
RATE CONTROL PROTOCOL (RCP): CONGESTION CONTROL TO MAKE

FLOWS COMPLETE QUICKLY

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Nandita Dukkipati

October 2007

c© Copyright by Nandita Dukkipati 2008

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Nick McKeown) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Balaji Prabhakar)

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Scott Shenker)

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

Users typically want their flows to complete as quickly as possible. This makes Flow Com-

pletion Time (FCT) an important—arguably the most important—performance metric for

the user. Yet research on congestion control focuses entirely on maximizing link through-

put, utilization and fairness, which matter more to the operator than the user. This thesis

is about a new congestion control algorithm—Rate Control Protocol (RCP)—designed for

fast download times (i.e., aka user response times, or flow completion times). Whereas other

modifications/replacements to TCP (e.g. STCP, Fast TCP, XCP) are designed to work for

specialized applications that use long-lived flows (scientific applications and supercomputer

centers), RCP is designed for the typical flows of typical users in the Internet today.

We will show that with typical Internet flow sizes, existing (TCP Sack) and newly

proposed (XCP) congestion control algorithms make flows last much longer than necessary—

often by one or two orders of magnitude. In contrast, RCP makes flows finish close to

the minimum possible, leading to a perceptible improvement for web users, distributed

computing, and distributed file-systems. We also address several theoretical as well as

practical issues under RCP—how RCP’s flow completion times compare with TCP, XCP

and ideal Processor Sharing, the impact of RCP’s short FCTs for the general Internet,

stability of an RCP network and how RCP copes with sudden network changes such as

flash-crowds, RCP’s buffering requirements at routers, implementation of RCP in routers

and end-hosts, and how RCP can be incrementally deployed in real networks.

v

Acknowledgments

It has been my privilege to work with my adviser, Nick McKeown. He is one of the few

individuals who has had a powerful impact on my thinking. Nick has shaped my approach

to problem solving, doing research, presenting my work and teaching. Nick has provided

one of the best research milieus to work in, plenty of opportunities to present my work

outside of the group, and perhaps most importantly he kept me motivated during the many

difficult times when working on RCP. In fact with utmost confidence, I can say that the

past few years at Stanford have been the best years of my life so far—many thanks to Nick.

I would like to thank my dissertation committee members Prof. Balaji Prabhakar, Prof.

Scott Shenker and Prof. Mendel Rosenblum. I have immensely enjoyed and learnt a lot

from Prof. Prabhakar’s classes related to Networking theory. Prof. Shenker sat through

several of my talks on RCP, and has given invaluable comments that has improved my work.

It was my pleasure to have interacted and collaborated with several researchers along the

way while working on RCP. My special thanks to Rui Zhang-Shen and Masayoshi Kobayashi

who I worked with in the earlier stages of RCP, Hamsa Balakrishnan and Claire Tomlin who

formalized the non-linear stable region of RCP, Ashvin Lakshmikantha and Prof. R. Srikant

for collaborating on the buffering requirements of RCP routers, Glen Gibb for implementing

the RCP algorithm in hardware on NetFPGA platform, Chia-Hui Tai and Jiang Zhu for

simulations and experiments on incremental deployment of RCP. I have also learnt a lot

from discussions on RCP with some eminent researchers of my field—Dr. Flavio Bonomi,

Dr. David Clark, Prof. John Doyle, Dr. Sandy Fraser, Dr. Sally Floyd, Prof. Dina Katabi,

Prof. Frank Kelly, Prof. Jim Kurose and Prof. Steven Low.

A very special thanks to my dear friend Rui Zhang-Shen for the many enjoyable times

and discussions at our office. I would also like to thank the past and current members of

the High Performance Networking Group at Stanford for the many lively discussions at

group meetings and in making networking research so fun—Clay, Da, David, Gireesh, Glen,

vi

Guido, Isaac, Jad, Jianying, John, Justin, Martin, Masa, Neda, Pablo, Sundar and Yashar.

I am grateful to Rui, Rong, Neda, Sundar, Da and Dr. Evelin Sull (from the English

Department) for diligently proof-reading parts of my thesis. I thank Judy Polenta for

meticulously taking care of all the administrative details and making it all look so seamless.

I am grateful to NSF for funding the research on RCP.

I would like to thank all my friends, both at Stanford and outside, for all their love and

support throughout.

A very special thanks to my wonderful husband Subhachandra Chandra, not only for

his immense support and understanding, but also for teaching me a lot of things about the

Linux kernel which helped me when I was coding RCP. I have learnt so much from bouncing

ideas off you. Thank you. Thanks to my family for their constant support, encouragement

and enthusiasm: my parents, brother, grandparents, parents-in-law, Manju, Mahi, Naveen

and Soujanya.

Finally, I have to thank all the coffee shops in and around Stanford and Palo Alto, where

I routinely liked to work and had plenty of gulps of hot chocolate and caffeine.

vii

Contents

Abstract v

Acknowledgments vi

1 Introduction 1

1.1 Transmission Control Protocol . 2

1.2 Problems with TCP . 5

1.3 A Wish List for Congestion Control . 6

1.4 High-speed TCPs: Pros and Cons . 9

1.5 eXplicit Control Protocol (XCP): Pros and Cons 10

1.6 Rate Control Protocol (RCP): Pros and Cons 13

2 Why we should make flows complete quickly 16

2.1 Why minimizing flow completion time is a hard problem 24

3 Rate Control Protocol 28

3.1 RCP: Algorithm . 28

3.1.1 The Basic Mechanism . 28

3.1.2 Picking the Flow Rate . 30

3.2 Understanding the RCP Algorithm . 32

3.2.1 How good is the estimate N̂ = C/R? 32

3.3 What is the role of the term, β · q(t)
d ? . 36

3.4 Is RCP stable? . 40

3.5 Estimating the average round-trip time . 42

3.6 Achieving differential bandwidth sharing . 43

3.7 Comparison with XCP’s mechanisms . 44

viii

4 Flow completion times under RCP 46

4.1 Simulation Setup . 46

4.2 When Traffic Characteristics Vary . 48

4.2.1 Average Flow Completion Time vs. Flow Size 49

4.2.2 When mean flow size increases . 51

4.2.3 Different flow size distributions . 53

4.2.4 Non-Poisson flow arrivals . 55

4.2.5 As load increases . 56

4.3 When Network Conditions Vary . 58

4.3.1 When link capacity increases . 58

4.3.2 When Round-Trip Propagation Delay increases 60

4.3.3 Flows with different round-trip times 61

4.3.4 When the reverse link is congested 62

4.3.5 When there are multiple bottlenecks 63

4.4 Impact of RCP’s short flow completion times 67

5 Stability of RCP 69

5.1 Stability analysis . 70

5.1.1 Bode Plot and Nyquist Analysis . 71

5.1.2 Stable Region . 72

5.2 Stability of non-linear system . 74

5.3 Stability under multiple bottlenecks . 77

5.4 Picking values for α and β . 81

6 Prac. considerations in building an RCP network 85

6.1 Implementing and experimenting with RCP 87

6.1.1 RCP End-host . 87

6.1.2 RCP Software Router . 91

6.1.3 RCP Router based on NetFPGA . 96

6.1.4 Quantifying the Implementation Complexity 99

6.2 Incrementally deploying RCP . 100

6.2.1 Hindrance 1: RCP must coexist with non-RCP traffic 100

6.2.2 Hindrance 2: Coexisting with non-RCP bottlenecks 105

6.3 Sizing router buffers for RCP congestion control 108

ix

6.3.1 Simulation Results . 109

6.4 Other practical considerations in an RCP network 115

7 Most Commonly Asked Questions About RCP 116

8 Conclusion 121

A A model for the ‘U’ curve 123

B Linearization of RCP rate equation 129

C Bode Plot Analysis 131

D The Nyquist Stability Analysis 133

E Phase Plane Analysis 136

F RCP Router Specification 140

F.1 Router calculations to be performed periodically 140

F.2 Router calculations to be performed per-packet 143

F.2.1 Router calculations to be performed on packet arrival 143

F.2.2 Router calculations to be performed before packet departure 144

Bibliography 145

x

List of Tables

6.1 Complexity of RCP software router . 100

xi

List of Figures

1.1 TCP’s congestion control mechanisms . 3

1.2 Wish-list of properties for a congestion control mechanism 7

1.3 Wish-list properties that high-speed TCPs achieve 9

1.4 Wish-list properties that XCP achieves . 10

1.5 Example: Average flow completion time (AFCT) versus flow size 12

1.6 Wish-list properties that RCP achieves . 13

2.1 Latency lags bandwidth . 17

2.2 AFCT in TCP, XCP, and Processor Sharing 18

2.3 Flows in TCP Slow-Start . 19

2.4 XCP flows accumulating over time . 21

2.5 Example illustrating unfair bandwidth sharing in XCP 22

2.6 High link utilization due to retransmissions 23

2.7 FCTs in HighSpeed TCP and TCP Sack . 24

2.8 FCTs in HSTCP with RED and ECN . 25

2.9 Mean FCTs under SRPT and PS . 26

3.1 RCP’s rate feedback mechanism . 29

3.2 RCP’s rate evolution for long-lived flows . 33

3.3 RCP achieves max-min fairness . 33

3.4 Example 1: RCP’s estimate of number of flows 34

3.5 Example 2: RCP’s estimate of number of flows 35

3.6 AFCT versus flow-rate for exponentially distributed flow sizes 37

3.7 AFCT versus flow-rate for Pareto distributed flow-sizes 38

3.8 AFCT and queue-size versus flow-rate for Pareto distributed flows 39

3.9 Example: RCP’s rate versus time . 41

xii

4.1 AFCT for different flow sizes in RCP, TCP, XCP and PS 48

4.2 AFCT for different flow sizes in RCP, TCP, XCP and PS 49

4.3 Time evolution of sequence numbers of two flows under TCP, XCP and RCP 51

4.4 Comparison of AFCT as the mean flow size increases 52

4.5 Comparison of AFCT as the mean flow size increases 53

4.6 Comparison of AFCTs under uniform distributed flow sizes 54

4.7 Comparison of AFCTs under exponential distributed flow sizes 54

4.8 Comparison of AFCTs under pareto distributed flow sizes 55

4.9 Comparison of AFCTs when flows arrival times are pareto distributed . . . 55

4.10 Comparison of AFCTs under different offered loads 57

4.11 Comparison of AFCTs under different offered loads 57

4.12 Comparison of AFCTs under different offered loads 58

4.13 Comparison of RCP, TCP and XCP under different link-rates 59

4.14 Comparison of RCP, TCP and XCP under different round trip times 60

4.15 Comparison of RCP, TCP and XCP under heterogeneous round trip times . 61

4.16 Comparison of RCP, TCP and XCP under heterogeneous round trip times . 61

4.17 Comparison of AFCTs when both forward and reverse link are bottlenecked 63

4.18 Comparison of RCP, TCP and XCP when only forward link is congested . . 63

4.19 Comparison of AFCTs when both forward and reverse link are bottlenecked 64

4.20 Comparison of AFCTs when both forward and reverse link are bottlenecked 64

4.21 Comparison of AFCTs when both forward and reverse link are bottlenecked 65

4.22 Multiple bottleneck topology . 65

4.23 Comparison of RCP, TCP and XCP under 1,2,4 8 bottlenecks 66

4.24 Comparison of RCP, TCP and XCP under 1,2,4 8 bottlenecks 66

5.1 Block diagram of the linearized RCP system 71

5.2 Stable region obtained from Bode analysis and Nyquist analysis 73

5.3 Plot showing RCP rate versus time . 73

5.4 Stable Region obtained from linearization model 75

5.5 Comparison of linearized and simulated stability regions 76

5.6 Provably safe boundaries of stable region 77

5.7 A configuration with heterogeneous RTT flows 78

5.8 Plots showing the RCP rate . 79

xiii

5.9 Plots showing the RCP rate . 79

5.10 Convergence times of RCP versus link-rates 81

5.11 Convergence time of RCP versus increasing round-trip time 82

5.12 Convergence time of RCP versus number of flows 82

5.13 Convergence time of RCP for different α and β values 83

5.14 Effect of α and β on FCT and Loss probability 83

5.15 Effect of α and β on FCT and Loss probability 84

6.1 Example network where RCP coexists alongside with non-RCP traffic . . . 86

6.2 12-Byte RCP header . 87

6.3 RCP is a protocol between the IP and transport layers 89

6.4 Data path of outgoing packets in an RCP end-host 90

6.5 Linux NetFilter . 93

6.6 A simple topology used for experiments . 94

6.7 Comparing RCP’s estimate of number of flows with the true value 95

6.8 Per-flow and aggregate throughput in RCP 95

6.9 A generic hardware router with RCP support 96

6.10 A block diagram of the NetFPGA hardware platform 97

6.11 Demonstrating the problem when RCP and TCP coexist 100

6.12 Queue diagram of isolated RCP and TCP traffic 101

6.13 RCP and TCP coexisting on a link . 104

6.14 RCP and TCP coexisting on a link . 105

6.15 RCP and TCP coexisting on a link . 106

6.16 Flow completion times when RCP and TCP coexist 106

6.17 Switching point for an end-host from RCP to TCP 107

6.18 RCP achieves PS under small buffers for a static scenario 110

6.19 AFCT versus flow size for small buffers . 111

6.20 Loss probability versus flow size for different buffer sizes 111

6.21 AFCT versus link-capacity for different buffer sizes 112

6.22 AFCT versus link-capacity for different buffer sizes 113

6.23 AFCT versus load for different buffer sizes 113

6.24 AFCT versus load for different buffer sizes 114

7.1 RCP converges within 10 round-trip times 117

xiv

A.1 Comparison of three theoretical systems . 124

A.2 Difference in queue occupancy in systems 125

A.3 Average delay of bounded Pareto distributed flow-sizes 127

C.1 Bode Plot . 132

C.2 Bode plot . 132

D.1 Nyquist plot . 135

E.1 Phase Portrait . 138

E.2 Phase Portrait . 138

E.3 Stable Region . 139

xv

xvi

Chapter 1

Introduction

The Internet is a large distributed shared infrastructure. The network essentially consists

of the following six crucial building blocks [5]:

• Packets and Multiplexing : A fundamental assumption of the Internet is that it is a

packet-switched network. Data is broken down into packets which are independently

routed on communication paths based on information in the IP header.

• Naming, Addressing, and Forwarding : These mechanisms are meant to get packets

across the network. In the original Internet, every destination was assigned a global

address, and any computer was allowed to send a packet to any other. Network

devices, like routers and switches, look at the address in the packets to determine how

to forward them.

• Routing : Computes the best paths from sources to destinations, and differs from

forwarding in the sense that routing does the path computation whose results are

then used by forwarding to take correct actions as packets arrive at the router.

• Security : Security mechanisms are meant to protect the infrastructure from malicious

attacks as well as alleviate undesirable traffic including spam, denial-of-service attacks,

and malicious traffic routed through zombie machines.

• Network Management : Includes the spectrum of functions ranging from managing

and configuring low-level devices to setting high-level network-wide policies.

1

2 CHAPTER 1. INTRODUCTION

• Congestion Control : Fulfills the role of sharing network resources efficiently and fairly

in some agreed-upon sense.

In this thesis we propose a new design for one of these crucial building blocks—a novel

congestion control algorithm, called Rate Control Protocol (RCP). Before we go on to

describe the motivation for RCP, we first explain how congestion control works today, what

its shortcomings are, and in what ways it is a success.

