
Flow Caching for High Entropy Packet Fields

Nick Shelly
Stanford University

nshelly@cs.stanford.edu

Ethan J. Jackson
VMware, Inc.

jacksone@vmware.com

Teemu Koponen
VMware, Inc.

tkoponen@vmware.com

Nick McKeown
Stanford University

nickm@cs.stanford.edu

Jarno Rajahalme
VMware, Inc.

jrajahalme@vmware.com

ABSTRACT
Packet classification on general purpose CPUs remains expensive
regardless of advances in classification algorithms. Unless the
packet forwarding pipeline is both simple and static in function, fine-
tuning the system for optimal forwarding is a time-consuming and
brittle process. Network virtualization and network function virtual-
ization value general purpose CPUs exactly for their flexibility: in
such systems, a single x86 forwarding element does not implement
a single, static classification step but a sequence of dynamically
reconfigurable and potentially complex forwarding operations. This
leaves a software developer looking for maximal packet forwarding
throughput with few options besides flow caching. In this paper, we
consider the problem of flow caching and more specifically, how
to cache forwarding decisions that depend on packet fields with
high entropy (and therefore, change often); to this end, we arrive
at algorithms that allow us to efficiently compute near optimal
flow cache entries spanning several transport connections, even if
forwarding decisions depend on transport protocol headers.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design

General Terms
Networking

Keywords
Packet classification, caching

1 Introduction
Network virtualization and network function virtualization (NFV)
have been hot topics in recent networking trade press and indeed,
the coverage is well deserved: the majority of service providers
are already at least planning network virtualization and NFV
deployments and a significant number have already either, or both,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN ’14 August 18, 2014, Chicago, Illinois USA
Copyright 2014 ACM 978-1-4503-2989-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2620728.2620755.

in testing or production. While the exact definitions of network
virtualization and NFV are not universally agreed upon, most
definitions emphasize the role of the network edge in providing
the complex packet processing functions: forwarding elements in
the network core are left with high speed, low latency, and power
efficient transportation of packets from a network edge to another.
The edge provides the complex packet operations implementing
network services and policies relevant for end hosts.

Packet processing built on generic CPUs allows a single server
to execute an arbitrary sequence of complex packet processing
operations for a packet. Without leaving the server, a packet may
traverse a simple chain of services (in the case of NFV) or a more
complex logical topology of switches, routers, and services (in the
case of network virtualization). This flexibility combined with the
steadily improving efficiency of x86 has made software forwarding
at the network edge not only practical but attractive with network
virtualization and NFV.1

Despite the impressive advances in software packet forwarding,
any classification beyond destination address matching remains
challenging for x86 hardware; the lack of TCAMs necessitates
algorithmic classification which remains difficult to optimize for
cache hierarchies of general CPUs. This difficulty combined with
network virtualization and NFV, translating to multiple classification
steps for a single packet on an x86 server, has forced developers
to look for non-algorithmic ways to limit the cost of packet
classification.

Unsurprisingly, developers have focused on an old trick, flow
caching. For example, since its first version, Open vSwitch (OVS)
has implemented an exact match-based connection cache. For
the first packet of the transport connection, the system executes
sequential, flow classification steps in a slow path, and caches the
exact match result. Then, subsequent packets are handled in the fast
path through a hash lookup, based on all header fields. In the slow
path there is a worst case lookup time of O(n) where n is the number
of rules, whereas in the fast path run time is of complexity O(1).
Similar mechanisms are commonplace on x86 based appliances.
For example, modern middleboxes often use caching to accelerate
processing of payload packets after seeing the HTTP request. While
a significant improvement, connection cache still requires the slow
path to be involved in each new transport connection, even if the
resulting forwarding decisions were similar across multiple transport
connections. For instance, multiple client connections towards the
same HTTP server IP address and port from a single client IP (but
with varying source ports) require separate cache entries when using
an exact match-based connection cache.

1Today L2 switching and L3 routing of minimum sized packets at
10G consumes only a fraction of a modern x86 CPU core [6, 11].

151

As a further improvement, one can limit flow cache entries not
to match beyond L2 and L3 header fields. As one example, OVS
implements “megaflows” for these exact use cases and reverts to
exact match-based connection caching only if forwarding decisions
on the slow path depend on L4 headers. As long as the matching is
based on the L2 and L3 headers only, the computed cache entries
do not require per transport connection updates and fast path can
process new connections without punting packets to the slow path.

