attempting to match input 4, the second output 
can consider the other three inputs because they have already been rejected by the first output (i.e. they have 
no request for the first output).

3 Im plem entations

3.1 Sorters and Crossbars

The design of the sorters and the crossbars is relatively straightforward with many 

design choices [25][71]. The crossbars are the least complex, and designs are widely 

available in the literature [62]. Therefore, the following summarizes only some important 

design considerations for LPF and /OPF. Depicted in Figure 5.5 is a simple design of a 

crossbar. In one of our designs,1 which looks very much like Figure 5.5 and uses an 

NMOS transistor to implement a cross point, the propagation delay is less than 1 ns.

Various designs can be used for the sorters [35] with a shuffle-exchange sorting net­

work providing a good trade-off in terms of silicon area and speed [3][25]. However, /LPF 

and /OPF do not need the sorted input values but rather the list of input numbers associ­

ated with the sorted values. Therefore, an extension to a basic sorting network is necessary

1. A 32 x 32 crossbar implemented in 0.25 pm CMOS technology.
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Crosspoint Configuration Row and Column Decoder

In 2

In 3

In 4

Out 2 Out 3Out 1 Out 4

Figure 5.5 A schematic of a 4 x 4 crossbar. Mainly, it can be divided into a datapath and a controller. The 
datapath consists of the crosspoint switches, the wiring and the buffers. The controller includes the row 
and column decoder, which decides the on-off state of every switch. The wiring from the controller to all 
switches is shown by the dotted lines. The shaded lines indicate the critical path from the inputs to the 
outputs. Configuration information is supplied by the sorters.

to give the kind of outputs that /LPF and /OPF need. Figure 5.6 shows an 8 x 8 modified

sorter. Besides the use of special 2 x 2  switching elements, the design is identical to a

standard shuffle-exchange sorter [3][71 ]. We consider here the sorter for the input values

in /LPF. The sorter for outputs and for /OPF are identical. At the first stage, inputs are the

occupancies associated with an input number. At the last stage, the occupancy values are

discarded leaving only the input port numbers, which are used to configure the crossbar.

For an N  x N  switch, the number of stages grows at rate ^ ((1 + log.//) log/V) , and
Neach stage contains exactly -  switching elements [3][25], Hence, the total number of
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Figure 5.6 An 8 x g  shuffle-exchange sorting network for an input sorter in /LPF. The network consists of 
six stages of the interconnected 2 x 2  switching elements shown in Figure 5.7. Each input is comprised of 
two integer values: one represents an input occupancy and the other identifies the input. The outputs of the 
network are sorted in ascending order from top to bottom based on the input port occupancies.

1
switching elements is 0(N  (log^V) “). A design of a switching element is shown in Figure 

5.7.

A static timing analysis1 suggests a propagation delay of less than 1 ns for the switch­

ing element.2 The pipelining of the sorters can be accomplished by inserting flip-flops 

between switching stages. Once the propagation delay of each stage is known and the slot 

time is specified, the minimum number of pipeline stages and equivalently the maximum 

number of switching stages between each pipeline stage can be calculated. For example,

1. Using Synopsys [39].
2. With ten bits representing each value and implemented in 0.25 pm CMOS technology.
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Figure 5.7 A switching element for the sorting network in Figure 5.6. Each input to the element consists of 
a tag and a value. The magnitude comparator compares the two values and configures the middle 2 x 2  
switch so that the largest value is switched to the bottom output, and the smaller value is switched to the top 
output. The same switch configuration is also used to configure the top switch to switch the two tags in the 
same way. The tags flow out along with the values.

with a 1 ns delay per stage, 10 ns slot time and I ns flip-flop delay (setup time plus clock- 

to-output delay), the maximum number of switching stages between two pipeline flip- 

flops is nine.

3.2 Three-Step Algorithm

The implementation of the three-step algorithm at a block level, shown in Figure 5.8, 

is almost identical to /SLIP [53]. The only difference is that a complex arbiter is replaced 

by a simple priority encoder. As a result, the /LPF arbiters no longer dominate the iteration 

time, and take less silicon area than that of /SLIP. A wide range of speed and area trade­

offs is available to implement a priority encoder. For area critical applications, a ripple 

design, an example of which is shown in Figure 5.9, is more desirable. For speed critical 

applications a look-ahead design, also known as a parallel design, an example of which is 

shown in Figure 5.10, may be more suitable because it is faster than a ripple design.
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Accept Arbiter NGrant Arbiter N

Disable grants
Clear Requests
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Figure 5.8 A block diagram of the three-step algorithm. Shown here with the iteration pipelining technique 
described in Chapter 2, this diagram only differs from the one in Figure 2.6 in the places where the priority 
encoders replace the magnitude comparators.

However, this task of exploring the design space is more conveniently left to logic 

synthesis [40].

As compared to the 1.74 ns running time and the area equivalent to 603 inverters of an 

/SLIP arbiter,1 a look-head priority encoder takes only 0.61 ns and an area equivalent to 

209 inverters for a 32 x 32 switch.

I. Detailed in Chapter 1.
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Request 1 Request 3 Request 4Request 2

Grant 3 Grant 4Grant 1 Grant 2

r ^ l
UD i

en en en en

Figure 5.9 A four-input ripple priority encoder. The encoder, with requests as the inputs and grants as the 
outputs, consists of serially connected simple cells. As connected, priority is given to the inputs from left to 
right. The en signals are used to indicate the existence of a higher priority request. The rippling of the en 
signals starts from the output of the first cell and ends at the last cell. As a result, only the output of the first 
cell with an active input is asserted.

3 3  Double For-Loop Algorithm

The double for-loop algorithm is simpler to implement. In general, a range of design 

trade-offs can be easily explored using logic synthesis. WFA can also be modified to 

implement the double for-loop algorithm. The priority rotation mechanism of WFA [8][9] 

is disabled so that it always gives preference to the inputs and the outputs from first to last

Request 1 Request 2 Request 3 Request 4

( J

,

Grant I Grant 2 Grant 3 Grant 4

Figure 5.10 A four-input look-ahead priority encoder. Functionally equivalent to the one in Figure 5.9, the 
encoder generates each output in parallel and is therefore faster. However, for a larger number of inputs, 
this implementation takes a larger silicon area.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5 The iLPF and iOPF Algorithms 99

Grant

Request

Figure 5.11 One of several ways to implement the double for-loop algorithm. This implementation is a 
subset of WFA [66], which has the priority rotation removed. Each cell of the two dimensional 
interconnected array is a simple combinational logic shown in the shaded circle. Each cell holds a request 
one-to-one corresponding to a request matrix. As shown, the request of a particular cell is granted if there is 
no cell from the left and no cell from the top with a granted request (see section 2.4 on page 18). The worst 
case delay per cell is the delay of the AND gate plus the delay of the OR gate.

(i.e. it searches a request matrix left-to-right and top-to-bottom). A schematic implementa­

tion for a 4 x 4  switch is shown in Figure 5.11. With a 50-100 ns propagation delay per 

cell,1 the running time of the implementation in Figure 5.11 for a 3 2 x 3 2  switch is 

approximately 6.3-12.6 ns.

4 Com parison with /LQ F and /O CF

4.1 Hardware Complexity

Table 5.1 shows estimates of the silicon area for each functional block obtained from 

logic synthesis for a 32 x 32 switch. The purpose of this estimate is to provide a rough 

indication of the hardware complexity of each algorithm. It is important to note that this 

estimate does not take into consideration other aspects such as area occupied by wiring,

l. Under a typical condition using Texas instruments’ 0.2S pm CMOS technology.
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Block Name Quantity /LQF
iLPF:
three-
step

/LPF:
double

for-loop

Arbiter array 1 — — 18688

crossbar ( 16Kx4) 2 — 128000 128000

Sorters 2 — 113040 113040

Grant Arbiters 32 106640 6688 —

Accept Arbiters 32 106640 6688 —

M askable Decoders 32 8080 — —

M askable Registers 32 — 6424 —

Grant Detectors 32 776 776 —

Matches 1 7168 7168 —

Request 1 7168 7168 —

Weight Register 64 4048 — —

Total Area 240520 275952 259728

Table 5.1 A silicon area estimate of each functional block of /LQF and /LPF for a 32 x 32 switch 
(measured in a unit equivalent to the size of a minimum size inverter).1

1. From Texas Instruments' 0.25 \im  CMOS standard cell library.

peripheral circuitries around the core of the schedulers, and gate fanins and fanouts. These 

may substantially increase the total area.

The total silicon area needed for /LQF, as indicated at the bottom of Table 5.1, is about 

13% smaller than the areas of both implementations of iLPF. The crossbars and the sorters 

of /LPF make up approximately 87% of the total area: a consequence of our design choice 

to minimize the propagation delay through the crossbars and to minimize the pipeline 

delay through the sorters. Each crosspoint of the crossbars in this design is thirty-two bits 

wide so that the crossbars can permute a request matrix in one pass, and the sorters have
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only one pipeline stage at their outputs. If a smaller design is required, the crosspoints can 

be made as small as one bit wide, resulting in thirty two times less area for the crossbars, 

or one sorter can be eliminated by time sharing a sorter between inputs and outputs. With 

one bit wide crossbars and a time-sharing sorter, both implementations of /LPF can be 

made 60% smaller than /LQF.

