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Abstract

Our smartphones are increasingly becoming loaded with more applications and equipped

with more network interfaces—3G, 4G, WiFi. The exponential increase in applications for

mobile devices has powered unprecedented growth for mobile networks. Mobile operating

system and mobile network infrastructure are struggling to cope with this growth.

In this thesis, I advocate that we use all of the networks around us. Our smartphones

are already equipped with multiple radios that can connect us to multiple networks at the

same time. By using those connections, we can open up tremendous capacity and coverage

to better serve users, applications, and network operators alike. If done right, this will

provide mobile users with seamless connectivity, faster connections, even lower charges and

smaller energy footprints.

To do so, we must first overcome several technical challenges that I will be describing

in this dissertation, along with their proposed solutions.

1. I design a client network stack that allows the applications to migrate flows from one

network to another, aggregates bandwidth across multiple networks to achieve faster

connections and provides applications with flexible control over interface choices. I

also present a prototype of this client network stack—called Hercules—to demonstrate

its viability and usefulness.

2. I develop the theoretical foundation for scheduling packets across multiple networks

while taking into account that applications have interface preferences. Using this the-

oretical foundation, I design a packet scheduling algorithm—multiple interface Deficit

Round Robin (miDRR)—that is formally shown to provide weighted max-min fair

packet scheduling.
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3. Finally, I outline a programmable open network architecture that supports users mak-

ing use of multiple networks simultaneously. The architecture also enable the opera-

tors to continually innovate and provide better services. By deploying and operating

this network on the Stanford campus, the design is validated and the architecture’s

benefits affirmed.

All in all, I show that making use of multiple networks at the same time is both technically

possible and beneficial for users, applications, and network operators.
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Chapter 1

Introduction

The advent of smartphones brought about a rapid propagation of diverse appli-

cations operating over mobile networks. Mobile networks today are struggling

to satisfy the different and often stringent requirements of these applications

together with an unprecedented growth in mobile traffic.

My key proposal is that we should exploit all of the networks around us. Our

smartphones are already equipped with several radios, allowing us to connect

to multiple networks and giving us access to enormous capacity and coverage.

Furthermore these networks have different characteristics that can be exploited

to satisfy the different requirements of applications.

In this chapter, I outline recent developments in the mobile space to motivate

my proposal of using all of the networks around us. Following that, I will

describe the key technical challenges that need be addressed.

1.1 Background and Motivation

During the past couple of years, we have seen quite a change in the wireless industry. For

example, handsets have become mobile computers running user-contributed applications on

operating systems with open APIs. We are on a path toward a more open ecosystem, one

that was previously closed and proprietary. The biggest winners are the users who now

have more choices among competing innovative ideas.

1



2 CHAPTER 1. INTRODUCTION

The same cannot be said for the mobile networks serving these devices, which remains

closed and (mostly) proprietary, and in which innovation is bogged down by a glacial stan-

dards process. The industry reports that demand is growing faster than wireless capacity,

and the wireless crunch will continue for some time to come.

Yet, users expect to run increasingly rich and demanding applications on their smart-

phones, such as video streaming, anywhere-anytime access to their personal files, and online

gaming; all of which depend on connectivity to the cloud over unpredictable wireless net-

works. Given the mismatch between user expectations and wireless networks development,

users will continue to be frustrated with application performance on their mobile comput-

ing devices—on which connectivity comes and goes, throughput varies, latencies can be

extremely unpredictable, and failures are frequent.

The problem is often attributed to a shortage of wireless capacity or spectrum; however,

this claim cannot be entirely true. Today, if we stand in the middle of a city, we can

likely “see” multiple cellular and WiFi networks. However, frustratingly, this capacity and

infrastructure is not available to us. Our contracts with cellular companies restrict access to

other networks; most private WiFi networks require authentication, effectively making them

inaccessible to us. Even if the business reasons were eliminated, the technology employed

in our mobile devices and today’s network infrastructure still would not allow us to make

use of multiple networks at the same time. Hence, although we are often surrounded by

abundant wireless capacity, almost all of it is off-limits. Such inaccessibility is not good for

us, and it is not good for network owners: Their network might have lots of idle capacity

even though a paying customer is nearby.

Users should be able to travel in a rich field of wireless networks with access to all

wireless infrastructure around them, leading to a competitive market-place with lower-cost

connectivity and broader coverage. If a smart-phone can take advantage of multiple wireless

networks at the same time, then the user can experience:

Seamless connectivity through the best current network, and having the ability to choose

which network to connect to dynamically;

Faster connections by stitching together flows over multiple networks;

Lower usage charges by choosing to use the most cost-effective network that meets the

application’s needs;

Lower energy by using the network with the current lowest energy usage per byte.
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In the extreme, if all barriers to fluidity are removed, users could connect to multiple

networks at the same time, opening up enormous capacity and coverage.

1.2 Problem Statements

My goal is to allow users to make use of multiple networks at the same time. To achieve

this vision, I will address the various technical challenges involved.

The good news is that smart phones are already armed with multiple radios capable of

connecting to several networks at the same time. Today’s phones commonly have four or

five radios (e.g., GPRS, 3G UMTS, HSPA, LTE, WiFi). Shrinking geometries and energy-

efficient circuit design will allow these mobile devices to have more radios in the future. In

turn, more radios will allow a mobile device to talk to multiple networks at the same time

for improved capacity and coverage, and seamless handover.

1.2.1 A Client Cannot Exploit Multiple Networks

This vision requires more than just multiple radios and multiple networks—it requires that

the mobile client can take advantage of them. Today’s clients are ill-equipped to do so, hav-

ing grown up in an era of TCP connections bound to a single physical network connection,

leads to several well-known shortcomings.

1. An ongoing connection-oriented flow—like TCP—cannot easily be handed over to a

new interface, without re-establishing state.

2. If multiple network interfaces are available, an application cannot take advantage of

them to get higher throughput; at best, it can use the fastest connection available.

3. A user cannot easily and dynamically choose interfaces at fine granularity to minimize

loss, delay, power consumption, or usage charges.

These three limitations are not just the consequences of TCP. They are manifestations of

the way the network stack is implemented in the operating system of the mobile device

today. My goal is to understand how we can change today’s mobile device to make use of

multiple networks at the same time to overcome these limitations along the way.
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Figure 1.1: Example of two applications and two interfaces for which fair scheduling at
individual interfaces results in an unfair allocation of 0.5 and 1.5 Mbps respectively, because
interface 1 allocates 0.5 Mbps to each flow and interface 2 only serves flow 2. Yet, fair
allocation of 1 Mbps each is possible.

1.2.2 Policy-based Fair Scheduling onto Multiple Interfaces is Undefined

When our mobile devices connect to one or more of the networks around us, we want to

make the best use of these networks and exploit their heterogeneous characteristics. We

might use 3G to gain wide area coverage and WiFi to minimize delay, and we might spread

our traffic over several interfaces to maximize bandwidth. We might express a preference to

save precious data rations, such as “do not use a 4G interface for streaming video,” or require

that secret VPN traffic only go over a trusted 4G network, and we might give precedence

to one application over another, such as “if I’m playing a game, throttle my email and

Dropbox traffic to 10% of the available link capacity, and devote all the remaining network

bandwidth to the game.”

Therefore, based on policies, we need a way to flexibly and efficiently control how the

different network interfaces are used, how they are aggregated and pooled, and how traffic

shares each individual interface.

Existing methods fall short on even simple examples. Fair scheduling algorithms—the

basic building blocks for bandwidth and delay guarantees—assume a single interface. If we

independently apply fair scheduling to each interface, the result is not fair, as illustrated

by the example in Figure 1.1. Not only does classical single interface fair scheduling fail

to apply, existing approaches such as TCP and MPTCP [52] do not address the problem.

Of course, TCP is not equipped to handle multiple interfaces. MPTCP enables us to use

multiple interfaces, but cannot accommodate heterogeneous application preferences. They

also have no notion of policy constraints on interface usage.
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My goal is to generalize the delivery of network traffic over multiple interfaces by devel-

oping a holistic scheduling framework that maps many applications to multiple interfaces

while abiding by application preferences and user policies.

1.2.3 Network in Support of Clients using Multiple Networks

Not only is our mobile client ill-equipped to exploit multiple networks, our wireless networks

today are also poorly positioned to support devices connected through multiple networks.

As we look to the future, we want a network that supports a mobile computer moving freely

and seamlessly from one network to another—regardless of who owns the network and the

radio technology that it uses.

If users move freely among many networks, the service provider should be conceptu-

ally separated from the network owner. The service provider should handle the mobility,

authentication, and billing for their users, regardless of the network to which they are con-

nected. In today’s network architecture, the technology and services are deeply integrated

with the infrastructure, preventing the service provider from innovating and differentiating

themselves to, for example, provide different mobility services. Hence, our future network

architecture must support such a division in a manner that gives the service provider low-

level control of the network infrastructure that in turn, provides them with the mechanism

to innovate and differentiate.

On many occasions, applications can benefit from more direct interaction with the net-

work: to observe more of the current network state and to obtain more control over the fate

of their flows in the network. In turn, this interaction empowers the mobile client, allowing

it to fulfill application preferences and user policies.

My goal is to design a simple network architecture that decouples the service providers

from the network owners while providing applications with more direct interaction with the

network.

1.3 Outline of Dissertation

In this first chapter, I outlined our motivation for making use of multiple networks and the

three key technical problems that I will address in this dissertation.

The remainder of the dissertation is divided into three parts. In Chapter 2, I will

describe a novel client network stack (Hercules) that allows the mobile device—its user
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and applications—to exploit multiple networks. In Chapter 3, I will lay the theoretical

foundations for generalizing the delivery of traffic over multiple interfaces before presenting

practical algorithms for doing so in Chapter 4. In Chapter 5, I will present how we can

design a network to support mobile clients and applications that uses multiple networks.



Chapter 2

Hercules: Client Network Stack for

Devices with Multiple Interfaces

We want our mobile devices to be capable of efficiently making use of multiple

networks. Namely, a mobile client should allow us to (1) aggregate bandwidth

over multiple interfaces, (2) migrate flows from one network to another, and

(3) dynamically choose interfaces at fine granularity to minimize loss, de-

lay, power consumption, or usage charges. Today’s client network stacks—

designed for a past when only a single network interface was active at any

point in time—are ill suited to do so.

In this chapter, I describe Hercules—a client network stack that allows us to

make use of multiple networks. Using Hercules, I will demonstrate how we can

exploit multiple networks without any changes to the network infrastructure. I

will also show how we can reduce packet losses and delays by mapping packets

to an interface at the last possible moment in Hercules.

2.1 Problem Statement

A key component of mobile computing is the mobile device—a smartphone, tablet, or

laptop. Although the hardware for these devices has tremendously improved over the last

few years, their operating systems were developed in the past when a single interface was

the norm. Having grown up in an era of TCP connections bound to a single physical

7
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network connection, it is unsurprising that the operating system of today’s mobile devices

are ill-equipped to exploit multiple networks. This situation creates several well-known

shortcomings:

• An ongoing connection-oriented flow—like TCP—cannot easily be handed over to a

new interface, without re-establishing state.

• If multiple network interfaces are available, an application cannot take advantage of

them to gain higher throughput; at best, it can use the fastest connection available.

• A user cannot easily and dynamically choose interfaces at fine granularity to minimize

loss, delay, power consumption, or usage charges.

We need to change the operating system to overcome these limitations to efficiently exploit

multiple networks. Our ideal operating system should have the following properties.

1. The operating system should be able to handle multiple active network connections

at the same time, unlike today’s operating systems. For example, Android—a modern

operating system for mobile devices—only allows one network interface to be active

at a time. Android chooses the interface to use according to a preference order: If

the device is connected to a WiFi network, Android automatically disconnects from

WiMAX, which is clearly no good for us.

2. The operating system should be able to support the many network protocols available.

For example, it should be able to allow the applications to exploit multiple networks,

regardless of whether the application is using UDP, TCP, or some variant of TCP

like MPTCP. By doing so, we decouple the operating system from the protocol stack,

allowing novel protocols to be readily deployed as they are invented.

3. The operating system should provide a flexible mechanism for interacting with ap-

plications, operating systems of other devices, and even the networks to which it is

connected. This flexibility will allow the operating system to coordinate with its peers

and connected networks to best serve the applications and make the best use of the

networks available.

4. The operating system should also be backward compatible. Specifically, it should

(1) run on commercially available smartphone devices and laptops, (2) work with
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unmodified existing applications, and (3) connect to existing production WiFi and

cellular networks.

5. The operating system should handle dynamic changes in network connectivity. In

contrast, today’s end-host network stacks were designed for wired networks for which

connectivity is static. As elaborated further in Section 2.4, this design results in un-

necessary packet losses during handovers, and latency-sensitive traffic can be delayed

by a competing flow. Ideally, the operating system should avoid these problems to

allow the applications and users to easily migrate from one network to another.

In this chapter, I describe Hercules [57], a novel client network stack that satisfies the

requirements. Using a prototype of Hercules based on Android (described in Section 2.3.1),

I will present how this network stack overcomes the three limitations (in Section 2.3.2).

Hercules also mitigates the packet losses and unnecessary delay as described in Section 2.4.

In all, Hercules is a client network stack that allows us to efficiently make use of multiple

networks at the same time.

2.2 Related Work

Many researchers have explored how to use multiple wireless interfaces at the same time [12,

14]. Some attempted to address how we should use multiple interfaces [50] or how we can

deal with the issue that TCP is bound to a network address [34, 36]. Others proposed

transport protocols that aggregate bandwidth across multiple interfaces [20, 26], support

multi-streaming of independent byte streams [37], or provide the ability to hand over a

TCP connection to a new physical path without breaking the application [47]. This work

proposes a network stack that can incorporate these techniques and protocols and provides

design guidelines for how these (and future) protocols can be implemented. Hence, this

work is orthogonal and complementary to these proposals.

This work is also related to a number of recent optimizations to improve wireless network

performance, some of which leverage sensors [29] whereas others exploit geolocation infor-

mation [18] or leverage user-specified application policies [6]. Hercules compliments these

techniques by providing the flexibility at the client to take advantage of these innovations.

Hercules mitigates packet losses during handover and unnecessary delay of latency-

sensitive traffic. Consequently, Hercules augments efforts to reduce Web page load times,
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Figure 2.1: The Hercules architecture that presents the protocols and applications with
a virtual interface for backward compatibility while multiplexing packets onto different
networks using a switch. In turn, the packet processing switch is configured by a control
plane that interacts with applications, other devices, and the networks.

particularly when there are competing flows [23]. This effort is related to recent work on

“buffer-bloat” [1] that argues for reducing buffers (and therefore latency) in home routers. A

similar buffer sizing proposal has been made for WAN and data-center networks [4, 5, 7, 39].

Unlike prior work, this work focuses on the mobile client network stack and the issues that

arise in that context.

2.3 Hercules Client Network Stack Architecture

The Hercules network stack consists of three main components (illustrated in Figure 2.1): a

switch to multiplex packets onto different networks; a virtual interface presented to the pro-

tocols and applications in a backward-compatible manner; and a control plane to coordinate

the various ongoing activities.

In Hercules, traffic from an application needs to be spread over multiple interfaces. The

application sends traffic using an arbitrary IP source address and the networking stack takes

care of spreading the traffic over several interfaces, each with its own IP address. This traffic

management is done using the virtual Ethernet interface to connect the application, with its

local IP address, to a special gateway inside the Linux kernel. The gateway stitches together

multiple interfaces, without the application knowing. Essentially, the gateway is a switch

that rewrites the addresses in the packets before sending them to the appropriate interface.

In this way, the packets in an application flow are decoupled from the IP addresses on each

interface, which allows the set of interfaces to change dynamically as connectivity comes and



2.3. HERCULES CLIENT NETWORK STACK ARCHITECTURE 11

goes. This can be similarly done at the communicating peer and resolves the dilemma that

we want to be compatible with existing applications and protocols that expect a single active

network interface when supporting multiple active network interfaces. By multiplexing

packets below the protocol stack, Hercules can support the many protocols implemented

in the operating system, including those that are yet to be designed or implemented, thus

allowing new protocols to be readily deployed.

Hercules controls how flows are routed onto their respective interfaces using a control

plane that configures the switch through a well-defined protocol. Similarly, the control

plane can communicate with applications to understand their intents and preferences, and

with other control planes on other hosts, to negotiate how flows are spread across interfaces.

The control plane might even negotiate with the networks to better serve the applications.1

In principle, the control plane can be anywhere, for example, it can be implemented as a

service in a mobile device, it can be run by the network operator, or it can be outsourced to a

third-party provider. This programmable control plane allows Hercules to easily implement

one or more mechanisms for interacting with applications, other devices, and the networks.

With this design, Hercules fulfills four of the five properties discussed in Section 2.1. To

fulfill the last remaining property, Hercules must be implemented in a way to optimize the

buffer management to avoid unnecessary losses and delays. A discussion of this concept is

deferred to Section 2.4.

2.3.1 Implementation in Android

A prototype of Hercules is implemented using Android—a modern operating system for

mobile devices—as its base. The following modifications are made.

Android/Linux The first problem to solve is that, by default, Android only allows one

network interface to be active at a time—clearly no good for us. Android’s Connectiv-

ity Service is modified to allow us to simultaneously use multiple interfaces. Android

is based on a minimal Linux kernel that is missing several needed tools and kernel

modules (e.g., the kernel module for virtual Ethernet interfaces). The modules are

added and common utilities such as ifconfig, route, and ip are cross-compiled for

Android.

1 The discussion of how Hercules can negotiate with networks is deferred to Chapter 5 after a description
is given of how the network can be modified to support a Hercules-enabled client.
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Open vSwitch The switch (or gateway) is implemented using Open vSwitch (OVS).2 Us-

ing the Android Native Development Kit (NDK) for the ARM or OMAP processors,

OVS’s kernel module and user-space control programs are cross-compiled for An-

droid.3 OVS replaces the bridging code in Linux, and lets us dynamically change how

each flow is routed. OVS has an OpenFlow [30, 38] interface; therefore, we can use

<match,action> flow-table entries to easily route, re-route, and handover existing

connections.

Control Plane A small custom control plane is used to determine how flows are routed

and re-routed in the prototype. The control plane runs as an Android background

service, and applications can interact with the control plane using Android IPCs [2].

This control plane controls OVS using the OpenFlow protocol running over a TCP

socket. It controls the network interfaces (and other local resources) through system

calls (e.g., Android Runtime Process). The control plane can also communicate with

control planes on other hosts using JSON messages, allowing it to negotiate how flows

are spread across interfaces.

A similar prototype in Linux is used for laptops and servers used in the experiments. The

prototype is run on four common mobile devices (three smartphones running Android, and

a laptop running Linux), shown in Figure 2.2:

• Smartphone: Motorola Droid with TI OMAP processor (600 MHz) and 256 MB of

RAM, CDMA with Verizon 3G data plan, running Android Gingerbread 2.3.3.

• Smartphone: Nexus One with Qualcomm ARM processor (1 GHz) and 512 MB of

RAM, GSM, HSDPA with T- Mobile 3G data plan, running Android Gingerbread

2.3.3.

