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Abstract

This thesis is in two parts.

Path-Policy Compliant Networking

The Internet gives little control to the end-points of a communication over the actual

interdomain path taken by that communication through the network. Such a control

can be quite useful. Unfortunately, unchecked, this capability can threaten providers’

viability. Providers want to ensure that they are compensated for their services

and that paths that end-points choose comply with the providers’ policies. Even if

providers did want to give such control to senders and receivers, the Internet does

not give providers such ability. Not only does the Internet not have a mechanism to

enable senders and receivers to specify a choice of path that complies with providers’

transit policies, it does not have a mechanism to enforce that choice and thus the

policies of senders, receivers, and transit providers.

The icing project aims to fill that void in three stages. The first stage is a

packet forwarding mechanism, icing-pvm, that provides the missing capabilities

above. icing-pvm allows a sender to specify the path to use for its traffic, but it

requires the sender to obtain authorization from all entities on that path before using

it. Upon receiving a packet, each entity on the path can verify that it had previ-

ously approved the packet’s path, and that the packet is following that path. Thus

icing-pvm separates policy from mechanism, and authorization from authentication.

The second stage is an overlay network, icing-on, that enables senders and re-

ceivers to specify overlay waypoints and in-network services for traffic between them.

icing-on uses DNS as a bootstrapping mechanism for finding paths and obtaining
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authorization.

But an overlay network side-steps many of the complexities of a network archi-

tecture that can replace the Internet, such as how to obtain authorization to obtain

authorization. So, the third stage is a network architecture, icing-L3, that enables

a sender to discover and choose paths towards a destination, without using IP as a

crutch.

A Platform for Heterogeneous IaaS Management

Many new innovations in networking cannot be deployed today because they require

a significant change to the Internet infrastructure or because their scale is too large.

To overcome this hurdle, the National Science Foundation (NSF) started GENI, the

Global Environment for Network Innovations.

GENI is a federation of existing and new Infrastructure-as-a-Service providers

that contribute computing and networking resources to be used for deploying new

applications and experiments. Some of these IaaS providers are PlanetLab, Emulab,

and campuses running OpenFlow networks. GENI will enable a researcher to obtain

a coherent slice of infrastructure across resource types and providers.

Building the management framework that enables researchers to do so is an on-

going concern. The community is converging towards a unified API across all types

of resources and providers. But it is not clear if such a solution will be the correct

one for the future. A rigid unified API may not allow the community to experiment

with different design choices and deployment models.

This thesis discusses an alternative design, Expedient. Expedient is a manage-

ment platform for GENI that follows two principles: reuse and pluggability. Expedient

leverages existing Web technologies to quickly prototype and experiment with new

features and user interfaces. It is built as a pluggable website that uses heteroge-

neous APIs to communicate with each IaaS provider, and uses as a starting design

point a centralized deployment model that enables federated management. Expedi-

ent has enabled us to quickly build infrastructure to slice OpenFlow networks and to

demonstrate coherent continuous slices across PlanetLab IaaS providers and Open-

Flow network IaaS providers.
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Preface

My research work at Stanford can be divided into two main projects: icing and

Expedient. The organization of this dissertation reflects this division. But even

though both projects are quite independent of each other, they both share a common

theme: they both attempt to provide a field over which the concerns and policies of

various stakeholders can play out.

The icing project aims to build a network architecture that empowers the end-

points of a communication by giving them control over the path used for the commu-

nication. The challenge is providing this control without violating the policies of the

providers carrying the communication’s traffic and ensuring that the path is followed.

icing consists of a number of sub-projects: icing-pvm, icing-on, and icing-L3.

Expedient is an answer to the following question: How can users manage resources

across a federated set of Infrastructure-as-a-Service (IaaS) providers? These resources

may be heterogeneous, consisting of different types of network, compute, or other

resources, they may be sliced, virtualized, or fully delegated, and they may cross trust

boundaries. Expedient provides a platform that gives users access to all resources

using one set of credentials, does not require infrastructure developers to change their

systems, and allows infrastructure providers to enforce their policies concerning the

use of their resources. This dissertation discusses Expedient in the context of GENI,

a federated set of IaaS providers with the goal of providing resources for experimental

network research.

The dissertation is divided into two parts, each of which can stand independently

of the other: icing and Expedient. Aspects of icing have previously appeared

in [146] and [123].
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Chapter 1

Introduction

The current Internet provides a simple delivery mechanism: we put destination ad-

dresses in packets and launch them into the network. We leave the network to decide

the path that our packets take and the intermediate providers that the path passes

through. Even network operators have little control over the paths that packets ac-

tually take toward them, or after leaving them. There are times, however, when

senders, receivers, and operators would prefer to control packets’ paths—and be sure

that their preferences are enforced.

For instance, if the fact of a communication (not just its content) between sender

and receiver is sensitive, they might want to select network providers that they trust

to be discreet. Or an enterprise might want a guarantee that the packets that it

receives have passed through several services, such as an accounting service and a

packet-cleaning service. Or a company might want fine-grained control over which

providers carry which traffic between its branch offices. But giving endpoints such

control might threaten providers’ economic security, so providers, too, might want to

be sure that they are carrying traffic to or from customers. Or providers might want

to make sure they are only carrying traffic from friendly nations.

The functionality above does not exist in the Internet today, though there are

proposals in the literature that address various aspects of the problem. However,

there is no general-purpose mechanism that enforces these policies (short of allocating

dedicated connections, which is expensive). And even if such a mechanism did exist,

2



CHAPTER 1. INTRODUCTION 3

it is not clear how a network architecture can use it.

The icing project aims to fill that void in three stages. First, we will describe a

new networking primitive that provides the missing mechanism above and describe

an implementation in Chapter 2. Then, we describe how this primitive can be used

to build an overlay in Chapter 3. Finally, in Chapter 4, we describe how to use this

primitive to build a network architecture to replace IP in Chapter 4.



Chapter 2

Enforcing path policies with

ICING-PVM

2.1 Introduction

As mentioned in Chapter 1, the Internet does not have a general mechanism that

allows the endpoints of a communication (and the service providers in between) to

control a packet’s path and be sure that the path is actually followed. Here, we

describe a new networking primitive that we call a PVM (Path Verification Mecha-

nism) that provides this missing mechanism. Some uses of a PVM are described in

Section 2.6; here, we concentrate on its technical aspects.

A PVM is a mechanism for packet forwarding (sending a packet to its next hop)

as distinct from topology discovery and path selection, or routing. A PVM provides

two properties:

1. Path Consent: Before a communication, every entity on the path of the commu-

nication (including the sender and receiver) or a delegate of that entity consents to

the use of the whole path, based on the entity’s or the delegate’s particular policy.

2. Path Compliance: On receiving a packet, every entity can verify (1) that it or

its delegate had approved the packet’s purported path, and (2) that the packet has

followed that path so far.

4



CHAPTER 2. ENFORCING PATH POLICIES WITH ICING-PVM 5

Realizing a PVM is a challenging technical problem: when a packet arrives at

a node, how can the node be sure that the packet followed an approved path? To

illustrate the difficulty in achieving Path Consent and Path Compliance, we give

three strawman designs. First, we can centralize policy in a controller that knows

all entities’ policies a priori. Then, at connection setup time, if the proposed path

matches the entities’ policies, the controller enables communication by installing state

in every participating entity. This design is reminiscent of Ethane [52], which is de-

signed for enterprises. The centralized model, however, does not fit today’s federated,

decentralized Internet.

A second approach is to decentralize, using the technique of self-certifying names

[117, 28]: every entity mints a public key, and packets contain signed logs that prove

to every entity along the path that the packet is following its prescribed path(e.g.,

[43, 51]). Such a design works in principle but would not perform well in practice:

public key signatures are either too large, too expensive to compute, or both, for

this approach to be feasible at line rate in edge networks (let alone backbones). For

instance, signatures based on Merkle Hash Trees can be relatively fast, but require a

few kilobytes per signature [122]. On the other hand, Elliptic Curve Digital Signature

Algorithm (ECDSA) signatures are small (e.g., 163 bits), but can take on the order

of milliseconds to compute [111].

A third approach is to replace public key cryptography with symmetric key cryp-

tography, which is feasible at line rate (a similar proposal for a different purpose was

made in [38, 37]). Unfortunately, this approach requires quadratic configuration state

for pairwise shared keys and overhead that is quadratic in path length: each hop cre-

ates a unique proof for each other hop on the path. Meanwhile, it is not clear how to

originate the keys nor how to manage the state (a limitation implicitly acknowledged

in [38, 37] and proved as a lower bound in [82, 41]).

As an alternative to the approaches above, this chapter presents icing-pvm.

icing-pvm is an existence proof of a PVM that respects the Internet’s decentralized

nature, is amenable to an affordable line-rate hardware implementation, and does not

require quadratic configuration state. We implemented icing-pvm on NetFPGA [10],

achieving a minimum throughput of 3.3 Gbits/s at an equivalent gate cost of 54%
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more than a simple IP forwarder running at 4 Gbits/s; thus, per unit of throughput,

our icing-pvm implementation costs 86% more than IP. Our evaluation further sug-

gests that, if implemented on a custom ASIC (as in a modern router), icing-pvm

would scale to backbone speeds at acceptable cost1.

Chapters 3 and 4 describe how icing-pvm can be used in an overlay ([29, 143, 101,

136, 149, 87, 63] and at layer 3 as a replacement to IP and illustrate the interface to

icing-pvm. We treat related work later in the Chapter 5. For now we just note that

some of icing-pvm’s components are reminiscent of, or inspired by, prior mechanisms,

and icing-pvm can enforce many previously proposed policies. However, no proposal

that we are aware of offers both Path Consent and Path Compliance (save one [43,

51]), and no proposal offers these two properties in an environment that is adversarial,

high-speed, and federated. More specifically, this chapter describes the following

contributions:

• A new network security primitive, the PVM.

• The design of an efficient PVM, called icing-pvm.

• A fast and affordable hardware implementation of icing-pvm.

• A packet header format and an optimized cryptographic construction that demon-

strate the plausibility of rich per-packet cryptography at network line rates.

Next, we describe icing-pvm, first giving an overview (Section 2.2), and then

giving the details of its design and attack-resistance (Section 2.3). We then describe

our hardware implementation and evaluation (Sections 2.4 and 2.5). We give sev-

eral other example uses of icing-pvm (Section 2.6) and then reflect on icing-pvm

(Section 2.7).

1Recent work [65] has examined high-speed software forwarders. However, backbone forwarders
seem likely to continue to require dedicated hardware for the medium-term future: general purpose
machines still consume more power and require more rack space than special purpose hardware
with the same throughput. If needed, our design can run efficiently on a multicore general-purpose
processor.
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Figure 2.1: icing-pvm’s components and forwarding steps. Ê In the general case,
the sender gets PoCs from the consent servers of all nodes on the path (in practice, a
consent server can delegate PoC-issuing, making this step lightweight). Ë The sender
creates and sends the packet to the first icing-pvm node, having used the PoCs to
construct tokens that Ì each forwarder verifies and transforms for its successors until
Í it arrives at the receiver.

42

N3N2N1N0

A3

PoP0,1A1

A2

V3

V2

V1

P N0 N1 N2 N3

A1

A2 PoP0,2

A3

PoP0,1

PoP0,3

⊕
⊕
⊕

PoP0,2 PoP1,2

PoP2,3PoP1,3

⊕
⊕ ⊕

⊕ ⊕⊕PoP0,3

PayloadPayload

Figure 2.2: Simplified icing-pvm packet at steps Ë and Í from Figure 2.1. Two cru-
cial header fields are the path (P) and the verifiers (Vj ’s). The sender (N0) initializes
the verifiers with path authenticators (Aj ’s) derived from the PoCs and the packet
content. Each node Ni checks its verifier (Vi) and updates those for downstream
nodes (Vj for j > i) to prove that it passed the packet. PoPi ,j is a proof to Nj that
Ni has carried the packet.

2.2 Overview of icing-pvm

We now describe icing-pvm at a high level, including its threat model, deferring

design details to Section 2.3.
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2.2.1 Architecture and components

icing-pvm is a packet forwarding mechanism that allows a router to verify that

a packet is following it pre-approved path before sending it to the next hop. An

icing-pvm network comprises icing-pvm nodes, which enforce Path Compliance.

icing-pvm nodes are the machines that participate in icing-pvm, possibly including

end-hosts.

There are two main ways to deploy icing-pvm: (1) In a layer 3 network (i.e., as

a replacement for IP), and (2) in an overlay. When used as the forwarding mecha-

nism for a layer 3 network, icing-pvm nodes could be deployed by network transit

providers just at the ingress boundaries of their networks; inside their networks, the

providers need not implement icing-pvm. In the overlay case, the icing-pvm nodes

are waypoints interconnected by the regular IP network. This section will be agnostic

on the deployment scenario.

To communicate with a receiver, the sender first chooses a path through icing-

pvm nodes. How senders find paths depends on the scenario; a sender might query

DNS to get a path (instead of an IP address), purchase access to a remote ISP via

its Web site, statically configure paths, etc. Chapters 3 and 4 elaborate on some

possibilities. This chapter assumes that the sender has candidate paths in hand.

Figure 2.1 summarizes how icing-pvm forwards packets. For each node on the

path, the sender requests from the node’s provider a Proof of Consent (PoC ). The

PoC certifies the provider’s consent to carry packets taking that path. The sender

uses the PoCs to construct packet headers.

PoC creation is implemented by a consent server owned by the provider, or acting

on its behalf. Consent servers are general-purpose servers separate from the network’s

forwarding nodes; this allows the policies to be flexible, fine-grained, and evolvable [83,

50, 52, 85, 136].

As a packet travels through the network, each icing-pvm node verifies that the

packet is following its approved path. This job decomposes into three tasks: (1) the

node checks that the path is approved; (2) it checks that the path has been followed

so far; and (3) it proves to downstream icing-pvm nodes that it has seen the packet.

Later, we describe in detail how icing-pvm nodes perform these functions. The
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high-level construction is depicted in Figure 2.2. It relies on PoCs and on Proofs of

Provenance, or PoPs. PoPs allow upstream nodes to prove to downstream nodes that

they carried the packet. These proofs require pairwise PoP keys, but these keys do

not require significant configuration state, as nodes derive the keys from their IDs.

2.2.2 Goals and non-goals

icing-pvm seeks to provide a PVM’s two properties, Path Consent and Path Com-

pliance. We refine these properties into the following requirements for icing-pvm:

• Delegation: A consent server must be able to delegate its path approval function.

• Path Consent: When a node receives a packet with path P , it must be able to

verify that its consent server, or a delegate, approved P .

• Path Compliance: When a node Ni with index i in path P receives a packet

with path P , the node must be able to verify that the packet was sent by the

purported sender (index 0) and has been forwarded by each of the nodes at indices

1, 2, . . . , i − 1, in that order.

icing-pvm is designed to meet the above requirements while being amenable to an

affordable high-speed hardware implementation and while not requiring a central

authority, PKI, or significant configuration state. Our threat model, which is strongly

adversarial, gives us further constraints. We describe our adversarial model in the

next subsection.

There are several functions that icing-pvm is not designed for:

The statement of Path Compliance does not guarantee a packet’s future. After a

packet departs a node, any downstream node can send it anywhere. In fact, icing-

pvm does not attempt to prevent such misbehavior; what icing-pvm can do is detect

it. Honest nodes do not accept a packet that has not followed its approved path.

Thus, an upstream node can compare counts of accepted packets (for a given path)

at itself and at a downstream node that it trusts. If the first count is larger than the

second, there is a problem between the two nodes.

icing-pvm nodes can copy packets and send them elsewhere, or pass packets

through hidden nodes. icing-pvm can only prove that nodes that do participate
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in icing-pvm and implement the protocol correctly have seen the packet. It cannot

prove that other nodes did not see the packet. Such a hidden node would be analo-

gous to a transparent middlebox (e.g., a deep-packet inspection middlebox). However,

icing-pvm senders and receivers can choose their path—they can include only nodes

that they trust not to leak their packets. This choice is complementary to encryp-

tion: encryption protects the content of the communication, and (as noted earlier)

icing-pvm gives endpoints the ability to keep discreet the fact of the communication.

icing-pvm does not attempt to provide authenticated information about the loca-

tion of silent errors or failures on the path. icing-pvm provides a way for a node to

signal an error back to the sender (Section 2.3.4); however, the sender cannot discover

the location of a fault if none of the nodes on the path signals back to the sender.

icing-pvm does not provide information about whether a packet received any

contracted-for services at a node. For instance, a sender may choose to send a

packet through a particular node because the node advertised a virus-scanning ser-

vice. icing-pvm does not provide a built-in mechanism that enables the sender (or

receiver) to verify that a packet was indeed scanned. The receiver can verify only

that the packet was forwarded through the node that advertised the service.

icing-pvm makes a binary decision about whether a path is acceptable; it does

not regulate the amount of traffic sent along a path, or associated to a PoC. Other

work [175] has shown how to perform such accounting with minimal forwarder state,

and icing-pvm could be extended to incorporate this technique.

2.2.3 Threat model

Machines that obey the protocol we term honest. We assume that some providers,

nodes (including end-hosts), and consent servers are not honest and specifically that

they are controlled by attackers. These machines can engage in Byzantine behavior

that deviates arbitrarily from icing-pvm’s specified packet handling. For instance,

the attacker can send arbitrary packets or try to flood links to which it connects.

The attacker can also observe legitimate data packets that pass through it. We make

no assumptions about how malicious nodes are implemented: they may connect to
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one another and be controlled by a single attacker, or they may collude, potentially

bracketing honest nodes on paths. Furthermore, even honest machines may give

service to malicious parties; for instance, a consent server can grant PoCs to an

attacker.

The attacker tries to make icing-pvm fail some of its goals (Section 2.2.2), for

instance by trying to abuse the delegation mechanism, or trying to make an honest

node Ni accept a packet whose path was not approved by Ni ’s consent server (or a

delegate of Ni), or whose actual path skipped some of the honest nodes upstream of

Ni in the approved path.

We make security assumptions about several cryptographic primitives used by our

implementation: that AES-128 [126] is a secure keyed pseudorandom function with

full 128-bit security, that PMAC [44] is a fully secure deterministic MAC that is also

a secure keyed pseudorandom function, and that CHI [89] is a secure hash function

even if the hash is truncated to 248 bits.

2.2.4 Naming

Each icing-pvm node assigns itself an identifier, called a node ID, which is a unique

public key. The node keeps secret the corresponding private key. With such self-

certifying names [117, 28], an entity does not need permission to create a name for

itself, so a central naming authority or PKI is not needed. This fits the Internet’s

federated structure.

A path is a list of 〈node ID, tag〉 pairs. The tag identifies a specific set of local

actions that a node performs on packets with this tag. For example, a tag can describe

a priority level for queueing, identify a customer to bill, select one or more output

links (unicast or multicast), request virus-scanning services, or specify a combination

of these. It can be thought of as a generalized MPLS label [72] (and shares some

functionality with the vnode mechanism in [81]). The provider conveys the particular

meaning of a tag on a node to the users of that tag through some out-of-band means,

such as an agreement with the user or a Web page.
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2.2.5 Proofs of consent (PoCs)

After a sender has determined a path, it contacts the consent servers for each node

on the path to obtain PoCs for that path (including the tags on that path). Each

consent server is preconfigured with its provider’s policy, so it can check that the path

complies with that policy. To aid in its check, the consent server may incorporate

external information (billing, authentication, etc.). If the check passes, the consent

server creates a PoC based on the full path and returns it to the sender. Each PoC is

associated with a specific node’s tag, so it only permits the sender’s traffic to transit

that particular node using that particular tag. To ensure this association, the PoC

includes a cryptographic token, specific to the path and computed under a tag key

that is unique to the associated node and tag. This key is also known to the node.

