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Abstract

In an ideal world, all research papers would be runnable: simply click to replicate

the results, using the same setup as the authors. In many computational fields,

like Machine Learning or Programming Languages, creating a runnable paper means

packaging up the code and data in a virtual machine. However, for Network Systems,

the path to a realistic, runnable paper is not so clear. This class of experiments

requires many servers, network elements, and packets to run in parallel, and their

results depend on accurate timing. Current platform options either provide realism

but lack flexibility (e.g., shared testbeds like Emulab [30] cannot support arbitrary

topologies) or provide flexibility but lack realism (e.g., discrete-event simulators like

ns-2 [57] model end-host code).

This dissertation presents a new approach to enable realistic yet reproducible net-

work experiments: high-fidelity emulation. High-fidelity emulation couples a resource-

isolating emulator with a monitor to verify properties of the emulation run. Every

(wired) network comprises the same basic components, like links, switches, and vir-

tual hosts, and these components behave in highly predictable ways, since they are

implemented in hardware. A correct emulation run will maintain the behavior of

these components. For example, a wired link should have a constant delay, while a

queue should have a fixed capacity. We call these properties “network invariants”,

and they are universal: they apply regardless of the experiment being run, the sys-

tem upon which that experiment is run, and even the emulation code. By logging

and processing network events, the monitor can quantify the error in an emulation

run. Unlike a simulator, the code is fully real: it is the same code that would run

on multiple systems, and it captures implementation quirks such as OS interactions,

lock conflicts, and resource limits that simulation models inherently abstract away.
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The second contribution of this dissertation is Mininet-HiFi, an open-source tool

for creating reproducible network system experiments. Mininet-HiFi runs an environ-

ment of virtual hosts, switches, and links on a modern multi-core server, using real

application and kernel code with software-emulated network elements. The approach

builds upon recent advancements in lightweight OS-level virtualization to combine

the convenience, flexibility, and low cost of discrete-event simulation with the realism

of testbeds. To produce evidence that an experiment ran accurately, it logs system

events and extracts indicators of fidelity from these logs. In addition to running ex-

periments, the tool has proven useful for interactively developing, testing, sharing,

and demonstrating network systems.

The third contribution of this dissertation is the collected outcomes of putting

Mininet-HiFi to the test, by using it to reproduce key results from published network

experiments such as DCTCP, Hedera, and router buffer sizing, as well as those done

by students. In Stanford CS244 in Spring 2012, 37 students attempted to replicate

18 different published results of their own choosing, atop EC2 virtual machines in the

cloud. Their experiences suggest that Mininet HiFi makes research results easier to

understand, easier to reproduce, and most importantly, easier to build upon.

As a community we seek high-quality results, but our results are rarely reproduced.

It is our hope that Mininet-HiFi will spur such a change, by providing networking

researchers a way to transform their research papers from “read-only” to “read, write,

and execute”.
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Chapter 1

Introduction

Computer networks make today’s communication possible. They enable phone calls

across an ocean, grease the wheels of commerce, fuel revolutions, and provide an

endless stream of cat videos. As this list of uses grows, we continue to expect faster,

cheaper, and more reliable networks.

Enter the network systems researcher, whose job is to uncover issues with today’s

networks, wherever these issues are, and to solve them, by changing whatever piece

of the network they can, be it a host networking stack, hypervisor, switch, or topol-

ogy. To provide two examples, network systems researchers design and evaluate new

topologies and routing strategies to build scale-out data centers [6, 37, 55, 77], as well

as design new transport protocols to make use of multiple paths, reduce delays, and

reduce network hardware requirements [9, 90].

The challenge for a network systems researcher is that no matter how simple

the solution, convincing others to publish it, try it, and eventually adopt it requires

experimentation — not just to make sure the idea works in its intended context, but

also to understand what happens to the results as parameters such as scale, speeds,

and traffic assumptions, are changed. Turning a promising idea into a deployed system

requires a higher level of validation: typically, a demonstration at sufficient scale to

interest operators who might deploy the idea or vendors who might implement the

idea in shipping products. However, our reliance on production networks prevents

them from being a feasible or prudent place to test new ideas. Hence, many turn to

network research platforms — often created by researchers, and for researchers —

3



4 CHAPTER 1. INTRODUCTION

to run interestingly-large-scale experiments, at a fraction of the cost of a full-scale

hardware-based network.

1.1 Network Research Platforms

The most commonly used platform types in networking systems research are simula-

tors, testbeds, and emulators. I now discuss each of these options with a particular

focus on their reproducibility and realism properties. With today’s platforms, these

two goals are hard to achieve simultaneously, and the next two sections will explain

why these two goals are so important and motivate a new kind of network research

platform.

Discrete-Event Simulation. Network simulators advance virtual time as a re-

sult of simulated events [57, 58, 64]. Discrete is the key; packet and application events

happen at an instant in virtual time. In a simulator, two events can occur at exactly

the same time and execution will pause until all such events have been processed.

These events are generated by a set of models that cover low-level hardware, e.g.,

queues and links, as well models that cover high-level application behavior, e.g., in-

teracting applications and users. The underlying simulator and model code runs in

user-space and produces the same result each time, regardless of the specifications of

the machine on which the experiment runs;1 hence, simulation results are considered

easy to reproduce.

But, we don’t trust simulation, because the results obtained from simulators may

not be realistic. Simulators try to simplify the behavior of the world, but there’s

always a risk that by simplifying, one changes the resulting behavior and sees a

different result from a hardware system configured equivalently to the simulator.

Results are not believable unless they’re validated, and each model must be validated.

Plus, the code tends not to be the same code you would run on a real server; for

example, the Linux TCP stack is necessarily different than the one used in NS-2,

and it would be impractical for every simulator author to port every change made to

Linux alone. To fit within a simulator framework, it is unlikely that simulator code

1Results are deterministic for a given hash seed but of course vary by run.
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will use the same system calls, implement the same locking, or experience the same

resource limits. These realism concerns motivate the use of testbeds.

Testbeds. The networking community has been great about making testbeds

openly available. These can be at a single location with hosts and switches like Emulab

(vEmulab in this paper) [30] or more spread out like GENI [34] and OFELIA[59]. They

can be shared to amortize their construction cost across a community of users [34,

22, 25, 30] or they can be specific to one project [6, 9, 13]. Many testbeds provide

time-shared access to dedicated hardware; physically isolating resources, such as links,

switches and machines, prevents experiments from affecting each other. Furthermore,

running with real hardware eliminates realism concerns.

However, the problem with testbed experiments is that their results can be hard

to reproduce, or even just produce. First, an experiment may not be possible to

run on a testbed because of topology restrictions; for example, GENI only supports

tree topologies, and a new, more exotic topology like a random graph is unlikely to

be supported [77]. Or, if we want to change the way a box forward packets, such

as adding OpenFlow [63], we may not have access to change the firmware. There

are also possible issues with availability of the testbed, as contention occurs before

conference deadlines. Finally, since the testbed may not be available indefinitely, the

result may not be reproducible in the future.2

Network Emulators. The third option, network emulation, describes software

running on a PC that configures and runs everything that you would find in a real

network: the switches, the links, the packets, and the servers. The core of the network

is like a simulator, in that it processes events, but the difference is that these events

happen in continuous time. The emulated servers run code, rather than a discrete-

event model.

Like testbeds, emulators run real code (e.g., OS kernel, network applications)

with real network traffic. Like simulators, they support arbitrary topologies and

their virtual “hardware” costs very little. There are two main categories of network

emulators. The first, Full-System Emulation, e.g. DieCast [39] or VMs coupled using

2One could address this somewhat by designing a testbed-abstraction layer, so that an experiment
could be targeted to multiple testbeds, or implement a resource-constraint language to define the
resource request, somewhat like the GENI RSpec [1].
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Figure 1.1: Emulator realism suffers without adequate performance isolation.

Open vSwitch [65], uses one full virtual machine per host. The second, Container-

Based Emulation (CBE), e.g. virtual Emulab [42], NetKit [66], Trellis [14], CORE [5],

Mininet [47] and many others, employs process-level virtualization – a lighter form

of virtualization in which many aspects of the system are shared. By sharing system

resources, such as page tables, kernel data structures, and the file system, lightweight

OS-level containers achieve better scalability than VM-based systems, permitting a

larger number of small virtual hosts on a single system [47, 78]. In Container-Based-

Emulators (CBEs), which use lightweight containers, each virtual host is a simply a

group of user-space processes, and the cost of adding one is only the cost of spawning

a new process.

An ideal emulator is indistinguishable from hardware, in that no code changes

are required to port an experiment and no performance differences result. However,

emulators, regardless of their type, may not provide adequate performance isolation

for experiments. Figure 1.1 plots the TCP bandwidth for a simple benchmark where

two virtual hosts communicate at full speed over a 200Mb/s link. In the background,

we vary the CPU load on a number of other (non-communicating) virtual hosts.

On an emulator with no isolation (Original Mininet), the TCP flow exceeds the de-

sired performance at first, then degrades gradually as the background load increases.

Though vEmulab correctly rate-limits the links, rate-limiting alone is not sufficient:

the increasing background load affects the network performance of other virtual hosts,

leading to unrealistic, load-dependent results. Ideally, the TCP flow would see a con-

stant throughput of 200Mb/s, irrespective of the background load on the other virtual

http://reproducingnetworkresearch.wordpress.com/performance-isolation-in-vemulab-and-mininet-vs-mininet-hifi/
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hosts.

Unfortunately, even with properly implemented resource limits and isolation be-

tween virtual hosts, the emulator still provides no guarantee (or even a dependable

indicator) that the experiment is running in a realistic way; high-level throughput

numbers do not guarantee low-level event timing fidelity. Perhaps this issue has held

back the use of software emulation results, as they are rarely found in networking

papers.

1.2 Platform Goals

Having surveyed the available platforms, with each possessing advantages and dis-

advantages, we now describe the goals of a (hypothetical) ideal research platform a

little more precisely. First, a convincing experiment requires realism, in at least three

ways:

Functional realism. The system should have the same functionality as real

hardware in a real deployment, and should execute exactly the same code.

Timing realism. The timing behavior of the system should be close to (or

indistinguishable from) the behavior of deployed hardware. The system should detect

when timing realism is violated.

Traffic realism. The system should be capable of generating and receiving real,

interactive network traffic to and from the Internet, or from users or systems on a

local network.

In addition to providing realism, the system should be flexible, to support arbitrary

experiments:

Topology flexibility. It should be easy to create an experiment with any topol-

ogy.

Scale. The system should support experiments with large numbers of hosts,

switches, and links.

The third group relates to one’s ability to duplicate results created with it, now

and in the future.

Easy replication. It should be easy to duplicate an experimental setup and run
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Simulators Testbeds Emulators
Shared Custom

Functional X X X
Realism
Timing X X X ???
Realism
Traffic X X X

Realism
Topology X (limited) X
Flexibility

Scale X X X (limited)

Easy X X X
Replication
Low cost X X

Table 1.1: Platform characteristics for reproducible network experiments.

an experiment.

Low cost. It should be inexpensive to duplicate an experimental platform, e.g.

for 1000 students in a massive online course.

Table 1.1 compares how well each platform described in §1.1 supports our goals

for realism, flexibility, and reproducibility. Each platform falls short in at least one

of these goals: simulation lacks functional realism, testbeds lack topology flexibility,

and emulators lack demonstrated timing realism. Unfortunately, our takeaway here

is that network research tends not to be both easily reproducible and — realistic.

With today’s platforms, you can have one, or the other, but not both.

Fortunately, there is no fundamental tradeoff here, just a design space that has not

been fully explored. In particular, an emulator with provable timing fidelity would

be attractive, because its results would be reproducible on any PC, and its realism

could potentially match that of hardware. Such an emulator would enable runnable

papers — a complete packaging of an experiment on a VM that runs all the real code.

Now we consider the broader issue of reproducibility in network systems, and dis-

cuss how a platform to enable runnable (realistic and reproducible) network systems

research papers might fit in.
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1.3 Reproducibility

The scientific method dictates that experiments must be reproduced before they are

considered valid; in physics and medicine, reproduction is a part of the culture. Yet

in computer networking, reproduced works are not the culture.3 Papers are often

released without the complete code, scripts, and data used to produce the results.

As the computational geophysics professor Donoho noted: [15],

An article about computational science in a scientific publication is not

the scholarship itself, it is merely advertising of the scholarship. The

actual scholarship is the complete software development environment and

the complete set of instructions which generated the figures.

Reproducible, runnable papers do not appear to be standard practice in network

systems research either, or indeed Computer Science at large, so calls from Knuth [45],

Claerbout [23], Donoho [15] and Vandewalle [85] for reproducible experiments and

results still resonate. If papers were runnable — that is, easily reproducible — a

number of benefits would follow:

• It would be easier to understand and evaluate the work, because you could

access details left out of the paper for space reasons, like parameter settings

and algorithm specifics, and then you could go make a tweak and see what

happens.

• It would be easier to transfer ideas, because they would be in a more usable

form, one that does not require replicating infrastructure.

• The third, and possibly the most compelling reason, is that it becomes easier

to build upon the work of others, both in academia and industry.

These benefits are in addition to adding confidence to results and weeding out

questionable results.

3The NSDI community award is one rare exception, and is given to “the best paper whose code
and/or data set is made publicly available by the final papers deadline.”
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Why reproducibility is hard. If runnable papers would be a good thing,

then why aren’t all networking research papers like this? For many areas of CS,

like machine learning or programming languages, creating a reproducible result is

relatively straightforward. One packages the code, data, and scripts together on a

VM, or releases instructions and code, and any PC will work as a platform to run the

VM or code.

But for many network systems projects, running the experiment is not as simple.

These experiments are inherently parallel: they all have servers, network elements,

and packets running at the same time. This category includes projects like congestion

control, routing, new topologies, or new mixes. It does not cover hardware design or

measurement studies, but it does cover many of the ideas and papers in networking.

For experiments with network systems, the platform must run a large set of processes

(applications and protocols) concurrently, without losing accuracy, to be reproducible.

This dissertation considers the question of whether it is possible to enable repro-

ducible network systems experiments that have believable, useful realism, on a single

PC.

1.4 Our Approach: High-Fidelity Emulation

My solution to this problem of hard-to-reproduce networking results is to build an

emulator whose results one can trust, as well as verify. This dissertation defends the

following thesis statement:

High-fidelity emulation, the combination of resource isolation and fidelity

monitoring, enables network systems experiments that are realistic, veri-

fiable, and reproducible.

This dissertation advocates reproducible networking experiments that use High-

Fidelity Emulation, where real code runs on an emulated network that has careful

resource isolation and fidelity monitoring. This combination is depicted in Figure 1.2.