• Smartphone: Nexus S 4G with Cortex ARM processor (1 GHz) and 512 MB of RAM,

CDMA, WiMAX with Sprint 3G/WiMAX data plan, running Android Gingerbread

2.3.5.

• Laptop: Dell with AMD Phenom II P920 quad-core processor (3.2 GHz) and 4 GB

memory, installed with Ubuntu 10.04.

2 OVS was recently upstreamed to Linux kernel 3.3 [15].
3 The patches and instructions are publicly available at http://goo.gl/MK5E8.

http://goo.gl/MK5E8
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(a) Android smartphones. (b) Laptop with ten interfaces.

Figure 2.2: Devices on which the Hercules network stack is run, allowing them to exploit
multiple networks at the same time.

Where possible, experiments are performed using mobile phones, but sometimes it is in-

feasible (e.g., in one experiment, ten interfaces were needed, which is too many for current

smart phones). Servers running Ubuntu 11.04 are also used as peer servers and middleboxes

in the experiments.

2.3.2 Evaluation: Overcoming Limitations to Exploit Multiple Networks

Overhead of Switch

Hercules adds functionality to Android and inevitably consumes more power, more CPU

cycles, and potentially reduces maximum throughput. The system is designed for minimal

overhead, which our experiments confirmed.

Throughput Reduction The goodput for ten iperfs with and without OVS is measured.

To maximize overhead cost, the least provisioned Android device we have (the Mo-

torola Droid) is used. Figure 2.3(a) shows that the goodput is reduced by no more

than 2%.

RTT Increase The delay incurred is profiled by sending 300 pings with and without OVS.

Figure 2.3(a) shows no observable increase in round trip time.

CPU Load The CPU load is logged when running iperf on the Droid with and without

OVS. Figure 2.3(c) shows that the CPU load increased by 1.8%.
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Power Consumption To measure our prototype’s impact on power consumption, the

battery was removed and the device was powered through its USB port and a power

monitor. Figure 2.3(d) shows negligible power increase with OVS.

(a) Throughput benchmark using iperfs. (b) RTT benchmark
done with ping.

(c) CPU load benchmark (d) Power consump-
tion benchmark

Figure 2.3: Hercules overhead evaluated on a Motorola Droid.

Flow Migration without Re-establishing State

Consider the first limitation: An ongoing connection-oriented flow cannot easily be handed

over to a new interface without re-establishing state. This experiment shows how Hercules

overcomes this limitation, i.e., how Hercules maintains a HTTP connection across a migra-

tion. The model of this experiment is a user arriving to work who wishes to migrate an

ongoing video stream from a public WiMAX network to a corporate WiFi network.
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Figure 2.4: Diagram showing flow routes at each stage of the experiment.

In this experiment, both the client and the peer are running Hercules. During the

migration, the client’s IP address will change. This change has to be coordinated with

the peer for a seamless migration through control packets between the control planes. The

control packet signals the impending migration of an ongoing flow to the peer, which can be

done without aid from the network. The peer then rewrites the addresses of the subsequently

incoming packets such that flow migration is transparent to this application.

Several possibilities exists in this design space. In this implementation, the source

address is rewritten to that of the initially established flow (as shown in Figure 2.5). At

any point in time, the application in host A thinks that the communication is between

addresses A’ and B whereas the application in host B thinks that the communication is

between addresses A1 and B’. The consistent views of the applications in the end hosts are

maintained by the translations indicated in Figure 2.5. Another possible implementation is

to always rewrite the address of the communicating peer to one that is arbitrarily picked

at the onset of the flow.

Figure 2.6 shows the throughput of the session as the flow is migrated (as shown in

Figure 2.4). Initially, the flow is routed through WiMAX; then, after 30 seconds it is

migrated to WiFi. The control plane decides when to make the move and reconfigures

OVS to change the addresses, rewrite packet headers, and switch packets to/from the new

interface. This change is coordinated with the control plane of the peer. The result is

an uninterrupted TCP flow that has been migrated from one network to another without

re-establishing state.

To show the flexibility of our system, a very different migration mechanism (as described

by Stoica et. al. in [48]) is also tested. The flow is routed through an off-path middlebox

(or waypoint); each end communicates only with the middlebox. This mechanism could
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Figure 2.5: Diagram showing address translation happening along the routes of each flow at
each stage of the experiment, as illustrated in Figure 2.4. For example, A’< − >A1 implies
the address A’ is translated to A1 and vice versa. This translation can happen with either
source or destination address.

be used, for example, to insert a firewall or DPI box in a corporate environment. In the

experiment, the migration takes place at 50 seconds, with a brief drop in data rate when

packets reach the middlebox.

The experiment shows that Hercules is quite powerful because both migrations were

done without changing the network. Usually, migration and mobility are considered fixed

functions of the infrastructure [42, 48].

Aggregating Bandwidth over Multiple Networks

Consider the second limitation: If multiple network interfaces are available, an application

cannot take advantage of them to get higher throughput; at best it can use the fastest

connection available. Hercules allows multiple networks to be used simultaneously.

To test how well this works, the number of interfaces is varied while data is being

downloaded.

In this experiment, a 100 megabyte file is downloaded over five parallel TCP connections

using aria2c. First, all five TCP connections ran over Stanford’s campus WiFi network;

then, Clearwire’s WiMAX network was used. Finally, Hercules stitched both networks

together. Each test was run ten times on two clients (the laptop and the Nexus S 4G

smartphone), and the average throughput is reported. Figure 2.7 shows the average ag-

gregate throughput with and without stitching. The laptop achieved 95% of the aggregate
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Figure 2.6: Mobile’s throughput during an experiment in which the flow is migrated from
WiMAX to WiFi and then through a middlebox.

Figure 2.7: Stitching two networks: Steady state throughput of a laptop and phone with
and without Hercules.

data rate, whereas the smartphone achieved 77%. Further investigation revealed that in-

terference occurred between the WiFi and WiMAX interface in the mobile phone because

the transceivers are close together. There is no fundamental reason why this issue cannot

be resolved using better shielding—something we can expect if stitching becomes common.

Stitching interfaces together also helps maintain connectivity during times of packet loss

or complete network outage, as Figure 2.8 shows. Each interface was turned off for 20 s

during the experiment; connectivity was maintained because of the other interface.

Finally, to push the limits of stitching, ten network interfaces are stitched together (!).

The ten networks are listed in Figure 2.9, and include four different wireless technologies:
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Figure 2.8: Stitching two networks: Throughput achieved when using Hercules to download
a 100 MB file when WiFi is turned off from 20 s to 40 s, and WiMAX from 60 s to 80 s.

3G, WiMAX, WiFi 802.11a (5 GHz), and WiFi 802.11g (2.4 GHz) and include six different

production networks. In doing so, the capacity available around us is being profiled. The

laptop is used in this experiment because there was no way to attach so many interfaces to

a smartphone. To measure the capacity brought by each successive interface, each interface

is gradually brought up one at a time. Hercules then stitches it to the others to increase

the data rate. Figure 2.9 shows the throughput rising as each interface is added, up to a

maximum of 70 Mbps (more than three times the fastest interface).

Dynamic Choice of Network

Consider the third (and last) limitation: A user cannot easily and dynamically choose

interfaces at fine granularity to minimize loss, delay, power consumption, or usage charges.

This final experiment (inspired by [29]), shows how the user or application can choose the

network to use. In this experiment, the phone’s accelerometer is used to determine whether

the device is moving. When the user is moving, WiMAX is chosen for greater coverage;

when stationary, the free and faster WiFi network is selected (Figure 2.10).

Because the user (or client) makes the decision, faster innovations can to be designed

and easily made available in the future, such as the methods described in [18, 29, 35].
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Figure 2.9: Connecting a laptop to ten wireless networks. The data rate increases as more
networks are added (in the order listed in the figure). The arrows show when each interface
is turned on.

Figure 2.10: Moving an ongoing flow from WiMAX to WiFi when a device stops moving as
a away to demonstrate how feedback from other parts of the system can be used to improve
the user experience.
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2.3.3 Challenges with Current Networks and Devices

The Hercules prototype using Android and Open vSwitch was able to overcome the limita-

tions using only a refactored client network stack without modifying the fixed infrastructure.

However, current networks and devices do not make it easy.

Address ambiguity A client might have two interfaces connected to different networks

that use identical private address spaces. For exampl,e they might both use addresses

starting from 192.168.0.0. Whereas packets can be sent via gateways on both networks,

to reach hosts directly attached to either networks requires us to distinguish them

by some means other than IP address, such as by forwarding packets based on the

interface to which they are destined (if we know). Otherwise, one set of hosts will

be unreachable, which is the case for this revision of Hercules. Solving this problem

require more work.

Discovering connectivity Discovery protocols (e.g., DNS and DHCP) are typically tied

to a particular network interface; therefore, if multiple networks are used, DNS and

DHCP settings for each interface must be carefully tracked. To determine the networks

available, hosts and routers on each interface have to be proactively ARPed.

Middleboxes Wireless networks—particularly cellular networks—are riddled with middle-

boxes [51] that interfere with flow migration. For example, a migrating flow might be

blocked if the new network did not see a SYN packet that was observed during our ex-

periments. This issue cannot be resolved without changing the network infrastructure.

Hopefully, cellular providers will, in time, fix the middlebox problem.

Interfaces Sometimes, a single network requires different header formats depending on the

physical device. For example, a 3G network requires Nexus One (using the Qualcomm

MSM 3G chipset) to present a virtual Ethernet interface, whereas they are presented as

IP interfaces on Google Nexus S and the Sierra 3G USB Dongle. Different interfaces

also present different MTU to the network stack, e.g., 3G and Ethernet interfaces

typically have MTU of 1,400 and 1,500 bytes respectively. The MTU in the prototype

is set to the minimum of all interfaces to work around this problem. These are not

limitations to the approach because rewriting the header format arbitrarily for each

interface and fragmenting the packet accordingly is possible.
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2.4 Buffer Optimization in the Hercules Network Stack

Achieving only the desired functionality is insufficient. Hercules has to be tuned to perform

well in a dynamic mobile environment in which available network connectivity changes

continuously—an aspect for which today’s network stacks are poorly optimized.

Today’s end-host network stacks were designed for wired networks in which connectivity

is static. To send packets on these networks, applications create transport connections (e.g.,

TCP sockets) and write data to them. The network stack segments the data into packets,

and adds the appropriate headers that include information on the source and destination IP

addresses. Packets forming different TCP flows are then multiplexed into a buffer associated

with the source IP address, which in turn pushes them into buffers associated with the

physical network card from which packets are transmitted. The fate of a packet—in terms

of the source IP address used, interface on which it is sent and in what order—is determined

the moment the packet is pushed from the transport flow buffers into the lower layers, where

appropriate headers are added and the packet is further enqueued in multiple buffer levels.

In networks in which connectivity is static (i.e., the physical connection and associated

parameters such as source IP are largely static), this design works quite well.

This multiplexed and buffered design of networking stacks performs poorly in a dynamic

mobile environment in which available network connectivity changes continuously. If a

device hands off to a new AP or switches to a different network interface, we lose all of

the packets queued up in the buffers of the disconnected network interface. The interface

buffers are often large (hundreds or thousands of packets), leading to large packet loss. If

handoffs were rare, or if network conditions were constant, infrequent packet loss might

be acceptable. However in a world with many wireless networks from which to choose

and devices with multiple interfaces, flows will frequently be mapped to new interfaces;

therefore, ways to eliminate (or reduce) such packet losses are needed.

The key problem is that packets are bound to an interface too early. Once an IP header

has been added and a packet is placed in the per-interface queue, undoing the decision

is very difficult, e.g., if the interface associates with a new AP or if we want to send the

packet to a different interface (e.g., if the interface fails or if a preferred interface becomes

available). The more packets buffered below the binding point, the greater the commitment

and the greater the risk that the packets are lost if network conditions change. Even with
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the best configuration, a typical mobile device today can lose up to 50 packets every time

it hands off or changes interface.

Another common problem caused by binding too early is that urgent packets are unnec-

essarily delayed. Because many transport flows are multiplexed into a single per-interface

FIFO, latency sensitive traffic is held up. The problem is worst when the network is con-

gested and data backs up in the per-interface queue.

2.4.1 Late-Binding to Reduce Loss During Handover and Unnecessary

Delay of Latency Sensitive Traffic

The two problems can be overcome if the network stack follows the late-binding principle,

i.e., the decision on which packet to send on what interface is not made until the last possible

instant. Late-binding is achievable by doing the following:

1. Minimize or eliminate packet buffering below the binding point. One consequence is

that after the binding, the packet is almost immediately sent through the air.

2. Keep flows in separate queues above the binding point to avoid latency-sensitive pack-

ets from being unnecessarily delayed. The queues need to be interface-independent to

allow us to choose which packet to send on which interface.

To ease adoption, the design should also be hardware independent, allowing any network

interface available to be used— precluding changes to the driver.

Recall in Section 2.3 that Hercules started with the default Linux network stack (illus-

trated in Figure 2.11(a)). Hercules then added a custom bridge that contains a packet-by-

packet scheduler to decide which packet to send next and to which interface. This bridge

is the point at which a packet is bound to its outgoing interface. Rather than modify the

socket buffer to stop it binding packets too early, we allow it to bind packets to a virtual

interface, and then remap it as it passes through the bridge. This process has the effect of

leaving the socket API unchanged and making the application believe it is using a single

interface, when, in fact, its packets may be spread over several interfaces. The resulting

design is shown in Figure 2.11(b). Note that there are now qdisc4 buffers above and below

the bridge.

To keep flows separate above the binding point (the bridge), the default qdisc for the

virtual interface is replaced with a custom queueing discipline that keeps a separate queue

4 In Linux parlance, qdisc (for queueing discipline) is a per-interface FIFO queue.
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(b) Hercules network stack without
buffer optimization (as described in
Section 2.3) in which multiple network
interfaces can be simultaneously ac-
tive.

$%"#

!"#

$%"# &'"#

#######4,*.5(# 6+0(.73(,#

'()*+(##
',*)(,#

'()*+(##
',*)(,#

'()*+(##
',*)(,#

(c) Buffer-optimized Hercules network
stack in which separate buffers are
maintained for each flow before the
bridge, and the amount of buffers be-
yond the bridge is minimized.

Figure 2.11: Illustration of network stacks starting with the unmodified network stack in
Linux, a non-optimized configuration of Hercules, and finally a buffer-optimized Hercules
network stack.

for each socket. Fortunately, Linux was designed to make this process easy. To minimize

buffering below the binding point, we make the qdisc bufferless and pass packets from the

bridge—as soon as they have been scheduled—directly to the driver. The driver buffer

is reduced to two packets, which as we will see is the minimum without disrupting the

DMA process. This design pertains to the transmit path. The receive path is largely left

unmodified except to forward all received packets onto the virtual interface. The final design

is shown in Figure 2.11(c).

2.4.2 Implementation of Late-Binding in Kernel Bridge

The late-binding design is implemented in Linux 3.0.0-17 as a custom bridge in the form

of a kernel module. The implementation operates on a Dell laptop running Ubuntu 10.04

LTS with an Intel Core Duo CPU P8400 with a 2.26 GHz processor, 2 GB RAM, and

two WiFi interfaces. The two WiFi interfaces are an Intel PRO/Wireless 5100 AGN WiFi

interface and an Atheros AR5001X+ wireless network adapter connected via PCMCIA. The

implementation follows the design previously described and shown in Figure 2.11(c).

Some details of the implementation are explained here, starting from the top down.
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Avoiding binding packets to a physical interface in the socket layer At the socket

layer, the Linux virtual Ethernet (veth) interface is used to prevent the socket from

binding the flow to a physical interface too early, while leaving the socket API (and

the application) unchanged. The implementation requires careful handling of ad-

dresses (e.g., a WiFi interface will only send Ethernet packets with its own source

address). The cost of modifying the header in the bridge is low because it simply

requires rewriting header fields. Fortunately, the checksum is calculated later in the

network hardware, or just before the DMA.

Sending and receiving packets to multiple interfaces The custom bridge kernel mod-

ule makes use of the netdev frame hook made available since version 2.6.36. This hook

allows the custom bridge to be modularly inserted into the Linux kernel.

Eliminating per-interface qdisc buffers below the bridge The pfifo or mq qdisc as-

sociated with the net device of each interface has to be replaced in the bridge. In an

unmodified kernel, the dev queue xmit function enqueues the packet (i.e., puts it in

the qdisc). Subsequently, the packet is dequeued and delivered to the device driver

using the dev hard start xmit function. However, it is artificially difficult in the

current network stack to enqueue into the qdisc and not drop the packet on failure

attributable to the implementation of dev queue xmit. Therefore, the per-interface

qdisc is completely bypassed by partially reimplementing dev queue xmit to directly

invoke dev hard start xmit and deliver the packet to the device driver. A full device

driver buffer returns an error code that allows us to retry later. The consequence is

that qdisc is bypassed without having to replace it.

Minimizing the driver buffer The Atheros WiFi chipset using the ath5k driver can be

configured via ethtool, allowing the device buffer to shrink from 50 packets to two

packets.

Avoiding unnecessary drops on the wireless interface When disconnected, the ath5k

driver has the peculiar behavior—which should be considered a bug—of continuously

accepting and then dropping, all packets from the bridge. Clearly, this behavior must

be corrected if we want to reroute flows over a different interface. Therefore, the cus-

tom bridge checks that the WiFi is connected before sending a packet to the driver.
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Figure 2.12: Experiment setup for measuring buffer size of WiFi device by comparing PCI
signals and antenna output.

2.4.3 Evaluation of Late-Binding

Size of Device Buffer

Whereas qdisc and the driver DMA buffer can be controlled through software, the same

cannot be said of the interface’s hardware buffer. Late binding will be difficult if the

hardware buffer itself is large and cannot be reduced; hence, an important question is the

size of the hardware buffer on commodity wireless network interfaces.

Measuring this buffer size turns out to be surprisingly difficult, published datasheets of

these cards do not include the number or any interfaces to configure them because they

are considered proprietary. Hence, an experiment to reverse engineer the buffer size is per-

formed. The experiment wrote a packet into the device (via DMA) and measured when the

packet emerges from the device from its antenna. Our experimental setup shown in Fig-

ure 2.12 used a TP-Link TL-WN350GD card equipped with an Atheros AR2417/AR5007G

802.11 b/g chipset using the ath5k driver.
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To measure the times of packets entering the card via DMA and leaving the card through

the antenna, an oscilloscope is used to inspect the physical signals of the PCI bus where the

FRAME pin of the bus [41] is measured during a DMA transfer. At the same time, the output

from the wireless chip is measured using a directional coupler on its way to the antenna.

The directional coupler taps only the transmitted signal, which is passed through a power

detector to get a low frequency signal that can be observe on the same oscilloscope.

Figure 2.13(a) shows WiFi and PCI activity (both signals are active low, i.e., a lower

voltage implies packet activity) when a burst of four 1,400 byte UDP packets is sent to

a nearby AP at 18 Mbps. On the PCI bus, the packet is seen being transferred to the

wireless chip, and a short status descriptor is sent back to the host after the transmission.