4.2 Running Time

Tabulated in Table 5.2 are the running times for each functional block o f /LPF and 

/LQF. With one slot pipeline delay after the sorters (to hide the sorting time), an estimate 

of the scheduling time for /LPF using the double for-loop can be calculated as follows:

/LPF: /LPF:
Block Name iLQF three-step double

for-loop

Arbiter array — — 0.14x63

Crossbar — 0.2x4 0.8

Sorter — 0.97x15 0.97x15

Grant Arbiter 7.38 0.61 —

Accept Arbiter 7.38 0.61 —

Maskable Decoder 0.19 — —

Maskable Register — 0.19 —

Grant Detector 0.64 0.64 —

Matches 0.19 0.19

Request 0.19 0.19

Weight Register 0.19 — —

Table 5.2 A propagation delay estimate of each functional block of iLQF and iLPF for a 32 x 32 switch 
(measured in nanoseconds).
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Scheduling  =  c r o s s b a r a r b i t e r  =  I 1-51/15. (5.1)

For the three-step implementation, we consider the case of log ,32 iterations. The 

scheduling time estimate for the three-step algorithm with an iteration pipeline stage 

between the grant stage and accept stage in addition to the sorter pipeline is

^scheduling ~~ ^ c r o s sb a r^  5 ^ a c c e p t  ^grant detect ^request) ~  . (5.2)

For /LQF with the similar iteration pipeline and with the same number of iterations, 

the time estimate is

ŝcheduling  5 (^accept ^grant detect ^request register) 42/15. (5.3)

Note that /LQF is approximately four times slower than /LPF. From Equation 5.3, the 

accept arbiter running time constitutes almost 88% of /LQF’s scheduling time (36.9 ns out 

of 42 ns). As explained in Chapters 1 and 2, the slowness of the accept arbiter can be 

attributed to the magnitude comparators that it has inside. In contrast, the accept arbiter of 

/LPF (in the three-step algorithm) constitutes approximately 38% of the scheduling time 

(3.05 ns out of 8 ns).

Based on our experience designing the scheduler for /SLIP in the Tiny-Tera switch

[39], the scheduling times of /LQF and /LPF with the three-step implementation may be 

significantly underestimated because of the omission of gate delays due to the fanins and 

the fanouts. For instance, each feedback from the grant detectors must drive thirty two 

registers, increasing the grant detector delay by at least 1 ns. So, it is unlikely that in prac­

tice the three-step with five iterations will be faster than the double for-loop implementa­

tion.
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4 3  Performance Comparison using Simulation of the Three-Step and the 
Double For-Loop Algorithms

The following compares the performance in terms of throughput and average cell 

latency of the three-step and the double for-loop algorithms to that of /LQF, /SLIP and 

WFA. The comparison is based on simulation results for both uniform and non-uniform 

traffic.

43.1  Uniform Traffic

The graph in Figure 5.12 compares the latency of the three-step algorithm with the 

latencies of /SLIP and /LQF under uniform traffic. The graph in Figure 5.13 compares the

10
M
0
1 
39o>
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I<

1

60 80 90 10050 70
Offered Load (%)

40

Figure 5.12 Performance comparison of iLPF and /OPF with the three-step implementation with /SLIP 
and /LQF. The number of iterations for all algorithms is sixteen. The graph shows the simulation results of 
the average cell latency as a function of the offered load of 16 x 16 switches under uniform traffic. 
Arrivals at each input are Bernoulli i.i.d.
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Figure 5.13 Performance comparison of /LPF and /OPF with the double for-loop implementation with 
WFA and /LQF. The number of iterations for all algorithms is sixteen. The graph shows the simulation 
results of the average cell latency of switches under the same traffic considered in Figure 5.12 as a 
function of offered load.

latency of the double for-loop algorithm with WFA and /LQF. Although all algorithms 

achieve 100% throughput,1 their latencies differ noticeably. With both implementations, 

/LPF and /OPF experience higher latency than the other three algorithms. The cause for 

this increase in latency, which we call matching blocking, is explained in the following 

section. It has to do with the way in which /LPF and /OPF rearrange requests and because 

the three-step and the double for-loop are greedy algorithms. /LPF achieves lower latency 

than /OPF under a heavy load, an outcome similar to the latency comparison of /LQF and

l. Because the vertical axis does not show beyond 500 slots, all algorithms may appear to achieve less than 100% 
throughput.
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/OCF [49]. Apparently, giving preference based on the queue occupancies has a tendency 

to result in lower latency than giving preference based on the waiting times.

The graph in Figure 5.14 compares the three-step algorithm with the double for-loop 

algorithm for both /LPF and /OPF. As shown by the graph, the latencies between the two 

implementations (algorithms) do not differ noticeably. Nevertheless, the numerical values 

of the data points of the graph show that the double for-loop implementation yields 

slightly lower latency than the three-step implementation, which is similar to the compari­

son between the latencies of WFA and /SLIP given in Chapter 1.

'iLPF/double for-loop' 
iLPF/3-step' 

'iOPF/double for-loop’ 
iOPF/3-slep'

10
<n
®O
>Noc
9

3
a>o>
S

1

10070
Offered Load (%)

80 9040 6050

Figure 5.14 Performance comparison of the three-step implementation with the double for-loop 
implementation for /LPF and /'OPF under the identical conditions as those in Figure 5.12 and Figure 5.13.
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In addition to evaluating the latencies, we also used uniform traffic to study the perfor­

mance of the three-step algorithm as a function of the number of iterations. Figure 5.15 

shows simulation results of the three-step algorithm with two, four, eight, and twelve iter­

ations. The results reveal a problem: the three-step algorithm seems to require more than 

the log ̂  iterations needed by iterative algorithms such as PIM, iSLIP and /LQF. The 

graph in Figure 5.15 indicates that the three-step algorithm needs at least twelve iterations 

while /SLIP and /LQF need only four iterations for a 16 x 16 switch.

ILPF 2 iterations' ----
ILPF 4 iterations' ----
ILPF 8 iterations' .....

ILPF 12 iterations’
1SL1P 4 iterations’ ----
ILQF 4 iterations’ - - -

100

0.1
40 50 60 70

Offered Load (%)
90 10080

Figure 5.15 Number of iterations comparison of the three-step algorithm implementing /LPF with /LQF 
and /SLIP under uniform traffic identical to the one considered in Figure 5.12.
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This problem is related to pointer synchronization (multiple round robin pointers pre­

ferring the same input or output), which is studied and presented in detail in [49]. For the 

three-step algorithm, all pointers are unfortunately perfectly synchronized: they all point 

to an input or to an output with the largest occupancy (or waiting time). As described in

[49], the problem causes an iterative algorithm to match fewer number of inputs and out­

puts in each iteration and subsequently to need more iterations to complete the matching.

However, this problem does not pertain to the double for-loop algorithm because it 

always goes through the maximum number of iterations for the two nested loops (see sec­

tion 3.3 on page 98). Thus, the double for-loop algorithm may be more desirable.

43 .2  Non-uniform Traffic

The graph in Figure 5.16 compares the different algorithms for the non-uniform traffic 

pattern in Figure 1.9 of Chapter 1. Since the switch size is only 3 x 3, we do not consider 

cases with different numbers of iterations. /SLIP, /LQF and the three-step algorithm were 

given a maximum number of three iterations. For this traffic pattern, /LPF and /OPF 

achieve noticeably lower latency than the other algorithms. Hence, the effect of the match­

ing blocking is not detectable from the graph. Reasons for the missing effect include the 

small size of the switch simulated, which does not promote matching blocking, and the 

non-uniformity of the traffic, which lessens the blocking.

As in the case of uniform traffic, /LPF achieves lower latency than /OPF for both 

implementations. However, between the two implementations, the latency is almost indis­

tinguishable due to the small size of the switch.

5 M atching Blocking Problem

Like all iterative algorithms that do not allow backtracking, the three-step and the dou­

ble for-loop algorithms cannot avoid the problem of matching blocking. Matching block-
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Figure 5.16 Performance comparison of iLPF and /OPF with /LQF, /SLIP and WFA. The graph shows 
simulation results of the average cell latency as a function of the offered load of 3 x 3 switches under non- 
uniform traffic shown in Figure 1.9. Arrivals at each input are Bernoulli i.i.d.

ing occurs when a match made in earlier iterations prevents (blocks) a scheduler from 

selecting a larger size match. The effect of matching blocking can vary from high latency 

to low throughput. Although we have not been able to find traffic under which iLPF and 

z’OPF achieve less than 100% throughput, we have found that matching blocking can 

cause tLPF and z'OPF to experience high latency for some traffic such as uniform traffic.

The effect of matching blocking is more noticeable in z"LPF and z'OPF than in other 

algorithms because z"LPF and z'OPF unintentionally stimulate matching blocking by giving 

preference to large inputs and outputs. Figure 5.17 illustrates how this problem can arise
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Figure 5.17 An illustration of a matching blocking problem in /LPF. The circles indicate matches found by 
WFA and /LPF, and the squares indicate a larger size match that /LPF should have selected.

for iLPF. Shown in Figure 5.17 (a) is an occupancy matrix of a 2 x 2 switch, which also 

happens to be an unweighted request matrix. Starting its search from the top-left comer 

toward the lower-right comer of the request matrix, WFA will find the match with two 

connections: input 1 to output 2 and input 2 to output 1, as indicated by the circles in Fig­

ure 5.17 (a). The double for-loop algorithm implementing /LPF, however, can make only 

one connection. As shown in Figure 5.17 (b), before finding a match, /LPF needs to give 

preference to the inputs and the outputs based on their occupancies by switching the first 

row with the second row and the first column with the second column.

When the double for-loop algorithm is applied to the reordered matrix, similar to 

WFA, it first considers the top input and the left output (the second input and the second 

output) and matches them. As a result, the other two requests cannot be matched because 

the input or the output that they want to be matched to has already been matched (input 2 

and output 2), i.e., they are blocked by the matching of a higher priority input and output. 

