
THE LOAD-BALANCED ROUTER

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Isaac Keslassy

June 2004

c© Copyright by Isaac Keslassy 2004

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Nick McKeown
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Balaji Prabhakar

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Mark Horowitz

Approved for the University Committee on Graduate

Studies.

iii

Abstract

The function of a router is to switch arriving packets to their correct output

destination. A router is built to achieve a specified capacity (the sum of the rates

of its interfaces), and users expect a router to consistently achieve this capacity.

However, no commercial high-speed router can guarantee today that it will achieve

its full capacity for all arrival traffic patterns. This is due to the difficulty of scheduling

its switch fabric, and it will become even more difficult in the future as the number

of interfaces and the interface speeds increase.

In this thesis, we advocate the use of a load-balanced router, a router architecture

that is scalable and can guarantee a full capacity. A load-balanced router consists

of two stages. First, a load-balancing stage spreads arriving packets equally among

linecards. Then, a forwarding stage transfers packets from the linecards to their

final destination. A load-balanced router does not use any centralized scheduler.

Therefore, it can scale while providing the throughput guarantees needed by network

operators.

In this thesis, we first explain how to simplify the load-balanced router architec-

ture. While current routers commonly need switch fabrics with fast reconfiguration

times, we show how to implement the load-balancing and forwarding stages of a load-

balanced router using a single passive optical switch fabric with no reconfigurations.

We also prove that among all possible switch fabrics with no reconfigurations, a spe-

cific load-balanced switch fabric uniquely achieves the maximum possible guaranteed

capacity.

A problem with the load-balanced router is that different packets of the same

flow can take different paths, possibly leading to packet reordering. In this thesis,

iv

we introduce a simple distributed algorithm that can avoid packet reordering while

providing delay and capacity guarantees.

Finally, we present a practical switch fabric architecture that would enable load-

balanced routers to scale to higher numbers of interfaces, and we prove that this

architecture can adapt to arbitrary removals and additions of interfaces. We conclude

by showing that the load-balanced router can help provide the scalability and capacity

guarantees needed in the Internet.

v

Acknowledgements

He who learns from a colleague a single chapter, a single law, a single

verse, a single statement, or even a single letter, ought to pay him honor.

— Pirkei Avot (6:3)

How could I acknowledge adequately all those who taught and inspired me during

the past five years at Stanford?

I could not have asked for a better adviser than Nick McKeown. Nick was always

here to inspire, push, guide, ask, answer, motivate, support, compliment and com-

plement whenever needed. Nick, you really were for me a source of both unbelievable

wisdom and unbelievable knowledge, and I am deeply grateful to you.

I will always remember with passion my inspiring discussions with Balaji Prab-

hakar, my co-adviser, one of very few people in the world who teach you something

new every time you speak with them.

Let me thank Mark Horowitz, David Miller and Olav Solgaard. Like my advisers,

they are among the smartest and most famous professors in the world, and I am

quite proud to have worked with them. They are why Stanford is so unique and why

Stanford attracted me from France.

I am immensely grateful to Kate and John Wakerly for the Stanford Graduate

Fellowship. I will deeply miss Kate’s generosity, kindness and happiness. The support

of the SGF, SNRC, DARPA/MARCO and Cisco provided me with the invaluable

freedom of choosing the research topics I wanted.

I would like to acknowledge the great time spent with Da (Shang-Tse) Chuang,

who collaborated on most of the work presented in this dissertation. Discussing and

hurling ideas at each other has been incredibly enriching.

vi

My thanks go to Rui Zhang-Shen and Nandita Dukkipati for the great fun we had

in Gates 356, as well as to the other group members: Gireesh, Greg, Guido, Martin,

Masayoshi, Matthew, Mingjie, Pablo, Sundar, Theresa and Yashar.

For all the good time during the Ph.D. years, I am grateful to my colleagues and

friends from Stanford and around the world, including in Balaji’s group, the Coop,

Bell Labs and Taiwan’s National Tsing Hua University. Huge thanks to Abtin, Alan,

Allen, Amalia, Amelia, Anamaya, Ananthan, Arjun, Athina, Bill, Brian, Cheng-

Shang, Chandra, Changhua, Chao-Kai, Chao-Lin, Christine, Christophe, Damon,

Dana, Daniel, Danny, David, Denise, Derek, Devavrat, Dimitri, Duan-Shin, Elif,

Emilio, Eric, Flavio, Giulio, Hanna, In-Sung, Ingrid, Joachim, Jonathan, Ken, Kevin,

Kostas, Kyoungsik, Lakshman, Laurence, Lizzi, Marcy, Marissa, Mark, Maureen,

Max-David, Mayank, Milind, Mina, Mohsen, Murali, Myles, Nathan, Neda, Neha,

Nick, Ofer, Paolo, Pascal, Paul, Peter, Prashanth, Rivi, Rong, Ruben, Ryan, Sam,

Sarah, Sylvia, Tali, Tsachy, Vinayak, Vincent, Vishal, Ygal and Yoav.

Finally, I am quite grateful to those who volunteered to review either the whole

dissertation or parts of it, including Da Chuang, Mary McDevitt, Sundar Iyer, Bill

Lin and Jonathan Sidi.

This dissertation is dedicated...

To the memory of my departed grandparents, z”l.

And to my family.

Aux oncles et cousins. A Mamie. A Papa, Maman et Michael.

Merci ve-toda.

vii

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Background . 1

1.2 The Load-Balanced Router . 3

1.2.1 Assumptions . 3

1.2.2 Basic Load-Balanced Router Architecture 3

1.2.3 Definitions . 4

1.2.4 100% Throughput Guarantee of a Basic Load-Balanced Router 6

1.2.5 Advantages of a Basic Load-Balanced Router 8

1.3 Motivation of the Thesis . 9

1.3.1 Optical Switch Fabric . 9

1.3.2 Packet Reordering . 10

1.3.3 Pathological Traffic Patterns 11

1.3.4 Missing Linecards . 11

1.4 Outline of the Thesis . 12

2 Mesh Model 13

2.1 From Crossbar to Mesh . 13

2.1.1 Mesh Architecture . 13

2.1.2 Uniform Multiplexing . 15

2.2 The Optimal Mesh . 16

viii

2.2.1 Motivation . 16

2.2.2 Problem Formulation . 17

2.2.3 Examples of Guaranteed Throughput 21

2.2.4 Properties of the Guaranteed Throughput 23

2.2.5 The Biased Mesh . 25

2.2.6 Optimality of the Biased Mesh 27

2.2.7 Uniqueness of the Optimal Capacity Matrix 28

2.2.8 Conclusions and Intuition . 28

3 Packet Reordering 30

3.1 Presentation of Packet Reordering . 30

3.1.1 Example of Reordering in the Load-Balanced Router 30

3.1.2 Consequences of Packet Reordering for Internet Traffic 32

3.1.3 Preventing Reordering . 32

3.2 Application Flow-Based Routing (AFBR) 34

3.2.1 How AFBR Works . 34

3.2.2 Properties of AFBR . 35

3.3 Uniform Frame Spreading (UFS) . 35

3.3.1 Presentation of UFS . 35

3.3.2 Advantages of UFS . 37

3.3.3 Filling a Frame . 38

3.4 Full Ordered Frames First (FOFF) 39

3.4.1 Presentation of FOFF . 39

3.4.2 Implementation . 40

3.4.3 Properties of FOFF . 43

4 Implementation of the Load-Balanced Router Using Optics 45

4.1 Architecture Requirements . 45

4.1.1 A 100Tb/s Router Example 45

4.1.2 Architecture Requirements . 46

4.1.3 Assumptions . 46

4.2 The Hierarchical Mesh Architecture 47

ix

4.2.1 Scaling the Number of Linecards 47

4.2.2 The Hierarchical Mesh . 47

4.3 The MEMS-Based Architecture . 49

4.3.1 Mesh Decomposition as a Sum of Matches 49

4.3.2 Using MEMS Switches . 51

4.4 Linecard Schedule . 53

4.4.1 Determining the Number of MEMS Switches 53

4.4.2 The Linecard Schedule Problem 55

4.4.3 Number of MEMS Switches Needed for a Linecard Schedule . 57

4.4.4 Valid Schedules . 58

4.4.5 Constructing a Valid G-G Schedule 61

4.4.6 Valid L-L Schedule . 64

4.4.7 Practical Considerations . 67

4.5 Practicality and Reliability of the 100Tb/s Router 69

4.5.1 The Electronic Crossbars . 70

4.5.2 Packaging 100Tb/s of MEMS Switches 71

4.5.3 Fault-Tolerance . 72

4.5.4 Building 160Gb/s Linecards 72

4.5.5 Packaging 16 Linecards in a Rack 73

4.6 Consequences . 73

5 Conclusion 74

5.1 Towards a Simpler Internet . 74

5.2 Future Directions in Load-Balanced Router Architectures 75

5.3 Applying Load-Balanced Routing to Network Design 76

A Optimality of the Biased Mesh 78

B Uniqueness of the Optimal Capacity Matrix 84

C Proof that UFS Has 100% Throughput 88

x

D Proof that FOFF Sends Packets in Order 91

D.1 Intuition on the FOFF scheme . 91

D.2 Assumptions . 91

D.3 Notations and Lemmas . 92

D.4 Theorem . 96

E Proof of Average Packet Delay with FOFF 99

F Proofs for the Linecard Schedule 106

F.1 Proof for Theorem 11 . 106

F.2 Proofs for the Construction of the Valid G-G Schedule 106

F.3 Ford-Fulkerson Algorithm . 111

Bibliography 112

xi

List of Figures

1.1 Basic load-balanced router. 3

1.2 Example of reordering in the basic load-balanced router. 10

2.1 Load-balanced router architecture based on a double mesh. 14

2.2 Load-balanced router architecture based on a single mesh, or an AWGR. 15

3.1 Example of packet reordering in a load-balanced router. 31

3.2 Illustration of the UFS algorithm. 36

4.1 Hierarchical mesh architecture. 48

4.2 Hierarchical mesh architecture populated with only the first group. . 49

4.3 Partitioned switch fabric. 50

4.4 Decomposition of a mesh into matches. 51

4.5 MEMS-based architecture. 52

4.6 Example of a MEMS-based switch architecture with three linecards in

two groups. 54

4.7 Running time in milliseconds of the algorithm implementation, as a

function of the number of linecards. 68

4.8 Possible system packaging for a 100 Tb/s router. 69

4.9 Bit-sliced crossbars for the MEMS-based architecture. 70

D.1 Proof notations. 93

D.2 View of a reordering buffer. 97

F.1 Illustration of the Ford-Fulkerson construction. 111

xii

Chapter 1

Introduction

1.1 Background

The Internet consists of end-hosts interconnected by links and routers. Packets

sent by a source end-host transit through different links before arriving at their des-

tination end-host. Routers form the junction between links. The role of a router is

to switch each arriving packet from its input link to its output link. Therefore, a

router logically consists of two consecutive stages. First, a lookup stage determines

the appropriate output link of each packet based on the address of its destination.

Then, a switching stage transfers the packet from its input link to its output link.

This thesis focuses on the switching stage of high-capacity routers. Let a flow

be the set of all packets with the same input and output links. Today, in the most

common router architectures, packets from the same flow take the same path through

the router. However, these architectures typically have several problems: they require

a complex centralized scheduler; they do not provide the throughput guarantees that

network operators need to make efficient use of their expensive long-haul links; and

they are sensitive to single-point failures, because all packets from the same flow take

the same path. These considerations have led to a recent interest in introducing

parallelism inside routers, that is, in making the packets take different paths. Exam-

ples of multi-path routers include Parallel Packet Switch (PPS) routers [43, 45, 46],

Parallel Shared Memory (PSM) and Distributed Shared Memory (DSM) routers [47],

1

CHAPTER 1. INTRODUCTION 2

Memory-Space-Memory (MSM) routers [24, 25], buffered Clos networks [17, 23, 65],

and ring, torus, and hypercube interconnection networks [30, 31, 38, 69, 75, 76].

However, these multi-path routers commonly share the very same problems they

were supposed to solve in single-path routers. In particular, they either require com-

plex, centralized schedulers, or rely on simple distributed scheduling algorithms that

lack throughput guarantees. More recently, C.-S. Chang et al. introduced the Load-

Balanced Router architecture [20, 21]. This architecture is based on load-balancing

packets uniformly inside the router before forwarding them to their correct destina-

tion, an idea first introduced by Valiant et al. [83, 84]. As developed later in the

Introduction, C.-S. Chang et al. show that a load-balanced router does not require

any scheduler and that it can guarantee 100% throughput for a broad class of traffic.

Therefore, the load-balanced router is not subject to the two main problems commonly

present in former architectures: centralized scheduling and the lack of throughput

guarantees needed by network operators. This makes the load-balanced router an

appealing architecture to study. However, as detailed later, the load-balanced router

suffers from several problems, such as packet reordering and the need for frequent

switch fabric reconfigurations. In this thesis we will show how to solve these problems

and demonstrate that the load-balanced router can help improve router performance.

The remainder of the introduction expands on the load-balanced router. Sec-

tion 1.2 first introduces the basic load-balancer router architecture and its main prop-

erties. Section 1.3 then presents several problems associated with this architecture.

These problems prevent the implementation of the basic load-balanced router archi-

tecture in high-speed routers. This thesis provides solutions to these problems and

explains how a load-balanced router can be practically implemented, as outlined in

Section 1.4.

CHAPTER 1. INTRODUCTION 3

OutputsInputs

Load-balancing
cyclic shift

Switching
cyclic shift

Middle VOQ buffers

1

N

2

1

N

2

1

N

2

1

N

2

Figure 1.1: Basic load-balanced router.

1.2 The Load-Balanced Router

1.2.1 Assumptions

Throughout this thesis, we assume for simplicity that all incoming variable-size

packets are segmented into fixed-size packets, or simply packets, and reassembled when

leaving the router. We say that links are connected to routers through linecards, and

denote by N the number of input (and output) linecards. We also assume that all

linecards have the same line rate and that time is slotted, so that at most one packet

can arrive at any input port and at most one packet can depart from any output port

in each time-slot. Finally, we assume that initially there is no packet in the router.

1.2.2 Basic Load-Balanced Router Architecture

A basic load-balanced router is shown in Figure 1.1. It consists of a single stage of

N buffers, sandwiched by two identical stages of switching. Each buffer is partitioned

into N separate FIFO (First-In-First-Out) queues, one per output (hence we call

them virtual output queues, VOQs). Each of the two switching stages goes through

the same pre-determined cyclic shift configuration. That is, at time t, input i of

each switching stage is connected to output [(i + t − 1) mod N] + 1. Therefore, the

configuration is a cyclic shift, and each input is connected to each output exactly

CHAPTER 1. INTRODUCTION 4

1
N

-th of the time, regardless of the arriving traffic. We will call each switching stage

a fixed, equal-rate switch.

Although they are identical, it helps to think of the two stages as performing

different functions. The first stage is a load-balancer that spreads traffic over all the

VOQs. The second stage is an input-queued crossbar switch in which each VOQ is

served at a fixed rate. When a packet arrives at the first stage, it is immediately

transferred to an intermediate input, which depends on the current configuration of

the load-balancer. In the intermediate input, the packet is stored in a VOQ according

to its eventual output. Sometime later the VOQ will be served by the second fixed,

equal-rate switch. The packet will then be transferred across the second switch to its

output, from where it will depart the system.

At first glance, it is not obvious how the load-balanced router can make any

throughput guarantees; after all, the sequence of switch configurations is predeter-

mined, regardless of the state of the VOQs or the traffic rates. In a conventional

single-stage crossbar switch, throughput guarantees are only possible if a scheduler

configures the switch based on a knowledge of the states of all the VOQs or of all

the traffic rates. However, C.-S. Chang et al. prove in [20] that the load-balanced

router, without any scheduler, will still be able to provide 100% throughput for a

broad class of arrival traffic. This is an important theorem for the understanding

of the load-balanced router, and thus we choose to reproduce it here. But first, we

introduce the definitions needed to present the theorem.

1.2.3 Definitions

Let a = {a(t), t ≥ 1} be the sequence of traffic arrivals at the first switching

stage, b = {b(t), t ≥ 1} the sequence of traffic departures from the first switching

stage (and arrivals at the buffering stage), q = {q(t), t ≥ 1} the sequence of queue

lengths, and P = {P (t), t ≥ 1} the sequence of switch permutation matrices. P

defines the connections between the inputs (rows) and the outputs (columns) of the

first switching stage. As defined above, at time t, input i of each switching stage is

connected to output [(i + t − 1) mod N] + 1. Therefore, P is periodic, and P (t) is

CHAPTER 1. INTRODUCTION 5

the [t mod N]-th diagonal matrix. For instance, P (0) = P (N) = P (2N) = ... = Id,

the identity matrix. In addition, we have b = P · a.

For each sequence a, let θs(a) = {a(t+s), t ≥ 1} represent the time-shifted version

of a.

Stationary process: A stochastic process a is said to be stationary if it has the

same joint distribution as its time-shifted version; i.e., for any time-shift s and any

set A,

Pr(a ∈ A) = Pr(θs(a) ∈ A).

In other words, a is stationary if all its statistical properties are invariant with respect

to time-shifts.

Ergodic process: A stationary process a is said to be ergodic if for all sets A, B,

lim
t→∞

1

t

t∑
s=1

Pr(θs(a) ∈ A, a ∈ B) = Pr(a ∈ A)Pr(a ∈ B).

Intuitively, a is ergodic if it tends in probability to a limiting form that is independent

of the initial conditions. In addition, for a stationary ergodic sequence a, time-

averages are equal to ensemble-averages [40]; that is,

lim
t→∞

1

t

t∑
s=1

a(s) = Ea(1), a.s.

Weakly mixing process: A stationary process a is said to be weakly mixing if

for all sets A, B,

lim
t→∞

1

t

t∑
s=1

|Pr(θs(a) ∈ A, a ∈ B)− Pr(a ∈ A)Pr(a ∈ B)| = 0.

Weak mixing is a measure of how fast the past loses influence over the future. Weak

mixing implies ergodicity, and therefore is a stronger property. Most Internet traffic

models are stationary and weakly mixing, and therefore also ergodic. Since station-

arity of traffic models is often implied by the constancy of the traffic generator, we

illustrate the weak mixing property of Internet traffic models. Bernoulli traffic is

CHAPTER 1. INTRODUCTION 6

weakly mixing because successive events are independent. On/off Markov bursty

traffic is weakly mixing because the influence of the past on the future decreases ge-

ometrically. Fractional Gaussian noise, a model for self-similar traffic, is also weakly

mixing [62, 86]. However, periodic traffic is not weakly mixing because the influence

of the past does not decrease over time.

Admissible mean rate: Let r = Ea(1) be the mean rate matrix of a stationary

ergodic arrival process a. rij represents the mean arrival rate for packets going from

input i to output j. Then r is admissible if for all j,

N∑
i=1

rij < 1,

and for all i,
N∑

j=1

rij < 1.

100% throughput: A switch has 100% throughput for a given class of arrival

traffic if for any arrival process with admissible mean rate, q(t) is upper-bounded by

a random matrix that converges in distribution.

Such a property implies that for any arbitrarily small probability ε > 0, there is

a corresponding queue size such that after some time-slot, the probability that q will

exceed this queue size is bounded by ε. When q is ergodic, this also implies that the

workload will exceed this queue size at most a fraction ε of the time.

Work-conserving system: A queueing system is work-conserving if and only if

it is non-idling when there are customers in the queue.

1.2.4 100% Throughput Guarantee of a Basic Load-Balanced

Router

We will now give an intuitive explanation why a basic load-balanced router guar-

antees 100% throughput for a broad class of arrival traffic. Consider a single fixed,

equal-rate crossbar switch, in which each VOQ is served 1
N

-th of the time. Suppose

that the arrival traffic is uniform; that is, packets arriving at a switch are equally

CHAPTER 1. INTRODUCTION 7

likely to be destined to any of the N outputs. If the arrival traffic is admissible, then

the arrival rate to each input is less than 1, and therefore the arrival rate to each

VOQ is less than its service rate 1
N

. For stationary and ergodic arrivals and services,

this implies that the single fixed, equal-rate switch has 100% throughput for uniform

arrival traffic [7, 18, 59].

Of course, real network traffic is not uniform. But an extra load-balancing stage

can spread out non-uniform traffic, making it sufficiently uniform to achieve 100%

throughput. This is the basic idea of the two-stage load-balanced router. A load-

balancing device spreads packets evenly to all the inputs of a second, fixed, equal-rate

switch. We will now prove the following theorem:

Theorem 1 A basic load-balanced router guarantees 100% throughput for any sta-

tionary and weakly mixing arrival traffic with admissible mean rate.

Proof: The proof follows the proof in [20], but with a few changes. In [20], the

authors assume that the two crossbars cycle through the same set of N permutations

in the same order, but the cycles of the two crossbars are randomly out-of-phase. In

particular, the states at time t = 0 of both crossbars are chosen independently at

random among the N possible permutations. For practical purposes, we assume in

this thesis that at each time-slot the two crossbars use the same permutation, and that

the initial permutation at t = 0 is fixed. However, such an assumption implies that the

sequence P is not stationary and ergodic, since P (0) is fixed. This property is needed

in the proof. Therefore, without loss of generality, we (theoretically) re-assign the

start of time in the router uniformly at random among time-slots {−N, ...,−1}. As

a consequence, the state of the first permutation P (0) is chosen uniformly at random

among the N possible values, and we can verify that P is stationary and ergodic.

This change of time definition does not affect the arrivals, which are stationary and

independent of P . The expected value of P (t) is EP (t) = 1
N

e, where e is the N ×N

matrix with all 1’s.

Let r be the admissible mean rate of a. Since b = P ·a, and a and P are stationary

CHAPTER 1. INTRODUCTION 8

and independent, b is stationary with average rate

Eb(t) = EP (t) · Ea(t) =
1

N
e · r.

In addition, a is weakly mixing and P is ergodic, therefore b is ergodic (Theorem 2.6.1

in [68]). Using the fact that b and P are stationary and ergodic, we get:

lim
t→∞

1

t

t∑
s=1

(b(s)− P (s)) = Eb(t)− EP (t) =
1

N
e · r − 1

N
e < 0, a.s.

As proved by Loynes [7, 18, 59], if arrivals and services of a work-conserving

switch are stationary and ergodic, and at any time the expected number of arrivals

is less than the expected number of services, then the switch has 100% throughput.

Consider the VOQ of intermediate input i containing all packets destined to output

j. This VOQ is serviced exactly every N time-slots as long as it is non-empty. We

can consider this VOQ every N time-slots, and define the sampled state of the VOQ

as the sampled VOQ. At every sample, the sampled VOQ is serviced as long as it

is non-empty. Therefore, the sampled VOQ is work-conserving. In addition, b and

P are stationary and ergodic, and Eb(t) − EP (t) < 0. Therefore, the arrivals and

services to the sampled VOQ are stationary and ergodic, and the expected number

of arrivals is less than the expected number of services. Using the above result by

Loynes, we conclude that the switch has 100% throughput.

1.2.5 Advantages of a Basic Load-Balanced Router

In addition to the 100% throughput property presented above, a basic load-

balanced router has several other appealing properties when compared with tradi-

tional centralized-scheduler architectures. These properties involve all the main router

elements: scheduling, control, switch fabric and linecards.

First, a basic load-balanced router uses no centralized scheduler. This is unlike

the most common current router architectures, which use a centralized arbiter that

computes a match between the inputs and the outputs for each time-slot [2, 3, 28,

CHAPTER 1. INTRODUCTION 9

58, 60, 61, 80]. Indeed, a basic load-balanced router does not need any scheduling,

since the sequence of crossbar permutations is predetermined.

Second, since there is no centralized scheduler, a basic load-balanced router does

not need any back-and-forth exchange of VOQ-state and scheduling-decision infor-

mation between the linecards and a centralized scheduler. This simplifies the switch

control. It also removes the loss of bandwidth due to the exchange of information.

Third, a basic load-balanced router simplifies the switch fabric. It uses only N

states for the switch fabric out of the possible N ! states. The state sequence is

predetermined, and not computed at each time slot.

Finally, a basic load-balanced router simplifies the linecards, and especially the

buffering stage. It only uses one stage of buffering, while typical centralized-scheduler

switches run the switch fabric faster than the line rate and require two stages of buffer-

ing (at the inputs and at the outputs). A basic load-balanced router also typically

requires less buffering per linecard because it spreads long bursts across the interme-

diate inputs, as shown in [20].

All these properties suggest that it might be possible to scale a basic load-balanced

router more easily than traditional architectures. The remainder of this thesis consists

in solving problems that might occur with the basic load-balanced router architecture

and prevent it from being implemented in high-speed routers.