However, practical forwarding decisions increasingly depend on
L4 headers. Almost all network services operate over L4 headers:
a firewall service might allow all traffic except SMTP. Similarly,
HTTP traffic might require redirection to a caching proxy while
the other traffic bypasses the proxy. This leaves exact match-based
connection caching as the only practical flow caching option.

In this paper, we consider the problem of computing flow cache
entries for forwarding decisions that depend on high entropy packet
fields. We loosely define high entropy packet fields as those which
are likely to have differing values from packet to packet flowing
through a switch. For example, all traffic originating from a
particular host will likely have the same source and destination
MAC fields, but the source and destination L4 port fields are likely
to change from connection to connection. Thus, we say the L4 port
fields are higher entropy than the L2 address fields.

Our primary focus here is on TCP/IP and hence on the relatively
high entropy transport port fields, but the proposed algorithms are
more general and applicable to future protocols. Our goal is to
compute flow cache entries that represent larger traffic aggregates
than individual transport connections. In the firewall example above,
cached entries for SMTP traffic would still match the exact port
number (25) while the rest of entries would wildcard the port number
bits to the extent possible without changing the overall forwarding
semantics. Since the computation is done for potentially smaller
traffic aggregates than achievable at L2 and L3, the computation has
to be cheap enough to remain practical.

We consider three approaches to compute the flow cache entries.
First, we consider the ideal case and compute the cache contents
proactively by taking the cross-product of flow tables that packets
traverse within the slow path. For small forwarding tables,
computing the cross-producted flow table is manageable. However,
for a large number of flows, the cross product can grow non-
polynomially.

The second case we consider involves on-demand, reactive
algorithms, where we compute an entry in the cache based on
the packet received. To compute a flow cache entry, for each
flow table traversed in the slow path we must subtract the header
space matching higher priority flows from lower priority flows.
Using header space analysis, the complement of the group of higher
priority flows can be resolved to a union, which we wish to intersect
with the packet to determine the packet header field bits that can be
wildcarded in the cached entry.

As a third approach, we present several heuristic algorithms for
computing the flow cache entries, including a method that finds
common matches amongst a union of rules and that differ from the
packet, and a method that uses a longest prefix match. We compare
the algorithms using customer production rule sets matching over
transport protocol ports, both with a custom simulator as well as with
an implementation in OVS. We examine cache expansion without
making any assumptions about traffic properties and thus real-world
cache hit rates. In other words, we measure resulting cache sizes in
the worst case, when there is network scan on a high entropy field
(e.g., 216 entries for a scan on L4 destination ports). Handling low
entropy traffic would be trivial, as the cache could easily handle all
of the traffic with a small number of entries.

Exact Match Cache!
src=10.0.0.1,dst=12.0.0.2,tp_src=39245,tp_dst=80 output:1!
src=12.0.0.2,dst=10.0.0.1,tp_src=80,tp_dst=39245 output:2!
src=10.0.0.1,dst=13.52.7.62,tp_src=2351,tp_dst=8080 drop

OpenFlow Pipeline!

 Megaflow Cache!
src=10.0.0.0/8,dst=12.0.0.0/8,tp_src=*,tp_dst=* output:1!
src=12.0.0.0/8,dst=10.0.0.0/8,tp_src=*,tp_dst=* output:2!
src=*,dst=13.0.0.0/8,tp_src=*,tp_dst=* drop

L2 L3 ACL L2L3

Figure 1: Cache hierarchy in OVS. Packets first check the exact match cache,
then the megaflow cache, before finally traversing the OpenFlow pipeline.

This paper is structured as follows. In the next section, we briefly
review the related work. In Section 3, we consider the complexity
of computing the ideal flow cache entries. In Section 4 we lay
out several practically feasible heuristic algorithms for computing
the flow cache. Finally, in Sections 5 and 6 we present micro-
benchmarks for our algorithms and conclude the paper.

2 Background
Packet classification. The literature on algorithmic packet classifi-
cation is vast and we only cover the state of the art here.