Consent serving is flexible. A provider with multiple icing-pvm nodes can deploy

a single consent server. Or a provider can delegate the ability to create PoCs for a

particular node and tag by divulging that tag’s key. The recipient of the key can then

mint PoCs that give a sender permission to send traffic through the given node and

tag. Or a provider can disintermediate itself altogether by making all of its tag keys

public.

2.2.6 Packet creation and proofs of provenance (PoPs)

As mentioned above, a sender obtains PoCs for the icing-pvm nodes on its chosen

path. It uses these PoCs to construct the packet header. The construction is such

that when a packet arrives at node N , N can tell whether the sender held a PoC

issued by N ’s consent server. The sender also computes PoPs for each of these nodes;

a PoP proves to a node that the sender created the packet. A PoP includes a MAC

of the packet under the shared symmetric PoP key.

These shared PoP keys do not require the network to be configured with pairwise

keys. Instead, an icing-pvm node (such as the sender) derives the PoP key that it

shares with any other node from its own private key and from the other node’s ID

(which is a public key). The node uses a non-interactive Diffie-Hellman key exchange

for the derivation and caches the results.
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2.2.7 Packet processing: verification and forwarding

Each node that receives the packet does the following:

1. It computes the PoC from the path using the tag key that the node shares with

its consent server.

2. For each upstream node in the path:

(a) The node derives the PoP key it shares with this upstream node (which it can

do from the upstream node’s ID found in the path);

(b) It computes the MAC of the packet (PoP) under the PoP key.

3. It checks that the PoC and PoPs are correct.

The PoPs computed in step 3-a prove to the node that the packet has passed

through all the upstream nodes (including the sender). If the PoC is correct and the

PoPs are all correct, then the packet has been following an approved path. Otherwise,

the node drops the packet. If the checks pass, the node has to prove to downstream

nodes that it has seen the packet. To do so, the node does the following:

4. For each downstream node in the path:

(a) It derives the PoP key that it shares with this downstream node (again from

the ID in the path).

(b) It computes the PoP under this PoP key.

5. It inserts these PoPs into the header.

6. It forwards the packet to the next node.

As so far described, packet header size appears quadratic in the length of the

path. However, the header size is in fact linear in path length: owing to the packet

handling algorithm (Section 2.3.3), when the node receives a packet, the PoC and the

PoPs that it inspects in steps 1–3 above are XORed together in an aggregate MAC;

this approach reduces space while protecting the security of each of the components

[98].
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2.3 Design details of ICING-PVM

This section details icing-pvm’s design, which aims to meet the requirements stated

in Section 2.2.2. Figure 2.3 describes the notation that we use throughout our design

discussion and our pseudocode, while Figure 2.4 summarizes the secret cryptographic

material used in icing-pvm.

icing-pvm’s packet format is shown in Figure 2.5. Each packet includes three

types of information for every node in its path other than the sender. The first is

per-node information: a node ID, Ni , and a corresponding tag, tag i (Section 2.2.4).

The second is the Proof of Consent (PoC) showing that the consent server (or its

delegate) authorized the path (Section 2.2.5). The third is the Proof of Provenance

(PoP). The PoC—more precisely, an authenticator derived from it—and PoPs are

aggregated into a constant-length verifier (Vi). The PoP allows each node to verify

that every previous node has approved the path and forwarded the specific packet

(Sections 2.2.6 and 2.2.7). PoCs and PoPs allow icing-pvm to meet its requirements

of Path Consent and Path Compliance. We discuss Delegation later.

Because packets carry node IDs, and because node IDs are public keys, our design

needs small public keys to reduce the header size. Thus, we use elliptic curve cryptog-

raphy (ECC): every node ID, Ni , is a point on NIST’s B-163 binary-field elliptic curve

group [25], which gives roughly 80-bit security, similar to 1024-bit RSA keys [25]. For

the sake of readability, we denote the B-163 curve as an abstract cyclic group under

multiplicative notation. We write g for the base point of B-163 (that is, the group

generator), and q for the (prime) group order. The private key, xi , corresponding to

Ni is then the 163-bit number modulo q such that Ni = gxi . To make the approach

amenable to a hardware implementation, we reduce the representation of Ni from 163

to 160 bits. We do so by requiring the top three bits of Ni to equal the first three bits

of the SHA-1 hash of the lower 160 bits of Ni ; heuristically, this does not diminish the

strength of the keys (except for a brute force attack), though it increases expected

key generation time by a factor of 8.
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M {vers, counter, proto, path-len, pkt-len, error-path-idx, payload}. A packet’s static
contents.

P 〈N0 :tag0, N1 :tag1, . . . , Nn :tagn 〉. A packet’s path: a list of node identifiers and
corresponding tags.

Ni A node’s identifier: a public key.

xi A node’s private key: satisfies Ni = gxi .

tag i The tag corresponding to node Ni on path P : an opaque 32-bit string.

mNi
A node’s master tag key : used in a key-derivation function (get-tag-key) to
associate key material (tag keys) to any tag.

mNi :t/p The p-bit-prefix key for tag t at node Ni : an intermediate key, created by
get-tag-key, that enables calculation of tag keys at node Ni for any tag t ′ with
the same p-bit prefix as t ’s. Note that mNi :t/0 equals mNi

for any t .

sNi :tag i
The tag key : used by a consent server for node Ni to create a PoC for a path that
includes Ni :tag i . Amounts to mNi :tag i/32.

PoCi (PoCi .expire, PoCi .proof).
Proof of Consent to path P by node Ni .

PoCi .expire A PoC’s 64-bit expiration time indicator.

PoCi .proof vprf(sNi :tag i
, P ||PoCi .expire).

Ai prf-96(PoCi .proof, 0 || hash(P || M )). A packet’s path authenticator for node Ni .

ki,j (= kj ,i ) nidh(xi , Ni , Nj )(= nidh(xj , Nj , Ni )). The PoP key : a symmetric key shared by
nodes Ni and Nj , used for PoP computations. Soft state, derivable from nodes’
identifiers.

PoPi,j prf-96(ki,j , i || hash(P || M )).
Proof of Provenance designated for Nj : A MAC by which Ni attests that it had
approved a packet’s path and handled it accordingly.

V 〈V1, . . . , Vn 〉. A packet’s verifier-vector.

Vi (Vi .expire, Vi .proofs, Vi .hardener).

Vi .expire Least significant 16 bits of PoCi .expire: used to check PoC expiration.

Vi .proofs Ai ⊕ PoP0,i ⊕ . . .⊕ PoPi−1,i .
Aggregate MAC by which Ni checks out Ai (and hence PoCi ), as well as PoPj ,i ,
for j < i .

Vi .hardener prf-32(PoCi .proof, 0 || hash(P || M )). Hardens forwarder slow path against DoS.

nidh(xi , Ni , Nj ) hash2(sort(Ni , Nj ) || N xi
j ). (Hashed) Non-interactive DiffieHellman key exchange.

vprf(s, d) A keyed function that maps variable-length data d to 128-bit pseudorandom
outputs. The current implementation uses PMAC [44].

prf(k , d) A keyed function that maps 256-bit data to 128-bit pseudorandom outputs
(Appendix A).

prf-96(k , d) First 12 bytes of prf(k , d). Suitable as a 128-bit message authentication code for d .

prf-32(k , d) Last 4 bytes of prf(k , d).

hash(d) A collision-resistant hash function that maps variable-length data d to a 248-bit
digest. Based on CHI [89]. Future versions of icing-pvm will use the final SHA-3.

hash2(d) A collision-resistant hash function that maps variable-length data d to a 128-bit
digest. Based on SHA-1 [125]. Future versions of icing-pvm will use the final
SHA-3.

Figure 2.3: Symbols and notation used in the pseudocode.
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node i consent server i delegate
(i ≥ 0) (i > 0) of node i sender

xi x
ki ,j o

mNi x x
mNi :t/p o o x
sNi :tag i

o o o

PoCi .proof o o o x

Figure 2.4: Cryptographic keys in icing-pvm (rows), and various holders of these
keys (columns). The key material is relative to the i -th entry in a packet’s path
(which is the sender, if i = 0). x denotes a key that the entity is given; o denotes a
key that the entity can derive.

2.3.1 Generating PoCs and controlled delegation

Once a sender determines a path P (a process largely orthogonal to icing-pvm, as

discussed in Section 2.2.1), it must obtain PoCs for each Ni :tag i in P . To do so,

it contacts Ni ’s consent server. The PoC consists of a 64-bit expiration timestamp,

PoCi .expire, and a cryptographic token, PoCi .proof = vprf(sNi :tag i
, P ||PoCi .expire).

sNi :tag i
is a tag-specific secret key that node Ni shares with its consent server.

Because managing keys separately for their 232 tags would be cumbersome for a node

and its consent server, they instead share one master tag key, mNi , that pseudoran-

domly generates many tag keys. This process is encapsulated by get-tag-key. In

more detail, let t/p denote the p-bit prefix of tag t , and define mNi :t/p to be the corre-

sponding p-bit prefix key. We take mNi :t/0 = mNi for any tag t . Then, get-tag-key

computes mNi :t/p = prf(mNi :t/(p−1), t/p). The tag key sNi :tag i
associated to Ni :tag i

is just mNi :tag i/32. This approach is inspired by a technique in [136].

As so far described, this technique derives sNi :tag i
from mNi :tag i/0 = mNi using

32 serial rounds of prf, which is too many for processing packets at high speeds.

However, three modifications can reduce the number of rounds and their individual

cost. First, a node can cache all prefix keys for y-bit prefixes in a prefix key cache.

Second, a given node may choose to use only the top 32− z bits of the tag field. Our

hardware implementation, for example, takes y = 16, z = 16, making its number of
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Figure 2.5: icing-pvm header format.

required prf invocations equal to 32 − 16 − 16 = 0 (i.e., the node caches all of its

tag keys). The third modification, which is detailed in Appendix A, constrains the

admissible values of the prefix length, p.

Controlled delegation. Given the above approach to tag key derivation, tag

prefix delegation is easy to implement. To delegate the tag block with prefix t/p (i.e.,

232−p tags), the node’s provider shares mNi :t/p . The delegate can further sub-delegate

tags by sharing mNi :t/k , where k ≥ p. Delegation lets a provider give customers

control over particular tags on the provider’s nodes. A customer with such control

can, with no provider intervention, act as a consent server on behalf of the provider

(creating PoCs for its own traffic if it is an end-host or for its customers if it is itself

a provider) or give its customers their own tag keys (to disintermediate itself).

Expiration and revocation. The PoC.expire expiration timestamp allows con-

sent servers to mint time-limited PoCs. This requires that consent servers and icing-

pvm nodes be loosely synchronized, via NTP [119] for example. The master tag key

mNi and other prefix keys mNi :t/p are changed periodically to guard against chosen-

message cryptanalytic attacks and to prevent an old timestamp that has wrapped

from appearing valid.

How does a provider revoke PoCs before the expiration interval? The provider
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1: function Initialize(pkt , PoC1, . . . , PoCn)
2: P = pkt .P
3: M = pkt .M
4: V = pkt .V
5: H = hash(P || M )
6: for 1 ≤ j ≤ n do
7: Set Vj .expire = PoCj .expire & 0xffff
8: Aj = prf-96(PoCj .proof, 0 || H )
9: Set Vj .proofs = Aj

10: Set Vj .hardener = prf-32(PoCj .proof, 0 || H )
11: Nj = j -th node in P
12: k0,j = DHCache[Nj ] or nidh(x0, N0, Nj )
13: PoP0,j = prf-96(k0,j , 0 || H )
14: Set Vj .proofs = Vj .proofs⊕ PoP0,j

Figure 2.6: Pseudocode for packet initialization. The sender initializes the verifiers
before sending the packet to the first node.

can change mNi at the node and consent server. Another option is to change only a

prefix key (or tag key), no longer deriving it from mNi . To do so for the prefix t/p, a

node inserts an entry (t/p, m ′Ni :t/p) into a small override table. Unlike the prefix key

cache, this table uses longest prefix matching (so is costlier); however, it is needed

only for prefix lengths p larger than y , the prefix key cache index size.

2.3.2 Creating a packet

Before sending a packet, the sender calls Initialize (Figure 2.6), which creates a

verifier Vj for each other node j on the path. The sender initializes Vj with Aj (which

binds the PoCj to the packet contents) and PoP0,j ; given this Vj , a downstream node

can verify that the packet’s path is approved by its consent server and that the packet

has been created by the packet’s purported sender.
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1: function Receive(pkt)
2: P , M , V = pkt .P , pkt .M , pkt .V
3: i = pkt.path-idx
4: Ni :tag i = i -th entry in P
5: T = current time
6: PoC′i .expire = (T &˜0xffff) |Vi .expire
7: if PoC′i .expire < T or Ni 6= my node ID then
8: Drop pkt
9: sNi :tag i

= get-tag-key(mNi , tag i)
10: PoC′i .proof = vprf(sNi :tag i

, P || PoC′i .expire)
11: H = hash(P || M )
12: A′i = prf-96(PoC′i .proof, 0 || H )
13: V ′i .proofs = A′i
14: V ′i .hardener = prf-32(PoC′i .proof, 0 || H )
15: if V ′i .hardener 6= Vi .hardener then
16: Drop pkt
17: // verify upstream PoPs (check Path Compliance)
18: for 0 ≤ j < i do
19: Nj = j -th node in P
20: kj ,i = DHCache[Nj ] or nidh(xi , Nj , Ni)
21: PoPj ,i = prf-96(kj ,i , j || H )
22: V ′i .proofs = V ′i .proofs⊕ PoPj ,i

23: if V ′i .proofs 6= Vi .proofs then
24: Drop pkt
25: // create downstream PoPs (prove Path Compliance)
26: for i ≤ j ≤ n do
27: Nj = j -th node in P
28: ki ,j = DHCache[Nj ] or nidh(xi , Ni , Nj )
29: PoPi ,j = prf-96(ki ,j , i || H )
30: Set Vj .proofs = Vj .proofs⊕ PoPi ,j

31: Set pkt .path-idx = i + 1
32: Add all calculated kx ,y to DHCache
33: Perform any special handling prescribed by tag i

34: Transmit pkt to next node (or accept if destination)

Figure 2.7: Pseudocode for packet forwarding. The node validates the packet and
transforms verifier entries before honoring the tag specified in the packet’s header and
sending the packet to the next node. Note that P is 0-indexed and V is 1-indexed.
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2.3.3 Forwarding and receiving a packet

On receiving a packet, a node Ni with index i in the packet’s path processes it

according to the pseudocode in Figure 2.7. The node must ensure that icing-pvm’s

requirements of Path Consent and Path Compliance (Section 2.2.2) are met for each

packet that it passes. (Delegation was discussed in Section 2.3.1.) First, for Path

Consent, Ni must verify that the PoC implicit in the packet, PoCi , is correct. Second,

for Path Compliance, the node must verify the PoPs created by upstream nodes

N0, . . . , Ni−1 (that is, it must verify PoPj ,i for j < i). The node executes both checks

by validating the verifier Vi . To do so, it derives an expected verifier V ′i , which

requires deriving the expected PoC′i (based on the path and the relevant tag key,

cf. Figure 2.7, lines 9–10), the expected A′i , and the expected PoPs. If V ′i does not

match the verifier in the packet (Vi), the packet is dropped (Figure 2.7, lines 11–24).

To perform its required duty with respect to Path Compliance, the node modifies the

verifiers for downstream nodes (Vj for j ≥ i) by XORing Vj with PoPi ,j (Figure 2.7,

lines 26–30).

Computing PoPs for a packet may require deriving PoP keys ki ,j (= kj ,i). Because

it is resource-intensive, this calculation happens on a node’s separate slow path, so it

does not delay the processing of other packets that do not require the same calculation.

An attacker may try to attack a node’s slow path by sending many packets with

invented node IDs. To defend against such an attack, the node requires a valid

hardener (Vi .hardener) in the packet, which it checks on the fast path (Figure 2.7,

lines 14–16). Vi .hardener is only 32 bits, so it does not fully rule out such attacks,

but it decreases their effectiveness by a factor of 232, which is sufficient to avoid

denial-of-service.

2.3.4 Signaling errors and failures

Because icing-pvm packets are source-routed, a network using icing-pvm needs

to report errors and other failures back to the sender so that the sender can use a

different path if necessary. Note that a sender can hold pre-approved backup paths,
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so failures need not require the sender to obtain new paths.2

But the sender needs to learn of the error or failure. For that, icing-pvm error

packets need to travel along the reverse of a given path toward the sender. The

slight complication is Path Consent: for some nodes, consenting to a path’s forward

direction may not imply consent to carry error packets along the reverse of the path,

in which case the sender has to rely on end-to-end failure detection.

For nodes that do consent to carry error packets, icing-pvm handles errors as

follows. To create an error packet, a node sets the error index field in the header to

the current index and replaces the payload with the original packet’s hash, followed

by optional error-specific information (analogous to ICMP error code and data). A

node recognizes packets with non-zero error index fields as error packets and handles

them differently: most importantly, the node forwards such packets to the previous

node (rather than the next) and decrements (rather than increments) the path index

field. A node that experiences a failure when sending an error packet drops it—error

packets never generate further error packets.

The Vi in an error packet contain all the forward-direction PoPs from the original

packet that caused the error, in addition to PoPs for the error packet itself. Be-

cause the error payload begins with the original packet’s hash, nodes can verify these

forward-direction PoPs despite not having the original packet. In particular, node i

drops an error packet unless Vi .proofs includes a PoP under ki ,i . This ensures that a

node will not forward an error packet if it did not previously forward the original.

2.3.5 Attacks

Attacks against the verification algorithm. The algorithm guards against the

following attacks.

• Using incorrect or expired PoCs: This attack fails because each node checks the

expiry and recalculates its expected PoC (Figure 2.7, lines 7–10).

2Even if the sender needs to obtain new paths, it is not necessarily a disaster. In the status quo,
packets do not magically skirt around failures; instead, the routing protocol must run, which also
takes time.
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• Skipping an honest node i : When the packet is received at honest node j down-

stream of node i , Vj will lack PoPi ,j and will be flagged (Figure 2.7, lines 11–24).

• Flooding a node’s slow path: The attack is mitigated because the node checks

Vi .hardener before calculating any PoP keys (Figure 2.7, lines 14–16).

Attacks on the cryptographic primitives. We expect the class of primitives

in icing-pvm (PRFs, collision-resistant hash functions, etc.) not to change. However,

the particular algorithms in our implementation (PMAC, AES, CHI, etc.) may be

broken in the future or require longer key lengths. We anticipate that these changes

will happen far more slowly than the rate at which hardware becomes obsolete or

network bandwidth increases. As the hardware changes, new versions of the protocol

can be rolled out, with the hardware supporting old and new versions as a way to

smooth the changeover (as with IPv4 to IPv6).

Attacks that compromise secrets. How should a node handle the inevitable

compromises of its cryptographic material (Figure 2.4)? We have discussed PoC

revocation (Section 2.3.1): a node changes prefix or tag keys (mNi :t/p , for various

t/p). If an mNi :t/p itself is compromised, a node can simply change it. A more

serious concern is the compromise of a private key, xi , or any derived PoP key, ki ,j . In

that case, the node must generate a fresh public/private key pair so must also change

its node ID. This requirement is inconvenient but not disastrous; it is tantamount to

advertising a new business name, or to moving, in that the other entities that express

policy in terms of the renamed node must be notified about the change. Allowing a

node to change a ki ,j while retaining its private key is future work.