Resource isolation provides a network whose links, queues, and switches behave

like hardware, and whose emulated hosts each get an equal amount of CPU.
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Figure 1.2: The approach to high-fidelity emulation advocated by this dissertation.

Fidelity Monitoring provides a gauge to measure the faithfulness of the network

emulation, using the concept of network invariants, which are properties we can

track to verify the timing error(s) in a particular emulation run. This technique is

general, in that it does not depend on the particular emulator implementation, as all

wired experiments share the same set of invariants. By quantifying the errors, and

comparing them to known or measured hardware timing variability, we can reason

about the fidelity of an emulation run. This technique is needed because it is hard

to predict in advance whether an experiment has been provisioned with sufficient

resources.

High-Fidelity Emulation provides the topology flexibility, low cost, and repeatabil-

ity of simulation with the functional realism of testbeds. These two characteristics —

realism and reproducibility — make it an appealing candidate for publishing research

in an easily reproducible form, as a runnable paper.

My implementation of a High-Fidelity Emulator, Mininet-HiFi, is described later

in §3 in full detail. In brief, Mininet-HiFi employs lightweight, OS-level virtualization

techniques, plus packet and process schedulers. It builds on the kernel event system to

store a log of relevant events and then post-processes them to report timing fidelity. As

of March 2013, 45 networking experiments based on Mininet-HiFi have been released

with blog entries on the Reproducing Network Research Blog [3], and the Mininet

mailing list counts over 680 users.
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Figure 1.3: Sources of emulator infidelity: event overlap, variable delays, and event
timer precision.

1.5 Challenges

Using real code provides a nice starting point for functional fidelity. However, achiev-

ing timing fidelity is more of a challenge, as an emulator potentially runs events and

code in serial, rather than parallel, like a testbed. This serialization, which occurs

whenever there are more active events than parallel cores, creates the potential for

situations where an emulated network must incur timing errors and cannot exactly

match the the realism of a testbed.

Figure 1.3 shows a simple experiment that helps to discuss sources of emulator

timing infidelity. Hosts A and B are connected by a switch and are engaging in a

continuous ping, where A sends two packets to B and then B sends two packets back

to A. Time spent in the ping application is shown in blue, packet transmissions are

shown in purple, and packet receptions are shown in green.

Overlapping Events. It just so happens that the first packet is getting forwarded

by the switch at the same time host A is sending its second packet. If the system

only has one processing core, then one of these events must get delayed.

Software Forwarding Delays. Another possible issue is variability in software

forwarding delays. Hardware forwarding frequently employs parallel TCAM searches

to handle MAC and IP table lookups in constant time. Software forwarding tends to

use algorithmic techniques that can encounter variability from cache effects, as well

as take longer, and hence increase the chance for event stack-up. For example, Open
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vSwitch [65] sends the first packet of every new flow to user-space, where a lookup

occurs, and then it pushes down a forwarding match for following packets in that

flow. The speed of this lookup depends on the number of installed rules that must

be traversed. Once cached, the lookup is much faster, as it takes place entirely in the

kernel; compare this to an Ethernet switch that learns addresses and experiences no

such first-packet-of-each-flow delays.

Event Timer Precision. A third source of errors is event timer precision. To

prevent interrupts from saturating the processor and causing process starvation, OSes

like Linux intentionally prevent the use of short timers in the kernel. In addition, the

sources of time on which these timers are based may experience drifts and periodic

corrections.

Even worse, these sources of variability can be encountered on every packet hop

through a switch, and hence the error can increase proportionally in topologies with

longer paths.

Each of these situations can affect the fidelity of the emulator, in the sense that its

behavior can differ from hardware. To be trustworthy, an emulator must be able to

track when these timing errors are happening, and ideally, should eliminate as many

causes of these as possible.

1.6 Related Work Overview

Techniques and platforms for network emulation have a rich history and expanded

greatly in the early 2000s. Testbeds such as PlanetLab [22] and Emulab [30] make

available large numbers of machines and network links for researchers to program-

matically instantiate experiments. These platforms use tools such as NIST Net [18],

Dummynet [17], and netem [53], which each configure network link properties such as

delays, drops and reordering. Emulators built on full-system virtualization [11], like

DieCast [39] (which superseded ModelNet [84]) and several other projects [61], use

virtual machines to realistically emulate end hosts. However, VM size and overhead

may limit scalability, and variability introduced by hypervisor scheduling can reduce

performance fidelity [89].
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To address these issues, DieCast uses time dilation [38], a technique where a hy-

pervisor slows down a VM’s perceived passage of time to yield effectively faster link

rates and better scalability. SliceTime [89] takes an alternate synchronized virtual

time approach – a hybrid of emulation and simulation that trades off real-time op-

eration to achieve scalability and timing accuracy. SliceTime runs hosts in VMs and

synchronizes time between VMs and simulation, combining code fidelity with simu-

lation control and visibility. FPGA-based simulators have demonstrated the ability

to replicate data center results, including TCP Incast [86], using simpler processor

cores [80].

The technique of container-based virtualization [78] has become increasingly pop-

ular due to its efficiency and scalability advantages over full-system virtualization.

Mininet [47], Trellis [14], IMUNES [91], vEmulab [42], and Crossbow [82] exploit

lightweight virtualization features built for their respective OSes. For example, Mininet

uses Linux containers [49, 21], vEmulab uses FreeBSD jails, and IMUNES uses Open-

Solaris zones.

Mininet-HiFi also exploits lightweight virtualization, but adds resource isolation

and monitoring to verify that an experiment has run with high fidelity. In this

dissertation, we demonstrate not only the feasibility of a fidelity-tracking Container-

Based Emulator on a single system, but also show that these techniques can be used

to replicate previously published results.

1.7 Organization

This dissertation makes the following contributions:

• The introduction of a range of network invariants as a means to track the

realized fidelity of an emulation run (§2).

• Implementation of a High-Fidelity Container-Based Emulator, Mininet-HiFi,4

which enables reproducible network experiments using resource isolation, pro-

visioning, and monitoring mechanisms (§3).

4Available at http://mininet.org.

https://github.com/mininet
http://mininet.org
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• Reproduced experiments from published networking research papers, including

DCTCP, Hedera, and Sizing Router Buffers (§5.1-§5.2).

• Practical lessons learned from unleashing 37 budding researchers in Stanford’s

CS244: Advanced Topics in Networking course upon 13 other published papers

(§5.4).

To demonstrate that network systems research can indeed be made repeatable,

each complete experiment described in this dissertation can be repeated by running

a script on an Amazon EC2 [29] instance or on a physical server, to meet the highest

level of the reproducibility hierarchy defined by Vandewalle in [85]:

The results can be easily reproduced by an independent researcher with at

most 15 min of user effort, requiring only standard, freely available tools.

Following Claerbout’s model [23] clicking on each figure in the PDF (when viewed

electronically) links to instructions to replicate the experiment that generated the

figure. We encourage network researchers to put the experiments described in this

thesis to the test and replicate results for themselves.

http://stanford.edu/class/cs244/2012
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Chapter 2

Fidelity and Invariants

This chapter walks through a workflow for realizing a high-fidelity experiment on a

container-based emulator. Our goals are to motivate the use of network invariants

and explain this approach from a user’s perspective; we delay the technical details of

how to build the emulator and monitor invariants to the next chapter.

2.1 Desired Workflow

Informally, by high-fidelity emulation, we mean emulation where the application be-

havior matches that of parallel systems running on a hardware-based network, to

within some experimenter-defined error; this level of fidelity does not require the ex-

act same timing of events. Guaranteeing high fidelity in advance with a real-time

emulator is challenging due to the inherent sources of variability described in §1.5.

Even if these sources of variability were eliminated, predicting fidelity would still be

hard, because it would require prior knowledge of how many events will simultane-

ously occur, along with the maximum time that would be required to process them.

However, measuring fidelity is possible.

This observation — that measuring fidelity may be enough to support our goal

of high-fidelity emulation — motivates the workflow shown in Figure 2.1. The ex-

perimenter first provides the topology and all code required to run the experiment.

Then she runs that experiment on emulator on a PC, with logging enabled. After the

19
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Figure 2.1: A workflow for high-fidelity emulation. Questions raised are shown in
blue.

experiment is over, she uses an automated software tool that analyzes experiment fi-

delity by employing the concept of network invariants. A network invariant is simply

a timing property that should always hold for any network that comprises wired links

and output-queued switches. It should apply regardless of the topology, the traffic

pattern, the behavior of the application-level code, and all the transport protocols in

use.

If every one of those invariants hold, we consider the experiment to be high fidelity.

But if there is even a single instance where an invariant was clearly violated, that is,

where its behavior differs from hardware, then that experiment’s results are in doubt.

When this happens, the experimenter needs to either scale back the experiment in

some way, like use fewer hosts or slower links, or add resources by procuring a machine

with more or faster cores.

While it does not guarantee a high-fidelity result, this workflow is appealingly

general; it applies to any emulator, any PC, and any experiment. It raises three

questions, which the next three subsections address. First, what events should we

log? Second, which network invariants should we check? Third, how close to perfect

must the measured network invariants be to indicate a valid experiment?
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2.1.1 Events to Log

Logging the utilization of the CPU running the emulator would be a natural starting

point for measuring emulator fidelity. First, consider event-driven programs, which

either fire a timer for the future, process a packet, or generate a new packet every

time the program is scheduled in. The network protocols running below are also

event driven, and similarly issue timers, consume packets, or generate packets. Each

program or protocol event requires some amount of processor time; when the measured

CPU utilization approaches 100%, one might assume that there is no slack in the

system, and that it is approaching (or has already passed) the cliff beyond which the

emulation run is invalid. However, at 99% CPU, the emulation run may be valid,

with just enough CPU cycles to run the experiment, and evenly-spaced packets may

have yielded no overlapping events.

Now consider a non-event-driven program, such as a traffic generator that spins

in a loop. The CPU value tells us even less now; 100% CPU may indicate correct

operation.

!"#$ %"#$
&$'()*$

Figure 2.2: CPU utilization logging is insufficient to check emulation fidelity.

The problem is that for any CPU utilization value, an emulation run can still

return wrong results. The reason could be as simple as the example shown in Fig-

ure 2.2, where a burst of busy time occurs, yet over the measurement interval, the

CPU utilization is well below 100%. Busy time could be caused by any number of

events. Perhaps a higher-priority OS process or hypervisor preempted network han-

dling for a bit. A broadcast packet could take so long to replicate that it delays the

time at which receivers can start processing the message. Or, a traffic sender could

spin and block the execution of the receiver until it is preempted, if the system has

fewer cores than the total of senders and receivers.

Our conclusion is that CPU utilization is insufficient for monitoring fidelity. We
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Figure 2.3: Typical wired network, showing measurable delays experienced by packets.

need something better that considers finer-grained event timings.

2.1.2 Invariants

We now consider the use of invariants that are based on expected timings of packets.

Network Invariants. Every (wired) network looks something like Figure 2.3: it

has switches, hosts, and links, plus packets in flight. The top of this figure represents

a zoomed-in view of the red box in the figure and traces a packet crossing from left to

right. This packet will experience a number of delays. First, if there are any packets

in the queue, it will need to wait, depending on how many bytes of packets are in

front:

queue delay = texit queue − tenter queue = Qsize in bytes/Rate (2.1)

When the packet moves onto the wire, it will see a transmission delay based on

the link rate and packet size:

transmission delay = tstop − tstart =
packet size in bytes

rate
(2.2)
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Passing through the link, the packet will experience a propagation delay of known

length, which depends on the speed of light in the transmission medium:

propagation delay = wire length/cin medium (2.3)

Next, the packet experiences a forwarding delay as it traverses a switch, and this

delay depends on the internal complexity of the switch. Hardware switches imple-

mented with multiple chips or a crossbar scheduler impose variable delays. However,

for many experiments, assuming a perfect output-queued switch is an acceptable

choice. Transport protocols tend to have some timing slack that can absorb these

variations in practice. Faithfully implementing the internal scheduler details tends to

be impossible when such details are not disclosed. Lastly, if an experiment fails with

a simple output-queued switch, it is unlikely to work with something more complex.

Assuming a perfect output-queued switch:

forwarding delay = tegress − tingress = k (2.4)

These equations are all simple and testable. In fact, to test them, one must

only log timestamps for packet events.1 A single-system emulator has a single clock

domain, which enables easy, accurate timestamps. We can log all these timestamps

and process the log after the experiment has completed.2 These all happen to be

examples of invariants defined on the timing of single packets, which requires logging

enqueue and dequeue timestamps only.

Other network timing invariants deal with gaps between packets. The first is

packet spacing. Whenever a queue is occupied, the gap between two packet transmis-

sions, P1 and P2, should be equal to the time it takes to send the first packet:

transmission gap : tP2 − tP1 =
bytesP1

rate
(2.5)

This is a special case of the link capacity constraint, which says that sweeping

1Queue occupancy logs can help to check invariants, but these are optional, as they can be
reconstructed from the enqueue and dequeue logs.

2Or, if the overhead is low enough, we can process these in real-time; we do not explore this
option further.
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across time and looking at a link, its configured rate should never be exceeded:

link capacity : ratemeasured ≤ rateconfigured (2.6)

Since packet transmissions in an emulator occur as an event, rather than a con-

tinuous hardware process, the measurement interval must be at least one packet size.

If all these conditions hold — that is, the measured invariant values are all a small

difference away from the expected values — then the network behavior should match

reality.

Host Invariants. However, there is still the potential fidelity issue of multi-

plexing the execution of hosts, especially when the number of virtual hosts actively

processing events exceeds the number of available parallel processors. If the emula-

tion is fully event-driven, and each event is handled infinitely fast, then the issue of

multiplexing host events goes away. In reality, a host may spin in a loop or take a

non-negligible time to process a packet and generate an event. These serialization

delays occur when event execution is delayed due to the limited parallelism of an

emulator, and we must track them to expose timing differences from truly parallel

hardware.

The first host invariant, preempt-to-schedule latency, is the time between an event

triggering (such as a packet reception) and the event getting processed (such as

the corresponding virtual host receiving a wakeup event and starting to process the

event).3 Different hypervisor or process scheduler implementations may yield different

preempt-to-schedule latencies, especially with multiple cores.

An additional host invariant check, CPU capacity, is similar to the link capacity

invariant; it checks that hosts getting a fraction of a processor are, in fact, receiving

no more processing time than their configured amount:

CPU Capacity : cpu bandwidthmeasured ≤ cpu bandwidthconfigured (2.7)

3A “trivially perfect” emulation operating on an instruction-by-instruction basis, similar to full-
system simulators, would perfectly satisfy this invariant, but it would unduly slow down the exper-
iment.
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2.1.3 Invariant Tolerances

Having identified the timing invariants to check, the next question is how close the

measured invariant values must be to ideal values to distinguish between high-fidelity

and low-fidelity invariant runs. A conservative check is desirable here to avoid false

positives, although in practice, many protocols, especially bulk transport ones like

TCP, will tend to admit some slack in their timing before their behavior changes.