1.3 Motivation of the Thesis

1.3.1 Optical Switch Fabric

The use of optics in the switch fabric is often desired to scale routers to higher

speeds and consume less power than electronic interconnects. However, because of

the switch fabric reconfigurations, two factors prevent the use of high-capacity optical

switch fabrics in the basic load-balanced router. First, high-capacity optical switch

fabrics often have slow reconfiguration times. For instance, MEMS-switch reconfigu-

ration times are in tens of milliseconds [66, 72]. However, with 64-byte packets and

speeds of 40-160 Gbps, a reconfiguration time of a few nanoseconds is needed. In

CHAPTER 1. INTRODUCTION 10

OutputsInputs

Load-balancing
cyclic shift

Switching
cyclic shift

Middle VOQ buffers

1

N

2

1

N

2

1

N

2

1

N

2

1

2

Figure 1.2: Example of reordering in the basic load-balanced router.

addition, tunable optical devices are often significantly more expensive than fixed

devices. Consequently, our objective is to find a mechanism that allows for the use

of optics in a load-balanced router without any need for reconfiguration.

1.3.2 Packet Reordering

Another problem in the load-balanced router is that packets can be reordered.

This is because the load-balancer spreads packets without regard to their final des-

tination or to when they will depart from the VOQs. Figure 1.2 illustrates how two

packets arriving back to back at the same input, and destined to the same output,

are spread to different intermediate linecards. These two packets, numbered 1 and 2,

are successively sent to the first two intermediate linecards. Since the intermediate

linecard of packet 1 has a higher VOQ occupancy than the intermediate linecard of

packet 2, packet 1 will leave the router after packet 2. Therefore, the two packets

leave the router out-of-order.

While reordering packets is allowed (and is common [10, 49]) in the Internet,1

network operators generally insist that routers do not reorder packets belonging to

the same application flow. In addition, in its current version, TCP does not perform

1Internet RFC 1812 “Requirements for IP Version 4 Routers” [8] does not forbid packet reorder-
ing.

CHAPTER 1. INTRODUCTION 11

well when packets arrive at the destination out of order. Such packets can be perceived

as loss indicators and might trigger unnecessary retransmissions, thus reducing the

throughput provided to the application [13].

1.3.3 Pathological Traffic Patterns

Even though the load-balanced router guarantees 100% throughput for a large

class of traffic patterns, it is still vulnerable to some pathological traffic patterns. For

instance, if at each time-slot t a packet arrives at input [t mod N]+1 and is destined

to output 1, it will always be placed in the same first VOQ of the first intermediate

linecard. Consequently, the traffic arriving at the forwarding stage is clearly non

uniform, and its throughput is only 1
N

. This example illustrates how pathological pe-

riodic traffic patterns prevent a basic load-balanced router from providing significant

throughput guarantees.

1.3.4 Missing Linecards

A final problem with the predetermined configuration of a basic load-balanced

router is that the router does not work properly when a linecard is missing. This sit-

uation might happen if the operator wants to slowly build up the number of linecards

instead of installing all the linecards at once. It might also occur if a linecard fails or

if linecards are removed in order to connect some lines to a different router.

The basic load-balanced router architecture assumes that any input linecard

equally load-balances its traffic across all intermediate linecards. However, if an

intermediate linecard is missing, packets going through this linecard will be lost.

Therefore, a missing intermediate linecard will prevent the load-balanced router from

working as expected.

We have seen how many problems in a basic load-balanced router architecture

prevent its implementation in high-speed routers. This thesis provides solutions for

these problems, as outlined in Section 1.4.

CHAPTER 1. INTRODUCTION 12

1.4 Outline of the Thesis

This thesis explains how a load-balanced router architecture can be used to de-

sign and implement high-speed routers. The following chapters model and solve the

problems described above.

Chapter 2 shows how to use optics in the switch fabric. It proposes an imple-

mentation of the load-balanced router based on meshes, and explains why this im-

plementation involves no reconfiguration. It also presents a simple implementation

based on a passive AWGR (Arrayed Waveguide Grating Router) optical device. Fi-

nally, it proves that among all possible switch fabrics with no reconfigurations, a

specific load-balanced switch fabric uniquely achieves the maximum possible guaran-

teed throughput.

Chapter 3 then shows how a novel algorithm can avoid both the packet reordering

and the pathological traffic pattern problems. It shows that this algorithm keeps

packets in order, is practical to implement, and prevents pathological traffic pat-

terns. It also proves that for any arbitrary adversarial traffic, this algorithm keeps

the average packet delay through the switch within a constant from that of an ideal

(output-queued) switch.

In Chapter 4, we explain why the usual implementations of the load-balanced

router do not adapt easily to larger port counts and to linecard failures. This leads

me to introduce an architecture based on MEMS (MicroElectroMechanical Systems).

This architecture provides a practical implementation that could be chosen to build

a high-speed router. We then further study the practicality and reliability of this

implementation and solve two related problems: how to arrange the MEMS switches

and how to find a correct linecard schedule upon linecard failure or addition.

I conclude this thesis in Chapter 5 by explaining how a load-balanced router helps

scale the size and capacity of routers while providing a 100% throughput guarantee.

The appendices contain many of the proofs of statements made in the thesis.

Chapter 2

Mesh Model

The Introduction described the load-balanced router, a new architecture that re-

quires no centralized scheduler and yet guarantees 100% throughput under a broad

class of traffic patterns. In this chapter, we will present how the load-balanced router

can be practically implemented using an optical switch fabric with no reconfigura-

tion. In particular, we will show that it can be implemented using a fixed mesh of

optical fibers. Then, we will prove that a specific mesh architecture achieves the

best throughput among all possible fixed architectures, and can only achieve this

throughput by using load-balancing.

2.1 From Crossbar to Mesh

2.1.1 Mesh Architecture

The load-balanced router architecture relies on two fixed, equal-rate switches. Each

of these switches connects any input to any output exactly 1
N

-th of the time, regard-

less of the arriving traffic. We saw in the Introduction that these fixed, equal-rate

switches could be implemented using two N ×N switch fabrics that are reconfigured

at every time-slot. However, if we were to use an optical switch fabric, this constraint

would hinder our ability to scale to higher speeds. For instance, MEMS-switch re-

configuration times are in tens of milliseconds [66, 72], while we would need reconfig-

uration times of a few nanoseconds. In addition, a system with no reconfigurations

13

CHAPTER 2. MESH MODEL 14

Figure 2.1: Load-balanced router architecture based on a double mesh.

is obviously simpler and more reliable than a system with frequent reconfigurations.

Therefore, we would like to replace this fixed, equal-rate switch with a fixed system

that does not need any reconfigurations. This is realized with a fixed mesh of optical

channels.

A first observation is that we can replace each fixed equal-rate switch with N2 fixed

channels at rate R/N , as illustrated in Figure 2.1. Hence, each switch is replaced by

a uniform mesh. The rates provided between any switch input and any switch output

will stay the same. Therefore, the switch is still a fixed, equal-rate switch.

A second observation is that we can replace the two meshes with a single mesh

running twice as fast, as shown in Figure 2.2(a). This is possible because in a physical

implementation, a linecard contains an input, an intermediate input and an output.

Every packet traverses the mesh twice, each time at rate R/N ; therefore, the total

channel rate is 2R/N . After a packet crosses the switch the first time, it is stored in

an intermediate linecard; from there, it crosses the switch again to reach the output

linecard.1

A third observation is that a uniform mesh with optical channels can be replaced

1Chapter 4 discusses how to provide more scalability and flexibility by extending this architecture.

CHAPTER 2. MESH MODEL 15

11
3

1
2

1
1 ,...,,, Nλλλλ

22
3

2
2

2
1 ,...,,, Nλλλλ

N
N

NNN λλλλ ,...,,, 321

21
32

1
1 ,...,,, N

NN λλλλ −

3
3

1
2

2
1 ,...,,, N

N λλλλ

12
3

1
21 ,...,,, N

NNN λλλλ −−

Figure 2.2: Load-balanced router architecture based on (a) a single mesh, and (b) an
AWGR.

by an Arrayed Waveguide Grating Router (AWGR), as represented in Figure 2.2(b).

Input i transmits N distinct channels on its outgoing fiber. Each different channel

λi
w is transmitted at rate 2R/N on a specific wavelength λw. The AWGR, a passive

optical device, shuffles the channels such that each channel of a given input is destined

to a different output. As a result, the system behaves as a single mesh — indeed, it

is a mesh, but based on an AWGR instead of the more conventional N2 fibers. Its

main advantage is the reduction in the number of fibers needed from N2 to 2N .

2.1.2 Uniform Multiplexing

How is it that we can implement the load-balanced router equivalently using a

crossbar, a mesh or an AWGR? Are there any other equivalent architectures?

Actually, the load-balanced router architecture only assumes that the switch fabric

is able to spread arriving traffic uniformly across the N outputs, and each output is

able to receive traffic uniformly from the N inputs. This simply is a uniform multiplex-

ing (and demultiplexing), a process well-known in the literature. As a consequence,

CHAPTER 2. MESH MODEL 16

the uniform multiplexing of arriving traffic could be realized by Time Division Mul-

tiplexing (crossbar), Space Division Multiplexing (mesh), Wavelength Division Mul-

tiplexing (AWGR), and so on, as well as a combination of these methods. Similarly,

any other architecture would be sufficient, as long as it can uniformly multiplex and

demultiplex traffic.

2.2 The Optimal Mesh

2.2.1 Motivation

Perhaps the most interesting characteristic of the load-balanced router is that it

provably achieves 50% throughput with a single switch fabric (and therefore achieves

100% throughput with two switch fabrics, or at a speedup of two) for a broad class

of arrival traffic.

However, it is not obvious why the switch needs to have a fixed, equal rate, i.e.,

why the mesh needs to be uniform. Do all links need to have a capacity of R/N?

How would the throughput change if the mesh was not uniform? What arrangement

of link capacities maximizes the throughput? If linecards were instead interconnected

using a ring, a torus or a hypercube, would throughput be higher?

To make the comparison, we will consider a load-balanced switch with arbitrary

link capacities and an arbitrary load-balancing policy. We will allow packets to take

any path through this switch, using any number of hops. We will only require that

this switch does not use any speed-up, and that each packet goes at least once through

the switch. Then, we will determine the architecture that has the highest guaranteed

throughput.

We will now first define the problem and provide some examples. Then, we will

prove that a given biased mesh reaches the maximum throughput and is unique in

doing so. Finally, we will provide some intuition on the results.

CHAPTER 2. MESH MODEL 17

2.2.2 Problem Formulation

Notations and Assumptions

We define a doubly stochastic matrix to be a non-negative square matrix with

all row and column sums equal to 1. Similarly, we define an admissible (or doubly

sub-stochastic) matrix to be a non-negative square matrix with all row and column

sums upper-bounded by 1. Finally, we define the time unit such that each node can

send and receive at most one bit per second (if the maximum node speed is R, scale

the time unit by a factor 1
R
).

A link of fixed capacity Cij connects node i to node j, where 1 ≤ i, j ≤ N .

The matrix C = [Cij]1≤i,j≤N is the capacity matrix, and any node l can send up

to
∑N

j=1 Clj (and likewise receive at most
∑N

i=1 Cil) bits per time unit to and from

the N nodes (including itself). Since every node l can send and receive at most

one bit per time unit,
∑N

i=1 Cil ≤ 1 and
∑N

j=1 Clj ≤ 1; therefore, the matrix C is

admissible. The capacity matrix C defines the architecture; for example, the uniform

mesh architecture (in which nodes are connected to each other with equal-capacity

links), corresponds to the uniform matrix C where Cij = 1/N. Similarly, a ring could

be defined by Cij = 1{j=i+1 mod N}.

Denote by T the arrival traffic rate matrix, with Tij being the arrival rate at

node i of packets destined for node j. We will assume that T is admissible, since

it cannot be supported otherwise. Suppose we want to load-balance these packets

across multiple paths, each path having an arbitrary number of hops. If P (i, j) is the

set of paths between nodes i and j, then any path p ∈ P (i, j) can be represented as

(i → node1 → node2 → . . . → j). Let T p
ij be the rate of the flow carried by p. If the

arrival traffic rate matrix T is feasible (i.e., the network has 100% throughput for T),

it is possible to decompose T into several paths p, and therefore for all i, j,

Tij =
∑

p∈P (i,j)

T p
ij. (2.1)

CHAPTER 2. MESH MODEL 18

Similarly, we will define the effective load matrix L using for all i, j:

Lij =
∑

{p:(i→j)∈p}

T p
ij. (2.2)

The effective load of a link is the sum of the loads of the paths sharing the link. A

solution is feasible if and only if we can find a decomposition of T such that L ≤ C,

i.e., no link is over-booked.

Problem Intuition

Suppose that N = 2 and that we use a uniform mesh architecture, with capacity

matrix

C =

(
0.5 0.5

0.5 0.5

)
.

We will use this example to gain some intuition about the throughput of intercon-

nection networks.

If the arrival rate matrix is

T1 =

(
0.9 0

0 0

)

then we cannot send traffic at rate 0.9 on the path 1 → 1, because the capacity is

limited by C11 = 0.5. Therefore, we need to load-balance the traffic by using the spare

capacity of other links. We will send 0.5 on the direct path 1 → 1, and the remaining

0.4 on the alternative path 1 → 2 → 1. The resulting load matrix is

L1 =

(
0.5 0.4

0.4 0

)
,

and L1 ≤ C. Clearly, the direct path is not always sufficient to carry the required rate

matrix, but in this case it is possible to use a load-balanced path in order to carry it.

Not all rate matrices are feasible, i.e., the throughput is not always 100%. Consider

CHAPTER 2. MESH MODEL 19

the arrival rate matrix

T2 =

(
0.9 0

0 0.9

)
.

Sending 0.5 on 1 → 1, 0.4 on 1 → 2 → 1, 0.5 on 2 → 2 and 0.4 on 2 → 1 → 2, the

load matrix is

L2 =

(
0.5 0.8

0.8 0.5

)
,

and so L2 6≤ C. In this particular case, we need to scale down T2 to(
0.75 0

0 0.75

)

for the solution to be feasible.

Finally, load-balancing does not always help, particularly in small matrices when

there are not many paths to divert traffic away from congested links. And it is always

useless to divert traffic to oneself. For example, consider the rate matrix

T3 =

(
0 0.5 + ε

0.5 0

)
,

where ε > 0. Sending traffic on the path 1 → 1 → 2 does not divert traffic from

the congested link 1 → 2; therefore, T3 is not feasible. This teaches us that when

sending traffic from node i to node j 6= i, it is clearly useless to use the link i → i,

because traffic is transferred across the network with no benefit. By comparing T1,

T2 and T3, this example also shows that finding the maximum throughput of a given

rate matrix is not straightforward, even when N = 2. Moreover, since the number of

cases to consider increases with N , such a problem is increasingly difficult to solve as

N grows.

Problem Definition

Our objective is to find the load-balanced network with the largest throughput

guarantee. In other words, we want to find a network with a guaranteed throughput

CHAPTER 2. MESH MODEL 20

θ∗, where θ∗ satisfies two properties. First, given any admissible arrival traffic, the

network guarantees a throughput θ∗, i.e., it will switch a fraction θ∗ of the traffic for

any input-output flow. And second, no other network can have a better guaranteed

throughput than θ∗. We will define the problem by decomposing it into three suc-

cessive optimization problems. First, we will find the throughput for a given network

and a given rate matrix. Then, we will obtain the worst-case throughput of a network,

which can be achieved for any rate matrix. Finally, we will provide θ∗, which is the

best guaranteed throughput among all networks.

In the first optimization, we want to find the maximum throughput for a given

network and a given rate matrix. In other words, given capacity matrix C and rate

matrix T , we want to find the best possible throughput θ(C, T), such that the scaled-

down rate demand matrix θ(C, T)× T is feasible. Put mathematically,

θ(C, T) ≡ max
θ

(θ), subject to:

(i)
∑P (i,j)

p=1 T p
ij = θ × Tij ∀i, j

(ii) L(i, j) ≡
∑

{p:(i→j)∈p} T p
ij ≤ Cij ∀i, j

(iii) T p
ij ≥ 0 ∀i, j, p

In words, the throughput θ(C, T) is the maximum of the set of throughputs θ that

satisfy three feasibility conditions. First, the arriving traffic is a scaled-down version

of T by a factor θ, such that it can be decomposed into several paths p. The second

condition is that the sum of the loads of the paths must be less than C, i.e., that

the load matrix is feasible. The last condition is that the rate on each path must be

nonnegative.

The second optimization finds the guaranteed maximum throughput θ(C) for the

network. This is the throughput that is achievable by any rate matrix in the network,

and, therefore,

θ(C) ≡ min
T admissible

(θ(C, T)). (2.3)

Finally, we find the maximum possible guaranteed throughput for any network,

CHAPTER 2. MESH MODEL 21

yielding a guaranteed throughput θ∗, where

θ∗ ≡ max
C admissible

(θ(C)). (2.4)

2.2.3 Examples of Guaranteed Throughput

Guaranteed Throughput of the Uniform Mesh

The uniform mesh is an architecture in which all links have the same capacity,

i.e., Cij = 1/N for all i, j. We will show that the maximum guaranteed throughput

of the uniform mesh is 50%.

We saw already in the Introduction why the uniform mesh guarantees at least 50%

throughput, although the proof was based on slightly different assumptions. In short,

each packet goes through both the load-balancing stage and the forwarding stage, and

therefore through two hops. Consequently, the link between node i and node j can

receive load in two possible ways. Either node i is sending traffic to some node k and

spreads it using the intermediate node j, or some node l sends traffic to node j and

spreads it using the intermediate node i. Mathematically, Lij =
∑

k Tik +
∑

l Tlj ≤ 2

with an admissible T . Therefore, θ(C) ≥ 50%.

The following example shows that it is not possible to do better using a different

load-balanced routing algorithm.

Assume that

T =

0 x 0 . . . 0

0 0 x
. . .

...
...

. 0

0 0 x

x 0 . . . 0 0

,

where x ≥ 1/2. A node i can send at most Ci(i+1 mod N) = 1/N amount of traffic

directly.2 It also needs to send the remaining x − 1/N amount of traffic to load-

balanced paths, with each of these paths using at least two links. Hence, the total

traffic load contributed by each node to the system is at least (1/N) + 2(x − 1/N),

2The modulo function takes values in {1, ..., N} when nodes are numbered {1, ..., N}.

CHAPTER 2. MESH MODEL 22

which implies that the total traffic load contributed by the N nodes is N(1/N +

2(x − 1/N)) = 2Nx − 1. As we saw earlier, diagonal elements do not help load-

balancing, and with this rate matrix they are also useless for direct paths. Hence,

the total useful traffic capacity is the sum of all non-diagonal elements of C, i.e.,

N · (1 − 1/N) = N − 1. For the solution to be feasible, we need 2Nx − 1 ≤ N − 1,

which translates into x ≤ 1/2. And so there exists a traffic rate matrix that is only

feasible with a throughput of at most 50%. This implies θ(C) ≤ 50%. Since we found

that the two-hop algorithm provides a throughput of 50%, it follows that

θ(C) = 50%. (2.5)

Further, it is not possible to improve on the two-hop algorithm.

Guaranteed Throughput of a Ring

As a second example, consider a network in which the nodes are connected in a

uni-directional ring, i.e., node i is connected to node (i + 1) mod N . Recall that we

assumed that each packet needs to go at least once through the network. In the worst

case, T is the identity matrix so that nodes only send traffic to themselves through

the ring. Therefore, all packets cross N links, and the throughput θ(Cring, T) is equal

to 1/N . This T is the worst case, since packets do not need to use more than N links

to reach their destination. Therefore,

θ(Cring) = 1/N, (2.6)

which — as expected — is much lower than for the uniform mesh.

Guaranteed Throughput of a Permutation Matrix

The ring is a special case of a permutation matrix σ of the set {1, ..., N}, where

σ is the capacity matrix of a network. The matrix σ can be represented as a 0 − 1

matrix with exactly one 1 in each row and column; i.e., σij = 1 if σ(i) = j, and

CHAPTER 2. MESH MODEL 23

σij = 0 otherwise. Since σ is a permutation, it can be decomposed as a product of

disjoint cycles (the decomposition is unique up to the order of the cycles).

If σ can be written as a single cycle of length N , we can assume without loss of

generality that σ(1) = 2, σ(2) = 3,..., σ(N) = 1, and so σ is the capacity matrix of a

ring, with θ(σ) = 1/N .

Alternatively, if σ can be written as the product of two or more cycles, then there

are two nodes i and j such that node i is in the first cycle and node j is in the second

one. It is then impossible to reach node j from node i (the capacity graph is not

connected), hence the throughput for any matrix T such that Tij = 1 is zero, and

θ(σ) = 0.

This example illustrates that the throughput of a capacity matrix is sensitive to

its coefficients; and that the throughput of a disconnected graph is zero.

2.2.4 Properties of the Guaranteed Throughput

In the above examples, we computed the throughputs of several capacity matrices,

but found that it is not straightforward in general to compute throughput directly.

Since we want to find the capacity matrix with the largest guaranteed throughput,

we will use general properties of the throughput function. We will start by showing

that it is concave in C, scales linearly, and is strictly increasing.

Concavity

First, we show that throughput is concave in C. Assume that two capacity

matrices C1 and C2 achieve throughputs of θ(C1, T) and θ(C2, T) for a rate ma-

trix T . Then, applying the definition of throughput, for any λ ∈ [0, 1], the matrix

C = λC1+(1−λ)C2 will achieve a throughput of θ(C, T) ≥ λθ(C1, T)+(1−λ)θ(C2, T).

This can be seen by using the paths from C1 for a fraction λ of the traffic,

and the paths from C2 for a fraction 1 − λ. As a consequence, we also have

θ(C) ≥ λθ(C1) + (1− λ)θ(C2). This leads to the following proposition.

Proposition 2 The guaranteed throughput function θ(C) is concave in C.

CHAPTER 2. MESH MODEL 24

Linear Scaling

Given any positive λ, we can find a feasible rate allocation for λC from the rate

allocation for C (and vice versa) by scaling the rate assigned to each path by a factor

λ (respectively by 1
λ
). Therefore, we get the following proposition:

Proposition 3 The guaranteed throughput function θ is linear with respect to scaling,

i.e.,

θ(λ · C) = λ · θ(C).

Strictly Increasing

Clearly θ is a non-decreasing function in the space of admissible capacity matrices.

In other words, having more capacity cannot decrease the throughput. If C and D are

two admissible capacity matrices, where C ≤ D (i.e., for all i, j, Cij ≤ Dij, defining

a partial order relation), then from the definition of θ: θ(C) ≤ θ(D).

Now, if D > C, there exists ε such that

D ≥ C + εCuniform,

where Cuniform is the capacity matrix of the uniform mesh. Hence

θ(D)
(a)

≥ θ((1 + ε)(
1

1 + ε
C +

ε

1 + ε
Cuniform))

(b)
= (1 + ε)× θ(

1

1 + ε
C +

ε

1 + ε
Cuniform))

(c)

≥ (1 + ε)(
1

1 + ε
θ(C) +

ε

1 + ε
θ(Cuniform))

(d)
= (1 + ε)(

1

1 + ε
θ(C) +

ε

1 + ε

1

2
))

> θ(C),

where (a) uses the fact that θ is non-decreasing, (b) uses the equality θ(λ·C) = λθ(C),

(c) uses the concavity of θ and (d) uses the value of θ(Cuniform). Therefore, we obtain:

CHAPTER 2. MESH MODEL 25

Proposition 4 The guaranteed throughput function θ is strictly increasing, i.e., if

C < D then θ(C) < θ(D).

2.2.5 The Biased Mesh

Definition

We have already seen that the uniform mesh has a throughput of 50%, even

though a node potentially spreads traffic over the useless links to itself. We can

therefore expect a modified mesh — i.e., a mesh that does not spread traffic to itself

— to have higher throughput. This is indeed the case; in fact, it is the network with

the highest guaranteed throughput.

In this modified mesh, a link from a node to itself is only used to send traffic

directly, and not for spreading. However, a link from a node to another one is used

for sending traffic directly as well as for spreading. Therefore, intuitively, a link from

a node to another one should have twice as much capacity as a link from a node to

itself, because it will be used for two functions instead of one. We will call such a

modified mesh the biased mesh. Its capacity matrix Ĉ is given by

Ĉ =

c 2c 2c

2c c
. . .

...
...

.
...

...
. . . c 2c

2c 2c c

,

where c = 1/(2N − 1).

In the remainder (Propositions 6, 7 and 8), we will show that Ĉ uniquely achieves

the highest guaranteed throughput, using three consecutive steps. First, we will show

that Ĉ achieves a throughput of N/(2N − 1). Then, we will prove that this is the

largest achievable throughput for any network. Finally, we will demonstrate that the

biased mesh is the only network to achieve this throughput.

CHAPTER 2. MESH MODEL 26

Guaranteed Throughput of the Biased Mesh

Our first objective is to show that the guaranteed throughput of the biased mesh

with the capacity matrix Ĉ is at least N/(2N − 1). Using the definition of the

guaranteed throughput, we need to consider all admissible rate matrices T . The

following proposition significantly restricts the number of rate matrices T we need to

consider.

Proposition 5 The guaranteed throughput θ(C) defined in (2.3) can be found by

considering the set of permutation matrices, i.e.,

θ(C) = min
T permutation

(θ(C, T)). (2.7)

Proof: For any admissible matrix T , there is at least one doubly stochastic

matrix T such that T ≤ T [19, 85]. Clearly θ(C, T) ≤ θ(C, T), and so we only need

to consider the doubly stochastic rate matrices.