Attacks that attempt packet replay. An attacker who has observed a valid

packet may inject a duplicate copy along a suffix of a path. At low rates, such attacks

are not problematic: the layer using icing-pvm presumably handles duplicates any-

way. Meanwhile, an attack that aggressively floods using a few packets can be defeated

by a modestly sized replay cache at each node; this cache would store 〈PoC, counter〉
pairs (the counter, from the packet header field, is chosen by the sender to be unique

over the flow). A difficult case is if the attacker can amass packets from many flows

within a single PoC validity window and then replay each packet a small number of

times. Defending against this case is future work; it may require both reducing the
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PoC validity window and compressing the information in the replay cache.

Attacks on availability. What if an attacker overwhelms a consent server [34,

175]? One option is to locate the consent server at a high-bandwidth denial-of-service

mitigator (e.g., [135]). Another option, if the receiver already knows who should be

allowed to reach it (for example, employees or customers), is to give these senders their

own tag keys sNi :tag i
so that they can mint their own PoCs without the consent server.

Third, if PoC requests travel in icing-pvm packets, then icing-pvm’s mechanisms

themselves provide a foundation for defense. These mechanisms apply not just to an

overloaded consent server but also to any receiver wishing not to hear from a sender.

For instance, if senders can be identified at a useful granularity (e.g., “employees”,

“paying customers”, “unknown senders who solved a captcha”), then the victim

can assign each category to a different tag. When overloaded, the victim deprioritizes

categories by not renewing expired PoCs for their tags; downgrading service to them;

or, in an emergency, changing tag keys. If senders cannot be assigned to categories, we

can follow TVA [175], ensuring roughly fair bandwidth consumption among senders by

applying Hierarchical Fair Queueing to a packet’s path. While attackers can weaken

this defense under TVA by faking path identifiers, icing-pvm does not have this

vulnerability.

Some attacks that icing-pvm does not defend against are mentioned in Sec-

tion 2.2.2.

2.4 Implementation

This section describes our implementation of the icing-pvm node’s hardware and

software. Our prototype node accepts icing-pvm packets carried in Ethernet frames

and implements the algorithm in Figure 2.7.

The implementation is divided into two paths: a fast path that runs in hardware,

and a slow path that is executed in software if a PoP key (ki ,j ) is not cached in

hardware or if an exception occurs. The fast path is implemented on the NetFPGA3

3We used NetFPGA-1G as opposed to the NetFPGA-10G, which at the time of writing was not
yet available.
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Average increase in packet overhead: 23.3% §2.5.1

Throughput: 82.5-100% of IP on NetFPGA §2.5.2

Normalized hardware cost: 186% of IP on NetGPA §2.5.4

Figure 2.8: Summary of main evaluation results.

programmable hardware platform [10], which is a PCI card with 4 GigE ports, a

field programmable gate array (FPGA), SRAM, and DRAM. The slow path, imple-

mented in Click [102], calculates the needed keys and installs them in the hardware’s

key cache. The Diffie-Hellman key exchange is implemented with the miracl cryp-

tographic library [145]. All of the node’s software runs on Linux 2.6.25.

We have not yet implemented PoC expiry, or the handling of error packets. How-

ever, we do not expect these features to change our evaluation, as reported in the

next section.

The hardware image uses support modules from the NetFPGA project. We im-

plemented the icing-pvm-specific logic, including cryptographic modules. The for-

warder uses 89% of the total FPGA logic area and has a total equivalent gate count

(EGC) of 13.4M. (EGC roughly estimates how many gates a design would use on an

ASIC, as reported by the Xilinx ISE synthesis tool, ver 10.1.) The area breaks down

as follows: 38% to the AES, CHI, and PMAC modules, 28% to all other icing-pvm-

specific logic, and 34% to the NetFPGA support modules.

By comparison, NetFPGA’s reference IP router has an equivalent gate count of

8.7M and uses 50% of the total FPGA logic area.

2.5 Evaluation

icing-pvm introduces space and time overhead from per-packet cryptographic objects

and operations. Our principal question in this section is whether these overheads are

practical on speeds that match Internet backbone links. In this section, we assume

that icing-pvm is deployed at the network layer as in Chapter 4. We begin by es-

timating icing-pvm’s total space overhead (Section 2.5.1). Sections 2.5.2 and 2.5.3
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Machine type CPU RAM OS

slow Intel Core 2 Duo 1.86 GHz 2 GB Linux 2.6.25
medium Intel Core 2 Quad 2.40 GHz 4 GB Linux 2.6.25
fast Intel quad Xeon 3.0 GHz 2 GB Linux 2.6.18

Figure 2.9: Machines for measuring icing-pvm overhead.

Fixed parameters

Varied Parameters Range Path len Path idx Pkt size

Packet size {311, 567, 823, 1335, 1514} — 7 3
Path length {3, 7, 10, 20, 30, 35} 1514 — 1
Path index {1, 5, 10, 15, 18} 831 20 —

Figure 2.10: Parameters used throughout experiments. Packet size includes header.

present microbenchmarks of our prototype node and supporting software. In Sec-

tion 2.5.4, we extrapolate from our results to assess icing-pvm’s future feasibility as

part of the Internet core. Our results are summarized in Figure 2.8.

Setup and parameters Figure 2.9 lists the 3 machine classes that we use for

evaluation. The NetFPGA is a PCI card inside the slow machine. Our experiments

vary packets’ path lengths, path indices, and sizes. Figure 2.10 gives the fixed and

variable parameters for the measurements of forwarding throughput and software

performance.

2.5.1 Packet overhead

Relative to IP, icing-pvm requires larger packet headers so would consume more

bandwidth. We now roughly quantify this overhead. An icing-pvm header includes

13 bytes that do not depend on the packet’s path length (see Figure 2.5). 42 bytes

are needed for each node in the path other than the sender: 24 bytes for the node ID

and tag, Nj :tag j , and 18 bytes for the verifier Vj . For a packet whose path length

is 5—a pessimistic estimate of the average provider-level path length from [100] and

[28]—the header is 205 bytes, or 13.5% of a 1,514-byte packet.

To estimate the total increase in bandwidth consumed by icing-pvm’s headers,
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Figure 2.11: Average throughput as a function of packet size (Figure 2.10, row 1),
path length (Figure 2.10, row 2), and path index (Figure 2.10, row 3). Percentages are
relative to maximum possible throughput on the NetFPGA. Standard deviation is
less than 0.02% of the mean at each measurement point. The forwarder’s throughput
is lowest for packets with large payloads but small path lengths: such packets send
the largest number of bits through the hash function, which is the bottleneck.

we look at a sample trace from CAIDA [14]. The total number of packets observed

for about 15 minutes was 37,571,701 with a total size of 28,474.70 MiB. For each

packet, icing-pvm’s increase in overhead relative to an IP header (of 20 bytes) is

205 − 20 = 185 bytes (assuming path lengths are uniformly distributed across all

packet sizes). So the total increase in bandwidth consumption for this particular

dataset would be 37, 571, 701× 185/(28, 474.70× 220) = 23.3% relative to IP.

2.5.2 ICING-PVM hardware

We now measure the performance of the (fast path) hardware in our prototype icing-

pvm node, described in Section 2.4.

From Figure 2.7, one might expect the cost of processing a packet to depend

on the path length because the work of verifying Path Compliance and proving it
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Action Processing time Throughput (1/Proc. time)

Calculate ki ,j 4 ms (σ = .043 ms) 250 keys/s
Generate PoC 0.4x + 1.3 µs 2.6 · 106/(x + 3.5) PoC/s
Create packet (w/c) 2.6x + 40.1 µs 3.9 · 105/(x + 15.4) pkt/s
Verify packet (w/c) 2.6x + 24.4 µs 3.9 · 105/(x + 9.5) pkt/s
Create packet (n/c) 33796.1x − 32758.4 µs 29.6/(x − 0.9) pkt/s
Verify packet (n/c) 34875.1x − 33647.1 µs 28.6/(x − 0.9) pkt/s

Figure 2.12: Processing time and throughput for software operations. x is the path
length. Packet creation and verification costs are measured both with and without
the use of cached shared keys (w/c and n/c resp.). For the last four rows, processing
time is derived by linear regression, and R2 > 0.99 in all three cases.

seems proportional to the path length. However, the results of the various prf-96

operations are XORed, so they can be parallelized in a pipeline and thus removed

from the critical path. The only other heavily serialized function in the design is the

hash function (hash), so we expect it to be the bottleneck; i.e., throughput should

depend on the number of bits that must be hashed. Since the only fields that are not

hashed are the path index and the verifiers’ Vj s, we expect throughput to be lower

when the Vj s represent a smaller fraction of the total packet bits. In other words, for

a constant path length, we expect throughput to decrease as packet size increases.

We measure our prototype’s fast path throughput by connecting the four ports

of an icing-pvm node to a NetFPGA packet generator [62] that sends icing-pvm

packets at 4 Gbit/s. We measure throughput over 5 10-second samples, using the

measurement points in Figure 2.10. The icing-pvm node loops ingress packets back

to the packet generator, which measures the average bit rate.

Figure 2.11 plots the measured throughput. (Note that we do not report goodput;

instead we report icing-pvm packet header overhead in Section 2.5.1.) The minimum

aggregate throughput is 3.3 Gbit/s. The path index has no effect on performance

because it doesn’t affect the number of prf-96 applications or the number of bits

hashed.
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2.5.3 ICING-PVM software

We now measure the performance of the (slow path) software in our prototype icing-

pvm node. We also measure end-host icing-pvm operations. Figure 2.12 summarizes.

Shared key (ki ,j ) derivation. A packet invokes our prototype’s slow path when

the hardware does not have the required shared keys cached (Figure 2.7). We measure

the cost of deriving ki ,j by running 3,000 iterations of the calculation function in a

tight loop on the slow machine. On average, a single calculation takes 4 ms.

End-host. An end-host must also perform cryptographic operations: senders

initialize all the verifier entries, and receivers validate and modify some of these

entries. To understand these costs, we seek a linear function from path length to

processing time. To infer such a function, we vary path length per Figure 2.10, take

packet size to be 1,514 bytes, and collect 1,000 samples per path length on the medium

machine. We record total processing cost (of either packet generation or verification,

depending on sender or receiver; in both cases, we record the cost when the ki ,j keys

are and are not cached), and then use ordinary least squares linear regression. The

inferred coefficients (R2 > 0.99) are in Figure 2.12. Each entry in the path increases

packet creation and verification times by 2.6 µs. For an average path length of 5,

packet verification can be performed at 23K pkts/s.

Packet generation takes longer than verification because senders are so far unop-

timized and compute hash(P || M ) twice. Were the endpoints optimized, receiving

would likely be more expensive than sending: the receiver also hashes the packet (to

verify V ) and has an additional cost, namely re-computing the local PoC.

2.5.4 Scaling

We now give a rough assessment of whether an icing-pvm node could meet the

demands of the Internet backbone.

Throughput and cost. In assessing whether icing-pvm could scale to back-

bone speeds, our metric is normalized cost : it measures the hardware cost, reported

as equivalent gate count, per unit of throughput. As a baseline, we consider a sim-

ple IP router on the NetFPGA. We obtain gate counts for the icing-pvm and IP



CHAPTER 2. ENFORCING PATH POLICIES WITH ICING-PVM 29

NetFPGA icing-pvm NetFPGA IP

Min Throughput (Gbits/s) 3.3 (from §2.5.2) 4
(Eq.) Gate Count (Gates) 13.4M 8.7M
Normalized Cost (Gates/(Gbits/s)) 4.1M 2.2M

Figure 2.13: Normalized costs of the NetFPGA icing-pvm forwarder and the
NetFPGA IP reference router. The equivalent gate count is an estimate of the cost
of the implementation on an ASIC given by the Xilinx synthesis tool ISE ver 10.1.

implementations from the synthesis produced by Xilinx’s ISE software (ver 10.1).

Figure 2.13 summarizes the comparison. Using our normalized cost metric, our

icing-pvm forwarder is ∼86% more expensive than the NetFPGA IP router. How-

ever, the IP router is a pessimistic baseline because it is bare bones: it has only

a 32-entry TCAM for longest-prefix matching (commercial routers have on the or-

der of hundreds of thousands [59], and the TCAM is a big consumer of logic area),

and it does not have the functionality of commercial-grade routers (packet filtering,

tunneling, etc.). On the other hand, almost all of icing-pvm’s processing can be

parallelized, so it seems that there is no fundamental obstacle to scaling icing-pvm

to backbone speeds (around 100 Gbits/s).

Next, we give a very rough estimate of the die size required for icing-pvm pro-

cessing at 100 Gbits/s. Because we have been unable to find die sizes for ASICs in

commercial networking products from vendors such as Cisco, Juniper, and Broadcom,

our comparison is relative to the FPGA chip (Virtex-II pro 50) that we are using.

Measurements from [105] suggest that the ratio of chip area consumed by an FPGA

to that consumed by an ASIC for the same design varies between 12 and 70, depend-

ing on the types of hard macro blocks used and the type of logic implemented by the

FPGA design. Our design uses only Block RAM hard macros. Thus, according to

Table II in [105], the average ratio is 33. Moreover, the Virtex-II pro uses 0.13 µm

technology while today’s ASICs use 40 nm technology, so area would reduce by an

additional (130/40)2, or a little over a factor of 10, giving a factor of roughly 330

altogether.

Moving to an ASIC also allows higher clock speeds from reduced combinational



CHAPTER 2. ENFORCING PATH POLICIES WITH ICING-PVM 30

and routing delay. The average delay reduction found in [105] is 3.5 times. And, mov-

ing to a smaller technology can further increase clock rates, but we are conservatively

disregarding this effect.

Applying the above estimates literally would mean that an ASIC implementing

our icing-pvm forwarder design would be at least 330 times smaller than the Virtex-

II pro 50 and would run 3.5 times faster—roughly 10 Gbit/s (i.e., 3.5 times faster than

the minimum speed of our implementation, which is 3.3 Gbit/s, from Figure 2.11).

We can now “spend” some of that factor of 330 to replicate processing logic by a

factor of 10 to reach our goal of 100 Gbit/s. The end result is still very little area at

the 40 nm technology.

Symmetric key cache. An icing-pvm node Ni stores a table of (Nj , ki ,j )

pairs. Would this cache be too expensive? There are fewer than 40k advertised AS

numbers, and the total is growing at less than 3.2k/year [1]. However, the total

number of peering points these ASes have is unclear, especially given the fact that

many of these ASes peer together at Internet Exchange Points (IXPs). If we assume

that each AS owns on average 10 nodes, the key cache would need to be approximately

400k keys. The size of the lookup entries is increased from 32-bit IP prefixes to 160-

bit flat node IDs, while the size of the returned data (the shared symmetric key) is

increased to 128 bits. The needed table size to fit all icing-pvm nodes would be

almost 14 megabytes, which is within today’s SRAM capabilities [23]. In any case,

we believe that an optimization many providers will do is use the same node ID for

many (if not all) their nodes to ease key management and policy configuration. For

further analysis of a nearly identical question, see [28, §4].

Tag key cache. An icing-pvm node Ni also caches precalculated tag keys sNi :t

or prefix keys mNi :t/p . While an extended analysis is outside of our scope, we just

note that viable SRAMs [23] already exist that could fit 220 keys, sufficient for more

than 1 million tags.
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2.5.5 Overhead of PoC generation

To measure the cost of generating PoCs in software, we run the calculation function

in a tight loop, varying path length per Figure 2.10. To represent the consent servers,

we use the fast machine. Our results (Figure 2.12), show that cost is proportional

to path length, as expected from the definition of PoC.proof (Section 2.3.1). For a

path length of 7, the consent server can generate approximately 248,000 PoCs/s, well

within the range of request rates handled by a root DNS server [139].

2.6 Applications of ICING-PVM

icing-pvm enables a receiver to request services for incoming packets (e.g., outsourced

intrusion detection service (IDS) or denial-of-service mitigator [135]) and then verify

that received packets actually traversed the services. icing-pvm also enables these

services themselves to specify other intermediate services (e.g., the IDS can specify an

accounting service that drops traffic for non-customers). Unlike previous work [149,

159], icing-pvm provides integrity and authentication in the forwarding mechanism,

even for intermediaries, obviating the need for reimplementing it for each service or

application.

Another application of icing-pvm is enforcing routing policy. Today, Internet

providers run a policy routing protocol, BGP, to exchange information according to

their business policies. Yet, forwarding in the current Internet undermines policy

routing: packets can (and frequently do [114]) deviate from the paths specified by the

routing protocol [73]. The simplest example of such deviation is providers who use

“hot-potato routing”, or who ignore BGP’s multi-exist discriminators (MEDs). Under

icing-pvm, in contrast, providers can verify whether or not packets are following

agreed-upon paths.

A third application is policy-compliant source routing. Under source routing [172,

81, 132, 99, 87, 174, 38, 66, 152], the sender selects paths. For instance, a user could

invoke a desktop application to specify which providers carry her traffic, letting her

avoid an ISP that she believes is throttling her traffic [172], or choose less congested
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paths [143, 29]. Or an enterprise could direct packets between its branch offices along

vetted paths. Unfortunately, unconstrained source routing is economically unviable:

it comes at the expense of providers, by overriding their policies about paths (a point

made in [136]). icing-pvm, however, resolves this tension: the sender gets choice,

but the choices are constrained by the policies of providers, or their delegates.

2.7 Discussion

The reason that a PVM can enable the applications above is that it can be viewed

as a generalization of the forwarding mechanisms of many network architecture pro-

posals (a point made elsewhere [146]). If we look at several decades of network

architecture proposals [136, 28, 108, 48, 67, 100, 93, 151, 132, 131, 38, 120, 32, 113,

172, 87, 174, 99, 81, 86, 159, 149, 77, 68, 47, 154, 152], we find that in each case,

participants involved in sending, forwarding, or receiving a packet establish policies

based on the other participants (as one of many possible examples, in capability or

default-off architectures [64, 168, 175, 40, 109], the receiver elects not to hear from

particular senders). To unify such proposals, the network can allow all entities on the

path to express policy about the entire path, which is precisely Path Consent. But

Path Consent—which is about policy expression—is not enough. In an adversarial

environment, policy enforcement matters. Solving this problem for a general data

plane is tantamount to meeting a PVM’s second property: Path Compliance.

The generality of a PVM such as icing-pvm certainly has a price, as it is more

expensive than many of the individual mechanisms that we have surveyed. However,

we are solving a different problem from these other mechanisms: our goal is to provide

a mechanism that is capable of enforcing a wide variety of policies.

Moreover, it is possible to imagine cheaper PVMs than icing-pvm, if we relax

our requirements. For example, under a central authority (a reasonable assumption:

the current Internet has IANA), a PVM could use identity-based encryption ([45]),

leading to smaller public keys (e.g., 8 bytes instead of 20 bytes) and hence smaller

packet headers. Or the central authority can distribute a trusted map from short

identifiers to public keys, so packets need not carry public keys at all. Or a PVM
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could check a fraction of the packets at a fraction of the cost. And if we allow per-

flow state in nodes, then packets need not carry the full path, only a token that

corresponds to it [175, 53, 52].

Besides icing-pvm’s costs, we must also consider its use complexity. In an overlay,

the interface to icing-pvm is relatively simple (though obviously more involved than

IP). At the network layer, there is some complexity in bootstrapping; the details are

unsurprising and tedious.

Does icing-pvm restrict communication, as it empowers each node to enforce

policy unilaterally? We note, first, that regardless of icing-pvm, any carrier of a

communication can exercise control over it. They are free to drop packets, depri-

oritize them, or corrupt them. Second, providers in the current Internet routinely

sever transit between each other to gain leverage in contract negotiations, effectively

partitioning the Internet at users’ expense [179, 156]. Under icing-pvm, at least,

end-points get multiple options about paths and intermediate providers, which could

create competition where today monopoly reigns.