1.1 Transmission Control Protocol

At the present time (2007), the Transmission Control Protocol, or TCP, is the most widely

used congestion control mechanism. TCP fulfills two important functions. The first involves

a reliable and in order delivery of bytes to the higher application layer. It builds on the

unreliable, connectionless IP service, providing a service that is reliable by transmitting lost

or corrupted data until the data is successfully received at the destination. It also delivers

bytes in order (reorders out-of-order data and eliminates duplicates before delivering to the

application process), multiplexes and de-multiplexes traffic from different processes on an

end-host, and performs flow control (prevents a sender from overwhelming a receiver by

specifying a limit on the amount of data that can be sent). TCP’s second function is to

perform congestion control and protect the network from a congestive collapse. We briefly

describe TCP’s congestion control mechanisms below.

TCP uses adaptive congestion control mechanisms that react to congestion events (such

as packet loss or delay) by limiting the sender’s transmission rate. These mechanisms allow

TCP to adapt to heterogeneous network environments and varying traffic conditions, and

keep the Internet from severe congestion events. TCP congestion control works on an

end-to-end basis, where each connection, before starting, begins with a question [49]:

At what rate should the data be sent for the current network path?

It does not receive an explicit answer for this question, but each connection determines

the sending rate by probing the network path and modulating its rate based on perceived

congestion, through packet-loss and delay. The connection rate is proportional to TCP’s

sliding window (swnd is the limit on the amount of outstanding data in flight), which is set

as the minimum of the receiver advertised window (rwnd) and of the congestion window

(cwnd changes dynamically based on feedback of network conditions). To determine the

congestion window, TCP employs the following mechanisms, shown in Fig. 1.1:

1.1. TRANSMISSION CONTROL PROTOCOL 3

Congestion

window

Time (RTTs)

ssthresh
packet loss

timeout

loss

ssthresh

Slow

Start

lossAIMD

Figure 1.1: TCP’s congestion control mechanisms: Slow-Start and Additive Increase Mul-
tiplicative Decrease (AIMD)

Each TCP connection starts with a pre-configured small initial congestion window (no

larger than 4 Maximum Segment Size (MSS) [26]), and probes the network for available

bandwidth using the Slow-Start procedure. The goal of Slow-Start is to keep a new sender

from overflowing network buffers, while at the same time increasing the congestion win-

dow fast enough and avoiding performance loss while the connection is operating with a

small window. Slow-Start increases the congestion window by one MSS for each new ac-

knowledgment received, which results in the window doubling after each window’s worth

of data is acknowledged. With this exponential increase, RTT log2W (where RTT stands

for round-trip time) time is required to reach a window of size W . A connection enters

Slow-Start on newly starting or on experiencing a packet retransmission timeout, and ex-

its Slow-Start when it detects a packet loss or when the congestion window has reached a

dynamically computed threshold, ssthresh. More specifically, ssthresh is set to half of the

current congestion window when packet loss was detected.

TCP exits Slow-Start to enter the Congestion Avoidance phase, where it continues to

probe for available bandwidth, but more cautiously than in Slow-Start. During periods

when no packet losses are observed, TCP performs an Additive Increase of the window size,

by 1 MSS each time a full window is acknowledged (i.e., increases the congestion window as

cwnd = cwnd+ 1
cwnd on receiving each acknowledgment packet). The reaction to congestion

indication (packet loss) varies across different flavors of TCP, and we will briefly describe

4 CHAPTER 1. INTRODUCTION

the four most commonly used variants below.

TCP Tahoe: Tahoe congestion control, described in a paper by Jacobson [43], was

introduced in 1987 in response to a series of “congestion collapse” events (a state where

the network is live-locked, performing little useful work). On detecting a packet loss (either

through retransmission timeout or three duplicate acknowledgment packets), a Tahoe sender

records the ssthresh as cwnd
2 value (the initial value of ssthresh is usually set to the receiver

window size), sets cwnd to 1 MSS and enters Slow-Start. It continues Slow-Start so long

as cwnd < ssthresh, and is in Congestion Avoidance beyond that.

TCP Reno: This is the second version which differs from TCP Tahoe when detecting

packet loss through three duplicate acknowledgment packets (an indication of a milder

congestion). TCP Reno reduces the cwnd by half (as opposed to reducing the window

to one like in Tahoe) to achieve a higher sending rate after loss recovery. The procedure

implementing this is called Fast Recovery .

TCP NewReno: NewReno also reduces cwnd by half on detecting a packet loss through

three duplicate acknowledgments, but NewReno improves upon Reno when retransmitting

multiple packet losses. Reno fails to recover efficiently from multiple packet losses in a

window. After transmitting the first lost segment, it typically waits for the retransmit timer

to expire, in order to recover the remaining lost segments. When a received acknowledgment

does not acknowledge all outstanding segments, NewReno retransmits the missing segment.

TCP SACK: A TCP extension called Selective Acknowledgment improves further on

NewReno’s retransmission mechanisms. SACK allows the receiver to indicate up to four

non-contiguous blocks of sequence numbers received correctly, thus allowing the sender to

retransmit lost data more efficiently. This is currently the most widespread TCP version in

the Internet.

Different TCP versions and how they evolved over time are described extensively and

surveyed in many papers [3], books [1], theses [2], and RFCs [4]. TCP’s congestion control

mechanisms of Slow-Start and Additive Increase Multiplicative Decrease have performed

well in preventing extreme congestion even as the Internet has scaled up many times in

link speeds, network size, traffic load, and heterogeneity. However as the bandwidth of

the network has increased, in other words as the network bandwidth-delay product or the

“pipe” size has increased, TCP has substantially lagged in utilizing network bandwidth,

especially for large transfers and dynamic traffic patterns. The rest of this chapter first

describes the problems with current TCP (Sec. 1.2). It then lists ideal properties we would

1.2. PROBLEMS WITH TCP 5

like in congestion control (Sec. 1.3), and which of these properties are achieved by existing

mechanisms (High-speed TCPs - Sec. 1.4), by newly proposed mechanisms (eXplicit Control

Protocol - Sec. 1.5), and by the mechanisms this thesis proposes (Rate Control Protocol -

Sec. 1.6).

1.2 Problems with TCP

It has been demonstrated experimentally and shown mathematically that the most widely

used TCP,1 behaves badly in a large bandwidth-delay network. The following is a summary

of its shortcomings (some of these are also summarized in [11]):

1. In a high bandwidth-delay product environment TCP’s additive increase of one packet

per round-trip time means flows will take a long time to acquire any spare capacity.

For example, when the peak window size is 80,000 packets, which is needed to sustain

7.2 Gbps with an RTT of 100 ms and a packet size of 1500 Bytes, 40,000 RTTs or

almost 70 minutes, is required to recover from a single packet loss [25].

2. TCP relies on packet-loss feedback to modulate its sending rate. The end-to-end loss

probability needs to be impractically small for a TCP flow to be able to sustain a

large equilibrium window [25], making it hard for a high-speed connection to obtain a

large throughput in a high bandwidth-delay environment. This is another consequence

of TCP’s slow additive increase and drastic multiplicative decrease. For example, a

simple model for the steady state TCP throughput for large bulk transfers (in the

AIMD phase), with loss probability p, is [35]:2

Throughput (Bytes/sec) =
MSS

RTT

K√
p

where K is a constant that depends on the assumed loss pattern (for example, random

or periodic) and whether acknowledgments are delayed or not. It can be easily seen

that to sustain a throughput of 10 Gbps with a round-trip time of 100 ms, the loss

probability cannot be more than 1 in 5 billion packets.

1TCP SACK [57] at the time of writing.
2More sophisticated models taking into account delayed acknowledgments, retransmission timeouts, pe-

riodic losses, receiver window limitations etc. are summarized in [2].

6 CHAPTER 1. INTRODUCTION

3. TCP gets confused by lossy links. It uses packet loss as a binary indicator of conges-

tion, treating lossy links, such as wireless, as congested networks and under-utilizing

them [58].

4. TCP shares bandwidth inversely proportional to the round-trip times. TCP flows

with long round-trip times (RTT), such as those going through satellite links, have

difficulty obtaining their fair share of bandwidth on a bottleneck link [59]. Once they

enter the AIMD mode, long RTT flows open their windows much slower and lose out

to short RTT flows.

5. TCP’s Slow-Start makes short flows last much longer than necessary. Even if a flow

is capable of completing within one round-trip time, TCP’s Slow-Start makes it take

multiple round-trip times to find its fair share rate. Often the flow completes before

it reaches its fair share rate. As the bandwidth-delay product increases, more and

more flows will be capable of completing within one RTT, and so this inefficiency will

increase over time.

6. Finally, TCP deliberately fills up any amount of buffering available just before the

bottleneck link. Extra buffers mean extra delay which adds to the duration of the

flows.

Proposing band-aid solutions to these problems has its advantages in the short-term.

We will however, take a fresh look at the wish list of properties we would like to achieve in

congestion control, and propose a solution to get us there.

1.3 A Wish List for Congestion Control

What is the ideal list of qualities we would want in a congestion control mechanism?

Fig. 1.2 divides our list into two broad categories: A) Flow and network level properties

and B) Properties related to implementation and ease of deployment. For A) the properties

we desire are

1. Processor Sharing: We would like to share the bottleneck link equally among com-

peting flows. Emulating Processor Sharing (PS) is a simple way to do this. Processor

Sharing is a worthwhile goal to achieve: Even if its mean flow completion time is

not quite the minimum achievable, it comes reasonably close to the minimum, and so

1.3. A WISH LIST FOR CONGESTION CONTROL 7

Wish List

A. Flow and Network level properties:

 1. Processor Sharing

 • Performance invariant of flow-size distribution

 • Mix of flows: Short flow completion times

 • Long flows: 100% link utilization

 • Fair sharing

 2. Stable

 3. Close to zero queuing delay. Loss free network.

 4. Efficient use of high bandwidth-delay links

 5. Proportional bandwidth sharing

 6. Any network conditions

 7. Any traffic mix

B. Implementation and Deployment:

 1. Police flows

 2. No per-flow state or queue

 3. No per-packet computation in routers

Figure 1.2: Wish-list of properties for a congestion control mechanism.

flows complete quickly (in fact, as we will see in Chap. 2, often an order of magnitude

quicker than in TCP for typical Internet size flows). Furthermore, its mean comple-

tion time is invariant of flow size distribution for a single bottleneck. Even when flow

completion time does not make sense (e.g., in long-lived bulk transfers), Processor

Sharing results in flows getting high throughput and fair sharing of the bottleneck

bandwidth.

2. Stability: Networks occasionally experience sudden large traffic surges (e.g., flash-

crowds). We want the network to come back to a stable operating behavior quickly

after such disruptions.

3. Queuing delay and packet losses: Ideally, we want close to zero buffer occupancy at

all times. Queued up packets in buffers mean extra latency for every packet. This

is a problem for short flow performance because queuing delay in buffers can be a

significant portion of flows’ completion time (as we will see in Chap. 3). If possible,

we would like to achieve close to zero buffer occupancy or a loss-free network.

8 CHAPTER 1. INTRODUCTION

4. Efficiency: Naturally, at the same time we do not want to sacrifice the efficiency

of high bandwidth-delay links such as the long haul fiber-optic links. These links,

which often go through difficult terrains, are expensive, and service providers like to

minimize unused capacity when the sources have traffic to send.

5. Differential bandwidth sharing: When need be, we would like to achieve some kind

of differential bandwidth sharing among flows—for example, if we would like to give

an important file transfer temporarily ten times the bandwidth share we give to a

less urgent background movie download, congestion control should be able to achieve

that.

6. Network and traffic conditions: We want to achieve the above under any network

conditions such as different round-trip times, bandwidth-delay products—including

challenging conditions like wireless links with long delays, and high loss rates—and

similarly under any traffic conditions such as short flows, long flows, or any mix of

flows, flash crowds and so on.

For implementation and deployment (B) the properties we would like to achieve are

7. Policing: Today, it is hard to determine whether flows are following TCP congestion

control and hence to enforce their doing so [60]. We would like a simple way to

ensure that flows are adhering to congestion control and that a few bandwidth hoggers

(presumably with broken or non-compliant algorithms) are not using up more than

their fair share of the link-rate.

8. No per-flow state or queue and no per-packet computations: A scheme can be more

easily deployed if it does not involve routers in congestion control and only requires

upgrades to end-host software. While that would be ideal, short of that we would

like to achieve these properties without any per-flow state and queue, or per-packet

computations in routers.

Some of these qualities have inherent trade-offs. For example, to achieve short flow

completion times we want to aggressively push the data into the network to get it across as

soon as possible; on the other hand to achieve close-to-zero buffer occupancy at all times,

packets need to be sent conservatively, which prolongs flow completion times. We describe

below which of these qualities are achieved by existing and by our newly proposed congestion

control algorithm.

1.4. HIGH-SPEED TCPS: PROS AND CONS 9

Wish List

A. Flow and Network level properties:

 1. Processor Sharing

 • Performance invariant of flow-size distribution

 • Mix of flows: Short flow completion times

 • Long flows: 100% link utilization

 • Fair sharing

 2. Stable

 3. Close to zero queuing delay. Loss free network

 4. Efficient use of high bandwidth-delay links

 5. Proportional bandwidth sharing

 6. Any network conditions

 7. Any traffic mix

B. Implementation and Deployment:

 1. Police flows

 2. No per-flow state or queue

 3. No per-packet computation in routers

Figure 1.3: Wish-list properties that high-speed TCPs achieve (those shown in italics and
check marks near the properties).

1.4 High-speed TCPs: Pros and Cons

Fig. 1.3 shows the goals achieved by high-speed TCPs, including the many recent TCP

flavors, such as FAST TCP [42], BIC [51] and CUBIC TCP [52] (default in Linux from

2.6.19), H-TCP [53], Highspeed TCP [25], Scalable TCP [27], Westwood TCP [55], Com-

pound TCP [54] (used in Windows Vista), and many more.

The biggest problem these TCPs are aiming to solve is: How can a few very high-

bandwidth flows share a long fat pipe efficiently and fairly. This is a niche problem that

arises in applications such as data-center backups and scientific computing. For example,

the High Energy and Particle Physics community routinely needs to transfer a few terabyte

physics data-sets between SLAC (Stanford) and CERN (Geneva) [56]—so their goals are

primarily to maintain sustained high flow throughput by maximizing network efficiency and

attaining some sense of fairness among flows. These TCPs are essentially trying to improve

the steady-state performance of long-lived large bandwidth flows. They do a very good

job—while maintaining network stability—so long as flows are long-lived and the network

10 CHAPTER 1. INTRODUCTION

Wish List

A. Flow and Network level properties:

 1. Processor Sharing

 • Performance invariant of flow-size distribution

 • Mix of flows: Short flow completion times

 • Long flows: 100% link utilization

 • Fair sharing

 2. Stable

 3. Close to zero queuing delay. Loss free network

 4. Efficient use of high bandwidth-delay links

 5. Proportional bandwidth sharing

 6. Any network conditions

 7. Any traffic mix

B. Implementation and Deployment:

 1. Police flows

 2. No per-flow state or queue

 3. No per-packet computation in routers

Figure 1.4: Wish-list properties that XCP achieves (those shown in italics and check marks
near the properties).

and traffic conditions are not too challenging, i.e., do not have flows with a heterogeneous

mix of round-trip times, or a traffic mix with different flow-sizes. In Chap. 2, we will see

some specific examples of how current TCPs do not meet the wish-list properties.

But perhaps the biggest plus of these efforts is that they only require changes to the end-

host, in fact most times only the sender side needs to be modified and needs no cooperation

from the routers. The downside is that (in the absence of explicit information from the

network) they are forced to resort to heuristics based on either packet loss or delay, as a

consequence of which they generally find it hard to work well under traffic conditions that

deviate from a set of long-lived flows or, as we will see in Chaps. 2 and 4, when flows are

short.