Birkhoff’s theorem states that the set of doubly stochastic matrices equals the

convex hull of the permutation matrices [12]. The claimed result follows from the

definition of throughput.

Proposition 5 restricts to the set of permutation matrices the set of rate matrices

we need to consider. To show that the throughput of Ĉ is at least N/(2N − 1),

we just need to show that a throughput of N/(2N − 1) can be achieved for all the

permutation matrices. It leads to the following proposition.

Proposition 6 The guaranteed throughput of the biased mesh with capacity matrix

Ĉ is at least N/(2N − 1).

Proof: We will prove that Ĉ achieves a throughput of N/(2N − 1) when T = σ,

with σ a permutation. Let c = 1/(2N − 1). We consider a node i, and prove that

i can always send at rate Nc to σ(i). Our objective is to send as much flow as we

can directly, and to uniformly load-balance the remainder among the non-diagonal

elements. We distinguish two cases: either σ(i) = i or σ(i) 6= i.

CHAPTER 2. MESH MODEL 27

If σ(i) = i, node i needs to send Nc to itself. Therefore, node i can send c directly

to itself, and load-balance the remaining rate of (N − 1)c among the other (N − 1)

nodes, then sending c to each node.

If σ(i) 6= i, node i needs to send Nc to node σ(i) 6= i. Therefore, node i can

send 2c directly to σ(i), and load-balance the remaining rate of (N − 2)c among the

(N − 2) nodes different from i and σ(i); and each such node then sends c again to

node σ(i).

Let us examine the load on each link. Each diagonal element Ĉii only receives

traffic if it is destined from node i to node i, and in this case it receives exactly c, its

capacity.

Moreover, each non-diagonal element Ĉij can only receive traffic in two distinct

cases, which cannot happen at the same time. If j = σ(i), Ĉij receives exactly 2c,

its capacity. Otherwise j 6= σ(i), and Ĉij receives c from the load-balanced path

i → j → σ(i), and c from the load-balanced path σ−1(j) → i → j, summing to 2c,

its capacity.

The load on each link is therefore always bounded by its capacity; hence, this

solution is feasible and the guaranteed throughput of Ĉ is at least Nc = N/(2N − 1).

2.2.6 Optimality of the Biased Mesh

We have just found that the biased mesh guarantees a throughput of at least
N

2N−1
. The following proposition shows that the biased mesh achieves the maximum

possible guaranteed throughput for any admissible capacity matrix.

Proposition 7 If the capacity matrix C is admissible, then the guaranteed throughput

θ(C) ≤ N
2N−1

.

The proof for Proposition 7 is in Appendix A.

CHAPTER 2. MESH MODEL 28

2.2.7 Uniqueness of the Optimal Capacity Matrix

Since we proved that the biased mesh achieves the optimal throughput N/(2N−1),

we will now demonstrate that it is the only capacity matrix to do so. This is done in

Proposition 8, proved in Appendix B.

Proposition 8 The only capacity matrix C that can achieve the optimal throughput

N/(2N − 1) is the capacity matrix Ĉ of the biased mesh.

In conjunction with Propositions 6, 7 and 8, we have, therefore, established the

following theorem.

Theorem 9 The biased mesh satisfies the following three properties:

(i) The guaranteed throughput of the biased mesh is equal to θ̂ = N/(2N − 1).

(ii) The biased mesh achieves the maximum possible guaranteed throughput for any

network, i.e., θ(Ĉ) = N/(2N − 1).

(iii) The biased mesh is the only network to achieve this guaranteed throughput, i.e.,

θ(C ′) < θ(Ĉ) for any admissible capacity matrix C ′ 6= Ĉ.

2.2.8 Conclusions and Intuition

Theorem 9 shows that the biased mesh architecture achieves the best throughput

among all possible architectures, and is the only one to do so. Therefore, it performs

better than many alternative architectures, including the ring, torus and hypercube

architectures.

However, this result assumes that if packets arrive at their destination after a

single hop, they can immediately leave the switch. Therefore, the architecture will

need to allow for one-hop as well as two-hop paths through the switch. This might

prove difficult to implement, and might be a reason for a designer to prefer the uniform

mesh. Using the fact that the uniform mesh achieves 50% throughput (Equation 2.5),

we know that the uniform mesh is

θ(Ĉ)

θ(Cuniform)
=

N
2N−1

1
2

=
1

1− 1
2N

= 1 + o(1) — optimal (2.8)

CHAPTER 2. MESH MODEL 29

for its guaranteed throughput. Therefore, the load-balanced router with a uniform

mesh is asymptotically optimal. Asymptotically with N , it guarantees at least as much

throughput as any other fixed interconnection with an admissible capacity matrix.

This is an additional argument in favor of the uniform mesh.

Chapter 3

Packet Reordering

Chapters 1 and 2 introduced the load-balanced router and illustrated how it can

be practically implemented using optics. In this chapter, we will see how the load-

balanced router can reorder packets. Packet reordering is a widespread property

among load-balanced systems and can be detrimental to Internet traffic. Therefore,

we will provide and analyze different possible algorithms to prevent packet reordering.

We will finally focus on the FOFF algorithm, and prove that it prevents reordering

while providing throughput and delay guarantees.

3.1 Presentation of Packet Reordering

3.1.1 Example of Reordering in the Load-Balanced Router

We first define packet reordering. As defined in the Introduction, a flow is the

set of all packets having the same input and output destination. Packet reordering

occurs in a router when packets from a same flow depart from the router in an order

different from the one in which they arrived.

Packet reordering could occur in a load-balanced router. This is because the

load-balancer spreads packets as they arrive without regard to their final destination

or departure time. Therefore, packets from the same flow can take different paths

of different delays within the router. Consequently, as illustrated below, this load-

balancing among paths of different delays could incur packet reordering.

30

CHAPTER 3. PACKET REORDERING 31

1
2

N

1
2

N

1
2

N

N x N

Crossbar

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

2

N

1

2

N

N x N

Crossbar

Figure 3.1: Example of packet reordering in a load-balanced router.

Figure 3.1 illustrates this possibility. In this example, all packets considered are

destined to the output 1. By definition, in the first N time-slots, each input is

connected to the first intermediate input exactly once. Assume that each input except

the first one receives a packet and transfers it to the first intermediate input when

they are connected together. After N time-slots, the first intermediate input will

have received N − 1 packets from inputs 2, ..., N , and only one of these packets will

have been serviced. Therefore, N − 2 packets are left in the first intermediate input

(they are represented as transparent in Figure 3.1). Assume that the first input then

receives two packets back-to-back when it is successively connected to intermediate

inputs 1 and 2. Therefore, the first input consecutively transfers these two packets

to intermediate inputs 1 and 2 (packets from input 1 are represented as filled in

Figure 3.1). The second packet is alone in its queue, while the first one has N − 2

packets in front of it. Therefore, the second packet is serviced earlier. It arrives at

output 1 earlier, and leaves the router earlier. Consequently, the two packets are

reordered. In other words, they belong to the same flow, and the order in which they

arrive at the input is different from the order in which they are leaving the output.

The example shows that reordering occurs when VOQs in different intermediate

CHAPTER 3. PACKET REORDERING 32

inputs and destined to the same output have different lengths. Due to the fixed-rate

service, the amount of reordering depends on the difference between the lengths of

the VOQs. For instance, assume that VOQs are modeled as having an infinite buffer

capacity. Then, when a VOQ length increases while the other stays constant, the VOQ

length difference grows unbounded, and therefore the possible amount of reordering

also grows unbounded. Therefore, the load-balanced router does not provide any

guarantee on the amount of reordering.

3.1.2 Consequences of Packet Reordering for Internet Traffic

The load-balanced router exhibits reordering — but is reordering really a problem?

RFC 1812, the most common standard defining router requirements, does not forbid

reordering in routers [8]. In addition, reordering is not uncommon in the Internet [10,

49]. Therefore, we might believe that reordering is not necessarily a problem.

However, in its current version, TCP (Transmission Control Protocol) does not

perform well when out-of-order packets arrive at their destination. Out-of-order pack-

ets can be perceived as loss indicators, and trigger unnecessary retransmissions and

TCP timeouts [13]. These retransmissions and timeouts cause a decrease in TCP

throughput and an increase in packet delay. Consequently, since TCP traffic consti-

tutes the vast majority of Internet traffic [35, 37], network operators generally insist

that routers do not reorder packets belonging to the same application flow, i.e., shar-

ing the same (source, destination) pair. Our goal in this chapter is to provide this

guarantee. In particular, if we assume that all packets from an application flow take

the same path in the Internet and therefore belong to the same router flow in the

router, it is sufficient to guarantee that the router does not reorder packets belonging

to the same router flow.

3.1.3 Preventing Reordering

There are two methods of preventing packet reordering. The first method consists

in bounding the amount of reordering and using a finite reordering buffer at the output.

CHAPTER 3. PACKET REORDERING 33

The second method is to make sure that packets arrive in order to the output, thus

keeping packets in order throughout the router.

We saw in the example above that reordering can occur when VOQ lengths are

different, and that the amount of reordering typically increases as the difference of

VOQ lengths increases. Therefore, most of the algorithms that prevent reordering

will try to bound or prevent any VOQ length difference. To do so, these algorithms

will typically rely on a small input-stage coordination buffer, which spreads packets

uniformly among the intermediate inputs.

In [21], the authors propose two schemes based on the first method of bound-

ing reordering. Both schemes rely on algorithms found in the PPS (Parallel Packet

Switch) router [45] and use a small input-stage coordination buffer. The first scheme,

called FCFS (First Come First Served), uses a jitter control buffer in each interme-

diate input to ensure proper ordering of the traffic leaving the intermediate inputs.

The second scheme, EDF (Earliest Deadline First), schedules packets according to

their departure times in an ideal (output-buffered) router. However, both schemes

do not seem practical. The jitter control mechanism in FCFS might require up to N

memory-write accesses per time slot. And EDF needs to retrieve the packet with the

smallest time stamp from a queue, making it hard to implement in a high performance

router.

The second method of preventing reordering, which keeps packets ordered through-

out the router, is used in [54] and [22]. [54] presents an algorithm that uses a co-

ordination buffer in the input stage, and then queues packets in VOQs in the in-

termediate inputs based on their input, intermediate input, and output. Using this

fine-grained queueing, the algorithm guarantees that packets arrive at the outputs in

order. However, this algorithm requires a more complex queueing management sys-

tem, and communication of state information between the intermediate inputs and

the outputs. In [22], the authors introduce an algorithm in which the buffers in the

intermediate inputs are finite and packets are guaranteed to leave the router in order.

However, the algorithm assumes that in each frame period, arrivals of packets des-

tined to a given output are constrained. While this might be satisfied in frame-based

CHAPTER 3. PACKET REORDERING 34

traffic such as SONET (Synchronous Optical Network) traffic, this property is not

satisfied in general in the Internet.

Therefore, all these algorithms present significant problems in router implemen-

tations. Our objective is to find a different scheme in order to guarantee that packets

leave the router in order. We will first consider Application Flow-Based Routing

(AFBR) and Uniform Frame Spreading (UFS), two algorithms that attempt to main-

tain packets ordered throughout the router. Then, we will present Full Ordered

Frames First (FOFF), an algorithm that bounds reordering, and we will prove that

FOFF also provides throughput and delay guarantees.

3.2 Application Flow-Based Routing (AFBR)

3.2.1 How AFBR Works

We saw above that reordering is due to the uncontrolled use of parallelism in the

load-balanced router. Reordering occurs when packets from the same router flow,

and in particular from the same application flow, take different paths with different

delays. Therefore, a simple idea is to make all packets from the same application flow

take the same path inside the router. We will call this an Application Flow-Based

Routing (AFBR).

AFBR can be implemented by hashing packet header fields (e.g., source and desti-

nation IP addresses and protocol identification) into N different hash values. Packets

from the same application flow will return the same hash value. Then, all packets

having the same hash value will be transferred by a given input to the same interme-

diate input. Therefore, all packets from the same application flow take the same path

inside the router. Consequently, AFBR prevents reordering throughout the router for

packets from the same application flow.

Note that hashing flows is common in load-balanced systems. It is used for ex-

ample in backbone links [15], address lookups [14, 48], packet processing [16], web

servers [70, 71], network processors [32, 51] and flow demultiplexing [33].

CHAPTER 3. PACKET REORDERING 35

3.2.2 Properties of AFBR

AFBR is more efficient when there is a guarantee that the amount of traffic cor-

responding to each (input, intermediate input) pair and each (intermediate input,

output) pair does not exceed a rate of R/N , especially over short periods of time.

As a consequence, the rate between each input and each intermediate input will not

exceed the link capacity R/N , and the rate between each intermediate input and each

output will also not exceed the link capacity R/N . In this case, AFBR provides an

easy implementation that prevents packet reordering throughout the router.

However, AFBR is more difficult to implement than at first glance. Without traffic

guarantees over each frame, as in SONET traffic, the coordination buffer size at the

inputs might grow unbounded. Moreover, if all traffic consists of a single application

flow, AFBR will not be able to provide any non-trivial throughput guarantee (it will

only provide a throughput of R/N). AFBR also assumes a fixed hashing scheme,

and loses reordering guarantees if hashing becomes dynamic. Finally, by having all

packets from the same application flow take the same path inside the router, AFBR

might be more prone to single-point failures for the end applications.

3.3 Uniform Frame Spreading (UFS)

3.3.1 Presentation of UFS

In the basic load-balanced router, reordering occurs when two VOQs destined to

the same output in different internal inputs have different lengths. The objective of

the Uniform Frame Spreading (UFS) algorithm is to avoid reordering throughout the

router by assigning the same number of packets to all the VOQs destined to the same

output.

In UFS, at each input, there are N FIFO (First In First Out) queues — one

per output. Arriving fixed-size packets destined to a given output are buffered in

the corresponding queue, until there are N of them. A group of N such packets

from a given flow is called a full frame. When a frame is full, it is spread uniformly

across the intermediate inputs, starting with intermediate input 1, and ending with

CHAPTER 3. PACKET REORDERING 36

1

2

N

1

2

N

1

2

N

1

2

N

1

2

N

1

2

N

1

2

N

1

2

N

(1)

(2)

(N)

(1)

(2)

(N)

(1)(2)(N)

(1)(2)(N)
(1)

(2)

(N)

Figure 3.2: Illustration of the UFS algorithm.

intermediate input N . When each packet arrives at the intermediate input, it is

immediately directed to the appropriate VOQ that the packet is destined to. All

packets from the same full frame then consecutively become head-of-line of their

respective VOQs and are transferred in order to the output.

Figure 3.2 illustrates the successive steps in the UFS algorithm. In order to explain

the intuition behind UFS, we will only consider packets destined to output 1. In this

example, we will also assume for simplicity that up to N packets can leave and arrive

simultaneously in the mesh structure, even though this is not needed in practice.

First, packets arriving at the input are queued in VOQs arranged by outputs, until at

least one full frame of N packets is formed. Full frames leave the inputs in order, and

the j-th packet of each full frame is transferred to the j-th intermediate input. The

N packets of the same full frame are then queued simultaneously in the intermediate

inputs. For instance, Figure 3.2 illustrates three buffered full frames, the first from

the first input (filled packets), and the two others from other inputs (transparent

packets). Since all packets from a given full frame arrive simultaneously, each VOQ

size is the same, and therefore all packets also depart simultaneously. Once the full

CHAPTER 3. PACKET REORDERING 37

frame leaves the intermediate inputs, it is transferred to the correct output, from

which it then departs in order.

It is interesting to note that all the VOQs destined to the same output behave

in the same way, and each packet of the same full frame sees the same behavior. As

a consequence, each linecard knows the state of all other intermediate inputs, since

all intermediate inputs have the same state. In addition, we can model the behavior

of the whole load-balanced router by considering only any given intermediate input.

Finally, since each full frame is written as well as read in parallel, this algorithm

can be seen as an instance of bit-slicing. Therefore, the whole set of N intermediate

inputs looks like a single shared-memory pool.

3.3.2 Advantages of UFS

We have shown above how the UFS algorithm maintains packets ordered through-

out the router. UFS presents the following benefits:

• UFS keeps packets in order throughout the router.

Packets of the same full frame are kept in order because they are transmit-

ted consecutively to the intermediate inputs and received consecutively by the

outputs.

• Linecards can operate independently.

The UFS algorithm is distributed and can operate independently in each in-

put, intermediate input and output. It needs no additional communication of

information among linecards.

• No pathological traffic patterns.

The 100% throughput proof for the basic architecture relies on the traffic be-

ing weakly mixing. While this might be a reasonable assumption for heavily

aggregated backbone traffic, it is not guaranteed. In fact, it is easy to create

a periodic adversarial traffic pattern that inverts the spreading sequence, and

CHAPTER 3. PACKET REORDERING 38

causes packets for one output to pile up at the same intermediate linecard. This

can lead to a throughput of only R/N for each linecard.

UFS prevents such pathological traffic patterns. UFS provably always has the

same throughput as an ideal output-queued router, irrespective of the arrival

process. (An output-queued router is an ideal router in which each output

contains the packets destined to it. Each output services packets as long as

there is as at least one packet to service, a property known as work-conserving.

No router can have a better throughput or average delay than an output-queued

router.) This result is proved in Theorem 21 of Appendix C.

• VOQ states are known by all linecards.

In order to know the amount of congestion in the router (for example to imple-

ment a drop-policy), we need to know how many packets are in each VOQ. But

because each VOQ has the same occupancy (one packet from each full frame),

it is sufficient to look at just one linecard.

3.3.3 Filling a Frame

A significant disadvantage of the UFS algorithm is that it requires a frame to

contain N packets. If a frame contains fewer than N packets, one can choose whether

to send it or not. If the frame is sent with less than N packets, it needs to insert empty

idle packets in order to become a full frame, and thus incurs a loss of throughput.

However, if the frame is kept in the input and waits for additional packets, it can incur

a significant delay if not starvation. Therefore, sending the frame reduces throughput,

while waiting for additional packets increases delay and potentially creates starvation.

There is a clear dilemma: send or wait? Is there even something to wait for?1

There are a few ways of dealing with such a problem, involving a trade-off between

throughput, starvation and practicality. A first approach is to wait for frames to

fill, and hence keep the throughput and average-delay guarantees, while possibly

starving some flows. A second possibility is to make packets much smaller, for instance

1“Waiting for Godot” [9] provides a good analogy to the problem.

CHAPTER 3. PACKET REORDERING 39

1/N -th of the original packet size. This solution would be equivalent to bit-slicing.

However, although it would solve the frame-filling problem, the granularity of the

resulting packets might cause problems in the intermediate inputs. In particular,

smaller chunks might translate into a higher chunk arrival frequency and exceed

buffering speed limits. In addition, the overhead caused by headers and control

mechanisms will increase. A third solution is to use a timeout mechanism in the

inputs. The timeout will trigger the frame to be completed with empty idle packets

and forwarded to the intermediate inputs. As noted in [50], this can be arranged to

prevent an excessive reduction in throughput. However, a low timeout value will cause

a significant loss of throughput. Conversely, a negligible loss in throughput guarantee

would need a significant timeout value. A fourth possible solution would be to change

timeout values based on state information. As seen above, each linecard knows when

each output is congested, and therefore can change the timeout value depending on the

congestion state (using a smaller timeout when there is no congestion and therefore

no throughput capacity constraints). However, while interesting practically, such an

approach does not necessarily provide any better theoretical throughput guarantee.

Therefore, none of these schemes appears satisfactory.

3.4 Full Ordered Frames First (FOFF)

3.4.1 Presentation of FOFF

AFBR and UFS prevent packets from being reordered throughout the router by

precisely regulating packet transfer times. However, this strict regulation is not flexi-

ble enough to adapt to changing traffic conditions, and results in a loss of throughput

and possible starvation. Therefore, the following scheme tries a different approach.

The Full Ordered Frames First (FOFF) algorithm allows some bounded reordering

inside the router, and relies on a reordering buffer at the output.

FOFF runs independently on each linecard using information locally available.

As in UFS, each input linecard keeps a separate FIFO queue for each output. When

a packet arrives, it is placed at the tail of the queue corresponding to its eventual

CHAPTER 3. PACKET REORDERING 40

output. Ideally, FOFF behaves as UFS, serving a queue only when it contains at

least one full frame. However, contrary to the UFS algorithm, FOFF allows for a

non-empty queue to send packets when no queue has any full frame. Therefore,

FOFF avoids starvation but allows for different VOQ sizes and reordering.

3.4.2 Implementation

We will now define how the FOFF algorithm works in each input, intermediate

input and output.

Input Implementation

In each input, FOFF will send full frames whenever possible, by giving a higher

priority to full frames. However, when there are no full frames available, FOFF will

service the remaining packets, by picking non empty queues in a round-robin order.

In particular, in each input, FOFF uses at most N2 packets arranged in N FIFO

queues labelled Q1 . . . QN . FOFF operates as follows:

1. An arriving packet destined to output j is placed in Qj.

2. Every N time-slots, the input selects a queue to serve for the next N time-

slots. First, it picks round-robin from among the queues holding more than N

packets, i.e., holding at least one full frame. If there are no such outputs, then it

picks round-robin from among the non-empty queues. Up to N packets from the

same queue (and hence destined to the same output) are transferred to different

intermediate linecards in the next N time-slots. For each flow, a pointer keeps

track of the last intermediate linecard to which a packet was transferred, and

the next packet is always sent to the next intermediate linecard.

Clearly, if there is always at least one full frame, FOFF behaves as UFS and there

is no reordering. Reordering occurs only when no queue has a full frame; but as

shown in Theorem 25 (Appendix D), the amount of reordering is bounded, and is

corrected in the output with a fixed length reordering buffer.

CHAPTER 3. PACKET REORDERING 41

Intermediate Input Implementation

FOFF uses N VOQs per intermediate input, and behaves exactly like the basic

load-balanced router.

Output Implementation

In each output, FOFF services packets in order. In order to do so, for each flow,

FOFF keeps track of the last intermediate input from which the last ordered packet

arrived. This enables FOFF to know that the next ordered packet will come from the

next intermediate input, because packets from each flow are spread in round-robin

order among intermediate inputs. Therefore, FOFF can send packets in order from

each output without using sequence numbers, without exchanging state information

between linecards, and without knowing which packets belong to a full frame.

More precisely, in each output, FOFF uses the following structures:

• N FIFO queues corresponding to the N intermediate inputs. When a packet

arrives from an intermediate input, it is buffered in the queue corresponding to

this intermediate input. As proved in Theorem 25 (Appendix D), these queues

contain a total of at most N2 + 1 packets (including the one being serviced).

We will call head of flow the first packet of a given router flow that has not

yet left the router, and head of line the first packet of a given queue. A packet

can leave in order if it is both head of flow and head of line of one of these N

queues.

• A pointer vector of N pointers corresponding to the N inputs, indicating in

what queue to expect the next in-order packet of each flow. These pointers

are only incremented cyclically (modulo N), since packets are spread among

intermediate inputs in a round-robin order.

• A pointer queue of maximum size N , indicating from which FIFO queues a

packet is ready to depart in order.

CHAPTER 3. PACKET REORDERING 42

At each time-slot and in each output, FOFF implements the steps defined below.

In these steps, FOFF looks for packets that are both head of flow and head of line

packets, since these are the packets that can leave in order. Let us examine how a

packet can become head of flow and head of line. If it is head of flow, it can become

head of line either because there is no packet in its queue when it arrives (case 1

in the algorithm), or because it is the second packet in its queue and the head of

line departs (case 2a in the algorithm). Otherwise, if it is not head of flow but only

head of line, its head of flow needs to leave (case 2b in the algorithm). Therefore, the

algorithm below ensures that the output is work-conserving whenever there is at least

one packet that is both head of line and head of flow, and such a packet always exists

whenever the reordering buffer contains N2 + 1 packets (Theorem 25, Appendix D).

Note that there is a bounded number of steps at each time-slot, independently of N .

Also note that the algorithm at each output operates independently of other outputs.

1. Arrival: When a packet arrives at the output, it is first buffered in the queue

corresponding to its intermediate input. Assume the packet comes from input

i and intermediate input j. If queue j in the output is empty upon the arrival

of the packet, and the pointer for i designates queue j, the packet is both head

of flow and head of line. It is ready to depart in order. Therefore FOFF adds a

pointer to queue j to the pointer queue, and increments (modulo N) the pointer

for input i.

2. Departure: At each time-slot, if the pointer queue is not empty, its first pointer

designates some queue j from which the first packet can depart in order. Assume

this packet comes from input i. FOFF services this first packet, increments

(modulo N) the pointer for input i, and removes the pointer from the pointer

queue. Then, FOFF examines the two following packets, and adds them to the

pointer queue if needed:

(a) First, FOFF examines the new head-of-line packet of queue j, coming from

some input i′. If the pointer for i′ points to j, then this packet is both head

of line and head of flow. Therefore FOFF adds it to the pointer queue and

increments (modulo N) the pointer for input i′.

CHAPTER 3. PACKET REORDERING 43

(b) Then, FOFF also examines the head-of-line packet of the queue designated

by the pointer for input i, which is just j + 1 (modulo N). If this head-

of-line packet indeed comes from input i, then it is both head of line and

head of flow. Therefore, FOFF adds it to the pointer queue and increments

(modulo N) the pointer for input i.