So without unmatching the previous match, /LPF cannot improve a matching size nor a 

matching weight in this case.
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6 Solution to the M atching Blocking Problem

The matching blocking problem can be solved by allowing a scheduling algorithm to 

remove previously made connections, i.e., to rip up a match, so that a larger match can be 

then selected. For instance, in the above example, if /LPF had known that the other two 

requests exist and had been allowed to unmatched the second input and the second output, 

it would unmatch the single connection match and then select the two connection match as 

depicted by the squares in Figure 5.17 (b). In other words, it would exchange the single 

connection match for the two connection match. This is a basic principle of a technique 

known in [63] as “extension-by-exchange.” Note that such an exchange exemplified in 

this figure does not result in the removal of an input or an output from a set of matched 

inputs or a set of matched outputs. Every matched input or output before the exchange 

takes place still remains matched after the exchange. This property guarantees that 

improving a match size does not result in a small weight match.

As indicated by the simulation result shown by the graph in Figure 5.18, such a tech­

nique substantially reduces the latency. The latency of /LPF with the exchange technique 

is almost as low as that of its optimum algorithm, LPF. However, this technique presents 

another design trade-off. While it reduces the latency, as described in [63], the exchange 

technique adds hardware complexity and substantially increases the scheduling time.

In conclusion, this chapter has presented two high speed approximating algorithms 

that can be used for both LPF and OPF. Our exploratory design work indicates that it is 

highly feasible to implement /LPF and /OPF for a 32 x 32 switch with a 10-40 Gbp/s line 

rate for a cell size of 53 bytes or larger.
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Figure 5.18 Performance comparison of /LPF (with the extension-by-exchange technique) with the three- 
step and the double for-loop implementations under uniform traffic identical to that of Figure 5.12 and 
Figure 5.13. The latency graphs of LPF, WFA and /SLIP are used as a reference.
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CHAPTER 6

Conclusion

1 Summary

The background to this problem may be summarized as follows. Input-queued 

switches can achieve 100% throughput for uniform traffic using fast and fair scheduling 

algorithms implemented in dedicated hardware. Several scheduling algorithms have been 

designed for 32 x 32 switches making decisions in 50 ns. or less using 0.25 \im CMOS 

technology. However, as shown in Chapter 1, these algorithms can perform poorly when 

traffic is non-uniform.

While algorithms are known that achieve 100% throughput for non-uniform traffic, 

they are known to be too complex for implementation in fast hardware.

The LPF and the OPF algorithms introduced here demonstrated that achieving 100% 

throughput for all non-uniform traffic patterns does not necessarily compromise the sched­

uling speed. For a 32 x 32 switch, /LPF and /OPF can make a scheduling decision within 

10 ns, which is as fast as achievable by algorithms good for uniform traffic only.
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In terms of their practicality, our exploratory design work suggests that for a 32 x 32 

switch iLPF and /OPF can be implemented using fewer than two million gates. As we 

have learned from designing the /SLIP scheduler, most of the gates are consumed not by 

the scheduler but by counters and flip-flops maintaining the states of queue occupancies as 

well as data formatting logics. The same is true for /LPF and /OPF. Among the two mil­

lion gates, the core of the schedulers consists of fewer than three hundred thousand gates.

Performance-wise, simulation results show that LPF and OPF achieve lower average 

cell latency than previously reported algorithms. For some traffic patterns, they achieve 

almost the same latency as output-queueing. For /LPF and /OPF, however, we discover 

that they can experience higher cell latency for uniform traffic as shown Figure 5.12. As 

for the latency variance, OPF achieves a smaller variance than LPF, a result similar to the 

comparison of LQF and OCF.

With 10 ns per decision, /LPF and /OPF can allow a switch to operate at up to 40 Gbps 

line rate. For a 32 x 32 switch, this is equivalent to 1.28 Tbps aggregate throughput. 

Increasing switch size does not present a major problem in terms of the scheduling time 

because the running time of the maximal size matching (the double for-Ioop algorithm) 

scales linearly with the number of ports. The problem is with the number of gates 

required, which scales quadratically with the number of ports. For a 64 x 64 switch, we 

do not foresee a single chip implementation using 0.25 \im CMOS technology.
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2 Future Research

Switch scheduling for terabit switches and routers is sdll a subject of active research. 

In addition to receiving high throughput, network users often have other requirements 

such as a delay guarantee, a low packet loss rate and data security. At the time of this writ­

ing, progress is being made in the areas of integrating QoS into the switch scheduler,1 dis- 

tributed algorithms and, perhaps most exciting of all, emulating an output-queued switch 

using a form of input-queued switch.

2.1 QoS Integration

Integrating QoS directly into a switch scheduler still remains a difficult task at the 

present because quality and throughput in many cases are conflicting specifications. Often, 

it is boiled down to the issue of quality vs. quantity. A group of researchers at Massachu­

setts Institute of Technology (MIT) proposed an algorithm that is very similar to LQF and 

LPF.3 Rather than using queue occupancies or waiting times to weight requests, their algo­

rithm uses rate-based credits. However, they were unable to show that their proposed algo­

rithm can achieve 100% throughput for all non-uniform traffic patterns.

2.2 Distributed Algorithm s

In an attempt to solve the scaling problem of centralized schedulers, researchers turn 

to distributed algorithms. Because they are distributed, each individual scheduler is much 

simpler than a centralized scheduler. Distributed algorithms scale linearly or even sub-lin- 

early with the switch size. Up until now proposed distributed algorithms have been limited 

for uniform traffic only. One of the problems in designing a distributed algorithm is dis­

tributing information among all schedulers residing at different inputs and outputs. It is 

harder to distribute multi-bit information such as queue lengths, waiting times and credits

1. Based on to-be-published manuscripts.
2. Also based on to-be-published manuscripts.
3. The manuscript is being reviewed for publication.
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than one-bit requests. For a high-speed switch, this can be a problem because a significant 

portion of high-speed interconnections, otherwise available for packet forwarding, need to 

be allocated to interconnect the schedulers. Furthermore, the interconnection delay can 

increase the scheduling time substantially, especially those of iterative algorithms.

2.3 Output Q ueueing Emulation

Output queueing emulation is a novel approach to address the QoS issue. The idea is 

that if an input-queued switch also maintains queues at the outputs and the switching fab­

ric is sped up moderately (two to four time the line rate), most arriving cells will be imme­

diately forwarded to and queued at the outputs, making the switch appear as an output- 

queued switch. Once cells are queued at the outputs, each output can independently pro­

vide QoS, therefore, relieving the switch scheduler from this task.

While recent work shows that there exists a scheduling algorithm capable of perfectly 

emulating an output-queued switch with a speedup of two [11], the proposed algorithm is 

too complex for terabit switches and routers.
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APPENDIX 1

Stability of an NxN Switch under 

OCF with Independent Arrivals

1 Definitions

The stability proof of OCF in this appendix is derived primarily from the properties of 

the waiting times of HOL cells in a switch and the properties of the arrival processes. 

Therefore, we first define such properties and related definitions. The properties can be 

observed as follows. Consider Figure A 1.1. Cj p i)  is the HOL cell of . at slot n

which arrived at slot n—W. fn) and, thus, has been waiting in the queue for W. in) slots.uj '*y

If the cell does not leave the queue, i.e., does not get served, its waiting time increases 

by one per slot:

WiJ n +  1) = WiJ n )+  1. (1)

If the cell leaves the queue (the queue is scheduled), a cell behind advances to the head 

of the queue, becoming the new HOL cell. From Figure A l.l , it can be seen that the wait­

ing time of the new HOL is the previous HOL cell waiting time minus the interarrival time 

between the two cells, t . ,(/i):
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C. .(/i)*.y C. .( /I+ 1 )
*.y

iL i1

* W. . i n )  *

'»y
i1 :

^-------x. -in) ----------►
i-J

' n time

C. .(n) C. . ( n+  L) '.y

Figure A 1.1 Arrivals and departures time line. Arrivals are shown below the line, departures are shown 
above the line. This figure shows the current HOL cell q j n )  departing at slot n and its successor
C( j(n + I) departing some slots later.

WL f n  + 1) = .(*)-T . Jin), Vx. j  (n) < WUj (n ) . (2)

In the case where there is no arrival while C, Xn) is waiting in the queue, the queue 

becomes empty when Cf- p i )  leaves the queue. Hence, the waiting time in the next slot is 

defined to be zero:

Wuf n  + 1) = 0, Vt. .(n) > Wufin). (3)

Associated with the above waiting time equations, we define the approximate next 

state vector of the waiting times as follows:

W(n + 1) = W(n) + 1 -  [S(n) • t (n) ] . (4)

It is worth noting that W( p i )  can become negative when xt- Jin) > Wi Jin) while Wi Jin) 

can never become negative.
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Further, we derive the following properties from the properties of the arrival processes 

as described in Chapter 1. These properties are needed for the proofs of the subsequent 

lemmas.

Property 1 t . In) is independent of a waiting time, W. In), V i,j, n .UJ uj

Property 2 xi p i )  > 1. Since there is only at most one arrival per slot, the arrival 

time of any two consecutive cells must be at least one slot apart.

Property 3 Wi j(n) > Li p i) ,  V/,y, n because there is at most one arrival per slot.

Property 4 The sum of the weights of all granted requests, ^  Wi p n ) , is equal
T  (W)  e  Mto W (n)S(n).

Property 5 For any queue whose arrival rate is zero, . = 0 , Lt j(n) = 0 ; thus

j(n) = 0, V/2. Considering the fact that a zero waiting time does not
Tcontribute to the sum value, W (n)S(n), without loss of generality, we 

can set the corresponding service indicator, p i)  to zero for all time, 

Si fn )  = 0, \fn.

In addition, we also define the following.

1. A positive-definite diagonal matrix, Tocf ,  whose diagonal elements are 

{^t, p ' " ^ n, l’
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2- [a - b e ]  denotes a vector in which each element is a scalar product of the 

corresponding elements of vector a , b , and c , i.e., the i',yth element is equal to

2 M ain  T heorem

Theorem  1.1: Under the OCF algorithm, the queue occupancies are stable fo r all 

admissible and independent arrival processes, i.e., E [ ||L(n)|| ] < C < °°.