Last, the Internet seems to work sufficiently well under a threat model far more

relaxed than ours, so what types of networks is icing-pvm best suited for? One

example is when packet delivery is expensive, such as with satellite links. Another is

in military-grade networks, when it is important to restrict covert channels like leaks

of which senders and receivers are communicating. icing-pvm may also protect future

networks, like the smart grid envisioned for power delivery, generation, and markets.

But this is looking far ahead. Looking back, our motivating question was whether

it was possible to design a feasible PVM and, if so, what it would cost. This chapter

has attempted to answer that question.



Chapter 3

ICING-ON: A Policy-Compliant

Overlay Network

3.1 Introduction

The last chapter described packet forwarding under icing-pvm. But a packet for-

warding mechanism is not sufficient to build a network. The Internet is not just IP

forwarding. It has a host of other protocols and components that cooperate to achieve

end-to-end connectivity. With regards to icing-pvm, we need to answer at least two

more questions: (1) What is the interface to icing-pvm seen by senders, receivers,

and providers? (2) How do the functions of path retrieval, topology discovery, and

bootstrapping work? In this chapter, we answer these questions in the context of an

overlay network: icing-on. icing-on uses icing-pvm as its forwarding mechanism,

inheriting icing-pvm’s properties.

Another deployment scenario for icing-pvm is as a network-layer protocol. As

mentioned in Section 2.2.1, this scenario requires details that we leave for Chapter 4,

namely how, using the default-off network itself, senders get consent to request con-

sent. Under icing-on, in contrast, nodes use IP for this purpose, thus avoiding this

bootstrapping hurdle. Like RBF [134] and Platypus [136], icing-on can be deployed

in the network as an extension to existing routers to completely lockdown access.

Before we continue, let’s review some of the applications that such an overlay can

34
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enable. We have already mentioned a number of applications in Section 2.6. The two

most relevant ones to an overlay are composable network services and policy-compliant

source routing.

In the first application, composable network services, a receiver specifies a number

of network-level services through which packets destined to it must pass. The im-

portant addition that icing-pvm provides is verifiability: the receiver can check that

packets have indeed gone through the services it has requested before accepting them.

For instance, the receiver can specify an outsourced intrusion detection service (IDS)

and an auditing service that logs all incoming messages. icing-pvm also enables these

services to specify other intermediate services themselves. So the IDS can depend on

sub-services that perform various parts of the intrusion detection function such as

accounting, virus-scanning, DoS inpection, etc. Other work has already attempted to

implement similar functionality in an overlay (by extending the systems in [149, 159],

for example), but because icing-pvm provides authentication and integrity at the

network layer at high-speeds, it obviates the need for reimplementing them for each

service or application.

In the second application, policy-compliant source routing, a source specifies the

path that packets will take to the destination. In an overlay, the reasons vary from

performance (letting sources find the best quality paths [143, 29]) to preference (let-

ting sources override default routing in the underlying network layer to avoid par-

ticular areas). Like Platypus [136], icing-pvm allows the provider of such overlay

waypoints to identify which entities to bill for traffic. But icing-pvm additionally

gives the provider control over the overlay path that packets are allowed to take (for

example, a provider can specify that routing through its node is only allowed if the

packet passes through another peering provider). And while in both, Platypus and

icing-pvm, an entity can delegate purchased access through a particular node to

another entity, only icing-pvm allows the delegator to control the path the delegate

uses through that node.

We note that these applications are not mutually exclusive. icing-pvm’s Path

Consent allows both applications to coexist on the same fabric. This fabric is provided

as an overlay by icing-on.
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The rest of this chapter will describe icing-on’s design and its routing proto-

col, SPB (Section 3.2), work through an example of how these components function

(Section 3.3), and discuss design choices and trade-offs (Section 3.4).

3.2 Design

icing-on’s design does not specify how senders make path choices or how overlay

node providers choose their path policies. It does, however, specify how senders

discover available path choices. icing-on has several components: Overlay nodes

and consent servers, icing-on gateways, and domain name space (DNS) entries for

icing-on nodes and tags.

3.2.1 Overlay nodes and consent servers

To express and enforce their policies, overlay providers deploy consent servers and

icing-on nodes that are connected by IP. Overlay nodes implement icing-pvm

above UDP. A tag specifies the internal disposition or service that an overlay node

applies to a packet carrying that tag. For example, the tag can specify virus-scanning

on behalf of a particular customer.

Consent servers approve paths on behalf of the providers of the nodes and help

senders find approved paths using a protocol we call Simple Path Building or SPB :

when a sender requests consent for a path that the consent server’s policy does not

permit, it returns to the sender a message informing the sender of the rejection, and

it describes the patterns of paths that the consent server will approve based on the

originally requested path. We describe how senders find consent servers using DNS

in Section 3.2.3.

For example, say the consent server for node Y will only approve paths that

pass through node X on tag x (i.e. X :x ) before reaching Y . The administrator of

the consent server would configure it with the following pattern for approved paths:

〈∗, X :x , ∗, Y , ∗〉 where ∗ means any sequence of nodeID :tag pairs. Say a sender W

wishes to send traffic to a destination Z through node Y . The sender will contact Y ’s
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consent server, requesting consent for path 〈W :w , Y :y , Z :z 〉. Instead of returning a

PoC for the path, the consent server returns a pattern 〈W :w , ∗, X :x , ∗, Y :y , ∗, Z :z 〉.
The sender uses this pattern to construct a new path, 〈W :w , X :x , Y :y , Z :z 〉. It uses

this new path to request consent from the new node’s consent server, X . If X does

not approve the path, this process repeats: X returns one or more new, more specific

patterns, of which the sender chooses one. The sender then requests consent for the

additional required nodes in that chosen pattern. Usually, the sender will eventually

build a pattern that represents the combined path policy of all nodes on the path. At

that point, it proceeds to request PoCs again, this time using a path that all nodes

would agree to.

Sometimes, this process will not converge. This happens when at least two nodes

(one of which maybe the sender) on the path have conflicting policies. The sender at

that point needs to make different choices during path retrieval or purchase access to

some nodes.

This process seems like it would significantly increase connection setup latency. We

note three optimizations. First, a sender can cache built paths so they can be reused

without having to go through the path and consent retrieval process again. Second,

senders can proactively build paths based on their policies and maintain up-to-date

PoCs for them. And third, because icing-pvm enables delegation of PoC creation,

we expect one consent server to approve paths for several nodes (for example, if the

consent server’s owner is a customer of these other nodes’ providers) as we expect a

sender to hold the PoC keys required to mint PoCs for some of the nodes it wishes

to use in its paths (because it might have purchased access to them).

3.2.2 ICING-ON gateways

icing-on gateways can either be transparent middleboxes or software installed on

end-hosts. They serve as the interface to the overlay network, acting as icing-pvm

senders and receivers. For egress traffic from an end-host or a network, a gateway

receives standard IP packets and, acting as an icing-pvm sender, encapsulates them

in icing-pvm packets. The gateway then transmits the packets through the overlay,



CHAPTER 3. ICING-ON: A POLICY-COMPLIANT OVERLAY NETWORK 38

which now carries IP-in-icing-pvm-in-IP packets. For ingress traffic into an end-

host or network, the gateway acts as an icing-pvm receiver, processing the icing-

pvm header in the IP-in-icing-pvm-in-IP sandwich, and then deencapsulating the

innermost IP packet for its final delivery. These gateways build and cache paths

and PoCs to minimize connection setup latency. Gateways usually look at packet

information (e.g., IP protocol field or TCP/UDP port numbers) to choose paths.

Sophisticated gateways may proactively build several paths to frequently contacted

destinations and monitor these paths’ health to choose among them.

3.2.3 DNS entries

Overlay nodes forward packets to each other over IP, but icing-on nodes are identi-

fied by icing-pvm identifiers (node IDs, tags). How does a node find the IP address

of the next node in the path? It uses DNS.

Whenever an overlay provider brings up a new node or service, that is whenever

it needs to create a new node ID or tag, it will need to create a new entry in DNS.

Such entries map nodeID :tag pairs to IP addresses and allow icing-on nodes and

gateways to find the IP addresses for consent servers and other icing-on nodes and

gateways. Gateways and nodes use these entries to find consent servers (named by

consent.nodeID.icing-on.net) and to find the IP address of the next node in a

path (named by tag.nodeID.icing-on.net). We call these names the nodes’ icing-

on names.

To secure DNS entries, the provider signs each of its DNS entries using the private

key corresponding to its node ID. Because the names being looked up are self-

certifying [117], there is no need for a PKI to ensure the authenticity of the signatures.

3.2.4 To overlay or not to overlay

How does a sender know that it has to go through the overlay to reach a particular

IP address or DNS name in the first place? And how does it know what icing-on

name to use? Below are three options.

Static configuration: Senders may be configured a priori to use particular



CHAPTER 3. ICING-ON: A POLICY-COMPLIANT OVERLAY NETWORK 39

icing-on names (node IDs and tags) for particular IP prefixes. The example in

the next section shows how this option works in detail. The advantage is that this

type of lookup is secure; the binding between name and IP cannot been forged by

an attacker, because the attacker would need to change the static configuration of

a sender. Unfortunately, static configuration does not handle the case of new IP

addresses or DNS names well.

DNS lookups on the name or IP address: The owner of a server may insert

an entry in DNS that maps the server’s IP address or its DNS name to its icing-

on name. To prevent an attacker from using fake entries to redirect traffic going to

particular names or IP addresses, a system like DNSSEC [31] needs to be used. The

disadvantages are clear: DNSSEC needs a PKI and an upgrade of DNS.

Rely on the correctness of IP routing: Our final solution is more end-to-end

than DNSSEC. Initially, the sender sends the packet to its destination without going

through the overlay, using the destination’s IP address. If the destination requires

passing through the overlay, the packet will be dropped by the destination’s gateway.

The gateway returns a new type of ICMP message that indicates the reason, and

returns the icing-on name of the destination.

This solution is simple, but carries two disadvantages. First, the sender is rely-

ing on the correctness of IP routing to deliver packets to their inteded destinations

through the destinations’ gateways. Until systems like S-BGP [100] are deployed,

this solution may not be completely secure. An attacker might be able to hijack

the destination’s IP address to receive traffic sent to that address. The attacker can

then respond with any icing-on name it wants. Another disadvantage is the ad-

ditional round-trip time (RTT) in the connection setup latency. However, this last

disadvantage can be significantly mitigated using caching, because we do not expect

destinations to be changing their policies about whether or not to go through the

overlay or to be changing their gateways’ node IDs very often.

None of these solutions is perfect, but they offer different trade-offs that suit

different needs. We leave other solutions to future work.
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Figure 3.1: Example icing-on deployment and configuration, and how a sender
obtains a path. In steps Ê and Ë, the sender contacts the consent servers to build a
path, and in step Ì, it constructs a path, obtains consent for it, and uses it to send
data.

3.3 Example

We illustrate how the various components of icing-on fit together through an exam-

ple. This example serves three purposes:

• Give an example of an application that icing-on enables;

• Describe how icing-on gateways, consent servers, and nodes interact;

• Describe how operators and administrators translate business relationships and

policies into icing-on configurations and settings.

Say a company X has two branches, A and B , and mobile employees who are

scattered globally. X wants all traffic from its mobile employees to either of its
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branches to go through both an outsourced IDS service, I , and a service, D , that

does denial-of-service mitigation (e.g., [135]). On the other hand, X wants traffic

between branches to travel only through I . Additionally, I itself requires all traffic

arriving to it to pass through an accounting service S that bills I ’s customers for

traffic going through I and drops traffic not arriving from its customers. Figure 3.1

shows icing-on’s components, their configurations, and the process of obtaining a

path. This figure is reminiscent of Figure 2.1. Next, we describe how icing-on’s

components enable X and I to implement their policies.

First, X contracts with D and I for service. D disintermediates itself from all

consent granting and gives X tag prefix key mD :d/p . X ’s administrators can thus

generate tag keys of the form sD :d , where d represents a specific tag from the d/p

prefix block. The administrators use these keys to configure their consent servers. I

holds on to consent granting because it needs to ensure that any paths through it also

go through S . However, I does inform X that it must use a tag from prefix block i/q

for traffic that goes through I .

Second, the administrators at A and B deploy on their network’s external links

standalone icing-on gateways, which will function as icing-pvm senders with node

IDs NA and NB respectively. Likewise, mobile employees install the icing-on gateway

on their machines with unique node IDs NMj for j = 1, 2, . . .. The gateways enable

machines at A and B and mobile machines to access the overlay.

Third, the administrators deploy consent servers that mint PoCs consistent with

X ’s policy. For instance, if NI , ND , and NS are the node IDs for the overlay nodes

at I , D , and S respectively, then, at A, the administrators configure the following

allowed path patterns: 〈NMj , ∗, NI :i , ∗, ND :d , ∗, NA〉 and 〈NB , ∗, NI :i , ∗, NA〉. They also

configure the server with tag key sD :d , which will be used later to mint PoCs for traffic

through the overlay. The administrators also configure a shared master key in the

gateway and consent server at each branch: mA at A and mB at B .

Fourth, to enable other icing-on nodes and gateways to find their consent servers

and gateways, the administrators at A and B install DNS entries. For example, for

the name consent.NA.icing-on.net, DNS returns the IP address of A’s consent

server, and for all other names that end with NA.icing-on.net, DNS returns the
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IP address of A’s gateway.

Now, let’s consider path and PoC retrieval. When a gateway receives an egress

packet, it must decide (1) whether or not to send the packet through the overlay

and (2) what path to use if the packet should go through the overlay. It bases these

decisions on the destination IP prefix of the original packet. Say, for example, a

packet is going from a mobile machine M to A. In that case, M ’s gateway selects

a path P = 〈NM :m, NA :a〉, where m is the source IP address in the original packet

and a is the destination IP address. Then it proceeds to obtain PoCs using SPB as

described in Section 3.2.1. To obtain PoCNA :a , the gateway looks up the IP address

for A’s consent server by looking up consent.NA.icing-on.net and contacting the

server, requesting a PoC for P . Because A requires that traffic from M pass through

D and I , it rejects the request, returns pattern 〈NM :m, ∗, ND :d , ∗, NI :i , ∗, NA :a〉,
and indicates that it can mint PoCND :d . M contacts I ’s consent server, which in turn

returns pattern 〈NM :m, ∗, ND :d , ∗, NS :s , ∗, NI :i , ∗, NA :a〉 and indicates that it can

create PoCNS :s . M finally constructs the path 〈NM :m, ND :d , NS :s , NI :i , NA :a〉 and

uses it to obtain all the needed PoCs from I ’s and A’s consent servers. M caches this

path, and makes sure to always have up-to-date PoCs to minimize new connection

setup latency.

Finally, we consider packet sending. With the four PoCs in hand, M initializes

the icing-pvm header according to Initialize (Figure 2.6). It then looks up ND :d ’s

IP address in DNS using d.ND.icing-on.net and sends the encapsulated packet to

D over UDP. D , I , and A process the packet according to icing-pvm’s protocol and

look up the next hops’ IP addresses using DNS. If the gateway at A accepts a packet,

A’s administrator can be certain that the packet has followed the policies installed at

A’s consent server.

3.4 Discussion

The design of icing-on makes several trade-offs, often preferring simplicity over other

features. Below, we discuss the trade-offs that were made in the choice of routing

protocol, the use of DNS, and the interface that icing-on exposes.
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icing-on chooses one particular routing protocol to find policy-compliant paths,

SPB. Although simple and efficient (in that it allows a sender to discover all available

paths), SPB has two limitations: it leaks information about providers’ policies and it

is an on-demand source routing protocol.

SPB reveals information about providers’ policies because it returns patterns that

reveal multiple paths to senders. This is not necessary if the sender is to have more

than one choice (e.g. [174]), but necessary if that sender needs to know what choices

exist. On the other hand, one reason providers want to hide their policies is to protect

the routing protocol from being subverted. But because icing-on uses icing-pvm as

the forwarding mechanism, which ensures that providers’ policies are always enforced,

information hiding may be less important.

Second, SPB is an on-demand source routing protocol, similar to Dynamic Source

Routing [97, 96], in that routes are constructed at connection setup. This construction

increases icing-on’s connection setup latency and may cause inconsistencies between

state at the senders, consisting of cached paths that are supposedly policy-compliant,

and state at consent servers, consisting of nodes’ actual policies. To mitigate connec-

tion setup latency, senders both proactively construct paths and cache built paths.

To mitigate inconsistencies, providers can decrease PoC expiration times. Shorter

expiration times force senders to obtain PoCs more frequently, ensuring that the time

windows of possible inconsistencies are short. And if a provider needs to immediately

change its policies and revoke PoCs, it can change prefix or tag keys as described in

Section 2.3.1. The sender would then notice a failure in the path, and either use a

backup path or attempt to reconstruct a new one. Source routing protocols other

than SPB may be used, but our goal in this chapter was to describe how a path could

be built.

icing-on uses DNS to find lower layer addresses similarly to how IP networks

use ARP. DNS is a compromise: in exchange for its simplicity and robustness,

DNS forces icing-on to rely on root servers operated by third parties, thus giving

up some of icing-on’s decentralization. An alternative to DNS may be using DHTs

(e.g., [116, 150]) for mapping icing-pvm identifiers to IP addresses. Similar proposals

were made in [159] and [158].
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Finally, as so far described, icing-on does not expose an interface to applications

that may want to choose their own paths (e.g., a peer-to-peer VoIP application choos-

ing paths through participating nodes). The transparent icing-on gateways avoid

requiring modifications to applications, and, when deployed as network middleboxes,

to end-hosts. But to enable applications that do want to take advantage of path

choice in icing-on, icing-on gateways pass through packets that already contain

encapsulated icing-pvm packets. Applications that wish to choose paths would link

against an icing-on library that allows them to build their own icing-on packets.

A simplified version of icing-on has been implemented and deployed on EC2 [27]

nodes. This simplified version of icing-on does not implement SPB and relies on

static configuration of paths at icing-on gateways. Work is underway for a full

implementation and a library.

What benefits does icing-on have and what advantages does it have over other

overlays architectures? We mention three, corresponding to icing-pvm’s Path Con-

sent, Path Compliance, and Delegation properties (Section 2.3). First, because

senders obtain authorization before they send any data packets, and forwarding nodes

only perform authentication on packets, policy is separated from forwarding and does

not require per-flow state in nodes (unlike [52, 53]). Thus policy decisions may be

arbitrarily complex, without compromising nodes’ forwarding scalability. Second, be-

cause every node verifies that packets are following their approved paths, earlier nodes

in the path drop non-compliant packets on behalf of later nodes in the path without

explicit communication or coordination between them (unlike [33, 84]). Third, icing-

on allows fine-grained and controlled delegation. It allows entities to delegate access

through an icing-on node and constrain that delegation to be only for particular

paths (unlike [136]).

icing-on is one step closer than just icing-pvm to a full network architecture.

However, icing-on does not answer one important question that icing-pvm’s off-by-

default nature would raise if icing-pvm were to be used as the forwarding mechanism

of a network architecture: How does the sender get consent to request consent?

In SPB, the sender first contacts the consent server of the destination to build a

policy-compliant path. This would seem impossible under a default-off network. This
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question and others are answered in the next chapter.



Chapter 4

ICING-L3: A Policy-Compliant

Layer-3 Network

4.1 Introduction

The Internet has spurred phenomenal innovation in large part because of a design

philosophy, articulated in the end-to-end argument [141], which placed much func-

tionality within the operating systems and applications at the endpoints of commu-

nications. While the end-to-end argument was originally motivated by correctness

and the wish to avoid duplication of functionality, it proved to have an even greater

benefit: it moved the implementation of many functions out of the network into the

end-host, where developers and researchers could freely modify them to serve new

unanticipated purposes.