Our observation is that matching the qualitative behavior of the original experiment

— high fidelity — doesn’t mean that timing errors must always reach zero, but

instead, that they are reasonable and match what hardware would experience.

Here are some examples for timing delay in real hardware:

• Clock drift occurs when two clocks are slightly out of sync, which occurs due

to manufacturing differences in crystals used for setting clock speeds. Clock

drift causes one packet to alternate between being ahead of and behind the

other, even with two seemingly-identical-rate links feeding into a single queue.

• Bus contention causes variability in getting a packet from a network interface

to a CPU, up to tens of packet timings.

• Scheduler non-determinism can affect packet generation times, and tends

to be on the order of many milliseconds. For example, the Linux minimum

scheduler interval is 7.5 ms and will be seen if no kernel events transpire.

To be conservative, I choose a target error of one packet time, and in the next

section, test whether this goal can be met. In practice, we expect a test to fail

catastrophically. That is, when the system is keeping up with the events occurring in

an emulation run, the network invariant should hold, and when it fails, it should fall

off a steep cliff; most queueing systems show this behavior.

2.2 Evidence That High Fidelity Is Possible

To demonstrate that this approach of monitoring timing invariants can work, we now

show an example where monitoring the packet gap invariant differentiates between
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Figure 2.4: Simplified view of regular TCP vs Data Center TCP [9].

a high-fidelity and low-fidelity experiment. That is, as the experiment’s demands

increase, the fidelity indicator (packet gaps) changes accordingly. Completing the

workflow shown in Figure 2.1, we will (1) log dequeue events, (2) parse the log to

measure packet spacings, and (3) check if any packet is delayed by more than one

packet time.

If this workflow is valid, then whenever step 3 says “pass”, the results should

match those from hardware. Our experiment uses Data Center TCP, or DCTCP [9],

which is described fully later in § 5.1. This is an example of the kind of experiment

one might actually run on a high-fidelity emulator, and since DCTCP depends on

packet-level dynamics, it presents a good test of timing fidelity.

To understand DCTCP, it helps to start with regular TCP. As shown in Figure 2.4,

a regular TCP flow on a link with enough buffering, i.e., RTT ∗N for a single flow,

will form a sawtooth in steady state. Since the queue never goes empty, the link

achieves full link throughput.

DCTCP also tries to keep the queue occupied and achieve full throughput, but its

goal is to do so with less buffering. DCTCP defines a marking threshold used by each

switch; a packet is marked whenever it traverses a queue with an occupancy above

this level. Each host then responds to the sequence of marked and unmarked packets
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Figure 2.5: Hardware results with DCTCP at 100 Mb/s.

using a modified congestion control algorithm. Our packet spacing invariant should

show nothing but constant gaps if the modified congestion control algorithm causes

the queue to stay occupied.

Figure 2.5 shows the result from running DCTCP in hardware, using two 100

Mb/s Ethernet links to connect two servers with a switch in-between. The switch

was configured with a marking threshold of 20 packets. The graph shows the number

of packets in the switch queue over two minutes.

As expected, the queue stays occupied and the link reaches 100% throughput. The

number of packets in the switch queue hovers around the 20-packet marking threshold

and the experiment shows 6 packets of variation. The packet spacing invariant is held

here, because the experiment is running on hardware. The next test is to run this

same experiment on Mininet-HiFi.

Figure 2.6 shows the emulator results, where the server is intentionally restricted

to a single 3 GHz core to better expose timing overlaps. Starting at 80 Mb/s, we see

100% throughput, with 6 packets of queue variation: the same result as hardware.

The same variation occurs at 160 Mb/s. But moving to 320 Mb/s, the emulation

clearly breaks down. The link speed varies, does not reach full throughput, and there

is significantly more queue variation.

The question we ask is this: does checking invariants — in this case, packet spac-

ing — identify this wrong result? This experiment has known-in-advance hardware

results, but for many first-time emulator experiments, this will not be the case. To



28 CHAPTER 2. FIDELITY AND INVARIANTS

!"

#$%&"'&#()*" +',-."'&#()*/""
)0%0*#"&12&&3&3"

45"678#"

!559"

:;<$2=&*">$'0$?,-"

#$%&"'&#()*"

!:5"678#"

!559"

:;<$2=&*">$'0$?,-"

@A5"678#"

*B',(.B<(*"

C(&(&"
,22(<$-2D"

Figure 2.6: Emulator results with DCTCP at varying speeds.

enable arbitrary high-fidelity experiments, the invariant checks must reveal timing

errors.

Checking Packet Gaps. Figure 2.7 shows the complementary cumulative dis-

tribution functions (CCDFs) of measured packet spacing values for emulator exper-

iments run at a range of speeds. Both axes are logarithmic, and all numbers are in

Megabits/s. The Y axis is percent of packets, and since this is a CCDF, it highlights

the tail of the distribution of packet spacings. The X axis is the error. Below one

packet are lines in green, for high fidelity; 1 - 25 is medium fidelity, where the result

might be the same but we have evidence that the emulator was overloaded. The red

lines correspond to low-fidelity emulation runs with more than 25 packets of timing

error.4

We see full throughput for 10, 20, 40, and 80 Mb/s, with well under a packet of

maximum error. The invariant check says “pass”. At 320 Megabits per second or

higher, the emulator is way off, and the invariant check says “try again”, either with

slower links or a bigger system.

160 Mb/s is the most interesting case here, shown in yellow. 90% of the time,

the errors are below one packet, but some gaps are up to 10 packets in size. Our

invariant check says “try again”, because there are measured instances where the

4The number 25 for packet times to define medium fidelity is arbitrary, and is meant to simplify
the discussion.

http://reproducingnetworkresearch.wordpress.com/dctcp-2//
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Figure 2.7: Packet Spacing Invariant with DCTCP. Going from 80 Mb/s to 160/s,
the emulation falls behind and the 10% point on the CCDF increases by over 25x.

timing behavior is different.

So, what is the right thing to do in this case? The conservative approach seems

prudent. One should probably not publish a paper on the result, because there are

measured instances of lowered fidelity; even for valid emulation runs, one would want

to publish the invariant checks along with the results, as evidence that the results are

trustworthy.

This example shows the beauty of the invariants approach: it detects an emulation

run that would otherwise appear correct if just checking that the output looked

reasonable. DCTCP happens to be tolerant of a few packet delays, but there are other

applications that would not tolerate these delays. Example include anything sensitive

to latency, like a ping test, a key-value store, bandwidth testing that uses packet

trains, or data center isolation mechanisms that operate at a fine time granularity [44].

Having demonstrated the potential of network invariant monitoring as a means

to establish trust in results from an emulator, I now describe the architecture of the

system used to produce these results, Mininet-HiFi.



30 CHAPTER 2. FIDELITY AND INVARIANTS



2.2. EVIDENCE THAT HIGH FIDELITY IS POSSIBLE 31



32 CHAPTER 2. FIDELITY AND INVARIANTS



Chapter 3

Original Mininet: A

Container-Based Emulator

This chapter describes Original Mininet, an emulator that uses lightweight OS con-

tainers to run a complete network within a single OS instance. Original Mininet

helps to verify the functional correctness of code used in network experiments [47].

Its components provide the basis for Mininet-HiFi, described in §4, which helps to

verify performance properties for a much wider range of experiments [41].

In this section, I describe the specific problem that motivated the development

of Original Mininet, walk through the system’s operation, analyze its scalability, and

then describe its use cases.

3.1 Motivation

In late 2009, OpenFlow was emerging as a tool for network researchers to change

the behavior of a forwarding device, without needing access to a development toolkit

or having to sign a non-disclosure agreement with a hardware vendor [63].1 I now

give a brief introduction to OpenFlow, along the broader paradigm into which it

fits: Software-Defined Networking. Then I describe three motivating examples that

encouraged Mininet development.

1Using OpenFlow is not required to use Original Mininet, but it did provide the original motiva-
tion.

33
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Figure 3.1: Traditional network on the left, with a Software-Defined Network (SDN)
on the right. SDN physically separates the control plane from the forwarding de-
vices in a network. Network features are implemented atop a centralized view of the
network, which is provided by the Network OS. SDN was a primary motivator for
developing and releasing Mininet.

Software-Defined Networking. In Software-Defined Networking (SDN), the

control plane (or “network OS”) is separated from the forwarding plane and the

control plane interacts with switches through a narrow, vendor-agnostic interface,

protocol such as OpenFlow [63]. Figure 3.1 shows the architecture. OpenFlow defines

a simple abstraction for the low-level forwarding behavior of each forwarding element

(switch, router, access point, or base station). For example, OpenFlow defines a rule

for each flow; if a packet matches a rule, the corresponding actions are performed

(e.g. drop, forward, modify, or enqueue).

The other side of an SDN, the network OS (e.g NOX [36], ONIX [46], or Bea-

con [12]), observes and controls OpenFlow switches from a central vantage point,

hosting existing features such as routing protocols and access control. The network

OS can also host more experimental features, such as network virtualization and en-

ergy management, which can leverage common functionality implemented inside the

network OS, such as topology discovery and shortest-path routing algorithms.

Hassles with SDN development and testing. With SDN development, veri-

fying controller functionality is typically a primary goal. Once a controller is known
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to be functionally correct, it then has the potential to be deployed onto a testbed

supporting OpenFlow, such as GENI [34] or FIRE [32]. However, in late 2009, both

GENI and FIRE were in their infancy. At the time, one could build a custom testbed

with an OpenFlow software switch [65], NetFPGA [48], or a hardware switch, and

then connect the physical switch to physical servers, but this approach would not

provide the ability to easily change the topology beyond that of a single switch. In

addition, this small-number-of-switches testbed would require time-slicing to support

multiple users.

An attractive alternative at the time was to use the network-of-virtual-machines

approach. With a VM per switch/router, and a VM per host, realistic topologies can

be stitched together using virtual interfaces. Both the NOXrepo VM scripts [56] and

its Python counterpart, OpenFlow VMs [61], configure multiple virtual machines in a

given topology, on a single server, by coupling QEMU instances on Linux with Virtual

Distributed Ethernet (VDE) links [87]. However, even using reduced, 32MB-footprint

Debian disk images, these approaches would take minutes to boot any network with a

significant number of hosts or switches. In my experience, VMs were more convenient

than hardware but still impractically slow for many uses. In particular, the memory

overhead for each VM limited the scale to just a handful of switches and hosts.

The Ripcord project. The Ripcord data center network controller [19] was

an effort to generalize the control of scale-out OpenFlow-based data centers, by de-

coupling the control logic from the topology. At the core of Ripcord is a structured

topology object that describes a range of scale-out topologies and enumerates path

choices to be used by routing algorithms. Previous papers had tightly coupled the

topology to the control; for example, the paper on PortLand was evaluated only on a

Fat Tree [55], while a paper on another scale-out data center, VL2, had its evaluation

tied to a particular Clos topology [35]. In Ripcord, a PortLand-style routing module

could run atop a VL2 topology, with no changes, and any applications, such as energy

management or traffic engineering, would work on both.

Ripcord presented a worst case for the development environment:

Multiple concurrent developers. Project developers were physically distributed

between two schools.
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Frequent topology changes. Each application and control algorithm required test-

ing on each topology, at multiple scales.

Large, highly connected topologies. As an example, the smallest three-layer Fat

Tree topology requires 20 switches and 16 hosts [7].

A project like this would have no chance of completing on time if the development

environment could not support concurrent development with large topologies and

frequent changes.

OpenFlow Tutorials. A third motivator was OpenFlow tutorials. The first two

were held at Hot Interconnects in August 2008 and SIGMETRICS in June 2009, and

both used the NOXrepo scripts [56]. In these tutorials, attendees would learn basic

OpenFlow operation, in a hands-on way, by turning a basic hub into a flow-accelerated

learning switch. Each attendee was provided a virtual machine image. However, in

practice, the VM scripts were slow to load, because of double-virtualization; not only

would the primary Linux VM need to be virtualized, generally through software,

but QEMU would run a second level of virtualization to run the minimized Linux

instances that each ran a single host or OpenFlow switch. This double-virtualization

issue plagued the tutorials, because any issue that required re-starting the network

topology would take too long to resolve.

3.2 Architecture Overview

An initial Mininet script, written in Python in late 2009 by Bob Lantz, demonstrated

the use of lightweight Linux containers for OpenFlow network emulation. This script

grew into a more flexible, documented, and open-source system called Mininet, driven

by the motivating examples of general SDN development pain, distributed develop-

ment of data centers with Ripcord, and running OpenFlow tutorials. This section

describes the architecture of Mininet, which largely derives from the initial prototype.

Original Mininet [47] use lightweight, OS-level virtualization to emulate hosts,

switches, and network links. Mininet employs the Linux container mechanism, which

enables groups of processes to have independent views of system resources such as
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process IDs, user names, file systems and network interfaces, while still running on

the same kernel. Containers trade the ability to run multiple OS kernels for lower

overhead and better scalability than full-system virtualization.2

Figure 3.2 illustrates the components and connections in a two-host network cre-

ated with Mininet. For each virtual host, Mininet creates a container attached to a

network namespace. Each network namespace holds a virtual network interface, along

with its associated data, including ARP caches and routing tables. Virtual interfaces

connect to software switches (e.g Open vSwitch [65]) via virtual Ethernet (veth)

links. The design resembles a server hosting full virtualized systems (e.g., Xen [11] or

VMware [88]), where each VM has been replaced by processes in a container attached

to a network namespace.

Since each network namespace has a distinct set of kernel structures for net-

working, two processes in different network namespaces can do things that would be

impossible without network namespace isolation, such as hosting web servers on port

80 or using the same assigned IP address. Having described the architectural pieces,

we now walk through a typical Mininet workflow.

3.3 Workflow

By combining lightweight virtualization with an extensible CLI and API, Mininet

provides a rapid prototyping workflow to create, interact with, customize and share

a Software-Defined Network, as well as a smooth path to running on real hardware.

3.3.1 Creating a Network

The first step is to launch a network using the mn command-line tool. For example,

the command

mn --switch ovsk --controller nox --topo \

tree,depth=2,fanout=8 --test pingAll

2This lightweight virtualization approach is similar to other network emulators, such as
Imunes [91] and vEmulab [42], and the Linux containers Mininet employs are effectively equiva-
lent to jails in BSD and zones in Solaris.
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Figure 3.2: Mininet creates a virtual network by placing host processes in network
namespaces and connecting them with virtual Ethernet (veth) pairs. In this example,
they connect to a user-space OpenFlow switch.

starts a network of OpenFlow switches. In this example, Open vSwitch [65] kernel

switches will be connected in a tree topology of depth 2 and fanout 8 (i.e. 9 switches

and 64 hosts), under the control of NOX, an OpenFlow controller [36]. After creating

the network, Mininet will run a pingAll test to check connectivity between every

pair of nodes. To create this network, Mininet must emulate links, hosts, switches,

and controllers:

Links: A virtual Ethernet pair, or veth pair, acts like a wire connecting two

virtual interfaces; packets sent through one interface are delivered to the other, and

each interface appears as a fully functional Ethernet port to all system and application

software. Veth pairs may be attached to virtual switches such as the Linux bridge or

a software OpenFlow switch.