On the antenna, a packet transmission consists of a CTS-to-self packet [3], followed by a

SIFS (short inter-frame space), and then the actual packet data. Note that as soon as one

packet finishes, the DMA transfer for the next packet is triggered. This transfer process

is particularly clear in Figure 2.13(b), which shows the retransmission of a packet.5 No

PCI activity occurs during the contention and retransmission phase. Looking closely at the

measurements, the interface starts sending the CTS-to-self [3], in preparation to send the

next packet, even before the packet has completed its transfer across the PCI bus, indicating

a highly pipelined, low-latency design.

The result is very encouraging. It suggests that minimizing the buffering after the

binding point only requires changes to the kernel, and not to the wireless chipset—and this

is for a chipset connected to the CPU through PCI. For more integrated solutions, such as

the system-on-chip designs used in modern mobile handsets, the buffering inside the wireless

device can be expected to be just as small, and if we can figure out how to bind a packet

to the interface at the very last moment before the DMA, then the number of packets lost

when the interfaces changes can be minimized.

Reduced Packet Loss by Late-Binding

The first goal of late-binding is to avoid losing packets unnecessarily when network con-

nectivity changes and a flow is rerouted over to a new interface (using Hercules’ custom

bridge in the kernel). The test scenario is a Linux mobile device with two WiFi interfaces,

each associated with a different access point. A TCP flow is established via interface 1;

then, interface 1 is disconnected and the flow is rerouted to interface 2. Packet drops are

5 A WiFi monitor is used to sniff the channel and verify that a retransmission occurred.
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(a) PCI and WiFi outputs for a four packet burst on
a WiFi card. At most one packet is inside the device
at any time.

(b) PCI and WiFi outputs during a retransmission.
The device does not fetch the next packet until the
current packet has been transmitted.

Figure 2.13: PCI and WiFi outputs showing that the WiFi device can function with very
little buffering in the hardware.

expected when interface 1 is disconnected; the number of drops is measured as a function

of the amount of buffering below the binding point.6 The effect of the retransmissions on

the throughput of the TCP flow is also measured.

Figure 2.14 shows the number of packets retransmitted by the TCP flow over a 0.3

s interval. Interface 1 is disconnected after approximately six seconds, the experiment is

repeated 100 times, and the results are averaged. The flow uses unmodified Linux TCP

Cubic with a throughput of about 5 Mbps and an RTT of 100 ms. As expected, the graph

clearly shows that after interface 1 is disconnected, the number of retransmissions increases

proportionally with the size of the interface buffer. Although the knowledge that interface

1 is lost is available, these are the unrecoverable packets already committed to interface 1

and scheduled for DMA transfer. With the default buffer of 50 packets, an average of 26.3

packets is lost (and up to 50 packets can be lost as seen in Figure 2.15). If the buffer is

reduced to just five packets, the loss is reduced to an average of 3.9 packets.

Next, the effect on TCP throughput when a flow is re-routed from interface 1 to interface

2 is evaluated. Ideally, no packets is dropped or delayed, and TCP throughput is unaffected.

As previously observed, TCP reacts adversely to a long burst of packet losses.

6 Recall that the amount of buffering beyond the bridge can be tuned using ethtool for the Atheros
WiFi chipset using the ath5k driver.
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Figure 2.14: Left: the average number of retransmissions (in 0.3 s bins) for a TCP Cubic
flow; interface 1 is disconnected after 6 s. The legend indicates the buffer size of the
DMA buffer. Right: the expected number of retransmissions (error bars showing standard
deviation) immediately after disconnecting interface 1.

Figure 2.15: Cumulative distribution function of the number of retransmissions in the second
after the loss of the interface. The legend indicates the size of the DMA buffer.
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Figure 2.16: Throughput of a flow when 50 (above) or 1 (below) packets are dropped after
10 s. Values are shown for 100 independent runs.

Because the ath5k driver will not allow the driver buffer to be set to one packet, the

effect of packet loss on throughput is measured using an emulation. In this experiment,

the effect of packet loss during handover is emulated when the buffer size is down to just

one packet. The bursty loss of packet(s) is emulated using a modified Dummynet [11]

implementation. A single 10 Mbps TCP Cubic flow (RTT is 100 ms) is established through

interface 1, and—to emulate disconnecting interface 1 after 10 s and rerouting through

interface 2—one or a burst of 50 packets is dropped. The experiment was run 100 times

and the throughput was measured using tcpdump (to reconstruct the flow), and plotted.

Figure 2.16 shows that losing a burst of 50 packets (corresponding to a driver buffer of 50

packets) can significantly cause the throughput to decline. If the buffer is reduced to only

one packet, throughput is relatively unaffected and no flows drop below 4 Mbps.

To better understand the effect of buffer size on TCP, the dynamics of TCP congestion

window after the loss occurs is examined. TCPProbe [25, 55] is modified to tell us the

congestion state of the socket and the sender congestion window snd cwnd. The evolution

of the state of the TCP flow when 50 packets is dropped is plotted in Figure 2.17, together

with the slow start threshold ssthresh. The burst of drops causes TCP to enter the recovery

phase for more than a second. The actual effect varies widely from run to run depending on

the state of the TCP flow when the loss happens. This should come as no surprise as it has
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Figure 2.17: Sender congestion window and slow-start threshold of a single TCP Cubic flow
with 50 packets dropped at 10 s. The wide (red) vertical bar indicates that the socket is in
recovery phase, whereas the narrower (cyan) vertical bars indicate Cubic’s disorder phase.

been observed many times that TCP throughput collapses under bursts of losses (e.g., [17]).

The key point that this work notes is that packets are dropped unnecessarily in the sending

host because of early binding.

As expected, TCP takes longer to recover from a burst loss of 50 packets than from just

one packet loss. Figure 2.18(a) shows the distribution of the time it takes for a flow to exit

the recovery phase after a burst loss. With a single packet drop, TCP recovers after 110

ms on average (1 RTT). With a burst of 50 packet drops, TCP recovers after 410 ms on

average and 1.2 s in the worst measured case. Figure 2.18(b) shows how the packet loss

reduces throughput in the second after the packet loss.

Reduced Delay for Latency-sensitive Traffic

A second goal of late-binding is to minimize the delay of latency-sensitive packets. How

long a packet is delayed in the driver buffer, and how far we can reduce it, is evaluated in

the following.

This experiment uses a single WiFi interface. A marker packet is sent, followed by a

burst of 50 UDP packets, followed by a single urgent packet that is sent using a different



2.5. SUMMARY 31

(a) Boxplot of the amount of time
TCP flow stays in recovery phase
after the burst loss.

(b) Boxplot of the throughput of
TCP flow in the second after the
burst loss.

Figure 2.18: The effect of burst loss on TCP.

port number.7 tcpdump is used to measure the time from when the marker packet is received

until the urgent packet is received. The experiment is repeated 50 times for each device

buffer size. As before, the Atheros ath5k driver is used.

The results in Figure 2.19 show that a larger buffer size delays packets longer, which is

not surprising; the driver only has one queue and can not distinguish packet priorities. With

the default buffer of 50 packets, the median delay of the urgent packet is 135 ms. With only

two packets in the driver, the median delay is only 7.4 ms, or 94% faster. Extrapolating

to a driver buffer with only one packet, an urgent packet can be expected to be delayed by

less than 5 ms.

2.5 Summary

One thing is clear: Wireless networks are here to stay, and over time, our applications and

mobile devices will inevitably and increasingly exploit multiple interfaces simultaneously.

7 In this implementation, each flow with a different port number is queued separately and treated fairly
in a round-robin fashion. The queue with urgent packets can also be prioritized if so desired.
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Figure 2.19: CDF of the time difference between the marked and prioritized packet.

It is time to update the client networking stack—originally designed with wired networks

in mind—to support wireless connections that come and go, and are constantly changing.

Hercules achieves this by enabling the following: (1) handover an ongoing TCP connec-

tion without re-establishing state; (2) stitch multiple interfaces together for higher through-

put; and (3) dynamically choose interfaces to minimize loss, delay, power consumption or

usage charges. Therefore a refactored client network stack—like Hercules—can achieve our

goal of exploiting multiple networks at the same time without modifying the fixed infras-

tructure.

Further, I introduced the principle of late-binding in which packets are mapped to an

interface at the last possible moment, allowing the client network stack to perform in a

dynamic mobile environment. Applying late-binding reduces the number of packets lost

during a transition by three orders of magnitude, and better serves latency-sensitive flows

because they are kept separate until as close to the moment of transmission as possible.

This chapter showed how the proposed Hercules network architecture effectively updates

our mobile network stacks to better serve users and applications by exploiting multiple

networks at the same time. Interestingly, Hercules can be practically implemented in a way

that is backward compatible with existing applications, hosts, and network infrastructures.



Chapter 3

Multiple Interface Fair Queueing

Now that our smartphones have multiple interfaces (WiFi, 3G, 4G, etc.), we

are beginning to have preferences for which interfaces an application may use.

We may prefer to stream video over WiFi because it is fast, yet stream VoIP

over 3G because it provides continued connectivity. We also have relative

preferences, such as giving Netflix twice as much capacity as Dropbox. Our

mobile devices need to schedule packets in keeping with our preferences while

making use of all of the capacity available. This is the natural domain of

fair queuing. In this chapter, I show that traditional fair queueing schedulers

cannot take into account a user’s preferences for some interfaces over others.

I then extend fair queueing to the domain of multiple interfaces with user

preferences, which guides the design of a packet scheduler in the next chapter.

3.1 Problem Statement

Nowadays, we connect to the Internet from our personal devices via a variety of networks,

and often we can connect to multiple networks simultaneously. For example, our phones

have 3G, 4G, and WiFi interfaces, and having two or more interfaces active simultaneously is

becoming increasingly common among users. At the same time, we are learning that we have

preferences on how to use different networks. For example, because 3G/4G connectivity

is often capped, we might prefer to download music and stream videos over free WiFi

connections. If we are making a VoIP call through Skype, we might prefer to use WiFi

33
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because the latency of 3G networks is higher. However if 4G is available, we may use

it because LTE latencies are much smaller than those of 3G. If we are on the move and

streaming music from Pandora, we may prefer to use cellular to ensure we are persistently

connected. Also, if we are accessing a secure website, we may prefer to use cellular because

the connection is encrypted. In the future, we may have preferences that are not currently

supported; for example, we may want to use all of the interfaces simultaneously to give all of

the available bandwidth to a single application—on a mobile device equipped with Hercules,

described in Chapter 2. A large number of such preferences exist, and at their heart, they

indicate the conditions under which we want an application to use a given interface.

Preferences are not new, and mobile operating systems now offer coarse preferences

through a variety of ad-hoc mechanisms. For example, Android allows us to specify that

updating applications should only happen over WiFi, or that Netflix should only use WiFi,

and so on. Similarly, Windows Phone has a feature called DataSense whose goal is to ensure

that application and user preferences to use WiFi and/or cellular are applied for certain

applications. Some applications come with the ability to select whether to only use WiFi.

We ourselves sometimes find creative ways to implement these preferences; we might switch

off cellular data when we want to force applications to use WiFi or when we are close to

our monthly data cap. However, no systematic way exists to ensure that our applications

follow our preferences when a mobile device has multiple interfaces.

My goal is to invent a systematic framework and algorithm for using and sharing multiple

interfaces while respecting user preferences regarding how they should be used and by which

applications. I aim to support binary interface preferences, such as ones that disallow

particular applications from using certain interfaces, as well as rate preferences, where users

might want to guarantee preferential treatment to select applications (e.g., allocate at least

half of the bandwidth of the WiFi interface to Netflix). At the same time, I wish to maximize

the utilization of the available capacity.

To my surprise, I found no prior work that addresses this problem. One might guess that

the large amount of work on fair queueing for multiple interfaces might apply. However,

prior work does not include the notion of interface preferences: All applications are allowed

to use all interfaces in these frameworks. The prior work focuses only on rate preferences,

using techniques such as weighted fair queueing (WFQ) [16] to provide weighted fairness.

Such work can be found in several contexts, ranging from multihoming to wireless mesh

networks.
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Figure 3.1: Examples of packet scheduling. An edge between a flow and an interface indicate
the flow’s willingness to use the interface.

Interface preferences significantly complicate the problem and render prior work inap-

plicable. To see why, consider the simple toy example shown in Figure 3.1, where two

applications share the available interfaces, and no rate preferences exist (i.e. each flow is

given the same weight). As prior work suggests, assume we apply WFQ independently on

every interface. If only a single interface is present (Figure 3.1(a)), WFQ will provide an

equal fair allocation of 1 Mb/s for each flow. Suppose now we have two 1 Mb/s interfaces

and the same total capacity of 2 Mb/s. If the flows have no interface preferences and are

willing to use both interfaces (Figure 3.1(b)), the fair allocation remains 1 Mb/s for each

flow, which can be achieved by implementing WFQ on each interface. However, if we in-

troduce the interface preference that flow a can use both interfaces and flow b can only

use interface 2 (Figure 3.1(c)), implementing WFQ on each interface fails to provide a fair

allocation: Flow a will get 1.5 Mb/s, while flow b only gets 0.5 Mb/s. This arises because

interface 1 gives flow a all of its capacity, as it is the only flow willing to use the interface,

and WFQ on interface 2 divides its capacity equally between the two flows.

My goal is to provide an allocation that meets the rate preference (in this case, an

unweighted fair share) while respecting interface preferences. In our toy example this means

giving each flow 1 Mb/s by giving flow a all of the capacity of interface 1 and flow b all of

the capacity of interface 2.

Note that this notion of fairness is a conscious choice for our system. An alternative

choice would be to penalize flow b because it is unwilling, or is not allowed, to use one of the

interfaces. Instead, wherever possible, we give each flow its weighted fair share of capacity
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(defined by the rate preference) without ever violating the interface preference and without

ever unnecessarily wasting capacity (i.e., remain work-conserving on all interfaces).

In some cases, the interface preference (which is considered sacrosanct) stands in the

way of meeting the rate preference. Going back to our example, if the user declared a

rate preference that flow b should have twice the rate of flow a, we have a problem. If no

interface preference existed, flow a would receive 0.67 Mb/s, and flow b would receive 1.33

Mb/s. However, because flow b can only use interface 2, we can give it at most 1 Mb/s.

Should we give flow a only 0.5 Mb/s to honor the rate preference? Our design decision is no.

We never want to waste capacity, so we want to give flow a all of the remaining capacity. We

believe this is a reasonable prioritization of goals: While relative flow preferences from users

are typically suggestive, interface usage and efficient capacity utilization are prescriptive in

nature.

My goal is to invent a practical and efficient scheduling algorithm that schedules packets

to meet the rate preference wherever possible, while respecting interface preferences and

never wasting capacity. In this chapter, I prove that this is achieved via a classical max-min

fair allocation, weighted to give relative rate preference between flows. I will rigorously

prove that this provides bandwidth and delay guarantees that are analogous to that for

the single interface case, and I will show that such a solution exhibits the rate clustering

property—which provides the insights needed to design a simple and efficient fair queueing

algorithm. The description and analysis of the algorithm is deferred to Chapter 4.

3.2 Background and Related Work on Fair Queueing

Scheduling of flows (or tasks) onto interfaces (or servers) is an important problem that has

been studied rigorously. A packet scheduler answers the question

When an interface is available, which packet should be sent?

An ideal packet scheduler answers this question in a way that fulfills several desirable

properties:

1. Work-conserving/Pareto efficient. To be Pareto efficient in this context means

giving rates to flows such that it is not possible to increase the rate of one flow without

decreasing the rate of another flow. In other words, the total number of packets

scheduled is maximized, and no capacity is wasted.
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2. Meet rate preferences. A packet scheduler should implement the relative priorities

of flows encoded by weights φ. For example, if flow a has double the weight of flow

b, i.e., φa = 2φb, we would expect flow a to be allocated twice the rate of flow b, i.e.,

ra = 2rb.

For a single interface, weighted fair queueing, through algorithms like Packetized Gen-

eralized Processor Sharing (PGPS) [40], fulfills all of the above properties by providing each

flow with its weighted fair share rate, ri/φi. PGPS is known to be max-min fair for a single

interface.

Definition 1. Max-min fair rate allocation is a rate allocation where no flow can get a

higher rate without decreasing the rate of another flow that has a lower or equal allocation.

Because max-min fair is a special case of Pareto efficiency, PGPS is Pareto efficient. The

PGPS algorithm meets all of our goals for a single interface by assigning a finishing time

to each packet when it arrives and then uses the simple strategy of sending the packet with

the earliest finishing time. With one interface, PGPS is work-conserving and can faithfully

provide the user’s weighted preference between flows. If the user asserts a preference that

“flow a should receive twice the rate of flow b”, then we simply set the weight of a to be

twice the weight of b, and PGPS will provide the right allocation.

Fair queueing has also been extended to the case of multiple interfaces within the context

of link-bonding in [8], where no notion of interface preferences exists. This has subsequently

been analyzed using queueing theory [43], and simple efficient DRR-like algorithms have

also been proposed [53, 54]. Our result generalizes these prior works, allowing us not only to

compute the max-min fair rate as discussed in [31, 32] but also to provide us with insights

to build a practical packet scheduler.

Independently, recent work extended fair queueing along a different dimension. DRF [21,

22] tells us how to schedule fairly over multiple resources. This work differs mainly in that

it considers homogeneous resources (e.g., bandwidth on different interfaces), while DRF

considers heterogeneous resources (e.g., CPU and bandwidth). A generalization of both

works would further improve our understanding of fair queueing but is beyond the scope of

this dissertation.

Megiddo showed that the max-min fair allocation is the lexicographic maximum allo-

cation [31]. This insight can be used to derive the max-min allocation via the well-known

water-filling technique. Using this, Moser et. al. devised a water-filling-like algorithm to
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compute the rate allocation in multiple interface fair queueing in [32, 33]. This work differs

in that it is focused on designing a provably optimal packet scheduler, which automatically

figures out the max-min fair allocation without explicitly computing the rate allocation.

3.3 Multiple Interface Fair Queueing

Our specific scheduling problem is captured by the abstract model in Figure 3.2, with three

flows served by two output interfaces. In this model, each flow i has a weight φi to indicate

its relative priority (its rate preference). For example, if φ1 = 2φ2, application 1 should

receive double the bandwidth of application 2 when both are backlogged. Each flow also

has interface preferences to indicate the subset of interfaces it is willing to use. If flow a

is willing to use interface 1, this is denoted πa1 = 1. The flows’ interface preferences are

captured by connectivity matrix Π = [πij ]. The matrix represents a bipartite graph (as

shown in Figure 3.2), where an edge exists between flow a and interface 1 if and only if flow

a is willing to use interface 1, i.e., πa1 = 1. It is critical to note that the bipartite graph is

often incomplete—meaning Π is not all-ones, i.e., not all flows are willing to use all of the

interfaces. As such, we cannot aggregate interfaces to reduce to the classical single interface

case. The combination of rate preferences encoded by weights φ and interface preferences

encoded by matrix Π indicating absolute restrictions on interface usage allows us to describe

a rich variety of interface usage policies.