As explained above, these steps ensure that FOFF will service packets in order.

We will now show that FOFF can also provide throughput and delay guarantees.

3.4.3 Properties of FOFF

FOFF has the following properties, which are proved in Appendix D.

• Packets leave the router in order.

FOFF bounds the amount of reordering inside the router, and requires a re-

ordering buffer that holds at most N2 + 1 packets (proof in Appendix D).

• FOFF is practical to implement.

As explained above, FOFF has an O(1) complexity, since it only needs a

bounded number of steps per time-slots, independently of N . In addition,

FOFF is distributed and operates independently in each input, intermediate

input and output. It needs no additional communication of information among

linecards.

• No pathological traffic patterns.

Like UFS, FOFF manages to avoid pathological traffic patterns that can reduce

the throughput in the basic load-balanced router. It does so by spreading

each flow evenly across the intermediate linecards. FOFF guarantees that the

cumulative number of packets sent to each intermediate linecard for a given

flow differs by at most one. This even spreading prevents a traffic pattern from

concentrating packets to any individual intermediate linecard. As a result,

FOFF guarantees 100% throughput for any arriving traffic pattern; there are

CHAPTER 3. PACKET REORDERING 44

provably no adversarial traffic patterns that reduce throughput, and the router

has the same throughput as an ideal output-queued router.

In fact, Appendix E proves an even stronger result: the average packet delay

through the router is within a constant from that of an ideal output-queued

router. This result is valid for any adversarial infinite traffic, and therefore

independent of the traffic pattern and the arrival rate. Of course, a packet

might experience a very long — or infinite — delay using FOFF. For instance,

this occurs at the input because full frames have higher priority than non-full

frames; therefore, a persistent flow with continuous full frames can prevent a

packet from leaving the input. However, Appendix E proves that the number

of such packets is bounded for any adversarial traffic. In fact, under any arrival

traffic, the number of packets that leave the load-balanced router is within a

constant of the number of packets that would leave an ideal output-queued

router.

• FOFF is practical to implement. Each input, each intermediate input and each

output require N queues. Each input and each output hold at most N2 + 1

packets per linecard (the intermediate inputs hold the congestion buffer, and

their memory size is determined by the same factors as in a shared-memory

work-conserving router). The FOFF scheme is decentralized, uses only local

information, and does not require complex scheduling.

• Priorities in FOFF are practical to implement. It is simple to extend FOFF

to support k priorities with k ·N queues in each input, intermediate input and

output. These queues could be used to distinguish different service levels or

could correspond to sub-ports.

These advantages of FOFF make it more practical to implement than the schemes

listed above. It will be the algorithm chosen in the implementations described in the

next chapter.

Chapter 4

Implementation of the Load-Balanced

Router Using Optics

In this chapter, we will design and architect a high-performance router. We will

use the example of a 100Tb/s Internet router, arranged as 640 linecards operating at

160Gb/s. First, we will show that the simple mesh architecture introduced in Chap-

ter 2 does not scale to such a high number of linecards. Therefore, we will introduce

a hierarchical mesh architecture to allow for scaling. Second, we will illustrate why

a hierarchical mesh architecture is not able to operate correctly when linecards are

introduced incrementally or are removed, as might happen in practice. Therefore, we

will introduce a new architecture based on electronic linecards and an optical switch

fabric with static MEMS. We will prove that this architecture operates without packet

conflicts. Last, we will demonstrate why this architecture is a practical choice today

for scaling routers while providing throughput and fault-tolerance guarantees.

4.1 Architecture Requirements

4.1.1 A 100Tb/s Router Example

The load-balanced router seems to be an appealing architecture for scalable routers

that need performance guarantees. In what follows we will study the architecture in

more detail. To focus our study, we will assume that we are designing a 100Tb/s

45

CHAPTER 4. IMPLEMENTATION 46

Internet router that implements the requirements of RFC 1812 [8]. The router will

be arranged as 640 linecards operating at 160Gb/s (OC-3072). We pick 100Tb/s

because it is challenging to design, is probably beyond the reach of a purely electronic

implementation, but seems possible with optical links between racks of distributed

linecards and switch fabrics. It is roughly two orders of magnitude larger than Internet

routers currently deployed, and seems feasible to build with technology available

today. We pick 160Gb/s for each linecard because 40Gb/s linecards are feasible now,

and 160Gb/s is the next logical generation.

4.1.2 Architecture Requirements

Our objective is to design an architecture for implementing a 100Tb/s router,

arranged as 640 linecards operating at 160Gb/s. We will require this architecture to

provide a 100% throughput guarantee.

Since current centralized schedulers can hardly scale to this capacity while pro-

viding throughput guarantees, we will require the router to not have any centralized

scheduler, and assume that the router has a load-balanced router architecture.

In addition, we require the router to avoid packet reordering while providing 100%

throughput. Therefore, the router will implement the FOFF algorithm introduced in

Chapter 3.

Finally, we want the router to operate correctly when populated with any number

of linecards connected to any ports. This will enable us to add linecards incrementally,

as well as provide fault-tolerance if a linecard fails.

4.1.3 Assumptions

We will assume that the router occupies multiple racks, with up to 16 linecards

per rack. In terms of optical technology, we will assume that it is possible to multiplex

and demultiplex 64 WDM (Wavelength Division Multiplexing) channels onto a single

optical fiber. We will also assume that each of these WDM channels can operate at

up to 10Gb/s.

CHAPTER 4. IMPLEMENTATION 47

4.2 The Hierarchical Mesh Architecture

4.2.1 Scaling the Number of Linecards

As seen in Chapter 2, it is possible to implement a load-balanced router with a

single mesh of link capacity 2R/N . This mesh can also be replaced by an AWGR or

a round-robin crossbar, as long as each two linecards are connected at rate 2R/N .

However, a mesh between N linecards requires N2 links, and therefore it does

not scale easily with N . In practice, using N2 optical fibers or electrical links is

impractical or too expensive. For example, a 100Tb/s router with N = 640 linecards

would need 409,600 links, each carrying data at 2R/N = 0.5 Gbps.

We could use an AWGR instead of a mesh. This would reduce the number of

fibers, and increase the data-rate carried by each. Instead of connecting to N fibers,

each linecard multiplexes onto one fiber N WDM channels, each operating at 2R/N .

However, current state-of-the-art AWGRs hardly scale beyond one hundred inputs

and outputs [11]. In addition, having 640 distinct WDM channels on the same fiber

is beyond what is practical today.

We could also try to use a round-robin active switch fabric instead. For instance,

we could use an electric crossbar, or an optical switch such as a MEMS switch [72], an

electro-optic [66] or an electro-holographic waveguide [67]. However, we would need

to reconfigure frequently such an active switch (each time a packet is transferred), and

we would run into scalability issues, since this active device would have to connect

up to 640 inputs and outputs.

Therefore, it does not seem practical to manufacture a 640-port switch from any

of these technologies. And so, to scale the router to this number of linecards, we need

to decompose the switch fabric into several smaller switch fabrics.

4.2.2 The Hierarchical Mesh

The load-balanced router needs a path to connect each input port to each output

port at a fixed uniform rate. The switch fabric could be a uniform mesh, but this

640×640 uniform mesh would have too many ports to be practical. Therefore, we will

CHAPTER 4. IMPLEMENTATION 48

Fixed
Lasers

Electronic
Switches

Group 1

LxG
Crossbar

Linecard 1

Linecard 2

Linecard L

Group 2

LxG
Crossbar

Linecard 1

Linecard 2

Linecard L

LxG
Crossbar

Linecard 1

Linecard 2

Linecard L

Group G

GxL
Crossbar

Linecard 1

Linecard 2

Linecard L

Electronic
Switches

Optical
Receivers

Group 1

GxL
Crossbar

Linecard 1

Linecard 2

Linecard L

Group 2

GxL
Crossbar

Linecard 1

Linecard 2

Linecard L

Group G

1

2

G

1

2

G

1

2

G

1

2

G

1

2

G

1

2

G

Figure 4.1: Hierarchical mesh architecture.

reduce this uniform mesh into a uniform mesh connecting a smaller number of ports

of larger bandwidth. In order to do so, we will group together many linecards. Then,

instead of establishing a mesh between linecards, we will establish a mesh between

groups.

Figure 4.1 illustrates such a hierarchical approach, called the hierarchical mesh

architecture. The N linecards are grouped together into G groups (or racks) of L

linecards each. A uniform mesh connects together the G groups. Within each group,

traffic from the linecards is multiplexed at the input side and demultiplexed at the

output side, for instance with a round-robin crossbar. The hierarchical mesh uses

electronics in the groups (racks), and could use optical links between the racks for

the mesh. Therefore, it needs G fixed lasers per input-side crossbar, and G optical

receivers per output-side crossbar. Since each transmitting group multiplexes traffic

from L linecards sending at rate 2R and spreads it among G groups, the capacity of

each link is 2RL
G

.

CHAPTER 4. IMPLEMENTATION 49

Fixed
Lasers

Electronic
Switches

Group 1

LxG
Crossbar

Linecard 1

Linecard 2

Linecard L

GxL
Crossbar

Linecard 1

Linecard 2

Linecard L

Electronic
Switches

Optical
Receivers

Group 1

1

2

G

1

2

G

Figure 4.2: Hierarchical mesh architecture populated with only the first group.

4.3 The MEMS-Based Architecture

4.3.1 Mesh Decomposition as a Sum of Matches

The hierarchical mesh architecture satisfies all the requirements but one: it is not

able to operate correctly when populated with any number of linecards that can be

connected to any ports.

Assume for instance that the first group is populated with linecards, and all other

groups are empty, as illustrated in Figure 4.2. This could occur for example when the

router is populated incrementally, when multiple linecards need to be removed from

the router, or when multiple linecards fail. All the traffic from the first transmitting

group will be sent to the first receiving group, and spread uniformly across its receiving

linecards. Therefore, the first transmitting group needs to send 2RL amount of traffic,

because it multiplexes L streams running at rate 2R. However, the link capacity

determined earlier is only 2RL
G

. Therefore, the capacity of the uniform mesh is not

sufficient to switch the traffic sent by the first transmitting group. We need to find a

way of providing enough capacity for the traffic.

The capacity of the hierarchical mesh is not sufficient to switch traffic because

when groups become empty, the links destined to them are not used. Since the mesh

is fixed, the capacity of those links cannot be reoriented towards the groups that do

have linecards. Therefore, we need to be able to move those links when needed. We

do this by replacing the mesh with M matches between the transmitting groups and

the receiving groups. Each match implements a one-to-one connection between the

CHAPTER 4. IMPLEMENTATION 50

First-Stage

GxG
Middle
Switch

Group 1

LxM
Local

Switch

Linecard 1

Linecard 2

Linecard L

Group 2

LxM
Local

Switch

Linecard 1

Linecard 2

Linecard L

LxM
Local

Switch

Linecard 1

Linecard 2

Linecard L

Group G

MxL
Local

Switch

Linecard 1

Linecard 2

Linecard L

Final-Stage

Group 1

MxL
Local

Switch

Linecard 1

Linecard 2

Linecard L

Group 2

MxL
Local

Switch

Linecard 1

Linecard 2

Linecard L

Group G

GxG
Middle
Switch

GxG
Middle
Switch

GxG
Middle
Switch

1

2

3

M

Middle-Stage

1

2

3

M

1

2

3

M

1

2

3

M

1

2

3

M

1

2

3

M

1

2

3

M

Figure 4.3: Partitioned switch fabric.

transmitting groups and the receiving groups. While the mesh is always fixed, the

matches change when the linecard configuration changes, and remain fixed otherwise.

Figure 4.3 illustrates how the matches are implemented by using M middle-stage

non-blocking switches. As shown in the figure, each transmitting group in the input

side multiplexes traffic from its linecards. It then spreads traffic across the receiving

groups using the M middle stages. Each of the M middle stages implements one

of the M matches. Finally, the receiving groups in the output side demultiplex

the incoming traffic and spread it uniformly among their linecards. We will later

determine the value of M , prove that the M matches provide sufficient capacity, and

provide more implementation details.

As an example, assume that the mesh is uniform. Then we could use G matches,

as illustrated in Figure 4.4(a). The first match would be represented by the identity

matrix. Implemented in the first middle-stage switch, it statically connects sending

group 1 to receiving group 1, sending group 2 to receiving group 2, and so on. Each

other match would rotate its configuration by one. For instance, the second match in

CHAPTER 4. IMPLEMENTATION 51

= + +

≤

2RL 2R

L * 2R
2R

(a)

(b)

Figure 4.4: Decomposition of a mesh into matches, with (a) a uniform mesh having
all groups, and (b) a mesh with a single group.

the second switch connects sending group 1 to receiving group 2, sending group 2 to

receiving group 3, etc. The third match connects sending group 1 to receiving group

3, and so on. Therefore, the matches are the G round-robin permutations, and their

sum is the uniform matrix. In this case, M = G.

As another example, assume again that all groups but the first one fail. As shown

in Figure 4.4(b), we can then use L matches, each connecting the first transmitting

group to the first receiving group at rate 2R. This will then provide the needed

capacity of 2RL between the transmitting group and the receiving group.

4.3.2 Using MEMS Switches

The MEMS-based switch fabric is a straightforward implementation of the de-

sign described above and is represented in Figure 4.5. As before, the architecture is

arranged as G groups of L linecards. In the center, M statically configured G × G

MEMS switches interconnect the G groups. MEMS switches are the optical equivalent

of crossbars. MEMS switches use micromirrors to reflect optical beams from inputs

to outputs and are independent of wavelength and data-rate. Typical reconfiguration

CHAPTER 4. IMPLEMENTATION 52

Fixed
Lasers

Electronic
Switches

GxG
MEMS

Group 1

LxM
Crossbar

Linecard 1

Linecard 2

Linecard L

Group 2

LxM
Crossbar

Linecard 1

Linecard 2

Linecard L

LxM
Crossbar

Linecard 1

Linecard 2

Linecard L

Group G

MxL
Crossbar

Linecard 1

Linecard 2

Linecard L

Electronic
Switches

Optical
Receivers

Group 1

MxL
Crossbar

Linecard 1

Linecard 2

Linecard L

Group 2

MxL
Crossbar

Linecard 1

Linecard 2

Linecard L

Group G

GxG
MEMS

GxG
MEMS

GxG
MEMS

1

2

3

M

Static
MEMS

1

2

3

M

1

2

3

M

1

2

3

M

1

2

3

M

1

2

3

M

1

2

3

M

Figure 4.5: MEMS-based architecture.

times of MEMS switches are 1-10ms [66, 72]. Note that the MEMS switches are re-

configured only when a linecard is added or removed and provide the ability to create

the needed paths to distribute the data to the linecards that are actually present.

Each transmitting group of linecards spreads packets over the MEMS switches using

an L × M electronic crossbar. Each output of the electronic crossbar is connected

to a different MEMS switch over a dedicated fiber at a fixed wavelength. Packets

from the MEMS switches are spread across the L linecards in a group by an M × L

electronic crossbar.

In the remainder of this chapter, we will assume that all the lines in Figure 4.5

have capacity 2R. We will explain with more detail in Section 4.5 how to implement

these line rates in practice.

CHAPTER 4. IMPLEMENTATION 53

4.4 Linecard Schedule

While we described the MEMS-based architecture, we did not specify how many

MEMS switches are needed, nor how packets could be scheduled without collisions.

We will now formally introduce these problems, and then propose a possible solution.

4.4.1 Determining the Number of MEMS Switches

Consider a simple load-balanced router with just three linecards. Figure 4.6(a)

shows three linecards connected as a full mesh; each linecard sends at rate 2R/3 to

every other linecard. Now partition the linecards into two groups, A and B, with

two linecards in group A and one linecard in group B, as shown in Figure 4.6(b).

We will determine how the electronic crossbars and MEMS switches are configured

so that each pair of linecards is connected at rate 2R/3. Group A needs to send at

an aggregate rate of 8R/3 to group A, and 4R/3 to group B; group B needs to send

at rate 4R/3 to group A and 2R/3 to group B. Since we assumed that each crossbar

output can send at maximum rate 2R through a given MEMS switch, we require two

MEMS switches to connect group A to group A. We therefore need a total of three

MEMS switches, two arranged in the straight configuration and one arranged in the

cross configuration. The correct configurations of the MEMS switches are shown in

Figure 4.6(c).

Assume we pick the static configuration for each MEMS switch. Our objective is

to determine the order in which the transmitting linecards will send packets for the

receiving linecards. We want each sending linecard to spread packets uniformly over

receiving linecards. We also want to avoid that packets conflict by using the same

line at the same moment. To do so, we will adopt a frame-based mechanism. We will

select a frame of packets sent by linecards and a frame of permutations followed by

the electronic crossbars. Then, we will instruct each linecard and each crossbar to

cycle repeatedly through these frames.

Let us illustrate what conflicts could occur in a frame. Consider the example

in Figure 4.6 again. Since each sending linecard needs to spread its data uniformly

over the three receiving linecards, the frame will have three slots. In the frame, each

CHAPTER 4. IMPLEMENTATION 54

(a)

(b)

(c)

Linecard 1

Linecard 2

Linecard 3

Linecard 1

Linecard 2

Linecard 3

2R/3

Linecard 1

Linecard 2

Linecard 3

Linecard 1

Linecard 2

Linecard 3

8R/3

4R/34R/3

2R/3

Linecard 1

Linecard 2

Linecard 3

2x3
Crossbar

2x3
Crossbar

3x2
Crossbar

3x2
Crossbar

Linecard 1

Linecard 2

Linecard 3

Static
MEMS

4R/3

4R/3

4R/3

2R/3

4R/3

Group A

Group B

Group A

Group B

Group A

Group B

Group A

Group B

Figure 4.6: Example of a MEMS-based switch architecture with three linecards in
two groups. (a) A full linecard mesh logical view. (b) Group B is not fully populated,
so the rates between groups are different. (c) The configuration of MEMS switches
to achieve the required rates.

CHAPTER 4. IMPLEMENTATION 55

sending linecard will send exactly one packet to each of the three receiving linecards.

Then, a conflict could occur when two sending linecards send a packet to the same

receiving linecard at the same time, since these two packets would collide at the

receiving linecard. A conflict could also occur when two sending linecards from the

same sending group send packets to two receiving linecards from the same receiving

group using the same MEMS switch. In this case, these packets would collide on the

line linking the crossbar to the MEMS switch. Therefore, some conflicts are specific to

linecards, while others are specific to MEMS switches. The algorithm that determines

the frame needs to be aware of these different types of conflicts, which can only make

the algorithm more complex.

We will now first formally describe the problem. Then, we will determine the

minimum number of MEMS switches needed. Finally, we will introduce an algorithm

that will provably construct a correct frame in polynomial time, and we will show

some results on its running speed.

4.4.2 The Linecard Schedule Problem

We will assume throughout this chapter that there are G groups; group i contains

Li linecards, and the total number of linecards is:

N =
G∑

i=1

Li.

We will assume that L1, L2, ..., LG are fixed for a given linecard arrangement.

During every frame of N time-slots each sending linecard needs to be connected

exactly once to each of the N receiving linecards. Similarly, each receiving linecard

needs to be connected exactly once to each of the N sending linecards. Furthermore,

in every time-slot, each sending linecard cannot connect to more than one receiving

linecard, and vice-versa.

Put mathematically, if sending linecard i is connected to receiving linecard Tij in

time-slot j, then:

CHAPTER 4. IMPLEMENTATION 56

Tij′ 6= Tij for all j′ 6= j

Ti′j 6= Tij for all i′ 6= i

Tij ∈ {1, ..., N} for all i, j

We will call T the linecard schedule. T is a Latin square, i.e., the numbers from 1

to N appears exactly once in every row and every column. We will refer to a time-slot

as a column.

For instance, let us assume that L1 = 3, L2 = 2, and L3 = 2 (i.e., G = 3, N = 7).

Then the following is a linecard schedule:

T =

1 2 3 4 5 6 7

2 3 4 5 6 7 1

3 4 5 6 7 1 2

4 5 6 7 1 2 3

5 6 7 1 2 3 4

6 7 1 2 3 4 5

7 1 2 3 4 5 6

The last constraint arises from the use of MEMS switches in the MEMS-based

architecture. Let Li represent the number of linecards in group i. The rate needed

between group i and group j is equal to

(Li · 2R) · (Lj/N), where 1 ≤ i, j ≤ G.

This is because the incoming traffic is spread uniformly over all N receiving linecards,

and group j receives a portion (Lj/N) of this traffic. As assumed above, two groups

can only communicate at a rate up to 2R through any single MEMS switch. Therefore,

the minimum number of MEMS switches between group i and group j is:⌈
Li · 2R · Lj

N
· 1

2R

⌉
=

⌈
Li · Lj

N

⌉
.

We will call this the MEMS constraint.

CHAPTER 4. IMPLEMENTATION 57

Matrix T above does not meet the MEMS constraint because the maximum num-

ber of connections allowed between transmitting group 1 and receiving group 1 at any

time-slot is
⌈

3·3
7

⌉
= 2. This is not satisfied in the first time-slot, because transmitting

group 1 has three connections to receiving group 1 (more specifically to receiving

linecards 1, 2 and 3). Similarly the second and third groups do not meet the con-

straint.

4.4.3 Number of MEMS Switches Needed for a Linecard

Schedule

The following theorem shows how many MEMS switches are needed in order to

build a linecard schedule that satisfies the MEMS constraint.

Theorem 10 We need at least

α =
G∑

j=1

⌈
L · Lj

N

⌉
≤ L + G− 1

static MEMS switches in order to build a linecard schedule that satisfies the MEMS

constraint, where L = maxi(Li).

Proof: A MEMS switch can connect a sending group to at most one receiving

group, and the minimum number of MEMS switches needed to connect sending group

i to all receiving groups is:
G∑

j=1

⌈
Li · Lj

N

⌉
.

In particular, assume that the largest group has L = maxi(Li) linecards. Then the

total number of MEMS switches needed by the largest group to connect to all receiving

groups is at least:

α =
G∑

j=1

⌈
L · Lj

N

⌉
<

G∑
j=1

(
L · Lj

N
+ 1

)
= L + G.

Because α, L and G are integers, α ≤ L + G− 1.

CHAPTER 4. IMPLEMENTATION 58

Therefore we need at most L + G− 1 static MEMS switches to create a uniform

mesh with any linecard arrangement.

In our example with L1 = 3, L2 = 2, and L3 = 2,

α =

⌈
3 · 3
7

⌉
+

⌈
3 · 2
7

⌉
+

⌈
3 · 2
7

⌉
= 4.

It is clear that α ≤ L + G− 1 = 5. It is also possible to reach the upper bound with

a different linecard configuration where L = 3 and G = 3, for instance with L1 = 3,

L2 = 3, and L3 = 2.

4.4.4 Valid Schedules

Linecard Schedule

Our goal is to find an algorithm that works with exactly α MEMS switches, where

α ≤ L+G− 1. To help illustrate such an algorithm, we will introduce three different

types of schedules: (1) linecard-to-linecard, (2) linecard-to-group, and (3) group-to-

group schedules. As described in the definitions below, the first part of the schedule

name represents whether the schedule determines the specific sending linecards or only

the sending groups, and the second part of the name specifies whether the schedule

determines the specific receiving linecards or only the receiving groups. For instance,

a linecard-to-group schedule will determine which linecard will send to which receiving

group in each column.

Definition 1 A linecard-to-linecard (L-L) schedule T is a matrix with N rows cor-

responding to the N sending linecards, N columns corresponding to the N time-slots

of the frame, and one receiving linecard index per row-column intersection.

Note that a linecard-to-linecard schedule is the same as a linecard schedule.

Definition 2 An L-L schedule T is said to be valid iff a receiving linecard appears

exactly once in every row and column of T , and at most
⌈

Li·Lj

N

⌉
receiving linecards

from group j are connected to sending linecards from group i in any column of T

(MEMS constraint).

CHAPTER 4. IMPLEMENTATION 59

In other words, T is a valid L-L schedule if it is a Latin square satisfying the

MEMS constraints. Here is an example of valid L-L schedule.

T =

1 4 2 6 3 5 7

2 6 1 5 7 3 4

4 3 7 1 5 6 2

5 1 3 4 2 7 6

7 5 4 3 6 2 1

3 2 6 7 1 4 5

6 7 5 2 4 1 3

Notice that the MEMS constraint used in Definition 2 applies to groups, not

linecards. For instance, the example matrix T is not allowed to have more than

two receiving linecards from the first group in the first three rows in any column.

Therefore, in order to build L-L schedules, we cannot only consider the constraints

on linecards, but also need to take into account the constraints on groups. The MEMS

constraint makes the linecard schedule problem non-trivial.

We will show that it is possible to build a valid group-to-group schedule that

only considers constraints on groups, and then successively build a valid linecard-to-

group schedule and finally a valid linecard-to-linecard schedule that incorporates the

constraints on linecards. We will define and provide examples for these schedules

below.