1.5 eXplicit Control Protocol (XCP): Pros and Cons

While there have been many research efforts to solve TCP’s problems of large data transfers

in high bandwidth-delay networks, one of the boldest attempts so far is the eXplicit Control

1.5. EXPLICIT CONTROL PROTOCOL (XCP): PROS AND CONS 11

Protocol [11].

XCP works by involving the routers in congestion control. The network explicitly tells

the receiver the state of congestion and how to react to it. This allows senders to ad-

just their windows based on the precise feedback information. XCP carries the per-flow

congestion state in packets, requiring no per-flow state in routers. XCP senders specify a

desired throughput increase in packet congestion headers, which the routers modify to give

a bandwidth increment or decrement based on the link congestion conditions. The novelty

in XCP is the concept of decoupling the link efficiency control from the flow fairness control.

XCP controls link utilization by adjusting its aggressiveness to the spare bandwidth and

the feedback control delay, thus achieving stability and efficiency even for large bandwidth-

delay product networks. It controls fairness by (conservatively) managing the bandwidth

distribution among flows. More specifically, it reclaims bandwidth from flows with rates

above their fair share and distributes it to flows with lower rates. New XCP flows start with

a small window size and thereafter receive a window increment/decrement. At any time,

XCP flows can have different window sizes, different round-trip times, and different rates.

XCP continuously tries to converge to the point where the link is efficiently utilized and all

flows have their fair-share rate.

Fig. 1.4 shows XCP’s pros and cons. XCP essentially solves the same problem as other

high-speed TCPs—how can a few high bandwidth transfers share a long fat pipe efficiently

and fairly. When flows are long-lived, XCP will eventually converge so that every flow gets

its fair share rate and there is 100% link utilization. But most importantly, XCP achieves

this while keeping the buffer occupancies close to zero, and with almost no packet loss. The

shortcomings of XCP for the general Internet are

• XCP solves the problems with TCP in a static scenario in which there are a fixed

number of flows having an infinite amount of data to send. In this scenario it emulates

Processor Sharing by giving each flow eventually an equal share of the bottleneck link.

But in practice, flows arrive randomly and transfer a finite arbitrary amount of data.

In this dynamic environment with a mix of flow sizes, XCP not only deviates far from

Processor sharing but in fact does far worse than TCP. It is inefficient and unfair

(more examples of this, are in Chap. 4).

• When there is a mix of flow sizes, XCP typically makes the flows last two orders of

magnitude longer than necessary.

12 CHAPTER 1. INTRODUCTION

 0.1

 1

 10

 100

 0 5000 10000 15000 20000 25000 30000 35000 40000

A
F

C
T

 [
s
e
c
s
]

Flow Size [pkts]

XCP
TCP

Slow Start
PS

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 20 40 60 80 100

#
 A

c
ti
v
e
 F

lo
w

s

Time (secs)

TCP
XCP

PS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

N
o
rm

a
liz

e
d
 l
in

k
 u

ti
liz

a
ti
o
n

Time (secs)

TCP [avg = 0.76]
XCP [avg = 0.65]

offered load [avg = 0.84]

Figure 1.5: The top left plot shows the average flow completion time (AFCT) versus flow
size under TCP and XCP from a simulation with Poisson flow arrivals. Flow sizes are
Pareto distributed with mean = 50 pkts (1000 byte/pkt) and shape = 1.2, link-capacity =
2.4 Gbps, Round-Trip Time = 200 ms, offered load = 0.84. The top right plot shows the
number of active flows versus time. The bottom plot shows the link utilization for the two
protocols measured over every 100 ms.

• XCP requires detailed per-packet calculations in the routers: 4 floating-point multi-

plications and 10 additions for every packet [13], which will be too slow to be imple-

mented in software for high-speed routers and a burden to implement in hardware,

particularly since the algorithm is experimental.

An example, representative of the many simulations we performed, comparing XCP and

TCP with Processor Sharing (PS) is shown in Fig. 1.5. The plot compares the mean flow

durations, number of active flows over time and the link utilization, in a setup of high

bandwidth-delay product with a mix of flow sizes. Often the metrics used in the literature

for evaluating congestion control, such as link utilization or convergence to fairness, are

network-centric and do not mean much from a user’s view point. We instead decided to

1.6. RATE CONTROL PROTOCOL (RCP): PROS AND CONS 13

Wish List

A. Flow and Network level properties:

 1. Processor Sharing

 • Performance invariant of flow-size distribution

 • Mix of flows: Short flow completion times

 • Long flows: 100% link utilization

 • Fair sharing

 2. Stable

 3. Close to zero queuing delay. Loss free network

 4. Efficient use of high bandwidth-delay links

 5. Proportional bandwidth sharing

 6. Any network conditions

 7. Any traffic mix

B. Implementation and Deployment:

 1. Police flows

 2. No per-flow state or queue

 3. No per-packet computation in routers

Figure 1.6: Wish-list properties that RCP achieves (those shown in italics and check marks
near the properties).

focus on the metric Flow Completion Time (FCT), or how quickly a flow finishes, because

that is what a user is mostly concerned about. Chap. 2 provides a more detailed reasons

for why it is important to finish flows quickly.

When there is a mix of flows, TCP and XCP make flows take much longer to complete

than they would take under ideal PS. The goal of RCP, conversely, is to achieve performance

close to the Processor Sharing delay while doing very little work at the routers.

1.6 Rate Control Protocol (RCP): Pros and Cons

In this section we summarize Rate Control Protocol very briefly (it is described in detail

in Chap. 3) only so as to make some early comparisons with TCP and XCP and to set the

stage for what is to come later.

In the basic RCP algorithm that we propose, a router maintains a single rate, R(t),

for every link. The router “stamps” R(t) on every passing packet (unless it already carries

a slower value). The receiver sends the value back to the sender, thus informing it about

14 CHAPTER 1. INTRODUCTION

the slowest (or bottleneck) rate along the path. In this way, the sender quickly finds out

the rate it should be using (without the need for Slow-Start). The router updates R(t)

approximately once per roundtrip time, and strives to emulate Processor Sharing among

flows.

The foremost goal in RCP is short flow completion times, or in other words to make

a flow complete as quickly—after all this is what most users experience and care about

when they interact with the network in any way. Fig. 1.6 shows RCP’s pros and cons. The

biggest plus of RCP is the short flow completion times under a wide range of network and

traffic characteristics—which are in fact quite close to what flows would achieve if they were

processor-shared. It turns out that as a consequence of this, RCP also achieves the other

goals that high-speed TCPs and XCP achieve, which is efficient and fair network usage in

the presence of a few high-bandwidth transfers. In summary, there are four main features

of RCP that make it an appealing and practical congestion control algorithm

• RCP is inherently fair (all flows at a bottleneck receive the same rate).

• RCP’s flow completion times are often one to two orders of magnitude shorter than

those of TCP-Sack and XCP, and close to what flows would have achieved if they

were ideally processor-shared. This is because RCP allows flows to jump-start to the

correct rate (because even connection set-up packets are stamped with the fair-share

rate). Even short-lived flows that perform badly under TCP (because they never leave

slow-start) will finish quickly with RCP. And equally importantly, RCP allows flows

to adapt quickly to dynamic network conditions in that it quickly grabs spare capacity

when available and backs off by the right amount when there is congestion, so flows

do not waste RTTs in figuring out their transmission rate.

• There is no per-flow state or per-flow queuing.

• The per-packet computations at a RCP router are simple.

On the other hand, the biggest downsides of RCP are

• RCP involves the routers in congestion control, so it needs help from the infrastructure.

Although they are simple, it does have per-packet computations.

• Although the RCP algorithm strives to keep the buffer occupancy low most times,

there are no guarantees of buffers not overflowing or of a zero packet loss. This

1.6. RATE CONTROL PROTOCOL (RCP): PROS AND CONS 15

becomes especially acute in situations such as sudden flash-crowds, where although

RCP recovers quickly, there will be transient spikes in the queue and possibly packet

losses.

The rest of this thesis, arranged as follows, describes how RCP works and studies in

detail its pros and cons: Chap. 2 motivates why flow completion time is the right metric

for congestion control; Chap. 3 describes Rate Control Protocol; Chap. 4 focusses on RCP’s

flow completion times, discussing how they compare with TCP, XCP, and PS, and what the

impact of RCP’s short FCTs would be for the general Internet; Chap. 5 explores whether

RCP is stable when there are sudden traffic and network changes; Chap. 6 delves into RCP’s

practical considerations, such as how it is implemented on real systems, what its buffering

requirements are at routers, and how it can be incrementally deployed in legacy networks;

Chap. 7 discusses the most commonly asked questions on RCP; Chap. 8 is the conclusion.

Chapter 2

Why we should make flows

complete quickly

In this chapter we explain why completing flows fast is an important goal for RCP, how the

existing and newly proposed congestion control algorithms do not come close to minimizing

download times, and why minimizing flow completion times is a hard problem in both

theory and practice [16] [17].

When users download a web page, transfer a file, send/read email, or involve the network

in almost any interaction, they want their transaction to complete in the shortest time; and

therefore, they want the shortest possible flow completion time (FCT).1 They care less

about the throughput of the network, how efficiently the network is utilized, or the latency

of individual packets; they just want their flow to complete as fast as possible. Today, most

transactions are of this type and it seems likely that a significant amount of traffic will be of

this type in the future [6] [7].2 Short FCTs also reduce the control loop delay of distributed

applications interacting over the network. So it is perhaps surprising that almost all work

on congestion control focuses on metrics such as throughput, bottleneck utilization and

fairness. While these metrics are interesting - particularly for the network operator - they

are not very interesting to the user; in fact, high throughput or efficient network utilization

is not necessarily in the user’s best interest. Certainly, as we will show, these metrics are

not sufficient to ensure a quick FCT.

1FCT = time from when the first packet of a flow is sent (in TCP, this is the SYN packet) until the last
packet is received.

2Real-time streaming of audio and video are the main exceptions, but they represent a tiny fraction of
traffic.

16

17

 1

 10

 100

 1 10 100

R
el

at
iv

e
F

C
T

 Im
pr

ov
em

en
t

Relative Bandwidth Improvement

45 Mbps [’80] 90 Mbps [’81]
417 Mbps [’86] 1.7 Gbps [’88]

2.5 Gbps [’91]

10 Gbps [’97]

flow size = 100 MB
10 MB

1 MB
Equal improvement in FCT and bandwidth

Figure 2.1: Improvement in flow completion time as a function of link bandwidth for the
Internet, normalized to 45 Mbps introduced in 1980. Flows have an RTT of 40 ms and
complete in TCP slow-start. Plot inspired by Patterson’s illustration of how latency lags
bandwidth in computer systems [8].

Intuition suggests that as network bandwidth increases flows should finish proportionally

faster. For the current Internet, with TCP, this intuition is wrong. Fig. 2.1 shows how

improvements in link bandwidth have not reduced FCT by much in the Internet over the

past 25 years. With a 100-fold increase in bandwidth, FCT has reduced by only 50%

for typical downloads. While propagation delay will always place a lower bound, FCT is

dominated by TCP’s congestion control mechanisms which make flows last multiple RTTs

even if a flow is capable of completing within one round-trip time (RTT).

So can we design congestion control algorithms that make flows finish quickly? Un-

fortunately, it is not usually possible to provably minimize the FCT for flows in a general

network, even if their arrival times and durations are known [9] [10]. Worse still, in a

real network flows come and go unpredictably and different flows take different paths! It

is intractable to minimize FCT. So instead congestion control algorithms are focused on

efficiently using a bottleneck link (and only for long-lived flows) because this is easier to

achieve. But we believe - and it is the main argument of this chapter - that instead of being

deterred by the complexity of the problem, we should find algorithms that come close to

minimizing FCTs, even if they are heuristic.

A well-known and simple method that comes close to minimizing FCT is for each router

18 CHAPTER 2. WHY WE SHOULD MAKE FLOWS COMPLETE QUICKLY

 0.1

 1

 10

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 F
lo

w
 D

ur
at

io
n

[s
ec

s]

Flow Size [pkts]

XCP
TCP

Slow Start
PS

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50 100 150 200 250 300

N
um

be
r

of
 A

ct
iv

e
F

lo
w

s

Time (secs)

XCP
TCP

PS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Li
nk

 U
til

iz
at

io
n

Time (secs)

XCP [avg = 0.84]
TCP [avg = 0.91]

mean offered load

Figure 2.2: The top plot shows the average flow duration versus flow size under TCP and
XCP from a simulation with Poisson flow arrivals, flow sizes are Pareto distributed with
mean = 30 pkts (1000 byte/pkt) and shape = 1.4, link-capacity = 2.4 Gbps, Round-Trip
Time = 100 ms, offered load = 0.9. The middle plot shows the number of active flows
versus time. In both plots the PS values are computed from analytical expressions. The
bottom plot shows the offered load and the link utilization for the two protocols measured
over 100 ms time intervals.

to use processor-sharing (PS) - a router divides outgoing link bandwidth equally among

ongoing flows. On the face of it, TCP seems to approximate PS - if several infinitely long

TCP flows with the same round-trip time share a bottleneck, TCP will eventually converge

on a fair-share allocation. Similarly, eXplicit Control Protocol (XCP) [11] will converge on

the fair-share allocation by gradually (explicitly) assigning excess bandwidth to slow flows

and reducing the rate of fast flows. But because they react over many round-trip times,

neither TCP nor XCP come close to processor-sharing for a mix of flow-sizes that represent

the current usage of the Internet: both have expected FCTs typically one or two orders of

magnitude larger than need-be.

19

49
49
50
50

...
t = 1

4 Flows

t = 5

12 Flows

50

50

100 pkts/RTT

t = 0

2 Flows

Figure 2.3: An example illustrating how flows in TCP slow-start accumulate over time.

To illustrate how much longer flows take to complete with TCP and XCP, when com-

pared to ideal PS, we used ns-2.29 [24] to obtain the results shown in Fig. 2.2. The simulation

conditions (explained in the caption) were chosen to be representative of traffic over a back-

bone link today, and this graph is representative of hundreds of graphs we obtained for a

variety of network conditions and traffic models. The values for PS are derived analytically,

and show that flows would complete an order of magnitude faster than for TCP. There are

several reasons for the long duration of flows with TCP. First, it takes ”slow-start” sev-

eral round-trip times to find the fair-share rate. In many cases, the flow has finished before

TCP has found the correct rate. Second, once a flow has reached the ”congestion-avoidance”

mode, TCP adapts slowly because of additive increase. While this was a deliberate choice

to help stabilize TCP, it has the effect of increasing flow duration. A third reason TCP

flows last so long is because of buffer occupancy. TCP deliberately fills the buffer at the

bottleneck, so as to obtain feedback when packets are dropped. Extra buffers mean extra

delay, which add to the duration of a flow.

Our plots also show eXplicit Control Protocol (XCP). XCP is designed to work well in

networks with large per-flow bandwidth-delay product. The routers provide feedback, in

terms of incremental window changes, to the sources over multiple round-trip times, which

works well when all flows are long-lived. But as our plots show, in a dynamic environment

XCP can increase the duration of each flow even further relative to ideal PS, and so there

are more flows in progress at any instant.