My goal is to design an efficient packet scheduler that accounts for the interface pref-

erences captured in this model and meets the rate preferences. An ideal packet scheduler

answers the question of when an interface is available, which packet should be sent? As in

the single-interface case, the scheduler answers this question in a way that fulfills several

desirable properties. With the introduction of the multiple interfaces and interface prefer-

ences, two more properties are added. The properties are listed below in roughly descending

order of importance.

1. Meet interface preferences. We want a packet scheduler that will only send a

packet to an interface it is willing to use. In other words, the packet scheduler must

faithfully implement Π.

2. Work-conserving/Pareto efficient. As previously described, to be Pareto efficient

means giving rates to flows such that it is not possible to increase the rate of one flow
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Figure 3.2: Conceptual model for packet scheduling for multiple interfaces with interface
preferences. Matrix Π encodes the flows willing to use each interface, and weight φi indicates
flow i’s rate preference.

without decreasing the rate of another flow. In other words, we want to maximize the

total number of packets scheduled and not waste any capacity. Because max-min fair

is a special case of Pareto efficiency, this property will be trivially satisfied by any

max-min fair solution.

3. Meet rate preferences, where possible. We want a packet scheduler that imple-

ments the relative priorities of flows encoded by weights φ.

As pointed out by the example in Section 3.1, interface preferences can make rate

preferences infeasible without violating work-conservation. In the case where the rate

preferences are feasible, we want the scheduler to always faithfully follow them. In

the case where they are not feasible, we first meet the rate preferences subject to the

interface preferences and then use up any leftover capacity serving flows that can use

it. This means some flows will receive a higher rate than they would if we capped

them at their rate preference. However, the key is that no flow will be made worse

off; it will only benefit from extra capacity made available to it because other flows

were unwilling to use all of the interfaces.1

1 Formally, we will find the lexicographical maximum rate allocation vector, which is as “fair” a rate
allocation as we can possibly get without violating the constraints.
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4. Use new capacity. If we add an interface, we should use it to increase capacity for

all flows willing to use it. When a flow ends, other flows sharing its set of interfaces

should benefit from the freed-up capacity.

3.3.1 Max-min Fair Rate Allocation with Interface Preference

Consistent with the single-interface case, this work takes the approach of max-min fair

queueing. Specifically, we want the rate allocation for each flow r = [ri] to be max-min fair,

where ri =
∑

j rij , and rij is the rate at which interface j is serving flow i. Such a rate

allocation is subjected to the following constraints:

1. The rate allocated to flow i (denoted as ri =
∑

j rij) is less than or equal to its

demands Di, i.e., ri ≤ Di.

2. The rate expected of each interface must not exceed its capacity Cj , i.e.,
∑

i rij ≤ Cj .

3. The routing constraint Π is satisfied, i.e., πij = 0 =⇒ rij = 0.

The task at hand is how to compute the rate allocation. This computation is needed

to understand the properties of such an allocation, and set the weights for each flow. As

shown in [31], the weighted fair rate allocated to the flows [ri/φi] is the lexicographically

maximum allocation. Using this, Moser et. al. proposed an algorithm to compute the

weighted max-min fair rate [32].

This work presents an alternative method that uses convex optimization. This relies on

the proportional fair [28] allocation being max-min fair, as proved in Theorem 1.

Theorem 1. The proportional fair allocation r is also max-min fair.

Proof. Assume allocation r is proportional fair but not max-min fair. Since r is not max-

min fair, flows a and b exists where ra > rb and it is possible to transfer allocation from

application a to b. The magnitude of gain for flow b and the magnitude of the loss by flow

a are equal, denoted as ε. The resulting max-min fair allocation is denoted as s = [si].

Because r is proportional fair, then by definition,

∑
i(si − ri)/ri ≤ 0

(sa − ra)/ra + (sb − rb)/rb ≤ 0

−ε/ra + ε/rb ≤ 0

ra ≤ rb
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This results in a contradiction. Hence, r must be max-min fair.

Therefore, we can find the proportional fair allocation instead by maximizing the sum

of strictly concave utilities, such as in the following convex problem:

max
∑

i

log
(∑

jrij

)

subjected to
∑

jrij ≤ Di

∑
irij ≤ Cj

rij = 0 , ∀i, j, πij = 0

rij ≥ 0 , ∀i, j

3.4 Performance Guarantees

3.4.1 Rate Guarantee

In WFQ with a single interface of capacity C, the rate flow i receives, ri(t) ≥ φi∑
j φj

C.

By picking φi appropriately, a minimum rate at which each flow will be served can be

guaranteed. For example, if flow 1 is to receive at least 10% of the link rate, then we simply

set φ1 = 0.1 and make sure
∑

i φi ≤ 1.

Now that we have the weighted max-min fair allocation for the multiple interface case, it

is worth asking if we can still give a rate guarantee for each flow in the system. Theorem 2

tells us that a flow will indeed receive an equivalent rate in multiple interface fair queueing.

Theorem 2. Under the weighted max-min fair allocation, the rate flow i receives is at least

its weighted fair share among all of the flows willing to share one or more interfaces with

i,

ri(t) ≥
φi∑

j|∃k,πik=1,πjk=1 φj

∑

j,πij=1

Cj(t), (3.1)

where t denotes a particular time.

Proof. Imagine that all of the flows willing to share one or more interfaces with i use exactly

the same set of interfaces. Then, the equation above is an equality because ri is the weighted
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max-min fair allocation. If any flow uses less than this weighted fair share (because the flow

has no more packets to send, or because the flow uses an interface that i is unwilling to use,

or because the flow is unwilling to use an interface that i uses), then it would increase service

rate allocation to the remaining flows, including flow i. Hence, the inequality holds.

It follows that under the weighted max-min allocation, flow i will receive at least its

weighted fair share of the interfaces it is willing to use,

ri(t) ≥
φi∑
j φj

∑

j,πij=1

Cj(t).

because this is smaller than the right-hand side of Equation 3.1. For simplicity of notation,

the guaranteed rate for flow i is denoted as gi, where ri(t) ≥ gi, ∀t.2 Hence, if in Figure 3.2

we want flow a to receive at least 20% of C1, then it is sufficient to set φ1 = 0.2 and

φa + φb ≤ 1 because only flow b shares interfaces with flow a. When we run the algorithm

to set the weighted max-min fair allocation, flow a will receive at least the requested service

rate.

3.4.2 Leaky Bucket and Delay Guarantee

Another well-known property of single-interface WFQ is that it allows us to bound the delay

of a packet through the system if the arrival process is constrained. The usual approach is

to assume that arrivals are leaky-bucket constrained. If Ai(t1, t2) is the number of arriving

packets for flow i in time interval (t1, t2], then we say Ai conforms to (σi, ρi) (denoted

Ai ∼ (σi, ρi)) if

A(t1, t2) ≤ σi + ρi(t2 − t1) ,∀t2 ≥ t1 ≥ 0. (3.2)

The burstiness of the arrival process is bounded by σi, while its sustainable average rate is

bounded by ρi.

In the classic single-interface WFQ proof, it can be shown that the delay of a packet

(the interval between when its last bit arrives to when its last bit is serviced) in flow i is no

more than σi/ρi. Admission control is very simple: If
∑

i ρi < r, and
∑

i σi ≤ B, where B

2 The service rate ri(t) can be bounded more tightly by calculating the weighted max-min fair rate for
each flow, assuming they are all backlogged. Let the result be R∗ = [r∗ij ] and gi =

∑
j r

∗
ij . It can be proved

that ri(t) ≥ gi , ∀t. However, this does not yield a closed-form solution. The proof is fairly simple and is
omitted here.
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τ1 τ2

Ai(τ1, t)
Si(τ1, t)

gi(t− τ1)

σi + ρi(t− τ1)

t

Ai, Si

Figure 3.3: Illustration of Ai(τ1, t) and Si(τ1, t) and their respective upper and lower bounds.
Observe that the horizontal distance between Ai and Si characterizes the delay, while the
vertical distance characterizes the backlog at time t.

is the size of the packet buffer, then flow i can be admitted into the system, and the delay

guarantee can be met.

Multiple interface fair queueing has the same property, and the delay of a packet in flow

i is no more than σi/ρi (Theorem 3). However, the process of deciding whether a new flow

can be admitted is more complicated than for the single interface case. We have to know

which interfaces the flow is willing to use and whether the requested service rate ρi can be

met. This means the system has to pick values for φj , ∀j such that the rate is guaranteed

by Equation 3.1, ri(t) > ρi. If this condition can be met, then the delay guarantee is

accomplished, and the departure process will also be (σi, ρi)-constrained.

Theorem 3. Imagine we wish to admit (σi, ρi)-constrained flow i into a multiple interface

fair queueing system, and the flow is willing to use a subset of the interfaces. If
∑

j σj ≤ B,

and if we can find values of φj , ∀j such that ri(t) > ρi, then the delay of any packet in flow

i is upper bounded by σi/ρi.
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Proof. Let Si(t1, t2) be the service received by flow i in time interval (t1, t2]. Consider

flow i that arrives at τ1 (i.e., becomes backlogged) and finishes at τ2 (i.e., becomes non-

backlogged). We observe that Ai(τ1, t) is upper bounded by (3.2) and Si(τ1, t) is lower

bounded by

Si(τ1, t) ≥ gi(t− τ1) ,∀τ1 ≤ t ≤ τ2,

where ri(t) ≥ gi, as illustrated in Figure 3.3. Because the delay is the length of horizontal

line between Ai and Si, we can find its maxima through simple calculus.

We begin by deriving the inverse functions of the bounds,

y = σi + ρi(ta − τ1) → ta =
y − σi
ρi

+ τ1

y = gi(ts − τ1) → ts =
y

gi
+ τ1.

The delay of packets must then be upper bounded by

D = ts − ta =
y

gi
− y − σi

ρi
.

Observe that D is an affine function with gradient

dD

dy
=

1

gi
− 1

ρi
,

which is a strictly negative constant because ρi < gi. This means D is monotonically

decreasing. In this analysis, we are interested in the domain of t ≥ τ1. Hence D is maximized

at y = σi. This, in turn, implies that packet delay

D ≤ σi
gi
<
σi
ρi

because ρi < gi. This maximum delay occurs for the last bit that arrives at time τ1 for the

last bit that arrives in the initial burst.3

3 It can further be shown that σi/
∑

i a
∗
ij is a tight upper bound of packet delay. This delay occurs in

the worst case scenario, where σj � σi and ρj = gj for all j 6= i and flow i experiences the worst possible
arrival process Ai(τ1, t) = σi + ρi(τ1, t).
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3.5 Rate Clustering Property

For single-interface WFQ, all active flows are served at the same weighted rate ri/φi, which

is necessary and sufficient conditions for weighted max-min fairness. This property does

not hold true for multiple interface fair queueing. However, a scheduler that implements

multiple interface fair queueing exhibits an analogous property—the rate clustering property,

as defined in Definition 2.

Definition 2 (Rate Clustering Property). A scheduler satisfies the rate clustering property

if

1. It splits the union set of flows and interfaces into disjoint clusters, where each flow

and each interface can only belong to a single cluster.

2. Within a cluster Ci, all flows are served at the same rate4 (by the interfaces also in

Ci). i.e,

a, b ∈ Ci =⇒ ra = rb.

3. Among the clusters containing an interface that flow a is willing to use, flow a will

only belong to the cluster with the highest rate, i.e.,

a ∈ arg max
Ci,∃j∈Ci,πaj=1

r(Ci),

where r(Ci) is the rate at which cluster Ci serves its flows.

Any scheduler satisfying the rate clustering property is max-min fair. Intuitively, from

the perspective of an arbitrary flow a, the rate clustering property divides flows and inter-

faces into three distinct sets of clusters. The first set comprises clusters that do not have

any interface that flow a is willing to use. The second is the cluster where flow a belongs.

The third set comprises clusters to which flow a can possibly belong to but does not.

Recall from Definition 1 that in a max-min fair allocation, no flow can get a higher

rate without decreasing the rate of another flow that has a lower or equal allocation. Let

us consider how flow a could get a higher rate. Clearly, it cannot get a higher rate by

using any interface in the first cluster. If it increases its rate by getting more from its own

4 With the introduction of multiple interfaces, the reader has to differentiate between the rate at which
an interface serves a flow versus the aggregate rate at which the flow is being served by all the interfaces.
In this case, we are referring to the latter.
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cluster, the rate clustering property tells us that flows from the same cluster all have the

same rate as flow a, and therefore, increasing its rate will decrease the rate of a flow of

equal allocation. Similarly, since flow a belongs to the cluster with the highest rate, flows

belonging to the third set of clusters have a lower (or equal) rate than flow a does. If flow a

gets any rate from the third set, it will decrease one of a lower or equal allocation. Hence,

the rate clustering property ensures that the allocation is max-min fair.

It turns out that the rate clustering property is not only sufficient but also necessary

for a max-min fair scheduler. This is formally proven in Theorem 4.

Theorem 4. A work-conserving system is max-min fair if and only if the following condi-

tions are satisfied.

1. If flows i and j are actively serviced by a common interface (i.e., in the same cluster),

their allocated rate is the same, i.e.,

∃k, i, j ∈ Uk =⇒ ri = rj ,

where Uk = {i, rik > 0}.

2. If both flows i and j are willing to use interface k, but only flow i is actively using

it (meaning the flows are in different clusters), the rate allocated to flow j must be

greater than or equal to that of flow i, i.e.,

∃k, i ∈ Uk, j ∈ Fk =⇒ rj ≥ ri,

where Fk = {i, πik = 1}.

To prove the theorem, we begin with a (self-evident) lemma on the Pareto efficiency of

a work-conserving system.

Lemma 1. In a work-conserving system, no flow can increase its allocation without de-

creasing another’s allocation, i.e.,

δi > 0 =⇒ ∃δj < 0,

where δi is the change in flow i’s allocation.

In other words, if an allocation is not max-min fair, there must exist flows i and j where

decreasing the flow with larger allocation will increase the other flow’s allocation. This

leads to our next lemma on the sufficient conditions for max-min fairness.
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Lemma 2 (sufficient condition).

In a work-conserving system, the following conditions (as listed in Theorem 4) imply that

the allocation is max-min fair.

1. ∃k, i, j ∈ Uk =⇒ ri = rj .

2. ∃k, i ∈ Uk, j ∈ Fk =⇒ rj ≥ ri.

Proof. Assume the opposite; i.e., both conditions are always true, but the system is not

max-min fair. Because the system is work-conserving, there is no idle capacity if any flow is

backlogged. From Lemma 1, for the system to not be max-min fair, there must exist flows

i and j such that j can increase its allocation by decreasing i’s while ri > rj .

This exchange of allocation can happen in two ways:

1. The exchange occurs on interface k, i.e., rjk is increased while rik is decreased. This

means rik > 0 and a ∈ Uk. If j ∈ Uk, then ri = rj by the first condition. Else, j must

at least be in Fk for rjk to be increased to a non-zero amount. This means rj ≥ ri by

the second condition. In either case, it contradicts the requirement that ri > rj .

2. The allocation could be exchanged through a series of intermediary flows. Denote the

n intermediary flows involved as flow 1, 2, · · · , n where n > 0. This means flow i would

exchange allocation with flow 1, which, in turn, passes the allocation to flow 2, and

so on. Flow i must share a common interface with flow 1, and the above arguments

must hold. This means r1 ≥ ri, r2 ≥ r1, and so on. Putting this together, we see

ri ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ rj , which contradicts ri > rj .

Hence, the allocation must be max-min fair if the conditions are true.

This conditions are also necessary as shown in Lemma 3.

Lemma 3 (necessary condition).

In a work-conserving system that is max-min fair, the following conditions must be true:

1. ∃k, i, j ∈ Uk =⇒ ri = rj .

2. ∃k, i ∈ Uk, j ∈ Fk =⇒ rj ≥ ri.

Proof. Consider a work-conserving system that is max-min fair. Let us evaluate the two

conditions in this scenario:
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1. If both flows i and j are actively serviced by a common interface k, flow i must not

have an allocation greater than flow j. Else, we can increase rj by decreasing ri. The

converse similarly applies. Because ri 6> rj and rj 6> ri, ri = rj .

2. If both flows i and j are willing to use interface k, but only flow i is actively using it,

then flow i must not have a greater allocation than flow j. Else, rjk can be increased

by decreasing rik. Hence, ri ≤ rj .

Thus, both conditions are necessarily true for a work-conserving max-min fair system.

Proof of Theorem 4. Putting the lemmas together, we have Theorem 4. This tells us that

all a packet scheduler needs to do is to maintain the rate clustering property, and it will

lead to a max-min fair allocation.

3.6 Summary

In this chapter, I have set out to design a packet scheduler that satisfies several impor-

tant properties, and I seek to do so by achieving weighted max-min fairness over the rate

allocation r = [ri]. These properties are indeed satisfied by multiple interface fair queueing.

1. Meet interface preferences. Clearly, multiple interface fair queueing meets this

property by design. The user sets values πij in the algorithm to represent interface

preferences, and a flow is never scheduled on an interface for which πij = 0.

2. Pareto efficient. This follows directly because the packet scheduler gives a weighted

max-min rate allocation.

3. Meet rate preferences, where possible. In multiple interface fair queueing, by

picking the appropriate weights φi, flow i will receive a guaranteed share of the out-

going line, as shown in Theorem 2. Further, if φa = 2φb for flows a, b and both flows

are in the same cluster, then rb = 2ra, which meets the designated rate preference.

4. Use new capacity. If new capacity becomes available, then we want to know that

multiple interface fair queueing will use it. There are three reasons more capacity

becomes available: A new interface comes online, the rate of an interface increases, or

a flow ends freeing up capacity. In each case, if extra capacity becomes available on an
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interface, this capacity can be used by the flows that are willing to use the interface.

In turn, these flows might free up yet more capacity on other interfaces, that, in turn,

can be taken up by other flows, and so on. A max-min fair solution will maximize the

minimum rate in the allocation, so although some flows may receive a higher rate, no

flow will receive a lower rate.

Having shown that multiple interface fair queueing fits our bill, the task remaining is

to design an algorithm that achieves multiple interface fair queueing—which is the topic of

Chapter 4 in this dissertation.
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Chapter 4

Multiple Interface Fair Queueing

Algorithms

In Chapter 3, I showed how interface preference renders prior work in WFQ

unusable. In this chapter, I will present a novel packet scheduler called miDRR

that meets our needs by generalizing DRR for multiple interfaces. I demon-

strate a prototype running in Linux on a mobile device and show that it works

correctly and can easily run at the speeds we need.

4.1 Problem Statement

The desire to use several network interfaces at one time on our mobile devices led us to

the problem of packet scheduling with interface and rate preferences. The introduction of

interface preferences gives the classical problem of packet scheduling a new twist.

Not only do interface preferences render WFQ algorithms unusable, they challenge our

understanding of packet scheduling. Prior packet scheduling algorithms have mostly been

defined using service fairness, i.e., by assuring that a pair of flows send equal numbers of

bits over time. This means we can track how much service each flow receives over time

and just make sure that they are equal. With interface preferences, one flow can receive a

higher rate than another in a max-min fair allocation. Therefore, it is possible for the flow

to accumulate more service over the other, resulting in an unequal number of bits being

sent over time. This changes the way we think about fairness in rate and in service.