Of course, several key functions still reside in boxes distributed throughout the

network itself, where they are less easily modified. Notable examples are routing

and various forms of policy—transit policy, ACLs, filters, firewalls, Quality of Service

(QoS), etc.—that are implemented as protocols, RFCs, and vendor specific options

([80, 17, 22, 75, 115, 56, 57, 138, 76, 121, 124, 46]). Others ([83, 118, 52]) have already

realized this problem and have begun to address it (e.g., OpenFlow [13, 85]) within

a single trust domain.

By separating mechanism from policy and functionality, these systems allow the

46
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network operators, the actual stakeholders in the network, as opposed to the network

vendors, to decide what functions they have in their networks. But OpenFlow does

not address the question of how such separation would be implemented in a federated

network where there are multiple trust domains interacting with one other, including

senders and receivers. In particular, we are interested in interdomain routing policy

for full end-to-end paths.

Why routing policy for full paths? Because enriching routing policy is the subject

of a large body of interesting research with attractive applications, but that can never

be deployed or evaluated in the field [168, 175, 64, 109, 40, 67, 136, 32, 60, 54, 81,

113, 166, 134, 172, 87, 174, 99, 66, 159, 149, 103, 28, 170, 108, 48, 169, 93, 151]. The

union of the types of policies this research enables is a routing policy based on the

full path, an observation previously mentioned in Section 2.7 and made in [146].

In this chapter, we want to answer two questions: How can routing policy decisions

be completely separated from the forwarding mechanism? and, How can routing

policy decisions be delegated to end-users to further the reach of the end-to-end

principle?

How can routing policy decisions be completely separated from the for-

warding mechanism? We require policy routing decisions and path approval to

be made outside the network, a requirement reminiscent of [136, 52], with the dif-

ference being that the decision must be about the full interdomain path used for

communication, including senders and receivers. But to truely enable such routing

policy, the network must also enforce the policy’s decisions. Otherwise, providers may

undermine policies by forwarding packets through unapproved paths.

How can routing policy decisions be delegated to end-users? The main

difficulty is that routing decisions for full paths cross trust domains. Thus, routing

policy decisions cannot be made unilaterally by one entity (such as in traditional

source-routing), because they might violate the policies of other entities on the path.

icing-pvm provides a mechanism that enables end-users to decide the paths they
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want to use across multiple providers without violating these providers’ routing poli-

cies

To answer the above questions, we have designed a network architecture we call

icing-L3, which uses icing-pvm as its forwarding mechanism. One of icing-L3’s

main technical challenges is running control traffic—traffic that obtains paths and

consent to use those paths—over the same default-off icing-pvm data plane. It is

not obvious how to bootstrap communication, i.e. get consent to request consent.

Previous work that has dealt with default-off mechanisms has, to the best of our

knowledge, always side-stepped the problem by assuming an always connected control

plane. An always connected control plane requires different forwarding mechanisms

for data and control traffic and leaves the control plane itself open to attacks [34].

To enable bootstrapping, icing-L3 uses icing-pvm’s per-tag PoC keys and as-

sumes that some of these keys are public. Its interdomain routing is heavily based on

NIRA [172]. Along with distributing topology information, icing-L3’s routing proto-

col also distributes information on obtaining consent for paths through the topology.

Unlike NIRA, icing-L3 gives all entities on chosen paths final say on the path if

they would like to have it and enforces path choices in the network. icing-L3 can

drop packets that do not have policy-compliant paths early in the network, even if

the violated policy is that of a later node in the path. So a receiver can choose to

hear from specific senders and have its choices enforced by the first hop on the path.

4.2 Applications

We have already mentioned several applications that icing-pvm and icing-on enable

in Chapters 2 and 3. icing-L3 enables all these applications as well as a few additional

ones that arise from its default-off nature: pushing application access control into the

network, early transit policy enforcement, and DoS mitigation.

Our first use case concerns application security. icing-L3 enables an application

to push its access control policies to the network. Consider, for instance, a legacy

database that cannot be upgraded to fix potential security bugs. However, the remote

users of the database are well-known (e.g., they are employees). The login process
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to the database can be migrated onto a consent server separate from the machine

housing the database. The consent server mints PoCs for senders who are allowed

to reach the database, after authenticating with the consent server. Unauthorized

traffic cannot reach the machine running the database, so it cannot compromise any

existing known bugs.

A second application is early transit policy enforcement. This means that packets

that do not conform to the transit policies of all entities on the path are dropped

by the first honest node on the path, with no explicit prior coordination with all

other entities on the path. Dropping packets early is important in cases where packet

delivery costs are high, such as for satellite links, emergency networks, or highly

sensitive broadcast links (such as vehicular ad-hoc networks or VANETs).

For our final use case, we note that we have already touched on DoS mitigation in

Section 2.3.5. Our mechanism (like many others [161, 74, 33, 30, 175, 168]) requires

that the victim be able to distinguish malicious from normal traffic. For example,

if the victim can distinguish customer, employee, or even just human traffic (e.g.,

by solving a captcha) from other undesired traffic, icing-L3 allows the victim to

stop undersired traffic early in the network. We have also mentioned how to protect

the network from denial-of-capability attacks by increasing consent server availability

or by presharing PoC keys with legitimate senders of traffic. icing-L3 additionally

enables earlier nodes on the path to drop packets that do not conform to later nodes’

policies, again, without a priori explicit coordination between the two.

4.3 Overview

We begin our description of icing-L3 by stating its three technical requirements:

• ICING-PVM forwarding: icing-L3 must use icing-pvm as its forwarding

mechanism. We use this requirement to stand for all the properties that icing-

pvm enables—Path Consent, Path Compliance, and Delegation (Section 2.2.2).

• Path and consent retrieval: icing-L3 must give senders a choice of paths to

destinations and information on obtaining consent for those paths.

• Early drops: icing-L3 must enable honest upstream nodes to drop packets that
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Figure 4.1: Components of an icing-L3 network: end-hosts, icing-pvm switches
and verifiers, consent servers, and path servers. Shown are two provider networks.

do not comply with the path policies of downstream nodes.

As in all other network architectures, icing-L3 divides the architecture into two

planes: the data plane, which forwards packets through icing-pvm nodes, and the

control plane, which finds policy-compliant paths through the network and obtains

consent for them.

4.3.1 ICING-L3 data plane

The data plane is composed of icing-pvm nodes—forwarders, senders, and receivers.

We split the job of forwarding into two types of node: icing-pvm verifiers and

icing-pvm switches (Figure 4.1).

An icing-pvm verifier implements the icing-pvm protocol. A verifier is placed

at each the ingress links of a provider’s network to verify that ingress traffic complies

with the provider’s path policies. Since we expect providers to only install verifiers at

their ingress links, we expect paths to only contain one verifier per provider network

on the path.
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An icing-pvm switch, on the other hand, only forwards traffic based on the tag.

Unlike a verifier, it does not have a node ID and is, thus, invisible to the icing-

pvm protocol. Its job is to provide a packet with the service that the tag it arrived

through demands (e.g., forwarding to a particular host or through a low-latency path

to a particular next hop). An icing-pvm switch can be viewed as a very simple

MPLS [140] switch. The configuration of icing-pvm switches is left to the provider,

and can use an intra-domain routing protocol or a centralized system using a protocol

not unlike OpenFlow [13].

4.3.2 ICING-L3 control plane

Our objective is not to create a new control plane that makes the full power of icing-

pvm available, but rather demonstrate one way of obtaining paths. Because a path

must be approved by all its constituents, any method for obtaining paths can be used,

and icing-pvm guarantees that only policy-compliant paths can be used.

Our example solution is heavily based on NIRA [172]. Under NIRA, each host

learns of multiple up-paths to a set of well-connected providers that form the “Internet

core”. These up-paths are distributed downwards from the Internet core to customers

and customers of customers, etc. using a path-vector routing protocol that exposes

all such paths. A separate link-state protocol maintains dynamic information about

availabilities and policies.

A host that wishes to be reachable by senders installs an entry in a lookup service.

The entry maps a host-specific identifier (e.g., a DNS name) to a set of paths, down-

paths, from the Internet core to the host. The host’s down-paths are simply the

reversed up-paths of that host. To send a packet to the host, a sender contacts the

lookup service and receives the set of down-paths to the host. The sender chooses an

up-path from its own set and a down-path from the received set such that the two

paths intersect. The sender forms the full path using the chosen up-path as prefix

and the chosen down-path as suffix.

Unlike NIRA, icing-L3 uses the path-vector protocol for both topology discovery

and policy distribution. icing-pvm ensures that icing-L3’s data plane always uses
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policy-compliant paths even if the path-vector protocol is subverted or otherwise

results in incorrect paths.

The icing-L3 control plane consists of two services: the consent service (CS) and

the path-lookup service (PS), shown Figure 4.1.

Consent servers have been described in Chapter 2. They store the provider’s

policy and provide PoCs that enable senders to use paths. They participate in icing-

L3’s routing protocol, which we call simple icing Routing Protocol or sIRP . sIRP

is a path-vector protocol that distributes connectivity and policy information from

providers to their customers and builds an up-path database at each provider’s consent

server. Whenever an end-host connects to a provider, it obtains its set of up-paths

from the provider’s consent server.

The path-lookup service is run by path servers. Path servers implement a lookup

service similar to NIRA’s name-to-route lookup service that maps host names to

down-paths. Like NIRA, we do not specify whether the namespace is hierarchical

or not or whether the path servers themselves are hierarchically organized or not.

However, for the sake of exposition in the next section, we assume that host names

are hierarchical DNS names and that the servers themselves are also arranged hier-

archically.

Paths under icing-L3 are useless to end-points without corresponding PoCs.

Thus, whenever a consent server or path server returns a down-path, it also returns

information on obtaining PoCs for that down-path. The next section describes the

control plane in detail.

4.4 ICING-L3 control plane details

The control plane’s job is to provide a sender with paths that it can use for traffic and

PoCs for those paths. Our control plane is based on NIRA, and thus allows senders

to find policy-compliant end-to-end paths in a scalable manner. Here, we describe

how the two services that make up the control plane—the consent service and the

path service—cooperate to perform the control plane’s job.

We explain our design in the context of an example (Figure 4.2). We assume that
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Figure 4.2: Example icing-L3 network. The network consists of four providers, A,
B , C , and D . A and B form the Internet core. S and R are end-hosts in D ’s and C ’s
networks. Some intra-domain paths are shown (dashed lines) along with their tags.

the network consists of four providers, A, B , C , and D . A and B are peers that form

the “Internet core”, C is a customer of both A and B , and D is a customer of A. R

is an end-host in C ’s network and S is an end-host in D ’s network. R runs a server

that S wishes to access.

As mentioned previously, tags are used for intra-domain routing. So the prefix

aC−to−B/p can indicate a set of tags that all refer to a path through A’s network for
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transiting traffic from C to B . To simplify exposition, we assume that tags can be

used bidirectionally: aC−to−B = aB−to−C . In reality, however, these two tags may

be separate and paths may be unidirectional. For now we assume that the protocols

below provide paths that may be traversed in both directions. In our example and

figures, we will use the notation of a single tag to refer to a tag prefix. For instance,

aC−to−B is short for aC−to−B/p for some 0 ≤ p ≤ 32 (i.e., also including fully-specified

/32 tags).

We describe how icing-L3 works without any delegation first, and then describe

how delegation can be used to optimize the control plane.

4.4.1 Learning up-paths

Up-paths are distributed downwards through a provider’s hierarchy using sIRP. sIRP

advertisements contain all the up-paths that the receiver may use, as well as informa-

tion on how to obtain PoCs for each hop on those paths. sIRP advertisements might

also include signed policy declarations, called consent certificates. Consent certifi-

cates contain regular expressions describing paths for which consent servers will mint

PoCs. An sIRP advertisement is one of several types of sIRP message, described in

Figure 4.3.

For each hop along a path advertised in the sIRP advertisement, the advertisement

also has access information. Access information indicates how the receiver of the sIRP

message can obtain a PoC for a hop, either by divulging the tag key for that hop or

by indicating the path to a consent server that can mint PoCs for that hop. Again,

the path to such a consent server must have its own access information

Whenever a consent server receives an sIRP advertisement, it verifies the signa-

tures in the consent certificates, stores the advertisement, modifies the paths according

to its policies, and then transmits new sIRP advertisements down through its own

hierarchy. A consent server modifies paths in three ways: it augments paths with its

own node ID and tag prefixes, it inserts additional access information, and inserts new

consent certificates. Each consent server in the provider hierarchy eventually receives

sIRP advertisements with up-paths to the Internet core or to peers of providers in
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An sIRP message conveys three pieces of information, each
of which might be missing depending on the message type:

advertisement = <up-paths, consent-certificates>
bootstrap = <up-paths, consent-certificates, path-servers>

path-server-response = <path-servers, consent-certificates>
Up-paths are paths that the receiver of this message can
use to reach the Internet core:

up-paths = <path*>
path-servers provides information on where to reach
path servers:

path-servers = <path*>
A path is a set of hops:

path = <hopinfo, hopinfo*>
Each hop has 3 pieces of information, a node ID, a tag
prefix, and information on obtaining a PoC for the node
ID and prefix pair:

hopinfo = <nodeid:prefix, <access, access*>>
Access information can either be a tag prefix key, making
the tag public, or a path to a consent server that can mint
the PoC for the node ID and prefix pair:

access = tagkey | cspath
cspath = <path, path*>

A consent certificate is a signed declaration of the patterns
(pattern) for which a consent server (signed-by) will
mint PoCs for the node ID and prefix in for-prefix
consent certificate = for-prefix, pattern, signed-by, signature

for-prefix = nodeid:prefix
nodeid = The ID Ni of an icing-pvm node
prefix = A tag prefix (or tag) ti/p
tagkey = The prefix or tag key mNi :ti/p

pattern = A regular expression describing allowed paths
signed-by = NCS :tCS pair for a consent server.
signature = Signature using the private key corresponding to NCS

covering the contents of the consent certificate

Figure 4.3: EBNP-like description of the contents of an sIRP message.

these up-paths.

In our example, each of A, B , C , and D run their own consent servers that can

be accessed at NA :aCS , NB :bCS , NC :cCS , and ND :dCS respectively. Each provider

obtains from its customers a tag key that allows access to the customers’ consent
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sIRP Advertisement from NA :aCS to NC :cCS

Up-Paths
〈NA :aany〉

〈NA :aC−to−B , NB :bany〉

Access Information

Hop Type Value

NA :aany cspath 〈NA :aCS 〉
NA :aCS tagkey sNA :aCS

NB :bany cspath 〈NB :bCS 〉
NB :bCS tagkey sNB :bCS

Consent Certificates
For Pattern Signed by

NA :aC−to−any 〈∗, NC :cany , NA :aC−to−any , ∗〉 NA :aCS

Figure 4.4: sIRP advertisement from A to C .

sIRP Advertisement from NC :cCS to NR :rCS

Up-Paths

〈NC :cany〉
〈NC :cR−to−A, NA :aany〉

〈NC :cR−to−A, NA :aC−to−B , NB :bany〉
〈NC :cR−to−B , NB :bany〉

〈NC :cR−to−B , NB :bC−to−A, NA :aany〉

Access Information

Hop Type Value

NC :cany cspath 〈NC :cCS 〉
NC :cCS tagkey sNC :cCS

NA :aany cspath 〈NA :aCS 〉
NA :aCS tagkey sNA :aCS

NB :bany cspath 〈NB :bCS 〉
NB :bCS tagkey sNB :aCS

Consent Certificates

For Pattern Signed by

NC :cR−to−any 〈∗, NR :rany , NC :cR−to−any , ∗〉 NC :cCS

NA :aC−to−any 〈∗, NC :cany , NA :aC−to−any , ∗〉 NA :aCS

NB :bC−to−any 〈∗, NC :cany , NB :bC−to−any , ∗〉 NB :bCS

Path Servers
〈NC :cPS 〉
〈NA :aPS 〉

Figure 4.5: sIRP bootstrap advertisement from C to R.

servers. For instance, C gives A the tag key sNC :cCS
, so A’s consent server can send

sIRP advertisements to C ’s consent server using the path 〈NA :aCS−to−C , NC :cCS 〉.
The sIRP advertisement that C ’s consent server receives from A is shown in

Figure 4.4. B ’s advertisement to C is similar. The advertisement has three tables:
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Up-Paths, Access Information, and Consent Certificates.

The Up-Paths table informs C of the paths that it can use through A. For

example, the second entry informs C that it can use the tag aC−to−B through A to

get to any tag on B .

The Access Information table informs C how it can get consent for each hop on

each path in the Up-Paths table. For example, the first entry gives C the down-path

to A’s consent server NA :aCS that should be accessed for any PoC requests through

NA. How does C get consent to access the consent server? Using the second entry,

which gives C the tag (or prefix) key, sNA :aCS
, for NA :aCS . A could have run its

consent server somewhere other than in its network. However, A would then need to

provide information that would enable C to reach the consent server.

The Consent Certificates table contains entries that describe the policies of the

nodes in the Up-Paths and the Access Information tables. These consent certificates

can be used to prove to various entities that a path is policy-compliant. The single

entry in our example declares that A’s consent server is willing to mint PoCs for any

paths from C through A, and only for the tags that are connected to C . Consent

certificates are signed by the private key corresponding to the node ID of the node

making the declaration, so verifying them does not require a PKI 1.

When the end-host R joins C ’s network, it broadcasts a bootstrap request in its

subnet (similar to DHCP), announcing 1) its node ID, NR, 2) a tag that connects to

its consent server (running on the same end-host), NR :rcs , and 3) the consent server’s

tag key, sNR :rcs . C ’s consent server replies with the bootstrap sIRP message shown in

Figure 4.5. Like a regular advertisement, a bootstrap message informs the receiver of

up-paths, access information for these up-paths, and any known consent certificates.

Additionally, a bootstrap message, like a DHCP reply, indicates how to reach name

resolution servers in the Path Servers table. This table has information on reaching

path servers that can be used to map names to down-paths for end-hosts. These

1Dual-usage of public key pairs for signatures and for key exchanges is usually discouraged.
However, our particular case can be proven secure by a careful combination of standard security
arguments for Diffie-Hellman key exchanges and Schnorr signatures. Similar proofs have been done
in the past [153], where, under appropriate padding, using the same key pair for RSA decryption
and signatures was shown to be safe.
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Name Type Record Access Info

example.com PS 〈NA :ato−C−CS , NC :cCS 〉
Hop Type Value

NA :ato−C−CS tagkey sNA :ato−C−CS

NC :cCS tagkey sNC :cCS

Figure 4.6: A’s path server configuration.

paths will be used in the next section. Note that paths to path servers might need

additional entries in the Access Information table.

4.4.2 Learning down-paths and sending packets

Distribution of down-paths requires a system parallel to consent servers, consisting of

path servers. Path servers translate names to down-paths that can be combined with

a sender’s up-paths to reach either the sender’s destination or another path server to

continue the query. For the purposes of this exposition, path servers are hierarchically

structured and resolve a hierarchical namespace, just as DNS does. However, other

methods of name resolution would also work, using the same concepts and message

format we describe below.

As an example, we assume that each of A and C operate public path servers at

NA :aPS and NC :cPS respectively. Note that the path servers can have their own node

IDs if desired. Say A’s path server is a root server that is authoritative for the name

com, while C ’s is authoritative for the name example.com. We assume that R wishes

to be found using the name ar.example.com. Lookups proceed hierarchically just as

in DNS.

Figures 4.6 and 4.7 show the configuration of the path servers at A and C re-

spectively. The entry in A’s path server is added by the owner of the example.com

domain, while the entry in C ’s path server is added by the owner of ar.example.com.