3 P roof

The proof is carried out in two steps. First, we prove the stability of the waiting times. 

Then, we show that the stability of the waiting time implies the stability of the queue 

occupancies. The proof requires the following lemmas and theorem.

Lemma 1: Under the OCF algorithm, WT(n)X — WT(n)S*(n) < 0, VHf(n), X, 

where S*(n) is s.t. WT(n)S*(n) = WT(n)S(n)j.

Proof: Consider the linear programming problem:

m a J  WT(n)XJ (5)

N  N

s.t. (6)
« = 1  j = 1

A is a doubly stochastic matrix and forms a convex set, C, with the set of extreme 

points equal to permutation matrices, S [51]. Therefore, the following are true.

WT(n)XJ < w \n )S * (n ). □  (7)
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Lemma 2: Under the OCF algorithm,

E [ w \n  + 1 )TocfM n + D -  w \n )T ocfW(n:\'": < K, VX,

where K is a constant.

E [ w \n + l ) T ocfm n + l ) - W r(n)TocfW(n)\w(n)]

f  7* T  ^  .(/j)
= 2^ W \n)X  -  W (n)S*(n)j + £ X . y. -  2 £ S * f.//i)  + E " 1 T —

(8)

Proof:

By expansion,

W {n + i)TocfW(n + 1)

= ( M « ) + l -  [S*(n) • Tin) ]) TTocfiW{n) + 1 -  [5*(n) - x(n) ])

= Wr(n)TocfW{n) + 2WTin)X -2 W Tin) [S* in) • t  (n) • X]

+  5 X y ~ 2 Z S * i ' j W  ' ' \ j  +  E 5 * i.y ( / l )  * x l y( / l ) ' ^ /.y
'•y i . j  i . j

Subtracting WT(n)TocjWin) from both sides:

W in  + 1 )TocfWin + 1) -  WTin)TocfWin)

= 2W Tin)X -  2WT(n) [S* in) • T in) ■ X] (9)

+ • xi . f n) • */.y + Z s * iJ n) • T«-y(#l) • \ j
«.y ‘•y '.y

Then, taking the conditional expected value given Wfa) •

( 10)

. . X. .i.j i.j i.j '-y

After imposing the admissibility constraints and the scheduling algorithm properties, we 

obtain the following inequalities:
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S* -in)
sAT, a 0, 2 - A t -  < £ . < « ,  (1,)

i'.y «',y t.y *.y

where L is a non-negative constant.

From equation 10, we obtain:

E [ w \n  + l)TocfW(n + 1) -  W7(*)TocfW(ri)|M «)]

< 2 (  W

Recall Lemma 1, W^OOX -  WT(n)S*(n) < 0 . Hence, we prove Lemma 2, w here

K = L + w>o.a

Lemma 3: Under the OCF algorithm,

E [ w T(n + l)Toc/W(n + 1) -  WT(n)TocfW(n)\w(n)] < -e ||M « )|| + K, 

VX < (1 -  (3) Xm, 0 < P < 1, where Xm is any rate vector such that

I I U 2 = Nand e > 0.

Proof:

WT(n)X -  WT(n)S*(n) < w \ n ) (1 -  P) Xm~WT(n)S*(n). (13)

Applying Lemma 1,

WT(n)X -  WT(n)S*(n) < -P  WT(n)Xm. (14)

WT(n)X -  WT(n)S*(n) < -p||VV(/z)[| • |X J  • cos0 , (15)

where 0 is the angle between Win) and X .
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Any non-zero waiting time, W( p i )  > 0 , can occur iff the corresponding rate is non­

zero, X. , > 0 . Hence, it is sufficient to say that cos© > 0 . Furthermore, since ||A,|| < J n  ,

max ^  K i n

cos flffOOH - W U  ||w(n)||Vw

where Wmax{n) = max{Wi j{.h)) and Xmin = m i n ( \ p .

Since m n )\\< N W max,

c o s 0 > - ^ £  (17)
N jN

Using equations 12, 15, and 17.

E [ w \n  + 1 )TocfW(n + 1) -  Wf (n)TocfW(n)\w(n)]

< - 2 ^ p \ m n ) \ \  + K, 
N jN

(18)

where e = 2ft mt" . □

Lemma 4: Under the OCF algorithm,

E [ w r( n + l ) T ocfW ( n + l ) - w \ n ) T ocfW ( n ) \ w ( n ) ]  < - e||Mn)|| + K, 

VA. < (1 -  ft) A. , 0 < ft < 1, where X is any rate vector such that— \ r /  ~~nx * —m

,2
m = N.

Proof: We can draw the following relationship between the two waiting times:

[ W, p i  + 1), Wi Xn + 1) > 0 
W - . ( / i + D =  -  <19>

'J 10, Wi f n +  l ) < 0

Since Tqcj  is a positive definite matrix, equation 19 implies:
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WT(n + 1 )TocfW(n + 1) < w \ n  + 1 )TocfW{n + 1), V#i. (20)

Hence,

E [ w T{n + 1 )TocM n  + 1 ) -  WT(n)TocfW(n)\w(n)]
(21)

< E [ w \n +  l)TocfW(n+ 1 ) - ^ { n ) T ocfW(n)\w{n)\

This proves Lemma 4. □

Lemma 5: Under the OCF algorithm, there exists a quadratic Lyapunov function, 
V(W(n)) such that:

E [ V{W(n + 1)) -  V(W(n))| W(n)] < -  E||M«)|| + K , (22)

where AT is a constant and e > 0.

P r o o f :  From Lemma 4, V(W(ri)) = WT(n)T fW(n), E = 2(3 mt!L > 0  and
~  ~  ocf n J n

K  = L + N >  o . a

Theorem 1.2: Under the OCF algorithm, the waiting times are stable fo r  all admissi­

ble and independent arrival processes, i.e., E [||M«)||] ^  C < <».

Proof: Since there exists a quadratic Lyapunov function V{W{n)) that satisfies equa­

tion 22, according to Kumar [32][38], the sum of all waiting times is stable-in-the-mean, 

i.e..

N

n = Q l-’J

Furthermore, since the arrivals are independent, the waiting vector forms a Markov 

chain, and equation 23 guarantees that the chain is positive recurrence [32][38]. Hence,
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E [|M /0 ||]  < C <  =o. (24)

Now, we are ready to prove the main theorem.

Proof of the Main Theorem: From Fact 3, W. in) > L. .(«), Vi, /, n . Thus,•* j *»y

E[||L(n)||] <E[| |Mn)«] <C < co .  (25)

Hence, E  [||4(n)|| ] is also bounded above by C . □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

APPENDIX 2

Stability of NxN Switch under 

LPF with Independent Arrivals

1 Definitions

In addition to the definitions defined in Chapter I, the proofs in this appendix also 

require the following definitions:

I. A positive-definite and symmetric transformation matrix,

For an N y.N  switch, T{ ^  is an N2 x N2 matrix whose elements are defined as 

follows:

1, imodN = jmodN 
0, otherwise.

For instance, for a 2 x 2 switch, Tipf is
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2 1 1 0  
12  0 1 
1 0  2 1 
0 1 1 2

2 Stability without the Pipeline Delay 

2.1 Main Theorem

Theorem 2.1: Under the LPF algorithm, the queue occupancies are stable fo r  all 

admissible and independent arrival processes, i.e., E [||4(n)|| ] <C <°°.

2.2 Proof

Consider a quadratic Lyapunov function V(L(n)) =  L(n)T[pj L ( n ) , the next state occu­

pancy vector:1

i(n  + l) =  t(n ) -5 (n )+ A (n )  ( I )

and an LPF request vector, L \ n ) , whose each element is a function of queue occupancies 

defined as:

\R: + C., L . I n ) >  0 
L \  In)  = ' J l'J (2)

L0, otherwise,

N N

where R. = and Cj  = X Z7 ,/" ) •
j  i

Unlike the proofs in Appendix 1, we can directly consider the actual next state occu­

pancy vector because Fact 1 below guarantees that the vector contains no negative ele­

ment. As shown by Figure A 2.1 that LPF considers current arrivals when making a

scheduling decision, it is trivial to verify the following fact, which is critical for the proofs 

that follow.

I. See [49] for detailed definition.
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Arrival Request Servicing

▼ ▼ ▼

Slot n Slot n+l

Figure A2.1 A time line showing events at a VOQ. During every slot, an arrival at the queue, if any, takes 
place at the beginning of the slot. Shortly after the beginning of the slot, every non-empty queue makes a 
request. LPF then takes all requests into consideration and arrives at its scheduling decision before the end 
of the slot. Each selected queue is then serviced before a new arrival occurs.

Fact 1 A queue with zero occupancy and no arrival cannot make a request. Hence, a 

queue which makes a request must have either non-zero occupancy, an arrival 

or both.

Lemma 1: Under the LPF algorithm, E [L'T(n) (A(n) -  S*(n)) |4(/i)] ^ 0 for  
N N

S  ^7 j  ~ j  -  \  j~ ® ’ where S*(n) is an LPF service matrix
i = l y = l

such that L'T(n)S*(n) = max(L’T(n)S(n)).

Proof: Consider the following two cases. The first case is when the match size is N , 

| 5 * ( n ) |  =  N .

For this case, Property 1 in Chapter 3 implies that
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L'T(n)S*(n) = 2 ^ Z ..y(n). (3)
‘•j

This is because all inputs and all outputs are selected (matched). Also, for the match size 

of N ,

£ [ 4 'r (rt)4(n)|£(rt),|£*(n)| = A/] = LT{n)TlpJk .  (4)

N  N

For the admissibility constraint: ^  Xi . < I, ^  .< 1, X. .> 0 ,
i= i j =i

Tip£ < 2 .  (5)

Substituting equation 5 into equation 4, we obtain the following inequality,

E [L'r(n)A(n)|L(n),|S*(/i)| = N] < 2 ^ ^  / n ) . (6)

By equations 3 and 6, we prove the first case.