51
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Hence, it is crucial that we understand the implications of such preferences and how

they change the solution space. In Chapter 3, I presented how a classical max-min fair

allocation can be extended to meet the need for multiple interfaces.

In this chapter, I will use the resulting insight to design a simple and efficient algo-

rithm: multiple interface deficit round robin (miDRR) that schedules packets to meet the

rate preference wherever possible while respecting interface preferences and never wasting

capacity. Our algorithm is practical to implement, yet we can formally prove its correctness.

At first blush, designing an algorithm appears too daunting because each interface needs to

know how fast flows are being scheduled by other interfaces, leading to a communication

explosion in the packet scheduler. The key intuition behind our algorithm—that makes it

practical without sacrificing correctness—is that if an interface maintains a single state bit

per flow, then a generalized version of DRR meets our needs.

4.2 Background and Related Work

In this section, two classical fair queueing algorithms are reviewed. These algorithms serve

as the basis for designing algorithms for multiple interface fair scheduling.

In [40], Packet-by-packet GPS (PGPS) is proposed as a practical approximation of

WFQ—where the latter is a fluid model where flows are sent bit by bit. PGPS employs a

simple strategy: When the interface is available, send the packet that finishes the earliest

under GPS. This simple strategy is shown to yield the weighted max-min fair allocation,

and it provides bounded delay as compared to WFQ.

Despite its simplicity, PGPS was considered too complex for hardware implementation.

In response, Shreedhar and Varghese [46] proposed Deficit Round Robin (DRR) as a simpler

alternative to PGPS. DRR operates in a simple manner. The algorithm serves each flow

the same number of times by serving them in a round robin fashion. To provide relative

preferences, e.g., serve flow a twice as fast as flow b, the number of bits served during

each turn—known as the quantum—is adjusted accordingly. To ensure fairness over time

while sending packets integrally, DRR also maintains a per-flow deficit counter, which is

how much service this flow has earned but has not been provided over time. DRR—while

simple—is provably fair. Furthermore, the algorithm requires O(1) work for each decision,

as compared with the O(log(n)) for PGPS, where n is the number of flows. DRR is widely

deployed in switches and routers today.
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DRR is also commonly used as the basis for many other derivative algorithms. For

example, MS-DRR and MS-URR [53, 54] are modeled after DRR for the link-bonding

application described in [9]. As previously noted, such algorithms do not fit the bill for

multiple interface fair scheduling because they do not address the interface preferences.

4.3 Packet-by-packet Generalized Processor Sharing (PGPS)

for Multiple Interfaces

For a single interface, PGPS [40] provides each flow with its weighted fair share rate, ri/φi.

The PGPS algorithm meets all of our goals for a single interface by assigning a finishing

time to each packet when it arrives, and then it uses the simple strategy of sending the

packet with the earliest finishing time. With one interface, PGPS is work-conserving and

can faithfully provide the user’s weighted preference between flows. If the user asserts a

preference that “flow a should receive twice the rate of flow b,” then we simply set the weight

of a to be twice the weight of b, and PGPS will provide the right allocation. We might

wonder if we can define a finishing time across multiple interfaces, taking into consideration

usage preferences, and then for each interface schedule the packet with the earliest finishing

time. We now prove that this strategy would provide us with bounded rate and delay

guarantees when applied to multiple interfaces with interface preferences.

4.3.1 Performance Bounds of PGPS for Multiple Interfaces

Delay Guarantee

Single-interface PGPS is shown to have additional delay of no more than Lmax/C, as com-

pared with single-interface GPS, where Lmax is the maximum length of a packet and C is

the capacity of the interface. A similar bound can be provided for PGPS applied to multiple

interface fair queueing, allowing the delay guarantee for multiple interface fair queueing (in

Theorem 3) to be naturally extended to the algorithm. The approach adopted here is to

consider the cases where the packetized nature of PGPS imposes more delays than multiple

interface fair queueing does, and to bound these delays.

Consider a sequence of packets serviced by interface j under multiple interface fair

queueing with PGPS. Let packet pk be the kth packet in this sequence. If pk is serviced by
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interface j under multiple interface fair scheduling, it can suffer additional delays in PGPS

for the following reasons:

1. pk did not arrive in time to be scheduled for service; hence, other packets are scheduled

for service by interface j, while pk has to wait due to the packet constraint. This mis-

ordering delay is denoted as dl.

2. Interface j can also fall behind because it has to service a full packet, although under

multiple interface fair scheduling, it did not service all of the bits in the packet because

the packet can be split and serviced over multiple interfaces. Further, the policy of

serving the packet with the earliest finishing time first can induce interface j to serve

a packet that it did not under the idealized service discipline. This can also result in

interface j falling behind. This delay due to mis-serviced packets is denoted as dw.

3. Finally, pk might be serviced at a faster rate across multiple interfaces under multiple

interface fair scheduling than what an individual interface can offer in PGPS. Hence,

an extra delay can be incurred if pk is serviced at a lower rate by interface j than

what it receives under the idealized discipline. This delay due to the different service

rate is denoted as dr.

Each of these delays is analyzed in the following.

Delay due to mis-ordering, dl: Bacuse mis-ordering is due to a packet arriving too late

to be scheduled in time, it is bounded by a maximum size packet being sent on the

slowest interface. Within this time, the blocking packet must have been served, and

this late packet can be served next. Formally, this is captured in Lemma 4.

Lemma 4.

dl ≤
Lmax
Cmin

,

where Lmax is the maximum size of a packet, and Cmin = miniCi is the minimum

capacity among all interfaces.

Proof. Assume interface j only services packets that it also serviced under GPS. Let

the length of pk be Lk, its arrival time be ak, and its departure time under multiple

interface fair queueing and PGPS be uk, tk respectively. Consider packet pm where

m is the largest index for which 0 ≤ m < k and um > uk.
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For m > 0, pm begins transmission at tm − (Lm/Cj), and packets indexed m+ 1 to k

must arrive after this time, i.e,

ai > tm −
Lm
Cj

, ∀m < i ≤ k.

Because the packets indexed from m+1 to k−1 arrive after tm− (Lm/Cj) and depart

before pk under multiple interface fair queueing,

uk ≥
∑k

i=m+1 Li

Cj
+ tm −

Lm
Cj

∴ uk ≥ tk −
Lm
Cj

Therefore,

dl = tk − uk ≤
Lmax
Cj

≤ Lmax
Cmin

.

Delay due to mis-serviced packets, dw: Consider the following example with interfaces

i, j having rates of Ci, Cj , respectively, where Ci � Cj . If flows a, b ∈ Fi and b ∈ Fj
(where flow a ∈ Fi if and only if it is willing to use interface i), we can show that

under multiple interface fair queueing service, interface i would only serve flow a and

interface j would only serve flow b.

However under PGPS, interface i would service flow b because of the following: The

next packet in the queue for interface j has finishing time tj+1 = tj+(Lj+1/Cj), where

tj is the finishing time of the current packet being serviced and Lx is the length of the

xth packet. Similarly, the next packet in the queue for interface i has finishing time

ti+1 = ti + (Li+1/Ci). Because Ci � Cj , tj+1 can be smaller than ti+1 and b ∈ Fi,
resulting in interface i choosing to service flow b because interface i will serve the

packet with the earliest finishing time. This results in an additional delay dw being

added to the packets of flow a that are being serviced by interface i.

In the worst case, flow a might have a maximum size packet, while flow b has a lot

of small packets. In that case, interface i will send the packets in flow b until their

finishing time is Lmax/Ci. Given that interface i is slower, this delay is dilated by a

factor of Cj/Ci. Hence, flow a can be delayed by up to LmaxCj/C
2
i , and this scenario
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can be repeated for the same flow at a maximum of dlog2 ne times. This means the

delay due to mis-serviced packets is bounded by dlog2 ne LmaxCmax

C2
min

, as shown in the

following lemma.

Lemma 5.

dw < dlog2 ne
LmaxCmax
C2
min

,

where n is the number of interfaces, Lmax is the maximum size of a packet, and

Cmin = miniCi, Cmax = maxiCi are the minimum and maximum capacities among

all interfaces, respectively.

Proof. Consider the above example. Interface i will continue to choose to service flow

b until the next packet queued for service in interface j has a finishing time greater

than ti+1. While the finishing time of packets for interface j increases by a maximum

of ti+1 < Lmax/Ci, they are sent at a lower rate on interface k, delaying interface i

up to LmaxCj/C
2
i .

Thus, interface j can delay interface i by at most LmaxCj/C
2
i . However, we have n

interfaces in system. Can the other systems affect interface i similarly?

Once interface i has been delayed, it can only be further delayed by another interface

that is similarly delayed. Therefore, this can only happen to interface i for dlog2 ne
times, where n is the number of interfaces in the system.

dw < dlog2 ne
LmaxCmax
C2
min

.

Under multiple interface fair queueing, a packet in flow j can also be split and serviced

over multiple interfaces. Under PGPS, it is necessary that interface k service the entire

packet, meaning it has to service the bits in that packet that it does not serve under

GPS. We can think of the above as PGPS servicing a partial packet it did not serve

under GPS, which can be considered a special scenario of the above lemma.

Delay due to different service rate, dr: Under multiple interface fair queueing, pk of

flow i would be serviced at its weighted max-min fair rate ai(t). However, under PGPS,

a packet must be serviced as an entity, i.e., by a single interface at the capacity or
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service rate of that interface, which is unlikely to be exactly ai(t). This can incur an

extra delay dr, which is upper bounded by how long it takes a maximum size packet

to be served by the slowest interface Lmax/Cmin, as shown in Lemma 6.

Lemma 6.

dr <
Lmax
Cmin

,

where Lmax is the maximum length of a packet, and Cmin is the minimum capacity

for a interface.

Proof. Consider pk in flow i of length Lk serviced at ai(t) under multiple interface fair

queueing and Cj under PGPS. The difference in transmission time is

d =
Lk
Cj
− Lk
ai(t)

≤ Lk

(
1

Cmin
− 1

maxt ai(t)

)

∴ dr <
Lmax
Cmin

,

as required by our lemma.

This result is intuitive: A packet cannot be delayed more than the time it takes for it

to be serviced under PGPS.

Equipped with the above lemmas, we can now upper bound the delay of a packet under

PGPS for multiple interfaces.

Theorem 5.

FP − FG < Lmax

(dlog2 neCmax
C2
min

+
2

Cmin

)
,

where FP , FG are the finishing times of packet under PGPS and multiple interface fair

queueing, respectively.
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Proof. Consider that

FP − FG
≤ dl + dw + dr

<
Lmax
Cmin

+ dlog2 ne
LmaxCmax
C2
min

+
Lmax
Cmin

< Lmax

(dlog2 neCmax
C2
min

+
2

Cmin

)
,

as we can see from Lemmas 4, 5 and 6.

Similar to single-interface PGPS, the additional delay incurred by multi-interface PGPS

is a function of Lmax, the capacities of the interfaces C, and the number of interfaces n.

These quantities are readily available in the process of flow admission, allowing the delay

bound (in Theorem 3) to be easily extended for multi-interface PGPS.

Service Bound

The difference in cumulative service under single-interface GPS and single-interface PGPS

is bounded by the length of the largest packet Lmax. We can provide a similar bound based

on the delay bounds we have just derived in Theorem 5. This enables us to upper bound the

cumulative service that flow i receives under multi-interface PGPS, compared to multiple

interface fair queueing.

Theorem 6. The difference in cumulative service between PGPS and GPS is

Si(0, t)− Ŝi(0, t)

< Lmax

(dlog2 neCmax
C2
min

+
2

Cmin

) ∑

j,πij=1

Cj .

Proof. Consider the cumulative service of flow i under multiple interface fair queueing and

PGPS, denoted as Si(0, t) and Ŝi(0, t), respectively. At any point in time, the delay is

bounded by Theorem 5 (as illustrated by Fig. 4.1). Because the service rate of flow i is
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Si(0, t)

t
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Ŝi(0, t)

d

dS
dt

≤ ∑
j,i∈Fj

rj

Figure 4.1: Illustration of cumulative service under multiple interface fair queueing Si and
PGPS Ŝi, with the relation of the service bound with respect to the delay bound.

upper bounded by
∑

j,πij=1Cj , we can deduce that

Si(0, t)− Ŝi(0, t)

<
dS

dt
(FP − FG)

< Lmax

(dlog2 neCmax
C2
min

+
2

Cmin

) ∑

j,πij=1

Cj .

Theorem 6, in turn, bounds the maximum backlog possible under multi-interface PGPS.

This allows us to check if we have sufficient packet buffers to accommodate the additional

backlog. Again, the service difference is a function of Lmax, the capacities of the interfaces

C, and the number of interfaces n, which is readily available during flow admission.

Let us consider a system of 12 interfaces with Lmax = 1500 bytes, Cmax = 1 Gbps,

and Cmin = 100 Mbps. The extra delay incurred by multi-interface PGPS is 5.04 ms as

compared to 0.012–0.12 ms in the single interface case. This also implies a maximum service
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difference of 3.125 MB for a flow with aggregate bandwidth of 5 Gbps, which is significantly

more than the 1.5 KB incurred by single-interface PGPS.

4.3.2 Non-causality of PGPS for Multiple Interfaces

Although intuitively simple, PGPS is not possible with a causal algorithm for multiple

interfaces with interface preferences. Unlike the single interface case, the algorithm must

know about future packet arrivals.

Our proof is by counter-example. Consider the example illustrated in Figure 3.1(c),

where flows a and b share interface 2, while only flow a can use interface 1. Let head-of-

line packets of the flows at t = 0 be pa and pb, respectively (with lengths L and L/2 bits,

respectively) and all flows have equal priority. Both interfaces run at 1 Mb/s. At t = 0

when interface 2 becomes available, it must decide if pa or pb would finish first under PGPS.

Consider the following two scenarios:

1. If no new flows arrive after t = 0, each flow would get rate 1, so the finishing times of

pa and pb would be fa = L and fb = L/2 respectively and pb will finish first.

2. Assume three new flows arrive shortly after t = 0 and they are only willing to use

interface 2. Rather than compete for interface 2, flow a will continue to use interface

1, and its rate will remain at 1 Mb/s. Meanwhile, flow b’s rate reduces to 1/4 Mb/s.

In this case, pa would finish first.

Because the finishing order of the packets in these two scenarios is different and the

packet scheduler cannot causally determine which scenario would occur, it cannot determine

the relative finishing order of the packets. This leads us to Theorem 7.

Theorem 7. In the presence of interface preferences, a packet scheduler cannot always

causally determine the relative order of the packet finishing time.

Now, consider the same example, but without interface preferences, i.e., both flows a

and b are willing to use all interfaces available, as illustrated in Figure 3.1(b). In this case,

packet pb will always finish first. Even if three new flows arrive shortly after t = 0, both

flows a and b would be both slowed down to a rate of 2/5 Mb/s because the new flows are

also willing to use both interfaces. The proportional change in rate in flows a and b, i.e.,

fate-sharing among the flows, allows us to know the relative finishing order of the packets

at the time of their arrival.
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The key difference in scheduling packets with and without interface preferences—and

the reason prior work fails to help—is that fate-sharing is no longer true with interface

preferences. Without interface preferences, if the number of active flows changes, or if the

capacity of an interface changes, all flows are equally affected and share the same fate. With

interface preferences, changes affect flows using one interface more than others.

4.4 Multiple Interface Deficit Round Robin (miDRR)

Knowing that we cannot use a scheduler that calculates finishing time in advance, could

we turn to reactive scheduling mechanisms such as Deficit Round Robin (DRR) [46]? The

idea behind DRR, summarized in Algorithm 4.4.1, is to serve each flow the same number

of times by serving them in a round robin fashion. To provide rate preferences, the number

of bits served during each turn—known as the quantum—is adjusted accordingly. To en-

sure fairness over time while sending packets integrally, DRR maintains a per-flow deficit

counter, which is essentially a metric for how much service this flow has earned but has

not been provided over time. This seems to avoid the problems of causality, as we make no

assumptions about the interface rates and start deficit counting only after flows arrive.

However, a naive implementation of DRR on each interface does not work either. In our

simple example in Figure 3.1(c), DRR would give the same rate allocation as WFQ (flows a

and b would get 0.5 Mb/s and 1.5 Mb/s, respectively), whereas we know there is a feasible

max-min allocation of 1 Mb/s per flow.

The underlying problem is that if a flow is willing to use more than one interface, when

an interface schedules a packet, it has no way of knowing what rates the flows are getting

from other interfaces. Having this information is crucial to ensure max-min fairness. An

obvious solution is for interfaces to exchange information about the rates that flows are

receiving from every interface. This seems to require the algorithm to keep track of the

rates provided to each flow, and when it is making its own packet scheduling decision it

would decide whether or not servicing that flow leads to a max-min fair solution. As the

reader can guess, this scheme would require an impractical amount of state information to

be maintained and exchanged as well as interfaces to know their own instantaneous rates.

Both of these are problematic requirements, especially on mobile devices. Therefore, how

might one achieve a max-min fair rate allocation that can be calculated independently
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Symbol Description

BLi Backlog of flow i
Sizei Size of flow i’s head-of-line packet
Qi Quantum for flow i
DCi Deficit counter for flow i
Fj Set of flows willing to use interface j
Cj Current flow interface j is serving
B Set of backlogged flows
SFij Interface j’s service flag for flow i (Service flags for new flows are initiated at zero.)

Algorithm 4.4.1: DRR(j)

if Fj ∩ B = ∅
then return

i = Cj
if Sizei ≤ DCi

then

{
Send Sizei bytes
DCi = DCi − Sizei

if BLi = 0

then

{
DCi = 0
Remove i from B

if BLi = 0 or Sizei > DCi

then

{
i = Cj = Next backlogged flow for j

DCi = DCi +Qi

Algorithm 4.4.2: miDRR-Check-Next(i, j)

Cj = Next backlogged flow for j
while SFij 6= 0

do

{
SFij = 0
Cj = Next backlogged flow for j

SFik = 1 , ∀k 6= j
return (i)

Table 4.1: Pseudocode for DRR and miDRR, which is invoked when interface j is free to
send another packet. The only difference between the two algorithms is that the highlighted
line in Algorithm 4.4.1 is replaced by Algorithm 4.4.2 in miDRR.
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on each interface without ever having to calculate and exchange the actual achieved rates

among all of the interfaces?

The key contribution of miDRR is achieving max-min fairness over multiple interfaces

with interface preferences while requiring almost no coordination among the interfaces.

Specifically, it requires no rate computations and, at most, one bit of coordination sig-

naling from each interface for every flow. The one bit is a boolean service flag, and there is

one flag at an interface for every flow. The flag indicates whether a flow has been serviced

recently by another interface. When an interface considers servicing a flow, it skips it if the

service flag is set. We show that this simple mechanism and minimal book-keeping achieves

a max-min fair allocation when we have interface preferences. By obviating the need to

exactly track service rates and—as we shall see—implicitly enforcing the relative rates be-

tween any pair of flows, the service flag allows miDRR to be scalable and highly-distributed

by minimizing the overhead of communication among interfaces.