Longest prefix matching algorithms for a single field can provide
fast lookup for searches based on a contiguous prefix and in a run-
time proportional to the number of bits [10]. In packet classification
over multiple packet fields, decision tree classifiers are the current
state of the art. Early decision tree classifiers focused on minimizing
memory accesses required per classification, and thus, suffered from
high memory consumption due to rule duplication [7]. EffiCuts [9]
uses equi-sized cuts and introduced the idea of "separable" trees to
address the variation in the rule-space density to limit the duplication
and hence the memory consumption.

Decision tree classifiers come with complex tree update logic and
in practice developers may favor simplicity over optimality. For
instance, Open vSwitch uses a modified version of Tuple Space
Search [8] exactly because of its ability to support simple constant
time updates, in contrast to a decision tree classifier. With tuple
space search, a classifier update is an update to a hash table.

Flow caching. Flow caching and separation of the data plane into a
“fast path” and a “slow path” have a long history in networking [4]
and over the years advocates have argued for network traffic having
sufficient localities to provide high cache hit rates with relatively
small cache sizes [1, 3].

Many modern software forwarding products rely on flow caching.
For instance, Open vSwitch recognized early the need for a slow
path for complex forwarding logic (in userspace) and a fast path for
simple forwarding logic merely replicating decisions of the slow
path (in kernel) [5]. Originally, the Open vSwitch flow cache was
exact match. Upon entering the kernel, a packet’s headers would be
looked up in a simple hash table using all the packet fields as a key.
If present, the cache returned instructions for forwarding the packet.
If not present, the packet would be sent to a slow path in userspace

152

which executed the full OpenFlow pipeline, possibly consisting of
several packet classifications (in the form of multiple OpenFlow
tables traversed). The slow path would cache the decision in the
kernel’s fast path for subsequent packets of the transport connection.

The current Open vSwitch architecture is depicted in Figure 1.
Just as before, packets entering the system are first checked against
an exact match cache. Packets which miss the exact match cache
are punted up to a megaflow cache. The megaflow cache provides
the same simplified semantics as the exact match cache, with the
additional ability to support arbitrary bitwise matching on any packet
header field. Packets which miss the megaflow cache are sent up
once more to the OpenFlow pipeline provided by an SDN controller.
The OpenFlow pipeline supports a wide range of complicated
operations defined by the OpenFlow standard and various OVS
extensions. These features, such as arbitrary packet metadata,
multiple packet classification tables, and arbitrary recursion, are
significantly more complicated and computationally expensive than
the basic packet classification provided by the megaflow and exact
match caches.

Given the packet forwarding performance difference between the
megaflow cache and OpenFlow pipeline, population of the megaflow
cache with “good” entries (that cover large traffic aggregates) can
have a significant impact on the overall performance of the switch.
Initially Open vSwitch implemented a naïve algorithm to populate
the megaflow cache. Any bit not matched by the OpenFlow pipeline
would be marked as wildcarded in the final megaflow cache entry.
This algorithm works fine if the slow path exclusively matches low-
entropy packet fields, such as L2/L3 addresses. Not wildcarding
these fields has a low probability of creating excessive cache misses
(since a single IP address probably originates several transport
connections). However, if the slow path matches high entropy
fields like port numbers, the megaflow cache may reduce to an exact
match connection cache. In this paper, we consider tackling exactly
this problem: how to compute megaflow cache entries such that we
don’t converge to exact match connection caching even if the slow
path operates over L4 headers.

Theoretical underpinnings. Throughout this paper, we use header
space analysis [2] to provide the arithmetic for our reasoning
about flows, including determining the intersection, union and
complements of packets and rules. The work addresses the difficulty
in minimizing header space unions to their minimal representations,
which require Karnaugh Maps or Quine-McCluskey algorithms.

3 Ideal Flow Cache
3.1 Cache Population

First, we consider the complexity of computing the ideal fast path,
a pre-populated cache table which never results in a miss. Here,
we assume the slow path is a pipeline of flow tables (supporting
wildcards and priorities) whereas the fast path implements the
flow cache with a single flow table (supporting wildcards but
not priorities, as in OVS). To completely avoid cache misses, the
slow path must translate the slow path table pipeline into a single
flow table with equivalent forwarding semantics and push that into
cache.2

2 We do not distinguish between packet field types but consider
the general problem. Neither do we consider representing the fast
path flow cache as a pipeline of multiple smaller tables: while it
could reduce the total number of flow cache entries required, it
would introduce additional computational load. We leave exploring
this trade-off between increased computational load and reduced
memory footprint as a future work.