So why do TCP and XCP result in such long flow durations? In the following, we will

try to explain why both mechanisms prolong flows unnecessarily. There seem to be four

main reasons: (1) Flows start too slowly and are therefore artificially stretched over mul-

tiple round-trip times, (2) Bandwidth is allocated unfairly to some flows at the expense of

20 CHAPTER 2. WHY WE SHOULD MAKE FLOWS COMPLETE QUICKLY

others; either statically (e.g. TCP favors flows with short RTTs), or dynamically (XCP

allocates excess bandwidth slowly to new flows), (3) Buffers are filled (TCP) and therefore

delay all packets, and (4) Timeouts and retransmissions due to packet losses (TCP). We

will examine each reason in turn, and use simple examples to clarify each factor.

1) Stretching flows to last many Round-Trip Times (RTT) even if they are capable of fin-

ishing within one/few RTTs

TCP : When a TCP flow starts, the source doesn’t know the rate to use, and so it uses

a small value to start with and ramps the rate over multiple RTTs. This is the well-known

slow-start phase. Essentially, the source starts with a conservative rate, and forces the flow

to last multiple RTTs. Hence, a typical flow today never leaves slow-start; and a flow of

size L has a FCT given by [log2(L + 1) + 1/2] · RTT + L/C (excluding the queuing delay).

For example with a typical short flow size today of 15 packets, an RTT of 200 ms and a

user connected via 1 Mb/s link, TCP will force the flow to last 800 ms - about 4 times

longer than the minimum possible. Over time, as bandwidth-delay products increase, the

discrepancy will get worse. For example, in Fig. 2.3 the link capacity is 100 packets/RTT.

Two flows, each with size 50 packets, arrive at the start of every RTT beginning from t = 0.

In PS, both flows would complete in one RTT, the equilibrium number of flows in system is

2 and the link utilization would be 100%. With TCP slow-start, the number of flows in the

system evolves as shown in Fig. 2.3. In steady-state there are 12 flows - six times higher

than for PS; consequently the flow duration is six times higher than need-be.

The problem is not limited to slow-start. As Fig. 2.2 shows even flows that have entered

AIMD phase have long FCTs. This is because AIMD increases the window sizes even more

slowly.

XCP : XCP can be even more conservative in giving bandwidth to flows than TCP,

particularly to new flows. This is why there are always more active, incomplete flows. XCP

gradually reduces the window size of existing flows and increases the window size of new

flows, making sure the bottleneck is never over-subscribed. It takes multiple RTTs for

most flows to reach their fair share rate (which is changing as new flows arrive). Many

flows complete before they reach their fair share rate. In general, XCP stretches flows over

multiple RTTs to avoid over-subscribing the bottleneck link. This prolongs flows and so the

number of active/ongoing flows grows, which in turn reduces the rate of new flows, and so

on. Our many simulations showed that new flows in XCP start slower than with slow-start

in TCP.

21

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000fl
o

w
 d

e
la

y
 (

#
 R

T
T

s
)

a
n

d

 A
c
ti
v
e

 #
fl
o

w
s

Time (# RTTs)

PS Delay = 1 RTT

PS #Active flows = 2

 0

 0.5

 1

 0 1000 2000 3000 4000 5000

L
in

k
 u

ti
li
z
a

ti
o

n

Time (# RTTs)

Figure 2.4: XCP flows can accumulate over time. Two flows arrive at the start of every
RTT, with flow sizes 99 pkts (flow 1) and 1 pkt (flow 2); link of capacity = 100 packets/RTT.
In the first RTT, the server asks both flows to send C×RTT

2 = 50 packets. Flow 2 completes;
flow 1 waits for more RTTs competing for bandwidth with newly arriving flows. At the
start of second RTT, there are 3 flows so the server gives out C×RTT

3 = 33.33 packets to
each of 3 flows. This continues until the system reaches a steady-state of 100 flows.

Every control interval, XCP carefully hands out spare capacity to ongoing flows. While

this works well if all flows are long-lived, it is inefficient for a typical mix of flow-sizes.

Short flows - that are about to finish - cannot use the bandwidth they are given while

other flows which deserve more bandwidth land up waiting more RTTs for their share. The

following example shows how XCP leads to long FCTs even when the link utilization is

high. Consider two new flows starting every RTT, flow 1 has 99 packets, flow 2 has 1 packet

and the link-capacity equals 100 packets/RTT. In the kth RTT each flow is told to send

(C × RTT)/N(k) packets where N(k) is the number of ongoing flows in RTT k.3 Fig. 2.4

shows that even though the link utilization is eventually 100%, the number of flows keep

growing until there are 100 competing flows each sending one packet per RTT. The FCT in

this system is 50 times worse than ideal PS, even while the link utilization in both is 100%.

2) Bandwidth hogging

Both TCP and XCP allow flows to hog the bottleneck link, which increases the FCT for

other flows. TCP does this by favoring flows with short RTTs; in fact, flows with long RTTs

can be made to have arbitrarily small rates (i.e. a large FCT) even when the bottleneck link

is fully utilized. In addition, both TCP and XCP allocate excess bandwidth slowly to new

flows. So when there is a mix of flow-sizes (for example, the heavy-tailed mix of flow-sizes

in today’s Internet), the long flows will converge on their fair share, while the short flows

don’t have time to reach their fair share before they finish. This is illustrated in Fig. 2.5

in which a long flow keeps the link occupied, and three new flows start in the same RTT,

3Although not identical, this is similar to what XCP would do.

22 CHAPTER 2. WHY WE SHOULD MAKE FLOWS COMPLETE QUICKLY

 0
 50

 100
 150
 200
 250
 300

 101 102 103 104 105 106 107 108

S
eq

. N
o.

RTT number

XCP

flow 1
flow 2
flow 3

 0
 50

 100
 150
 200
 250
 300

 101 102 103 104 105 106 107 108 109

S
eq

. N
o.

RTT number

TCP

flow 1
flow 2
flow 3

Figure 2.5: Example illustrating unfair bandwidth sharing. A long flow is keeping the link
occupied, 3 flows of size 300 pkts each, start in RTT number 100. Before TCP and XCP
get a chance to take bandwidth away from the long flow and give these new flows their fair
share, the flows are done. Link capacity = 100 Mbps, RTT = 0.1s. Under PS, the three
flows would have finished in 1 RTT.

each of size 300 packets. With PS, the three flows would finish in one RTT; but XCP and

TCP make them last eight times longer.

The problem is in general more pronounced in XCP. When link is close to full utilization

only 10% of link capacity is available for all newly arriving flows through bandwidth shuffling

- bandwidth is slowly reclaimed from ongoing flows and distributed to new flows. Favoring

early flows over new flows nudges XCP toward an M/G/1-FCFS discipline (for heavy-

tailed jobs FCFS has the worst mean job-completion time among many known scheduling

disciplines), instead of the more desirable M/G/1-PS.

3) Filling up buffers

TCP will try to fill the buffers at the bottleneck link - until a packet is dropped. While

this leads to high utilization of the bottleneck link, it increases queuing delay, RTT and

the FCT. Flows that arrive when queue occupancy is high will experience large and highly

variable delays. In this regard, XCP is better than TCP because it always drives the buffer

towards empty.

4) Retransmissions and Timeouts Flows experience packet losses when the buffer overflows.

Eventually they are notified of the losses or time out and retransmit the lost packets. Part

of the link utilization is contributed by the retransmitted packets. As the example in

23

 0.1

 1

 10

 100

 1000

 10000 100000

A
F

C
T

 [s
ec

s]

Flow Size [pkts]

TCP
Slow Start

PS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250 300 350

N
or

m
al

iz
ed

 li
nk

 u
til

iz
at

io
n

Time (secs)

TCP
offered load avg = 0.61

tcp avg = 0.57

Figure 2.6: Experiment to illustrate that link utilization (bottom plot) could be high due
to retransmissions, but that does not mean much for Flow Completion Times (top plot).
Set up: C = 2.4 Gbps, RTT = 0.1s, Poisson flow arrivals, offered load = 0.8, Pareto
distributed flow sizes, Mean flow length = 30000 pkts. Link utilization is measured over
100 ms intervals.

Fig. 2.6 shows, retransmitted packets contribute to 3.6% of the link utilization, and while

the average link utilization is close to the offered load, the flow durations are two orders

of magnitude higher than PS. Odlyzko gives an example of a real scenario [6] in which he

notes that high utilization carries a penalty - during the hours of peak usage the average

packet drop rate was around 5%, so service quality was poor, but the throughput figure

was deceptively high since it included substantial retransmissions.

So far we have seen FCTs under TCP Sack, but there have been many proposals recently

to improve TCP’s AIMD behavior, such as HighSpeed TCP [25] and Scalable TCP [27].

Their main goal is to make TCP work well under low-multiplexed high bandwidth-delay

networks. In particular, a single TCP flow should be able to achieve a large sustained

equilibrium window size under realistic drop probabilities. For large window sizes, these

schemes make the window increase more aggressive (as compared to additive increase of

one packet per RTT) and the window decrease less drastic than halving on a packet drop.

While these schemes work well in an environment of a few high bandwidth flows, they do

not necessarily improve FCTs in a statistical mix of flows. For example, Fig. 2.7 shows the

24 CHAPTER 2. WHY WE SHOULD MAKE FLOWS COMPLETE QUICKLY

 0.1

 1

 10

 100

 0 5000 10000 15000 20000 25000 30000 35000 40000

A
F

C
T

 [
s
e
c
s
]

Flow Size [pkts]

TCP Sack
HSTCP

Slow Start
PS

 0.1

 1

 10

 100

 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

A
F

C
T

 [
s
e
c
s
]

Flow Size [pkts]

TCP Sack
HSTCP

Slow Start
PS

Figure 2.7: Experiment comparing flow completion times in HSTCP and TCP Sack, both
with Drop Tail queues. HSTCP (default) parameters: Low window = 38 packets, High
Window = 83000 packets, High P = 10−7. Set up: C = 1 Gbps, RTT = 0.1s, Poisson flow
arrivals, offered load = 0.4, Pareto distributed flow sizes, Mean flow length = 500 pkts.
Buffer size = bandwidth times RTT.

FCTs for a heavy-tailed mix of flow sizes for High Speed TCP (HSTCP)4 along with the

regular TCP-Sack. Flows in HSTCP take about the same time to finish as regular TCP

flows, and both achieve similar link utilization.

If RED or ECN is used, flow completion times are much longer as shown in Fig. 2.8.

RED/ECN indicate the onset of congestion much sooner than Drop Tail, making flows exit

slow-start early and therefore longer to finish. While this helps in keeping queues very small

(bottom plot of Fig. 2.8), it comes at the cost of longer FCTs.

2.1 Why minimizing flow completion time is a hard problem

Flow completion time (or transaction time) is what users and distributed applications really

care about, and so it is surprising that in-spite of the many papers on congestion control,

there isn’t a single paper which asks the fundamental question: How would we design

congestion control to minimize flow completion times?

The problem is that it is a hard question to answer. In the case of a single link, we know

that the scheduling discipline Shortest Remaining Processing Time (SRPT) [21] minimizes

4HSTCP uses TCP’s standard increase and decrease parameters for packet drop rates up to 0.0015 or
roughly for window sizes up to 38 packets. Beyond that it uses a more aggressive increase and smaller
decrease to achieve a different response function, for example a congestion window size of 83000 packets for
a packet drop rate 10−7.

2.1. WHY MINIMIZING FLOW COMPLETION TIME IS A HARD PROBLEM 25

 0.1

 1

 10

 100

 0 5000 10000 15000 20000 25000 30000 35000 40000

A
F

C
T

 [
s
e
c
s
]

Flow Size [pkts]

HSTCP + RED
Slow Start

PS

 0.1

 1

 10

 100

 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

A
F

C
T

 [
s
e
c
s
]

Flow Size [pkts]

HSTCP + RED
Slow Start

PS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Q
ue

ue
 (

pk
ts

)

Time (secs)

HSTCP + RED [avg utilization = 0.37]

Figure 2.8: Flow completion times (top plots) and queue occupancy (bottom plot) in
HSTCP with RED and ECN. HSTCP (default) parameters: Low window = 38 packets,
High Window = 83000 packets, High P = 10−7. RED is configured to (recommended set-
tings [28]) gentle and adaptive with target delay as 0.005s. Set up: C = 1 Gbps, RTT
= 0.1s, Poisson flow arrivals, offered load = 0.4, Pareto distributed flow sizes, Mean flow
length = 500 pkts. Buffer size = bandwidth times RTT.

the mean Flow Completion Time [22]. The SRPT rule states that the server should at

all times serve that flow of those available, which has the smallest remaining size. SRPT

assumes that when a new flow (or a job in the terminology of queuing theory) arrives, the

entire flow’s packets are present at the bottleneck queue and the router knows the flow-size.

It services jobs in the order of shortest processing time, preempting old flows when new

shorter flows arrive.

This simple discipline is provably optimal is terms of minimizing the mean flow comple-

tion time, irrespective of the flow arrival and size distributions. However, using SRPT is

not practical in the Internet for two main reasons: 1) It requires the flow-size information

ahead of time, which often is not available to the end-host itself when the flow starts, 2)

It assumes the a flow is available all at once ready to be served at the bottleneck when

26 CHAPTER 2. WHY WE SHOULD MAKE FLOWS COMPLETE QUICKLY

0.2

0.3

0.4

0.5

0.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e
a
n
 f
lo

w
 c

o
m

p
le

tio
n
 t
im

e
 [
se

cs
]

load

SRPT, C = 45 Mbps
PS, C = 45 Mbps

SRPT, C = 150 Mbps
PS, C = 150 Mbps

Figure 2.9: Plot comparing mean flow completion times under SRPT and PS for different
offered loads. The flow sizes are Pareto distributed with a mean of 25 KB. RTT = 100 ms.

its turn comes; however in reality a flow can be queued at many different points along the

network, including at the source host. Furthermore, in the case of a network scenario it

isn’t even clear what an optimal solution would be that minimizes flow completion times in

the presence of flow-arrivals and departures, a variant of the job-shop scheduling problem

known to be NP-hard [9] [10].

Our approach is to identify practical and close approximations to SRPT, and create a

congestion control algorithm that comes close to minimizing FCT. For example, consider

the Foreground-Background (FB) policy [29], proposed as an approximation to SRPT in

the absence of flow size information. FB gives service to the flow with the least attained

service at any time instant. If more than one flow has the least attained service, they get

served equally. FB policy has a bias towards small flows, and attempts to complete the

short jobs as quickly as possible. The upside of FB is it minimizes mean flow completion

time (among disciplines which have no knowledge of remaining sizes), for a certain class of

heavy-tailed flow-size distributions (such as the Pareto distribution) [80]. The downside is

routers still need information on the so-far-completed flow length.

Another practical way to achieve short FCTs is to emulate an even easier discipline -

Processor Sharing (PS) - which is not quite the minimum achievable but for most practical

purposes comes reasonably close to it. PS shares bandwidth equally among flows queued

2.1. WHY MINIMIZING FLOW COMPLETION TIME IS A HARD PROBLEM 27

at a link. The expressions for mean FCTs under PS and SRPT5 for Poisson flow arrivals

are given below, and an example comparing them is shown in Fig. 2.9:

E(FCT)PS = RTT +
E(p)

1 − λE(p)
(2.1)

E(FCT)SRPT = RTT + E(Waiting time) + E(Residence time)

= RTT +
λ

2

∫ ∞

0

{

∫ p
0 t2dF (t) + p2[1 − F (p)]

[1 − ρ(p)]2

}

dF (p) +

∫ ∞

0

1 − F (t)

1 − ρ(t)
dt.

where RTT is the round-trip propagation delay between the source and destination, λ

is the Poisson flow arrival rate, p is a flow’s original service requirement, F (·) is the flow

service requirement distribution, and ρ(p) = λ
∫ p
0 tdF (t).