Hosts: Network namespaces [49] are containers for network state. They provide

processes (and groups of processes) with exclusive ownership of interfaces, ports, and
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Figure 3.3: The console.py application uses Mininet’s API to interact with and
monitor multiple hosts, switches and controllers. The text shows iperf running on
each of 16 hosts.

routing tables (such as ARP and IP). For example, two web servers in two network

namespaces can coexist on one system, both listening to private eth0 interfaces on

port 80.

A host in Mininet is simply a shell process (e.g. bash) moved into its own network

namespace with the unshare(CLONE NEWNET) system call. Each host has its own

virtual Ethernet interface(s) (created and installed with ip link add/set) and a

pipe to a parent Mininet process, mn, which sends commands and monitors output.

Switches: Software switches, such as Open vSwitch [65], provide the same packet

delivery semantics as a hardware switch. Both user-space and kernel-space switches

are available, acting as basic Ethernet bridges, remotely-controlled OpenFlow switches,

or even managed switches running distributed protocols like Spanning Tree Protocol.

Controllers: OpenFlow controllers can be anywhere on the real or simulated

network, as long as the machine on which the switches are running has IP-level

connectivity to the controller. For Mininet running in a VM, the controller could run

inside the VM, natively on the host machine, or in the cloud.
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Figure 3.4: MiniEdit is a simple graphical network editor that uses Mininet to turn a
graph into a live network when the Run button is pressed; clicking a node opens up
a terminal window for that node.

3.3.2 Interacting with a Network

After launching the network, we want to interact with it: to run commands on hosts,

verify switch operation, and maybe induce failures or adjust link connectivity. Mininet

includes a network-aware command line interface (CLI) to allow developers to control

and manage an entire network from a single console. Since the CLI is aware of node

names and network configuration, it can automatically substitute host IP addresses

for host names. For example, the CLI command

mininet> h2 ping h3

tells host h2 to ping host h3’s IP address. This command is piped to the bash process

emulating host 2, causing an ICMP echo request to leave h2’s private eth0 network

interface and enter the kernel through a veth pair. The request is processed by a

switch in the root namespace, then exits back out a different veth pair to the other

host. If the packet needed to traverse multiple switches, it would stay in the kernel

without additional copies; in the case of a user-space switch, the packet would incur

user-space transitions on each hop. In addition to acting as a terminal multiplexer for

hosts, the CLI provides a variety of built-in commands and can also evaluate Python

expressions.
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3.3.3 Customizing a Network

Mininet exports a Python API to create custom experiments, topologies, and node

types: switch, controller, host, or other. A few lines of Python are sufficient to define a

custom regression test that creates a network, executes commands on multiple nodes,

and displays the results. An example script:

from mininet.net import Mininet

from mininet.topolib import TreeTopo

tree4 = TreeTopo(depth=2,fanout=2)

net = Mininet(topo=tree4)

net.start()

h1, h4 = net.hosts[0], net.hosts[3]

print h1.cmd(’ping -c1 %s’ % h4.IP())

net.stop()

creates a small network (4 hosts, 3 switches) and pings one host from another, in

about 4 seconds.

The current Mininet distribution includes several example applications, including

text-based scripts and graphical applications, two of which are shown in Figures

3.3 and 3.4. The hope is that the Mininet API will prove useful for system-level

testing and experimentation, test network management, instructional materials, and

applications that will surprise its authors.

3.3.4 Sharing a Network

Mininet is distributed as a VM with all dependencies pre-installed, runnable on com-

mon virtual machine monitors such as VMware, Xen and VirtualBox. The virtual

machine provides a convenient container for distribution; once a prototype has been

developed, the VM image may be distributed to others to run, examine and mod-

ify. A complete, compressed Mininet VM is about 800 MB. Mininet can also be

installed natively on Linux distributions that ship with CONFIG NET NS enabled, such

as Ubuntu 10.04, without replacing the kernel.
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3.3.5 Running on Hardware

The final step in a typical Mininet workflow is porting the experiment to a custom

or shared testbed, running physical switches, links, and servers. If Mininet has been

correctly implemented, this step should require no additional work on the part of the

experimenter. The OpenFlow controller should see a network whose only differences

are minor, like different numbers of links or MAC addresses, and hence, should require

no code changes. To justify this assertion, a week before a SIGCOMM deadline, the

Ripcord controller code developed on Mininet was “ported” to a custom hardware

testbed, and this controller was able to provide full network connectivity, with no

code changes.

3.4 Scalability

Lightweight virtualization is the key to scaling to hundreds of nodes while preserving

interactive performance. This section measures overall topology creation times, times

to run individual operations, and available bandwidth.

3.4.1 Topology Creation

Table 3.1 shows the time required to create a variety of topologies with Mininet.

Larger topologies which cannot fit in memory with full-system virtualization can

start up on Mininet. In practice, waiting 10 seconds for a full fat tree to start is quite

reasonable (and faster than the boot time for hardware switches).

Mininet scales to the large topologies shown (over 1000 hosts) because it virtualizes

less and shares more. The file system, user ID space, process ID space, kernel, device

drivers, shared libraries and other common code are shared between processes and

managed by the operating system. The roughly 1 MB overhead for a host is the

memory cost of a shell process and plus the network namespace state; this total is

almost two orders of magnitude less than the 70 MB required per host for the memory

image and translation state of a lean VM. In fact, of the topologies shown in Table

3.1, only the smallest one would fit in the memory of a typical laptop if full-system
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Topology H S Setup(s) Stop(s) Mem(MB)

Minimal 2 1 1.0 0.5 6
Linear(100) 100 100 70.7 70.0 112
VL2(4, 4) 80 10 31.7 14.9 73
FatTree(4) 16 20 17.2 22.3 66
FatTree(6) 54 45 54.3 56.3 102
Mesh(10, 10) 40 100 82.3 92.9 152
Tree(4ˆ4) 256 85 168.4 83.9 233
Tree(16ˆ2) 256 17 139.8 39.3 212
Tree(32ˆ2) 1024 33 817.8 163.6 492

Table 3.1: Mininet topology benchmarks: setup time, stop time and memory usage
for networks of H hosts and S Open vSwitch kernel switches, tested in a Debian
5/Linux 2.6.33.1 VM on VMware Fusion 3.0 on a MacBook Pro (2.4 GHz intel Core
2 Duo/6 GB). Even in the largest configurations, hosts and switches start up in less
than one second each.

virtualization were used.

3.4.2 Individual Operations

Table 3.2 shows the time consumed by individual operations when building a topology.

Surprisingly, link addition and deletion are expensive operations, taking roughly 250

ms and 400 ms, respectively. These operations likely have room for optimizations.

3.4.3 Available Bandwidth

Mininet also provides a usable amount of bandwidth, as shown in Table 3.3: 2-3 Gbps

through one switch, or more than 10 Gbps aggregate internal bandwidth through a

chain of 100 switches. For this chain test, the aggregate bandwidth starts to drop off

around 40 switches.

3.5 Use Cases

As of July 2010, Mininet had been used by over 100 researchers in more than 18 insti-

tutions, including Princeton, Berkeley, Purdue, ICSI, UMass, University of Alabama
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Operation Time (ms)

Create a node (host/switch/controller) 10
Run command on a host (’echo hello’) 0.3
Add link between two nodes 260
Delete link between two nodes 416
Start user space switch (OpenFlow reference) 29
Stop user space switch (OpenFlow reference) 290
Start kernel switch (Open vSwitch) 332
Stop kernel switch (Open vSwitch) 540

Table 3.2: Time for basic Mininet operations. Mininet’s startup and shutdown per-
formance is dominated by management of virtual Ethernet interfaces in the Linux
(2.6.33.1) kernel and ip link utility and Open vSwitch startup/shutdown time.

S (Switches) User(Mbps) Kernel(Mbps)

1 445 2120
10 49.9 940
20 25.7 573
40 12.6 315
60 6.2 267
80 4.15 217
100 2.96 167

Table 3.3: Mininet end-to-end bandwidth, measured with iperf through linear
chains of user-space (OpenFlow reference) and kernel (Open vSwitch) switches.

Huntsville, NEC, NASA, Deutsche Telekom Labs, Stanford, and a startup company,

as well as seven universities in Brazil. The set of use cases has certainly expanded

since then, but this initial set covers most of the common use cases.

The first set of use cases roughly divided into prototyping, optimization, demos,

tutorials, and regression suites; §3.1 already described the tutorial and prototyping

cases. For each additional use, I describe a project, a challenge it faced, and how

Mininet helped.

Degugging: The OpenFlow controller NOX builds a topology database by send-

ing periodic LLDP packet broadcasts out each switch port [36]. A production network

was brought down by an excessive amount of these topology discovery messages, ex-

periencing 100% switch CPU utilization. Reproducing the bug proved hard in the

production network because of topology and traffic changes. Mininet provides a way
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to try many topologies to reproduce the error, experiment with new topology discov-

ery algorithms, and validate a fix.

Demos: Several users have created live interactive demonstrations of their re-

search to show at overseas conferences. While connecting to real hardware is pre-

ferred, high latency, flaky network access, or in-flux demo hardware can derail a live

demo. Maintaining a version of the demo inside Mininet provides insurance against

such issues, in the form of a local, no-network-needed backup.

Regression Suites: Mininet can help to create push-button regression suites to

test new network architectures. One example is SCAFFOLD [76], a service-centric

network architecture that binds communication to logical object names (vs. ad-

dresses), provides anycast between object group instances, and combines routing and

resolution in the network layer. Without Mininet, its creators would have to either

employ a simulator, and build a model for user requests and their systems’s responses,

or build a physical network.

Distributed Controllers: The in-packet Bloom Filter architecture uses a dis-

tributed network of rack controllers to provide routes, directory services, topology

info, and split identity location [74]. This project was unable to build sufficiently

large topologies with full-system virtualization on a limited number of machines, so

they migrated to Mininet to support topologies with more nodes.

Network Monitoring: Monitoring the live performance of an network requires

getting metrics from real applications, from as many vantage points as possible. Un-

fortunately, Linux does not support multiple Ethernet interfaces on the same subnet,

so to get multiple vantage points, one typically uses full-system virtualization with

multiple Ethernet jacks or uses distinct machines. After learning that Mininet could

spawn multiple virtual hosts on a single physical server, our local network administra-

tor leveraged the lightweight host virtualization in the Mininet API to get 8 vantage

points from a cheap, low-power, low-memory embedded PC – one with insufficient

memory to run fully virtualized hosts. This example is not a direct use of Mininet

for network emulation, but it does show another way that network namespace virtu-

alization can prove useful in managing networks.
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3.6 Limitations

While Original Mininet can handle a number of distinct use cases, as described in

the last section, the system does have limitations that prevent it from applying to a

number of other use cases. In particular, the most significant limitation of Original

Mininet is a lack of performance fidelity, especially at high loads. CPU resources

are multiplexed in time by the default Linux scheduler, which provides no guarantee

that a virtual host that is ready to send a packet will be scheduled promptly, or

that all virtual switches will forward at the same rate. Original Mininet has no

way to provision a link to run at a given rate, like 1 Gb/s. In addition, software

forwarding may not match the observed latency of hardware. As mentioned in §1.5,

O(n) linear lookup for software tables cannot approach the O(1) lookup of a hardware-

accelerated TCAM in a vendor switch, causing the packet forwarding rate to drop for

large wildcard table sizes.

In addition, Mininet’s partial virtualization approach also limits what it can do.

It cannot handle different OS kernels simultaneously. All hosts share the same filesys-

tem, although this can be changed by using chroot. Hosts cannot be migrated live

like VMs. These losses are reasonable tradeoffs for the ability to try ideas at greater

scale.

In the next section, I describe additions to Original Mininet to address the first

and most pressing issue, the lack of performance fidelity.



Chapter 4

Mininet-HiFi: A High-Fidelity

Emulator

This chapter describes Mininet-HiFi, a Container-Based Emulator with sufficient ac-

curacy to support experiments that demand performance fidelity, including transport

protocol, queueing, and topology experiments, among others. These types of exper-

iments, described briefly in §4.1, would have been impossible with Original Mininet.

After describing the architectural pieces of Mininet-HiFi to isolate resource and mon-

itor performance in §4.2, I present a range of validation tests in §4.3 to ensure that

the system operates as intended. Then I present micro-level benchmarks to help with

choices between process and packet scheduler options in §4.4. Section 4.5 concludes

this chapter by describing the scope of experiments that fit well on Mininet-HiFi.

4.1 Motivation

Original Mininet lacks performance fidelity; fixing this limitation enables experiments

where the goal is to measure performance properties, not just ensure functional cor-

rectness. The following experiment types are a poor fit for Original Mininet, as each

requires additional emulation features to trust the results. For all of these, the abil-

ity to real Linux code with trustworthy performance numbers, on a single machine,

would be useful.

47
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Transport Protocols. Transport protocols like TCP exist to maximize transmis-

sion speeds, fairness, or delay, and their experiments are unlikely to provide

valid results when links speeds and delays cannot be emulated.

Queueing. Queueing methods might try to provide per-flow or per-host fairness on

a link. These experiments would be more likely to provide valid results with

accurately emulated queues, as well as limits to ensure that an aggressively-

sending virtual host cannot delay or prevent other virtual hosts from generating

traffic.

Topology Experiments. Data-center topologies like Fat Trees [7] and random topolo-

gies [77] benefit from new routing strategies [6, 70]. These experiments require

large numbers of hosts, queues, and switches, which all must be accurately em-

ulated. In addition, since the forwarding delays through virtual switches cannot

be bounded, they should at least be tracked.

Ideally, even combinations of these methods would be supported, such as a new

transport protocol used within a new datacenter fabric with switches that implement

a new queueing strategy.

4.2 Design Overview

Mininet-HiFi extends the original Mininet architecture with mechanisms for perfor-

mance isolation, resource provisioning, and performance fidelity monitoring.

The individual components of Mininet-HiFi tend not to be new, or even designed

with network in emulation in mind, but the combination of these pieces leads to a new

emulation workflow. This approach of using off-the-shelf components is a practical

choice to maximize installability, usability, and maintainability; in particular, this

choice requires no changes with new kernel revisions.
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Figure 4.1: A Mininet-HiFi network emulates performance constraints of links and
hosts. Dashed blue lines and text indicate added performance isolation and monitor-
ing features that distinguish Mininet-HiFi from Original Mininet.