E [L’T(n) (A (n)-S*(n )) |L(/t),|5*(/i)| = N] < 0 .  (7)

For the second case when the match size is k < N ,  we use Konig-Egervary’s theorem, 

which states that the size  o f  a maximum size match is  equ a l to the minimum num ber o f  

rows plus columns which can contain all requests1 [36] [45]. In this case, rows and col­

umns are inputs and outputs. Consider any non-weighted request matrix, R(n), from which 

LPF finds a match of size k. Consequently, as a result of Theorem 3.1 (which says that a 

match found by the LPF is also a maximum size match), there exists a minimum set of k 

rows or columns or rows and columns combined which contains all requests in the matrix.

These rows and/or columns may not necessarily be consecutive. In order for the ease 

of visualizing the proofs, we can rearrange the request matrix so that the columns are con­

l. “Containing,” in this context, means that all requests belong to the interested set of either rows or columns.
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secutively moved to the left of the matrix, and so that the rows are also consecutively 

moved to the top of the matrix. By permuting the rows and the columns, we obtain such a 

matrix, R'(n), whose first / rows and k - l  columns belong to the minimum set and there­

fore contain all requests, where 0 < / < k , as shown in Figure A2.2. The shaded area, which 

is not covered by the first I rows or k - l  columns, contains no request.

k-l columns

1 rows Som^ requests

no request

Figure A2.2 A rearranged request matrix. From the original request matrix, row permutation was 
performed to move all / rows of the minimum set to the top, and column permutation was performed to 
move all k  - 1 columns of the same set to the left. Together these rows and columns contain all requests, 
leaving the shaded area of the new request matrix with no request.

For a given set I containing the original indices of the first / rows and a given set J 

containing the original indices of the first k - 1 columns, let:

l  = E[A(n)\I,J] (8)
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be a conditional arriving rate vector. Since the shaded area has no arrival,

IX. ,  i e  / , i e J
K j  = C9)

10, otherwise.
N N

With the traffic admissibility constraint: ^  . < I, ^  \ y -  l» y -  0 »
i = L j  = 1

( 10)
i j

Now, consider a linear programming problem:

max(L’̂ (/i)X)
yv v

S.t. ^ X , y < l ,  ^  X,-y < I, X, y > 0 
i = L y = l

S X jS * -
i j

Because A is a doubly stochastic matrix and forms a convex set with a set of S(n) that sat­

isfies the following constraint as its set of extreme points [49],

N N
s.t. £  S' fn )  = 1, £  S. v(n) = 1, S. fn )  = 0, 1

/ = i  ’ 7 = 1  ’ ( 1 2 )

5X/n) = k
'.y

hence,

£ [4 >7(n)X] < max [L'T(n)S(n)] , (13)

£ [4 ,7(«)4(n)|A^] -  max [X,7(rt)S(rc)] . (14)

Since the above is true for all I and J satisfying |/| +|y| = k , according to Konig- 

Egervary’s theorem, it follows that:
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E  [L’r(n) (A(n) -  S*(n))  |l(/i),|S*(/i)i = Jfc] < 0, (15)

where S*(n) is such that L’T(n)S*(n)  =  m a x  [L'r(n)S(n)] . This proves the second case 

when |S*(«)| < N .

From both cases, it can be concluded that:

E[£’r(n)(4(/0-S*(*)) |L(n)] < ( ) .□  (16)

Note: whenever S. .{h) cannot be one because there is no request, Fact 1 implies that

Af j(n)  must be zero, and hence, k , j  = 0.

Lemma 2: Under the LPF algorithm, E[lJT(n)(A(n)-S*(n)) |L(/i)] <
i j

VX < (1 -  P) k  , 0 < P < 1, where k is any admissible rate vector such that

Proof: Following the same steps as done in the proof of Lemma 1 and using the fact 

that Tkm = 2, it is can be shown that for every |s*(n)| = k :

E [L T(n) (A(n) -S*(n)) |tfn),|S*(/i)l = k] < - 2 p ^ L .  y(n). □  (17)
‘•j

Lemma 3: Under the LPF algorithm,

E[4r(n+ l)TlpfUn+  1)- L r(n)7/p/L(n)| L{n)] < - e ^ L .  y(/z) + N2
‘J

VX < (1 -  P) k , 0 < P < 1, where km is any rate vector such that

k  = N and e > 0.
- m .  .

Proof: Since the LPF algorithm always finds a maximum weight match, S*(n) , using

equation 1, we obtain the following equality by expansion.
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L T(n +  l )T[pJU n  +  I) -  L r(n)T[pfL(n)

= 2 L T(n)Tlp f ( A ( n ) - S * ( n )) +  ( S * ( n ) - A ( n ) ) TT[pf( S * { n ) - A ( n ) ) .

Since |S*(/i) -4(n)| ^ JV, (S * ( n ) - A ( n )) TT[pf( S * ( n ) - A ( n ) )  < 2 N 2 . Using Lemma 2,

E[Lr(n+ l )T [pJL ( n +  \ ) - L T{n)T[pfL{n)\ 4(n)] < - £ ^ . ^ 1  +  2 ^ ,  w/zere
i j

e = 4 p . a  (19)

Now, we are ready to prove the main theorem.

Proof of Main Theorem:

There exists a quadratic Lyapunov function, V(L(n)) = L(n)T[pjL (n ), such that:

E [ V(L(n + 1)) -  V(L(n))\ L{n)\ < - e ^ L . / n )  + 2N2 . (20)
i j

According to Kumar [32] [38], the sum of all queue occupancies is stable-in-the-mean, i.e.,

Furthermore, if the arrivals are independent, the queue occupancy vector forms a Markov 

chain, which equation 21 guarantees to be positive recurrence. Hence,

E[||L(/i)||] < C < ~ .  (22)
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3 Stability with the Pipeline Delay

3.1 M ain Theorem

Theorem 2.2: Using k slot old weights, the LPF algorithm is stable fo r  all admissible 

independent arrival processes, 0<k<  £[||4(«)||I ^ c < c o

3.2 Proof

The proof requires the subsequent lemma and is given after the proof of the lemma. 

The following lemma states the existence of an upper bound on the difference between the 

total weight of the optimum match found by non-pipelined LPF and the total weight of the 

actual match found by pipelined LPF.

Lemma 4: L'(n)S*(n) -  L'(n)S(n) < N2 + 3wj£ where S*(n) is the optimum service vec­

tor i f  LPF had been given the correct weights, and S(n) is the actual service vector which
optimizes on the incorrect weight.

Proof: Let L\n) be the incorrect weight vector given to LPF as a result of the pipeline 

delay in the sorters, and by definition:

L\n) = L\n -  k) . (23)

Furthermore, we can establish an upper bound and a lower bound of L\ri) with respect 

to the correct vector as follows. Consider the fact that there can be up to k arrivals at any 

input and Nk arrivals for any output, and that there can be no departure from any input or 

for any output during a period of k slots. This fact implies that a correct LPF weight can 

increase by at most (N+ 1) it from its previous k slot value:

L'(n) < L'(n - k ) +  (N+ 1)* . (24)

From the above equation and equation 23, a lower bound of L'(n) is:
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L ' ( n ) -  ( N +  I) k <  L'(n). (25)

For an upper bound, consider the case when there is no arrival but one departure from 

every input and to every output during every slot in a period of k  slots. An upper bound of 

L\n)  with respect to L’(n) is therefore:

With the two bounds, we are now ready to derive an upper bound on the difference 

between the two total weights. For the following derivation, it is worth noting that S*(n) 

maximizes the total weight on L'(n) while S(n) maximizes the total weight on L \ n ) , and 

that the numbers of connections made by S*(n) and S(n) are equal, i.e., |t(/i)| = |S*(n)|.

Using equation 27, consider S(n) .

L ' ( n ) > L X n - k ) - 2 k , (26)

LXn)<L\n )  + 2k . (27)

LXn)S(n) > LXn)S(n) -  2k S (n ) . (28)

But,

2 k S (n ) < 2 k N . (29)

Hence,

LXn)S(n) > LXn)S(n) -  2 k N . (30)

Now consider S*(n) using equation 25.

LXn)S*(n) -  ( N +  1 )kS*(n)  < LXn)S*(n) . (31)

Since ( N +  1 ) kS*(n )<  (N +  1 ) k N ,
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L'(n)S*(n) -  (N + 1) kN < Hn)S*(ri) . (32)

Furthermore, Z’(n)S*(/i) < L\n)S(n) because S(n) is the optimum match with respect to 

L'(n). Thus,

L’{n)S*(n) -  (N + 1) kN < L'(.n)S(n) . (33)

Substituting equation 33 back into equation 30 yields:

L\n)S(n) > L\n)S*(n) -  (N + 1) kN -  2kN. (34)

Finally, an upper bound on the difference between the two total weights is:

L’(n)S*(n) -  L’(n)S(n) < [ AT + 3n )/c . □  (35)

With the lemma proved, we can now prove the main theorem.

Proof of Main Theorem:

Similarly to the proof of Theorem 2.1, by taking the same steps as done in Lemma 1, 

Lemma 2 and Lemma 3 and by using the relationship stated by Lemma 4, we can show 

that there exists a quadratic Lyapunov function, V(L(n)) = L(n)T[pjL(n), such that:

E[V(L(n + 1 ) ) -VWLn))\ L(n)] < - e ^ L . y.(/i) + 2AT + [ A/2 + 3n )/c. (36)
Lj

And likewise, according to Kumar [32][38], the sum of all queue occupancies is stable-in- 

the-mean, i.e.,

N

A r h ' E S £ ii ( . / " , l < “ ' v 'v - (37)
n = 0 ‘J
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Furthermore, if the arrivals are independent, the queue occupancy vector forms a Markov 

chain, which equation 37 guarantees to be positive recurrence. Hence,

£[||L(n)||] <C<oo.  (38)
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APPENDIX 3

LPF Theorems

1 LPF Match is a M aximum Size Match

Theorem 3.1: The maximum weight match found by LPF is also a maximum size 

match.