As seen in the figure, the PS and SRPT flow completion times are quite close to each

other for low and medium loads, and diverge when the link is highly loaded such as 0.95

and above. Even though PS does not minimize FCTs and its mean completion time is at

least twice that of SRPT as the offered load approaches 1 [79], yet trying to emulate PS is

a good goal to start with because, a) FCTs in PS come close to SRPT for most practical

purposes under low to medium network loads; in addition PS has the following advantages -

b) Unlike SRPT or FB policies, PS does not need information on flow sizes - which is often

unavailable to the routers, c) Flow durations in PS are invariant of the flow size distribution

and finally, d) PS is inherently fair among flows.

The Rate Control Protocol is about emulating these practical disciplines under a broad

range of network and traffic conditions, using very little information from network and

end-hosts. In the next chapter, we will describe how RCP’s mechanisms and algorithm can

approximate Processor Sharing and Foreground-Background based policies.

5Mean FCT under SRPT is the sum of waiting time (the interval between the job’s moment of arrival
and the instant at which its first service occurs) and residence time (the remaining flow time including all
the processing time plus any time spent standing aside because of pre-emptions from shorter jobs) [21].

Chapter 3

Rate Control Protocol

In this chapter we describe a simple and practical congestion control algorithm that emulates

processor sharing for a broad range of flow size distributions and network conditions [14] [15].

The approach is different from TCP and XCP. Instead of incremental window changes in

each round-trip time, the routers ask flows to transmit at a rate so as to emulate processor

sharing. Furthermore, we aim to achieve this without per-flow state, per-flow queues, or

per-packet calculations at the routers.

3.1 Rate Control Protocol (RCP): An Algorithm to Achieve

Processor Sharing

3.1.1 The Basic Mechanism

RCP involves explicit feedback from routers along the path. In the basic RCP algorithm

a router maintains a single rate, R(t), for every link. The router “stamps” R(t) on every

passing packet (unless it already carries a slower value). The receiver sends the value back to

the sender so that it knows the slowest (or bottleneck) rate along the path. In this way, the

sender quickly finds out the rate it should be using (without the need for slow-start). The

router updates R(t) approximately once per roundtrip time (RTT), and strives to emulate

processor sharing among flows. More formally, the rate feedback mechanism involves the

following steps:

1. Every router maintains a single fair-share rate, R(t), for all flows. Routers update

R(t) once per control interval which is approximately the average round-trip time of

28

3.1. RCP: ALGORITHM 29

SYN
Desired

Rate=10Mb/s

SYN Rate=5Mb/s SYN Rate=5Mb/s

SYN-

ACK
Rate=5Mb/s

FIN-ACK

Sending Rate = 5Mbps

Sender Router 1 Router 2 Receiver

FIN

Figure 3.1: The sender sets the desired rate in the SYN packet, and a router can overwrite
this rate if the current rate R that it can give out is lower then the desired value. The
receiver then sends back the rate in the SYN-ACK packet. If the flow lasts longer than one
RTT, the subsequent rates are piggy-backed on the data and ACK packets.

traffic passing through the queue.

2. Every packet header carries a rate field, Rp. When transmitted by the source, Rp = ∞.

When a router receives a packet, if R(t) at the router is smaller than Rp, then Rp ←
R(t); otherwise it is unchanged. The destination copies Rp into the acknowledgment

packets, so as to notify the source. The packet header also carries an RTT field,

RTTp, where RTTp is the source’s current estimate of the RTT for the flow. When

a router receives a packet it uses RTTp to update its moving average of the RTT of

flows passing through it, d0.

3. The source transmits at rate Rp, which corresponds to the smallest offered rate along

the path.

4. Each router periodically updates its local R(t) value according to the algorithm de-

scribed below.

An example of the RCP startup mechanism is illustrated in Fig. 3.1. We assume that

- as with TCP - flows continue to have the connection set-up phase to establish state at

both ends of the connection. This allows the initial rate to be calculated during the initial

30 CHAPTER 3. RATE CONTROL PROTOCOL

handshake by piggy-backing on the SYN and SYN-ACK messages. This is very important

for short-lived flows, which could last less than one RTT. Current feedback-based algorithms

don’t work well for short-lived flows, yet most flows in the Internet are of this type [30].

The SYN message sent by the source indicates the rate at which it wants to send the flow

(which could be infinite). Each router maintains a single rate, R(t), that it assigns to all

flows. As the message passes through the network, if the current rate R(t) at a router is

lower than the value in the SYN packet, the router overwrites it. When the SYN packet

reaches its destination, it has the lowest rate corresponding to the most congested link along

the path. This value is sent back to the source in the SYN-ACK message to set the starting

rate. When the flows last longer than an RTT then they are periodically and explicitly told

a new rate by the network. This rate is piggy-backed on the data and the ACK messages.

3.1.2 Picking the Flow Rate

We’re going to address the following question:

Is there a rate that a router can give out to all flows, so as to emulate processor sharing?

If the router has perfect information on the number of ongoing flows at time t, and there

is no feedback delay between the congested link and the source, then the rate assignment

algorithm would simply be:

R(t) =
C

N(t)
(3.1)

where R(t) is the rate given out to the flows by the router at time t, and C is the link

capacity. But the router does not know N(t) and it is complicated to keep track of. And

even if it could, there is a feedback delay and so by the time R(t) reached the source, N(t)

would have changed. And further, different flows have different amount of traffic to send

and they are all bottlenecked at different links - so the exact value of N(t) at a link may

not even mean much. So, we propose that the routers have an adaptive algorithm that

updates the rate assigned to the flows, to approximate processor sharing in the presence of

feedback delay, without any knowledge of the number of ongoing flows. RCP is a particular

heuristic designed to approximate PS. It has three main characteristics that makes it simple

and practical:

1. The flow rate is picked by the routers based on very little information (the current

queue occupancy and the aggregate input traffic rate).

2. Each router assigns a single rate for all flows passing through it.

3.1. RCP: ALGORITHM 31

3. The router requires no per-flow state or per-packet calculations.

Intuitively, to emulate processor sharing the router should offer the same rate to every

flow, and try to fill the outgoing link with traffic. To keep delays small it should keep

the queue occupancy close to zero. The following rate update equation is based on this

intuition:

R(t) = R(t − d) +

(

α(C − y(t)) − β q(t)
d

)

N̂(t)
(3.2)

where d is a moving average of the round-trip time (RTT) measured across all traffic passing

through the RCP queue, R(t − d) is the last updated rate, C is the link rate, y(t) is the

measured input traffic rate during the last update interval (d in this case), q(t) is the

instantaneous queue size, N̂(t) is the router’s estimate of the number of ongoing flows (i.e.,

number of flows actively sending traffic) at time t and α, β are parameters chosen for

stability and performance.

The basic idea is: If there is spare capacity available (i.e., C − y(t) > 0), then share it

equally among all flows. On the other hand, if (C−y(t)) < 0, then the link is oversubscribed

and the flow rate is decreased evenly. Finally, we should decrease the flow rate when the

queue builds up. The bandwidth needed to drain the queue within an RTT is q(t)
d . The

expression α(C − y(t)) − β q(t)
d is the desired aggregate change in traffic in the next control

interval, and dividing this expression by N̂(t) gives the change in traffic rate needed per

flow.

RCP doesn’t exactly use the equation above for three reasons:

• First, the router can’t directly measure the number of ongoing flows, N(t), and so

estimates it as N̂(t) = C
R(t−d) .

• Second, we would like to make the update rate interval (i.e., how often R(t) is updated)

a user-defined parameter, T . For example, if the queue is filling up, it is unnecessary

to wait for an entire round-trip time to reduce the rate in order to drain the queue.

The update interval is actually min(T, d) since we want it to be at least equal to RTT.

However, to maintain system stability we scale the traffic change we bring about in

each update interval - the desired aggregate change in traffic over one average RTT is

α(C−y(t))−β q(t)
d , we scale this aggregate change by T/d. And, N̂(t) = C/R(t−T).

32 CHAPTER 3. RATE CONTROL PROTOCOL

• Third, we would like the flexibility of operating the link at a peak utilization of less

then 100%, to give some headroom for sudden traffic surges to drain away before a

queue starts to build. For this, we introduced a parameter, η(0 < η ≤ 1); for example

choosing η = 0.95, gives us a peak utilization of 95%.

Then the equation becomes:

R(t) = R(t − T)



1 +

T
d

(

α(η · C − y(t)) − β q(t)
d

)

η · C



 (3.3)

As with any congestion control algorithm, there are many questions to address: How do

flow completion times compare with processor sharing, and with TCP, XCP? Is RCP stable

when there are sudden changes in the network? How do we choose its parameters for good

performance and stability? How is RCP implemented in routers and end-hosts? How much

buffering does it require in routers? How can it be incrementally deployed in real networks?

And so on. The remaining chapters address these questions in detail, for the rest of this

chapter we will focus on gaining a better understanding of the RCP algorithm.

3.2 Understanding the RCP Algorithm

3.2.1 How good is the estimate N̂ = C/R?

When the router updates the rate, it knows precisely the spare capacity and the queue size

it needs to drain. So the accuracy of the algorithm depends on how well C/R estimates

N(t).

In the simplest scenario with only long-lived flows, C/R converges to the correct number

of flows, N . An example is shown in Fig. 3.2 where 20 flows start at time t = 0 and 20 more

flows start at time 40, and 20 flows complete at time 100. In each case, C/R converges to

N(t). RCP provably converges to its correct fair-share rate, as we will see in Chap. 5, and

the convergence is fast. The values of α and β only affect the rate of convergence; we’ll

examine the stability region for α and β shortly.

But, what if some of the flows are bottlenecked elsewhere and cannot send in traffic

at rate R. For example if N1 flows are bottlenecked at a certain node and N2 flows are

bottlenecked elsewhere and are arriving at rate, R2, less than their fair share i.e. R2 <

C/(N1 + N2). In this case, the rate R in RCP will be such that R · N + R2 · N2 = C i.e.

3.2. UNDERSTANDING THE RCP ALGORITHM 33

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100 120 140 160

γ
=

 R
/C

simulation time (second)

RCP (alpha=0.1, beta=1.0)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160

B
o
tt
le

n
e
c
k
 u

ti
li
z
a
ti
o
n

simulation time (second)

RCP (alpha=0.1, beta=1.0)

Figure 3.2: The time evolution of RCP rate factor γ(t) = R(t)/C and measured bottleneck
utilization under long-lived flows. At t = 0, 20 flows start; at t = 40s, 20 more flows start;
at t = 100s, 20 flows finish. In each case, C/R(t) converges to N(t).

Link A

4000 Mb/s

Link B

80Mb/s

Link C : 400Mbps

(common bottleneck)

8 Senders

(Group A)

4 Senders

(Group B)

Receivers

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

fl
o

w
 r

a
te

 [
M

b
/s

]

simulation time [second]

Group A
Group B

0
50

100
150
200
250
300
350
400
450

0 20 40 60 80 100 120 140 160

L
in

k
 U

s
a

g
e

 [
M

b
/s

]

simulation time [second]

Bottleneck link
Link A
Link B

Figure 3.3: Long flows achieve max-min fair under RCP: 8 flows (Group A) start at t = 0,
and 4 flows (Group B) join at t = 40 and leave at t = 100. Group A is bottlenecked at Link
C and Group B is bottlenecked at Link B. The flows achieve their max-min fair rates.

34 CHAPTER 3. RATE CONTROL PROTOCOL

0
10
20
30
40
50
60
70
80

20 25 30 35 40 45 50N
u
m

b
e
r

o
f
A

c
ti
v
e
 F

lo
w

s

simulation time [second]

Estimated by RCP (C/R)
Actual

Figure 3.4: Comparison of the number of measured active flows and the estimate (C/R).
Bottleneck capacity, C = 10Mb/s, RTT = 50 ms, flow arrival rate = 400 flows/sec, and
flow sizes are Pareto with mean = 25 pkts (1000 byte/pkt) and shape parameter is 1.2.

R = C−R2N2
N1

. In other words, RCP achieves max-min fairness. An example is shown in

Fig. 3.3. From time, t = 40 to 100, N1 = 8 flows (Group A) and N2 = 4 flows (Group B)

share the bottleneck of 400 Mbps (Link C). Group B flows are bottlenecked at Link B of

80 Mbps. As seen in the bottom figure, the flows achieve their max-min fair rates. In this

case, C/R is an estimate of N1 + θN2 where θ = R2/R.

In the past, algorithms similar to RCP have been proved to achieve max-min fairness

under general topologies [33]. The same proof shows that RCP also achieves max-min

fairness in a general network.

When flows are not long-lived, C/R can still be a good estimate of the number of

active flows. In particular, when the mean flow size, E[L], is close to or greater than the

bandwidth-delay product (in other words the flow sizes are large compared to the pipe

size), then C/R is a good estimate. It is a smoothing estimate since flows arrive and depart

quickly and N(t) changes rapidly. An example of this case is shown in Fig. 3.4.

When E[L] ≪ bandwidth × RTT , most flows fit in the bandwidth-delay “pipe” and

most do not have sufficient data to send for an entire round-trip time. In this case C/R(t)

represents an “effective” number of lows, Ne(t) < N(t), where each flow has at least a

round-trip time worth of data to send. Even though C/R(t) underestimates the number of

flows (and hence increases the rate for each flow), it is actually the right thing to do because

when most flows have less than an RTT of data to send, giving exactly C/N(t) to each flow

means the pipe will never be filled. C/R(t) correctly so has no connotation to the exact

3.2. UNDERSTANDING THE RCP ALGORITHM 35

Figure 3.5: Plot illustrating the R(t)/C value in the presence of short flows. Bandwidth-
delay product = 1000 packets, four short flows (125 pkts each) and one long flow (500 pkts)
arrive at the start of every RTT. The RCP rate (bottom plot) converges to the correct
fair-share rate of long flow.

number of ongoing flows. R(t) represents the max-min share of the flows. As an example,

Fig. 3.5 illustrates a link with a bandwidth-delay product of 1000 packets and 5 flows: 4

short flows having 125 packets each, arrive every RTT (they are capable of finishing within

a round-trip time) while the fifth flow is a high bandwidth long-lived flow that has a lot of

data to send. Max-min fairness gives the non-bottlenecked short flows what they need and

gives the remaining link bandwidth to the long flow; i.e. R(t)/C = 0.5. RCP converges to

this value, as shown in the figure. The fair share rate in this case is:

R =
C · RTT − ∑

f∈A S(f)

nB · RTT

where C × RTT is the pipe-size, A denotes the set of flows capable of finishing within a

RTT under the current workload (i.e. the non-bottlenecked flows), S(f) denotes the flow

size of f , and nB is the number of bottlenecked flows. Given any general traffic pattern,

the algorithm to compute the above rate is quite similar to the one used for max-min fair

rate calculation [48].

36 CHAPTER 3. RATE CONTROL PROTOCOL

3.3 What is the role of the term, β · q(t)
d ?

In the last section we have seen the role played by C/R(t) in RCP. While the role of other

terms such as C − y(t), is simple to understand (C − y(t) adapts RCP rate to link under or

over subscription), the part played by β · q(t)
d in achieving short completion times is less clear.

It is worth asking questions such as: Isn’t it better to do away with the β · q(t)
d term and

always have a full queue because that way, the link is kept busy; this should increase the link

utilization and therefore the end-to-end throughput? If RCP reduces its rate aggressively

in response to a growing queue, aren’t we in effect reducing the flow transmission rate and

thereby increasing completion times? On the other hand won’t not responding to a growing

queue increase queuing delay and therefore the completion times? This section answers

these questions.