Linecard-to-Group Schedule

Definition 3 A linecard-to-group (L-G) schedule U is a matrix with N rows corre-

sponding to the N sending linecards, N columns corresponding to the N time-slots of

the frame, and one letter per row-column intersection corresponding to the receiving

group.

Definition 4 An L-G schedule U is said to be valid iff the ith letter appears exactly

Li times in each row and each column, and at most
⌈

Li·Lj

N

⌉
times in the linecards of

group i in any column of U (MEMS constraint).

CHAPTER 4. IMPLEMENTATION 60

Here is an example of a valid L-G schedule, applied again to the same linecard

configuration.

U =

A B A C A B C

A C A B C A B

B A C A B C A

B A A B A C C

C B B A C A A

A A C C A B B

C C B A B A A

Notice that matrix U is the same as matrix T except that the receiving linecard

indices are replaced with the letters corresponding to the receiving linecard group.

Group-to-Group Schedule

Definition 5 A group-to-group (G-G) schedule V is a matrix with G rows corre-

sponding to the G sending linecard groups, N columns corresponding to the N time-

slots of the frame, and Li letters per row-column intersection in row i.

Definition 6 A G-G schedule V is said to be valid iff the ith letter appears exactly

Li · Lj times in each row j (corresponding to sending group j), Li times in each

column, and at most
⌈

Li·Lj

N

⌉
times in any row-column intersection in row i (MEMS

constraint).

Here is an example of a valid G-G schedule, applied again to the same linecard

configuration.

V =

AAB ABC AAC ABC ABC ABC ABC

BC AB AB AB AC AC AC

AC AC BC AC AB AB AB

Notice that one can get matrix V by grouping together the rows corresponding to

the same group in matrix U.

CHAPTER 4. IMPLEMENTATION 61

Schedule Equivalence Theorem

Given a valid L-L schedule, we can easily deduce a valid L-G schedule, and then

a valid G-G schedule. However, it is not obvious how to create a valid L-L schedule

from a valid G-G schedule. The following theorem, which is proved in Appendix F.1,

shows that we can.

Theorem 11 Consider the following three schedules:

(i) A valid linecard-to-linecard (L-L) schedule T

(ii) A valid linecard-to-group (L-G) schedule U

(iii) A valid group-to-group (G-G) schedule V

Given one schedule we can create the other two: (L-L)⇔(L-G)⇔(G-G).

We will now show how to construct a valid G-G schedule, hence proving that it

is always possible to obtain a linecard schedule that satisfies the MEMS constraint.

4.4.5 Constructing a Valid G-G Schedule

Algorithm for Constructing a Valid G-G Schedule

We will now construct an algorithm that recursively builds a valid group schedule

time-slot after time-slot, for the N time-slots of the frame. We will then show in

Appendix F.2 that the algorithm finds a valid solution, and that it has a polynomial

complexity.

At the start:

Let t be the number of time-slots left to schedule after each iteration. At the

start, t = N , since all the time-slots are unscheduled. Also, let M
4
= M t = MN be

the initial matrix of all the elements that need to be scheduled. Its rows represent

the sending groups, its columns the receiving groups (letters “A”, “B”, ...). At the

start, for all i, j, Mij = Li · Lj, i.e., there are Li · Lj connections to schedule from

sending group i to receiving group j during the whole frame.

Iteratively:

For t = N, N − 1, ..., 1, proceed as follows.

CHAPTER 4. IMPLEMENTATION 62

1. For each i, j, do the decomposition of M t
ij in base t: M t

ij = t × P t
ij + Qt

ij (i.e.,

P t =
⌊

1
t
M t
⌋
, Qt = M t − t × P t). In this iteration, we will start by scheduling

P t, and then consider the remainder Qt and schedule a part of it such that all

the constraints are satisfied.

Intuitively, our objective is to uniformly spread traffic between any two groups

across the different time-slots, so that no MEMS switch receives more traffic

than it can handle at any precise time-slot. Since we want to schedule M t as

uniformly as possible among the next t time-slots, we will attempt to schedule
1
t
-th of it in the next time-slot. Therefore, we first decompose M t as the sum

of t× P t and Qt. Then, we schedule exactly P t at this time-slot, and consider

what part of Qt needs to be scheduled to satisfy the scheduling constraints.

2. Define the vectors at and bt such that at
i =

∑G
j′=1 Qt

ij′

t
for all i

bt
j =

∑G
i′=1 Qt

i′j
t

for all j

at and bt are integer vectors (proved in Appendix F.2). at and bt represent the

amount of traffic that should be sent from (and received by) each group at the

next time-slot out of the remainder matrix Qt.

3. Find a 0-1 matrix Rt ≤ Qt such that:
∑G

j′=1 Rt
ij′ = at

i for all i∑G
i′=1 Rt

i′j = bt
j for all j

Rt
ij ∈ {0, 1} for all i, j

The first two conditions state that each group sends and receives the correct

amount of traffic in the next time-slot, so that the schedule remains valid.

The last condition is a technical condition used in the proof. The proof in

Appendix F.2 shows that Rt exists (it uses graph theory for proof of existence,

and the Ford-Fulkerson max-flow algorithm for constructing it).

CHAPTER 4. IMPLEMENTATION 63

Table 4.1: Example of application of the algorithm for constructing a valid G-G
schedule

M7 =

 9 6 6
6 4 4
6 4 4

 , P 7 =

 1 0 0
0 0 0
0 0 0

 , Q7 =

 2 6 6
6 4 4
6 4 4

 , R7 =

 1 1 0
0 1 1
1 0 1

 , S7 =

 2 1 0
0 1 1
1 0 1

 .

M6 =

 7 5 6
6 3 3
6 4 3

 , P 6 =

 1 0 1
1 0 0
0 0 0

 , Q6 =

 1 5 0
0 3 3
6 4 3

 , R6 =

 0 1 0
0 1 0
1 0 1

 , S6 =

 1 1 1
1 1 0
1 0 1

 .

M5 =

 6 4 5
5 2 3
4 4 2

 , P 5 =

 1 0 1
1 0 0
0 0 0

 , Q5 =

 1 4 0
0 2 3
4 4 2

 , R5 =

 1 0 0
0 1 0
0 1 1

 , S5 =

 2 0 1
1 1 0
0 1 1

 .

M4 =

 4 4 4
4 1 3
4 3 1

 , P 4 =

 1 1 1
1 0 0
1 0 0

 , Q4 =

 0 0 0
0 1 3
0 3 1

 , R4 =

 0 0 0
0 1 0
0 0 1

 , S4 =

 1 1 1
1 1 0
1 0 1

 .

For t=3,2,1: Mt =

 t t t
t 0 t
t t 0

 = t

 1 1 1
1 0 1
1 1 0

 , Rt =

 0 0 0
0 0 0
0 0 0

 and St =

 1 1 1
1 0 1
1 1 0

 .

4. Use the schedule St = P t + Rt for this time-slot. Update M t−1 = M t − St.

In other words, the amount of traffic left to schedule at the end of the time-slot

is the difference between the amount of traffic left to schedule at the start of

the time-slot and the amount of traffic scheduled during the time-slot.

Example

We build the matrix V given the schedules, St, provided in Table 4.1. More

specifically, St
ij represents the number of occurrences of the jth letter in the ith row

in column N − t + 1 of matrix V . For instance, the schedule

S7 =

2 1 0

0 1 1

1 0 1

CHAPTER 4. IMPLEMENTATION 64

helps us create the first column of V , with two A’s and one B in the first row, one B

and one C in the second row, and one A and one C in the last row. S6 will determine

the second column, S5 will determine the third column, and so on. The resulting

matrix is

V =

AAB ABC AAC ABC ABC ABC ABC

BC AB AB AB AC AC AC

AC AC BC AC AB AB AB

4.4.6 Valid L-L Schedule

We will now construct an algorithm that successively transforms a valid G-G

schedule into a valid L-G schedule, and then a valid L-G schedule into a valid L-L

schedule. This algorithm will be used in Appendix F.1 to prove Theorem 11.

From a Valid G-G Schedule to a Valid L-G Schedule

Let us start with a valid G-G schedule V . For each 1 ≤ j ≤ G, consider row j in

V . In our example, the first row is:(
AAB ABC AAC ABC ABC ABC ABC

)
We want to subdivide each row j into Lj sub-rows, corresponding to the subdivision

of each sending group j into Lj sending linecards, thus forming a valid L-G schedule.

First, each letter has Li · Lj occurrences in any given row of V . Arbitrar-

ily divide them into Li subscripted letters (“sub-letters”) of Lj elements. In our

example, we transform the letters of V into N arbitrarily assigned sub-letters

(A1, A2, A3, B1, B2, C1, C2). For instance, since A appears nine times in the first row,

we replace the A′s arbitrarily with three A1’s, three A2’s and three A3’s:(
A1A1B1 A1B1C1 A2A2C1 A2B1C1 A3B2C2 A3B2C2 A3B2C2

)
In row j of matrix V , each of the N sub-letters has Lj occurrences, and each of

the N columns has Lj elements. We can form a new matrix that has sub-letters as

CHAPTER 4. IMPLEMENTATION 65

inputs and columns as outputs. In this new matrix, all columns and all rows have Lj

elements. In our example, the new matrix for the first row of V is :

col.1 col.2 col.3 col.4 col.5 col.6 col.7

A1 2 1 0 0 0 0 0

A2 0 0 2 1 0 0 0

A3 0 0 0 0 1 1 1

B1 1 1 0 1 0 0 0

B2 0 0 0 0 1 1 1

C1 0 1 1 1 0 0 0

C2 0 0 0 0 1 1 1

We can now apply the Birkhoff-von Neumann decomposition theorem to this ma-

trix, by decomposing it into a sum of Lj permutations [12, 19].1 By reading column

after column, each of the Lj permutations gives a sequence of sub-letters that corre-

sponds to a row of the desired L-G schedule. Therefore, the Lj permutations yield

the Lj rows of the L-G schedule corresponding to group j. In our example, the first

permutation could be:

col.1 col.2 col.3 col.4 col.5 col.6 col.7

A1 1 0 0 0 0 0 0

A2 0 0 1 0 0 0 0

A3 0 0 0 0 1 0 0

B1 0 1 0 0 0 0 0

B2 0 0 0 0 0 1 0

C1 0 0 0 1 0 0 0

C2 0 0 0 0 0 0 1

,

1In this case, since all elements are integers, we can equivalently apply König’s edge-coloring
theorem, which states that the edge-coloring number of a bipartite graph is equal to its maximum
degree [55, 73]. Therefore, we can use graph-coloring algorithms instead [1, 26, 27, 74]. Note that
the Slepian-Duguid algorithm is also a practical alternative for fast implementation [34, 41, 77].

CHAPTER 4. IMPLEMENTATION 66

yielding the first row of:
A1 B1 A2 C1 A3 B2 C2

A1 C1 A2 B1 C2 A3 B2

B1 A1 C1 A2 B2 C2 A3

We finally replace each sub-letter by the corresponding letter, and get the valid

L-G schedule. Upon examination of the algorithm, it is clear that we only permute

letters within the same column of the same sending group, thus yielding a valid L-G

schedule. In our example, the resulting L-G schedule is:

U =

A B A C A B C

A C A B C A B

B A C A B C A

B A A B A C C

C B B A C A A

A A C C A B B

C C B A B A A

From a Valid L-G Schedule to a Valid L-L Schedule

We transformed above any valid G-G schedule into a valid L-G schedule. We will

now transform the valid L-G schedule into a valid L-L schedule.

We apply the Birkhoff-von Neumann theorem for each letter. First, we replace

each A with a “1”, and every other letter with a “0”. For our example, we get:

A 0 A 0 A 0 0

A 0 A 0 0 A 0

0 A 0 A 0 0 A

0 A A 0 A 0 0

0 0 0 A 0 A A

A A 0 0 A 0 0

0 0 0 A 0 A A

→

1 0 1 0 1 0 0

1 0 1 0 0 1 0

0 1 0 1 0 0 1

0 1 1 0 1 0 0

0 0 0 1 0 1 1

1 1 0 0 1 0 0

0 0 0 1 0 1 1

CHAPTER 4. IMPLEMENTATION 67

We then decompose the above matrix into the sum of Li different permutations,

such that the lth permutation will indicate at which times linecard l is scheduled. Since

there are exactly L1 ones (corresponding to the L1 A’s) in each row and column, this

is possible by Birkhoff-von Neumann. In our example, we can decompose the above

matrix into the sum of three permutations:

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

+

0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

+

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 1

Applying this method to each letter, we then create a valid L-L schedule, with

exactly one occurrence of each receiving linecard index in each row and column. In our

example, we get the following valid L-L schedule, hereby concluding the construction

process:

T =

1 4 2 6 3 5 7

2 6 1 5 7 3 4

4 3 7 1 5 6 2

5 1 3 4 2 7 6

7 5 4 3 6 2 1

3 2 6 7 1 4 5

6 7 5 2 4 1 3

4.4.7 Practical Considerations

Upon linecard failure, current network protection switching time requirements

impose that restoration time be below 50ms in order to provide a fast recovery [4,

42, 81, 82]. A Stanford student, Srikanth Arekapudi, implemented the algorithm in

CHAPTER 4. IMPLEMENTATION 68

0

5

10

15

20

25

30

35

40

0-49 100-
149

200-
249

300-
349

400-
449

500-
549

600-
639

Figure 4.7: Running time in milliseconds of the algorithm implementation, as a func-
tion of the number of linecards. The plot represents the worst-case, average and
best-case values for each range.

Verilog in order to estimate how long the algorithm takes to run in practice [5, 6].

Because of the Verilog simulation time, he also developed a cycle-accurate C-model

and verified its accuracy by comparing it with the Verilog implementation. The C-

model reports the number of clock cycles the Verilog simulation would run for. Given

an arrangement of linecards and groups, the program finds a valid linecard schedule

to configure the MEMS switches and electronic crossbars. The objective is for the

implementation to run in less than 50ms.

In the simulation, the program first selects a number of linecards between 0 and

640. Then, it spreads linecards uniformly at random over G = 40 groups, with

a maximum of 16 linecards per group. This is repeated for different linecard ranges

between 0 and 640 (e.g., a range of 50 linecards between 100 and 149). For each range,

the worst case times are collected for each run over 1000 runs. The implementation

assumes that the clock cycle is 4ns, and that the degree of parallelism can be equal

to the number of groups for the L-L and L-G schedules. It does not consider the time

required to upload and download the matrix information to/from the chips.

CHAPTER 4. IMPLEMENTATION 69

Racks of Linecards

Rack 1 Rack 2 Rack 40

16
160 Gb/s
Linecards

Electronic
Crossbars

Optical
Modules

Optical Switch Fabrics

Figure 4.8: Possible system packaging for a 100 Tb/s router with 640 linecards ar-
ranged as 40 racks with 16 linecards per rack.

Figure 4.7 illustrates the running time of this implementation in milliseconds, as

a function of the number of linecards. The main result is that the worst-case running

time for all trials was under the 50ms delay allowed for a router to recover from a

failure. Of course, a real-life implementation might make different assumptions about

the clock speed, the degree of parallelism, and so on. However, the complexity of the

algorithm seems to be roughly right, at least within an order of magnitude. (Note

that if the algorithm was too complex, we could also run the algorithm in advance

and store the results for all possible single-linecard or single-group failures.)

4.5 Practicality and Reliability of the 100Tb/s

Router

We have seen above how a load-balanced router can be implemented and scheduled

using the MEMS-based architecture. It is now worth asking: Can we build a 100Tb/s

router using this architecture, and if so, could we package it in a way that network

operators could deploy it in their network?

We believe that it is possible to build the 100Tb/s MEMS-based router with

CHAPTER 4. IMPLEMENTATION 70

LxM
Crossbar

1

LxM
Crossbar

2

LxM
Crossbar

W

Linecard 1

Linecard 2

Linecard L

Fixed
Lasers

Electronic
Switches

Optical
Multiplexer

M
ux
1

M
ux
2

M
ux
M

to
MEMS 1

to
MEMS 2

to
MEMS M

Optical
Demultiplexer

D
em

ux
1

D
em

ux
2

D
em

ux
M

from
MEMS 1

from
MEMS 2

from
MEMS M

MxL
Crossbar

1

MxL
Crossbar

2

MxL
Crossbar

W

Linecard 1

Linecard 2

Linecard L

Optical
Receivers

Electronic
Switches

1λ

1λ

1λ

2λ

2λ

2λ

Wλ

Wλ

Wλ

1λ

1λ

1λ

2λ

2λ

2λ

Wλ

Wλ

Wλ

Group 1 Group 1

(a) (b)

Figure 4.9: Bit-sliced crossbars for the MEMS-based architecture. (a) represents the
transmitting side of the switch fabric. (b) represents the receiving side of the switch
fabric.

technology available today. The system could be packaged in multiple racks as shown

in Figure 4.8, with G = 40 racks each containing L = 16 linecards, interconnected by

L + G− 1 = 55 statically configured 40× 40 MEMS switches.

To justify this, we break the question down into a number of smaller questions.

Our goal is to address the most critical issues that a system designer would consider

when building such a system. Clearly our list cannot be complete. Different systems

have different requirements, and must operate in different environments. With this

caveat, we consider the following different aspects.

4.5.1 The Electronic Crossbars

In the description of the MEMS-based architecture, we assumed that one electronic

crossbar interconnects a group of linecards, each at rate 2R = 320Gb/s. This is too

fast for a single crossbar, but we can use bit-slicing. We will assume W crossbar

slices, where W is chosen to make the serial link data-rate achievable. For example,

with W = 32, the serial links operate at a more practical 10Gb/s. Each slice would

be a 16×55 crossbar operating at 10Gb/s. This is less than the capacity of crossbars

that have already been reported [29].

Figure 4.9 shows L linecards in a group connected to W crossbar slices, each

CHAPTER 4. IMPLEMENTATION 71

operating at rate 2R/W . As before, the outputs of the crossbar slices are connected

to lasers. But now, the lasers attached to each slice operate at a different, fixed

wavelength, and data from all the slices to the same MEMS switch are multiplexed

onto a single fiber. As before, the group is connected to the MEMS switches with M

fibers. If a packet is sent on the n-th crossbar slice, it will be delivered to the n-th

crossbar slice of the receiving group. Apart from the use of slices to make a parallel

datapath, the operation is the same as before.

Each slice would connect to M = 55 lasers or optical receivers. This is probably

the most technically challenging, and interesting, design problem for this architecture.

One option is to connect the crossbars to external optical modules, but this might

lead to prohibitively high power consumption in the electronic serial links. We could

reduce power if we could directly connect the optical components to the crossbar

chips. The direct attachment (or “solder bumping”) of III-V opto-electronic devices

onto silicon has been demonstrated [56], but is not yet a mature, manufacturable

technology. Another option is to attach optical modulators rather than lasers. An

external, high powered continuous wave laser source could illuminate an array of

integrated modulators on the crossbar switch. The array of modulators modulate the

optical signal and couple it to an outgoing fiber [57].

4.5.2 Packaging 100Tb/s of MEMS Switches

We can say with confidence that the power consumption of the optical switch fabric

will not limit the router’s capacity. Our architecture assumes that a large number

of MEMS switches are packaged centrally. Because they are statically configured,

MEMS switches consume almost no power, and all 100Tb/s of switching can be easily

packaged in one rack using MEMS switches commercially available. Compare this

with a 100Tb/s electronic crossbar switch, that connects to the linecards using optical

fibers. Using today’s serial link technology, the electronic serial links alone would

consume approximately 8kW (assume 400mW and 10Gb/s per bidirectional serial

link). The crossbar function would take at least 100 chips, requiring multiple extra

serial links between them; hence the power would be much higher. Furthermore, the

CHAPTER 4. IMPLEMENTATION 72

switch needs to terminate over 20,000 optical channels operating at 10Gb/s. Today,

with commercially available optical modules, this would consume tens of kilowatts,

would be unreliable and prohibitively expensive.

4.5.3 Fault-Tolerance

The load-balanced architecture is inherently fault-tolerant. First, because it has

no centralized scheduler, there is no electrical central point of failure for the router.

The only centrally shared devices are the statically configured MEMS switches, which

can be protected by extra fibers from each linecard rack, and spare MEMS switches.

Second, the failure of one linecard will not make the whole system fail; the MEMS

switches are reconfigured to spread data over the correctly functioning linecards.

Third, the crossbars in each group can be protected by an additional crossbar slice.

4.5.4 Building 160Gb/s Linecards

We assume that the address lookup, header processing and buffering on the

linecards are all electronic. At 160Gb/s, a new minimum length 40-byte packet

can arrive every 2ns, which can be processed by a pipeline in dedicated hardware

in a 90nm ASIC process. 40Gb/s linecards are already commercially available, and

reductions in geometries and increases in clock speeds make 160Gb/s possible.

Address lookups are challenging at this speed, but pipelined lookups every 2ns for

IPv4 longest-prefix matching are feasible. For example, one could use 24Mbytes of

2ns SRAM (Static RAM) and the brute force lookup algorithm in [39] that completes

one lookup per memory reference in a pipelined implementation. Alternatively, one

could use four 40Gb/s address lookup devices in parallel.

The biggest challenge is simply writing and reading packets from buffer memory

at 160Gb/s. Router linecards contain 250ms or more of buffering so that TCP will

behave well when the router is a bottleneck, which requires the use of DRAM (dy-

namic RAM). Currently, the random access time of DRAMs is 40ns, and historically

DRAMs have increased in random access speed by only 10% every 18 months. This

CHAPTER 4. IMPLEMENTATION 73

problem is solved in [44] by designing a packet buffer using commercial memory de-

vices, but with the speed of SRAM and the density of DRAM. This technique makes

it possible to build buffers for 160Gb/s linecards and 128-byte cells.

4.5.5 Packaging 16 Linecards in a Rack

Network operators frequently complain about the power consumption of 10Gb/s

and 40Gb/s linecards today (200W per linecard is common). If a 160Gb/s linecard

consumes more power than a 40Gb/s linecard today, then it will be difficult to package

16 linecards in one rack (16 × 200 = 3.2kW). If improvements in technology do not

solve this problem over time, we can put fewer linecards in each rack, so long as

G × L ≥ 640. For example, we could halve the number of linecards per rack and

double the number of groups. This comes at the expense of slightly more MEMS

switches (M ≥ L + G− 1).

4.6 Consequences

In this chapter, we proposed an architecture for a high-performance router. With

this architecture, a router can scale to a high number of linecards. It can also oper-

ate correctly when populated with any number of linecards connected to any ports.

Finally, it can send packets without conflicts, and find a new schedule in less than

50ms in the event of a linecard failure.

All the above considerations illustrate what we set out to do: to design a 100Tb/s

load-balanced router, with guaranteed 100% throughput under all traffic conditions.

The architecture we described, including the switch fabric and the linecards, can be

built using technology available today, and fit within the power constraints required

by network operators.

Chapter 5

Conclusion

This thesis has demonstrated that it is possible today to build a 100Tb/s load-

balanced Internet router with an optical switch fabric, a 100% throughput guarantee,

and an average packet delay within a constant from the optimum for any traffic arrival

pattern. The router does not exhibit packet reordering, and needs no centralized

scheduling, no frequent exchange of state information, and no frequent switch fabric

reconfigurations.

5.1 Towards a Simpler Internet

No high-speed commercial router today can guarantee 100% throughput for all

traffic arrival patterns. Therefore, in order to obtain sufficient throughput guarantees,

network operators over-provision capacity in central offices by aggregating several

routers per central office. In addition, router capacity nearly follows Moore’s law and

doubles every 18 months [52], while Internet traffic demand is reported to be doubling

every year [63, 64]. Therefore, router capacity grows more slowly than Internet traffic

demand. Unless something changes, network operators will continue to place more

and more routers in each central office. For instance, among the network operators

considered in [78, 79], the mean central office size is 7.6, and large central offices have

over 40 routers.

However, such ad-hoc aggregations of routers do not guarantee 100% throughput

for all traffic arrival patterns. These clusters are also increasingly difficult to manage,

74

CHAPTER 5. CONCLUSION 75

and waste significant capacity interconnecting the routers. Operators would therefore

like to replace these routers with a single large router per central office.

In this thesis, we have shown that it is possible today to build a router that can

handle all traffic in a central office as well as guarantee 100% throughput for all traffic

patterns. This router is a load-balanced router.

Therefore, a direct consequence is that network operators can replace router ag-

gregates with a single router in their central offices. This single large router will

simplify the management of central offices and guarantee that they are fully utilized.

5.2 Future Directions in Load-Balanced Router

Architectures

Throughout this thesis, it has been assumed that the load-balanced router has

three stages of packet processing and buffering. First, the input stage, with address

lookup, packet processing and, at most, a small coordination buffer. Second, the

intermediate stage, with most of the packet buffering. And last, the output stage,

with at most a small reordering coordination buffer.

All these stages are realized in an electronic linecard. However, this electronic

linecard consumes power because of the optical-to-electrical and electrical-to-optical

conversions as well as because of the electrical links. In the future, designers might

want to use optics in the linecards and implement these three stages with optical

components. The use of optics will decrease power consumption and increase band-

width.