4.2.1 Performance Isolation

Original Mininet provides no assurance of performance fidelity because it does not

isolate the resources used by virtual hosts and switches. One option for running net-

work experiments, vEmulab, provides a way to limit link bandwidth, but not CPU

bandwidth. As we saw earlier in Figure 1.1, link bandwidth limiting alone is insuf-

ficient: a realistic emulator requires both CPU and network bandwidth limiting at

minimum. Mininet-HiFi implements these limits using the following OS-level features

in Linux:

Control Groups or cgroups allow a group of processes (belonging to a contain-

er/virtual host) to be treated as a single entity for (hierarchical) scheduling and

resource management [21].1 To use cgroups to control process execution, rather than

just monitor it, a mechanism like the one described next is required.

1Resources optionally include CPU, memory, and I/O. CPU caches and Translation Lookaside
Buffers (TLBs) cannot currently be managed.
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CPU Bandwidth Limits enforce a maximum time quota for a cgroup within a

given period of time [83]. The period is configurable and typically is between 10 and

100 ms. CPU time is fairly shared among all cgroups which have not used up their

quota (slice) for the given period. This feature was originally implemented by Google

to reduce completion-time variability, by preventing a single process from monopoliz-

ing a CPU, whether due to a bug, normal variation, or an unusually expensive query.

It has similar goals to the Linux Real-Time (RT) scheduler, which also limits process-

time execution, but differs in that when no limits are set, it acts in a work-conserving

mode identical to the default Linux Completely Fair Scheduler (CFS).

Linux Queueing Disciplines enforce link properties such as bandwidth, delay,

and packet loss. Packet schedulers such as Hierarchical Token Bucket (HTB) [26]

and Hierarchical Fair Service Curve (HFSC) [79] can be configured using tc to apply

these properties to each link.

Figure 4.1(a) shows the components of a simple hardware network, and Fig-

ure 4.1(b) shows its corresponding realization in Mininet-HiFi using the above fea-

tures. Adopting these mechanisms in Mininet-HiFi solves the performance isolation

problem shown in Figure 1.1: the “ideal” line is in fact the measured behavior of

Mininet-HiFi.

4.2.2 Resource Provisioning

Each isolation mechanism must be configured appropriately for the system and the

experiment. The challenge with advance provisioning is that the exact CPU usage for

packet forwarding will vary with path lengths, lookup complexities, and link loads.

It is impractical to predict in advance whether a particular configuration will provide

enough cycles for forwarding. Moreover, it may be desirable to overbook the CPU to

support a larger experiment if some links are partially loaded. Mininet-HiFi lets the

experimenter allocate link speeds, topologies, and CPU fractions based on their esti-

mated demand. More importantly, as described next, Mininet-HiFi can also monitor

performance fidelity to help verify that an experiment is operating realistically.
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4.2.3 Fidelity Monitoring

Any Container-Based Emulator must contend with infidelity that arises when multiple

processes execute serially on the available cores, rather than in parallel on physical

hosts and switches. Unlike a simulator running in virtual time, Mininet-HiFi runs in

real time and does not pause a host’s clock to wait for events. As a result, events such

as transmitting a packet or finishing a computation can be delayed due to serialization,

contention, and background system load, as described in depth in §2.

Mininet-HiFi uses hooks in the Linux Tracing Toolkit [2] to log process and packet

scheduler events to memory. Each event is written to a log as the experiment runs and

processed afterwards with a Python script to build and check the timing distributions.

4.3 Validation Tests

It is not immediately obvious that the combination of mechanisms described in §4.2

will in fact yield a network whose behavior matches hardware switches, even on the

simplest of topologies. This section presents results from validation tests that check

for basic performance correctness, on topologies small enough to set up an equivalent

hardware testbed. We run tests on simple networks with multiple TCP flows, then

compare the bandwidths achieved to those measured on a testbed with an equivalent

topology. For each test, we know roughly what to expect – multiple flows sharing a

bottleneck should get an equal share – but we do not know the expected variation

between flows, or whether TCP will yield equivalent short-term dynamics.

The validation tests confirm that the combination of elements in Mininet-HiFi

works properly. Mininet-HiFi yields similar TCP results, but with greater repeata-

bility and consistency between hosts when compared to hardware. However, for one

simple test topology, a dumbbell with UDP traffic, it produces the wrong result, and

we describe one solution to this problem in §4.3.3.
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Figure 4.2: The testbed includes eight machines connected in a dumbbell topology
using a single physical switch.

4.3.1 Testbed

Our testbed includes eight identical dual-core Core2 1.86 GHz, 2 GB RAM Linux

servers. These eight machines are connected as a dumbbell with four hosts on each

end through an NEC PF5240 switch, as shown in Figure 4.2. The switch is split

into two VLANs and connected with a physical loopback cable. Each server has two

motherboard ports; one provides remote management access and the other provides

access to the isolated test network (the dumbbell). When showing Mininet-HiFi

results in this section, we use a single dual-core PC from within the testbed. For

both hardware and software, all links are set to 100 Mbps full-duplex.
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4.3.2 Tests

Table 4.1 presents our validation results. Each column corresponds to an experiment

with a unique topology and configuration of flows. Each row corresponds to a different

way to present the same bandwidth data, as a time series, CDF, or CDF of fairness.

To measure fairness between flows we use Jain’s Fairness Index, where 1/n is the worst

possible and 1 represents identical bandwidths. Mininet-HiFi results are highlighted

in solid red lines, while testbed results are dashed black lines. In the time series and

bandwidth plots, each TCP Reno flow has its own line.

Two-Way Test. The goal of this test is to verify whether the links are “truly

duplex” and whether the rate-limiters for traffic flowing in either direction are isolated.

The network consists of two two-host pairs, each sending to the other. One hardware

port appears to experience significant periodic dips. Mininet-HiFi does not show this

dip, but it does have more variation over time and the bandwidths for each host line

up more closely.

Fork-Out Test. The goal of this test is to check if multiple flows originating from

the same virtual host get a fair share of the outgoing link bandwidth, or an uneven

share, if they are unequally affected by the CPU scheduler. The test topology consists

of four hosts connected by a single switch, with one sender and three receivers. The

bandwidths received by the three Mininet-HiFi hosts are squarely within the envelope

of the hardware results, and the fairness CDF is nearly identical.

Single-Switch Test. The goal of this test is to see what happens with potentially

more-complex ACK interactions. The single-switch test topology consists of four

hosts, each sending to their neighbor, with the same total bandwidth requirement as

the Two-Way test. As with the Fork-Out test, the Mininet-HiFi results here show

less variation than with the hardware testbed.

Dumbbell Test. The goal of this test is to verify if multiple flows going over

a bottleneck link get their fair share of the bandwidth. The dumbbell test topology

consists of two switches connected by a link, with four hosts at each end. Four hosts

each send to the opposite side. We see throughput variation in the TCP flows, due
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Figure 4.3: The Fork-In Test, where multiple UDP senders send to one receiver,
originally led to one sender receiving all the bandwidth.

to ACKs of a flow in one direction contending for the queue with the reverse flow, in-

creasing ACK delivery delay variability. The median throughput is identical between

Mininet-HiFi and hardware, but again the Mininet results show less variability over

time and between hosts.

Discussion. Note that our hardware is unlikely to exactly match that from other

testbeds, and in fact, we may not be able to measure our own testbed with enough

fidelity to accurately re-create it in Mininet-HiFi. For example, the amount of buffers

in the switch and its internal organization are unknown. Also, without a hardware

NIC across a bus, we expect much less variability from the NIC and a noticeably lower

RTT between hosts on the same switch. Hence, one would not expect the results to

match exactly.

In general, Mininet-HiFi shows less variation between hosts with TCP flows than

the testbed. For example, the repeating pattern seen in the Two-Way test occasionally

appeared on hardware, but never on Mininet-HiFi. However, as we see next, putting

the resource-isolation pieces together in Mininet-HiFi does not ensure behavior that

approximates hardware for UDP flows.

4.3.3 UDP Synchronization Problem + Fix

The Fork-In test sends UDP traffic from multiple hosts to one receiver, as shown

in Figure 4.3. This test revealed that bandwidth was not getting equally shared

among the flows. One flow was receiving all the bandwidth, while the others starved.
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Repeating the test with two pairs of hosts produced the same result; one flow received

all the bandwidth.

The reason for this behavior is that all the emulated nodes in the system operate

under a single clock domain. This perfect synchronization leads the UDP streams to

become perfectly interleaved at the bottleneck interface. When there was room for a

packet in the bottleneck queue, a packet from the first flow would always take the slot,

and the next packet from each other flow would be dropped. While not technically a

bug in the queue implementation, this behavior does prevent us from getting results

that we would expect to obtain on real networks. In real networks, hosts, switches,

and switch interfaces all operate on different clock domains. This leads to an inherent

asynchrony, preventing pathological scenarios like the one observed. The continuing

drift of one interface relative to the other, due to inaccuracies in crystal manufacturing

and temperature differences yields fairness over time.

This single clock domain synchronization problem is not unique to our emulator;

it also appears in simulators, where the typical solution is to randomly jitter the

arrival of each packet event so that events arriving at the same virtual time get

processed in a random order. Since our emulator only knows real time, we use the

following algorithm to emulate the asynchrony of real systems and jittered simulators

in Mininet-HiFi:

• On each packet arrival, if the queue is full, temporarily store it in an overflow

buffer (instead of dropping it, as a droptail queue would).

• On each dequeue event, fill the empty queue slot with a packet randomly picked

from the overflow buffer (instead of the first packet), and drop the rest.

After implementing the jitter-emulation solution, we observed the flows achieving

fairness close to that measured on real hardware, similar to the TCP case. We saw

similar synchronization with a Fork-In test with two hosts sending to one host, except

instead of complete starvation, the bandwidth was arbitrarily split between the flows,

with a split ratio that remains consistent for the duration of the experiment. The

modified link scheduler code fixed this bug, too.
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This tweak highlights a way in which a CBE is like a simulator and may yield

behavior different than hardware, even if it perfectly hits timing goals for network

invariants.

4.4 Microbenchmarks

The High Fidelity Emulation approach relies on the accuracy and correctness of the

CPU scheduler and the link scheduler. This section focuses on microbenchmarks to

verify the behavior of these components (and options for them), as well as explore

their limits, when pushed. Each microbenchmark was run on an Intel i7 CPU with 4

cores running at 3.20GHz with 12GB of RAM.

4.4.1 CPU Scheduling

CPU schedulers differ in the precision by which they provide each virtual host with a

configured fraction of the CPU. For each virtual host, we measure how precisely it is

scheduled over time (i.e., the CPU utilization during each second for each process).

We also measure delays caused by serialization in scheduling (i.e., the time from when

a process should be scheduled, until the time it is, as well as the time from when a

packet should depart, until the time it does).

Time-Allocation Accuracy. Table 4.2 compares the CPU allocation we want a

vhost to receive against the actual CPU time given to it, measured once per second.

The vhosts are simple time-waster processes, and the total CPU utilization is 50%.

Consider the first row: the bwc (CFS Bandwidth Limiting) scheduler allocates

each of the 50 vhosts 4% of a CPU core, and since there are four cores, the total

CPU utilization is 50%. Each second we measure the amount of time each process

was actually scheduled and compare it with the target. The maximum deviation was

0.41% of a CPU, i.e., in the worst-case second, one process received 3.59% instead of

4%. The RMS error was 2% of the target, i.e., 0.008% of a CPU core within a second.

The results are similar for 100 vhosts and for the rt scheduler. In other words, the bwc

and rt schedulers both give the desired mean allocation, during each second, within a
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Sched vhosts goal mean maxerr rmserr
cpu% cpu% cpu% %

bwc 50 4.00 4.00 0.41 2.1
100 2.00 2.00 0.40 2.9

rt 50 4.00 4.00 0.39 1.9
100 2.00 2.00 0.40 3.2

default 50 4.00 7.98 4.44 100.0
100 2.00 3.99 2.39 99.6

Table 4.2: Comparison of schedulers for different numbers of vhosts. The target is
50% total utilization of a four core CPU.

small margin of error. As expected, in both cases, the default scheduler gives a very

different allocation, because it makes no attempt to limit the per-process CPU usage.

The results in Table 4.2 are limited by our measurement infrastructure, which

has a resolution of only 10ms – which for 200+ vhosts is not much longer than each

process is scheduled. This limitation prevented us from making reliable per-second

measurements for larger numbers of vhosts.

Delay Accuracy. The second set of CPU microbenchmarks checks whether pro-

cesses are scheduled at precisely the right time. This consideration is important for

applications that need to perform tasks periodically, e.g., a video streaming applica-

tion sending packets at a specific rate.

We conduct two tests. In each case, vhost-1 sets an alarm to fire after time t

and we compare the actual versus desired waking time. N − 1 vhost processes run

time-waster processes. In Test 1 vhost-1 is otherwise idle. In Test 2 vhost-1 also runs

a time-waster process to create “foreground load”.

Figure 4.4 shows the relative timer error in the two tests for various values of N ,

t, and for the two schedulers - cbw and rt. Both introduce small errors in the timer

for Test 1, increasing as t approaches the scheduling period (10ms), where it may

fall either side of the boundary. But the main takeaway is that rt fails to schedule

accurately in Test 2. We discounted rt from further consideration.
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Figure 4.4: CPU timer fidelity as a function of N and t. Solid lines are for Test 1;
dashed lines are for Test 2.

4.4.2 Link Scheduling

We created microbenchmarks to test the accuracy to which the OS can emulate the

behavior of a link, for both TCP and UDP flows.

Throughput: We measure the throughput of vhost A transmitting to vhost

B over a veth pair using TCP. Figures 4.5(a) and 4.5(b) show the distribution of

attained rates (normalized) over a 10ms time interval, for the htb and hfsc schedulers,

respectively. Both link schedulers constrain the link rate as expected, although the

variation grows as we approach 1Gb/s. The table provides a reminder that Container-

Based Emulation runs in real time, and will show measurable errors if run near system

CPU limits.2

Our next test runs many veth pairs in parallel, to find the point at which the

CPU can no longer keep up, where most CPU cycles go to switching data through

the kernel. Figure 4.6(a) shows the total time spent by the kernel on behalf of end

hosts, including system calls, TCP/IP stack, and any processing by the kernel in the

context of the end host. The system time is proportional to the number of links,

for a given link rate (10Mb/s - 1Gb/s). The graph shows where the system time is

2The benchmark revealed a bug in the link scheduler, which remains to be resolved. At rates
close to 1Gb/s, it appears we must read from a buffer about 20Mb/s faster than we write to it. This
appears to be a bug, rather than a fundamental limitation.
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Figure 4.5: Rates for a single htb & hfsc-scheduled link, fed by a TCP stream.

insufficient to keep up (where the points lie below the proportionality line) and the

performance fidelity breaks down.