We need to understand how the flow completion time varies with R. Let’s define the

flow duration, τ , to be the time from when the first packet of a flow enters the network to

when the last packet of the flow leaves the network, i.e.,

τ =
L

R
+ dl(R) (3.4)

where L is the flow size, R is the flow rate (assuming for now that it remains constant

for a flow’s lifetime), and dl(R) is the propagation plus queuing delay of the flow’s last

packet (as a function of R). We want to minimize flow-duration and for that we’ll consider

a hypothetical but interesting question:

Is there a rate R that the router can ask the flows to transmit at, so as to minimize

E[τ]?

Assume that a router picks the same rate for all flows passing through it. So what rate

should it choose? Is there a rate that will minimize flow duration? It turns out that there

isn’t in general; but, when flow lengths are heavy-tailed (which they are in the Internet),

there is an optimal rate (it’s just hard to compute). Let’s see why there is an optimal rate.

Notice that L
R (the flow transmission time) decreases as R increases, whereas dl(R) (the

fixed propagation delay plus the variable queuing delay) increases with R. It all depends on

whether dl(R) increases faster, or slower, than L
R decreases with R. Clearly, dl(R) depends

on the flow size distribution. The more deterministic the flow size, the lower the queuing

delay, and so the slower dl(R) will grow with R. For example, if all flows are the same

size, and that new flows arrive as a Poisson process to a router (which can be modeled

3.3. WHAT IS THE ROLE OF THE TERM, β · Q(T)
D ? 37

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.01 0.1 1

A
v
e
ra

g
e
 F

lo
w

 D
u
ra

ti
o
n
 [
s
e
c
]

R/C = flow-rate/link-capacity

Static Rate Alloc. (simulation)
M/M/1 delay

Figure 3.6: Average flow duration vs. normalized flow-rate for exponentially distributed
flow sizes. Flow arrivals are Poisson with rate 175 flows/s; server capacity C = 150 Mb/s;
mean flow size = 50 pkts (1000 byte/pkt), RTT = 0.2s. As R → 0, E[τ] → ∞ and when
R ≥ C, E[τ] → E[D]M/M/1−FCFS (shown by dotted line).

as a single server FCFS queue with capacity C), then as R → ∞ the flows become single

entities and the router becomes an M/D/1 queue. Since all the flows are the same size,

FCFS is equivalent to the optimal SRPT discipline. In other words, if flows are fixed size,

the routers should not limit their rate; it should set R = ∞. Intuitively, it is best to push

as much work into the network, so it makes forward progress towards its destination, even

if it means the routers need huge buffers.

It turns out that R = ∞ is also optimal when flow sizes are exponentially distributed.

A plot of the average flow duration vs. flow rate is shown in Fig. 3.6. As we’d expect, the

flow transmission time, L
R , (and hence the flow duration) tends to infinity as R → ∞. As

R increases, the average flow duration decreases, and converges to the average delay of an

M/M/1-FCFS system (as shown by the dotted line in the Fig. 3.6).

In both examples, the increase in queuing delay is dominated by the decrease in trans-

mission time, and the expected flow duration decreases monotonically as R increases, con-

verging to the delay of an M/D/1 or M/M/1 system, respectively. These results suggest

that to minimize flow duration we should transmit flows at as high a rate as possible. If

that was always true, or at least was true for flow sizes in the Internet, there would be no

38 CHAPTER 3. RATE CONTROL PROTOCOL

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.01 0.1 1

A
v
e
ra

g
e
 F

lo
w

 D
u
ra

ti
o
n
 [
s
e
c
]

R/C = flow-rate/link-capacity

M/Pareto/1 delay
Static Rate Alloc. (simulation)

Figure 3.7: Average flow duration vs. normalized flow-rate for Pareto distributed flow-sizes
with mean 25 pkts (1000 byte/pkt) and shape 1.2. Flow arrivals are Poisson with rate 600
flows/s, Server capacity C = 150 Mb/s, RTT = 0.2 s. As R → 0, E[τ] → ∞ and when
R >> C, E[τ] → E[D]M/Pareto/1−FCFS .

need to set an explicit starting rate – the sources should just send as fast as they can.

Flow-sizes in the Internet are neither fixed, nor exponentially distributed: they have

a heavy-tailed distribution, and are modeled well by the Pareto distribution with comple-

mentary distribution function F c(x) = (k
x)α, 0 < α ≤ 2, k > 0, x ≥ k [30]. Simulations of

a single-server FCFS queue with Pareto distributed flow sizes, shown in Fig. 3.7, indicate

that in fact there is a rate that minimizes the expected flow duration.

The intuitive reason why there is an optimal rate is that an FCFS queue fed by an

input process with heavy tailed flow sizes also has heavy-tailed queue occupancy; i.e.

limb→∞P{Q > b} is heavy-tailed [47]. It is no longer the case that as R increases, the

decrease in the flow transmission time dominates the increase in the queuing delay. At

some point the increase in the queuing delay starts to dominate, and as R → ∞, the

expected flow duration approaches the M/G/1 delay [48]:

E[τ]M/G/1 =
λE[L2]

2C2(1 − ρ)
+

E[L]

C
(3.5)

where λ is the flow arrival rate, E[L], E[L2] are the first and second moments of the flow

size distribution and ρ = λE[L]
C is the offered load. In the case of heavy-tailed distributions,

3.3. WHAT IS THE ROLE OF THE TERM, β · Q(T)
D ? 39

10
−2

10
−1

10
0

0.1

0.15

0.2

0.25

0.3

0.35

A
vg

. F
lo

w
 D

ur
at

io
n

(s
)

10
−2

10
−1

10
0

0

1000

2000

3000

4000

5000
A

vg
. q

ue
ue

 s
iz

e
(p

kt
s)

γ=R/C

Figure 3.8: Average flow duration and average queue size vs. flow rate for Pareto distributed
flows. C = 150 Mbps, RTT = 100 ms. The data is from the same experiment as in Fig. 3.7

E[L2] is much larger than (E[L])2. For example, when the flow sizes are Pareto with the

shape parameter 1 < α ≤ 2, the mean flow size is finite while the second moment is infinite,

and the expected flow duration is infinite.1

The key point here is as the router gives out higher rates, the queue size increases and

the flow durations increase. Our observation in several simulations is that at the rate where

delay is minimized, the average queue occupancy is small (as shown in the Fig. 3.8), and

the link utilization is equal to the offered load, ρ. At rates below the optimal, although the

queue occupancy is still small, the link utilization is less than the offered load (meaning that

the work given to the system is unnecessarily stretched), while at rates above the optimal,

although the link utilization is high the mean queue occupancy is high as well. We modeled

the ‘U’ curve analytically; the details are in Appendix A.

In summary our findings on the q(t) term are: Under flow arrivals and departures, the

queue term is important to emulate completion times under processor sharing, especially

in the presence of heavy-tailed distributed flow-size. If the queue is allowed to grow then it

mostly contains packets from long flows, short flows get stuck behind long flows, resulting

in increased queuing delay and completion times. Put another way, if the queue is allowed

10f course in simulations which run for a finite amount of time, the second moment of file size is not
infinite. The value of L2 increases with the length of simulation. Substituting L2 for E[L2] in Eqn. 3.5 gives
the asymptotic value for large R, shown in Fig. 3.7.

40 CHAPTER 3. RATE CONTROL PROTOCOL

to grow then it roughly emulates the FCFS discipline, which has large completion times

when flow sizes have a large variance. An exception to the above argument, as we will

see in Chap. 5, is when α is chosen large enough (such as 0.9) in which case the large

negativity of ’α · (C − y(t))’ compensates for the absence of queue term. The queue term is

not crucial for non-heavy tailed distributions such as exponential or uniform, for which the

FCFS discipline is not too bad as compared to processor sharing. For example in the case

of exponentially distributed flows, mean flow duration under FCFS equals that under PS.

3.4 Is RCP stable?

An important question to ask is whether RCP’s short flow completion times come at the

cost of network instability when there are sudden changes in network traffic or there are bad

traffic patterns. After all there is a good reason why the congestion control mechanisms

of TCP have been so deliberately made conservative. A desirable characteristic of any

congestion control scheme is that it is stable, in the sense that – if there exists an equilibrium

point it always converges to the equilibrium operating behavior, and even when perturbed it

should return to this stable state. We want to know whether RCP exhibits such a desirable

stable behavior when there are sudden changes such as flash crowd scenarios or link failures.

Chap. 5 studies this topic in great detail, and we only present the high order bit here.

Stability of RCP depends on its parameters α and β. We thought about system stability

under the following two very different regimes:

1) Deterministic scenario of long-lived flows: In this scenario, N long-lived high band-

width flows start up at the same time and we want to know if the system reaches equilibrium

(equilibrium rate is Re = C/N and queue is zero) and remains there. The good news is

that α and β can not only be chosen such that the system is stable independent of the

network link rates, round-trip times, and the number of flows, but the stable region is also

very broad. In Chap. 5, we use tools in control theory to characterize this region precisely

and detail on how long RCP takes to converge to equilibrium.

2) Stochastic scenario with random flow arrival times and flow sizes: In this case,

convergence of R(t) in the same sense as for long-lived flows is less meaningful because the

input conditions are changing. Further, as discussed before we do not always want R(t) to

be equal to C/N(t) exactly: If N(t) is very large but each of the flows has very little traffic

to send (less than a RTT) then we actually want to underestimate N(t) and thereby give

3.4. IS RCP STABLE? 41

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200

R
(t

)/
C

time [secs]

Figure 3.9: The figure shows the normalized rate, R(t)/C versus time for Poisson flow
arrivals with pareto distributed flow sizes. Bottleneck capacity, C = 150 Mb/s, RTT = 100
ms, offered load = 0.7, mean flow size = 30 pkts (1000 byte/pkt) and shape parameter is
1.2. Initial rate, R(0) = 0.05C. R(t) sweeps over it’s entire range depending on the input
conditions.

a higher rate to each flow, since if we give C/N(t) exactly to each flow we will never fill up

the link.

What would be more meaningful is convergence in the stochastic sense like E[N(t)]

(mean number of flows) and E[D(l)] (mean flow completion time for flow of length l)

converge to finite equilibrium values. Proving such a result rigorously is a notoriously hard

problem specially for non-linear delayed feedback systems such as RCP. The same is true

for TCP, XCP and other algorithms. A large number of simulations indicate that under

a variety of dynamic situations (like different flow arrival distributions, different flow size

distributions, offered load, link capacities, and round-trip times) RCP’s performance in

terms of E[N(t)] and E[D(l)] converges to that under ideal processor sharing for a wide

range of (α, β). These simulations are shown in Chap. 4.

The convergence of RCP’s performance measures E[D(l)] (and E[N(t)]) to that of pro-

cessor sharing is independent of the initial value of R(t) chosen. Our simulations support

this. For any particular simulation we observe that R(t) sweeps over the entire space (rang-

ing from minimum-rate to a maximum of link-rate), depending on the conditions on the

link. Any point could have been the starting point of the experiment. An example to

illustrate this is shown in Fig. 3.9. Notice that R(t) takes a wide range of values depending

on the input conditions. Starting with different initial values of R(t) will give different

sample paths of the stochastic processes N(t) and D(l), but the key point is the underlying

statistical properties E[N(t)] and E[D(l)] converge to that in processor sharing.

Given that the algorithm is stable for a wide range of (α, β), we picked those values for

42 CHAPTER 3. RATE CONTROL PROTOCOL

the RCP system to maximize performance for a wide range of traffic and network conditions.

3.5 Estimating the average round-trip time

RCP uses an estimate of average round-trip time to determine how quickly a standing queue

should be drained (q(t)/d), and how often it should update R(t). Just as with any control

system updating the rate less (or more) often than necessary can result in a sluggish (or

unstable) system.

Every packet passing through the router carries the source’s estimate of its RTT. The

router uses this to update its moving average, d, as follows:

d = θ · RTTp + (1 − θ) · d

where RTTp is value carried in the packet, and θ is the moving average gain. Note that

this gives an estimate of average RTT across all packets passing through the RCP queue,

as opposed to an average over number of flows. Even though this skews the RTT estimate

towards flows with larger number of packets, that’s what is desired because it’s the flows

with a large number of packets that last multiple RTTs and determine the control loop

stability. Stability depends less on short flows which finish within one or just a few RTTs.

In reality, the router’s RTT averaging above is achieved in two different steps as shown

below:

1. The data-path of an RCP router simply averages the RTT over all packets seen in the

control interval, T :

dT =

∑

i rtti
nT

(3.6)

where dT is the RTT average over time-interval T , rtti is the value carried in packet

i′s header, and nT is the number of packets carrying a valid RTT in interval T .

2. The control path (which also performs the RCP rate computation periodically) takes

dT as input to keep track of a smoothed estimate, d. It determines what the moving

average gain should be. In particular, if dT is much smaller than the smoothed version

(d), it is better to age d and bring it down gracefully as opposed to dropping it to a

sudden low value. This is achieved by deciding the moving-average gain as follows:

3.6. ACHIEVING DIFFERENTIAL BANDWIDTH SHARING 43

if (dT > d)

θ = T
d

else

θ = R
C · T

d · dT

d

The smoothed RTT is then updated as:

d = θ · dT + (1 − θ) · d

We will see in Chap. 5 why such an RTT averaging results in a system that remains

stable even in networks where flows with vastly heterogeneous round-trip times coexist.

3.6 Achieving differential bandwidth sharing

In this section we will explore how RCP is useful beyond one rate for all flows to achieve

differential bandwidth sharing among flows. Differential bandwidth sharing is useful in a

variety of contexts: for example, service providers frequently like to share a link in different

proportions among different flows depending on which customer they belong to and what

applications they are carrying. Another use is to emulate practical flow-size based disciplines

like those described in Chap. 2, Feedback-Based (FB) or Least Attained Service (LAS), or

SIFT described in [50]. In the absence of flow size information, these disciplines have been

proposed as an approximation to the optimal Shortest Remaining Processing Time. They

do not require knowledge of the entire flow-size but just the flow’s age (or how much it has

been served so far). The RCP algorithm can be used to emulate these disciplines.

We will illustrate with a simple example where the router would like to allocate two

different rates: one rate for the short flows and another rate for the long flows, in ratio of

1 : θ. A single rate is computed just as before in Eqn. 3.3:

R(t) = R(t − T)

(

1 +
T
d (α(η · C − y(t)) − β q(t)

d)

η · C

)

In addition to RTT value, packets also carry size of the flow transmitted so far; we will

call this as the age of a flow. This avoids the router to have to maintain any per flow state

as to how old each flow is. If the age of the flow is ≤ some threshold, Th, (flow is short so

44 CHAPTER 3. RATE CONTROL PROTOCOL

far) the router stamps in the packets with the rate R(t), otherwise the router classifies it as

a long flow and stamps with rate θ ·R(t) where 0 < θ < 1. Note above that now C/R is no

longer an estimate of the number of ongoing flows, N , but is (correctly so) an estimate of

Ns + θ · Nl, where Ns are the number of short flows and Nl, are the number of long flows.

R(t) is allowed to grow up to C/θ, and the rate assigned to a short flows equals

min(R(t), C) while that to a long flow equals min(θ ·R(t), C). It is important that R(t) be

allowed to grow up to C/θ, so that if there are only long flows in the system they will be

able to claim the link rate. As an example, if there is only one long-lived flow, R(t) will

eventually grow up to C/θ, and the long flow is given a rate equal to θ · R(t) = C.