Proof:

We prove the theorem by contradiction. Let M be a maximum weight match but not a 

maximum size match found by LPF; that is, there exists another larger size match Af that 

can be found by any maximum size matching algorithm.

Consider the Ford-Fulkerson method [13][67]. With this method, if M was not a max­

imum size match, a larger size match Af could be found by augmenting the flow produced 

by M on the corresponding flow network similar to the one shown in Figure 3.4. Since 

this augmentation process does not remove any matched input or output of the previous 

flow (match) [13][67], Af would contain all matched inputs and outputs in M plus some 

newly matched inputs and outputs. As a result of the set of inputs and outputs in M being 

a subset of that in Af, Property 1 in Chapter 3 implies that, had it existed, Af would be a
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larger weight match than M . Hence, M could not be the match found by LPF because it 

was not a maximum weight match. This contradicts the assumption above. Therefore, Af 

does not exist, and an LPF match must be both a maximum size and maximum weight 

match. □

2 M odified Edm onds-Karp Algorithm is Equivalent to LPF

Theorem 3.2: For the request weighting defined in equation 3.1, there exists a maxi­

mum size matching algorithm which can find a match that is o f both maximum size and 

maximum weight.

Proof: proved by Theorem 3.3. □

Theorem 33: A match found by the modified Edmonds-Karp algorithm is a maximum 

weight match whose weights are as defined in equation 3.1.

Proof: Before we prove the theorem, we first prove the following lemma needed for proving 

the theorem.

Let M be a match found by the modified Edmonds-Karp algorithm, F be the associ­

ated flow of M and R be a residual graph produced by F . Based on the principle that a 

maximum weight match can be found by solving for a flow of a minimum cost, the strat­

egy for the proof is therefore to show that F is a minimum cost flow on the associated 

flow network.1 To show that, we need the following theorem [67].

Theorem 3.4: A flow F is minimum cost i f  and only i f  its residual graph R has no neg­

ative cost cycle.

1. A transformation from a request graph to a flow network is outlined in Section 4.1 in Chapter 3.
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Based on this theorem, the following proves that F is a minimum cost flow by show­

ing that R contains no negative cycle. As an example. Figure A3.1 shows a residual graph

------ 6 ------

S

0

0- t

. 0 '

Figure A3.1 A residual network containing a negative cost cycle shown by the dotted edges.

of a match which is of only maximum size, not a maximum weight, because the residual 

graph contains one negative cost cycle (shown by the dashed lines). In principle, the cycle 

in this figure indicates that the total cost of the flow can be lowered by replacing the 

matched edges (input and output pairs) in the cycle with the unmatched edges [67]. Before 

we proceed with the proof, it is necessary to state the following properties, which are 

required for the proof and can be easily verified.

Property 1 Flow augmentation1 does not remove any input or output from the

matched sets but adds one or more new inputs and outputs to the sets. 

Once matched, every input or output remains matched throughout the 

augmentation process.

I. The Ford-Fulkerson method.
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Property 2 In R , an input is never adjacent to another input, and an output is

never adjacent to another output; i.e., no edge exists between any two 

inputs or between any two outputs.

Property 3 F cannot be increased since it is already a maximum flow (Af is a 

maximum size match).

Property 4 In R , all edges from unmatched inputs are to only matched outputs;

otherwise, F is not a maximum flow (an additional flow can be trivi­

ally added).

Property 5 In R , all edges to unmatched outputs must be from matched inputs;

otherwise, F is not a maximum flow (an additional flow can be trivi­

ally added).

We are now ready to begin the proof by considering the following three cases in which 

a negative cost cycle can occur. Shown in Figure A3.3, Figure A3.4 and Figure A3.5 (on 

page 150 and page 151) are residual graphs containing three types of negative cost cycles: 

an input cycle, an output cycle and a compound cycle, respectively. These residual graphs 

are constructed from the corresponding flow network by reversing the directions of all 

matched edges including the ones connecting s to matched inputs and t with matched out­

puts as described in Chapter 3. All matched edges are represented by the shaded lines, and 

all unmatched edges are represented by the solid lines. In these graphs, the inputs are rear­

ranged and divided into two non-overlapping sets: matched and unmatched, and similarly, 

the outputs are also rearranged and divided. The set of matched inputs and the set of 

matched outputs are shown by the shaded dots and are connected by two sets of edges: 

matched and unmatched. These sets are shown by the thicker lines.

Through these sets of edges, there exists at least one path which begins at a matched 

output and ends at a matched input connecting a subset of matched inputs and matched
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Path 1

s«

Path 2

Figure A3.2 A residual graph showing two reverse flow paths between two pairs of inputs and outputs.

outputs. Each of the paths is formed by matched and unmatched edges lying alternately 

along the path.1 On such paths, the inputs and outputs also lie alternately [67], Moreover, 

every matched input and matched output must belong to one and only one path [67]. Fig­

ure A3.2 shows examples of such paths. We shall refer to these paths as reverse flow paths.

When considering the three cases, we assume that there exists an unmatched edge 

from some matched input i to some unmatched output /, and that there exists an 

unmatched edge from some unmatched input k to some matched output j . However, 

according to Property 4 and 5, we cannot assume the existence of any edge connecting an 

unmatched input to an unmatched output in these graphs.

I. See alternate path theory in [67],
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S»

Figure A3.3 A residual graph showing an output cycle as indicated by the dotted lines.

Case 1: Output cycle: Shown in Figure A3.3, the cycle starts from r to some matched 

output j , goes through a reverse flow path connecting j  to some input /, and finally 

returns from / to t without visiting s via some unmatched output I . When the occupancy 

of I is greater than that of j ,  property 3.1 infers that the cycle has a negative cost.

Case 2: Input cycle: Shown in Figure A3.4, the cycle begins at s  and goes to some 

unmatched input k that connects to some matched output j .  From j  the cycle reaches 

matched input / from where it can return to s .  Likewise, property 3.1 infers that the cycle 

is a negative cost cycle if the occupancy of / less than that of k .

Case 3: Compound cycle: Unlike an input or an output cycle, a compound cycle visits 

both s and t .  As shown in Figure A3.5, the cycle starts from s and goes to some 

unmatched input k which has a request for some matched output j . The request leads the 

cycle to j . From j  to some matched input / ,  there exists a reverse flow path which leads
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S

Figure A3.4 A residual graph showing an input cycle as indicated by the dotted lines.

Figure A3.5 A residual graph showing a compound cycle as indicated by the dotted lines.
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the cycle to i . From /, the cycle reaches t via some unmatched output /. The cycle then 

return to s by first visiting some matched output p that is connected to another matched 

input q by some reverse flow path. From q , the cycle reaches 5 where it began. Accord­

ing to property 3.1, the cycle has a negative cost if the combined occupancy of input i and 

output j  is less than the combined occupancy of input k and output I .

With the above definitions of negative cycles, we are ready to prove that no negative 

cycle exists in a residual graph of a match found by the modified algorithm.

Lemma 1: No negative cost output cycle exists in R.

Proof:

We prove this Lemma by contradiction. First, we assume that such a cycle, as shown 

in Figure A3.6, exists. This implies that somehow a reverse flow path P exists in R from 

some output j  to input / that directly leads to output I by an unmatched edge. Of all out­

puts on the path, j  must be the smallest; otherwise, we can form a more negative cost 

cycle by replacing j  with a smaller output on the path.

To show that such a path cannot possibly exist, consider the formation of PQ in Figure 

A3.6 when the modified algorithm matches input i  to j . When it was the turn of input 1 

to be matched, the modified algorithm performed LPFS to find the largest unmatched out­

put for f . For j  to be appended to PQ, I  must have at least two requests: one to j  which is 

subsequently matched and another one to some output on PQ which is later never 

unmatched. Hence, there would have been at least two augmenting paths through I , lead­

ing f to more than one unmatched output: (a) j ,  (b) some output on PQ or / that has not 

been matched then. Since j  is smaller than I and all outputs on the path, this creates a con­

tradiction because LPFS would have chosen to match f  not with j  but with the largest 

unmatched outputs on the path or I then.
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S »

•  •

Figure A3.6 A residual graph for the proof of Lemma I, depicting an assumed reverse flow path P from 

j  to i by the dotted edges.

Given the fact that j  is matched to f , Pg and hence the cycle do not exist. □

Lemma 2: No negative cost input cycle exists in R .

Proof:

We prove this lemma by employing the same strategy as that used for the previous 

lemma. We first assume that the cycle exists and then contradict the assumption by using 

the property of LPFS. As shown in Figure A3.7, the assumed cycle visits some matched 

input i , some matched output j  and unmatched input k . Based on LPF request weighting, 

the occupancy of k must be greater than that of i for the cycle to be of a negative cost. But 

most important of all, in order for the cycle to exist, there must be a reverse flow path, Pi , 

from j  to i in R.
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S

Figure A3.7 A residual graph for the proof of Lemma 2, depicting an assumed reverse flow path P.  from 

to by the dotted edges.

The following, however, contradicts the existence of the path. Consider that the modi­

fied algorithm would attempt to match k  before / because k  is larger than i . With the 

existence of the path, there would be two possibilities to match k . One possibility was that 

k  discovered that output j  had not been matched at that time, and thus k  would have been 

matched to j . This possibility contradicts the fact that k  is never matched.

The other possibility is that j  is already matched to I , which must be larger than k  

when it is the turn of k  to be matched. Consequently, the matching of j  appends j  to P .. 