Rule Priority Match Actions
1 1000 tp_dst == 80 drop
2 1000 tp_dst == 443 drop
3 500 dl_src == 01:xx:xx reg1 <= reg5,

reg4 <= 1,
goto next table

Table 1: Simple ACL table with priorities.

Rule Priority Match Actions
1 1000 reg4 == 1 output:2

Table 2: A flow table sending packets out after ACL processing.

To arrive at this single classification table, we proactively cross-
product the tables in the slow path packet processing pipeline. This
expanded table can be derived through the following algorithm:

1. Create an all-wildcards header space and send the header
space to the initial forwarding table.

2. Intersect the current header space for each rule that matches,
by creating a new header space and applying the rule’s action.
Subtract any higher priority rules from this header space.

3. If there is an output action, add the input header space and
actions to the combined table. Otherwise, send the intersected
header space to the next table.

As an example, we consider the two simple flow tables provided
in Table 1 and 2. The first table has a few ACLs while the second
table holds nothing but a single output rule after the ACL processing.
So the header space input to Rule 3 is all-wildcards intersected by
its rule, minus the header space of transport destination ports 80 and
443:

{all-wildcards} ∩ {dl_src == 01:xx:xx}
− {tp_dst == 80 ∪ tp_dst == 443}

We apply the actions for Flow 3 to this header space. At each
step, we have both an input header space, which is the set of all
packets that can arrive at a given rule, and an output header space
which is the header space after the rule’s actions are applied to the
input header space. The output header space must take into account
wildcards that could be shifted through registers, such as REG5 into
REG1 in Table 1. Essentially, the header space of lower priority
rules becomes the union of higher priority flows subtracted from the
initial all-wildcards header space.

Thus, after computing the cross product of these forwarding
tables, we have one full forwarding table strictly defined by header
spaces and actions, shown in Table 3. To use the resulting
forwarding table with a fast path classifier, the resulting header
spaces have to be further translated to unions of header spaces (each
corresponding to a single rule) through header space arithmetic.

While the proactive, cross-producting algorithm is useful in
understanding the ideal cache table, it is impractical due to flow
table expansion. The table size can grow in polynomial time with
the number of rules, as shown in Figure 2.

Match Actions
tp_dst == 80 ∪ 443 drop
dl_src = 01:xx:xx reg1 <= reg5

−{ tp_dst == 80 ∪ 443 } reg4 <= 1, output(2)
Table 3: The resulting cross-producted flow table.

153

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160

Figure 2: The # of flow entries in the cross-producted flow table as a function
of input flow entries. Input flows are from NVP and implement a single
logical datapath of varying complexity. Pipeline is 10-15 stages long.

3.2 Incremental Population
Given the cost of the proactive approach, we now consider how to
incrementally compute the cross-product table, based on packets
received. The intuition is similar to the general algorithm, but on a
per-flow basis when a packet traverses the pipeline of tables:

1. When the packet arrives in the first table, initialize a flow
header space to be all-wildcards.

2. Subtract all higher priority rules that fail to match the packet,
and intersect the flow header space with the rule that does.
Apply the actions of the matched rule to the packet and the
flow header space.

3. If forwarding the packet, submit it and its flow header space
to the next table. Repeat Step 2, by further subtracting higher
priority flows and applying matched rules, until we either
drop the packet or have a final output action.

4. Add a rule to the cache that matches the entire flow header
space. Logically, the processed packet is an element of this
flow header space.

For example, suppose we have a forwarding table with ACLs,
A = 0101 and B = 0110 (without specifying which fields bits
correspond), that drop all packets, and a lower priority general rule
C = xxxx that matches all packets and forwards on Port 2:

A = 0101 drop
B = 0110 drop
C = xxxx output:2

Assuming the incoming packet matches C, we now wish to
compute the general rule to install. As discussed above, this
corresponds to the header space hc = C − A − B. We wish to
determine a general rule for a given packet that is the most general
subset of hc. This can be derived through header space algebra
by evaluating the intersection of the complement of higher priority
flows, B and C, and distributing the union over the intersection:

hc = C −A−B

= C ∩A′ ∩B′

A′ ∩B′ = (0101)′ ∩ (0110)′

= (1xxx ∪ x0xx ∪ xx1x ∪ xxx0)
∩ (1xxx ∪ x0xx ∪ xx0x ∪ xxx1)