When S , an end-host in D ’s network, wishes to contact ar.example.com, it uses

its stored information about the location of the root path server, NA :aPS , and its

up-path to construct the path 〈NS :s , ND :dS−to−A, NA :aPS 〉. S requests a PoC from

D ’s consent server at ND :dCS . And since S learns the tag key for NA :aPS during
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Name Type Record Access Info

ar.example.com

DST 〈NA :ato−C , NC :cA−to−R, NR :rar 〉

Hop Type Value

NA :ato−C tagkey sNA :ato−C

NC :cA−to−R tagkey sNC :cA−to−R

NR :rar tagkey sNR :rar

DST 〈NB :bto−C , NC :cB−to−R, NR :rar 〉

Hop Type Value

NB :ato−C tagkey sNB :bto−C

NC :cB−to−R tagkey sNC :cB−to−R

NR :rar tagkey sNR :rar

Figure 4.7: C ’s path server configuration.

bootstrapping, S mints its own PoC for that hop. S contacts A’s path server, and

obtains the entry for example.com. Using the returned record and its own up-paths,

S constructs a path to C ’s path server along with PoCs. It obtains down-paths to

R from C ’s path server and proceeds to construct a full end-to-end path. Using the

access information for its own up-paths and the access information for the down-

paths from the path server entry, S can create or obtain PoCs for the path it chooses.

Finally, S stores this path for later use.

Note that the locations and tag keys of root path servers are statically configured.

As in NIRA, if the paths to root servers in icing-L3 change, then this static con-

figuration will need to be changed as well. One way to mitigate this problem is by

placing the root servers in the Internet core, where paths are less likely to change.

One issue that we have ignored in our description so far is that of return paths.

What path does a path server, for example, use to return a record? icing-L3 packets

that setup a connection carry return paths and the paths’ PoCs to reduce the load

on the server.

4.4.3 Early drops

So far we have described how icing-L3 uses icing-pvm for forwarding and how

senders get paths and consent to request consent, thus meeting our first two re-

quirements from Section 4.3. How does icing-L3 drop packets that are non-policy



CHAPTER 4. ICING-L3: A POLICY-COMPLIANT LAYER-3 NETWORK 60

compliant early? Using Consent Certificates.

Consent servers can refuse to issue consent for a path unless they have consent

certificates that certify that every entity on the path approves of the path. Senders

can obtain these consent certificates in two ways: through sIRP advertisements or

by explicitly requesting them. We have already described how the certificates are

transmitted through sIRP advertisements in Section 4.4.1. To explicitly request cer-

tificates from their issuers (themselves consent servers), senders go through an addi-

tional round of contacting consent servers while obtaining PoCs for a path. In the

first round, senders obtain consent certificates from all consent servers of nodes on the

path. In the second round, they exchange the consent certificates for PoCs. Senders

that cannot assemble a full set of consent certificates for a path would not be able to

send traffic through that path.

4.4.4 Delegation

The business of obtaining consent to request consent is complex and may result in

large delays in connection setup. It also places a burden on providers to run scalable

consent services that can handle the demand for paths through their networks. To

mitigate these problems, icing-L3 enables providers to delegate particular tag pre-

fixes through their networks to customers or to make some public (as was done in our

example above for path server tags).

For example, if A wishes to completely disintermediate itself from the consent

process, it may give C a private tag prefix key that it can use to mint PoCs for

tags through A. Similarly, A can delegate non-intersecting tag prefixes to each of

its other customers and peers, allowing them to mint PoCs through its network. A’s

customers and peers may themselves delegate smaller chunks of their given blocks to

their own customers. Eventually, end-hosts (or at least edge-providers) may obtain

tag keys that allow them to mint PoCs for most of their up-paths (or down-paths). We

expect complete disintermediation to be the usual case since it preserves valley-free

forwarding.

A provider that holds delegated keys may mint PoCs for tags in other providers’
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networks. To enable its customers to take advantage of this optimization, a provider

needs to add entries in the Access Information table of propagated sIRP advertise-

ments. The additional entries inform the advertisements’ recipients of the particular

prefixes for which the provider can mint PoCs and the location of the provider’s con-

sent server. The provider may also add consent certificates in sIRP advertisements

to inform its customers of the paths it is willing to approve.

4.4.5 Optimizations

Like consent servers and path servers, most end-hosts will not need to have their own

node IDs. Instead, such an end-host uses as identifier its provider’s node ID and a

tag prefix assigned by the provider. When sending a packet, the end-host only puts

a path in the packet and initializes the verifiers in the packet with that path’s PoCs;

i.e., it does not execute lines 12–14 in Figure 2.6. These steps are executed, upon

observing an egress packet from an internal end-host, by the provider’s icing-pvm

verifier. Similarly, the job of authenticating an ingress packet destined to an internal

end-host is left to the provider’s border icing-pvm verifier; i.e., the end-host does

not execute the code in Figure 2.7 and always accepts arriving packets. This scenario

requires that the end-host trusts the provider’s icing-pvm nodes to obey the icing-

pvm protocol. The end-host can still run its own consent server with prefix keys

delegated by the provider.

We also expect that most providers will use only a small number (most likely one)

of node IDs for their icing-pvm verifiers, naming many icing-pvm verifiers with the

same node ID. This reuse eases the provider’s burden of public key management and

policy writing and makes the architecture more scalable (Section 2.5).

4.4.6 Intradomain Routing

A detailed design of intradomain routing and forwarding is part of our future efforts

on icing. Here, we only give a flavor of a possible solution for intradomain routing.2

2We also omit the description of how multicast would work.
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(b)(a)

Figure 4.8: Examples of both types of intradomain paths. (a) is a tree path directing
all traffic towards an end-host and (b) is a linear path connecting one neighboring
network to another.

We assume that any particular provider’s network will have a finite number of

allowed intradomain paths. These consist of paths that connect a provider’s neighbors

to each other, paths that end at connected end-hosts, and paths from connected end-

hosts to neighbors. The job of the intradomain routing protocol is to find these paths

and assign one or more tags to each of them. An intradomain icing-pvm switch can

then simply forward based on the tag (just like an MPLS Label Switch Router or

LSR).

There are two types of path: paths to a particular traffic sink (end-host or network

exit point) or paths between a particular traffic source (end-host or network entry

point) and sink (Figure 4.8). By default, the intradomain protocol finds paths of the

earlier type. These paths are directed tree graphs rooted at the sink. Operators can

specify additional constraints such as restricting the sources that can send to partic-

ular sinks, or restricting the sinks a particular source may send to. The additional

constraints either prune some path trees or create new linear paths between particular

sources and sinks.
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The routing protocol, using hints from the operator, names the resulting paths

using tags or prefixes and installs entries in all the icing-pvm switches in the network

for them. The routing protocol can dynamically recalculate paths on failure, but does

not rename a path unless its constraining points (i.e. the destination for trees or the

source/destination pair for linear paths) change. Since a path may be named by a

prefix rather than a single tag, an operator may delegate different tags for one path

to different entities. Such a delegation enables the operator to keep track of which

delegate is sending traffic through the path (e.g., for accounting purposes). Another

use of multiple names for a path is to specify different quality of service levels for the

same path.

4.5 Discussion

To the best of our knowledge, icing-L3 is the only default-off network that runs

control traffic on the same default-off data plane as regular traffic. In icing-L3, there

is no “default-on” connectivity. Any network access, even for control traffic, requires

some form of authorization. For simplicity of exposition, we have discussed examples

where some tag prefix keys required for authorization have been made public. In

reality, the network could run only with delegated keys that are given to trusted

entities, at the cost of yet more complexity.

Even though icing-L3’s design may seem complex, the concepts on which it rests

are simple: a routing protocol runs on a bootstrap path accessible only to neighbors;

the routing protocol distributes path and access information; and, access information

is recursively defined (i.e., might need consent to get consent).

icing-L3 may seem to have a high overhead, especially with respect to connection

setup latencies. However, if we assume that most providers delegate tag prefixes down

to end-hosts, then finding down-paths will take latencies on the same order as those

of DNS requests. The main cost will be that of data plane functions for sending

packets.

As for management cost, icing-L3 does require neighboring providers to at least
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exchange bootstrap keys; however, this exchange is similar in cost to providers ex-

changing certificates or public keys. To reduce the management costs of delegation,

the process of obtaining delegated prefixes from peers and providers and redelegating

them to customers could be automated and built into the routing protocol.

icing-L3’s routing protocol sIRP does not discover all potentially available paths.

This is a compromise to maintain scalability. It also suffers from the possibility

of providers hiding some up-paths from their customers (as opposed to simply not

consenting to those paths). In any case, sIRP can be used to bootstrap access to other

routing protocols or other methods for obtaining paths, without providers worrying

about violation of their policies.
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Related Work

We divide related work into three areas: (1) network security, (2) related mechanisms,

and (3) policy routing.

5.1 Securing the network

Much work can be placed under the network security umbrella. Routing security [100,

93, 151, 26, 92, 176, 128, 129, 106, 90, 49, 160, 91] ensures the authenticity and cor-

rectness of topology propagation and route computation. For instance, S-BGP [100]

protects BGP against spurious messages. However, these works do not ensure that

the resulting routes are actually used in packet forwarding, mainly because doing

so requires a change in the forwarding mechanism, which is icing-pvm’s focus and

which we view as complementary.

Like icing-pvm, other network security proposals bind packets to their purported

paths. However, some of this work is not geared to a high-speed, federated environ-

ment. For example, [131, 51, 43] require per-packet digital signatures, [38] requires

large configuration state in the network and a packet header quadratic in path length,

and [52] requires a centralized controller.

Other work on forwarding security is geared toward secrecy or isolation. Virtual

Private Networks (VPNs) [157], whether meant as point-to-point IPSec [79] tunnels

or as isolated “slices” of a provider’s network using MPLS [140], provide neither Path
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Consent nor Path Compliance.

Others have also looked at source-routing that complies with transit providers’

policies. Rule-Based Forwarding (RBF) [134] and Platypus [136], like icing, observe

that giving end-points additional control must respect the service providers’ poli-

cies. RBF gives end-points restricted control over some forwarding functionality by

allowing senders to specify rules. RBF ensures that these rules are approved by all

entities that the rules affect. Platypus enables senders to choose waypoints through

the network and enables each provider to identify an entity accountable for every

packet through the provider’s waypoints. Like icing-on, RBF and Platypus run on

top of IP. RBF makes several assumptions about the underlying infrastructure: anti-

spoofing measures, an existing PKI, and highly available DNS servers. icing-on and

icing-L3 only make the last assumption, and in icing-L3, only for the root server.

Unlike RBF, icing-L3 does allow delegating routing policy, and thus does not need

to run on top of IP. Finally, while RBF and Platypus both allow entities to choose

which senders can send them traffic, they do not allow them to approve full paths,

thus they do not provide Path Consent, nor do they provide Path Compliance.

Other notions of network security are complementary to icing’s. Onion rout-

ing [63] aims to provide anonymity. As a bonus side-effect, it also ensures that the

sender’s specified path is followed because otherwise the onion-encrypted packet fails

its cryptographic checks. However, it does not provide Path Consent. It is also com-

putationally expensive: the sender encrypts the packet multiple times, and each hop

decrypts the whole packet.

Work on securely localizing faults [127, 142, 165, 39, 178, 177, 41, 35] is com-

plementary. There, the objective is to pinpoint where packets are dropped in an

adversarial network in which nodes may attempt to distort this information. Work

on Byzantine routing builds on top of secure fault localization to ensure availabil-

ity in a network if there is at least one non-faulty path between sender and re-

ceiver [131, 132, 38, 120, 39, 69]. Other proposals are geared toward denial-of-service

(DoS) protection and allow receivers to control which senders can reach them [101, 64,

109, 168, 175, 40, 88, 112, 94, 144, 58, 84, 167, 170, 33, 74]. These mechanisms can be

enhanced to securely identify packets’ senders [28, 108, 48, 173, 95, 107, 169], enabling
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accountability. icing-on and icing-L3 likewise provide support for DoS protection

and verify not only sources but also paths. Further, icing-L3 shows how to use

the mechanism to protect control traffic, and prevent the “denial-of-capability” [34]

attack often insufficiently addressed in many of these proposals.

5.2 Related mechanisms

PVM is a new primitive, but aspects of icing-pvm, icing-on, and icing-L3 are

inspired by prior works. PoCs generalize network capabilities [136, 175, 168] and

Visas [67]. For instance, under TVA [175], receivers can control which senders reach

them. However, none of these works provides Path Consent or Path Compliance.

Other mechanisms related to icing-pvm are as follows. Node IDs resemble the

self-certifying [117] ADs in AIP [28]. PoPs are reminiscent of constructions in [41, 38,

37]. However in those works, the number of PoP-like things in a packet is quadratic

in path length, whereas an icing-pvm packet carries a linear number of PoPs.

Goldberg et al. [82] hint at using Diffie-Hellman key exchanges for creating pairwise

keys between nodes (in analogy with icing-pvm’s PoP keys), but they suggest using

a PKI, which icing-pvm does not need (since node IDs are public keys). Also, icing-

pvm’s hierarchical delegation generalizes a technique in Platypus [136], icing-pvm’s

tags are reminiscent of Pathlets’ vnodes [81] and MPLS labels [140], and expressing

policy in general-purpose servers apart from forwarding hardware echoes [136, 83, 50,

52, 85]. icing-on is an overlay network [61] and shares many concepts used in other

overlay proposals, particularly those dealing with routing [29, 143, 101, 159, 136, 149,

87, 63]. icing-L3 owes much of its routing mechanism to NIRA [172].

5.3 Policy routing

Like BGP itself, many works [32, 113, 172, 87, 174, 99, 81, 86, 159, 149, 166] allow

entities to express various path preferences. Under NIRA [172], for instance, senders

choose the path into the Internet core, and receivers choose the path out. Indeed,

even default-off and filtering can be regarded as a kind of policy routing, in that the
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receiver exercises control over the first path component, the sender (e.g. [64, 109,

168, 175, 40, 94, 167, 170]). Source routing [32, 113, 172, 87, 174, 99] and Byzantine

routing [131, 132, 38, 120] proposals allow senders to choose paths, but do not take

into account the full policies of all providers and receivers on these paths. [174]

provides provider-approved path diversity, but does not allow senders or receivers

to choose particular paths. RouteScience’s PathControl [18] extends outbound BGP

path-selection criteria using end-to-end measurements such as latency.

These proposals are either orthogonal to icing (because they concern only path

computation, not enforcement), or else they incorporate a mechanism that enforces

something less general than Path Consent or Path Compliance. For example, under

Pathlets [81], senders choose paths, and providers specify policies based on the previ-

ous hop and a suffix of the path. But Pathlets do not provide verification that a path

was actually followed. NUTSS [86], DOA [159], and i3 [149] integrate middle-boxes

or other intermediaries into path selection and forwarding but do not provide Path

Consent or Compliance. icing-pvm can be regarded as providing an enforcement

mechanism that is general enough to enforce many of the policies in the works cited

above.
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Conclusion

6.1 Summary

The icing project was motivated by the desire for new functionality in the Internet:

we wanted to enable new applications by delegating control to end-users (senders

and receivers). We wanted to allow end-users to control the paths their packets

take through the network and choose the services that are applied on their packets.

Unfortunately, this delegation cannot be done without risking the transit service

providers’ viability—the paths that end-users choose might violate the providers’

policies or be very expensive. Additionally, providers need to be compensated for

transit or other value-added services they offer.

Given such an environment, two requirements arise. First, the path that even-

tually gets used for a communication between two end-points needs to be approved

by all stakeholders in that communication. These stakeholders are the sender, the

receiver, and all traffic carriers in between1. Second, the network must ensure that

the traffic does actually follow the approved path. We called these two requirements

Path Consent and Path Compliance respectively. Path Consent and Path Compli-

ance are not met by today’s Internet forwarding mechanism (IP). Thus, we offered a

networking primitive that does meet them: PVM. (Section 2.1).

1Certainly, if the communication contains bank account information, then the account’s owner is
also a stakeholder. However, here, we are only concerned with network-level stakeholders.
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icing-pvm shows how a PVM can be built (Sections 2.2 and 2.3). We evaluated

icing-pvm’s scaling properties, and found that it should be feasible to scale icing-

pvm to Internet backbone speeds (Section 2.5). We showed how icing-pvm can be

deployed in two ways: icing-on, an overlay on top of IP (Chapter 3), and icing-L3,

a layer 3 replacement for IP (Chapter 4). In both cases, we showed how a sender can

find a path that complies with its own policies and the policies of all other stakeholders

on the path.

6.2 Future Work

This dissertation leaves many questions unanswered for future consideration.

Economic and social impacts : If icing-L3 were to be deployed as the future

Internet, it would impact the providers’ behavior and business models as well as how

end-users use the network. We leave investigation of these impacts to future work

under the icing project.

Solving replay attacks : icing-pvm only provides minor protection agains replay

attacks. Future work will investigate stronger guarantees.

Linking tag keys to paths : Currently, if a provider delegates a tag key to another

entity, that entity gains the ability to create PoCs for any path using that tag. Future

work will investigate the possibility of ensuring that particular keys are only used for

particular path patterns.

Service level agreement violations and secure localization of faults : icing-pvm

provides a way for nodes to verify whether a packet followed an approved path, but

not whether it received a particular service. It also does not give senders the ability

to detect the location of silent packet drops or other errors. Future work will inves-

tigate whether icing-pvm can help with these two problems given its authentication

mechanisms.

Accounting and providing cost information: icing-L3 and icing-on do not give

senders any cost information on which to base their decisions. Future work will extend

sIRP and SBP to provide additional information that can help senders understand

the impact of their choice of paths.
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Intradomain routing : Future work will investigate how intradomain routing can

interoperate with icing-L3’s interdomain routing protocol, sIRP.

Cryptographic improvements : 163-bit public ECC keys provide 80-bit security,

which NIST considers insufficient in the future. Similarly, icing-pvm’s chosen secure

hash function, CHI, has been eliminated from the SHA-3 competition. Future work

will address both these issues.

6.3 Insights

We conclude this part of the dissertation with insights and lessons learned over the

course of the icing project.

The costs of security, generality, and decentralization The icing project

has provided a mechanism, icing-pvm, that can enforce a wide variety of policies

in a decentralized environment. However, this combination of security, generality,

and decentralization has come at a cost. Not only does icing-pvm have a much

higher packet overhead than IP, it also has more expensive hardware. On the other

hand, icing-pvm does enable a wide range of applications that would otherwise be

impossible.

The costs of default-off networks icing-L3 shows how to build a default-off

network without using a separate network for control traffic. We expect similar net-

works to follow the same basic design principle: a sender starts with limited delegated

access to bootstrap servers that trust the sender (or servers that are otherwise public)

and then gains privileges to access other parts of the network. icing-L3 also high-

lights the costs of such a default-off network—connection setup time and configuration

complexity.

Per-packet cryptographic hardware icing-pvm shows that it is possible to

build a packet forwarding mechanism with sophisticated per-packet cryptography at

feasible hardware costs. Our experience has taught us the importance of the following:
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• Parallel and cachable operations: Obviously, parallelizable operations are con-

ducive to high-throughput designs. The problem is that many cryptographic oper-

ations have a serial part that needs to be executed at the beginning. For example,

PMAC [44] requires that a key is passed through an AES encryption operation

before the parallel execution of the rest of the algorithm. The trick is to store

both the key and its encrypted form. As such, similar operations that require

serialization can often be cached.

• FIFOs as module interfaces: One of the most tedious and difficult problems in

building a complex hardware system that relies on results from various complex

modules is coordinating when a result is available from one module and when it is

consumed by another. Variable packet sizes and variable field lengths only make

it even more complicated. To simplify the job, we used shallow FIFOs (queues) at

the interfaces between modules, making sure that these FIFOs use flow control all

the way to the input. While such a simplification comes at the cost of additional

logic area, it significantly reduces development time.