However, from j , Pt- would have led k  some unmatched output on P. which had not been 

matched at that time. In the worst case, Pf. would have led k  to f and consequently to out­

put f , which is supposed to be matched to i  but remained unmatched at that time since it 

was not yet the turn of i to be matched. In any case, had P.  existed, k  would be matched.

Given the fact that k  is unmatched, P.  and hence the cycle do not exist. □
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Lemma 3: No negative cost compound cycle exists in R.

Proof:

As defined and as illustrated in Figure A3.8, in order for such a cycle to exist, there 

must be a path from j  to t via k  and / . However, this path is exactly an augmenting path 

on which more flow can be carried. The existence of the path contradicts Property 3, 

which says that the flow is already a maximum flow. Therefore, such a path from s  to t 

and hence a negative cost compound cycle cannot exist. □

Lemma 4: No negative cost cycle o f  any kind exists in R .

Proof: By Lemma 1, Lemma 2 and Lemma 3. □

S

Figure A3.8 A residual graph for the proof of Lemma 3. showing a forward flow path from s  to / which 
can increase the total flow from s  to / .
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With Lemma 4, we can prove Theorem 3.3. According to Theorem 3.4, F must be a

minimum cost flow because, as proved by Lemma 4, its residual graph contains no nega­

tive cost cycle. Therefore, M is a maximum weight match. □
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APPENDIX 4

Stability of NxN Switch 

under OPF with i.d. Arrivals

1 Definitions

Most definitions required for the proofs in this appendix are already defined in Chapter 

I and Appendix 1. This appendix uses the same waiting time definitions derived from Fig­

ure A l.l. The following are new definitions.

1. A positive-definite transformation matrix, To p f

Top f W o e / - (1)

For example, for a 2 x 2 switch, Top̂  is

T  = opf

2 1 1 0  
12 0 1 
1 0  2 1 
0 1 1 2

1.1 0 0 0

0 ^1,2 0 0

0 0 ^2, I 0

0 0 0 ^2.2

(2)

1. TQcjr is defined in Appendix 1. and is defined in Appendix 2.
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2. An OPF request weight vector, W(n), whose elements are defined by equation 

4.1.

3. An approximate OPF request weight vector at slot n , Hf(n):

w \ n )  = WT(n)Tlp f . (3)

4. A vector e whose elements take a value of one if the corresponding VOQ 

makes a request or otherwise take a value of zero.

In addition, we also define the following property in order to handle the case that a 

queue makes no request.

Property 1 When a queue has no occupancy and no arrival in the current slot, i.e., 

makes no request, it is assumed to have a virtual cell with t f Jin) =  0 ,  

which overrides Property 2 in Appendix I.

Also, in this appendix, we assume that the arrivals and the scheduling events take place as 

shown in Figure A2.1.

Fact 1 A queue with zero occupancy and no arrival cannot make a request. Hence, a 

queue which makes a request must have either non-zero occupancy or an 

arrival or both.

The derivation of Fact 1 is identical to that of Fact 1 in Appendix 2.
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2 M ain  T heorem

Theorem A4.1: Under the OPF algorithm, the queue occupancies are stable for  all 

admissible and independent arrival processes, i.e., £[||L(/i)||] < C<°°.

Since the proof for OCF in Appendix 1 has already established that the stability of the 

waiting times implies the stability of the occupancies, the proof of the main theorem 

involves only establishing the stability of the waiting times under OPF.

Consider (i) a quadratic Lyapunov function, V(W(n)) = W(n)Top̂ W(n) , (ii) the approx­

imate next waiting time vector:

and (iii) an OPF request weight vector W(n) whose each individual element is a function 

of the waiting times of HOL cells defined as:

W T(n)S*(n) = max(WT(n)S(n)).

Proof: Similar to the proof of Lemma 1 in Appendix 2, consider the following two 

cases. The first case is when the match size is N, |S*(n)| = N.

3 P roo f

W(n + I) = W(n) + e -  [5(n) • T(n) ] (4)

otherwise.
(5)

N
where R; = \ w .  (n) and C, = V  W. Xn).i  t s  t , j  J  X a  i , j

j

Lemma 1: Under the OPF algorithm, E [ W T(n) (A(n) -  S*(n)) \ W(n)] < 0 for
N N
^  Xj j < 1, X. j<  1, X{ j > 0, where S*(n) is such that

i =  L
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For the match size of N ,  Property 1 in Chapter 4 implies that

W T(n)S*(n) =  2]TW r j n ) . (6)
j

This is because all inputs and all outputs are selected (matched). Also, for the match size 

of Af,

For the second case when the match size is k < N ,  we follow the same procedure as for 

LPF: we use Konig-Egervary’s theorem and rely on the same requests permutation shown 

in Figure A2.2.

As in the case of LPF, for a given set /  containing the original indices of the first / 

rows and a set J  containing the original indices of the first k  - 1 columns.

(7)

Similar to the case of LPF, with the admissibility constraint:

i = i j =

(8)

Substituting equation 8 into equation 7, we obtain.

£ [  Wfr (n)A (n)|M '0 ,|S*(n)| = N] ^ 2 ' £ W i j (n). (9)
i j

From equation 6 and equation 9, we prove the first case.

( 10)

let

X = E[A{n) \I ,J ]  , (11)
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be a conditional arriving rate vector. From Fact 1, there are only arrivals to the unshaded 

area (see Figure A2.2). The shaded area has no arrival.

Therefore,

I k.  ,  i e  /, / e  J
h j  =  J d 2 )

10, otherwise.
N  N

With the traffic admissibility constraint: ^  X[ j<  1, ^  ^ \  j  -  0 *
«= i ’ j  = i

Z K j < k .  (13)
i j

Now, consider a linear programming problem:

max(Wfr (n)X)
N  N

S.t. ^  X,-y < 1, ^  X,-y< I, Xj y > 0  
1=1 j  = I

EM*
' • j

which has a set of S(n) as its extreme points that satisfy the following constraints.

N  N

s.t. £  SuJtn) = 1, J  5i , / ' ,) = l ’ Si,j(n) = °’ 1
1=1 ’ y = 1 ’ (15)

5X/"> = *
'.7

Hence,

^[W*r(«)£] < m a x [ W T(n)S(n)] , (16)

E [ W T(n)A{n)\I,J]  < m a x [ W T(n)S(ri)\ . (17)
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Since the above is true for all /  and J  satisfying |/| + |J| = k, according to Konig- 

Egervary’s theorem, it follows that:

E [Wrr(/i)(4(/i)-5*(/i))|Mn),|5*(n)| = k\ < 0 , (18)

where S*(n) is such that W r(n)S*(n) = max[Wfr(n)5(n)] . This proves the second case 

when |S*(/i)| < N.

From both cases, it can be concluded that:

£[W’r(n)(A(n)-5*(/i))|M '0] < 0 .0  (19)

Note: whenever S.  In)  cannot be 1 because there is no request. Fact 1 implies that A.  In)  ‘♦y **y
must be zero, and hence, X,j = 0.

Lemma 2: Under the OPF algorithm, E [W T(n) (A(n) -  S*(n)) | Hf(/z)] < - 2 P ^  Wj Jin)
i j

VX < (1 -  P) X , 0 < P < I , where X is any rate vector such that

V  k  = N and e > 0.

Proof: Following the same steps as done in the proof of Lemma 1 and using the fact 

that = 2, it can be shown that for every |S*(n)| = k :

E [W T(n) (A(n) -  S*(n)) \ M«).|S*(n)| = k] < - 2 p £  W( Jn) . □  (20)
‘•j

Lemma 3: Under the OPF algorithm,
E[WT(n + 1 )TopfW(n + 1) -  WT(n)TopfW(n)\ W(n)~\ < - e £  W( Jn) + K

‘J
VX < (1 -  P) X , 0 < 3 < 1, where X is anv rate vector such that-  V rj t' *

Y k  = N, e > 0 and K is a finite positive constant.
i,j m'‘'j
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Proof: Consider

w \n  + DTopfW(n + 1)

= (W(n) + e -  [S*(n) ■ x (n) ]) TTopf( W(n) + * -  [S*(«) • x(n) J )
(21)

By expansion,

w \ n  + I )Topfm n  + 1)

= WT(n)TopfW(n) + 2\/{n)Topje -  1WT{n)Topf[S* (n) - x (n) ]

- [S * (n ) -x A n ) \T opfe_+eTTopfe_

+ [S*(n) ■x(n)}Topf[S*(n) • ! (« ) ] .

Note that ^ { n ) T opf[S* {n) - t (« )]  = [S* (n) - x (n ) ] TTopfW(n) and that 

Wr(n)Topje = eTTopfW(n) . Subtracting Wf (n)TopfW(n) from both sides:

w \ n  + I)TopfW(n + 1) -  WT{n)TopfW{n)

= 2Wf(n)Top/e - 2 W r(n)Topf[S*(n) • !(« )]

-[S * (« ) ■x(n)]TopJe + erTopfe.

+ [S*(n) -x(n)]Topf[S*(n) -x (n) ].

Taking the conditional expected value given W(n):

E [ w \n  + 1 )TopfW(n + 1)- V?{n)TopfW(n)\W(n)\

= E[2WT(n)Topfe - 2 W r(n)Topf[S*(n) - x («) ] 

- [ S A ( n ) - x ( n ) ] TTopJe + eTTopfe 

+ [S* («) •!(« )]  \ pf [S* (n) ■ x (n)} \ W(n) ].