Figure 4.6(a) does not include processing incurred by the network switches, which

are accounted as softirq time; these are shown in Figure 4.6(b). As expected, the

system time is proportional to the aggregate switching activity. Should a measured

point deviate from the line, it means the system is overloaded and falling behind.

We can now estimate the total number of veth links that we can confidently

emulate on our server. If we connect L links at rate R between a pair of vhosts, we

expect a total switching activity of 2LR. Figure 4.7(a) shows the measured aggregate

switching capacity for L = 1− 128 veth links carrying TCP, at rates R = 10Mb/s−
1Gb/s. The solid lines are the ideal aggregate switching activity (2LR) when there are

sufficient CPU resources. Measured data points below the line represent “breaking



4.4. MICROBENCHMARKS 61

100 101 102

#Links

0

20

40

60

80

100

sy
st

em
 ti

m
e 

%

10M
20M
50M
100M
200M
400M
800M
1000M

(a) Kernel CPU usage for various rates and number of links

100 101 102

#Links

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

si
rq

 ti
m

e 
%

/M
bp

s

10M
20M
50M
100M
200M
400M
800M
1000M

(b) SoftIRQ CPU per Mbps for various rates and number of
links
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allotted to each link.
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Figure 4.7: Provisioning graph for the 8-core platform. Y-axis is the total switching
capacity observed in the pair test and x-axis is the number of parallel links. The
numbers show the total CPU usage for a run at that configuration.
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Figure 4.8: Round-trip latency in the presence of background load.

points” when the system can no longer yield high fidelity results; as expected, we see

that fidelity is lost as we push the CPU utilization to 100%.

4.4.3 Round-trip latency effects

To examine the effects of background load on round-trip latency, we ran a series of

experiments where a client and server communicate in an RPC-like scenario: the

client sends a packet to the server which then sends a reply, while other hosts within

the experiment run CPU-intensive programs. Since I/O-bound processes will have

a lower overall runtime than CPU-bound processes, Linux’s default CFS scheduler

automatically prioritizes them over CPU-bound processes, waking them up as soon as

they become runnable. The goal of this test is to verify that CFS bandwidth limiting

preserves this behavior when hosts are limited to 50% of overall system bandwidth.

Figure 4.8 shows round-trip latency in the presence of background load. Although

the average request-response time does not increase dramatically from 2 to 80 hosts,

the variation (shown by error bars of +/- twice the standard deviation, corresponding

to a 95% confidence interval) is larger at higher levels of multiplexing and background

load. This graph indicates that it is more likely that a client or server which is ready

to run may have to wait until another process completes its time slice.
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4.4.4 Summary

The main takeaways from these tests include:

• Process schedulers in Linux sufficiently accurate, as-is. The RMS error for both

the bwc and rt schedulers was on the order of 2%.

• Packet schedulers in Linux are sufficiently accurate, as-is. The 95th percentile

of enforced rates of packet schedulers like htb and htb is within 5% of the actual

rate for a wide range of rates from 10Mbps to 1Gbps.

• The queue fidelity of hfsc is better than htb for higher link speeds.

• The available network bandwidth for an experiment depends depends not only

on the total number of links (i.e. total CPU), but also the diameter of the

network.

Process and packet schedulers provide resource isolation, but one should still verify

the correctness of the experiment through the use of network invariants, as it may

not be obvious that resource limits are being reached.

4.5 Experimental Scope

Before presenting successful examples of reproduced results generated using Mininet-

HiFi, I want to clearly set expectations for those experiments for which the system

may not be the best choice.

The main limitation with Mininet-HiFi is its inability to support experiments

with large numbers of hosts at high bandwidths. In its current form, Mininet-HiFi

targets experiments that (1) are network-limited and (2) have aggregate resource

requirements that fit within a single modern multi-core server.

Network-limited refers to experiments that are limited by network properties such

as bandwidth, latency, and queueing, rather than other system properties such as

disk bandwidth or memory latency; in other words, experiments whose results would

not change on a larger, faster server. For example, testing how a new version of
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TCP performs in a specific topology on 100 Mb/s links would be an excellent use of

Mininet-HiFi, since the performance is likely to be dependent on link bandwidth and

latency. In contrast, testing a modified Hadoop would be a poor fit, since MapReduce

frameworks tend to stress memory and disk bandwidth along with the network.

Generally, Mininet-HiFi experiments use less than 100 hosts and links. Experi-

ment size will usually be determined by available CPU cycles, virtual network band-

width, and memory. For example, on a server with 3 GHz of CPU and 3 GB RAM

that can provide 3 Gb/s of internal packet bandwidth, one can create a network of

30 hosts with 100 MHz CPU and 100 MB memory each, connected by 100 Mb/s

links. Unsurprisingly, this configuration works poorly for experiments that depend

on several 1 Gbps links.

Overall, Mininet-HiFi is a good fit for experiments that benefit from flexible

routing and topology configuration and have modest resource requirements, where

a scaled-down version can still demonstrate the main idea, even with imperfect fi-

delity. Compared with hardware-only testbeds [34, 22, 25, 30], Mininet-HiFi makes

it easier to reconfigure the network to have specific characteristics, and doesn’t suffer

from limited availability before a conference deadline. Also, if the goal is to scale out

and run hundreds of experiments at once, for example when conducting a massive

online course or tutorial, using Mininet-HiFi on a public cloud such as Amazon EC2

or on the laptops of individual participants solves the problem of limited hardware

resources.

If an experiment requires extremely precise network switching behavior, reconfig-

urable hardware (e.g. NetFPGAs) may be a better fit; if it requires “big iron” at large

scale, then a simulator or testbed is a better choice. However, the Container-Based

Emulation approach is not fundamentally limited to medium-scale, network-limited

experiments. The current limitations could be addressed by (1) expanding to multiple

machines, (2) slowing down time [38], and (3) isolating more resources using Linux

Containers [49], as described later in §6.3.

The next section (§5) shows network-limited network experiments that Mininet-

HiFi appears to support well. All are sensitive to bandwidth, queues, or latency.
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Chapter 5

Experiences Reproducing Research

Past chapters have shown that Mininet-HiFi can yield similar results to hardware

on simple topologies with simple traffic patterns. This chapter ups the ante to test

Mininet-HiFi on more complex experiments that were previously published in confer-

ence papers, covering queueing, transport protocols, and topology evaluations. If one

can successfully reproduce results that originally came from measurements on hard-

ware testbeds — using Mininet-HiFi, on a single system — then it strongly suggests

that Mininet-HiFi is a platform capable of reproducing networking network research,

and potentially one on which to generate original results.

In particular, we want to understand these aspects of Mininet-HiFi relating to

reproducing network research:

Range of Experiments. The first goal is to see whether results measured on Mininet-

HiFi can qualitatively match the results generated on hardware, for a range of

network-limited network experiments.

Fidelity Monitoring. The second goal is to see whether the monitoring mechanisms

in Mininet-HiFi can successfully indicate the fidelity of an experiment, by using

network invariants to distinguish “emulation runs to trust” from “emulation

runs to ignore”.

Practicality: The third goal is to evaluate the practicality of replicating network

systems research, and to identify common pitfalls that may arise in the process.

69
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A

B

C

Monitor Queue

RTT: 500µs

All links: 100 Mb/s

Figure 5.1: Topology for TCP and DCTCP experiments.

Each published result in the first three sections originally used a custom testbed,

because there was no shared testbed available with the desired characteristics; either

the experiment required custom packet marking and queue monitoring (§5.1), a cus-

tom topology with custom forwarding rules (§5.2), or long latencies and control over

queue sizes (§5.3). For the Mininet-HiFi runs, I use an Intel Core i7 server with four

3.2 GHz cores and 12 GB of RAM.

The fourth section covers experiences from the Spring 2012 editions of Stanford

CS244, Advanced Topics in Networking, where the class project was to attempt to

reproduce a previously published result. Each student project, as well as the first

three in-depth experiments, links to a “runnable” version; clicking on each figure in

the PDF links to instructions to replicate the experiment.

5.1 DCTCP

Data-Center TCP was proposed in SIGCOMM 2010 as a modification to TCP’s con-

gestion control algorithm [9] with the goal of simultaneously achieving high through-

put and low latency. DCTCP leverages the Explicit Congestion Notification [72]

feature in commodity switches to detect and react not only to the presence of net-

work congestion but also to its extent, measured through the sequence of ECN marks

stamped by the switch.

To test the ability of Mininet-HiFi to precisely emulate queues, we attempt to

replicate an experiment in the DCTCP paper showing how DCTCP can maintain

http://reproducingnetworkresearch.wordpress.com/dctcp-2/
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Figure 5.2: Reproduced results for DCTCP [9] with Mininet-HiFi and a identically
configured hardware setup. Figure 5.2(b) shows that the queue occupancy with
Mininet-HiFi stays within 2 packets of hardware.

high throughput with very small buffers. This experiment uses the Linux DCTCP

patch as the paper authors [24]. In both Mininet-HiFi and on real hardware in our

lab,1 we created a simple topology of three hosts A, B and C connected to a single 100

Mb/s switch, as shown in Figure 5.1. In Mininet-HiFi, we configured ECN through

Linux Traffic Control’s RED queuing discipline and set a marking threshold of 20

packets.2 Hosts A and B each start one long-lived TCP flow to host C. We monitor

the instantaneous output queue occupancy of the switch interface connected to host

C. Figure 5.2 shows the queue behavior in Mininet-HiFi running DCTCP and from

an equivalently configured hardware setup.

Importantly, the behavior of the experiment stays the same. On Mininet-HiFi,

1We used the same Broadcom switch as the authors.
2As per [9], 20 packets exceeds the theoretical minimum buffer size to maintain 100% throughput

at 100 Mb/s.

http://reproducingnetworkresearch.wordpress.com/dctcp-2/
http://reproducingnetworkresearch.wordpress.com/dctcp-2/
http://reproducingnetworkresearch.wordpress.com/dctcp-2/
http://reproducingnetworkresearch.wordpress.com/dctcp-2/
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Figure 5.3: Complementary CDF of inter-dequeue time deviations from ideal; high
fidelity at 100 Mb/s, low fidelity at 1 Gb/s.

running on a single core, TCP does the familiar sawtooth, with the same extents,

and DCTCP shows queue lengths that in 20% of cases exceed the maximum seen

on hardware, of 21 packets, but the minimum of 15 packets is the same. Both of

these differences in the queue distributions can be explained by a different effective

round-trip time (RTT). For the Mininet experiments, the RTT was not extended to

match the necessary RTT and RTT variability induced by NIC receive and transmit

hardware. Since Mininet never uses the NIC driver routines, its NIC forwarding delay

is effectively zero.

Verifying fidelity: DCTCP’s dynamics depend on queue occupancy at the

switch, so the experiment relies on accurate link emulation. Figure 2.7, plus the

complete discussion in §2, show measured distributions of packet spacing errors for

a range of link speeds. To summarize the DCTCP results, a single core shows er-

rors entirely less than the delay of a single packet time up to 80 Mb/s. At 160

Mb/s, 90% of packets experience sub-one-packet delays, but a remaining fraction of

packets exceed this, and even though the experiment yields the same full-throughput

results, the failed invariant check suggest the run should be ignored. At 320 Mb/s, a

greater fraction of packets are overly delayed, and the link does not even achieve full

throughput.

Lessons: The main lesson learned from this experiment was that transport pro-

tocols, which depend on queue fidelity, can be emulated using Mininet-HiFi. These

http://reproducingnetworkresearch.wordpress.com/dctcp-2/


5.2. HEDERA 73

algorithms can be tested within Mininet-HiFi, as long as their kernel implementa-

tions support network namespaces. For a different transport protocol, Multipath

TCP (MPTCP), adding network namespace support required the addition of a small

kernel patch [70].

5.2 Hedera

Our second example uses Mininet-HiFi to reproduce results that were originally mea-

sured on a real hardware testbed in Hedera [6], a dynamic flow scheduler for data

center networks, as presented at NSDI 2010. With Equal-Cost Multi-Path (ECMP)

routing, a strategy implemented on hardware switches today, and commonly used to

spread packets in data centers and across WAN links, flows take a randomly picked

path through the network based on a hash of the packet header. The ECMP hash

function takes as input the standard IP five-tuple, which includes the IP source, IP

destination, IP protocol, L4 source port, and L4 destination port. Any hash based

on the five-tuple prevents packet reordering by ensuring that all packets belonging

to a flow take the same path [81]. Hedera shows that this simple approach leads

to random hash collisions between “elephant flows” – flows that are a large fraction

of the link rate – causing the aggregate throughput to plummet. This behavior is

especially pronounced in Fat Trees, where the speed of the edge links matches that

of the core links. With this throughput loss result as its motivation, Hedera proposes

to intelligently re-route flows to avoid collisions, and thus, exploit all the available

bandwidth.

More specifically, as part of the evaluation, the authors compare the throughput

achieved by ECMP with that of an ideal “non-blocking” network (the maximum

achievable) for 20 different traffic patterns (Figure 9 in the original paper [6]). The

authors performed their evaluation on a hardware testbed with a k = 4 Fat Tree

topology with 1 Gb/s links. The main metric of interest is the aggregate throughput

relative to the full bisection bandwidth of the network.

To test the ability of Mininet-HiFi to emulate a complex topology with many links,

switches, and hosts, we replicate the ECMP experiment from the paper. We use the
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same k = 4 Fat Tree topology and the same traffic generation program provided by

the Hedera authors to generate the same traffic patterns. To route flows, we use

RipL-POX [4], a Python-based OpenFlow controller. We set the link bandwidths to

10 Mb/s and allocate 25% of a CPU core on our eight core machine to each of 16

hosts (i.e. a total of 50% load on the CPU). We set the buffer size of each switch to

50 packets per port, our best estimate for the switches used in the hardware testbed.
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Figure 5.4: Effective throughput with ECMP routing on a k = 4 Fat Tree vs. an
equivalent non-blocking switch. Links are set to 10 Mb/s in Mininet-HiFi and 1 Gb/s
in the hardware testbed [6].

Figure 5.4 shows the normalized throughput achieved by the two routing strategies

– ECMP and non-blocking – with Mininet-HiFi, alongside results from the Hedera

paper for different traffic patterns. The Mininet-HiFi results are averaged over three

runs. The traffic patterns in Figure 5.4(a) are all bijective; they should all achieve

maximum throughput for a full bisection bandwidth network. This is indeed the

case for the results with the “non-blocking” switch. The throughput is lower for

ECMP because hash collisions decrease the overall throughput. We can expect more

collisions if a flow traverses more links. All experiments show the same behavior, as

seen in the stride traffic patterns. With increasing stride values (1, 2, 4 and 8),

flows traverse more layers, decreasing throughput.