The bareness of the mechanism is surprising. How can a single flag be sufficient to let

us achieve a max-min fair rate when we do not even know the rates of each interface, nor do

we know the rates achieved by the flows themselves? The insight is that to ensure max-min

fairness, it is sufficient to know only the relative rates achieved between flows; the absolute

value is not needed. Further, each interface only needs to know the relative rates achieved

among flows that it is allowed to service according to the interface preferences. Finally, we

do not even need to know a precise value of the relative rate. The packet scheduler only

needs to check if a particular flow’s rate is higher than at least one other flow it is servicing

on the same interface. If so, the scheduling decision is simple: It should not service the flow

with the relatively higher rate. If it iteratively applies the above condition to all its flows,

it will eventually service the flow that will push it toward a max-min fair rate allocation

overall, as we show formally in the next section. Below, we describe how the algorithm

operates.

Maintaining the boolean service flag requires two tasks:

1. Interface j maintains one service flag SFij for each flow i that it serves. The flag is

for other interfaces to indicate to interface j that flow i has been serviced recently.

2. When interface k serves flow i, it sets service flags SFij∀j 6= k to tell the other

interfaces that flow i has been served.

3. When interface j considers flow i for service, it resets service flag SFij .
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Race conditions on the service flag can easily be handled by a standard mutex. More

importantly, maintaining the service flag therefore does not require keeping track of the

rate at which each interface is serving each flow. Nor do we have to know how much

another interface have served a flow.

In essence, the algorithm entails each interface implementing DRR independently with

the slight modification of checking the service flag before serving the flow. The algorithm

is summarized in the pseudocode described in Table 4.1. Just like DRR, miDRR captures

relative rate preferences between flows through the quanta assigned to the flows.

To better understand how the algorithm works, we return to our example of two inter-

faces and two flows, as shown in Figure 3.1(c). Say interface 2 is free and is now moving

on to serve flow b. It would find its service flag with flow b to not be set because no other

interface is serving flow b, and it would therefore proceed to serve flow b. As prescribed by

DRR, the deficit counter of flow b (DCb) would be incremented by its quantum Qb, and

potentially one or more flow b packets would be sent. When a packet is sent, its length

is deducted from the deficit counter. Flow b would be served until its deficit counter is

insufficient for the next packet. At that point, interface 2 will move on to flow a. Because

interface 1 is serving flow a at the same rate, interface 2 will find its service flag with flow a

set by interface 1. Given that the service flag is set, interface 2 will not serve flow a. Instead

it would move back to flow b after resetting its service flag for flow a. As this algorithm

continues, interface 1 will only serve flow a, and interface 2 will only serve b, yielding the

desired result.

The takeaway is that each interface can do its own DRR packet scheduling while checking

and communicating through the service flags.

4.4.1 miDRR is max-min fair

We now prove that miDRR leads to a (weighted) max-min fair allocation. The proof consists

of showing that miDRR fulfills the rate clustering property (explained in Definition 2) and

therefore is max-min fair (by Theorem 4). To understand this, we take the perspective

of an interface j running miDRR. Among the flows willing to use interface j, interface j

will serve a subset of these flows at the same rate (which is what DRR does for a single

interface). The flows served by interface j are in the same cluster.

Say flow a—among the flows willing to use interface j—is not served by interface j.

Flow a must have its service flag with interface j set at least once every τj , where τj is
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the time difference between successive visits by the interface j scheduler to schedule flow a.

This means flow a is being served as often or more often than a flow served by interface j,

which is served once every τj . Flow a is therefore in a different cluster that is at a higher

rate.

Hence, with miDRR, interfaces serve the flows in their clusters at the same rate, and

flows being passed over by interfaces in a cluster are served by another cluster at a higher

or equal rate. Therefore, miDRR fulfills the rate clustering property.

We will now formally prove this in Theorem 8.

Theorem 8. miDRR provides a (weighted) max-min fair allocation.

We begin by extending the definition of fairness metric proposed in [46].

Definition 3. Let directional fairness metric from flow i to flow j be

FMi→j(t1, t2) = Si(t1, t2)/φi − Sj(t1, t2)/φj ,

where Si(t1, t2) is the number of bytes sent by flow i in the time interval (t1, t2], and φi is

the priority of flow i. Alternatively, we say flow i has received service of Si(t1, t2) in time

interval (t1, t2].

Consider the system in steady state, i.e., (1) all flows are continuously backlogged in

(t1, t2], (2) no new flows arrive in this interval, and (3) the rate of the interfaces does not

change. The conditions for weighted max-min fairness in Theorem 4 can be rewritten in

terms of the directional fairness metric FM as:

1. If flows i, j are actively serviced by a common interface k, the directional fairness

metric from i to j and vice versa are zero, i.e.,

∃k, i, j ∈ Uk =⇒ FMi→j = FMj→i = 0.

2. If flow i is actively serviced by some interface k, while flow j is willing to use interface

k but is not actively using it, then the directional fairness metric from j to i is greater

or equal to zero, i.e.,

∃k, i ∈ Uk, j ∈ Fk =⇒ FMj→i ≥ 0.
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This means that if a packet scheduler maintains these conditions on FM at all times, it

will be max-min fair. We show this is the case by finding upper bounds on FM , which, in

turn, tells us the flow service allocations will be fair, amortized over time.

The following Lemma 7 tells us that the value of the deficit counter in miDRR is

bounded.

Lemma 7. At the end of each service turn for a flow, its deficit counter is greater or equal

to zero and less that the maximum packet size, i.e.,

0 ≤ DCi < MaxSize′i,

where MaxSize′i is the maximum packet size of flow i.

Proof. From the algorithm, a flow finishing its service turn can fall into the following cases:

1. Its backlog is cleared; hence, DCi is reset to zero.

2. Its backlog is not cleared, for DCi must be less than the maximum packet size. Hence,

DCi < MaxSize′i.

Further DCi is always greater or equal to zero. Hence, the lemma must be true.

From the bound on the deficit counter, we can now bound the amount of service received

by a flow:

Lemma 8. Consider a time interval (t1, t2] where flow i is continuously backlogged. Let m

be the number of service turns it receives in this interval. The service received by flow i can

be bounded by

mQi −MaxSize′i < Si(t1, t2) < mQi +MaxSize′i.

Proof. Let DCi(j) be the value of DCi at the end of the jth service turn, and Si(j) be the

number of bytes sent by the flow in that service turn (i.e., the amount of service it received).

In the algorithm, the flow starts with DCi(j − 1), receives Qi in credit, sends Si(j) bytes,

and is left with DCi(j). It then follows that

Si(j) = Qi +DCi(j − 1)−DCi(j)

because the flow is always backlogged in (t1, t2].
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By summing over the m service turns, we have

Si(t1, t2) =
∑m

j=1Si(j) = mQi +DCi(0)−DCi(m).

By substituting the bound presented in Lemma 7,

mQi −MaxSize′i < Si(t1, t2) < mQi +MaxSize′i,

as per our lemma.

Lemma 7 bounds the deficit counter (and hence, the amount of service) that a flow can

carry over from one service turn to another (as seen in Lemma 8). This ensures that a flow

cannot accumulate unfair service from one turn to another, which lays the foundation for

the following two lemmas.

Lemma 9. Consider the pair of flows i, j where flow i is serviced at higher rate than flow

j and flow j is serviced by interface k. It can be shown that

FMi→j > −2MaxSize′,

where MaxSize′ is length of the maximum sized packet.

Proof. Consider a service turn on interface k where flow j is serviced by the interface but

not flow i. It means flow i has been served once or more between the time it is considered

by interface k, i.e., SFik = 1. Hence, the number of service turns that flows i, j receive in

(t1, t2] is related by

mi(t1, t2) ≥ mj(t1, t2).

Using Lemma 8, we know that

FMi→j = Si(t1, t2)/φi − Sj(t1, t2)/φj
>

(
mi(t1, t2)Qi +MaxSize′i

)
/φi

−
(
mj(t1, t2)Qj +MaxSize′j

)
/φj

> (mi(t1, t2)−mj(t1, t2))Q
′

−MaxSize′i −MaxSize′j

> −2MaxSize′,
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where Q′ = Qi/φi and we can choose mini φi ≥ 1 without loss of generality.

Lemma 10. Consider the pair of flows i, j where both flows are always serviced by interface

k. It can be shown that

|FMi→j | < Q′ + 2MaxSize′,

where MaxSize′ is the length of the maximum size packet, and Q′ = Qi/φi.

Proof. Consider a service turn of flow j. From the algorithm, SFik = 0 for flow i to be also

serviced. Hence,

|mi(t1, t2)−mj(t1, t2)| = 1.

From Lemma 8,

Si(t1, t2)/φi < mi(t1, t2)Q
′ +MaxSize′i/φi

and

Sj(t1, t2)/φi < mj(t1, t2)Q
′ +MaxSize′j/φj .

This means

|FMi→j | = |FMj→i|
= |Si(t1, t2)/φi − Sj(t1, t2)/φi|
< |mi(t1, t2)−mj(t1, t2)|Q′

+MaxSize′i/φi +MaxSize′j/φj

< Q′ + 2MaxSize′

because we can choose mini φi ≥ 1 without loss of generality.

Proof of Theorem 8. We are now ready to prove Theorem 8—that miDRR gives a max-min

fair allocation. Lemma 9 shows that the service lag of a faster flow compared to a slow

flow is strictly bounded by two maximum size packets. Lemma 10 shows that the service

difference between two flows that are supposed to be served at the same rate is strictly

bounded by Q′ plus two maximum size packets. Both lemmas prevent accumulation of

unfairness over time, showing us that miDRR indeed provides fair queueing for multiple

interfaces in the presence of interface preferences.
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In summary, our observation that the earliest finishing packet cannot be causally de-

termined in a multi-interface setting due to a lack of fate-sharing led to the notion that

we must track the conditions under which flows experience different relative service rates.

The formation of clusters leads to sufficient conditions for max-min fair packet scheduling

that describe exactly when flows experience the same or unequal rates. miDRR achieves a

max-min fair allocation by serving flows at rates that adhere to the conditions in Theorem 4

by means of the service flag.

Why is a 1-bit service flag sufficient?

While Theorem 4 formalizes the notion that the rate clustering property serves as sufficient

conditions for max-min fair packet scheduling, it is worth understanding intuitively why

this is so. It all boils down to the fact that the service flag implicitly captures the relative

service rate between a pair of flows.

At an intuitive level, consider that flow a served only by interface j. If Qa is the DRR

quantum of flow a in bits, and τj is the time between successive visits by the interface j

scheduler to schedule flow a, then flow a is served at rate Qa/τj . Assume for a moment

that all of the flows using interface j have the same weight (i.e. the same φ values), then

all of them have the same service rate. Now, consider a second flow b that is willing to use

interface j but is not actively being scheduled by j because it is receiving enough service

elsewhere. This is accomplished if flow b has its service flag SCbj set at least once every τj

so that interface j will skip serving it every time. This will happen if (and only if) flow b

is already being served as often or more often than τj by other interfaces. This means it

needs no service at interface j.

4.4.2 Implementation

Can we use miDRR to implement user preferences in a practical mobile device? Specifically,

we want to use miDRR to schedule both incoming and outgoing packets over the multiple

interfaces that modern mobile devices have.

It is relatively simple to implement miDRR to schedule outgoing packets from a mobile

device. Our current implementation uses a custom Linux kernel bridge, which is written

using 1,010 lines of C code. Our implementation, in Linux 3.0.0-17, follows the architec-

ture illustrated in Figure 4.2. This custom bridge allows us to steer individual packets

to whichever interface the scheduling algorithm chooses while being transparent for the
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Figure 4.2: Implementation of miDRR in Linux kernel to schedule outbound packets.

applications. This is done by presenting the applications with a virtual interface with an

arbitrarily chosen address and then rewriting the packet headers appropriately before trans-

mission. We find that the overhead of this bridge and packet header rewriting operations

are negligible when compared to the relatively moderate speeds found in wireless interfaces.

The twin problem of scheduling incoming packets over multiple interfaces is harder.

The ideal implementation would be a proxy in the Internet that collects all of the flows

headed toward a mobile device at a location close to the last-mile wireless connections

used by the device, as in Figure 4.3. This can be accomplished by a service provider such

as AT&T if the device is connected to the provider’s HSPA, LTE, and WiFi networks at

the same time. The scheduler at this proxy could then use miDRR to schedule all of the

flows on the different paths that lead to the different interfaces on the mobile device while

respecting preferences. Clearly, this has deployability and performance challenges because

it will require us to aggregate all traffic at one point before scheduling it.

In this work, to ease deployment concerns, we use an HTTP-based scheduling technique

that can be implemented on the mobile device itself and that still allows us to come close

to ideal packet scheduling for incoming packets. Specifically, we implemented miDRR to

schedule inbound HTTP traffic in an HTTP proxy, as depicted in Figure 4.4. Our HTTP

proxy is written in 512 lines of Python code. Because the majority of packets to and

from mobile devices are HTTP transfers [19], we feel that this is a reasonable compromise.

Furthermore, such a fully in-client HTTP scheduler is easily introduced into today’s mobile

device.
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Figure 4.3: Ideal implementation of miDRR to schedule both inbound and outbound pack-
ets.

In this implementation, we make use of the byte-range option available in HTTP 1.1

to divide a single GET request into multiple requests and to decide an interface on which

to send each request. This allows us to divide an inbound transfer into multiple parts,

each of which can arrive over different interfaces at the same time. The responses are then

collected, spliced together, and returned to the application. By choosing the interface on

which a request is placed, we also select the interface over which the corresponding inbound

data will arrive. When combined with request pipelining, we can always have some pending

requests on each interface, making sure that all of the available capacity is utilized. To

provide fairness between the HTTP flows, we implemented miDRR to regulate the inbound

HTTP traffic. For example, the proxy can choose to send flow a’s requests while withholding

flow b’s to make sure that each flow gets its fair share of the bandwidth.
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Figure 4.4: Implementation of miDRR in a HTTP proxy to schedule inbound HTTP flows.

4.4.3 Evaluation

We evaluate miDRR using our prototype implementation on a Dell laptop running Ubuntu

10.04 LTS with an Intel Core Duo CPU P8400 at 2.26 GHz processor and 2 GB RAM. We

aim to evaluate whether miDRR can provide a max-min fair allocation on both the uplink

and the downlink with varying network conditions and traffic workloads. In our experiments,

we use between two and 16 WiFi interfaces to test miDRR. The interface NICs are either

the inbuilt Intel PRO/Wireless 5100 AGN WiFi chip or an Atheros AR5001X+ wireless

network adapter connected via PCMCIA. We use the Atheros ath5k driver for the Atheros

wireless adapter.

Fair packet scheduling with miDRR

As shown in Theorems 9 and 10, miDRR provides weighted max-min fair queueing, but it

can deviate from an ideal bit-by-bit max-min fair scheduler. To test how far it can deviate,

we check the performance of miDRR in a simulation that allows us to avoid complications

such as time-varying network conditions. We run the simulation using an example of three

flows served by two interfaces, as illustrated in Figure 4.5(a).
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Figure 4.5: Simulation results for three flows over two interfaces.

The result is shown in Figure 4.5(c). As we can see, flow a achieved a rate of 3 Mb/s

using interface 1, while flows b and c shared the 10 Mb/s on interface 2 at a ratio of their

weights 2:1. This is the weighted fair allocation we expect. When flow a completed after 66

s, flow b immediately increased its rate to 8.67 Mb/s using interfaces 1 and 2 simultaneously,

i.e., aggregating bandwidth across both interfaces. Similarly, flow c’s rate increased to 4.33

Mb/s, which further increased to 10 Mb/s when flow b completed after 85 s. This shows

that miDRR does indeed provide weighted fair queueing.

Throughout the experiment, the rate clustering property was upheld. We illustrate the

clusters formed in Figure 4.5(b). As load changes (flows a and b finish), clusters change

as well. Zooming at the first phase (0–66 s), flow a’s cluster has rate 3 Mb/s and flow c’s

cluster a rate of 3.33 Mb/s. Flow b gets twice this rate (6.66 Mb/s) because its weight is

twice that of flow c in the same cluster.
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However like many practical approximations, miDRR is imperfect. Figure 4.5(d) zooms

in on the first 5 s. We can see that flow a initially only receives about 2 Mb/s (instead of

3 Mb/s) while interface 1 serves flow b. However the algorithm quickly corrects this, and a

weighted fair rate is achieved. Also, the rate achieved by flows a and b fluctuates around

the ideal fair rate due to the atomic nature of packets and the size of the quanta used.

Overhead of miDRR

We designed miDRR to be lightweight and simple, with each interface performing packet

scheduling in a fairly independent manner with minimum communication overhead. How-

ever, what exactly is the overhead of miDRR in our implementation? To answer this ques-

tion, we profiled our Linux kernel bridge—measuring the time it takes to make a scheduling

decision. For each experiment, we present the bridge with 1,000 packets spread and queued

across all of the flows and record the time it takes to make a scheduling decision for each

packet.

Figure 4.6 shows that the scheduling time is independent of the number of flows because

the algorithm does not need to go through every flow to make a scheduling decision. The

decision is made as soon as the scheduler finds the next flow it should serve. However,

the scheduling overhead increases with the number of flows an interface has to consider

before finding one that it should serve. This number is proportional to the number of flows

that have their service flags set, which is correlated with the number of interfaces. With

more interfaces in the system, the chances of finding a flow with its service flags set would

increase. This extra search time is shown in Figure 4.7.

Even with 16 network interfaces, miDRR can make a scheduling decision in less than 2.5

µs. Put differently, the algorithm can support a traffic rate more than 3 Gb/s for 1,000-byte

packets. Therefore, we believe that it is quite feasible to implement miDRR in practice,

even for a high-speed packet scheduler in the kernel.

HTTP Fair Scheduling

The HTTP-proxy based implementation of miDRR on the downlink cannot support fine-

grained packet scheduling, but it does allow us to evaluate the algorithm over an operational

network. We check if even under such scenarios our scheduler can provide fairness. We

evaluate this by serving three HTTP flows over two interfaces. The setup is similar to
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Figure 4.6: CDF of scheduling time as a function of the number of flows for four interfaces.

Figure 4.7: CDF of scheduling time as a function of the number of interfaces for 32 flows.

Figure 4.5(a) except that all flows have the same weight, and the interface speed varies as

the experiment runs.

We plot the goodput achieved by each flow over time in Figure 4.8. In this setup, flows

a and c will achieve whatever interfaces 1 and 2, respectively, can provide at the current

speed of the interfaces. However, flow b is willing to use both interfaces, so it should always

achieve the same rate as the faster flow. This is the correct max-min fair allocation. We

indeed observe this behavior in Figure 4.8, i.e., the rate of flow b always tracks the faster

flow. We are observing the rate clustering property because flow b will share the faster

interface equally with the faster flow, forming a cluster with it, as illustrated in Figure 4.9.

Despite having only very coarse-grained control over the inbound traffic, we find sur-

prisingly that the HTTP scheduler is able to provide fair scheduling over multiple interfaces
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Figure 4.8: TCP goodput of three inbound HTTP flows scheduled fairly using our HTTP
proxy.
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Figure 4.9: Clustering formed when our HTTP proxy schedules fairly across multiple inter-
faces. On the left is the clustering during the 11–18 s of the experiment and 29 s on. On
the right is the clustering during 0–11 s and 18–29 s.

while conforming to interface preferences. This performance holds even while the scheduler

is reacting to fluctuating link capacities. Given that a large fraction of the traffic on mobile

devices is HTTP, this suggests that an HTTP layer scheduler is sufficient to build a full

system that allows users to leverage all of their interfaces while respecting preferences.