The above example can be generalized to achieve differential sharing for any number of

levels.

3.7 Comparison with XCP’s mechanisms

Both XCP and RCP try to emulate processor sharing among flows, which is why their

control equations are similar. However, the manner in which they converge to PS is very

different; the main difference between XCP and RCP is in the kind of feedback that flows

receive. XCP gives a window increment or decrement over the current window size of the

flow (which is small for all newly starting flows). At any time each XCP flow can have a

different window size, different RTT and a different rate. XCP continuously tries to converge

to the point where all flows have the fair-share rate, by slowly reducing the window sizes

of the flows with rates greater than fair-share and increasing windows of the flows with

rates less than fair-share (while avoiding over-subscription). New flows start with a small

window, and the convergence could take several RTTs especially if there is little or no spare

capacity. If the flows arrive as a Poisson process with heavy-tailed flow sizes, then most

of the flows finish by the time they reach their fair share. The upside is XCP achieves a

stable network and avoids congestion related packet losses. In RCP, all flows (new and old)

receive the same rate feedback which is close to their equilibrium rate. This helps flows

finish quickly. We will see in Chap. 4 that how these different mechanisms of RCP and

XCP contribute to a large performance difference.

XCP is computationally more complex than RCP since it gives different feedback values

to each flow, and involves multiplications and additions for every packet. RCP maintains a

3.7. COMPARISON WITH XCP’S MECHANISMS 45

single rate for all flows and involves very few simple per-packet computations.2

2The router uses the RTT information in the packets to update its RTT estimate - our stability analysis
and simulations indicate that it is sufficient for the router to have a ”rough” estimate of the feedback delay,
and so it can even just sample a few packets and update its estimate of RTT.

Chapter 4

Flow completion times under RCP

Our goal in this chapter is to study RCP’s flow completion times for a broad range of network

and traffic conditions [14] [15]. We are particularly interested in how the flow completion

times compare with ideal processor sharing, with existing (TCP), and with newly proposed

mechanisms (XCP); and the impact they would have on users’ experience.

4.1 Simulation Setup

To get an idea of how RCP behaves, we first measure RCP’s flow completion times using

simulations.1 Later (in Chap. 6), we will repeat some of these results in experiments using

real implementations.

We compare the performance of RCP with Processor Sharing (PS), TCP and XCP. We

are primarily interested in the average flow completion time (AFCT).2 Flow completion

time (FCT) is defined as the time from when the sender sends a SYN packet until the

receiver receives the last data packet of the flow, i.e. FCT = 1 RTT for the connection

set-up plus the duration of the data transfer. We will use RTPD to abbreviate round-trip

propagation delay (i.e. the round-trip time minus the queuing delay). AFCT is the average

of FCT over all flows for the simulation run. Note that AFCT ≥ 1.5 RTPD + E[L]
C . This is

because (ignoring queuing delay) the minimum FCT for any flow of size L is: 1 RTPD for

SYN/SYN-ACK and (0.5 RTPD + L/C) for the data transfer. The analytical expression

1using ns-2 [24] (Version 2.29) augmented with RCP end-host and router modules.
2We will use the term ‘flow’ here to represent the packets corresponding to a particular TCP connection.

46

4.1. SIMULATION SETUP 47

for FCT of a flow of size L under processor sharing is [29]:

FCTPS = 1.5 RTPD +
L

C(1 − ρ)
(4.1)

where ρ is the offered load and C is the link capacity. We will use Eqn. 4.1 to compute the

PS values for our simulation setups. As secondary measures, we are also interested in the

link utilization, and the average number of ongoing or active flows – which in PS can be

simply computed by Little’s Law: E[N] = λ × FCTPS where λ is the flow arrival rate.

We will assume for now the usual rule-of-thumb that the size of a router’s queue equals

the bandwidth-delay product, i.e., link capacity multiplied by maximum RTPD of flows

passing through it [44]. Today router buffers are sized according to the rule-of-thumb, how-

ever recent research has challenged it and has shown buffers of several orders of magnitudes

smaller suffice for TCP to work well in high bandwidth networks with large statistical mul-

tiplexing [45][46]. We assume here that packets are dropped from the tail of the queue. Our

simulations are run until the performance measures converge.

Eqn. 3.3 is the rate update equation used in the RCP router. The RCP parameters

are: Control period, T = min(10 ms, RTT) and α = 0.1, β = 1.0. For TCP, we have tested

with TCP Reno, TCP New Reno, and TCP Sack modules in ns-2, with an initial window

size of two packets. These flavors of TCP have the same underlying congestion control

algorithms for window increase and decrease. They only differ in their behavior, in the

use of retransmission timeouts and recovery mechanisms, when there are multiple packet

drops within a window [57]. The ns-2 implementation of XCP (Version 1.1) is publicly

available [12], and the parameters are set as in reference [11].

All data packets are 1000 bytes and the control packets (SYN, SYN-ACK, FIN) are 40

bytes. It has been observed that the session arrivals can be accurately modeled as Poisson

and that the flows within a session can be bursty in nature [32]. However, it is reasonable

to suppose that flows arrive as a Poisson process, which would be the case when they

correspond to a large number of independent sessions [31]. Unless otherwise mentioned,

we will assume that flows arrive as a Poisson process with rate λ and flow sizes are Pareto

distributed [30, 32]. The offered load on a link is ρ = λE[L]/C. In our simulations we

vary each of the following parameters – ρ, E[S], C, RTPD, flow size distribution, arrival

process distribution – while keeping the rest constant, and observe how RCP, TCP and

XCP compare with PS when a network or traffic parameter is varied from one extreme to

48 CHAPTER 4. FLOW COMPLETION TIMES UNDER RCP

 0.1

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
g
e
 F

lo
w

 C
o
m

p
le

tio
n
 T

im
e
 [
se

c]

flow size [pkts] (normal scale)

XCP (avg.)
TCP (avg.)
RCP (avg.)
Slow-Start

PS

 0.1

 1

 10

 100

 10000 100000

A
ve

ra
g
e
 F

lo
w

 C
o
m

p
le

tio
n
 T

im
e
 [
se

c]

flow size [pkts] (log scale)

XCP (avg.)
TCP (avg.)
RCP (avg.)
Slow-Start

PS

 0.1

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ax

. F
lo

w
 C

om
pl

et
io

n
T

im
e

[s
ec

]

flow size [pkts] (normal scale)

XCP (max)
TCP (max)
RCP (max)
Slow-Start

PS

Figure 4.1: AFCT for different flow sizes when C = 2.4 Gb/s, RTPD = 0.1s, and ρ = 0.9.
Flows are Pareto distributed with E[L] = 25 pkts, shape = 1.2. The top left plot shows the
AFCT for flow sizes 0 to 2000 pkts; the right side plot shows the AFCT for flow sizes 2000
to 104 pkts; the bottom plot shows the maximum flow completion time among all flows of
the particular size.

the other.

4.2 When Traffic Characteristics Vary

In this section our goal is to find out if RCP’s performance is close to PS under different

traffic characteristics. All simulations in this section are done with a single bottleneck link

in the network.

4.2. WHEN TRAFFIC CHARACTERISTICS VARY 49

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
g
e
 F

lo
w

 C
o
m

p
le

tio
n
 T

im
e
 [
se

c]

flow size [pkts]

XCP (avg.)
TCP (avg.)
RCP (avg.)
Slow-Start

PS

 1

 10

 100

 2000 2500 3000 3500 4000 4500 5000 5500 6000

A
ve

ra
g
e
 F

lo
w

 C
o
m

p
le

tio
n
 T

im
e
 [
se

c]

flow size [pkts]

XCP (avg.)
TCP (avg.)
RCP (avg.)
Slow-Start

PS

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
a
x.

 F
lo

w
 C

o
m

p
le

tio
n
 T

im
e
 [
se

c]

flow size [pkts]

XCP (max)
TCP (max)
RCP (max)
Slow-Start

PS

Figure 4.2: AFCT for different flow sizes when C=0.15 Gb/s, RTPD=1.6s, and ρ = 0.9.
Flows are Pareto distributed with E[L] = 25 pkts, shape = 1.2. The top plots show the
AFCT for flow sizes 0 to 2000 pkts (left) and 2000 to 6000 pkts (right); the bottom plot
shows the maximum flow completion time among all flows of the particular size.

4.2.1 Average Flow Completion Time vs. Flow Size

In this section we will observe the AFCT of RCP, XCP and TCP for an entire range

of flow sizes in two particular simulation setups. These setups are chosen to represent

high bandwidth-delay product (C × RTPD) networks, since this is the scenario that often

differentiates the performance of protocols. In both setups flow sizes are Pareto distributed.

• Setup 1: C = 2.4 Gbps, RTPD = 100 ms, ρ = 0.9

AFCT is plotted against flow size in the top two graphs of Fig. 4.1. The AFCT of RCP

is close to that of PS and it is always lower than that of XCP and TCP. For flows up to

50 CHAPTER 4. FLOW COMPLETION TIMES UNDER RCP

2000 pkts, TCP delay is 4 times higher than in RCP, and XCP delay is as much as 30 times

higher for flows around 2000 pkts. Note the logscale of the y-axis.

With longer flows (> 2000 pkts), the ratio of XCP and RCP delay still remains around

30, while TCP and RCP are similar. For any fixed simulation time, not only was RCP

better for the flows that completed, but it also finished more flows (and more work) than

TCP and XCP.

The third graph in Fig. 4.1 shows the maximum delay for a given flow size. Note that

in RCP the maximum delay experienced by the flows is also very close to the average PS

delay. With all flow sizes, the maximum delay for RCP is smaller than for TCP and XCP.

TCP delays have high variance, often ten times the mean.

• Setup 2: C = 150 Mbps, RTPD = 1.6 s, ρ = 0.9

AFCT is plotted against flow size in the top two graphs of Fig. 4.2. Once again, the AFCT

for RCP is always lower than for TCP and XCP and is close to the PS delay for all flow

sizes. TCP’s delay is about five times higher than RCP, while XCP is 20 times higher.

The third figure shows the maximum delay for all three algorithms, and again TCP has the

highest delay variance. RCP’s mean and maximum are close.

The results above are representative of the large number of simulations we performed.

Now let’s see why these protocols have such different delays.

RCP vs. TCP: In both Figs., 4.1 and 4.2, the TCP delay for most flows follows the

Slow-start curve. The delay in TCP slow-start for a flow of size L is [log2(L + 1) + 1/2] ×
RTPD + L/C (excluding the queuing delay). With RCP the same flows get a jump-start

because the routers set a higher initial rate close to what they would have gotten with PS.

Hence their delay is close to PS. This is clear from the time evolution of a typical flow, as

shown in Fig. 4.3 (top plot).

Next, consider the TCP flows which deviate from the Slow-start curve. These flows

experienced at least one packet drop in their lifetime and entered the additive increase,

multiplicative decrease (AIMD) phase. Once a flow is in the AIMD phase, it is slow in

catching up with any spare capacity and therefore lasts longer than it needs to. RCP on

the hand is quick to catch up with any spare capacity available and flows finish sooner. An

example of the time evolution of a flow is shown in Fig. 4.3 (bottom plot).

RCP vs. XCP: The time evolution of XCP for two sample flows is shown in Fig. 4.3.

XCP is slow in giving bandwidth to the flows, giving a small rate to newly starting flows. It

gradually reduces the window sizes of existing flows and increases the window sizes of the

4.2. WHEN TRAFFIC CHARACTERISTICS VARY 51

 0

 50

 100

 150

 200

 250

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

s
e
q
u
e
n
c
e
 n
u
m
b
e
r

simulation time [sec]

RCP
TCP
XCPRCP

TCP

XCP

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4 5 6 7 8 9 10 11 12 13

se
q
u
e
n
ce
 n
u
m
b
e
r

simulation time [sec]

RCP
TCP
XCP

RCP

TCP
XCP

Figure 4.3: Time evolution of the sequence numbers of two flows under TCP (Reno), XCP
and RCP, chosen from the simulation set up of Fig. 4.1. The flow size in the top plot is 230
pkts, and in the bottom plot is 3600 pkts.

new flows, making sure there is no bandwidth over-subscription. It takes multiple RTTs

for most flows to reach their fair share rate (which is changing as new flows arrive). Many

flows complete before they reach their fair share rate. In general, XCP stretches the flows

over multiple RTPDs, to avoid over-subscribing the link, and so keep buffer occupancy

low. On the other hand, RCP tries to give the equilibrium rate to every flow based on the

information it has so far, at the expense of temporary bandwidth over subscription.

4.2.2 When mean flow size increases

Fig. 4.4 compares AFCT when mean flow size gets longer. Flow sizes are Pareto distributed

and the mean flow size is varied from 30 pkts (equals 1
1000 ·C ·RTPD) to 30,000 pkts (equals

C ·RTPD). The top plot shows the AFCT averaged over flows with < 7, 000 pkts and the

bottom one is for flows ≥ 7, 000 pkts.3 There are two points to take away from the graph:

3We consider these two different ranges because, with a Pareto distribution, there are many more short
flows than long flows. Just taking the average AFCT over all flows is more representative of the short flows
than the long flows.

52 CHAPTER 4. FLOW COMPLETION TIMES UNDER RCP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 100 1000 10000 100000

A
F

C
T

 [s
ec

]

Mean Flow Size (pkts)

XCP (< 7000 pkts)
TCP (< 7000 pkts)

PS
RCP (< 7000 pkts)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10 100 1000 10000 100000

A
F

C
T

 [s
ec

]

Mean Flow Size (pkts)

XCP (>= 7000 pkts)
TCP (>= 7000 pkts)

PS
RCP (>= 7000 pkts)

Figure 4.4: Comparison of AFCT as the mean flow size increases. Flows are Pareto dis-
tributed with shape 1.2 and the mean flow size varies as shown on x-axis. C = 2.4 Gb/s,
RTPD = 0.1s and ρ = 0.8. The top plot shows the AFCT for flows with < 7000 pkts vs.
mean flow size; the bottom plot shows the AFCT for larger flows (> 7000pkts) vs. mean
flow size.

1. The AFCT of RCP is close to PS irrespective of the mean flow size.

2. The performance of XCP and TCP is reversed as the mean flow size increases: For

small flows, XCP performs far worse than TCP – see bottom plot of Fig. 4.4. As flows

get larger, XCP’s performance gets closer to PS while TCP deviates further from it.

XCP vs. TCP: The reversal in performance of XCP and TCP is also clearly illustrated

in Fig. 4.5. The top plot shows a snap shot of the AFCTs for E[L] = 30 pkts and the

bottom two plots are for E[L] = 30000 pkts. In the bottom plot the AFCT of TCP flows is

more than an order of magnitude higher than in PS – this is due to the well known problem

with TCP in high bandwidth delay product environments [25] i.e., long flows are unable to

catch up with spare bandwidth quickly after experiencing a loss. XCP and RCP are both

close to PS. On the other hand, for small flows, XCP’s performance is worse than TCP’s

because XCP is conservative in giving bandwidth to flows, especially newly starting flows.

This unnecessarily prolongs flows and so the number of active/ongoing flows begins to grow.