However, two functions in high-speed routers seem to be out of reach of optics

for the near future: the address lookup and the main buffering. Therefore, we can

expect router designers to group these two functions in the same stage and implement

the two other stages using optics. Since the address lookup cannot be located in the

output, there are two stages in which it is possible to group the lookup and buffering

functions: the intermediate stage and the input stage. Let us consider these two

possibilities.

CHAPTER 5. CONCLUSION 76

First, with the basic load-balanced router defined in the Introduction, it is possible

to group the lookup and buffering functions in the intermediate stage. For instance,

assuming arrivals of fixed-size packets, an optical input stage could simply point to

different outputs in a round-robin order and spread packets as they arrive. The elec-

tronic intermediate stage would implement the address lookup, packet classification

and packet buffering. Finally, the optical output stage would receive the (possibly

out-of-order) packets and forward them to the output line.

Alternatively, one promising trend in current research is to examine whether to

implement the lookup and buffering functions in the input stage. In [22], C.-S. Chang

et al. develop a scheme in which the main buffering is realized at the input stage, while

the intermediate stage only contains a small coordination buffer. Under this scheme,

the electronic input linecard can realize the address lookup, packet classification and

packet buffering functions. Then, the optical intermediate stage and the optical

output stage can simply contain a small coordination buffer. As shown in [22], this

scheme only requires that arrival traffic be admissible over consecutive frames. Thus,

this scheme would apply particularly well to periodic traffic such as SONET. In

addition, any match in an input-queued switch is admissible by definition, and can

be considered as a frame of size 1. Therefore, this scheme can also be extended to

emulate any input-queued switch.

5.3 Applying Load-Balanced Routing to Network

Design

The main function of a router is to connect N ports, where each port transmits

and receives packets at some maximum rate R. The main function of a network is to

connect N nodes, where each node transmits and receives packets at some maximum

rate R. On the face of it, the functions are identical. So could we not use the ideas

developed in the load-balanced router to implement load-balanced networks?

In fact, we could use the load-balanced router to revolutionize the design of

metropolitan area networks [53] as well as the design of the Internet backbone [87].

CHAPTER 5. CONCLUSION 77

Each node would spread its arriving traffic across all other nodes, which would forward

the traffic to its correct destination. There are many interesting properties in such

a network design. Given a uniform mesh, Chapter 2 proves that the load-balanced

router would achieve an optimal throughput. In addition, by spreading packets across

several paths, it would also achieve a greater fault-tolerance, and a better security with

respect to single-path eavesdropping. Finally, multiplexing effects would also make

traffic more predictable and less bursty. Of course, challenges remain, such as reduc-

ing packet delays. However, by providing guarantees on throughput, fault-tolerance,

security and traffic predictability, this novel backbone architecture is promising for

the future scalability and reliability of the Internet.

Appendix A

Optimality of the Biased Mesh

In this Appendix, we will prove that the biased mesh achieves the maximum possi-

ble guaranteed throughput for any possible admissible capacity matrix by establishing

Proposition 7.

It helps to study how the load-balancing is done. Let the set of load-balanced paths

PLB(i, j) = {p ∈ P (i, j) : (i → j) 6∈ p}

be the set of paths p between nodes i and j such that the link i → j is not in p.

We will call paths not in PLB(i, j) direct paths. For instance, 1 → 3 → 2 is a load-

balanced path between node 1 and node 2, whereas 1 → 2 and 1 → 1 → 2 → 2 are

direct paths.

Proposition 12 p ∈ P (i, j) satisfies one of the following two cases:

(i) If p is a direct path then (i → j) ∈ p, or

(ii) If p is a load-balanced path then there exist two nodes k and l, possibly equal,

such that k 6= i, k 6= j, l 6= i and l 6= j, such that p contains i → k and l → j.

Proof: (i) clearly follows from the definition of PLB(i, j). In (ii), by definition

of PLB(i, j), at least one node is different from i, and if node k is the first node in

path p that is different from i, then k 6= j also. Similarly, if node l is the last node in

path p that is different from j, then l 6= i also.

78

APPENDIX A. OPTIMALITY OF THE BIASED MESH 79

Using this characterization of load-balanced paths, we consider all the rate ma-

trices that are also permutation matrices, such that each node sends all its traffic to

some other node. For a permutation σ, let

S1(σ) = {i : σ(i) = i}

denote the set of nodes invariant to σ, and let

S2(σ) = {i : σ(i) 6= i} = {1, ..., N} \ S1

denote the remaining nodes. The following lemma proves a general upper bound on

the throughput θ(C) by considering the set of rate matrices that are permutation

matrices.

Lemma 13 Given a capacity matrix C, the throughput θ(C) has the following upper

bound:

θ(C) ≤ 1

2
+

1

2N
× min

σ permutation

 ∑
i∈S1(σ)

Cii +
∑

i∈S2(σ)

(Ciσ(i) − Cii)

 (A.1)

Proof: By definition of the throughput θ(C), for any permutation σ,

θ(C) ≤ θ(C, σ).

Therefore, we only need to show that for any permutation σ,

θ(C, σ) ≤ 1

2
+

1

2N

 ∑
i∈S1(σ)

Cii +
∑

i∈S2(σ)

(Ciσ(i) − Cii)

 .

Consider a given permutation σ. By definition of θ(C, σ), any node i manages to

send traffic at rate θ(C, σ) to node j = σ(i). (We know that the optimum can be

reached because the throughput θ is defined using continuous functions on compact

sets.)

APPENDIX A. OPTIMALITY OF THE BIASED MESH 80

Consider then a path p between i and j = σ(i), and distinguish between the

following cases.

1. If p 6∈ PLB(i, j), then from Proposition 12, p contributes at least T p
ij to Cij.

2. If p ∈ PLB(i, j), then by Proposition 12 there exists two nodes k and l such that

k 6= i, k 6= j, l 6= i and l 6= j, and such that p contains i → k and l → j. Hence,

p will use a rate of at least T p
ij out of the capacity Cik in order to carry the link

i → k, and will also use a rate of at least T p
ij out of the capacity Clj in order to

carry the link l → j.

Therefore, p requires a total rate of at least 2·T p
ij from the non-diagonal elements

of the capacity matrix C.

These two cases show that the link between i and j = σ(i) can use non-diagonal

capacity both with direct and load-balanced paths.

In particular, the first case studies the direct paths. It shows that the link between

i and j = σ(i) uses a rate of at least
∑

p6∈PLB(i,σ(i)) T p
iσ(i) out of Ciσ(i) for the direct

paths. This is a contribution to the non-diagonal capacity if and only if σ(i) 6= i, i.e.,

i ∈ S2(σ). Also, since the capacity for the direct link should be greater than its rate

in order to be feasible, we get

Ciσ(i) ≥
∑

p6∈PLB(i,σ(i))

T p
iσ(i). (A.2)

The second case studies the load-balanced paths. It shows that the link between i and

j = σ(i) uses a rate of at least
∑

p∈PLB(i,σ(i)) 2 ·T p
iσ(i) out of the non-diagonal elements

of C for the load-balanced paths.

As a feasibility condition, the sum of the capacities of all the non-diagonal links

should be more than the sum of all the rates required from these non-diagonal links.

Therefore, using the two cases studied above, we get

non-diagonal capacity ≥ non-diagonal required rate,

APPENDIX A. OPTIMALITY OF THE BIASED MESH 81

i.e.,

∑
i,j 6=i

Cij ≥
∑

i∈S2(σ)

∑
p6∈PLB(i,σ(i))

T p
iσ(i) +

N∑
i=1

∑
p∈PLB(i,σ(i))

2T p
iσ(i).

We now study the two sides of this equation. On the left hand side, since C is

admissible, we have

N −
∑

i

Cii ≥
∑
i,j 6=i

Cij.

On the right hand side, the sum of all the rates required from these non-diagonal

links can be rewritten as

∑
i∈S2(σ)

∑
p6∈PLB(i,σ(i))

T p
iσ(i)

+

[
N∑

i=1

 ∑
p6∈PLB(i,σ(i))

2T p
iσ(i) +

∑
p∈PLB(i,σ(i))

2T p
iσ(i)

−
N∑

i=1

∑
p6∈PLB(i,σ(i))

2T p
iσ(i)

]
= 2Nθ(C, σ)− 2

∑
i∈S1(σ)

∑
p6∈PLB(i,σ(i))

T p
iσ(i) −

∑
i∈S2(σ)

∑
p6∈PLB(i,σ(i))

T p
iσ(i),

using T = θ(C, σ) · σ and S1(σ) ∪ S2(σ) = {1, ..., N} in the last equality. Using

Equation (A.2), the sum of the non-diagonal rates can therefore be lower bounded by

2Nθ(C, σ)− 2
∑

i∈S1(σ)

Ciσ(i) −
∑

i∈S2(σ)

Ciσ(i).

Finally, we combine the equations and use the definition of S1(σ): i ∈ S1(σ) iff

σ(i) = i. We get

N −
∑

i

Cii ≥ 2Nθ(C, σ)− 2
∑

i∈S1(σ)

Cii −
∑

i∈S2(σ)

Ciσ(i).

APPENDIX A. OPTIMALITY OF THE BIASED MESH 82

Therefore,

θ(C, σ) ≤ 1

2
+

1

2N

 ∑
i∈S1(σ)

Cii +
∑

i∈S2(σ)

(Ciσ(i) − Cii)

 .

Now we consider specific permutations. For 0 ≤ k ≤ N−1, define the permutation

σk as the kth sub-diagonal, i.e., assume that node i destines all its traffic to σk(i) =

i + k mod N . We can then apply Lemma 13 to find the upper bound corresponding

to each permutation, as expressed in the following lemma.

Lemma 14 Given a capacity matrix C, the throughput θ(C) has the following upper

bounds:

θ(C) ≤ 1

2
+

∑N
i=1 Cii

2N
, (A.3)

and

θ(C) ≤ 1

2
+

min1≤k≤N(
∑N

i=1(Ci(i+k mod N) − Cii))

2N
. (A.4)

Proof: For k = 0, S1(σk) = {1, ..., N}, hence the upper-bound from Lemma 13 is
1
2
+

∑N
i=1 Cii

2N
. Similarly, for 1 ≤ k ≤ N−1, S2(σk) = {1, ..., N}, hence this upper-bound

is 1
2

+
∑N

i=1(Ciσk(i)−Cii)

2N
.

Proposition 15 If the capacity matrix C is admissible, i.e., C is a doubly sub-

stochastic matrix, then the throughput θ(C) ≤ N
2N−1

.

Proof: We will prove this by contradiction. Suppose that θ(C) > N
2N−1

. For

0 ≤ k ≤ N − 1, let

xk =
N∑

i=1

Ci(i+k mod N).

It follows from (A.3) and (A.4) that

x0 >
N

2N − 1
, (A.5)

APPENDIX A. OPTIMALITY OF THE BIASED MESH 83

and for k = 1, 2, . . . , N − 1,

xk − x0 >
N

2N − 1
. (A.6)

Therefore, we have xk > 2N
2N−1

for k = 1, 2, . . . , N − 1. Summing up for all k yields

N <
N−1∑
k=0

xk =
N∑

i=1

N∑
j=1

Ci,j.

This contradicts the assumption that the capacity matrix C is a doubly sub-stochastic

matrix.

As the biased mesh with capacity matrix Ĉ achieves the throughput N/(2N − 1),

it then follows from Proposition 15 that the biased mesh is optimal among all the

admissible capacity matrices.

Appendix B

Uniqueness of the Optimal Capacity

Matrix

In this Appendix, we will prove that the biased mesh is the only capacity matrix

that achieve the optimal throughput N/(2N − 1), and therefore we will be able to

establish Proposition 8.

Lemma 16 If an admissible capacity matrix C achieves the optimal throughput

N/(2N − 1), then the capacity matrix C satisfies

N∑
i=1

Cii =
N

2N − 1
, (B.1)

and for k = 1, 2, . . . , N − 1,

N∑
i=1

Ci(i+k mod N) =
2N

2N − 1
. (B.2)

Proof: As in the proof of Proposition 7, let

xk =
N∑

i=1

Ci(i+k mod N).

84

APPENDIX B. UNIQUENESS OF THE OPTIMAL CAPACITY MATRIX 85

If an admissible capacity matrix C achieves the optimal throughput N/(2N−1), then

we have from (A.3) and (A.4) that

x0 ≥
N

2N − 1
, (B.3)

and for k = 1, 2, . . . , N − 1,

xk ≥
2N

2N − 1
. (B.4)

If one of the inequalities in (B.3) and (B.4) is strict, then
∑N−1

k=0 xk will be strictly

larger than N and this will contradict to the assumption that C is admissible. There-

fore, we conclude that all the inequalities in (B.3) and (B.4) are in fact equalities.

Lemma 17 If an admissible capacity matrix C achieves the optimal throughput

N/(2N − 1), then for any permutation σ,

∑
i∈S2(σ)

(Ciσ(i) − 2Cii) = 0.

Proof: Equation (B.1) in Lemma 16 provides
∑

i∈S1(σ) Cii +
∑

i∈S2(σ) Cii =

N/(2N − 1) for any permutation σ. Hence, using Lemma 13, we get

N

2N − 1
≤ 1

2
+

1

2N
min

σ

 N

2N − 1
+
∑

i∈S2(σ)

(Ciσ(i) − 2Cii)

 ,

where the minimum is taken over the set of permutation matrices. Therefore, 0 ≤
minσ

(∑
i∈S2(σ)(Ciσ(i) − 2Cii)

)
, i.e., for any permutation σ,

0 ≤
∑

i∈S2(σ)

(Ciσ(i) − 2Cii).

We now use the fact that there are exactly (N − 1)! permutations σ such that

σ(i) = j for any nodes i and j. As a consequence, given a node i, there are exactly

APPENDIX B. UNIQUENESS OF THE OPTIMAL CAPACITY MATRIX 86

(N−1)! permutations σ such that i 6∈ S2(σ), i.e., such that σ(i) = i. Therefore, there

are exactly N !− (N − 1)! permutations σ such that i ∈ S2(σ). We can deduce that

∑
σ

 ∑
i∈S2(σ)

(Ciσ(i) − 2Cii)

 = (N − 1)!
∑
i,j 6=i

Cij − 2(N !− (N − 1)!)
∑

i

Cii

= (N − 1)!
∑
i,j

Cij − (2N !− (N − 1)!)
∑

i

Cii

= N !− (N − 1)! · (2N − 1) · N

2N − 1
= 0,

where we use (B.1) in the last equality. Therefore, given that the sum of all these

numbers is 0, and that they were all shown to be nonnegative, this means that they

are all null.

The next lemma enables us to determine the exact value of the diagonal elements

of C.

Lemma 18 If an admissible capacity matrix C achieves the optimal throughput

N/(2N − 1), then for all i,

Cii =
1

2N − 1
.

Proof: Pick arbitrarily any node — for instance, node 1 without loss of general-

ity. For any node j 6= 1, consider the permutation σ such that σ(1) = j, σ(j) = 1, and

the restriction of σ to the other elements is the identity. By Lemma 17, C1j + Cj1 =

2(C11 +Cjj). Summing over all such j’s yields
∑N

j=2(C1j +Cj1) =
∑N

j=2 2(C11 +Cjj).

Adding 2C11 on each side of the equation and using (B.1) and (B.2) yields

1 + 1 = 2(N − 1)C11 +
2N

2N − 1
.

Hence C11 = 1
2N−1

. Since we picked the first node arbitrarily, this is similarly true for

any node.

Proposition 19 The only matrix C that can achieve the optimal throughput

N/(2N − 1) is the capacity matrix Ĉ from the biased mesh.

APPENDIX B. UNIQUENESS OF THE OPTIMAL CAPACITY MATRIX 87

Proof: Combining Lemmas 17 and 18, for any permutation σ,
∑

i∈S2(σ) Ciσ(i) =

(2 · |S2(σ)|)/(2N − 1), where |S2(σ)| denotes the number of elements in S2(σ).

Define matrix D such that Dij = Cij for i 6= j, and Dii = 2/(2N − 1) = 2Cii.

Then all row and column sums of D are equal to 1+1/(2N −1) (because C is doubly

stochastic). In addition, for any permutation σ,

∑
i

Diσ(i) =
∑

i∈S1(σ)

Diσ(i) +
∑

i∈S2(σ)

Diσ(i) =
∑

i∈S1(σ)

Dii +
∑

i∈S2(σ)

Diσ(i)

= (2 · |S1(σ)|)/(2N − 1) + (2 · |S2(σ)|)/(2N − 1) =
2N

2N − 1
.

Hence, any permutation on D has the same sum! For any two nodes i, j, construct

two permutations equal everywhere except on {D11, Di1, D1j, Dij}. Then D11 +Dij =

Di1 + D1j. Therefore, all elements of D can be written as Dij = Di1 + (D1j −D11) =

ui + vj, where u and v are two sequences defined on {1, ..., N}. Since all row and

column sums of D are the same, all elements of D are equal; therefore, all non-diagonal

elements of C are equal, and finally C = Ĉ.

Therefore, we have finally established Proposition 8.

Appendix C

Proof that UFS Has 100% Throughput

The following useful lemma characterizes the behavior of a work-conserving server:

Lemma 20 ([18] p. 7) Consider a work-conserving server and let A(t) and B(t)

respectively denote its cumulative number of arrivals and services until time t. Assume

that its service capacity is one packet per time-slot. Then for all t ≥ 0,

B(t) = min
0≤s≤t

[A(s) + t− s].

We are ready to prove that UFS guarantees 100% throughput. Consider a given

output k. Let Ak(t), Bk(t) and Ck(t) respectively denote the cumulative number of

arrivals at the inputs, at the intermediate inputs, and at output k of the load-balanced

router, for all packets destined to output k.

Theorem 21 UFS has the same throughput as an ideal output-queued router, irre-

spective of the (infinite) arrival process.

Proof: First, note that each input can contain at most N(N − 1) packets

without having a full frame. Also, the presence of a full frame makes the input work-

conserving (within a delay bounded by N − 1). Finally, there is at most one arrival

per time-slot at each input. Therefore, when the input becomes work-conserving, it

contains at most N(N − 1)+N − 1 = N2− 1 packets (after services), and its number

of packets cannot increase further. When the input is not work-conserving anymore,

it is because there was no full frame left, and therefore the number of packets in the

88

APPENDIX C. PROOF THAT UFS HAS 100% THROUGHPUT 89

input was bounded again by N(N−1) packets. Therefore, there can be at most N2−1

packets in any input at any time (not counting the packet being serviced). Hence, the

N inputs contain at most N3 packets, and in particular at most N3 packets destined

to output k. As a consequence, for any t ≥ 0,

Bk(t) ≥ Ak(t)−N3.

(This assumes that packet transmissions are instantaneous. If packet transmission

delay is τ > 0, this result becomes Bk(t) ≥ Ak(t−τ)−N3 and the following equations

can be generalized accordingly.)

Second, let Bk
FF (t) be the number of packets in the full frames completely arrived

at the intermediate inputs. For any flow, there are at most N − 1 packets in the

intermediate queues such that their full frame has not yet completely arrived. (For

the mesh model allowing simultaneous transmissions, this number is always zero.)

Since there are at most N flows going to output k,

Bk
FF (t) ≥ Bk(t)−N(N − 1) ≥ Ak(t)−N3 −N(N − 1).

The switching stage is work-conserving whenever there is at least one full frame

completely arrived at the intermediate inputs. Therefore, the switching stage will

service at least as many packets as an hypothetical work-conserving server of unit

capacity whose arrivals would follow Bk
FF (t). Hence, using Lemma 20:

Ck(t) ≥ min
0≤s≤t

[Bk
FF (s) + t− s]

≥ min
0≤s≤t

[Ak(s) + t− s−N3 −N(N − 1)]. (C.1)

We now compare this router with an output-queued router that would have the

same arrivals. The behavior of the packets destined to output k in this output-

queued router can be modeled by a work-conserving server with arrivals Ak(t) and

deterministic constant inter-service time of 1. We will call Ck
OQ(t) the cumulative

APPENDIX C. PROOF THAT UFS HAS 100% THROUGHPUT 90

number of services of this server. Then, using Lemma 20, we get

Ck
OQ(t) = min

0≤s≤t
[Ak(s) + t− s]. (C.2)

Finally, we can compare Equation C.1 and Equation C.2:

Ck(t) ≥ min
0≤s≤t

[Ak(s) + t− s]−N3 −N(N − 1) = Ck
OQ(t)−N3 −N(N − 1).

Hence, the number of packets serviced by UFS is within a constant (with respect to

t) from the number of packets serviced by an output-queued router. This implies that

UFS always has the same throughput as an output-queued router, irrespective of the

infinite arrival process.

Appendix D

Proof that FOFF Sends Packets in Order

D.1 Intuition on the FOFF scheme

FOFF has three distinctive features that will be used in the proof. First, for

any given flow, packets leave the input stage in order. Second, this scheme is work-

conserving for frames, in the sense that every N time-slots, if there is at least one full

frame then N packets will be served in the next frame. Finally, the third feature is

that if there is no full frame left, then flows are served in round-robin, which avoids

starvation when throughput is strictly less than 1.

D.2 Assumptions

We now assume that we take a snapshot of the router every N time-slots. We will

denote this period of N time-slots as a frame slot. During every frame slot, each input

can send at most one packet to each intermediate input. Similarly, each intermediate

input can send at most one packet to each output.

We will assume that at each frame slot, the first input sends first all its packets

to the intermediate inputs, then the second input does so, and so on. Of course, the

router does not need to operate this way, but this is easier to understand conceptually.

There are two possible ways of implementing such an order. A first approach is to

define the origin of time differently for each linecard. It is then possible to evaluate

91

APPENDIX D. PROOF THAT FOFF SENDS PACKETS IN ORDER 92

the queue occupancy in each linecard in staggered time slots. A second approach is

to use shift registers, with no memory speed-up. At time slots i, N + i, 2N + i, ...,

input linecard i selects an output destination. For instance, assume that this output

is k. Over the next N time slots, input linecard i sends packets destined to output

k in a round-robin order to the N intermediate input linecards. Specifically, in time

slot i+j−1, input linecard i sends to intermediate input linecard j a packet destined

to output k. Then, the incoming packets to intermediate input linecard j are delayed

by N − j time slots. Similarly, in time slot j + k − 1, intermediate input linecard j

sends a packet destined to output linecard k. Once again, the incoming packets to

output linecard k are delayed by N − k time slots. This scheme guarantees the frame

slot snapshot model defined above with a fixed delay of N time slots for a packet to

be sent from one linecard stage to the next.

Finally, by convention, we will assume that for every frame slot, the following order

occurs: arrivals at the inputs, departures from the inputs, arrivals at the intermediate

inputs, and so on. Queue sizes are measured at the end of the frame slot.

D.3 Notations and Lemmas

A feature of the FOFF algorithm is that each of the three linecard stages can be

implemented with only N queues. This is clear for the first two stages. For the third

stage, Theorem 25 will show that the reordering buffer can be implemented with at

most N2 packets arranged into N queues, one for each intermediate input. In order to

prove it, we first introduce notations and consecutively prove several lemmas. In the

lemmas, we will show that inputs send approximately the same number of packets to

each intermediate input. This results in an occupancy that is approximately the same

in all intermediate inputs. Therefore, the reordering, which results from a difference

of queue occupancy between intermediate inputs, can be bounded. And consequently,

the reordering buffer size at the output can also be bounded.

We will assume in the remainder of the proof that the propagation delay d between

the inputs and the intermediate inputs is equal to zero. Similarly, we will also assume

that the propagation delay between the intermediate inputs and the outputs is equal

APPENDIX D. PROOF THAT FOFF SENDS PACKETS IN ORDER 93

N x N

Crossbar

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

2

N

1

2

N

1
2

N

1
2

N

1
2

N

N x N

Crossbar

1
2

N

1
2

N

1
2

N

1
2

N

1
2

N

1
2

N

Aijk(t) Bijk(t) Cijk(t) Dijk(t) Eijk(t) Fijk(t)

Figure D.1: Proof notations.

to zero as well. If this delay was a positive constant, it would change the total delay

by a constant, but would not affect any of the other results.

For 1 ≤ i, j, k ≤ N , let S(i, k) denote the set of all packets belonging to the flow

from input i to output k, and S(i, j, k) be the set of all packets in S(i, k) that are

designated to go (or already went) through intermediate input j. Clearly S(i, k) =⋃
j S(i, j, k). As shown in Figure D.1, let the couples (Aijk(t), Bijk(t)), (Cijk(t),

Dijk(t)) and (Eijk(t), Fijk(t))) denote the cumulative number of (arrivals, departures)

of packets in S(i, j, k) at the end of frame slot t at input i, intermediate input j and

output k. For instance, Bijk(t) − Aijk(t) represents the number of packets from

S(i, j, k) stored in input linecard i. Given these assumptions and notations, we have

the following equations.

First, by causality, Aijk(t) ≥ Bijk(t) ≥ Cijk(t) ≥ Dijk(t) ≥ Eijk(t) ≥ Fijk(t).

Second, the instantaneous transmission implies that Cijk(t) = Bijk(t) and

Eijk(t) = Dijk(t).