4.5 Summary

The desire to use several network interfaces at a time on our mobile devices led us to

the problem of packet scheduling with interface and rate preferences. The introduction of

interface preferences gives the classical problem of packet scheduling a new twist. Not only
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do interface preferences render prior algorithms unusable but also it changes the way we

think about fairness in rate and in service.

Hence, it is crucial that we understand the implications of such preferences and how they

change the solution space. This chapter presents a simple and efficient algorithm (miDRR)

and empirical measurements of the algorithm running in practice. By achieving max-min

fair allocation, we know that miDRR fulfills the following properties: (1) meets interface

preferences, (2) is Pareto efficient, (3) meets rate preferences, where possible, and (4) uses

new capacity.

We expect this understanding, in general, and our algorithm, in particular, to be useful

in many applications beyond the mobile application we described. Allocating tasks to

machines in a data center poses a similar scheduling problem, where certain tasks might

prefer to use only more powerful machines. We could also use the algorithm to assign

compute tasks to CPU cores in a system such as NVIDIA Tegra 3 4-plus-1 architecture,

where 4 powerful cores are packaged with a less powerful one. A computation-intensive task

such as graphics rendering might prefer to use only the more powerful cores. As we continue

to build large systems by pooling smaller systems together, we expect an increasing number

of situations where our results will prove useful.
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Chapter 5

OpenFlow Wireless:

Programmable Open Wireless

Network Architecture

As users make use of all of the networks around them, it is imperative that the

network infrastructure makes that easier, both by design and by policy. This

approach does not just benefit the users. It also presents major advantages to

the network operators.

In this chapter, I explore the design of a network to support mobile clients

making use of multiple networks at the same time. My blueprint for such

a network—OpenFlow Wireless—decouples the network architecture from its

underlying wireless technologies, and virtualizes the physical infrastructure

though “slicing.” Further, OpenFlow Wireless provides direct support to the

applications. To validate this design, I deployed and operated a test network at

Stanford, which provided us with anecdotal evidence that such a programmable

open wireless network architecture is indeed viable and desirable.

5.1 Problem Statement

If we really want to let users make use of the networks around us, why do we not make it

easier—in design and in policy—for a mobile client to move freely between spectrum and

79
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Figure 5.1: Vision of future mobile network where the user can move freely between tech-
nologies, networks and providers.

networks owned by different cellular and WiFi providers, as shown in Figure 5.1? While

this approach is clearly counter to current business practices and would require cellular

providers to exchange access to their networks more freely than they do today, we believe

it is worth exploring because of the much greater efficiency and capacity it could bring to

end users. Interestingly, a several-fold increase in capacity could be made available for little

to no additional infrastructure cost.

If done right, this presents major advantages for the network operators:

Increased capacity through more efficient statistical sharing. Cellular network op-

erators tend to heavily overprovision their networks in order to handle peak load and

congestion. Most of the time, the network is lightly loaded. If, instead, they were

able to hand off traffic to one another or move it from cellular to WiFi networks, then

their traffic loads would be smoother and their networks more efficient. For example,

what if AT&T could re-route traffic from its iPhone users to T-Mobile during system

overload? Or what if T-Mobile could re-route its customers flows to a nearby WiFi

hotspot?
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Exploit differences in technologies and frequency bands. Mobile technologies such

as EVDO and HSPA provide wide area coverage with consistent bandwidth guaran-

tees, while technologies such as WiFi provide high bandwidth and low latency. Lower

frequencies provides better coverage and penetration; higher frequencies provides bet-

ter spatial reuse. Being able to use the most appropriate technology for the application

at hand would make best use of available capacity. For example, a backup where in-

termittent connectivity is tolerable can be done via WiFi, where higher throughput

is possible.

Open up new sources of capacity. The ability to move between networks also open up

new sources of capacity. For example, one can now use a network such as that of

fon.com to supplement one’s main network, without having to deploy an extensive

WiFi network. Such crowd-sourcing can be a powerful tool to cover dead spots and

relieve congestion.

To support and achieve this vision, this work outlines a programmable network that

supports heterogeneous wireless technologies, allowing us to “stitch together” a multitude

of wireless networks available today. Not only does this network supports a user making

use of multiple networks at the same time, but it also allows the operators to continually

innovate and provide better services to users.

As our cellular networks transition to IP, this is an opportune time to change the way our

wireless networks are organized. IP has been tremendously successful in bringing choices

and innovation to the end user. Arguably, its greatest feat has been enabling innovation at

the edges. IP is simple, standardized, and provides universal connectivity. However, as-is,

IP is not the right choice for the future mobile Internet. It is ill-suited to support mobility

and security, and it is hard to manage. Its architecture is fixed, allowing little room to add

new capabilities. Today, cellular providers feel the pain from poor support for mobility,

security, and innovations in general. If we tweak IP to solve these problems, we will find

new limitations. We need a network that allows continued innovation for services we cannot

yet imagine while permitting existing applications to operate unchanged.

In this chapter, I present the OpenFlow Wireless (or OpenRoads) network architecture—

a blueprint for an open programmable mobile network. The goals of OpenFlow Wireless

are as follows:
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1. The architecture should decouple the overarching network architecture from the un-

derlying wireless technology. This allows for new wireless technologies to be readily

integrated and deployed. This also allows the same backhaul network to be used

for multiple “networks,” which potentially could lead to a reduction in capital and

operating costs for the operators.

2. The network should allow different service providers to share a common physical

infrastructure. If users are to move freely among many networks, the service providers

need to be separate from the network owner. Service providers should handle the

mobility, authentication, and billing for their users, regardless of the networks to

which they are connected.

3. The architecture should allow network operators to continually innovate. Operators

should be able to safely and incrementally roll out new services to customers, instead

of relying on a standards-driven process moving at a glacial pace. This means we

should be able to readily extend the network to support users, mobile devices, and

mobile applications.

OpenFlow Wireless not only allows users to make use of multiple networks at the same time

but also provides a mobile wireless network platform that enables experimental research and

realistic deployments of networks and services. The research community has a big part to

play in bringing this new open architecture to fruition. Much like operators trying out new

features in their operational networks, OpenFlow Wireless allows researchers to research

and deploy their experimental services with the production networks of their campuses,

providing a platform to realistically evaluate research ideas for mobile services.

In this chapter, I will describe OpenFlow Wireless and present how it achieves its stated

goals. I then discuss an actual deployment of OpenFlow Wireless in the School of En-

gineering at Stanford University, and the lessons learned. Finally, I will present selected

evaluations and demonstrations.

5.2 Related Work

OpenFlow Wireless is based on the ideas of OpenFlow [30]; hence, it shares many of the

architectural ideas proposed by OpenFlow and its predecessor Ethane [13].
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OpenFlow is a feature added to switches and routers, allowing these datapath devices

to be controlled through an external, standardized API. OpenFlow exploits the fact that

almost all datapath devices already contain a flow-table (originally put there to hold firewall

ACLs), although current switches and routers do not have a common external interface. In

OpenFlow Wireless, OpenFlow is added to WiFi access points (APs) and WiMAX base-

stations as well by modifying their software, and in principle, the same thing could be done

for LTE and other cellular technologies.

In OpenFlow—and therefore in OpenFlow Wireless—the network datapath is controlled

by one or more remote controllers that run on a PC. The controller manages the flow-table

in all of the datapath elements and decides how packets are routed. In this manner, the

datapath and its control are separated, and the controller has complete control over the

datapath operations. The controller can define the granularity of a flow. For example, a

flow can consist of a single TCP session or any combination of packet headers (Layer 1-4)

that allows for aggregation.

5.3 The OpenFlow Wireless Network Architecture

Figure 5.2 provides an overview of OpenFlow Wireless architecture. At the high level, Open-

Flow Wireless uses (1) OpenFlow to separate control from the datapath through an open

API; (2) FlowVisor [45] to create network slices and isolate them, and (3) SNMPVisor to

mediate device configuration access among services or experiments. These components vir-

tualize the underlying infrastructure directly relate to my vision for future wireless Internet

design in terms of decoupling mobility from physical networks (OpenFlow), and allowing

multiple service providers to concurrently control (FlowVisor) and configure (SNMPVisor)

the underlying infrastructure.

For this network, I used the freely available open-source controller NOX [24], but any

controller is possible as long as it speaks the OpenFlow protocol. NOX provides network-

wide visibility of the current topology, link-state, flow-state, and all other network events.

As a network OS, NOX hosts applications or plug-ins that can observe and control the

network’s state—for example, to implement a new routing protocol, or in this case, to

implement new mobility managers. The mobility manager can choose to be made aware of

every new application flow in the network and can pick the route each takes. When the

user moves, the mobility manager is notified, and can decide to re-route the flow. Because
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Figure 5.2: The OpenFlow Wireless architecture where control is separate from the physical
infrastructure. The control is then “sliced” using FlowVisor and SNMPVisor to provide
fine-grained control to the services above.

OpenFlow is independent of the physical layer (i.e., it does not matter whether the wireless

termination point is running WiFi or WiMAX), vertical handoff between different radio

networks is transparent and simple.

The openness of the controller makes it easy to add or change the functionality of the

network. For example, a researcher can create a new mobility manager (e.g., one that

provides faster or lossless handoff) by simply modifying an existing one. In our prototype

deployment (discussed later in this chapter), this happened many times, as researchers and

students exchanged code and built on one another’s work. In this way, rapid innovation is

possible. Further, by separating the datapath and its control, OpenFlow Wireless reaps the

many benefits of centralized control. Anecdotally, network administrators are receptive to

a centrally managed network that is easily monitored.

Taken to the extreme, an application could be an entire mobility service, akin to the

cellular services we buy from companies like AT&T, Vodafone, and Orange. An applica-

tion can be written to implement AAA, billing, routing, directory services, and so on—all
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running as programs on a controller. And because the controller itself is simply a program

running on a server, it can be placed anywhere in the network—even in a remote data

center.

5.3.1 Supporting Radio Agnosticism

Many handover mechanisms today are specific to wireless technologies. For example,

WiMAX forum recommends how handover could be achieved in a mobile WiMAX network

where GRE tunneling is commonly employed. These mechanisms often make assumptions

about specific wireless technologies that are not directly applicable to other wireless tech-

nologies. A key feature of OpenFlow Wireless is its radio agnosticism, i.e., its ability to

connect to a mobile device through any wireless technology. This allows for mobility across

networks that use a multitude of wireless technologies, e.g., to accomplish handover from

WiFi to WiMAX and vice versa.

To reconcile the differences among these networks, we reduce handover in OpenFlow

Wireless to the lowest common denominator for popular wireless technologies, i.e., re-routing

flows. Advocating flow-based management to the mobile industry is preaching to the choir.

The concept of managing the network at the flow or terminal granularity is well-established.

However, Ethernet-IP based networks tend to manage with granularity of packets. To

introduce the idea of flows to these networks, we exploit OpenFlow. OpenFlow brings the

concept of a flow to switches, routers, and WiFi APs, which can then manage packets

identified to be a flow from headers spanning from Ethernet addresses to TCP/UDP ports.

This allows a flexible definition of flows, which in turn provides a powerful way to manage

the network.

While not a requirement for radio agnostic handover, OpenFlow Wireless advocates

the use of simple dumb base-stations for other wireless technologies, akin to what LWAPP

advocated for WiFi. This allows an uniform way to accomplish handover from one wireless

technology to another, reducing the influence of wireless technologies on the design of the

backhaul and bringing us closer to a network that is radio agnostic.

5.3.2 Slicing the Network

Although we have explained how we can run a new experimental service in the OpenFlow

Wireless network, the question of how we can have multiple competing services running
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at the same time in the same network remains. How could one service allow its users to

roam freely across multiple physical networks? The trick here is to slice, or virtualize the

network, allowing multiple controllers to co-exist, each controlling a different slice of the

network. A slice may consist of one user or many users, one network or many networks,

one subset of traffic or all traffic. OpenFlow Wireless uses the FlowVisor, an open-source

application created specifically to slice OpenFlow networks.

FlowVisor slices a network by delegating control of different flows to different controllers.

As shown in Figure 5.2, FlowVisor is an additional layer added between the datapath and

controllers. Because the FlowVisor speaks the OpenFlow protocol to the datapaths, the

datapaths believe they are controlled by a single controller (the FlowVisor), and because the

FlowVisor speaks OpenFlow to the controllers, the controllers think they each control their

own private network of switches (meaning a virtual network). In other words, FlowVisor

is a transparent proxy for OpenFlow. The trick is to correctly isolate the flows according

to a policy, and hence create one slice with its own private “flowspace” (a range of header

values) per experiment. FlowVisor works by deciding which OpenFlow messages belong to

each slice and passing them to the controller for that slice. If, for example, Controller A is

responsible for all of Alice’s traffic, then FlowVisor passes all control messages relevant to

Alice to Controller A. Therefore, FlowVisor separates slices according to a policy, defined

by the network manager, by enforcing strict communication isolation between slices.

A direct consequence of slicing the network is that slicing/virtualization allows “version-

ing” in the production network, meaning new features can gradually be incorporated into

production. Different slices can be dedicated to different versions, some more stable than

others, as new features are carefully rolled out in stages. In this way, new features can be

deployed and tested quickly, then gradually made available network-wide, or even shared

among network operators. Such an ecosystem allows for the survival of the fittest, bringing

the best to users. Also, legacy clients can be supported on a separate legacy slice, and the

network can now evolve without being held back by backward compatibility.

Slicing also allows delegation. Network administrators can cascade FlowVisors to further

delegate (or slice) the flow space allocated to them. Repeated delegation makes sense

in networks with a hierarchy of control; for example, in a campus network, the network

manager delegates a slice of the network to the individual building network administrators,

and that can in turn be sliced (using another FlowVisor) to provide new slices for researchers.
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Such delegation means researchers can safely run experiments in a production network.

Be default, FlowVisor allocates flowspace to the production network, which can be routed

using legacy protocols. Each experiment is assigned its own slice, defined by the flows-

pace and topology, and implemented with the FlowVisor. Because real users are already

connected to the production network, this process makes opt-ins relatively simple. If the

network is sufficiently large, then experiments can be run at the same scale as, say, a campus

wireless network. They could even be run over multiple networks on multiple campuses.

While OpenFlow provides a means to control the OpenFlow Wireless datapath, it does

not provide a way to configure the datapath elements: e.g., setting power levels, allocating

channels, enabling and disabling interfaces. This job is normally left to a command line

interface, SNMP or NetConf. Although simple in principle, configuration is tricky in a

sliced network, as we want to configure each slice independently. For example, we might

wish to disable a certain network interface in one slice, without disabling the same physical

interface that is shared by another slice. OpenFlow Wireless slice datapath configuration

using “SNMPVisor,” which runs alongside the FlowVisor, to allow an experimenter to

configure his or her individual slice. FlowVisor slices the datapath, and SNMPVisor slices

the configuration by watching SNMP control messages, and sending them to the correct

datapath elements (and possibly modifying them). Similar to FlowVisor, SNMPVisor acts

as a transparent SNMP proxy between the datapaths and controllers, providing the same

features of versioning and delegation.

Sometimes it is difficult to slice the configuration, if not impossible. For example, in

setting power levels for different slices on a WiFi AP, if slices share a channel, then different

transmission power levels should be set for the flows in each slice—something that is not

possible with existing APs. We follow the general mantra of slicing where we can and

exposing non-sliceable configuration parameters to users via feedback and error messages.

5.3.3 Software Friendly Network

With slicing, OpenFlow allows “versioning,” which ultimately provides operators the oppor-

tunity to continually innovate. This allows innovations in operational services in a mobile

network to be decoupled from the glacial standardization process. Operators can differen-

tiate themselves by extending support to users, mobile devices, and mobile applications.

Many applications would indeed benefits from a more direct interaction with the network.
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Figure 5.3: Building a software-friendly network on top of OpenFlow Wireless by allowing
the applications to talk directly to the controller via plugins.

Today, there is usually a clean separation between networks and the applications that

use them. Applications send packets over a simple socket API; the network delivers them.

Part of the success of the Internet undoubtedly comes from this simple and consistent

interface between applications and the network.

However, many applications can benefit from a richer interface to the network with

more visibility of its state, and more control over its behavior. Past efforts to increase

the richness of the APIs, such as RSVP [10] and Active Networking [49], have not been

very successful. OpenFlow Wireless—which has a software defined control plane—presents

a new opportunity to provide such interaction between applications and networks, i.e., to

move towards a more “software-friendly” network.

To explore a possible path, a plugin for an OpenFlow Wireless control plane was cre-

ated to allow applications to query the network state and issue network service requests

directly. This plugin—called SFNet—is illustrated in Figure 5.3. This proposal is distinc-

tive in that it allows applications to communicate with the network directly.1 The key role

1 This work focuses on how an application communicate with the network, and does not discuss how
networks along a route can coordinate among one another to fulfill a request.
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of a software-friendly network is to bridge the semantic gap between applications and the

network. While exposing network services to application writers can potentially improve

application performance, the low-level operations required, such as route calculation or dis-

covering network topology, are forbidding for most programmers. By presenting high-level

APIs to the program and hiding the implementation details, OpenFlow Wireless reduces the

barrier to entry and increases the uptake of network services. This leads to three possible

scenarios:

1. One scenario is for every application to provide its own “plugin” to the network

OS to view and control the network, and to also define its own application-specific

communication protocol to the plugin. For example, a plugin optimized for Skype

might interface directly with the network OS to set up paths, reserve bandwidth, and

create access control rules.

2. Alternatively, over time, a relatively small number of “de facto standard” plugins

might emerge for common tasks (e.g., a plugin for multicast, another for multipath

routing, and yet another for bandwidth reservations).

3. A third scenario is where plugins emerge to suit certain classes of applications (e.g., a

plugin for chat applications, another for real-time video, and a third for low- latency

applications).

Of course, all three models can co-exist. Many applications may choose to use common

feature plugins, whereas others can create their own. OpenFlow Wireless does not propose

or mandate any particular model, it merely makes all three possible so each application

can choose its own path. The “winning features” are picked by adoption, rather than by

standards bodies.

5.4 Stanford Deployment of OpenFlow Wireless

OpenFlow Wireless was deployed in the Stanford’s School of Engineering to help us un-

derstand what would be needed to build and deploy such a network. This deployment

uses more than 10 1-GB OpenFlow Ethernet switches, more than 90 WiFi APs, and two

NEC WiMAX base-stations. This includes switches from NEC (IP8800) and HP (ProCurve

5406ZL); both are OpenFlow-enabled through a prototype firmware upgrade. The WiMAX
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(a) WiFi AP (b) WiMAX base-station

Figure 5.4: Photographs of a WiFi AP and WiMAX base-station used in the Stanford
deployment of OpenFlow Wireless.

base-station was built by NEC and runs a firmware jointly developed with Rutgers Uni-

versity. One base-station is also deployed on the roof of the Packard building, operating

at 5 W of power and using 6 MHz of spectrum provided by Clearwire. The WiFi APs

are based on the ALIX PCEngine boxes with dual 802.11g interfaces. The APs run the

Linux-based software reference switch and later Open vSwitch, and are powered by passive

Power-over-Ethernet to reduce the cabling needed. Figure 5.4 shows photographs of the

WiFi APs and WiMAX base-stations deployed. Figure 5.5 shows the location of these APs

throughout the Gates Computer Science Building.