= 1xxx ∪ x0xx
[(xx1x ∪ xxx0) ∩ (xx0x ∪ xxx1)]

= 1xxx ∪ x0xx
∪ [xx1x ∩ (xx0x ∪ xxx1)]
∪ [xxx0 ∩ (xx0x ∪ xxx1)]

= 1xxx ∪ x0xx ∪ xx11 ∪ xx00

For a packet of p = 1011 to match hc above, we intersect the
packet, Ps, with the above sets for A′ −B′, which results in 1xxx,
x0xx, or xx11:

Ps(p)−A−B = Ps(p) ∩A′ ∩′ B′

= Ps(1011) ∩ (1xxx ∪ x0xx ∪ xx11 ∪ xx00)
= 1xxx ∪ x0xx ∪ xx11

While it is easy to express this header space with logic, mini-
mizing the set of a non-polynomial number unions is an NP-hard
problem. Furthermore, we only wish to install one rule per packet
for simplicity: the one with the fewest number of un-wildcarded bits.
In the general case, for each packet of size L, there are 2L − 1
possible wildcard expressions that match the packet, based on
which k bits are un-wildcarded. For packet p = 1011 we have(
4
1

)
+
(
4
2

)
+
(
4
3

)
+
(
4
1

)
possible cache entries we could install,

depending on the subtracted higher priority flows:

Ps(1011) = {1xxx, x0xx, xxx1, xxx0,
10xx, x01x, x01x, xx11...}

The total number of possible flows that include the packet are:

|Ps(p)| =
L∑

k=1

(
L

k

)
= 2L − 1

Thus, we turn to heuristics in the following section to find the
most general rule to install.

4 Heuristic Algorithms
We aim to cache a rule that matches the packet and a broad range of
other similar packets, but does not match any of the higher priority
rules. Caching an exact match on high entropy packet fields is not
useful, as the next packet will likely differ slightly and need to be
re-processed. Due to the difficulty of minimizing the union of a
non-polynomial number of sets, our goal is to achieve near optimal
performance by just un-wildcarding a few bits that match the flow.

Common match. The first heuristic we employed was finding
a "common match" of higher priority rules, and intersecting its
complement with the packet. This algorithm is of constant time if
there exist common bits for the higher priority flows, but fails to
find a subset if there are no common matches that differ from the
packet. Here, we un-wildcard the most significant bit (e.g. often a
packet will have a TCP destination port > 10,000 while the ACLs
block certain ports less than 10,000).

The un-wildcarding of 1 bit can be performed in O(1) time for
each new packet, after an initial processing of rules in O(N) time.
In fact, if there are bits common to each of the higher priority rules,
we can install the most general rule possible that matches the flow.

PROOF. Suppose there is no common bit shared by all of the
higher priority rules; that is, all higher priority rules cover all
possible bits at each location in the match. However, there exists
an optimal general rule, P ∗, that has only 1 bit un-wildcarded for
a packet that does not match any of the higher priority flows (e.g.,
a rule matching x1xx or xxx0). This means, for all higher priority
rules, {r0, r1, ...rn}, P ∗ ∩ ri = ∅. Thus, the inverse of the bit
is shared by all of the higher priority rules (e.g., x0xx or xxx1,
respectively), which is a contradiction.

Multi-bit common match. In the second heuristic algorithm, we
expand the common match on a per packet basis.

154

1. Begin with an array of arrays, common_match_array,
where each element is a bit array representing the common
match of a set of rules. Initialize common_match_array
with a single common match bit array representing an
arbitrary higher priority rule.

2. For each higher priority rule, successively iterate over each
common match in common_match_array.

(a) If common bits exist between the rule and a common
match, update the common match and continue to the
next rule.

(b) If the rule shares no common bits with any of the com-
mon matches, append a new common match containing
only this rule to common_match_array. Continue
to the next rule.

3. By the end of examining the higher priority rules, each
element of common_match_array now matches a section
of the rules and differ from the packet. Un-wildcard one bit
from each of these common match bit arrays to produce a
flow that is unique to the packet but differs from all higher
priority flows.