The ECMP results obtained on the Hedera testbed and Mininet-HiFi differed

significantly for the stride-1, 2, 4 and 8 traffic patterns. Figure 5.4(a). At higher

http://reproducingnetworkresearch.wordpress.com/hedera-2/
http://reproducingnetworkresearch.wordpress.com/hedera-2/
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stride levels that force all traffic through core switches, the aggregate throughput

with ECMP should reduce. However, the extent of reduction reported for the Hedera

testbed was exactly consistent with that of the spanning-tree routing results from

Mininet-HiFi. We postulate that a misconfigured or low-entropy hash function may

have unintentionally caused this style of routing. After several discussions with the

authors, we were unable to explain a drop in the ECMP performance reported in [6].

Therefore, we use spanning tree routing for Mininet-HiFi Hedera results for all traffic

patterns. For consistency with the original Hedera graphs, we continue to use the

“ECMP” label.

After this change, the Mininet-HiFi results closely matched those from the hard-

ware testbed; in 16 of the 20 traffic patterns they were nearly identical. In the

remaining four traffic patterns (randx2,3,4 and stride8) the results in the paper

have lower throughput because – as the authors explain – the commercial switch in

their testbed is built from two switching chips, so the total buffering depends on the

traffic pattern. To validate these results, we would need to know the mapping of hosts

to switch ports, which is unavailable.

One lesson learned from this experiment is that Mininet-HiFi can reproduce per-

formance results for data-center networking experiments with a complex topology.

This experiment demonstrates that with a CBE, it is possible to collect meaningful

results in advance of (or possibly without) setting up a hardware testbed. If a testbed

is built, the code and test scripts used in Mininet-HiFi can be reused.

A second lesson was a reminder of the value of reproduction and the difficulty

in doing an exact reproduction. This experiment revealed ambiguous methodology

details that would never be disclosed in the limited text space of a paper. Beyond

this, the original authors may not even be aware of hardware parameters that can

affect the results, as these may be undisclosed and hard to test.

Verifying fidelity: Unlike DCTCP, the Hedera experiment depends on coarse-

grained metrics such as aggregate throughput over a period of time. To ensure that no

virtual host starved and that the system had enough capacity to sustain the network

demand, we measured idle time during the experiment (as described in §4.3). In all

runs, the system had at least 35% idle CPU time, measured each second.
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Figure 5.5: Buffer sizing experiment topology.

Scaling the experiment: In the Hedera testbed, machines were equipped with

1 Gb/s network interfaces. We were unable to use Mininet-HiFi to replicate Hedera’s

results even with 100 Mb/s network links, as the virtual hosts did not have enough

CPU capacity to saturate their network links. While Hedera’s results do not qualita-

tively change when links are scaled down, it is a challenge to reproduce results that

depend on the absolute value of link/CPU bandwidth.

5.3 Buffer Sizing

Our third experiment example reproduces results that were measured on a custom

hardware testbed to determine the number of packet buffers needed by a router. All

Internet routers contain buffers to hold packets during times of congestion. These

buffers must be large enough to ensure that the buffer never goes empty, which will

ensure full link utilization of 100%.

At SIGCOMM 2004, a paper by Appenzeller et al. questioned the commonly-held

wisdom for sizing buffers in Internet routers [10]. Prior to the paper, the common

assumption was that each link needs a buffer of size B = RTT × C, where RTT is

the average round-trip time of a flow passing across the link and C is the data-rate

of the bottleneck link. The authors showed that a link with n flows requires no more

than B = RTT×C√
n

; when the number of flows is large, the needed buffering reduces to

a small fraction of that required to support a single large flow at full line rate. The

original paper included results from simulation and measurements from a real router,

http://reproducingnetworkresearch.wordpress.com/sizing-router-buffers/
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Figure 5.6: Results: Buffers needed for 99% utilization, comparing results from the
Internet2 testbed, Mininet-HiFi, and the theoretical upper bound.

but not for a real network. Later, at SIGCOMM 2008, this result was demonstrated

on a hardware testbed running on the Internet2 backbone.3

To test the ability of Mininet-HiFi to emulate hundreds of simultaneous, inter-

acting flows, we replicated this hardware experiment. We contacted the researchers

and obtained results measured on their hardware testbed, then compared them with

results from Mininet-HiFi; the Mininet-HiFi topology is shown in Figure 5.5. In the

hardware experiments, a number of TCP flows go from a server at Stanford University

(California) to at a server at Rice University (Houston, Texas) via a NetFPGA [48]

IPv4 router in the Internet2 POP in Los Angeles. The link from LA to Houston is

constrained to 62.5 Mb/s to create a bottleneck and the end-to-end RTT is set to 87

ms to match the measured value. Once the flows are established, a script runs a binary

search to find the buffer size needed for 99% utilization on the bottleneck link. Fig-

ure 5.6 shows results from theory, hardware, and Mininet-HiFi. Both Mininet-HiFi

and hardware results are averaged over three runs. On Mininet-HiFi, the average

CPU utilization did not exceed 5%.

Both results are bounded by the theoretical limit and confirm the new rule of

thumb for sizing router buffers. Mininet-HiFi results show similar trends to the

hardware results, with some points being nearly identical. If Mininet-HiFi had been

3Video of demonstration at http://www.youtube.com/watch?v=ykga6N_x27w.

http://reproducingnetworkresearch.wordpress.com/sizing-router-buffers/
http://www.youtube.com/watch?v=ykga6N_x27w
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available for this experiment, the researchers could have gained additional confidence

that the testbed results would match the theory.

There are some notable differences in the results, particularly at 200 and 300

flows, which are likely explained by different measurement scripts. In the process of

doing a clean-room reimplementation of the binary search script, we came across a

surprising number of factors that would influence the test results, on both hardware

and Mininet-HiFi. One key parameter was the “settling time” parameter. This pa-

rameter describes the time after any queue-size change during which the test script

must wait before measuring the queue occupancy. The script must be careful to give

the TCP connections sufficient time to stabilize. If set too low, the measurement

variability will increase. In the binary search direction of an increasing queue size,

this parameter doesn’t matter as much, especially if the measured queue occupancy

already exceeds the target, because the change will cause no additional packet drops.

However, in the opposite binary search direction, where the queue size is reduced,

losses are more likely to be instantaneously triggered, such that a flow might experi-

ence a TCP timeout or back off more than it usually would in steady-state operation.

Because of this issue, the testing script must wait for multiple RTTs, at minimum.

Another example of the practical challenge with a seemingly simple binary search

is specific to Mininet-HiFi. Links in Mininet-HiFi are not perfect, and they will vary

slightly in speed. When the queue utilization target (the signal) is close to 99%, or

even higher, link-speed variation (the noise) must stay below 1% for the full duration

of the experiment to succeed. Any single error in the binary search will effectively

chop the search space and prevent the search from approaching the correct value.

Hence, we averaged multiple results, and reduced the target from an original value of

99.5% to a smaller value of 99%.

Verifying fidelity: Like the DCTCP experiment, the buffer sizing experiment

relies on accurate link emulation at the bottleneck. However, the large number of

TCP flows increases the total CPU load. We visualize the effect of system load

on the distribution of deviation of inter-dequeue times from that of an ideal link.

Figure 5.7 plots the CDF of deviations (in percentage) for varying numbers of flows.

Even for 800 flows, more than 90% of all packets in a 2 s time interval were dequeued
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Figure 5.7: Verifying Fidelity: A large number of flows increases the inter-dequeue
time deviations only by 40% from that of an ideal 100% utilized link, and only for
1% of all packets in a 2s time window.

within 10% of the ideal dequeue time (of 193.8 µs for full-sized 1514 byte packets).

Even though inter-dequeue times were off by 40% for 1% of all packets, results on

Mininet-HiFi qualitatively matched that of hardware.

Scaling the experiment: The experiment described in the original paper used

multiple hosts to generate a large number of TCP flows. To our surprise, we found that

a single machine was capable of generating the same number (400–800) of flows and

emulating the network with high fidelity. While results on Mininet-HiFi qualitatively

matched hardware, we found that the exact values depended on the version of the

kernel (and TCP stack).

5.4 CS244 Spring 2012

After successfully replicating several experiments with Mininet-HiFi, the next step

was to attempt to reproduce as broad a range of networking research results as possi-

ble, to learn the limits of the approach as well as how best to reproduce others’ results.

For this task we enlisted students in CS244, a masters-level course on Advanced Top-

ics in Networking in Spring quarter 2012 at Stanford, and made reproducing research

the theme of the final project. In this section, we describe the individual project

outcomes along with lessons we learned from their assignments.

http://reproducingnetworkresearch.wordpress.com/sizing-router-buffers/
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5.4.1 Project Assignment

The class included masters students, undergraduate seniors, and remote professionals,

with systems programming experience ranging from a few class projects all the way

to years of Linux kernel development. We divided the class of 37 students into 18

teams (17 pairs and one triple).

For their final project, students were given a simple, open-ended request: choose

a published networking research paper and try to replicate its primary result using

Mininet-HiFi on an Amazon EC2 instance. Teams had four weeks: one week to choose

a paper, and three weeks to replicate it. Amazon kindly donated each student $100 of

credit for use on EC2. Each team created a blog post describing the project, focusing

on a single question with a single result, with enough figures, data, and explanation

to convince a reader that the team had actually reproduced the result – or discovered

a limitation of the chosen paper, EC2, or Mininet-HiFi. As an added wrinkle, each

team was assigned the task of running another team’s project to reproduce their

results, given only the blog post.

Table 5.1: Student projects for CS244 Spring 2012, in reverse chronological

order. Each project was reproduced on Mininet-HiFi on an EC2 instance. The

image for each project links to a full description, as well as instructions to repli-

cate the full results, on the class blog: http://reproducingnetworkresearch.

wordpress.com.

Project Image Result to Replicate Outcome

CoDel

[54]

The Controlled Delay algorithm (CoDel) improves on RED

and tail-drop queueing by keeping delays low in routers,

adapting to bandwidth changes, and yielding full link

throughput with configuration tweaking.

replicated

+ extra

results

HULL

[8]

By sacrificing a small amount of bandwidth, HULL can re-

duce average and tail latencies in data center networks.
replicated

MPTCP

[71]

Multipath TCP increases performance over multiple wireless

interfaces versus TCP and can perform seamless wireless

handoffs.

replicated

Continued on next page

http://reproducingnetworkresearch.wordpress.com
http://reproducingnetworkresearch.wordpress.com
http://reproducingnetworkresearch.wordpress.com/solving-bufferbloat-the-codel-way/
http://reproducingnetworkresearch.wordpress.com/hull-high-bandwidth-ultra-low-latency/
http://reproducingnetworkresearch.wordpress.com/mptcp-wireless-performance-draft/
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Table 5.1 – continued from previous page

Project Image Result to Replicate Outcome

Over 3G and WiFi, optimized Multipath TCP with at least

600 KB of receive buffer can fully utilize both links.

replicated,

w/differ-

ences

Outcast

[67]

When TCP flows arrive at two input ports on a tail-drop

switch and compete for the same output port, the port with

fewer flows will see vastly degraded throughput.

replicated

The problem described for Outcast [67] occurs in a topology

made to show the problem, as well as in a Fat Tree topology,

and routing style does not necessarily alleviate the issue.

replicated

+ extra

results

Jellyfish

[77]

Jellyfish, a randomly constructed network topology, can

achieve good fairness using k-shortest paths routing, compa-

rable to a Fat Tree using ECMP routing, by using MPTCP.

replicated

+ extra

results

Jellyfish, a randomly constructed network topology, can

achieve similar and often superior average throughput to a

Fat Tree.

replicated

DCTCP

[9]

Data Center TCP obtains full throughput with lower queue

size variability than TCP-RED, as long as the ECN marking

threshold K is set above a reasonable threshold.

replicated

Hedera

[6]

The Hedera data center network flow scheduler improves on

ECMP throughput in a k = 4 Fat Tree, and as the number

of flows per host increase, the performance gain of Hedera

decreases.

replicated

Init

CWND

[28]

Increasing TCP’s initial congestion window can significantly

improve the completion times of typical TCP flows on the

Web.

replicated

Increasing TCP’s initial congestion window tends to improve

performance, but under lossy network conditions an overly

large initial congestion window can hurt performance.

replicated

Incast

[86]

Barrier-synchronized TCP workloads in datacenter Ether-

nets can cause significant reductions in application through-

put.

unable to

reproduce

DCell

[37]

DCell, a recursively-defined data center network topology,

provides higher bandwidth under heavy load than a tree

topology.

replicated

+ extra

results

Continued on next page

http://reproducingnetworkresearch.wordpress.com/multipath-tcp-over-wifi-and-3g-links/
http://reproducingnetworkresearch.wordpress.com/lifes-not-fair-neither-is-tcp-under-the-following-conditions/
http://reproducingnetworkresearch.wordpress.com/76/
http://reproducingnetworkresearch.wordpress.com/fairness-of-jellyfish-vs-fat-tree/
http://reproducingnetworkresearch.wordpress.com/jellyfish-vs-fat-tree/
http://reproducingnetworkresearch.wordpress.com/dctcp-and-queues/
http://reproducingnetworkresearch.wordpress.com/hedera/
http://reproducingnetworkresearch.wordpress.com/increasing-tcps-initial-congestion-window/
http://reproducingnetworkresearch.wordpress.com/choosing-the-default-initial-congestion-window/
http://reproducingnetworkresearch.wordpress.com/tcp-incast-collapse/
http://reproducingnetworkresearch.wordpress.com/dcell-a-scalable-and-fault-tolerant-network-structure-for-data-centers/


82 CHAPTER 5. EXPERIENCES REPRODUCING RESEARCH

Table 5.1 – continued from previous page

Project Image Result to Replicate Outcome

The routing algorithm used for DCell can adapt to failures. replicated

FCT

[27]

The relationship between Flow Completion Time (FCT) and

flow size is not ideal for TCP; small flows take disproportion-

ately long.

replicated

TCP

Day-

tona

[75]

A misbehaving TCP receiver can cause the TCP sender to

deliver data to it at a much higher rate than its peers.
replicated

RED

[33]

Random Early Detection (RED) gateways keep average

queue size low while allowing occasional bursts of packets.

unable to

reproduce

5.4.2 Project Outcomes

Table 5.1 lists the teams’ project choices, the key results they tried to replicate, and

the project outcomes. If you are viewing this paper electronically, clicking on each

experiment image in the table will take you to the blog entry with instructions to

reproduce the results. Students chose a wide range of projects, covering transport

protocols, data center topologies, and queueing: MPTCP [70, 71], DCTCP [9], In-

cast [86], Outcast [67], RED [33], Flow Completion Time [27], Hedera [6], HULL [8],

Jellyfish [77], DCell [37], CoDel [54], TCP Initial Congestion Window [28], and Mis-

behaving TCP Receivers [75]. In eight of the eighteen projects, the results were so

new that they were only published after the class started in April 2012 (MPTCP

Wireless, Jellyfish, HULL, TCP Outcast, and CoDel).