Third, in input i, arriving packets that belong to S(i, k) are sent in round-robin

order among all intermediate linecards, starting with intermediate linecard 1. For-

mally, if AS(i,k)(t) is the cumulative number of arriving packets that belong to S(i, k),

APPENDIX D. PROOF THAT FOFF SENDS PACKETS IN ORDER 94

[21] proves that:

Aijk(t) =

⌈
AS(i,k)(t) + 1− j

N

⌉
.

Therefore, given any tuple {i, j1, j2, k}, the difference between Aij1k(t) and Aij2k(t) is

bounded by 1, and Aij1k(t) can be greater only if j1 < j2. This is a general property

of round-robin scheduling. Similarly, since packets from a given flow leave inputs in

order, they are also serviced in round-robin, and therefore the same is true for Bij1k(t)

and Bij2k(t). Given the equality C(t) = B(t), it applies also to Cij1k(t) and Cij2k(t).

This proves the following lemma:

Lemma 22 For each flow, the difference in the cumulative number of arrivals at two

different intermediate inputs is bounded by 1. In addition, if an intermediate input

has more arrivals than another one, then its index must be lower.

Let Qjk(t) be the occupancy of the VOQ at intermediate input j for output k at

the end of frame slot t. Given Lemma 22, the next lemma will bound the difference

in occupancy for a given output between different intermediate input linecards.

Lemma 23 For all intermediate inputs j1, j2, output k and frame slot t:

|Qj1k(t)−Qj2k(t)| ≤ N.

Proof: Assume without loss of generality that j1 < j2. Since the link between

intermediate input j1 and output k is work-conserving at each frame slot, we have [18]:

Qj1k(t) = max
0≤s≤t

(
∑

i

[Cij1k(t)− Cij1k(s)]− (t− s)).

For instance, this maximum could be reached for some s′:

Qj1k(t) =
∑

i

[Cij1k(t)− Cij1k(s
′)]− (t− s′).

APPENDIX D. PROOF THAT FOFF SENDS PACKETS IN ORDER 95

Similarly,

Qj2k(t) = max
0≤s≤t

(
∑

i

[Cij2k(t)− Cij2k(s)]− (t− s))

=
∑

i

[Cij2k(t)− Cij2k(s
′′)]− (t− s′′).

The first consequence is:

Qj2k(t) ≥
∑

i

[Cij2k(t)− Cij2k(s
′)]− (t− s′)

=
∑

i

[Cij2k(t)− Cij2k(s
′)] + {Qj1k(t)−

∑
i

[Cij1k(t)− Cij1k(s
′)]}

= Qj1k(t) +
∑

i

{[Cij2k(t)− Cij1k(t)] + [Cij1k(s
′)− Cij2k(s

′)]}

≥ Qj1k(t) +
∑

i

{−1 + 0}

= Qj1k(t)−N.

Similarly, the second consequence is:

Qj1k(t) ≥ Qj2k(t) +
∑

i

{[Cij1k(t)− Cij2k(t)] + [Cij2k(s
′′)− Cij1k(s

′′)]}

≥ Qj2k(t) +
∑

i

{0− 1}

= Qj2k(t)−N.

Hence |Qj1k(t)−Qj2k(t)| ≤ N .

Since packets from a given flow can traverse different intermediate input linecards,

it is possible that packets will arrive at the output linecards out-of-order. The next

lemma bounds the amount of reordering for a given flow.

Lemma 24 If two packets p1 and p2 belong to S(i, k), and p1 arrives at input i before

p2, then p1 will arrive at output k at most N frame slots after p2.

Proof: If a packet p1 from S(i, k) arrives at intermediate input j1 at t1, it will

leave the intermediate input at t1 +Qj1k(t1) because of the work-conserving property

APPENDIX D. PROOF THAT FOFF SENDS PACKETS IN ORDER 96

mentioned above. Since packets of the same flow leave the input stage in order, a

packet p2 from S(i, k) arriving later at input i will thus arrive at intermediate input

j2 at t2 ≥ t1. As a result, p2 will leave j2 at

t2 + Qj2k(t2) = t1 + Qj2k(t1) +

[t2 − t1 + Qj2k(t2)−Qj2k(t1)]

≥ t1 + Qj2k(t1)

(by the work-conserving property). Hence p2 will not leave the intermediate input

before t1 +Qj1k(t1)+(Qj2k(t1)−Qj1k(t1)) ≥ t1 +Qj1k(t1)−N . Therefore p1 will leave

the intermediate stage at most N frame slots after p2 leaves.

D.4 Theorem

The following theorem shows how the reordering buffer can be implemented with

only N queues and N2 packets.

Theorem 25 If there are N2 + 1 packets in the queue, the head-of-line packet of at

least one of the N queues can be sent while keeping packets in order. Therefore, the

reordering buffer size needs to be at most N2 (N2 +1 if including the packet currently

being serviced) in order for packets to leave the router in order.

Proof: As assumed above, at output k, during a given frame slot, we first

have up to N arrivals from the N intermediate inputs, and then we have up to N

departures. We will of course assume that packets can only depart in order.

We will show that whenever the number of packets queued in a given output k is

strictly bigger than N2, the output is work-conserving, i.e., the head-of-line packet

of at least one of the N queues can depart while keeping packets ordered. Since the

number of arrivals cannot exceed the number of departures when the output is work-

conserving, this would clearly show that the queue occupancy of output k is bounded

by N2. As a consequence, we would only need a reordering buffer size of at most N2

in order for packets to leave the router in order.

APPENDIX D. PROOF THAT FOFF SENDS PACKETS IN ORDER 97

p2

hol1p1

hol2hof1

hol3=
hof3

hof2

j1

j3

j2

Figure D.2: View of the reordering buffer of output k. In this example, the head of
line of queue j3 is also head of flow, and therefore can leave the output without any
packet reordering

Assume that there are more than N2 packets queued in a given output k at frame

slot t. Since at most N packets could arrive at output k in one frame slot, by the

pigeonhole principle at least one of the packets queued did not arrive in the last N

frame slots. Call this packet p2, and let i be such that p2 ∈ S(i, k). By Lemma 24,

the head of flow p1 of p2 is also necessarily queued in output k, in some queue j1.

Therefore, there is at least one head of flow queued in output k if there are more than

N2 packets in output k.

We now show that there is at least one head of flow in the router that is also head

of line of one of the queues in output k. This will prove that the head-of-line packet

of at least one of the N queues can depart while keeping packets in order.

Given the above assumption, if packet p1 is head-of-line for its intermediate input

j1, then p1 can depart. Otherwise, consider the head-of-line for j1, hol1, which has

already arrived at output k (illustrated in Figure D.2). If hol1 is a head of flow, it can

depart. Otherwise, let hof1 be the head of the flow of hol1, which went through some

intermediate input j2. We now show that hof1 is queued in output k. We know that

hof1 arrived at its intermediate input no later than hol1, because they are from the

same flow. In addition, hol1 arrived before p1, because they went through the same

APPENDIX D. PROOF THAT FOFF SENDS PACKETS IN ORDER 98

intermediate input. Finally, p1 arrived no later than p2 (same flow). Therefore, hof1

reached the intermediate inputs before p2. By Lemma 23, since p2 arrived at output

k by frame slot t−N , hof1 must have arrived at output k by frame slot t. Therefore,

hof1 must be queued in output k.

Again, if hof1 is the head-of-line for its intermediate input j2, hof1 can depart.

Otherwise, consider hol2, the head of line for hof1. If hol2 is head of flow, it can

depart. Otherwise, consider the head of flow for hol2, hof2, which went through some

intermediate input j3. By repeating the same method, we can continue considering

the head of flow of the head of line for successive intermediate inputs j1, j2, j3,

Since each new head of flow arrived strictly before the one previously considered, the

algorithm cannot visit the same intermediate input twice. Given that there are only

N intermediate inputs, the algorithm must converge towards a packet that is both

head of flow and head of line. This packet can then depart while keeping packets in

order.

Appendix E

Proof of Average Packet Delay with FOFF

Our objective is to prove that the average packet delay through a load-balanced

router using FOFF is within a constant of the average packet delay through a (work-

conserving) output-queued router, assuming that both are defined.

In the proof, we will consider some arrival sequence A(t). Given this arrival

sequence, we will assume that the average delay through a work-conserving router

is defined and finite, and will attempt to prove that, if defined, the average delay

through the load-balanced router is within a constant of the average delay for a work-

conserving router. The proof will rely on several lemmas. These lemmas will consider

the effect of using delay lines on the departures from a work-conserving router, and

try to compare the load-balanced router with work-conserving routers using delay

lines.

Throughout the lemmas, let B(t){A(t)} denote the cumulative number of departures

in a router with cumulative arrival traffic A(t). For instance, by Lemma 20, in a

work-conserving router (noted WC), the cumulative number of departures B(t)WC
{A(t)}

satisfies:

B(t)WC
{A(t)} = min

0≤s≤t
[A(s) + t− s]. (E.1)

Two routers S1 and S2 are defined as equal if they have the same number of

packet departures for the same arbitrary packet arrivals, irrespective of the packet

order. In other words, the two routers are equal if their respective cumulative numbers

99

APPENDIX E. PROOF OF AVERAGE PACKET DELAY WITH FOFF 100

of departures satisfy for all sequences {A(t)}:

B(t)1
{A(t)} = B(t)2

{A(t)}.

Similarly, a router S1 is said to be better than another router S2 if for any arrival

traffic A(t), and for any time-slot, S1 has at least as many departures as S2. This

will be noted as

B(t)1
{A(t)} ≥ B(t)2

{A(t)}.

For instance, a work-conserving router is known to be better than any router of output

capacity 1.

The following lemma will prove that it is possible to permute work-conserving

routers and delay lines, and still get equal systems.

Lemma 26 Consider a first system S1 comprising a work-conserving router followed

by delay lines of delay d, noted as S1 = (WC, DL(d)) (where DL(d) represents a De-

lay Line of duration d ≥ 0). Similarly, consider a second system S2 comprising delay

lines of delay d followed by a work-conserving router, noted as S2 = (DL(d), WC).

Then S1 and S2 are equal.

Proof: Let A denote the cumulative number of arrivals at each router, with

A(0) = 0. Let B1 (resp. B2) denote the cumulative number of departures from each

system. For t ≥ d,

B1(t) = B(t− d)WC
{A(t)} = min

0≤s≤t−d
[A(s) + (t− d)− s],

and

B2(t) = B(t)WC
{A(t−d)} = min

0≤s≤t
[A(s− d) + t− s].

But then, using u = s− d,

B2(t) = min
−d≤u≤t−d

[A(u) + t− (u + d)] = min
−d≤u≤t−d

[A(u) + (t− d)− u].

Comparing this with the expression of B1(t), we thus just need to show that for u < 0,

APPENDIX E. PROOF OF AVERAGE PACKET DELAY WITH FOFF 101

A(u) + (t− d)− u ≥ A(0) + (t− d)− 0, in order to prove that B2(t) = B1(t). Since

for u < 0, A(u) = A(0) = 0, the result follows.

The following lemma will help us compare tandems of routers with tandems of

work-conserving routers.

Lemma 27 Consider a system composed of two routers S1 and S2. Assume that for

any arrival traffic A(t), S1 is better than WC, i.e.,

B(t)1
{A(t)} ≥ B(t)WC

{A(t)}. (E.2)

Also assume that S2 behaves better than WC when their arrivals are the departures

from S1. In other words, if the departures from S1 are written as

D(t) = B(t)1
{A(t)}, (E.3)

then

B(t)2
{D(t)} ≥ B(t)WC

{D(t)}. (E.4)

Then the tandem (S1, S2) behaves better than a tandem of two work-conserving routers

(WC, WC).

Proof: We assumed that B(t)2
{D(t)} ≥ B(t)WC

{D(t)}. The first term of Inequal-

ity (E.4) denotes the departures from the tandem (S1, S2), while the second term de-

notes the departures from the tandem (S1, WC). Thus, since we know that (S1, S2) is

better than (S1, WC), we only need to show that (S1, WC) is better than (WC, WC)

in order to prove the lemma. However, we also know that S1 has more departures

than WC given the same arrival pattern. These departures are then used as the

arrivals at the second WC in both tandems. By Equation (E.1), a WC having more

arrivals will have at least as many departures, therefore (S1, WC) will have at least

as many departures than (WC, WC). This proves the lemma.

The following lemma considers a system that is only work-conserving when its

APPENDIX E. PROOF OF AVERAGE PACKET DELAY WITH FOFF 102

queue is above a given capacity. This lemma is useful, for instance, for the analysis

of a system that only services packets by bursts, as in [44].

Lemma 28 Consider a system that satisfies the following two properties. First, there

exists a critical queue size Qc such that the router is always work-conserving when at

least Qc packets are queued. Second, whenever Q packets are queued with Q < Qc,

the router takes at most T time-slots to send Q packets. Then the system is better

than a tandem (WC, DL(T)) of a work-conserving router and a delay line of delay

T .

Proof: Let Q(t){A(t)} (resp. Q(t)WC
{A(t)}) represent the queue size of the system

(resp. of a work-conserving router) at time-slot t under arrivals A(t).

We now prove by contradiction that B(t)WC
{A(t)} − B(t){A(t)} ≤ Qc − 1 for all t.

In other words, we assume that t0 is the first time-slot when this inequality is not

satisfied, and we prove that t0 cannot exist. If t0 exists:

B(t0)
WC
{A(t)} −B(t0){A(t)} ≥ Qc

and

B(t0 − 1)WC
{A(t)} −B(t0 − 1){A(t)} ≤ Qc − 1.

In addition, given the work-conserving property (Equation (E.1)), we get

B(t0)
WC
{A(t)} ≤ B(t0 − 1)WC

{A(t)} + 1,

with equality only if there is at least one packet queued in the work-conserving system

to service at time t0. Putting these three inequalities together,

B(t0 − 1){A(t)} ≥ B(t0){A(t)}.

But since the cumulative number of departures cannot decrease, these two quantities

have to be equal, and therefore there had to be at least one packet queued in the

work-conserving system just before the departures at time t0. As a consequence, the

APPENDIX E. PROOF OF AVERAGE PACKET DELAY WITH FOFF 103

queue size in the system just before the departures at t0 is:

A(t0)−B(t0 − 1){A(t)}

= [A(t0)−B(t0 − 1)WC
{A(t)}] + [B(t0 − 1)WC

{A(t)} −B(t0 − 1){A(t)}]

≥ 1 + [Qc − 1] = Qc. (E.5)

But then the system should be work-conserving by assumption, and therefore B(t0−
1){A(t)} 6= B(t0){A(t)}, which contradicts the assumption.

By the proof above, B(t)WC
{A(t)} − B(t){A(t)} ≤ Qc − 1 for all t. In addition, the

difference between these queue sizes can be serviced in at most T time-slots. (Note

that the packets in the difference will always be available to be serviced because

Q(t){A(t)} = A(t)−B(t){A(t)} ≥ B(t)WC
{A(t)}−B(t){A(t)}.) As a consequence, B(t)WC

{A(t)} ≤
B(t + T){A(t)} for all t, hence B(t− T)WC

{A(t)} ≤ B(t){A(t)} for all t.

The following lemma reminds us of the fact that having more packets leave earlier

implies having a lower average delay.

Lemma 29 Consider an infinite traffic arrival sequence A(t). Assume that the aver-

age delays for a work-conserving router and some router S are both defined.1 Assume

also that S satisfies B(t){A(t)} ≥ B(t)WC
{A(t)}. Then the average delay for S is at most

the average delay for the work-conserving router.

Proof: When defined, the average packet delay does not depend on the packet

order. This is because the total packet delay until some time t is just the integral

of the difference between A(t) and B(t){A(t)} (resp. B(t)WC
{A(t)}) between 0 and t.

Therefore, we can assume that the packet order is the same in both routers without

loss of generality. Packets always leave the router earlier than (or at the same time

as) the work-conserving router. Therefore, the result follows.

Theorem 30 Consider an infinite traffic arrival sequence A(t). Assume that the

average delays for a work-conserving router and a load-balanced router using FOFF

are both defined. Then the average packet delay through a load-balanced router using

1If the average delay for a router does not exist, at least a limsup exists and satisfies the same
properties.

APPENDIX E. PROOF OF AVERAGE PACKET DELAY WITH FOFF 104

FOFF is within a constant of the average packet delay through a (work-conserving)

output-queued router.

Proof: First, each input of the load-balanced router services one packet per time-

slot whenever this input has at least one full frame of N packets. By the pigeonhole

principle, this necessarily happens whenever the input has at least N(N − 1) + 1

packets. In addition, whenever the input has at most Q = N(N − 1) packets (before

arrivals), it takes at most N2 time-slots to service at least Q packets. Therefore, by

Lemma 28, any input linecard is better than a tandem of a work-conserving router

and a delay line of delay N2. But since any input can have at most one arrival and

one departure per time-slot, the work-conserving router is just a forwarding router.

Thus any input linecard is better than a delay line of delay N2.

Similarly, consider the system formed by all packets destined to a given output

k in the intermediate linecards. Applying the pigeonhole principle as above, if this

set has N(N − 1) + 1 packets, all intermediate inputs will be non-empty (because

of Lemma 23) and the system will be work-conserving for output k. And, as above,

whenever this system has at most Q = N(N − 1) packets (before arrivals), it takes

at most N2 time-slots to service at least Q packets.

Finally, Theorem 25 proves that an output linecard is work-conserving whenever

at least Qc = N2 + 1 packets are queued. Assume that an output contains Q < Qc

packets. For each packet p in the output linecard that arrived at the output linecard

at time t− d, where d ≥ 0, any packet ahead of p in the flow order of p will arrive no

later than t− d + N2 at the output (Lemma 24). Then, by time t− d + N2, either p

departs, or it is waiting to depart but another packet is serviced at each time-slot until

it departs, i.e., the output is work-conserving until p departs. Therefore, the output

services at least as many packets as a work-conserving router that would accept any

such packet p at time t− d + N2. In other words, whenever the output linecard has

at most Q = N2 packets, it takes at most N2 time-slots to service at least Q packets

(not necessarily the same). As with the inputs, any output is therefore better than a

delay line of delay N2.

APPENDIX E. PROOF OF AVERAGE PACKET DELAY WITH FOFF 105

Therefore, we can use the above results to analyze the load-balanced router. Con-

sider the system formed by all packets destined to a given output k in the intermedi-

ate linecards. We found above that this system behaves better in the load-balanced

router than a work-conserving router followed by a delay line of N2. In addition,

the inputs and the output k add two delay lines of delay N2 using their respective

arrivals. We can then use Lemma 27 and the fact that B(t)WC
{A(t)} is independent of the

input at which packets arrive in a work-conserving router in order to prove that the

load-balanced router works better than a tandem (DL(N2), WC, DL(N2), DL(N2)).

By Lemma 26, it works better than (WC, DL(3N2)). Finally, by Lemma 29, if the

average delay for a work-conserving router is defined, then the average delay for the

load-balanced router is within 3N2.

Appendix F

Proofs for the Linecard Schedule

In this appendix, we will prove that given any kind of valid schedule among L-L,

L-G or G-G, we can construct the other two. In particular, we will prove the validity

of the algorithm that builds a G-G schedule out of an L-G schedule.

F.1 Proof for Theorem 11

First, as shown in 4.4.4, it is easy to successively build a valid L-G schedule from

a valid L-L schedule and a valid G-G schedule from a valid L-G schedule.

On the other hand, 4.4.6 shows the algorithm that successively constructs a valid

L-G schedule from a valid G-G schedule and a valid L-L schedule from a valid L-G

schedule. This is possible as long as we can decompose the matrix into a sum of

permutations (for example, using a Birkhoff-von Neumann decomposition), which we

can always do when the sums on each row and each column are equal [19, 12].

F.2 Proofs for the Construction of the Valid G-G

Schedule

Proof: We will now prove the validity of the algorithm that builds a G-G

schedule out of an L-G schedule. For this purpose, we will operate by reverse induction

on t = N, N − 1, ..., 1.

106

APPENDIX F. PROOFS FOR THE LINECARD SCHEDULE 107

Assume that for a given t,
∑G

j′=1 M t
ij′ = Lit for all i∑G

i′=1 M t
i′j = Ljt for all j

0 ≤ M t
ij ≤

⌈
Li·Lj

N

⌉
t for all i, j

This is obviously true for t = N by definition of M t. We will show at the end of

the proof that if we assume it for t, it’s also true for t− 1.

First, since Qt = M t − P t, using the definition of P t we get:
(
∑G

j′=1 Qt
ij′) mod t = 0 for all i

(
∑G

i′=1 Qt
i′j) mod t = 0 for all j

0 ≤ Qt
ij ≤ t− 1 for all i, j

Therefore, at and bt are integer vectors.

Second, from the definition of at and bt, they both have the same sum — we will

call it σ.

Third, we now prove that there exists a matrix Rt satisfying the conditions above.

In order to prove this, we can use the result from exercise 3.13 in [73], which is based

on König’s theorem [55]. [73] states that Rt exists iff for each subset s1 of the rows

and for each subset s2 of the columns, σ + |E(s1, s2)| ≥
∑

i∈s1
ai +

∑
j∈s2

bj, where

|E(s1, s2)| denotes the number of non-zero elements Qt
ij with i ∈ s1, j ∈ s2. But we

know that ∑
i∈s1,j∈s2

Qt
ij =

∑
i∈s1

Qt
ij −

∑
i∈s1,j 6∈s2

Qt
ij

∑
i∈s1,j∈s2

Qt
ij ≥ t

∑
i∈s1

ai −
∑
j 6∈s2

Qt
ij

∑
i∈s1,j∈s2

Qt
ij ≥ t

∑
i∈s1

ai − t
∑
j 6∈s2

bj

In addition, since t− 1 ≥ Qt
ij,∑
i∈s1,j∈s2

tδQt
ij≥0 ≥

∑
i∈s1,j∈s2

Qt
ij,

APPENDIX F. PROOFS FOR THE LINECARD SCHEDULE 108

therefore ∑
i∈s1,j∈s2

tδQt
ij≥0 ≥ t

∑
i∈s1

ai − t
∑
j 6∈s2

bj.

Since |E(s1, s2)| =
∑

i∈s1,j∈s2
δQt

ij≥0,

|E(s1, s2)| ≥
∑
i∈s1

ai −
∑
j 6∈s2

bj =
∑
i∈s1

ai +
∑
j∈s2

bj − σ.

Thus Rt exists. Note that it is possible to construct it in polynomial time using

Ford-Fulkerson (Appendix F.3).

Fourth, we now show that the resulting schedule St will satisfy the MEMS con-

straint, i.e., for all i, j,

St
ij ≤

⌈
Li · Lj

N

⌉
.

We know that

St
ij = P t

ij + Rt
ij =

⌊
1

t
M t

ij

⌋
+ Rt

ij,

Rt
ij ≤ Qt

ij = M t
ij − t

⌊
1

t
M t

ij

⌋
,

Rt
ij ≤ 1,

and

M t
ij ≤

⌈
Li · Lj

N

⌉
t.

Distinguish two cases regarding this last inequality. If this inequality is an equality,

M t
ij =

⌈
Li · Lj

N

⌉
t,

so Rt
ij ≤ Qt

ij = 0 and St
ij = M t

ij/t =
⌈

Li·Lj

N

⌉
. Otherwise, this inequality is strict,

M t
ij <

⌈
Li · Lj

N

⌉
t,

APPENDIX F. PROOFS FOR THE LINECARD SCHEDULE 109

so there exists ε > 0 such that

M t
ij/t =

⌈
Li · Lj

N

⌉
− ε = (

⌈
Li · Lj

N

⌉
− 1) + (1− ε).

Thus, ⌊
1

t
M t

ij

⌋
=

⌈
Li · Lj

N

⌉
− 1 + b1− εc ≤

⌈
Li · Lj

N

⌉
− 1

and

St
ij ≤

⌊
1

t
M t

ij

⌋
+ Rt

ij ≤
⌊

1

t
M t

ij

⌋
+ 1 ≤

⌈
Li · Lj

N

⌉
.

Note that in both cases

St
ij ≤

⌈
Li · Lj

N

⌉
.

Fifth, we complete the recursion hypothesis and show that:
(i)

∑G
j′=1 M t−1

ij′ = Li(t− 1) for all i

(ii)
∑G

i′=1 M t−1
i′j = Lj(t− 1) for all j

(iii) 0 ≤ M t−1
ij ≤

⌈
Li·Lj

N

⌉
(t− 1) for all i, j

We will use the assumptions on M stated at the start of the proof, and the definition

M t−1 = M t − St.

Let us first prove (i) by showing that

G∑
j′=1

St
ij′ = Li

(the proof for (ii) is similar). By definition,

G∑
j′=1

St
ij′ =

G∑
j′=1

(P t
ij′ + Rt

ij′),

and
G∑

j′=1

Rt
ij′ = ai = (

G∑
j′=1

Qt
ij′)/t,

APPENDIX F. PROOFS FOR THE LINECARD SCHEDULE 110

thus
G∑

j′=1

St
ij′ =

G∑
j′=1

(tP t
ij′ + Qt

ij′)/t =
G∑

j′=1

M t
ij′/t = Li.

Let us now prove (iii). We know that M t
ij ≤

⌈
Li·Lj

N

⌉
t, therefore P t

ij ≤
⌈

Li·Lj

N

⌉
.