This process is linear time, O(kn) where k is the number of bits and
n is the number of rules. While this solution works well for most
use cases, it requires more processing time and does not always
provide the optimal rule (i.e., it could return a mask with 5-bits
un-wildcarded instead of a more optimal one with 4).

Longest prefix match. As a third algorithm, we build a decision
tree that contains all of the higher priority rules as leaves, segmenting
children based on ‘1’ or ‘0’. When we classify a new packet, we
traverse the tree, un-wildcarding bits along the way, starting with
the root until we get to a branch with no leaves. This algorithm is
looking for a subset of the union, by narrowing the search space by
only looking at prefixes and runs in constant time, O(k), where k is
the number of bits. However, it does not always identify the broadest
header space, as it only wildcards contiguous bits, excluding valid
masks such as x1x1.

5 Evaluation
5.1 Datasets

In order to evaluate our heuristics we construct ACL classification
tables from the firewalls of two large private cloud providers. We
extract from these ACL tables a list of L4 destination ports (and
port ranges) which have policies attached to them. Ranges are
converted into an equivalent series of masks. After translating the
configuration into flows, Provider 1 matches on a total of 1038 ports,
while Provider 2 matches on a total of 32 ports. In addition, we
supplement this data with random sets of 50 ports generated at each
test run.

5.2 Heuristic comparison

To compare our heuristic algorithms, we built a simulator in Python
which operates exclusively over the L4 destination ports, as they
represented a common classification on high entropy fields. The
classifier receives a packet, which is looked up in a megaflow cache,
representing the fast path. If no entry exists, it is processed by
a provided algorithm that determines which rule to install in the
cache for future ports. By systematically sending all possible port
numbers through the system, representing “maximum entropy,” we
can determine the number of megaflows needed to cache a particular

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 10 100 1000 10000

C
a
ch

e
 e

n
tr

ie
s

of ACLs

Common Match Megaflows

LPM Megaflows

Figure 3: Resulting cache entries for Common Match and Decision Tree
(LPM) algorithms.

Common Match Decision Tree
ACLs Flows Masks Approx. Flows Masks Approx.

10 93 76 0.940 126 14 0.159
100 552 435 0.796 913 13 0.134

1000 3860 2669 0.573 6141 9 0.074
5000 13822 504 - 20060 7 -

10000 22333 3563 - 30947 6 -
Table 4: Cached flows, unique masks and the approximation of the optimal
flow by two heuristic algorithms, for randomly generated ACL tables.

port set in its entirety. The results in Figure 3 and Table 4 show that
the common match algorithm results in the fewest number of cache
entries.

The longest prefix match also fares quite well, and has an
advantage in the number of unique masks.3 This makes longest
prefix match quite attractive for customer data sets in Open vSwitch,
where “high entropy” rules are concentrated on one end of the field
range, and the hashing for the fast path can be performed on a small
number of masks. The results are shown in Table 5.

We also compare the result of each heuristic algorithm against a
brute force algorithm, to find the most general rule possible:

1. Un-wildcard b-bits of the packet, where b is initially 1.

2. Check if the flow matches any of the higher priority rules.
If it does, we break and try the next un-wildcard sequence,
otherwise un-wildcard any b+ 1 bits.

3. Continue until we find a flow that matches the packet and no
higher priority rule.

This brute force algorithm has a worst case performance of
O(n(2L − 1)) possible wildcards. However, we can be certain
that we will find the best possible rule this way, so it is useful
for calculating the approximation of the optimal solution by the
heuristic algorithms. The common match algorithm performs well
with approximating the optimal solution – the fewest number of bits
un-wildcarded – with 80% of the optimal solution for 100 ACLs, as
shown in Table 4. The decision tree algorithm, which limits itself
to flows defined by contiguous prefixes, caches flows quickly and

3In tuple space based flow classification, as in Open vSwitch, the
number of unique masks directly determines the number of hash
lookups required.

ACLs C Flows C Masks D Flows D Masks
Provider 1 194 153 178 15
Provider 2 9124 846 3009 12

Table 5: Comparison of cache performance for two private cloud providers.

155

ACLs Baseline Decision Tree Common Match
Provider 1 16.845 26.085 285.326
Provider 2 8.041 9.404 11.749
Random 50 1.938 2.877 10.902

Table 6: Time (in seconds) required to do 10 million packet classifications.

in a small number of masks, but produces only 13% of the optimal
solution’s ACLs.