After three weeks, 16 of the 18 teams successfully reproduced at least one result

from their chosen paper; only two teams could not reproduce the original result.4

Four teams added new results, such as understanding the sensitivity of the result

4The inability to replicate RED could be due to bugs in network emulation, a parameter miscon-
figuration, or changes to TCP in the last 20 years; for Incast, we suspect configuration errors, code
errors, or student inexperience.

http://reproducingnetworkresearch.wordpress.com/dcell-fault-tolerant-routing/
http://reproducingnetworkresearch.wordpress.com/why-flow-completion-time-is-the-right-metric-for-congestion-control/
http://reproducingnetworkresearch.wordpress.com/tcp-daytona/
http://reproducingnetworkresearch.wordpress.com/seeing-red/
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to a parameter not in the original paper. By “reproduced a result”, we mean that

the experiment may run at a slower link speed, but otherwise produces qualitatively

equivalent results when compared to the results in the papers from hardware, simu-

lation, or another emulated system. For some papers, the exact parameters were not

described in sufficient detail to exactly replicate, so teams tried to match them as

closely as possible.

All the project reports with the source code and instructions to replicate the results

are available at reproducingnetworkresearch.wordpress.com, and we encourage

the reader to view them online.

5.4.3 Lessons Learned

The most important thing we learned from the class is that paper replication with

Mininet-HiFi on EC2 is reasonably easy ; students with limited experience and limited

time were able to complete a project in four weeks. Every team successfully validated

another team’s project, which we credit to the ability to quickly start a virtual ma-

chine in EC2 and to share a disk image publicly. All experiments could be repeated

by another team in less than a day, and most could be repeated in less than an hour.

The second takeaway was the breadth of replicated projects; Table 5.1 shows

that the scope of research questions for which Mininet HiFi is useful extends from

high-level topology designs all the way down to low-level queueing behavior. With

all projects publicly available and reproducible on EC2, the hurdle for extending, or

even understanding these papers, is lower than before.

When was it easy? Projects went smoothly if they primarily required configu-

ration. One example is TCP Outcast. In an earlier assignment to learn basic TCP

behavior, students created a parking-lot topology with a row of switches, each with

an attached host, and with all but one host sending traffic to a single receiver. Stu-

dents could measure the TCP sawtooth and test TCP’s ability to share a link fairly.

With many senders, the closest sender to the receiver saw lower throughput. In this

case, simply configuring a few iperf senders and monitoring bandwidths was enough

to demonstrate the TCP outcast problem, and every student did this inadvertently.

Projects in data center networking such as Jellyfish, Fat Tree, and DCell also went

http://reproducingnetworkresearch.wordpress.com
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smoothly, as they could be built atop open-source routing software [63, 4]. Teams

found it useful to debug experiments interactively by logging into their virtual hosts

and generating traffic. A side benefit of writing control scripts for emulated (rather

than simulated) hosts is that when the experiment moves to the real world, with

physical switches and servers, the students’ scripts can run without change [47].

When was it hard? When kernel patches were unavailable or unstable, teams

hit brick walls. XCP and TCP Fast Open kernel patches were not available, requiring

teams to choose different papers; another team wrestled with an unstable patch for

setting microsecond-level TCP RTO values. In contrast, projects with functioning up-

to-date patches (e.g. DCTCP, MPTCP, and CoDel) worked quickly. Kernel code was

not strictly necessary – the Misbehaving TCP Receivers team modified a user-space

TCP stack – but kernel code leads to higher-speed experiments.

Some teams reported difficulties scaling down link speeds to fit on Mininet-HiFi

if the result depended on parameters whose dependence on link speed was not clear.

For example, the Incast paper reports results for one hardware queue size and link

rate, but it was not clear when to expect the same effect with slower links, or how

to set the queue size [86]. In contrast, the DCTCP papers provided guidelines to set

the key parameter K (the switch marking threshold) as a function of the link speed.
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Chapter 6

Conclusion

The thesis statement of this dissertation was the following:

High-fidelity emulation, the combination of resource isolation and fidelity

monitoring, enables network systems experiments that are realistic, veri-

fiable, and reproducible.

The past three chapters have covered each piece of this thesis statement, in depth.

Chapter 2 defined high-fidelity emulation as a combination of resource isolation and

fidelity monitoring. Chapter 3 described the architecture and implementation of

Mininet-HiFi, a realization of high-fidelity emulation. Chapter 5 showed examples of

successfully reproduced network system experiments; in each case, the results match

those originally generated using hardware testbeds.

Having demonstrated the feasibility of High-Fidelity Emulation to enable repro-

ducible research, this conclusion zooms out to the bigger picture:

Status Report. What progress has been made toward enabling a culture of re-

producible networking research with HFE? Section 6.1 details the community

forming around Mininet and Mininet-HiFi, as well as interest in using it for

reproducible network experiments.

Emulating Software-Defined Networks. A recent trend in networking is Software-

Defined Networking (SDN). Section 6.2 explains how High-Fidelity Emulation

87



88 CHAPTER 6. CONCLUSION

can be a great fit for SDN development and explains why most Mininet adoption

has occurred in the SDN community.

Future Work. The most acute limitations of Mininet-HiFi are a direct result of

running on a single server, in real time. Section 6.3 describes possibilities to

relax this core assumption, as well as improve the overall usability of the system.

The conclusion ends with a few closing thoughts, in Section 6.4.

6.1 Status Report

“Runnable” is not yet the default for networks system papers, but high-fidelity emula-

tion is becoming more accessible and existence proofs of runnable papers are becoming

more common and visible. This section describes specific progress indicators for the

adoption of High-Fidelity Emulation.

Software Availability. Original Mininet has been publicly available since 2010. Re-

source isolation was the main feature addition for the Mininet 2.0 release, re-

leased at the end of 2012. Pre-built VMs for Mininet, along with documentation

and install instructions, are available at www.mininet.org. The second half of

the HiFi additions, the fidelity monitoring code, are generally available [52], as

is the additional code required to run experiments described in this thesis [51]

As of early 2013, Mininet is actively developed and supported through Open

Networking Labs [62].

Software Community The Mininet mailing list [50] averages multiple new posts

each day, with 720 members as of April 25, 2013. Questions that relate to

experiment reproduction are starting to appear, and the software is being used

for class assignments [31].

Reproducible Research Examples. The Reproducing Network Research Blog [3]

has 49 posts, as of April 25, 2013, covering the experiments described in this

www.mininet.org
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Name Location Date Attendance
SBRC Brazil 5/25/10 40
GEC8 San Diego 7/22/10 40
HOTI Mountain View 8/20/10 20
GEC9 Washington, DC 11/1/10 35

EU OpenFlow Berlin 2/1/11 40
GEC10 Puerto Rico 3/1/11 30
HOTI San Jose 8/1/11 50
Ofelia Berlin 11/1/11 40
ONS Stanford 10/15/11 70
ONS San Jose 4/16/12 180
ONS San Jose 4/15/13 150

Table 6.1: Tutorials Using Mininet

thesis, class projects by students, and a few others. The first external contribu-

tion on this blog would be a great sign of interest in reproducible networking

research, but has not happened yet.

Tutorials. Table 6.1 shows details of past SDN tutorials that have employed Mininet.

Over 600 people have gained hands-on experience with Container-Based Emu-

lation through these tutorials, 7 of which I led. A similar number of people were

likely introduced through the online OpenFlow tutorial, which I wrote [60].

6.2 Emulating Software-Defined Networks

There is no strict dependency between High-Fidelity Emulation and Software-Defined

Networking; one is not required to use the other, and vice versa. However, since SDN

is gaining momentum within both academia and industry, and SDN prototyping is

the most visible use case of Mininet, the synergy here is worth discussing.

In short, SDN describes a network where control plane functionality is imple-

mented as functions to change states of a logically centralized network view, rather

than the more traditional way: as eventually-consistent, fully distributed software,

spread across many forwarding boxes. §3.1 provides more detail, including an archi-

tectural picture. By moving functionality into software that (1) does not require the
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design or standardization of distributed protocols, (2) can build on primitives to per-

form common “protocol” tasks, like topology discovery and routing, and (3) can be

more easily changed, SDN opens up architectural design choices for network designers

and operators. When network functionality is increasingly designed in software, and

frequently in ways that require no hardware changes, tools to test network software

become relatively more valuable.

The community adoption of Mininet came from riding this wave of early SDN

programmers looking for development tools. In some cases, an inability to procure

hardware OpenFlow switches with the necessary scale or features made it the only

available choice. In other cases, the ability to script regression tests to verify a

controller atop a range of topologies made it the preferred choice. Having a tool

that “runs the same code” makes Mininet attractive when compared to a simulator,

as real code is required to use a network controller in a real network, and Mininet

removes the need to build a separate model for this network controller. In addition,

as network controllers increasingly build on open-source code, the ability to run the

same code becomes even more attractive.

I personally expect the HiFi extensions to be a big part of Mininet usage go-

ing forward. Step one is “Does my code work?”; this step is well-supported now

and may even become subject to automatic testing in the near future that builds

on the defined network behavior of OpenFlow [16]. Step two is “How fast does my

network perform?”, which is where the HiFi extensions come into play. Example

applications that need to build a performance understanding before deployment in-

clude network-integrated load balancing [40], routing on randomly-constructed data

center topologies [77], and even basic network controllers that use fine-grained flow

management techniques [20]. The challenge is that this step can only be addressed

when we can trust the performance numbers that result, and this is the one question

upon which my disseration has focused.
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6.3 Future Work

The most natural follow-on work would expand the scale of the experiments that

high-fidelity emulation can support, in both the space and time dimensions. Other

follow-on could improve scheduling to reduce the likelihood of invariant violations.

Space. In the space dimension, multiple servers could support network experi-

ments with higher total bandwidths, as well as larger numbers of hosts and switches.

ModelNet [84] and DieCast [39] demonstrated scaling to multiple servers, but both

projects use a completely different set of experiments that are more focused on large-

scale distributed systems behavior than repeatable, low-level network behavior. In

addition, the approach of monitoring network invariants requires an extension to

multiple servers.

In a dedicated cluster, multiple-server support appears possible through a com-

bination of (1) fine-grained time synchronization support and (2) careful resource

provisioning. IEEE 1588 (Precision Time Protocol, or PTP) [68] uses link-level

packet timestamps to theoretically achieve sub-8-nanosecond time-synchronization

precision, given hardware timestamp support and a software daemon [69]. Such sup-

port would extend the single clock domain of Mininet to multiple clocks domains with

bounded error. The second piece, a topology-aware resource scheduler to “place” vir-

tual switches and hosts on specific machines, similar to the assign program used to

solve the Testbed Mapping Problem for the main Emulab testbed [73], could ensure

that link capacity and CPU capacity constraints are satisfied. Such static, centralized

networking provisioning would be required to minimize queueing delays within the

network and prevent unbounded timing errors.

However, using multiple servers in the cloud appears to represent a greater re-

search challenge. In this deployment environment, machines can have time-varying

and placement-dependent network performance. Using Mininet-HiFi with only one

machine in the cloud works well, as long as the one machine gets at least one dedicated

CPU core, as with XL or larger instances on Amazon EC2; perhaps the dedicated

network provided to cluster compute instances on EC2 would provide guaranteed

bandwidth, but this assumption must be tested.
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Time. In the time dimension, Time Dilation [38] and SliceTime [89] demonstrate

methods to slow down the time perceived by applications to run an experiment with

effectively larger resources. Time Dilation implements a global time dilation factor

by wrapping the experiments within virtual machines and altering their time-based

system calls, while SliceTime changes the VMM scheduler implementation to bound

the time by which one VM can exceed the others. The network invariants approach,

as well as the container-based emulation approach, should still work with each of

these methods, provided the invariant timings process virtual timestamps. One nat-

ural extension is to automatically dilate time to run an experiment at the minimum

slowdown that yields the required level of fidelity.

Scheduler. Mininet-HiFi employs the CFS scheduler with bandwidth limits [83],

but this scheduler has no “network invariant awareness”, in that it is completely un-

aware of the concept of network invariants. Despite this limitation, it works well in

practice, because transport protocols implemented in the kernel reduce the need to

schedule processes in and out to handle basic network activity and event-driven pro-

tocols tend to create a yield point whenever they send a packet. Reducing scheduler

parameters seems like a worthwhile next set of tests, as it would reduce the worst-case

delay for any single process, at the expense of increased scheduler overhead.

However, deeper changes to the scheduler could further reduce invariant viola-

tions, yet still run in real time. For example, the scheduler might be modified to

prioritize the execution of the process that was scheduled out the farthest in the past,

in an attempt to minimize event-to-run delays. This idea is inspired by the real-

time scheduler, but more like the CFS scheduler targeting scheduler latency fairness

rather than CPU bandwidth fairness. Another option might be to prioritize packet

schedulers in the kernel over process schedulers, to minimize the chance of a timing

violation; in a sense, this would be a lightweight version of SliceTime [89].

6.4 Closing Thoughts

Let us say I’m reading through a paper and I come across an interesting result that

I’d like to reproduce. I click on the figure, and a tab in my browser opens up with
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a description of the experiment. I scroll to bottom to get explicit instructions for

how to reproduce the result. I can run this exact same experiment on the cloud, so

I launch my own little testbed, an EC2 instance. I run a command in that instance,

and get my result, 8 minutes later, after spending 8 cents. Now I have a working

version of the paper in front of me, running all the same code on the same network.

If every published network-research work is easily reproducible, like this – runnable

– then it becomes easier to stand on the shoulders, rather than the toes, of past net-

work systems researchers, to build and demonstrate better networks. The sheer num-

ber and scope of the experiments covered in this paper – 19 successfully reproduced

– suggest that this future direction for the network systems research community is

possible with Container-Based Emulation. CBE, as demonstrated by Mininet-HiFi,

meets the goals defined in Section 1.2 for a reproducible research platform, including

functional realism, timing realism, topology flexibility, and easy replication at low

cost.

As a community we seek high-quality results, but our results are rarely reproduced.

It is my hope that this paper will spur such a change, by convincing authors to

make their next paper a runnable one, built on a CBE, with public results, code,

and instructions posted online. If enough authors meet this challenge, the default

permissions for network systems papers will change from “read only” to “read, write

and execute” – enabling “runnable conference proceedings” where every paper can

be independently validated and easily built upon.
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