Also we can decompose M t
ij in base t as M t

ij = P t
ijt + Qt

ij, and

M t−1
ij = M t

ij − St
ij

= (P t
ijt + Qt

ij)− (P t
ij + Rt

ij)

= P t
ij(t− 1) + (Qt

ij −Rt
ij).

Distinguish two cases. In the case where

P t
ij =

⌈
Li · Lj

N

⌉
,

then

M t
ij = P t

ijt, Qt
ij = 0, Rt

ij = 0,

thus

M t−1
ij = P t

ij(t− 1) = M t
ij

t− 1

t
≤
⌈

LiLj

N

⌉
(t− 1).

Otherwise, in the case where

P t
ij ≤

⌈
Li · Lj

N

⌉
− 1,

we have
M t−1

ij = P t
ij(t− 1) + (Qt

ij −Rt
ij)

≤ (
⌈

Li·Lj

N

⌉
− 1)(t− 1) + Qt

ij

≤
⌈

Li·Lj

N

⌉
(t− 1)− (t− 1) + (t− 1)

=
⌈

LiLj

N

⌉
(t− 1),

since Qt
ij ≤ t− 1 as shown before. Hence (iii) is correct in both cases and the three

properties are proven by induction.

APPENDIX F. PROOFS FOR THE LINECARD SCHEDULE 111

source sink
1

2

i

G

1

2

j

G

δ{Qij>0}

Figure F.1: Illustration of the Ford-Fulkerson construction.

Finally, note that all parts of the algorithm run in polynomial time, and thus the

algorithm also operates in polynomial time.

F.3 Ford-Fulkerson Algorithm

As explained above, it is possible to use Ford-Fulkerson’s max-flow algorithm [36]

in order to construct Rt, and therefore the schedules St. More specifically, as illus-

trated in Figure F.1, construct the network as follows. There is one source, G inputs,

G outputs, and one sink. The source is connected to each input i with capacity ai.

Each input i is connected to each output j with capacity δQij≥1, i.e., capacity 1 if

Qij ≥ 1 and 0 otherwise. Finally, each output j is connected to the sink with capacity

bj. Since capacities are integer, the resulting flows will also be integers, and will thus

yield a correct matrix Rt.

Bibliography

[1] N. Alon, “A simple algorithm for edge-coloring bipartite multigraphs,” Infor-

mation Processing Letters, Vol. 85, No. 6, pp. 301–302, March 2003. (p. 65)

[2] M. Ajmone Marsan, A. Bianco, P. Giaccone, E. Leonardi and F. Neri, “Packet

scheduling in input-queued cell-based switches,” Proc. of IEEE Infocom ’01,

Vol. 2, pp. 1095–1103, Anchorage, Alaska, April 2001. (p. 9)

[3] T.E. Anderson, S.S. Owicki, J.B. Saxe and C.P. Thacker, “High speed switch

scheduling for local area networks,” ACM Trans. on Computer Systems, Vol.

11, No. 4, pp. 319–352, November 1993. (p. 9)

[4] ANSI (American National Standards Institute), T1.TR.68-2001, “Enhanced

network survivability performance,” February 2001. (p. 67)

[5] S. Arekapudi, “Feasibility study of configuration algorithms for the switch fabric

of a load-balanced switch with an arbitrary number of linecards,” Stanford

University HPNG Technical Report TR04-HPNG-032305, Stanford, CA, March

2004. (p. 68)

[6] S. Arekapudi, S.-T. Chuang, I. Keslassy and N. McKeown, “Configuring a load-

balanced switch in hardware,” under review. (p. 68)

[7] F. Baccelli and P. Bremaud, Elements of Queueing Theory, Springer-Verlag,

New York, 1994. (pp. 7 and 8)

[8] F. Baker, “Requirements for IP Version 4 Routers”, RFC 1812, June 1995,

available at http://www.faqs.org/rfcs/rfc1812.html. (pp. 10, 32 and 46)

112

http://www.faqs.org/rfcs/rfc1812.html

BIBLIOGRAPHY 113

[9] S. Beckett, En attendant Godot, 1952. (English translation: Waiting for Godot,

1954). (p. 38)

[10] J.C.R. Bennett, C. Partridge and N. Shectman, “Packet reordering is not patho-

logical network behavior,” IEEE/ACM Transactions on Networking, Vol. 7, No.

6, pp. 789–798, December 1999. (pp. 10 and 32)

[11] P. Bernasconi, C. Doerr, C. Dragone, M. Capuzzo, E. Laskowski and A.

Paunescu, “Large N x N waveguide grating routers”, Journal of Lightwave

Technology, Vol. 18, No. 7, pp. 985–991, July 2000. (p. 47)

[12] G. D. Birkhoff, “Tres observaciones sobre el algebra lineal,” Universidad Na-

cional de Tucuman Revista, Serie A, Vol. 5, pp. 147–151, 1946. (pp. 26, 65

and 106)

[13] E. Blanton and M. Allman, “On making TCP more robust to packet reorder-

ing,” ACM Computer Communication Review, Vol. 32, No. 1, pp. 20–30, Jan-

uary 2002. (pp. 11 and 32)

[14] A. Broder and M. Mitzenmacher, “Using multiple hash functions to improve IP

lookups,” Proc. of IEEE Infocom ’01, pp. 1454–1463, 2001. (p. 34)

[15] Z. Cao, Z. Wang and E. Zegura, “Performance of hashing-based schemes for

internet load balancing,” Proc. of IEEE Infocom ’00, pp.332–341, Tel Aviv,

Israel, March 2000. (p. 34)

[16] G. Chandranmenon and G. Varghese, “Trading packet headers for packet pro-

cessing,” IEEE/ACM Transactions on Networking, Vol. 4, No. 2, pp. 141–152,

April 1996. (p. 34)

[17] T. Chaney, J. A. Fingerhut, M. Flucke and J. S. Turner, “Design of a Gigabit

ATM Switch,” Proc. of IEEE Infocom ’97, pp. 1801–1809, April 1997. (p. 2)

[18] C.-S. Chang, Performance Guarantees in Communication Networks, Springer-

Verlag, New York, 2000. (pp. 7, 8, 88 and 94)

BIBLIOGRAPHY 114

[19] C.-S. Chang, J.-W. Chen and H.-Y. Huang, “On service guarantees for input-

buffered crossbar switches: a capacity decomposition approach by Birkhoff and

Von Neumann,” IEEE IWQoS, London, 1999. (pp. 26, 65 and 106)

[20] C.-S. Chang, D.-S. Lee and Y.-S. Jou, “Load balanced Birkhoff-von Neumann

switches, Part I: one-stage buffering,” Computer Communications, Vol. 25, No.

6, pp. 611–622, 2002. (pp. 2, 4, 7 and 9)

[21] C.-S. Chang, D.-S. Lee and C.-M. Lien, “Load balanced Birkhoff-von Neumann

switches, Part II: multi-stage buffering,” Computer Communications, Vol. 25,

No. 6, pp. 623–634, 2002. (pp. 2, 33 and 94)

[22] C.-S. Chang, D.-S. Lee and C.-Y. Yue, “Providing guaranteed rate services in

the load balanced Birkhoff-von Neumann switches,” IEEE Infocom ’03, San

Francisco, CA, 2003. (pp. 33 and 76)

[23] H.J. Chao, S.Y. Liew and Z. Jing, “A dual-level matching algorithm for 3-stage

Clos-network packet switches,” Hot Interconnects XI, Stanford, CA, August

2003. (p. 2)

[24] F. Chiussi and A. Francini, “A distributed scheduling architecture for scalable

packet switches,” IEEE Journal on Selected Areas in Communications, Vol. 18,

No. 12, pp. 2665–2683, December 2000. (p. 2)

[25] F. Chiussi, J. Kneuer, and V. Kumar, “Low-cost scalable switching solutions for

broadbandnetworking: the ATLANTA architecture and chipset,” IEEE Com-

munications Magazine, Vol. 35, No. 12, pp. 44–53, December 1997. (p. 2)

[26] R. Cole, K. Ost and S. Schirra, “Edge-coloring bipartite multigraphs in O(E

log D) time,” Combinatorica, Vol. 21, pp. 5–12, 2001. (p. 65)

[27] R. Cole, K. Ost and S. Schirra, “Edge-coloring bipartite multigraphs in O(E

log D) time,” New York University Technical Report NYU-TR1999-792, New

York, September 1999. (p. 65)

BIBLIOGRAPHY 115

[28] J. G. Dai and B. Prabhakar, “The throughput of data switches with and without

speedup,” Proc. of IEEE Infocom ’00, Vol. 2, pp. 556–564, Tel Aviv, Israel,

March 2000. (p. 9)

[29] W. J. Dally, Velio Communications, “A single chip terabit switch,” Hot Chips

XIII, Stanford, August 2001. (p. 70)

[30] W. J. Dally, “Performance analysis of k-ary n-cube interconnection networks,”

IEEE/ACM Transactions on Computers, Vol. 39, No. 6, pp. 775–785, June 1990.

(p. 2)

[31] W. J. Dally, P. Carvey and L. Dennison, “Architecture of the Avici terabit

switch/router,” Proc. of Hot Interconnects VI, pp. 41-50, August 1998. (p. 2)

[32] G. Dittmann and A. Herkersdorf, “Network processor load balancing for high-

speed links,” Proc. of the International Symposium on Performance Evaluation

of Computer and Telecommunication Systems (SPECTS 2002), pp. 727–735,

San Diego, California, July 2002. (p. 34)

[33] J. T. Dixon and K. L. Calvert, “Increasing demultiplexing efficiency in TCP/IP

network servers,” International Conference on Computer Communications and

Networks, October 1996. (p. 34)

[34] A. M. Duguid, “Structural properties of switching networks,” Brown University

Progress Report BTL-7, 1959. (p. 65)

[35] M. Fomenkov, K. Keys, D. Moore and K. Claffy, “A longitudinal study of

internet traffic from 1998-2001: a view from 20 high performance sites,” Proc.

of WISICT ’04, Cancun, Mexico, January 2004. (p. 32)

[36] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press,

Princeton, 1962. (p. 111)

[37] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,

T. Seely and C. Diot, “Packet-level traffic measurements from the Sprint IP

backbone,” IEEE Network, 2003. (to appear) (p. 32)

BIBLIOGRAPHY 116

[38] M. D. Grammatikakis, D. F. Hsu, M. Kraetzl and J. Sibeyn, “Packet routing

in fixed-connection networks: a survey,” Journal of Parallel and Distributed

Processing, Vol. 54, no. 2, pp. 77–132, 1998. (p. 2)

[39] P. Gupta, S. Lin and N. McKeown, “Routing lookups in hardware at memory

access speeds,” Proc. of IEEE INFOCOM ’98, pp. 1240–1247, San Francisco,

CA, April 1998. (p. 72)

[40] P. R. Halmos, Lectures on ergodic theory, Chelsea Publishing Company, New

York, 1956. (p. 5)

[41] J. Hui, Switching and Traffic Theory for Integrated Broadband Networks, Kluwer

Academic Publishers, Boston, 1990. (p. 65)

[42] ITU-T (International Telecommunication Union Standardization Sector), Rec-

ommendation G.841, “Types and characteristics of SDH network protection

architectures,” July 1995. (p. 67)

[43] S. Iyer, A. Awadallah and N. McKeown, “Analysis of a packet switch with

memories running slower than the line-rate,” Proc. of IEEE Infocom ’00, pp.

529–537, Tel Aviv, Israel, March 2000. (p. 1)

[44] S. Iyer, R. R. Kompella and N. McKeown, “Designing buffers for router line

cards,” Stanford University HPNG Technical Report - TR02-HPNG-031001,

Stanford, CA, March 2002. (pp. 73 and 102)

[45] S. Iyer and N. McKeown, “Analysis of the parallel packet switch architecture,”

IEEE/ACM Transactions on Networking, Vol. 11, No. 2, pp. 314–324, April

2003. (pp. 1 and 33)

[46] S. Iyer and N. McKeown, “Making parallel packet switches practical,” Proc.

of IEEE Infocom ’01, Vol. 3, pp. 1680–1687, Anchorage, Alaska, USA, March

2001. (p. 1)

BIBLIOGRAPHY 117

[47] S. Iyer, R. Zhang and N. McKeown, “Routers with a single stage of buffer-

ing,” ACM SIGCOMM ’02, Pittsburgh, USA, Aug. 2002. Also in Computer

Communication Review, Vol. 32, No. 4, pp. 251–264, October 2002. (p. 1)

[48] R. Jain, “A comparison of hashing schemes for address lookup in computer

networks,” IEEE Transactions on Communications, Vol. 40, No. 3, pp. 1570–

1573, October 1992. (p. 34)

[49] S. Jaiswal, G. Iannaccone, C. Dior, J. Kurose and D. Towsley, “Measurement

and classification of out-of-sequence packets in a tier-1 IP backbone,” IEEE

Infocom ’03, San Francisco, CA, 2003. (pp. 10 and 32)

[50] K. Kar, T. V. Lakshman, D. Stiliadis and L. Tassiulas, “Reduced complex-

ity input buffered switches,” Hot Interconnects VIII, Palo Alto, August 2000.

(p. 39)

[51] L. Kencl and J. Y. Le Boudec, “Adaptive load sharing for network processors,”

Proc. of IEEE Infocom 2002, pp. 545–554, New York, NY, June 2002. (p. 34)

[52] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard and

N. McKeown , “Scaling Internet routers using optics,” ACM SIGCOMM ’03,

Karlsruhe, Germany, August 2003. Also in Computer Communication Review,

Vol. 33, No. 4, pp. 189–200, October 2003. (p. 74)

[53] I. Keslassy, M. Kodialam, T. V. Lakshman and D. Stiliadis, “New scheduling

schemes for delayed graphs with applications to WDM rings,” in preparation.

(p. 76)

[54] I. Keslassy and N. McKeown, “Maintaining packet order in two-stage switches,”

IEEE Infocom ’02, New York, NY, June 2002. (p. 33)

[55] D. König, “Graphok és alkalmazásuk a determinánsok és a halmazok elméletére

[Hungarian],” Mathematikai és Természettudományi Értesitö, Vol. 34, pp. 104–

119, 1916. (pp. 65 and 107)

BIBLIOGRAPHY 118

[56] A. Krishnamoorthy, “Optoelectronics flip-chip-bonded to CMOS VLSI cir-

cuits,” IMAPS Advanced Technology Workshop on Next Generation IC and

Package Design, Solvang, CA, July 1999. (p. 71)

[57] A. L. Lentine et al., “Arrays of optoelectronic switching nodes comprised of

flip-chip-bonded MQW modulators and detectors on silicon CMOS circuitry,”

IEEE Photonics Technology Letters, Vol. 8, pp. 221–223, February 1996. (p. 71)

[58] E. Leonardi, M. Mellia, F. Neri and M. A. Marsan, “On the stability of input-

queued switches with speed-up,” IEEE/ACM Transactions on Networking,

Vol. 9, No. 1, pp. 104–118, February 2001. (p. 9)

[59] R. M. Loynes, “The stability of queues with non-independent inter-arrival and

service times,” Proc. of the Cambridge Philosophical Society, Vol. 58, pp. 497–

520, 1962. (pp. 7 and 8)

[60] N. McKeown, “iSLIP: a scheduling algorithm for input-queued switches,”

IEEE/ACM Transactions on Networking, Vol 7, No.2, pp. 188–201, April 1999.

(p. 9)

[61] N. McKeown, A. Mekkittikul, V. Anantharam and J. Walrand, “Achieving

100% throughput in an input-queued switch,” IEEE Transactions on Commu-

nications, Vol. 47, No. 8, pp. 1260–1272, August 1999. (p. 9)

[62] I. Norros, “A storage model with self-similar input,” Queueing Systems, Vol.

16, pp. 387–396, 1994. (p. 6)

[63] A. M. Odlyzko, “Comments on the Larry Roberts and Caspian Networks study

of Internet traffic growth,” The Cook Report on the Internet, pp. 12–15, Dec.

2001. (p. 74)

[64] A. M. Odlyzko, “Internet traffic growth: sources and implications,” Proc. of

SPIE Optical Transmission Systems and Equipment for WDM Networking II,

Vol. 5247, pp. 1–15, Orlando, FL, September 2003. (p. 74)

BIBLIOGRAPHY 119

[65] E. Oki, J. Zhigang, R. Rojas-Cessa and H. J. Chao, “Concurrent round-robin-

based dispatching schemes for Clos-network switches,” IEEE/ACM Transac-

tions on Networking, Vol. 10, No. 6, pp. 830–844, December 2002. (p. 2)

[66] G.I. Papadimitriou, C. Papazoglou and A.S. Pomportsis, “Optical switching:

switch fabrics, techniques, and architectures,” Journal of Lightwave Technology,

Vol. 21, No. 2, pp. 384–405, Febrary 2003. (pp. 9, 13, 47 and 52)

[67] B. Pesach, G. Bartal, E. Refaeli, A. J. Agranat, J. Krupnik and D. Sadot,

“Free-space optical cross-connect switch by use of electroholography,” Applied

Optics, Vol. 39, No. 5, pp. 746–758, February 2000. (p. 47)

[68] K. Petersen, Ergodic Theory, Cambridge University Press, Cambridge, 1983.

(p. 8)

[69] G. Pfister, “An introduction to the InfiniBand architecture,” High Performance

Mass Storage and Parallel I/O, IEEE Press, 2001. (p. 2)

[70] K. W. Ross, “Hash routing for collections of shared web caches,” IEEE Network,

Vol. 11, No. 6, pp. 37-44, November-December 1997. (p. 34)

[71] R. Russo, B. Metzler, P. Droz and L. Kencl, “Scalable and adaptive load balanc-

ing on IBM PowerNP,” Technical report No. RZ-3431, IBM Research Report,

July 2002. (p. 34)

[72] R. Ryf, J. Kim, J. Hickey, A. Gnauck, D. Carr, F. Pardo, C. Bolle, R. Frahm,

N. Basavanhally, C. Yoh, D. Ramsey, R. Boie, R. George, J. Kraus, C. Licht-

enwalner, R. Papazian, J. Gates, H. Shea, A. Gasparyan, V. Muratov and J.

Griffith, “1296-port MEMS transparent optical crossconnect with 2.07 petabit/s

switch capacity,” Optical Fiber Comm. Conf. and Exhibit (OFC) ’01, Vol. 4,

Postdeadline paper PD28, 2001. (pp. 9, 13, 47 and 52)

[73] A. Schrijver, “A course in combinatorial optimization,” February 2003, available

at http://www.cwi.nl/˜lex/files/dict.ps. (pp. 65 and 107)

http://www.cwi.nl/~lex/files/dict.ps

BIBLIOGRAPHY 120

[74] A. Schrijver, “Bipartite edge-coloring in O(∆m) time,” SIAM J. Comput.,

Vol. 28, pp. 841–846, 1999. (p. 65)

[75] S. Scott and G. Thorson, “The Cray T3E network: adaptive routing in a high

performance 3D torus,” Proc. of Hot Interconnects IV, August 1996. (p. 2)

[76] A. Singh, W. J. Dally, A. K. Gupta and B. Towles, “GOAL: a load-balanced

adaptive routing algorithm for torus networks,” International Symposium on

Computer Architecture (ISCA), San Diego, CA, USA, June 2003. (p. 2)

[77] D. Slepian, “Two theorems on a particular crossbar switching network,” unpub-

lished memorandum, 1952. (p. 65)

[78] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies with

Rocketfuel,” ACM SIGCOMM ’02, Pittsburgh, USA, August 2002. (p. 74)

[79] N. Spring, R. Mahajan, D. Wetherall and T. Anderson, “Measuring ISP topolo-

gies with Rocketfuel,” IEEE/ACM Transactions on Networking, Vol. 12, No. 1,

February 2004. (p. 74)

[80] Y. Tamir and H. C. Chi, “Symmetric crossbar arbiters for VLSI communica-

tion switches,” IEEE Transactions on Parallel and Distributed Systems, Vol. 4,

No. 1, pp. 13–27, 1993. (p. 9)

[81] Telcordia, GR-499 CORE, “Transport systems generic requirements (TSGR):

common requirements criteria,” Issue 2, December 1998. (p. 67)

[82] Telcordia, GR-253 CORE, “Synchronous optical network (SONET) transport

systems: common generic criteria,” Issue 3, September 2000. (p. 67)

[83] L. G. Valiant, “A scheme for fast parallel communication,” SIAM Journal on

Computing, Vol. 11, No. 2, pp. 350–361, 1982. (p. 2)

[84] L. Valiant and G. Brebner, “Universal schemes for parallel communication,”

Proc. of the 13th Annual Symposium on Theory of Computing, pp. 263–277,

May 1981. (p. 2)

BIBLIOGRAPHY 121

[85] J. von Neumann, “A certain zero-sum two-person game equivalent to the opti-

mal assignment problem,” Contributions to the Theory of Games, Vol. 2, pp. 5–

12, Princeton University Press, Princeton, NJ, 1953. (p. 26)

[86] W. Willinger, M. S. Taqqu and A. Erramilli, “A bibliographical guide to self-

similar traffic and performance modeling for high speed networks,” Stochastic

Networks, Theory and Applications, Oxford University Press, pp. 339–366, 1996.

(p. 6)

[87] R. Zhang-Shen, I. Keslassy and N. McKeown, “Designing a predictable Internet

backbone,” in preparation. (p. 76)

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Background
	1.2 The Load-Balanced Router
	1.2.1 Assumptions
	1.2.2 Basic Load-Balanced Router Architecture
	1.2.3 Definitions
	1.2.4 100% Throughput Guarantee of a Basic Load-Balanced Router
	1.2.5 Advantages of a Basic Load-Balanced Router

	1.3 Motivation of the Thesis
	1.3.1 Optical Switch Fabric
	1.3.2 Packet Reordering
	1.3.3 Pathological Traffic Patterns
	1.3.4 Missing Linecards

	1.4 Outline of the Thesis

	2 Mesh Model
	2.1 From Crossbar to Mesh
	2.1.1 Mesh Architecture
	2.1.2 Uniform Multiplexing

	2.2 The Optimal Mesh
	2.2.1 Motivation
	2.2.2 Problem Formulation
	2.2.3 Examples of Guaranteed Throughput
	2.2.4 Properties of the Guaranteed Throughput
	2.2.5 The Biased Mesh
	2.2.6 Optimality of the Biased Mesh
	2.2.7 Uniqueness of the Optimal Capacity Matrix
	2.2.8 Conclusions and Intuition

	3 Packet Reordering
	3.1 Presentation of Packet Reordering
	3.1.1 Example of Reordering in the Load-Balanced Router
	3.1.2 Consequences of Packet Reordering for Internet Traffic
	3.1.3 Preventing Reordering

	3.2 Application Flow-Based Routing (AFBR)
	3.2.1 How AFBR Works
	3.2.2 Properties of AFBR

	3.3 Uniform Frame Spreading (UFS)
	3.3.1 Presentation of UFS
	3.3.2 Advantages of UFS
	3.3.3 Filling a Frame

	3.4 Full Ordered Frames First (FOFF)
	3.4.1 Presentation of FOFF
	3.4.2 Implementation
	3.4.3 Properties of FOFF

	4 Implementation of the Load-Balanced Router Using Optics
	4.1 Architecture Requirements
	4.1.1 A 100Tb/s Router Example
	4.1.2 Architecture Requirements
	4.1.3 Assumptions

	4.2 The Hierarchical Mesh Architecture
	4.2.1 Scaling the Number of Linecards
	4.2.2 The Hierarchical Mesh

	4.3 The MEMS-Based Architecture
	4.3.1 Mesh Decomposition as a Sum of Matches
	4.3.2 Using MEMS Switches

	4.4 Linecard Schedule
	4.4.1 Determining the Number of MEMS Switches
	4.4.2 The Linecard Schedule Problem
	4.4.3 Number of MEMS Switches Needed for a Linecard Schedule
	4.4.4 Valid Schedules
	4.4.5 Constructing a Valid G-G Schedule
	4.4.6 Valid L-L Schedule
	4.4.7 Practical Considerations

	4.5 Practicality and Reliability of the 100Tb/s Router
	4.5.1 The Electronic Crossbars
	4.5.2 Packaging 100Tb/s of MEMS Switches
	4.5.3 Fault-Tolerance
	4.5.4 Building 160Gb/s Linecards
	4.5.5 Packaging 16 Linecards in a Rack

	4.6 Consequences

	5 Conclusion
	5.1 Towards a Simpler Internet
	5.2 Future Directions in Load-Balanced Router Architectures
	5.3 Applying Load-Balanced Routing to Network Design

	A Optimality of the Biased Mesh
	B Uniqueness of the Optimal Capacity Matrix
	C Proof that UFS Has 100% Throughput
	D Proof that FOFF Sends Packets in Order
	D.1 Intuition on the FOFF scheme
	D.2 Assumptions
	D.3 Notations and Lemmas
	D.4 Theorem

	E Proof of Average Packet Delay with FOFF
	F Proofs for the Linecard Schedule
	F.1 Proof for Theorem 11
	F.2 Proofs for the Construction of the Valid G-G Schedule
	F.3 Ford-Fulkerson Algorithm

	Bibliography