The experiment does not examine hit rate, because this would
be dependent entirely on the traffic and the size of the cache. If
packets were concentrated on one end of the spectrum (e.g., web
traffic), there would be a greater number of cache hits. The worst
case would be a network scan across all high entropy fields and a
significant number of low entropy fields. For example, this would
occur if a malicious user launched a distributed denial of service
(DDoS) attack by sending packets from all TCP ports to all ports,
from and to multiple IP addresses. In this case, if the slow path used
high entropy fields in its forwarding decisions, the system would
converge towards installing a flow cache entry per received packet.
The solution would be to lower the timeout period for clearing flow
cache entries or to replace Least Recently Used (LRU) entries.

5.3 Microbenchmarks

While the heuristic algorithms provide a significant performance
benefit from a whole system perspective, they do impose a cost on
the raw slow path packet classification performance. To quantify
the additional overhead to slow path flow classification, we loaded
the reference ACL tables into the Open vSwitch slow path packet
classifier enhanced with our various heuristic algorithms. Datasets
loaded, we recorded the time it takes to perform 10 million packet
classifications on randomly generated packets. This represents the
worst case overhead. The results shown in Table 6 suggest that
for a modest number of ACLs, both the decision tree and common
match algorithms perform reasonably. For Provider 1’s dataset, the
common match performance is quite a bit slower due to its O(n)
time complexity. However, this still may be acceptable given the
caching benefits it enables.

6 Conclusion
In this paper, we considered the problem of computing flow cache
entries for a slow path operating over high entropy packet fields,
such as transport protocol port numbers. After ruling out the
ideal, proactive header space based algorithms as too expensive, we
developed heuristic, reactive algorithms that provide near optimal
results with limited overhead in the slow path. The decision
tree algorithm produces a flow cache with a small number of
unique flow masks, despite being suboptimal compared to the
common match algorithm in identifying the most general flow cache
entries. However, in Open vSwitch, the decision tree algorithm
is preferred because the implemented tuple space search packet
classification algorithm is O(n) in the number of masks, and
software can handle the resulting larger cache size. In a memory-
constrained environment, or with a limited number of rules on high
entropy fields, the common match algorithm would be preferred.
We have contributed our results to mainstream Open vSwitch
and its megaflow implementation now supports flow caching of
forwarding decisions including L4 headers, without requiring every
new forwarded transport connection to be handled by the slow path.

7 References
[1] M. Casado, T. Koponen, D. Moon, and S. Shenker. Rethinking

Packet Forwarding Hardware. In Proc. of HotNets, October
2008.

[2] P. Kazemian, G. Varghese, and N. McKeown. Header Space
Analysis: Static Checking for Networks. In NSDI, April 2012.

[3] C. Kim, M. Caesar, A. Gerber, and J. Rexford. Revisiting
Route Caching: The World Should Be Flat. In Proc. of PAM,
April 2009.

[4] P. Newman, G. Minshall, and T. L. Lyon. IP Switching - ATM
under IP. IEEE/ACM Transactions on Networking,
6(2):117–129, 1998.

[5] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and
S. Shenker. Extending Networking into the Virtualization
Layer. In Proc. of HotNets, October 2009.

[6] L. Rizzo. Netmap: a Novel Framework for Fast Packet I/O. In
Proc. of USENIX ATC, June 2012.

[7] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet
Classification Using Multidimensional Cutting. In Proc. of
SIGCOMM, 2003.

[8] V. Srinivasan, S. Suri, and G. Varghese. Packet Classification
using Tuple Space Search. In Proc. of SIGCOMM, 1999.

[9] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar. EffiCuts:
Optimizing Packet Classification for Memory and Throughput.
In Proc. of SIGCOMM, August 2010.

[10] M. Waldvogel, G. Varghese, J. S. Turner, and B. Plattner.
Scalable High Speed IP Routing Lookups. In Proc. of
SIGCOMM, 1997.

[11] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen.
Scalable, High Performance Ethernet Forwarding with
CuckooSwitch. In Proc. of CoNEXT, December 2013.

156

	Introduction
	Background
	Ideal Flow Cache
	Cache Population
	Incremental Population

	Heuristic Algorithms
	Evaluation
	Datasets
	Heuristic comparison
	Microbenchmarks

	Conclusion
	References