For this deployment, we wanted to allow an end-user to opt-in to (one or more) experi-

ments. This can be done by assigning a different SSID to each experiment, which requires

each AP to support multiple SSIDs. An experiment runs inside its own “slice” of resources,

a combination of multiple SSIDs and virtual interfaces. When a slice is created, a virtual

WiFi interface is created on all of the APs in the slice’s topology, and assigned a unique

SSID. Since each experiment can be assigned a distinct SSID, users may agree to opt-in to

an experiment simply by choosing an SSID. Using virtual interfaces is easy on these APs

because they run Linux. Although more expensive than the cheapest commodity APs, they

still cost less than a typical enterprise AP. The same idea could be applied to a low-cost

AP running Openwrt. Using a separate SSID for each experiment also means that each

SSID can use different encryption and authentication settings. However, all of the virtual
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Figure 5.5: Location of 30 WiFi APs deployed in Stanford’s Gates building as part of an
OpenFlow Wireless deployment.

interfaces are limited to using the same wireless channel and power settings. Each SSID

(i.e., slice) is part of a different experiment and therefore attached to a different controller

created by the experimenter. FlowVisor is responsible for connecting each slice to its own

controller.

To aid the deployment, several tools for monitoring and visualization have also been

developed. These tools are detailed in [60]. Over the last four years, this deployment has

been expanded and operated as a production network for many students and faculty in

the computer science department. The network has also been used as our guest network

many times over the years. Further, OpenFlow Wireless has also been deployed in sev-

eral homes [64]. All these provide strong anecdotal evidence that the proposed OpenFlow

Wireless architecture is viable for actual deployment and production use.

Also, to help with the exploration of software-friendly network designs, a prototype

called SFNet was created on top of OpenFlow Wireless. SFNet allows applications to di-

rectly interact with the network using a high-level API. By exploiting the global view pro-

vided by NOX, SFNet easily supports high-level primitives, such as network status requests

and resource reservations. Data exchanges between applications and SFNet are represented
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in JSON (JavaScript Object Notation), which is a simple and concise data format supported

by most modern programming languages.

As an example, let us describe how an application can discover the location of SFNet’s

controller, pre-requisite to using SFNet itself. The application first sends a discovery request

using a UDP packet addressed to a predefined IP address and port (e.g., 224.0.0.3:2209 in

this case), and the response is returned directly using another JSON message. This avoids

any broadcasting in the discovery process. Using the response, the application can set up

a TCP socket with the controller, which forms the communication channel for subsequent

JSON messages.

5.5 Evaluation

To verify the functionalities of OpenFlow Wireless, I will now present several selected ex-

periments or demonstrations. More evaluation can be found in my publications.

5.5.1 Video Streaming with n-casting

A simple and naive way to use multiple networks at the same time is to duplicate the

packets across n distinct paths. The mobile device will then receive multiple copies of

each packet over different paths and radios. This can be viewed as a generalized variant of

macro-diversity described in the WiMAX standard.

In a demonstration presented at Mobicom 2009, we showed how a video stream can be

3-casted to provide a “high-reliability” service. The video stream is then received by the

mobile client using multiple wireless channels, each with 3% packet loss. By using n-casting

(with two streams over WiFi and a third stream over WiMAX), we demonstrated how

replication can improve video quality, as visually captured in Figure 5.6.

The goal of this demonstration is not to advocate n-casting, but to show how OpenFlow

Wireless enables application-specific network optimization. In this demonstration, only the

UDP video stream is replicated in the network when sent to the mobile client; the rest of

the traffic is sent to a selected interface. This showcases OpenFlow Wireless’ capability

of doing per-flow traffic engineering. Written in just 227 lines of C/C++, n-casting also

demonstrates the ease of developing mobility services on top of OpenFlow Wireless.

A variation of this demonstration was also shown as part of the plenary of GENI Engi-

neering Conference 9, where a video stream from a moving golf-cart was n-casted across the
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(a) Screenshot of video using unicast. (b) Screenshot of video using 3-cast.

Figure 5.6: Screenshots of UDP video with and without n-cast with 3% loss induced on
each wireless link. The screenshots demonstrate how simple replication can benefit video
quality.

country to Washington, D.C. The demonstration was given in front of a live audience that

experienced the difference in video quality first hand. A video capture of the demonstration

is available at http://goo.gl/OwzI1.

5.5.2 Mobility Experiments

As a first foray into creating experiments with OpenFlow Wireless, students in a 12-week

project-based class in Fall 2008 were charged with designing their own novel mobility man-

ager, then deploying them into the network. Some interesting designs resulted. OpenFlow

Wireless’ design meant all mobility managers were immediately able to accomplish handover

between WiFi and WiMAX, resulting in insights about handovers in such a heterogeneous

environment. Another group used network state information from NOX to predict which

channel they should use during a handover to minimize the hunt time. In each project, the

students demonstrated the manager working in the actual production network, running si-

multaneously in its own slice and evaluated the results as such. Examples of these mobility

managers are as follows:

1. One group designed a mobility manager (Hoolock) to perform lossless handoff that

receives packets in-order. The handover exploits the fact that if a device can commu-

nicate through different wireless technologies, it must also have multiple radios.

We will illustrate the working of Hoolock using an example. Imagine a host handing

over from AP a to AP b. Since it has two interfaces, the host associates with AP

b with its second interface. The routing in the network is then updated. However,

http://goo.gl/OwzI1
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delay along the route before and after rerouting can be different; packets could be in

transit along both routes for a while. Exploiting the fact that packets entering each

interface on the host are in order, we buffer the packets in the interface connected to

AP b while waiting for the packets from AP a to flush. After some time, the host will

dissociate with AP a and switch completely to AP b, to complete the handover.

2. Another group created a handover that uses n-casting.2 A typical n-cast handover

between AP a and AP b occurs as follows. The mobile host starts with a single

connection to AP a. While on the move, the host uses its idle interface to scan for

and associate with AP b. Once associated, the controller begins n-casting or bi-casting

to both AP a and b. The bi-casting continues until the mobile device dissociates from

AP a and sends a notification to the controller to resume unicast. During the n-cast,

the host is likely to receive multiple copies of the same packet. Also, differences in

path latencies and loss rates could cause reordering among the two packet streams. To

mitigate the effects of duplicates and out-of-order packets on TCP, a custom client-

side Netfilter module was employed on the receiving network stack, to perform some

level of reordering. It buffers a small amount of incoming out-of-order packets from

both interfaces to remove duplicates and eliminate reordering.

The above-mentioned mobility managers exploit devices with multiple interfaces. The

control software is written in such a way that this is assumed. Virtualization in OpenFlow

Wireless ensured that all devices controlled by these slices indeed have multiple interfaces.

Creating and testing this in conventional wireless networks would be difficult, if not impos-

sible.

These mobility managers are evaluated against conventional hard handover in terms of

packet loss during handover and TCP throughput. The evaluation network setup is simple:

Two WiFi APs and a WiMAX base station are connected to a single OpenFlow switch. A

server is also connected to the OpenFlow switch to generate traffic for the experiment. In

handover experiments, a mobile client moves between two WiFi APs. For vertical handover,

a mobile with a WiFi and a WiMAX interface moves between a WiFi AP and the WiMAX

base station.

2 Unlike the n-casting demonstration that replicates traffic all the time, this scheme only engaged n-
casting during the handover.
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Table 5.1: Statistics on number of packet lost during handover.
Handover Scheme Average Standard Deviation Minimum Maximum
(holding time)

Hard 37.72 22.10 1 98

Hoolock (1 s) 7.1 12.1 0 39

Hoolock (2 s) 0.034 0.18 0 1

Bicasting (1 s) 0 0 0 0

Bicasting (2 s) 0 0 0 0

Vertical to WiMAX 161.25 32.5 67 195
(1 s) to WiFi 6.1 9.43 0 37

Vertical to WiMAX 87.2 50.11 0 135
(2 s) to WiFi 1.3 4.33 0 19

Vertical to WiMAX 39.9 19.5 0 80
(4 s) to WiFi 0.0 0.0 0 0

Packet Loss during Handovers

In each experiment, a client alternated between two WiFi APs (or between WiMAX base

station and WiFi APs in the case of vertical handover) every 10 seconds for 20 times.

ICMP requests were sent from the server to the client, and the number of packets lost

during handover was measured. The interval between ICMP messages was 20 ms.

Table 5.1 shows the packet loss statistics. Hard handover loses the largest number of

packets. Losses in hard handover occurs in spikes corresponding to the handover timings.

In the case of bi-casting handover with one-second holding time, no packet loss was observed

in all 20 handovers. For Hoolock, with holding time of two seconds, one packet loss was

observed in one out of 20 handovers. With Hoolock, increasing the holding time reduced

packet loss.

Figure 5.7 shows the performance of vertical handovers for holding times of 1, 2, and 4

seconds. With vertical handover, two handover types—WiFi to WiMAX and WiMAX to

WiFi—show very different results. Handover from WiMAX to WiFi creates much smaller

number of packet losses than that from WiFi to WiMAX. This is because network entry

to WiMAX takes several seconds. If we release the WiFi connection before the WiMAX

connection is established, then packets will be dropped. Increasing the holding time reduces

such packet loss.
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Figure 5.7: Packet losses in vertical handover.

TCP Throughput during Handovers

The TCP throughput during handovers was also measured using iperf. Here, the mobile

host is the receiver of TCP data transfer. During the 300 s of data transfer, the mobile

host switches WiFi APs every 60 seconds. Table 5.2 shows the aggregate results of the

experiment. Figure 5.8 show the evolution of goodput for hard handover, Hoolock, and

bi-casting (both with holding time of 2 s).

Hoolock and bi-casting both improve on the simple hard handover scheme. In hard

handover, we observe a long period of zero goodput. During the handover, large amounts

of packet loss causes the sender to throttle its window size. On the other hand, Hoolock

employs two interfaces to achieve nearly zero packet loss during handover and thus a much

more stable goodput. The goodput of bi-casting is less stable for two reasons. First, the

OpenFlow switch performing bi-casting is a software-based switch. Since bi-casting requires
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Figure 5.8: TCP throughput with handover

replicating packets to two output interfaces, the relatively slow software switch incurs delay

on the packet delivery. Second, the receiver maintains a buffer of out-of-order packets that

is periodically flushed. This period determines the delay and mis-sequencing of packets

during handover. A small period would cause more frequent packet reordering, while a

large period would incur longer delays. The combined effects of delay and packet reordering

are evident in the unstable goodput that appears shortly after handovers as TCP attempts

to converge to a new equilibrium. We note that choosing a suitable operating point for

bi-casting is an interesting candidate for future work.

The point here is not that the mobility managers were radically new; it is that each

one was written by non-experts in less than four weeks by building on top of an open-

source codebase. It is surprising to find that each mobility manager could be written in

approximately 200 lines of C++. These experiences serve as anecdotal validation that a
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Table 5.2: TCP throughput (in Mb/s) observed during experiment.
Handover Scheme Average Standard Deviation Minimum Maximum

Hard 13.7 7.19 0 22.3

Hoolock (2 s) 18.0 2.87 0 23.1

Bi-casting (2 s) 17.1 4.58 0 23.1

system like OpenFlow Wireles can indeed be useful to the research community by easing

the innovation process in wireless networks.

5.5.3 Network facilitated P2P Multicast

To demonstrate how a network can be built in support of the applications, SFNet was

built on top of OpenFlow Wireless. In this experiment, SFNet is used to support a mul-

ticast session for an application. Here, the application gives SFNet a set of IP addresses

participating in the multicast with a selected multicast IP address; SFNet then returns a

response (success or failure). Subsequently, messages sent to that multicast address will

be delivered to the participants. SFNet uses OpenFlow Wireless’ API to find the shortest

network paths among the participants. Each message sent to the multicast IP address is

duplicated in-network where necessary. To deliver packets among n participants, SFNet

installs n multicast trees—from a host to the other n− 1 hosts. Each multicast message is

carried only once on each link of the multicast tree. This efficiency is critical for increasingly

important telepresence applications such as high-definition multi-user video conferencing.

We next describe how we can use this multicasting in SFNet to improve a chat service

that uses XMPP as a rendezvous point to set up chat sessions, hereafter referred to as

P2PChat. Figure 5.9 describes a use scenario of P2PChat. To join the service, each user

submits a join request to P2PChat using the XMPP protocol (Figure 5.9(a)). P2PChat

aggregates requests for a chat session and submits the IP addresses of the participants in

a request to SFNet, which installs the appropriate multicast routes for the session using

OpenFlow Wireless’ API (Figure 5.9(b)). The participants can then communicate with one

another by sending messages to the multicast IP address. The chat messages are forwarded

directly in-network, instead of through the server (Figure 5.9(c)).

Once a chat session is set up, the participants can communicate directly using multicast

sessions. This translates to reduced traffic as well as lower latency. Our results show that

by having participants communicate directly, we can reduce delay from 21 ms to 3 ms
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(a) Chat clients issues join requests to P2PChat server.
This is how the chat will be carried out today, i.e., via
the server at all times.

(b) P2PChat server delegates message exchange to the
network through SFNet, which uses OpenFlow Wireless’
API to install n-multicast routes.

(c) Clients switch to P2P chat, where the malfunction of
the XMPP server and/or SFNet controller will not affect
the chat session.

Figure 5.9: P2P chat via in-network mesh-casting (n-multicast).
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compared to communicating through the XMPP server residing in the same LAN. In the

meantime, relieved of its message routing duty, the P2PChat server can scale to serve more

users. Moreover, chat server failure will not affect any of the ongoing chat sessions. This

opens up interesting possibilities, such as using a transient client in the network as the chat

server.

5.6 Summary

The architecture of wireless networks is going to change significantly in the coming years,

with a slow convergence of cellular and WiFi networks—with cellular operators are moving

towards an all-IP network. Users will want to move across spectrum and networks seamlessly

while making use of one or more networks at the same time. Networks have to change in

response to these developments. Without change, the industry will stay closed and based on

proprietary equipment. The goal of this work is to help open up the infrastructure allowing

multiple ideas to co-exist in the same physical network—and therefore enable innovation

to happen more freely and more quickly. Opening a closed infrastructure might seem like

a naive pipe dream, but recall the change that Linux brought to the computer industry

through a dedicated community of open-source developers. The best place to start opening

the wireless infrastructure might well be on our own college campuses, where we replace our

wireless networks with a more open and backwardly compatible alternative, that supports

virtualization. The blueprint presented here—OpenFlow Wireless—is a starting point.

OpenFlow Wireless achieves three main goals stated at the start of this chapter.

1. OpenFlow Wireless decouples the network architecture from its underlying wireless

technologies through radio agnosticism. This also allows new wireless technologies,

e.g., 802.11ac or LTE Advance, to be readily integrated into the production network

once they become available.

2. OpenFlow Wireless allows different service providers to operate over the same physical

network infrastructure by slicing the network both in flowspace and in configuration

space. While keeping each of them isolated, this also allows each service provider

to innovate and differentiate itself, creating a more vibrant ecosystem for wireless

network infrastructure.
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3. Finally, OpenFlow Wireless allows operators to continually innovate in their networks,

by supporting “versioning” that allows them to deploy new services, e.g., creating a

software-friendly network that provides direct network support to users and applica-

tions.

As such, OpenFlow Wireless—when brought to fruition—will provide users with better

network services while giving operators a better network that is more programmable and

more open.
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Chapter 6

Conclusion

Just a few years ago, a mobile phone had only one radio and no third-party applications.

This has changed dramatically. Today, it is common for a mobile device to have four or five

radios, and a burgeoning army of third-party developers are creating hundreds of thousands

of applications, games, and content for mobile devices.

The diverse demands of these applications are straining the network stack of the mobile

operating system. For example, Skype and Dropbox both have stringent and yet very

different demands. Skype wants to have a stable guaranteed data rate to stream audio

smoothly with minimal jitter, while Dropbox only cares to transfer data as cheaply as

possible. With all of these applications, we are also beginning to have preferences for which

interfaces an application may use. For instance, we may prefer to use Dropbox over WiFi

because it is cheap or free, but Skype over 3G because it gives continued connectivity.

To satisfy these demands and preferences, we have to make use of the many networks

connected via the multiple radios available on the mobile device. However, today’s mobile

operating systems are ill equipped to exploit the multiple radios available. This is unsur-

prising considering that they were designed in an era when network stacks only needed to

handle a single physical network connection at a time. This means that even if multiple

networks are available, the operating system does not know how to aggregate the available

bandwidth to provide a higher data rate, nor does it know how to migrate an ongoing TCP

flow from one interface to another to provide seamless flow migration. To allow users and

applications to make use of all the networks around them, we have to rethink the design of

the network stacks in our mobile operating systems.

103
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In this thesis, I introduce Hercules, a novel client network stack, that allows the user

and application to make use of multiple networks at the same time. Through careful design,

Hercules allows applications to flexibly choose which interfaces to use, aggregate bandwidth

across multiple interfaces, and handover flows from one network to another. All these can

be accomplished with minimal or no assistance from the network infrastructure.

Further, I developed an efficient fair queueing algorithm—multiple interface Deficit

Round Robin (miDRR)—to augment the functionalities of Hercules. This algorithm builds

on the theoretical foundations of weighted max-min fair queueing for multiple interfaces

with interface preferences. This foundation is developed in this dissertation, and miDRR

can be formally shown to yield the correct allocations. By incorporating miDRR as its

packet scheduling algorithm, Hercules can provide users and applications with fine-grained

control over routing and provisioning of each flow.

While many of our desired functionalities can be achieved simply by changing the client

network stack, the network infrastructure will continue to play a significant role in the mobile

ecosystem. If the network infrastructure is redesigned to allow users to make use of multiple

interfaces simultaneously and move seamlessly among networks, both users and network

operators would benefit. The users will gain access to greater capacity, wider coverage, and

ultimately better services. The operators can operate a more efficient network, one that

is less over provisioned and one that exploits the diversity of technologies and frequency

bands to better serve its customers.

In this dissertation, I presented OpenFlow Wireless as a blueprint for such a network.

Through radio agnosticism and network slicing, OpenFlow Wireless can virtualize the net-

work and allows multiple service providers to operate using the same infrastructure. Using

a preliminary deployment at Stanford, I was also able to show how OpenFlow Wireless can

become a network that provides more direct support to applications—a software-friendly

network.

Throughout this dissertation, I have explored how we can make use of all the networks

around us, covering the practical aspects of client network stack design and architecture

of the network infrastructure, and also the theoretical aspects of packet scheduling over

multiple interfaces with interface preferences. The result is encouraging. At each step, I

overcame many of the current limitations in mobile networks to provide users and applica-

tions with better network service. Hopefully, this thought marks not only the end of my

dissertation, but also the beginning of a better mobile device and network infrastructure.
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