• Aligning fields to data path width: Again this is a generally-applied principle:

IP, for example, is aligned to 32-bits. However, when designing a new packet

format, the designer has considerable leeway, and should keep alignment in mind

as it significantly reduces hardware complexity.

• Speculation: Since cryptographic operations usually take many cycles to com-

plete, they should all be started as soon as possible by assuming that a packet will

pass all checks. A packet that fails a check should only be dropped at the end of

its processing to ensure that the FIFOs between modules all remain synchronized

(we would not want a stray result from a dropped packet to be left in a FIFO).

• Reducing the number of cryptographic primitives: The smaller the number

of basic cryptographic primitives, the easier it is to find the design’s bottleneck

and provision for it. For instance, our icing-pvm forwarder only uses AES-128 as

the base pseudorandom function (PRF).

• Considering replication early: Many cryptographic operations are not pipelin-

eable (e.g., CHI in our design). Ensure that it is easy to replicate these modules.

This will come in handy when working on meeting design timing or ensuring that
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the design fits in an FPGA.

The costs of furthering the end-to-end principle The icing project attempts

to move more functionality such as interdomain path selection and network access

authorization from the network to the end-points. Doing so has required some heavy

machinery to be built into the network to ensure that the policies of all network

stakeholders concerned are respected, namely to ensure Path Compliance.

Moving a function (such as path selection) from the network to end-hosts often has

security implications that would need to be addressed, as was needed for icing and

hinted by a survey of earlier work (Chapter 5). Addressing these security implications

(such as the possibility of violating service providers’ transit policies) is often only

possible by replacing the removed function with new mechanisms in the network (for

example, to enforce Path Compliance). So even though the end-to-end principle is

usually interpreted as arguing for less functionality within the network, moving some

function from the network to end-hosts can result in a more expensive network, with

cost depending on the importance of the function and the strength of any new security

guarantees.
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Expedient
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Expedient

7.1 Introduction

Up until recently, businesses that needed computing resources had to build datacen-

ters provisioned for these businesses’ peak computing demands. Startup businesses

with fast growth potential needed to put a large capital at risk in building data-

centers for growth that might not be realized. However, as Armburst et al have

noted [36], computing as a utility has recently become more than just a long-held

dream [130] and statistical sharing of computing resources is now a reality. Com-

mercial Infrastructure-as-a-Service (IaaS) offerings such as Amazon’s Web Services

(AWS) [27], Microsoft’s Azure [9], and Google’s App Engine [3] enable businesses to

provision and tear down provisions for computing resources as quickly as minutes, al-

lowing them to more closely match supply to demand and only pay for used computer

cycles.

Similarly, researchers have created their own computing IaaS systems. Some ex-

amples of these systems are PlanetLab [133], Emulab [164], and TeraGrid [24]. These

deployments enable researchers to do compute-intensive research such as protein fold-

ing [104] or geological modeling [19] or to deploy publicly accessible experimental

systems such as CDNs [78] or DNS-replacements [137].

But for some applications, computing resources are not sufficient. These applica-

tions might want to control the network between computing resources or the network
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connecting users to services. Some applications might want to obtain high bandwidth

connectivity only when they need to transfer large bursts of data. Such connectivity

can be used to deliver large volumes of data from remote monitoring stations such

as radio telescopes to local computing infrastructure for processing [4], share large

volumes of data among distributed teams [6], or experiment with new collaborative

environments [16, 110]. Other applications might want to control the network topol-

ogy. For example, map-reduce applications usually have all-to-all communication

patterns, suggesting that a fully-connected network mesh would be more efficient.

On the other hand, multicast applications usually have one-to-all communication

patterns, suggesting that tree network topologies might be more efficient. Yet other

applications might want to control the network’s routing protocol. For example, they

might want to send real-time video traffic through multiple disjoint network paths

to decrease end-to-end packet loss probability and increase video quality. Finally,

researchers or developers might want to experiment with new network architectures

that enable in-network services and require in-network processing such as icing-on

(Chapter 3) or icing-L3 (Chapter 4).

Very often, for such applications to be useful, they need to be deployed at scale,

requiring a widely distributed network infrastructure to connect users and services.

That is, this infrastructure needs to act as a substitute for the Internet, at least for

the application’s traffic. Unfortunately, no one project has the capability or resources

to deploy such infrastructure for an application. So, to meet these needs, developers

and researchers turned to overlay networks [61]. But overlays are usually deployed at

Internet edges, thus suffering from large latencies, or they have no knowledge of the

underlying network’s actual topology.

For these reasons, some projects have attempted to develop network IaaS. For

example, Internet2’s ION service [5] enables researchers to request high-bandwidth

dedicated virtual circuits through Internet2’s backbone, and have them allocated

within minutes. VINI [42] and the Supercharged PlanetLab Platform [155] provide

programmable nodes that are connected by isolated high bandwidth circuits to create

new network architectures, provide in-network services, or experiment with routing
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Figure 7.1: Example of heterogeneous IaaS that GENI enables. SPP is Supercharged
Planetlab Platform [155]. GENI allows users to deploy an application or experiment
across IaaS providers and across resources types.

protocols. And, more recently, Flowvisor [147] was suggested as a way to create iso-

lated slices in production OpenFlow networks. Each such slice can then be controlled

by an application or experiment, without the risk of affecting production traffic.

Given all these available heterogeneous resources, a natural question arises: How

can a researcher manage the resource provisions—collected in an infrastructure slice—

across a number of such IaaS offerings for a single application or experiment? For

example, a CDN business might want to have a set of virtual machines distributed

across the US, interconnected through a particular network topology. Or a researcher

might want to experiment with a new network architecture that provides applications

with new network-level services (like those provided by icing-on and icing-L3 in

Chapters 3 and 4). The application thus might require seamless vertical integration

between different resource types (compute and network), and horizontal integration to

(1) manage computing resources across various providers and (2) provide continuous

end-to-end network connectivity and control. Figure 7.1 shows an example of such

infrastructure.

Providing such a management capability has technical and security challenges.

Technically, it is not clear how a user can create and manage allocations across het-

erogeneous resources to provide a coherent infrastructure for her application. First,

each type of resource has its particular interface for creating and managing reser-

vations and then to configure and use these reservations. For example, a VLAN
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reservation across Ethernet switches is different from a circuit reservation across In-

ternet2 or a virtual server reservation on PlanetLab. Second, connectivity between

different resources across IaaS providers is not necessarily visible to the IaaS itself.

For example, a PlanetLab node may be connected directly to an Internet2 ION switch,

but neither PlanetLab’s nor Internet2’s provisioning infrastructure knows about this

connectivity. This connectivity must be exposed to the user so she can know how

to provision network resources. Finally, overcoming both of these challenges cannot

come at the expense of the user interface for managing the infrastructure slice. The

user must be able to create and manage her slice using rich user interfaces. These

interfaces should enable the user to explore the wide variety of available resources

and their network connectivity, select available resources, and create end-to-end fully

connected provisions interactively or programmatically.

From a security standpoint, the individual IaaS providers need to be able to enforce

their own usage policies and hold a user accountable for how resources get used (either

for billing or to protect against usage policy violations). On the other hand, users do

not want to manage multiple accounts across the different IaaS providers and request

authorization for resource access from each provider separately.

Overcoming these challenges in networking research is a prerequisite for GENI’s

success. GENI, the Global Environment for Network Innovations, was started by

the National Science Foundation to promote networking research. The NSF realized

that even though the Internet began as an academic research experiment, today,

it has become critical infrastructure with billion-dollar businesses counting on its

availability. Unfortunately, reliability is the antithesis of experimentation. Thus, it

has become almost impossible for networking researchers to deploy and experiment

with new protocols and network architectures on top of or to replace the existing

Internet. To overcome this hurdle for innovation, the NSF started GENI.

GENI’s ultimate vision is that of a researcher being able to deploy an experiment—

an experimental application, service, network architecture, routing protocol, etc.—

over a globally distributed programmable infrastructure. This deployment would be

into a slice of the infrastructure that is isolated from other slices and incapable of

disrupting the experiments running in them. Critically, GENI must enable external
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end-users to use these experiments. For example, a researcher may deploy a network-

level load-balancing service along with CDN servers in a GENI slice and attract end-

users to this service. Experimental services may then “graduate” and be deployed

over the Internet, or they may remain permanently deployed in GENI’s infrastructure.

There are many ways to build such an infrastructure. One approach is to start

from scratch—to design and deploy special computing resources and a new virtual-

ized network. Alternatively, the system could be built by combining existing pieces

already deployed. GENI takes the latter approach, and aims to integrate heteroge-

neous computing and network resources, whether they exist today or emerge in the

future. Figure 7.1 shows how GENI will have several types of resources distributed

across several providers.

This chapter is about the management framework for such an infrastructure. It is

about enabling users to create coherent infrastructure slices in which they can deploy

their applications across (1) resource types and (2) GENI’s IaaS providers. When

designing, building, and deploying a management framework for existing and future

computing and networking resources, there are many factors to consider, such as:

• Ownership and Control: Who will control and maintain each of the compo-

nents? In PlanetLab, for instance, each server is contributed and maintained by

some campus, but they are managed centrally from PlanetLab Central (PLC)—

PlanetLab’s central authority [133]. Therefore, the entire set of PlanetLab ma-

chines is a single IaaS, managed by one provider, PLC. On the other hand, an

OpenFlow network can be the production network on a campus, controlled by

a local controller (e.g., [85]). It is therefore natural for each campus to be its

own OpenFlow IaaS provider, contributing a fraction of the campus network

resources to GENI.

• Policy: If some resources are managed by each campus, then they will have

locally defined policies in place already (e.g. local security, access control, and

regulatory). The management framework needs to allow each IaaS provider to

define the policies best suited to the resources they are contributing.

• Trust: There are many principals involved in GENI: the IaaS provider; the
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operator of a campus network; an experimenter; and a user who wishes to join

an experiment or use a GENI-deployed application. In a heterogeneous envi-

ronment, what can we assume about the trust between the various principals?

Should the trust be centralized (i.e. everyone trusts some central component)

or should it be distributed? Should an experimenter establish an account with

a central registry, or should she do so with every aggregate?

• APIs: It has proven very challenging to design a uniform API for a management

framework to manage all of the contributed aggregates. Different aggregates are

managed in different ways depending on the types of resources they contain and

depending on who owns them. The design of standardized APIs has led to much

discussion and debate in the GENI community: there is a tension between the

simplicity arising from defining a single uniform rigid API and the flexibility of

allowing each IaaS-type to define its own.

The first two factors (Ownership and Control; and Policy) are operational. They

dictate which components can be used and how a slice is spread across components

in the system. If we assume a central authority that can manage a fairly powerful

central component (similar to PlanetLab), then an IaaS deployment can be managed

by a simple centralized database or registry and a Web interface. If, on the other

hand, we cannot assume a central entity, then the IaaS providers will all need to

communicate with each other and with the experimenter to stitch together the slice.

The third factor (Trust) is about security and reliability. It decides how authen-

tication and authorization takes place and which components enforce them. As an

example, owners of PlanetLab nodes cede authentication and authorization control

over their nodes to PLC completely. They do not control who uses their nodes or

how. If at any point a node’s owner is not satisfied with the way the node is being

used, the owner can complain to PLC or simply turn the node off. This trust model

simplifies PLC’s job and reduces the burden of administering the nodes. On the

other hand, a distributed trust model can enable much more flexible policies but may

require duplication of effort at each provider.

The fourth factor (APIs) determines development and maintenance effort. A
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standard uniform API relieves management tools’ developers from learning a new

API for each resource type. Indeed, there have been several attempts at creating

such an API (e.g., SFA [21] and ORCA [55]). These attempts have succeeded at

creating a federated authentication and authorization mechanism. Unfortunately,

however, these attempts have resulted in incomplete restrictive APIs that side-step

the two main challenges in developing a standardized provisioning API: (1) providing

a generic description of all types of resources and (2) providing an API that can

be used to manage all these types of resources. Instead, these attempts have only

enabled a simple generic API and have left resource and reservation descriptions to

resource-specific XML strings provided as arguments to the API calls. By doing so,

not only have these attempts limited the way management tools and user interfaces

can interact with the IaaS provider (i.e., through the simple API), but also pushed

all the complexity of understanding resource-specific descriptions back to the user

interface. Using resource-specific XML descriptions effectively creates an implicit

resource-specific API that is inconvenient for user interface developers (as we have

learned ourselves trying to use SFA to create slices in OpenFlow networks). Finally, it

is unclear where information on connectivity between IaaS providers would be stored

or where it would come from.

In general, the GENI community is converging on a management framework with

no centrally owned component, limited policy flexibility, a strongly distributed trust

model, and a partial standard API for all IaaS types and providers. This framework

is provided by SFA. It is not clear that these choices will be the correct choices for

the future.

In this chapter, we explore an alternative design, Expedient. Instead of taking a

decisive stand on these issues, Expedient allows most initial design choices to evolve.

As with any new complex system, the best way to reach the correct design is through

rapid iterative prototyping. Expedient provides this capability. It does so by following

two principles:

1. Reuse: Whenever possible, Expedient leverages existing technologies to reduce

development effort, simplify maintenance, and smooth any learning curves.
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2. Pluggability: A pluggable system enables new functionality to be added and

removed without requiring the rest of the system to change.

Expedient is modeled after common travel websites that allow a user to reserve air-

line tickets, hotel accomodation, and car rentals for a single trip from one portal.

Similarly, Expedient allows a researcher to provision the end-to-end infrastructure

for an experiment: it allows the researcher to reserve computing resources and provi-

sion the network between them, possibly across IaaS providers, using a single set of

credentials. Expedient has the following initial set of requirements:

• Enable a rich communication model between IaaS providers and user interfaces;

• Expose inter-IaaS relationships to users;

• Protect registered IaaS providers from unauthorized access; and,

• Enable delegation and team management.

To meet these requirements and provide a working management platform prototype

with minimal development effort, Expedient makes the following initial design choices:

• Centralized management: Initially, a centralized Expedient instance is de-

ployed for managing all the GENI infrastructure. With additional plugins, this

centralization can be relaxed so that multiple Expedient instances can be feder-

ated.

• Limited centralized trust: IaaS providers trust Expedient to perform user au-

thentication and authorization, but not completely. Each provider still enforces

its own usage policies locally. In fact, Expedient, for the most part, simply acts as

an authentication and authorization proxy. The extent to which trust is placed at

Expedient depends on how IaaS connector plugins are implemented, and thus can

be changed later.

• Heterogeneous APIs: Expedient does not require IaaS provisioning and man-

agement APIs to change. Each user interface will need to understand the id-

iosyncracies of the resources it handles. We believe that such a consequence is

inevitable. Different resource types will have different properties and an effective

user interface will need to understand these resource-specific properties. For in-

stance, a user interface cannot respresent and provision virtual machines the same
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way it represents and provisions virtual circuits. At least, by accepting heteroge-

neous APIs and making them explicit they would be more convenient to work with.

And, since these APIs are within plugins, Expedient can also work if a standard

uniform API becomes the norm.

To leverage the maturity of Web technologies, Expedient is built as a three-tiered web-

site. The front-end serves a mix of static and dynamically created content, the middle

tier processes and creates dynamic content, and the backend is a relational database.

Having the management platform as a website eliminates the need for experimenters

to download specialized software (they can manage their slices using a web browser),

decreases development and maintenance costs since many of the functions needed for

Expedient already exist in Web frameworks such as Django [8] (on which Expedient

is based), and allows transparent upgrades with new features or functionality without

the experimenter worrying about software versioning or compatibility (improving the

ability to rapidly prototype new features or design choices).

Some back-of-the-envelope performance calculations suggest this approach is feasi-

ble, even if GENI grows to be quite large. Using PlanetLab as an example: PlanetLab

currently has around 700 experiments using approximately 1,000 global nodes [15].

If we assume that GENI is approximately 100 times bigger than PlanetLab, then it

might need to support about 70k experiments and 100k different resources. Let’s as-

sume each experiment is modified on average once per hour. That would be 70k req/hr

or 20 req/s, certainly within the capabilities of current webservers [162, 163], and

likely within the capabilities of a relational database such as MySQL with 100k rows

(Facebook for instance uses MySQL and has a peak load of 13M queries/s [70, 71]).

While these numbers need to be validated with a deployment and measurements that

can only be obtained after a few years of use, they hint that a website-oriented im-

plementation is feasible. Furthermore, given the large investment in webservers, such

a design can ride on the coat-tails of general improvements in Web and database

systems.

In the next section (Section 7.2), we give a quick overview of Expedient’s compo-

nents. We describe Expedient’s design in Section 7.3, describe how we use Expedient

to create end-to-end slices connecting PlanetLab nodes using OpenFlow networks in
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Figure 7.2: Expedient consists of four subsystems: Clients interact with the user
through various tools, the base platform provides the basic functionality, the ORM DB
store object data in a relational database, and connectors enable all other subsystems
to communicate with IaaS providers using IaaS-specific APIs.

Section 7.4, and go over existing solutions in Section 7.5. We conclude the chapter

with a discussion of insights learned along the course of Expedient’s implementation

and deployment and future directions (Section 7.6).

7.2 Overview

Expedient (Figure 7.2) consists of four subsystems: an object relational mapping

(ORM) database, a base platform subsystem, and two types of plugin—IaaS connec-

tors and user clients. Connectors and clients cooperate to provide the user interface

for creating and managing slices across IaaS providers.

The ORM database provides persistent storage of objects into a relational database
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and abstracts the underlying SQL through an object-level API. Objects can then be

queried and retrieved from the database using relational queries, at the object ab-

straction level, not at the SQL level. Once retrieved, the objects are available along

with class-specific methods. ORMs make it easy to build complex hierarchical models

of resources, slices, and IaaS providers.

Expedient’s base platform provides basic ORM classes and basic functionality for

user management, authentication, authorization, messaging, slice management, and

IaaS management. This base functionality is extended by plugins: IaaS connectors

and user clients. Plugins extend Expedient’s base ORM classes and add new ones.

IaaS connectors extend Expedient’s base IaaS provider model. They add provider-

specific APIs, provider-specific data fields, and the capability to communicate with

the IaaS provider. Connectors expose these new fields and APIs to the platform and to

all other plugins. Connectors also describe inter-IaaS relationships and connectivity

and are responsible for keeping state in Expedient synchronized with state at the

providers.

Clients expose either an API for the consumption of an external tool or a user

interface that a user can directly use to manage her provisions. Clients consume the

APIs exposed by connectors, and can specialize in particular resource types. For ex-

ample, a client can show a network topology from which the user can select resources,

or it can provide an API, which is consumed by tools external to Expedient.

7.3 Design details

Here we discuss how each of Expedient’s four subsystems—the base platform, the

ORM, connectors, and clients—helps meet Expedient’s requirements.

7.3.1 Base platform

The base platform has several cooperating modules: the authentication module, the

authorization module, and other modules that provide messaging capabilities, user
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management, IaaS provider registration, and other support functions. The base plat-

form also provides the base user interface (UI) that allows users to manage their

profiles, register new IaaS providers, and create and manage teams and slices. Below

we discuss only authentication and authorization.

Authentication

Expedient’s authentication module accepts trusted client SSL certificates and user-

name/password logins. Expedient relies on much of Django’s authentication sub-

system, but implements its own authorization. Expedient accepts client certificates

signed by trusted third-party certificate authorities, allowing Expedient’s user repos-

itory to be federated. Any user can create a login at Expedient and obtain a user

certificate, but actions within Expedient need to be authorized.

Authorization

Expedient implements a fine-grained extensible authorization system to protect IaaS

providers from unauthorized access and to protect users information from other po-

tentially malicious users. Expedient’s authorization system also helps with federating

trust even when deployed centrally.