Then evaluate each term on the left hand side of equation 24. For the first term,

(22)

(23)

(24)
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= ff, («)rw r „ / e . (23)

But WT(r)Tw  = W T(n) , and Tocje -  X (see equation 12). Therefore,

E[2WT(n)TopJe\W(n)] = 2WT(n)X. (26)

For the second term,

E[ wr( n ) T f [S* (/i) • x (n) ] |Hf(«)l
(27)

= W r W T lp fE [ J o c f [ S *  ( n ) - 1 (/i) ] | M ")] •

However, E[Tocf[S* (n) - x (n) ] | ff(«)] = §* (n) , and WT(n)Tlpf = WT(n) . Thus,

E \lW T(n)Topf[S* (n) ■ x (n) } |Hf(«)] = 2W>\n)S* (n) . (28)

For the third term,

E[ [S* (n) ■ x (n) ] TTopJe\ W(n)] = e [ [S* (n) ■ x (n ) ] T| W(n)\ Topje . (29)

Considering the fact that 0 < Topje < IN ,  then

E[ [S* (n) • x ( n ) ) TTQpfe\W(n)] < 2 N . (30)
i.j i j

Using Property 5 in Appendix 1,

0 < £ - ^ — <L<oo. (31)
i,y

Thus,

0 < f [  [S* (n) • x (n) ] \ pje\W(n)] < 2NL . (32)
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For the forth terra,

■ (33)

Similarly, it can be shown that eTT ..<  2tJ\ 1T) and that Toca  < &. Consider the traffic

admissibility constraint that A.f. . < N. Hence,
i j

E b TToPi^ i 2t{ ^ ) i s 2N ' Z K i - 2 N l - (34)
'•7

Now, we consider the last term.

[S*(n) -T (n)]TTopf[S*(n) •!(« )]

= [S*(n) ■z(n)]TTlpfTocf[S*(n) -x(n)]  (35)

= [$*(«) •!(« )]  TT[pf[S*(n) -T (n) • X].

If we expand T[pjr[S* (n) ■ x (n) • X] , each i j  th term of this vector is as follows:

2Xr*<"> •*,.;<"> ' V  <36)
k I

N N
Considering the constraint that Sf .(/i) = 1, ^  j(n) = 1,5f = 0 or 1. It can be

« = i  y = i
verified that 5. = 0, V/ * j  and that 5. (̂n) = 0, Vf * i.

Therefore,

S ,,/n ) t,/ (n ) f X ^ , t*(») -TtJt(n) ' V " >  A , )
v  *  /  ( 3 7 )

= 2S2Lj{n)x1i,j{n )k i j .

Since S. .(«) = 0 or 1, S~ij(n) = S. (n), and (n)] = —̂ . Hence,
**y *»y ^

>-j
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[£*(«) Z{n))TTopf[S*{n) - t ( h ) 1 | W(*)] = ' (38)
i.j i-j

Thus,

£ [[$* (« ) •K « )] r V 5 * ( " )  -Z(n) ] \Mn)]<2L.  (39)

From equations 26, 28, 30, 34 and 39, we simplify equation 24 as follows:

E [ w \n  + 1) TopfW(n + 1) -  WT(n)TopfW(n)\w(n)]

< 2  ̂W\n)X -  W r(«)5*(n)j + 2N2 + 2L.

Furthermore, it can be shown that W"T(n)k = WT{ri)\ = E [W T(n)A{n)\W{ri)\ ,

(40)

and that

w \ n ) i - W T(n)S*{n) = E [ W T(n) (A(n) -  S*(n))  |W(n)] • (41)

R ecall Lem m a 2 that E [ W T(n) (&(n) -  S*(n))  | Wf(n)] <  j (n) .  We prove

Lemma 3:

E[WT(n + 1 )TopfW{n + 1) -  WT(n)TopfW(n)| M«)] ^ - e ] £  Wi, / n'> + 2AT + 2L, 

where s = 4p and K = 2A/2 + 2L. □
‘•j

Lemma 4: Under the OPF algorithm,
E [WT(n + I)TopfW(n + I) -  WT(n)TopfW(n)| W(/i)] < - e £  W(Jn)  + K

‘•j
VX < (1 -  P) Xm, 0 < p < 1, where km is any rate vector such that

V  X = N, s > 0 and K is a finite positive constant, 
i j  m‘-J

Proof: Similar to the proof of Lemma 4 in Appendix 1, we can draw the following 

relationship between the two waiting times:
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WT(n + 1)TopfW(n + 1) < w \n  + 1)T jM n  + 1), Vn. (42)

Hence,

E [w \n  + 1)TopfWn  + D -  w \n)TopfW{n)\w{n)]

< E [w \n  + l)TopfW(n + 1) -  WT{n)TopfW{n)\w{n)\
(43)

This proves Lemma 4. □

Now, we are ready to prove the main theorem.

Proof of Main Theorem:

There exists a quadratic Lyapunov function, V(W(n)) = W(n)TopjW(n) , such that:

E [ V(W(n + I)) -  V(W(n))\ W(n)] W. .(n) + K. (44)
Lj

According to Kumar [32][38], the sum of the waiting times is stable-in-the-mean, i.e.,

(45)
n = 0 ‘J

Furthermore, if the arrivals are independent, the waiting time vector forms a Markov 

chain, which equation 45 guarantees is a positive recurrence. Hence,

£[||M/0||] < C t <oo. (46)

and so,

£[||L(n)||] <C2< ~  (47)

as a result of the proof from Appendix 1.
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4 Stability with the Pipeline Delay 

4.1 Main Theorem

Theorem A4.2: Using k slot old weights, the OPF algorithm is stable fo r  all admissible 

independent arrival processes, 0 <&<<», i.e., £  [||Z.(n)||] <C<°°

4.2 Proof

Similar to the case of LPF, the approach is to establish an upper bound on the expected 

value of the difference between the total weight of an optimum match and the total weight 

of a non-optimum match (as a result of the pipeline delay), and then use this upper bound 

to show that pipelined OPF still maintains the negative single-step drift of the Lyapunov 

function.

Let S*(n) be the optimum service vector if OPF had been given the correct weights 

and S(n) be the actual service vector which optimizes on the k slot old weights.

Lemma 5: £  [ W(n -  k) \ W(n)] S*(n) -  £  [ W(n -  k) \ W(n) ] S(n) < 0

Proof: Because S(n) is a maximum weight match on W(n -  k) , it follows that

W(n -  k)S(n) > W(n -  k)S*(n), (48)

and so,

E[W(n — k)S(n) | W(n), S(n) ] > E [ W (n -  k)S*{n) | W(n), S(n) ] . (49)

Since W(n -  k) and S*(n) are independent of S(n), and S*(n) is deterministic given W(n) , 

equation 49 becomes

E[W(n -  *)| JK*)1 S(n) > E[W(n -  /t)|Mn)] S*(n). □  (50)
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Lemma 6: E [ W(n)S*(n) -  W(n)S(n) | Hf(«)] < IN^k  + . where ^min is the smallest
'min

non-zero arrival rate.

Proof: Since S*{n) maximizes W(n)S*(n) and S(«) maximizes W(n -  k)S(n), in order 

to prove the lemma, we need to find some relationship between W{n) and W(n -  k) , which 

can be derived as follows. Consider the weight of a request from input i to output j  during 

a period of k slots, where k is the number of pipeline stages. At the end of the period, the 

current weight W. Xn) can increase from its previous k value by at most 2Nk when every 

queue at / and every queue for j  are non-empty and have not been serviced during every 

slot in the period (i.e. the waiting times of these 2N  queues all increase by k ). Thus,

For a lower bound of Win) with respect to E[W(n-k) \  W(n)] , we consider the case when 

Q. . becomes an only non-empty queue at i and an only non-empty queue for j , espe- 

daily, when Q f has no arrival but a departure during every slot in the period. From equa- 

tion 4, we obtain the following

W{n)<W(n-k)  + 2Nk, (51)

which implies that

(52)

n

(53)
I = n ~  k

Take the conditional expectation of equation 53 given W(n).

W^jin) = E [ Wuf n  -  k) | W(n)} + 2k -  . (54)

Hence,
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W ( , n ) > E [ W { n - k ) \ W { n ) \  (55)
min

Combine the two bounds.

E [ W ( n - k ) \ W ( n ) \  - ^ - 1  < W(n) < E [ W ( n  — >t) | W(/z)] + 2  N k .  (56)
min

Now we are ready to consider the total matching weights. First, we multiply both sides of 

equation 55 by S(n).

E [ W(n  -  *)| W(n)} S(n) -  ^ - l S ( n )  < W(n)S(n ) . (57)
min

Then, we multiply both sides of equation 52 by S*{n) .

W(n)S*(n)  < E  [ W(n  -  k) | W(n)) S*(n) + 2N kS*(n ) . (58)

By subtracting equation 58 by equation 57, we obtain the following,

W(n)S*(n)  -  W(n)S(n) < E  [ W (n  -  k) | W{n) ] S*{n) -  E  [ W(n  -  k) \ W(n) ] S(n)

2k ~ (59)
+ 2NkS*(n)  + f ^ l S ( n ) .

min

Using Lemma 5, we simplify equation 59.

Wf(n)S*(n) -  W(n)S(n) < 2NkS*(n)  + 15 (n ) . (60)
min

Since 2NkS*(n) < 2N1k  and lf(«) < N ,  it follows that

m n ) S * ( n )  -  W(n)S(n)
k min

With Lemma 6, we can now prove the main theorem.
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Proof of Main Theorem:

Similarly to proof of Theorem 4.1, by taking the same steps as done in Lemma 1, 

Lemma 2 and Lemma 3 and by using the relationship stated by Lemma 6, we can show 

that there exists a quadratic Lyapunov function, V(W(n)) = W(n)TopjW(n) , such that:

S i  2  N kW. .(n) + K+2N~k + ±— . (62)
i . j  min

And likewise according to Kumar [32][38], the sum of all queue occupancies is stable-in- 

the-mean, i.e.,

N
1

N
n = O l'J

7 7  2  ' Z  E [» /./« ) 1 < ~, VAL (63)

Furthermore, if the arrivals are independent, the queue occupancy vector forms a Markov 

chain, which equation 63 guarantees is a positive recurrence. Thus,

E[W{n) \<C< °o (64)
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