Authorization is done through Expedient’s permission system. Permissions in Ex-

pedient can protect many actions within the platform: execution of object methods,

URL access, or calling of static functions. To protect an action, the developer spec-

ifies a permission check with the following symantics: some entity—the permission

owner—within Expedient must have some permission to execute the protected ac-

tion on some object—the permission target. The permission target may be an object

instance, class, or function, and the permission owner can be any object instance.

For example, deleting a slice is protected by permission can_delete_slice. The

developer informs the permission system that the permission owner is the logged-in

user who initiated the delete request, and the target is the slice to be deleted. Thus

the logged-in user must have the permission can_delete_slice for the slice she is

about to delete. Similarly, a slice needs to have the permission can_use_iaas for a
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registered IaaS provider before the slice can access that IaaS provider’s resources.

Expedient allows developers to redirect unauthorized users to a developer-specified

page. On that page, a developer may ask an unauthorized user for additional informa-

tion before giving the user access. For example, if an unauthorized user tries to delete

a slice, the user gets redirected to a page where the user can request authorization

from other users who can give the user permission.

Besides allowing users to give each other permissions, Expedient allows users to

delegate permissions. A given permission cannot be further given to other users; on

the other hand, a delegated permission can. Delegation allows Expedient to have more

than one manager, each with different authority. So even in a centralized Expedient

deployment, it is not necessary to have a centralized point of authority.

Expedient uses projects as the unit of team and slice management: slices are

created within projects by project members. To create a project, a user must have

the can_create_project permission for the Project class. Before a slice in a project

can use an IaaS provider, the project and the logged-in user, like the slice, must have

the can_use_iaas permission for that IaaS provider. Project members can have

multiple roles, such as owner, researcher, technician, etc. A role describes a set of

permissions that can be given together to a member. Roles are project-specific, so

different projects can create and modify their own roles.

7.3.2 ORM database

The ORM database provides the base classes that plugins extend. Expedient defines

the following ORM classes:

• User: an Expedient user.

• IaaS: the base IaaS provider class. Connectors must extend this class.

• Resource: the base IaaS resource class. Connectors extend this class to describe

IaaS-specific resource types (e.g., PlanetLab node, OpenFlow switch, etc.).

• Sliver: the base class that describes a slice of a resource within an IaaS provider.

Connectors extend this class to describe resource provisioning. For example, a

virtual machine sliver might describe the CPU percentage and memory allocated
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to the virtual machine.

• Project: an Expedient project.

• Slice: an Expedient slice. A slice is a container of slivers from across various IaaS

providers.

7.3.3 Connectors

Connectors enable Expedient to understand new types of IaaS. So far, we have

three connectors: a PlanetLab connector and two OpenFlow connectors. The two

OpenFlow connectors use two different APIs to connect to IaaS providers. One API

uses the GENI API [2] while the other uses the OpenFlow slicing API (Section 7.4).

A connector extends the IaaS class with additional data fields and methods for

a particular IaaS type. It also overrides the base class’s methods for creating and

deleting a slice. The connector can create and require new permissions and provide

hooks for requesting more information from users before authorizing actions. Each

connector can have its own API for interacting with the IaaS. The API that it must

override in Expedient is minimal and only imposes that the connector be able to start

and stop a slice. All other functionality should be exposed to users through client

plugins.

7.3.4 Clients

Clients add new ways for users to interact with resources and IaaS providers. They

consume the additional API exposed through IaaS classes and can create slivers or

modify existing slivers. We assume that clients are not malicious but may be slightly

buggy. As long as they do not attempt to subvert the permission system, IaaS

providers are protected against unauthorized access by buggy clients.

Our implementation currently has two clients. The first is a javascript GUI that

shows the PlanetLab and OpenFlow network topology of selected IaaS providers and

allows users to select a set of servers and switches for their slice. This GUI also creates

SSH keys that the user can download and use to access PlanetLab nodes. The second

client allows users to download and upload XML descriptions (RSpecs) of OpenFlow
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Figure 7.3: The GENI OpenFlow stack consists of Expedient with the OpenFlow con-
nector, per participating provider Opt-In Manager and Flowvisor, and a production
OpenFlow network. The experimenter’s controller connects to the Flowvisor using
the OpenFlow protocol.

resources for their slices.

7.4 Creating end-to-end slices

For GENI, we wanted to demonstrate how to create a complete slice across multiple

IaaS providers and types. We wanted the slice to consist of both computing and

networking resources distributed across providers, with the network providing end-

to-end continuous connectivity.

For the computing resources, we chose MyPLC, a package that allows installation

of private PlanetLab systems. Network connectivity is trickier. How can a network
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be sliced so as to allow multiple slices to control production switches across several

providers? How do we enable providers, university campuses in this case, to apply

their policies on the traffic and protect their internal traffic from being controlled

in a slice? Finally, how do we enable end-users at these campuses to participate in

experiments by “opting in” their traffic?

Here we describe how OpenFlow allows us to build the sliceable network infras-

tructure needed to allow experiments to run next to production traffic, and to enable

end-users to opt into experimental slices. We describe how Expedient enables re-

searchers to create such end-to-end experimental slices.

7.4.1 Slicing an OpenFlow network

The OpenFlow slicing stack consists of four layers (Figure 7.3): OpenFlow switches

at the bottom, the Flowvisor, the Opt-In Manager, and the OpenFlow Expedient

connector on the top.

Sherwood et al. describe in [147] how to slice an OpenFlow network using FlowVi-

sor. At a high level, Flowvisor acts as a proxy between OpenFlow switches and Open-

Flow controllers for the slices. OpenFlow switches connect to Flowvisor as they would

to any other controller, and Flowvisor connects to slice controllers pretending to be

the underlying switches. Flowvisor monitors OpenFlow protocol messages from the

controllers and ensures that each slice controller only operates on traffic within its

slice. OpenFlow slices are defined by the header values they can operate on. Flowvi-

sor’s job is to isolate slices from each other and ensure that no flow is controlled by

more than one slice.

The job of the Expedient connector and the Opt-In Manager is to allow researchers

to create experiments that end-users at the IaaS providers can join or opt into. By

joining an experiment, a slice of the end-user’s traffic will be controlled by the ex-

perimenter’s OpenFlow controller. That slice of traffic depends on the type of traffic

that the experiment is concerned with. For example, a Web traffic load-balancing

experiment may operate on port 80 traffic, while a new routing protocol experiment

may operate on all IP traffic.
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The Expedient connector enables a researcher to select the OpenFlow switch

topology that the researcher would like to control. The connector also requires the

researcher to specify the type of traffic with which the experiment will be concerned

using OpenFlow flow header fields. For example, the experiment may be concerned

with IP traffic or just traffic on a particular port.

Multiple slices may request the same traffic type, but none of the slices will get any

traffic before flows are opted into into the slice. Owners of traffic at each provider will

need to explicitly join an experiment before their traffic is placed in that experiment’s

slice. The Opt-In Manager’s job is to find the particular flows that should go into an

experiment’s slice once the owner of that traffic joins the experiment.

The Opt-In Manager translates provisioning requests from the connector to Flowvi-

sor configuration commands. A slice creation request at Expedient does not automat-

ically place any traffic under the researcher’s control. A user can log into the Opt-In

Manager and request to join an experiment. The Opt-In Manager has information on

which user owns which traffic. It intersects the header values of the user’s traffic with

the experiment’s requested traffic to find the user’s flows that should be controlled by

the experiment. A user can join multiple experiments and thus have different slices

of her traffic in different experiments.

What happens when a flow in a slice at one IaaS provider crosses over to another

IaaS provider’s OpenFlow network? Does it stay in the same slice? Not necessarily.

This question concerns local security policy. An administrator will want to protect

internal traffic and ensure that only flows whose local owner joins an experiment

can be controlled by that experiment. For example, a flow sent from one user in

one network to another user in another network should not necessarily belong to the

same slice: the sender and the receiver might have joined different experiments. Thus,

opt-in requests are local to an IaaS provider. If the experimenter wishes to keep the

flow originating from one IaaS provider’s network in the same slice at a remote IaaS

provider’s network, the experimenter needs to be able to opt that same flow into her

slice at the remote IaaS provider. But the remote Opt-In Manager might not know

who the experimenter is. Instead, the remote Opt-In Manager can delegate control

of unowned flows in its network to Expedient. If the flow is one of those unowned
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flows, Expedient can then opt in the flow in question at the remote Opt-In Manager.

Otherwise, the remote owner of that flow will need to join the experiment.

7.4.2 Connecting PlanetLab nodes

Expedient has a connector that implements the GENI API [2] to communicate with

MyPLC deployments. The GENI API connector allows researchers to create slices at

PlanetLab nodes in connected MyPLC IaaS providers.

The OpenFlow connector allows an administrator to describe the connectivity

between OpenFlow switches and PlanetLab nodes and between OpenFlow switches

across IaaS providers. Researchers can then create end-to-end slices that contain

PlanetLab slices at different providers connected by a continuous OpenFlow network

stretching between all the PlanetLab nodes.

7.5 Related Work

Much work has been done on GENI control frameworks. A GENI control framework

aims to develop a unified API to which IaaS providers adhere. Work such as the Slice

Facility Architecture (SFA [21]) builds on SSL authentication and certificates, using

Uniform Resource Names (URNs) [148] as global unique identifiers. Under SFA, each

IaaS provider, called a resource aggregate trusts a number of clearinghouses. Resource

aggregates expose an XML-RPC API that is accessed by users through a local client.

Clearinghouses create user certificates for authentication and signed credentials for

authorization that allow a user to execute the XML-RPC calls. The API is minimal,

in that it requires resource aggregates to implement only a few types of calls. It

pushes the complexity of communicating with different resource aggregate types into

an XML document, the RSpec, which is provided as a parameter in the API calls.

For example, the CreateSlice call takes as argument an RSpec that describes what

resources are in the slice.

SFA provides a robust scalable way to federate IaaS providers without a single
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point of authority and without online authentication (certificates can be verified of-

fline). However, SFA suffers from a number of drawbacks. First, the API constrains

the mode of interaction between the client and the provider. For example, the API

does not allow two-stage commits for slice creation and does not allow additional

resource-specific APIs to be exposed to clients. Second, SFA includes the use of

tickets to signify available resources, but they are an unnecessary complication that

rarely have useful functionality. Third, it is not clear that transportation of com-

plete XML descriptions of the IaaS provider and of a slice is scalable or necessary.

Finally, certificate management under SFA places a large burden on IaaS providers,

clearinghouses, and users who will need to ensure that certificates are unexpired, that

only trusted certificates are used, and that revocations are checked. From a practical

standpoint, working with non-standard SSL certificates is not an easy task due to the

limited and complex SSL support in standard development libraries.

In contrast with SFA, Expedient does not describe how IaaS providers communi-

cate with external entities nor how they implement authentication and authorization,

and thus does not require changes to the IaaS’s control infrastructure. Expedient can

use SFA as a connector; in fact, it has a connector for the GENI API [2], which is a

simplified subset of SFA.

ORCA [55], the Open Resouce Control Architecture, like SFA, attempts to pro-

vide a “narrow waist” API through which resource provisioning takes place. ORCA

attempts to build a more complete resource provisioning system, where users run con-

trollers that can negotiate resource leases with the underlying infrastructure to obtain

resources and control the experiment’s scaling. Like SFA, ORCA places constraints

on the API between an IaaS provider and the control framework. And although it is

highly sophisticated, its complexity may be overwhelming for simpler tasks. Finally,

it is not clear that it provides the right level of abstraction needed for a GENI control

framework.

Others have also realized the utility of aggregating resources across several IaaS

providers, concentrating on just computing resources. SimpleCloud [20] is building

an open standard API based on the services offered by AWS, Rackspace, and Azure.

Applications will be able to use the API across several providers, thus enabling the
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application to control its own scaling. However, the API will only be available for

PHP applications.

The Distributed Management Task Force (DMTF), the same body that has pub-

lished the Open Virtualization Format, currently a de facto standard for virtual

machine specification, is working on its own API [7]. This API, part of the Open

Cloud Standards Incubator, will enable enterprise administrators to manage and au-

dit provisions across several IaaS providers. This API is still under development, and

concentrates on commercial computing IaaS offering.

The Open Cloud Computing Interface Working Group (OCCI-WG) has also de-

veloped its own API [11] for management of compute resources and services across

IaaS providers.

All these proposed APIs require changes at the providers themselves, and may be

difficult to implement. Additionally, they only concentrate on computing resources,

and are thus not suitable for GENI.

Finally, Yan et al. [171] have a system that is conceptually similar to ours, but

much more limited in scope. They provide a Web application that is capable of

managing virtual machine provisions across several IaaS providers. Like Expedient,

they have connectors that describe how to communicate with the provider using the

provider’s API. However, unlike Expedient, their proxy does not enable new UIs

through additional clients and cannot handle heterogeneous resources.

7.6 Discussion

7.6.1 Summary

Expedient attempts to make the jobs of three stakeholders in the IaaS easier: the

developers who build the IaaS, the users of the IaaS, and the providers of the IaaS.

For IaaS developers, Expedient does not require a standard API to all connected

providers. Thus it relieves developers from the burden of creating this API and then

integrating it into their existing systems. It does not require them to update their
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systems anytime the API changes, and it does not force any particular communica-

tion model between the IaaS provider and the IaaS users. Expedient also provides

developers with a platform over which they can have rich communication models

and a relational database that can be queried for resources. Using these capabilities,

developers can build rich UIs and connect them as client plugins.

For IaaS users, Expedient provides all the benefits of a Web application. It does

not require downloading specific tools and keeping them up to date (except for a Web

browser). It provides users with ubiquitous access and relieves them from having

to store their data locally and keeping it backed up. Expedient relieves users from

having to manage multiple IaaS provider accounts and provides seamless integration

across resource types and provider trust domains.

For IaaS providers, Expedient is transparent. It does not require IaaS providers

to treat Expedient users differently from regular users, and does not require them to

change their authentication and authorization mechanisms. Their existing users will

remain unaffected. It also allows providers to keep their local security policies and

enables them to enforce more policies remotely, at Expedient (subject to the IaaS

connector’s capabilities).

7.6.2 Future work

Expedient is far from being perfect and the final solution to GENI’s problems. Expe-

dient needs additional intermediate layers of abstraction to make plugin development

easier. And, of course, Expedient will benefit from additional connectors and clients.

The Expedient OpenFlow connector’s implementation currently does not have a

way to request that traffic be opted into a particular experiment at a remote Opt-In

Manager. This functionality will become even more useful when a researcher wishes

to reserve a virtual machine and its network traffic simultaneously at Expedient.

Expedient’s current authorization system does not have a clean API for connectors

and clients. Newer versions of Expedient should simplify the API and make it easier

to extend the authorization system.

Expedient is currently being deployed at several campuses around the US as part
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of the OpenFlow network slicing stack. Additionally, the OFELIA project [12] is

developing Expedient and modifying it to suit their particular needs.

7.6.3 Lessons learned

Developing and deploying Expedient has provided much insight into practical issues.

Below are a few.

On the Web: Expedient exposed me to the rich world of Web development. I now

believe that everyone should build a simple Web application at least once in their lives.

The power that Web frameworks make available is uncanny, particularly when com-

bined with “Cloud” services such as Amazon’s AWS. However, the Web is rife with

security concerns. Too much trust is placed on the developer to be security-conscious

when developing a Web application. Future frameworks should protect against secu-

rity holes due to bugs, and should separate security policy from the rest of the Web

application in an architecture that is more akin to a Model/View/Controller/Policy

architecture.

On abstraction: Abstraction when building a pluggable Web application is very

important. Unfortunately, Expedient’s current implementation does not have enough

abstraction layers. This problem should be addressed in future versions of Expedient.

On the GENI process: Design by committee will never work well, and a working

design will never be accepted by a committee. This is a frustration shared by many

in the GENI developer community. The main problem with GENI is the emphasis on

pre-meditated design and complete coverage of details, with less importance placed

on iterative rapid prototyping and improvements through concise and specific require-

ments. The GENI community needs to choose one system, and iteratively work on

it to get it to an acceptable state rather than developing a large number of systems

simultaneously and attempting to combine them.
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On centralization: It has become evident during the course of developing and

deploying Expedient that there is a strong resistance in the academic community

against centralized systems. But centralized trust is only important when that central

authority has too much unchecked power. For instance, IANA is a centralized entity

that has to be trusted. But this fact has only become an issue when the Internet

became such a global success, and this problem is now being dealt with. On the

other hand, centralization can be a boon to rapid development and deployment. This

strong bias against centralization needs to be revisited in light of the complexity and

size of today’s systems and the importance placed on rapid development cycles.
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Appendix A

ICING-PVM Cryptographic

functions

prf, prf-96, and prf-32. Figure A.1 reports pseudocode for our implementation of

prf(k , d), where k is a 128-bit key and d is a 256-bit data block. prf(k , d) is based on

a two-round CBC-MAC, with optimizations made possible owing to the fixed, short

1: function prf(key [0 : 127], block [0 : 255])
2: Set X = aes-128-forward(key , block [0 : 127])
3: Set T = aes-128-forward(key , X ⊕ block [128 : 255])
4: return T

5: function prf-96(key [0 : 127], block [0 : 255])
6: Set T = prf(key , block)
7: return T [0 : 95]

8: function prf-32(key [0 : 127], block [0 : 255])
9: Set T = prf(key , block)

10: return T [96 : 127]

Figure A.1: A[x : y ] indicates bits x to y of A. prf is based on two rounds of
CBC-MAC and implements a keyed pseudorandom function mapping 256 bits to
128. prf-96 (resp., prf-32) truncates the result of prf to its first 12 (resp., last 4)
bytes.
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1: function next-tag-key2(mNi :t/p , t [0 : 31], p, g)
2: q = p + 2g

3: block = t [p : q − 1] || 1 || 0(127−2g )

4: mNi :t/q = aes-128-forward(mNi :t/p , block)
5: return mNi :t/q

6: function get-tag-key2(mNi :t/p , t [0 : 31], p, pfinal , g)
7: miter = mNi :t/p

8: while p < pfinal do
9: miter = next-tag-key2(miter , t , p, g)

10: p = p + 2g

11: return miter

Figure A.2: Pseudocode for tag key calculation. get-tag-key2 can create prefix
keys or tag keys. mNi :t/p is the prefix key, t is the tag, p is the length of the tag
prefix for which mNi :t/p is the key, pfinal is the desired length of the resulting prefix
for which to get a key, g is a parameter used for performance tweaking and restricts
the possible prefix lengths. 32/2g is the number of valid prefix lengths: p = 2g , 2 ·
2g , 3 · 2g . . . , 32− 2g , 32. Smaller values of g require more rounds of AES.

input size. prf-96 returns the first 12 bytes of the result of prf, which we assume

to have 96-bit security, suitable for message-authentication purposes. prf-32 returns

the last 4 bytes of the result of prf. We assume prf-32 to have 32-bit security; while

insufficient to serve as a MAC, this provides enough unpredictability to serve as an

effective DoS hardener.

get-tag-key. Calculating sNi :tag i
requires serial invocations of a pseudorandom

function on short inputs (we use AES in its forward direction). Figure A.2 describes

a parametrized version of get-tag-key that allows an icing-pvm node to trade off

flexibility in the choice of allowable tag prefix lengths for a decrease in the number of

required serial AES rounds. For example, by using g = 3, a node restricts the prefix

lengths to multiples of 8: /8, /16, /24, and /32, which means that the provider can

delegate tag prefixes only with these lengths. This restriction would enable the node

to bound the number of AES rounds for its valid prefix length to 4. When combined

with caching of precalculated prefix keys, the number of required AES invocations

can be as little as 1.
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