4.2. WHEN TRAFFIC CHARACTERISTICS VARY 53

 0.1

 1

 10

 100 1000 10000

A
F

C
T

 [
s
e
c
s
]

Flow Size [pkts]

XCP
RCP
TCP

PS

 0.1

 1

 10

 100

 10000 100000 1e+06

A
F

C
T

 [
s
e

c
s
]

Flow Size [pkts]

RCP
PS

 0.1

 1

 10

 100

 10000 100000 1e+06

A
F

C
T

 [
s
e

c
s
]

Flow Size [pkts]

XCP
TCP

PS

Figure 4.5: Comparison of AFCT as the mean flow size increases. The simulation set up is
the same as in Fig. 4.4. The top graph shows the AFCT vs. flow size when E[L] = 30; the
bottom left (RCP) and bottom right graph (TCP, XCP) show the AFCT vs. flow size when
E[L] = 30000 pkts. RCP does close to PS irrespective of mean flow size. The performance
of XCP and TCP are reversed with the increase in the mean flow size.

This in turn reduces the rate of new flows, and so on. Our many simulations showed that

new flows in XCP start slower than with Slow-Start in TCP.

We will see next that this phenomenon is not specific to Pareto distributed flows, but

happens with other distributions as well.

4.2.3 Different flow size distributions

We simulated RCP, TCP and XCP under several different flow size distributions and for

different parameters of each distribution. We will present representative examples here. We

chose three distributions – uniform, exponential and Pareto – to represent super exponential-

tailed, exponential-tailed and heavy-tailed distributions. Figs. 4.6, 4.7, and 4.8 show the

AFCT and number of active flows for uniform, exponential and Pareto respectively. The

54 CHAPTER 4. FLOW COMPLETION TIMES UNDER RCP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 20 22 24 26 28 30 32 34 36 38 40

A
F

C
T

 [
s
e
c
s
]

Flow Size [pkts]

XCP
RCP

PS
TCP

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 5 10 15 20 25 30

N
u
m

b
e
r

o
f
a
c
ti
v
e
 f
lo

w
s

Time (secs)

XCP
TCP
RCP

PS

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 5 10 15 20

N
o
rm

a
liz

e
d
 l
in

k
 u

ti
liz

a
ti
o
n

Time (secs)

XCP
TCP

Figure 4.6: Comparison under uniform distributed flow sizes [20, 40]. C = 2.4 Gbps, RTPD
= 0.1 sec, ρ = 0.8. The top left graph shows the AFCT vs. flow size, the right side graph
shows the number of active flows versus time and the bottom graph shows the normalized
link utilization (RCP utilization is omitted for sake of clarity). Note how XCP builds up
work in the system due to it’s conservative nature of giving out bandwidth to flows.

 0.1

 1

 10

 0 50 100 150 200 250 300 350 400

A
F

C
T

 [
s
e
c
s
]

Flow Size [pkts]

XCP
RCP
TCP

Slow Start
PS

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 0 5 10 15 20 25 30 35

N
u
m

b
e
r

o
f
a
c
ti
v
e
 f
lo

w
s

Time (secs)

XCP
TCP

PS
RCP

Figure 4.7: Flows sizes have exponential distribution with E[L] = 30 pkts. The rest of the
set up is same as in Fig. 4.6.

4.2. WHEN TRAFFIC CHARACTERISTICS VARY 55

 0.1

 1

 10

 100

 10 100 1000 10000

A
F

C
T

 [
s
e
c
s
]

Flow Size [pkts]

XCP
RCP
TCP

Slow Start
PS

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50

N
u
m

b
e
r

o
f
a
c
ti
v
e
 f
lo

w
s

Time (secs)

XCP
TCP
RCP

PS

Figure 4.8: Flows have Pareto distributed flow sizes with E[L] = 30 pkts and shape param-
eter = 1.8. The rest of the set up is same as in Fig. 4.6.

 0.1

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
F

C
T

 [
s
e
c
s
]

Flow Size [pkts]

XCP
RCP
TCP

lower bound

 10000

 15000

 20000

 25000

 30000

 0 5 10 15 20

N
u
m

b
e
r

o
f
a
c
ti
v
e
 f
lo

w
s

Time (secs)

XCP
TCP

lower bound (for mean)
RCP

Figure 4.9: Comparison when flows arrival times are Pareto distributed, shape = 1.2.
E[L] = 30 pkts, C = 2.4 Gbps, RTPD = 0.5 sec, ρ = 0.9. RCP, TCP and XCP are
compared with the minimum possible AFCT = 1.5RTPD + L

C . The lower bound for the
mean number of active flows is given by Little’s Law.

take away point from all these plots is that RCP follows PS closely regardless of the flow-size

distribution.

As noted before, because the mean flow size is small compared to the bandwidth delay

product, XCP has a large number of active flows and an AFCT higher than TCP.4

4.2.4 Non-Poisson flow arrivals

Up until now we have only considered the case when new flows arrive according to a Poisson

process. In practice, “flash crowds” can happen due to a sudden interest in a website, time

of day, a particular set of data, or just bad luck. While we can expect a sudden burst of

4In some of the simulations, not shown here, the number of active flows in XCP was still growing when
the simulation ended and did not converge to any equilibrium point. This may either be because XCP does
not have any equilibrium point i.e. the system is stochastically unstable in the sense of E[N] → ∞ or that
it has an equilibrium but which is a larger number than the simulation reached.

56 CHAPTER 4. FLOW COMPLETION TIMES UNDER RCP

new flows to upset RCP - in particular, to temporarily upset RCP’s estimate of N(t) - RCP

should recover and converge to the new situation within a few RTTs.

Our simulations suggest that this is the case. We simulated RCP, TCP and XCP

with bursty flow arrivals using a Pareto distribution. Fig. 4.9 shows one such example.

Qualitatively, our results are the same as we observed with Poisson flow arrivals. Since we

do not have an expression for PS under a G/G/1 model, we compare the AFCT with its

lower bound i.e. 1.5RTPD + L/C. RCP compares well with the lower bound in all cases

we considered.

These simulations only show the typical behavior. The worst case behavior of RCP is

when there is a sudden flash crowd of large elephant flows starting at nearly the same time.

In such scenarios, we are interested in finding out (as we will see in Chap. 5) whether and

how fast the RCP system converges to a stable behavior.

4.2.5 As load increases

The results so far were for the case when average offered load is at or below 90%. Fig. 4.10

shows the AFCT as the offered load is varied. The main observations are:

1. The AFCT of RCP follows that of PS closely.

2. Under low loads and for large flows, TCP’s AFCT is as much as fourteen times higher

than PS (and RCP) but improves with increased load. XCP on the other hand has

sufficient spare capacity under low loads so as not to make all flows last many RTTs.

On the other hand XCP’s performance gets worse with an increase in load – because

with increased load, the system maintains more active flows and hence increases flow

duration.

We have seen such a switch in performance between XCP and TCP once before in

Sec. 4.2.2 as the mean flow size increases. We see that here again as the offered load

increases. A detailed plot is shown in Fig. 4.11 under a different setting, for a low offered

load of 0.2 and in Fig. 4.12 for a high offered load of 0.94. Notice that XCP performs better

than TCP on average under a low load regime and vice versa under a high load regime.

RCP’s performance is fairly independent of the offered load.

4.2. WHEN TRAFFIC CHARACTERISTICS VARY 57

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
F

C
T

 (
se

c)

Load

PS
XCP (< 500 pkts)
TCP (< 500 pkts)
RCP (< 500 pkts)

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
F

C
T

 (
se

c)

Load

PS
XCP (>= 500 pkts)
TCP (>= 500 pkts)
RCP (>= 500 pkts)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

.
A

v
g
 Q

u
e
u
e
 S

iz
e

Load

TCP
XCP
RCP

Figure 4.10: Comparison of RCP, TCP and XCP under different loads with C = 150 Mb/s
and RTPD = 0.1s. The top two plots shows the AFCT vs. load and the bottom plot shows
the normalized average queue length vs. load.

 0.1

 1

 10

 100

 10 100 1000 10000 100000 1e+06 1e+07

A
FC

T
[s

ec
s]

Flow Size [pkts]

XCP
RCP
TCP

Slow Start
PS

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r o

f a
ct

iv
e

flo
w

s

Time (secs)

XCP
TCP
RCP

PS

Figure 4.11: Comparison of RCP, TCP and XCP under low offered load of ρ = 0.2, C = 2.4
Gb/s, RTPD = 0.1s, Pareto flows E[L] = 300 pkts. The left plot shows the AFCT vs. flow
size and the right plot shows the number of active flows vs. time. XCP finishes flows faster
than TCP under this low load regime.

58 CHAPTER 4. FLOW COMPLETION TIMES UNDER RCP

 0.1

 1

 10

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

A
FC

T
[s

ec
s]

Flow Size [pkts]

RCP (<= 20000 pkts)
TCP (<= 20000 pkts)
XCP (<= 20000 pkts)

Slow Start
PS

 1

 10

 100

 100000 1e+06

A
FC

T
[s

ec
s]

Flow Size [pkts]

XCP (> 20000 pkts)
RCP (> 20000 pkts)
TCP (> 20000 pkts)

Slow Start
PS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100 120 140 160 180 200

N
um

be
r o

f a
ct

iv
e

flo
w

s

Time (secs)

XCP
TCP
RCP

PS

Figure 4.12: Comparison of RCP, TCP and XCP under a high offered load of ρ = 0.94,
C = 2.4 Gb/s, RTPD = 0.1s, Pareto flows E[L] = 283.35 pkts. The top and middle plot
show the AFCT versus flow size and the bottom plot shows the number of active flows
versus times. TCP finishes flows quicker than XCP under the high load regime.

4.3 When Network Conditions Vary

In this section we explore how well the congestion control algorithms match PS under

different network conditions. We will vary the link capacity, round-trip times, and increase

the number of bottlenecks. In each case, we find that RCP matches PS closely. In the

simulations that follow, flows arrive as a Poisson process with Pareto distributed flow sizes,

E[L] = 25 pkts, shape = 1.2.

4.3.1 When link capacity increases

As link capacity increases, the bandwidth-delay product increases, and so more flows can

potentially complete in fewer RTTs. Fig. 4.13 shows the AFCT for flows < 500 pkts and

4.3. WHEN NETWORK CONDITIONS VARY 59

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1010.15

A
F

C
T

 [
s
e
c
]

Link Capacity [Gb/s]

XCP (< 500 pkts)
TCP (< 500 pkts)
RCP (< 500 pkts)

PS

 0
 1
 2
 3
 4
 5
 6
 7
 8

1010.15

A
F

C
T

 [
s
e
c
]

Link Capacity [Gb/s]

XCP (>= 500 pkts)
TCP (>= 500 pkts)
RCP (>= 500 pkts)

PS

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

0.15 1 10N
o
rm

a
liz

e
d
 A

v
g
.
Q

u
e
u
e
 S

iz
e

Link Capacity [Gb/s]

TCP
RCP
XCP

Figure 4.13: The comparison of RCP, TCP and XCP under different capacities; RTPD =
0.1s and ρ =0.9. The top left plot shows AFCT of flows with size < 500 pkts, the right plot
shows AFCT of flows with size ≥ 500 pkts. The bottom plot shows the normalized average
queue size.

≥ 500 respectively,5 for link capacities varying from 100 Mbps to 9.6 Gbps.6 AFCT for

RCP is always lower than for TCP and XCP, and is close to PS for any link capacity. TCP

and XCP require multiple RTTs to find the rate for a flow, and so short flows are forced to

last longer than necessary. As link rates increase, the problem gets worse for short flows.

For flows with fewer than 500 packets, flows last three times longer with XCP than with

RCP; and twice as long for TCP than for RCP. For flows with more than 500 packets, flows

last 30 times longer with XCP, and six times longer with TCP than with RCP. Fig. 4.13 also

shows the normalized queue sizes i.e. average queue size divided by the product C×RTPD.

The normalized queue size of RCP is 2% of the bandwidth-delay product for all the link

capacities and is smaller than that of TCP. XCP always maintains a very small queue size.

599.5% of flows have size < 500 pkts
6RTPD and load are fixed at 100ms and 0.9 respectively for all simulations.

60 CHAPTER 4. FLOW COMPLETION TIMES UNDER RCP

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

A
F

C
T

 [
s
e
c
]

Round-Trip Propagation Delay [sec]

PS
XCP (< 500 pkts)
TCP (< 500 pkts)
RCP (< 500 pkts)

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

A
F

C
T

 [
s
e
c
]

Round-Trip Propagation Delay [sec]

PS
XCP (>= 500 pkts)
TCP (>= 500 pkts)
RCP (>= 500 pkts)

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
o
rm

.
A

v
g
.
Q

u
e
u
e
 S

iz
e

Round-Trip Propagation Delay [sec]

TCP
RCP
XCP

Figure 4.14: The comparison of RCP, TCP and XCP under different RTPDs, C =150Mb/s,
ρ =0.9. The top left plot shows AFCT of flows with sizes < 500 pkts and the right plot
shows AFCT of flows with sizes ≥ 500 pkts. The bottom plot shows the normalized average
queue size.

4.3.2 When Round-Trip Propagation Delay increases

Increasing the path length also increases the bandwidth-delay product, making it possible

for flows to complete in fewer RTTs. Fig. 4.14 shows the performance for different RTPDs

ranging from 10 ms to 1.6 s, with a fixed C = 150 Mb/s and ρ = 0.9.

Again, RCP flow duration is lower than for TCP and XCP, and follows the PS line

closely for all RTPDs. Flows with fewer than 500 pkts last about 2.5 times longer with

TCP and XCP than for RCP. And flows with more than 500 pkts last four times longer

with TCP and thirteen times longer with XCP than with RCP.

As with PS, RCP is robust to variations in propagation delay: As RTPD increases,

the AFCT of flows increases as 1.5 RTPD – the first term in Eqn. 4.1; the queuing +

transmission delay is independent of RTPD in RCP, just as with PS.

4.3. WHEN NETWORK CONDITIONS VARY 61

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
F

C
T

 [
s
e
c
]

Round-Trip Propagation Delay [sec]

XCP (< 500 pkts)
TCP (< 500 pkts)
RCP (< 500 pkts)

PS

 0

 1

 2

 3

 4

 5

 6

 7

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
F

C
T

 [
s
e
c
]

Round-Trip Propagation Delay [sec]

XCP (>= 500 pkts)
TCP (>= 500 pkts)
RCP (>= 500 pkts)

PS

Figure 4.15: Comparison of RCP, TCP and XCP when flows with different RTPDs coexist
on a single bottleneck of C = 0.64 Gb/s. RTPD of flows vary from 0.02s to 0.2s. The left
plot is the AFCT of flows with flow size ≤ 500 pkts and the right plot shows the AFCT for
flows with size > 500 pkts.

0.01

0.1

1

10

10 100 1000 10000

A
vg

.
F

lo
w

 C
o

m
p

le
tio

n
 T

im
e

 [
se

c]

Flow Size [pkts]

XCP (RTPD:0.02s)
TCP (RTPD:0.02s)
RCP (RTPD:0.02s)

Slow-Start
OPT

0.1

1

10

10 100 1000 10000

A
vg

.
F

lo
w

 C
o

m
p

le
tio

n
 T

im
e

 [
se

c]

Flow Size [pkts]

XCP (RTPD:0.2s)
TCP (RTPD:0.2s)
RCP (RTPD:0.2s)

Slow-Start
OPT

Figure 4.16: Comparison of RCP, TCP and XCP when flows with different RTPDs coexist
on a single bottleneck of C = 0.64 Gb/s. RTPD of flows vary from 20 ms. to 200 ms. The
left plot is the AFCT of flows with RTPD = 20ms and the right plot shows the AFCT for
flows with RTPD = 200 ms.

4.3.3 Flows with different round-trip times

All three congestion control schemes depend on feedback to adjust the window size and/or

sending rate. If different flows have shorter round-trip times, we do not want them to benefit

at the expense of others.

To explore this effect we simulated flows that share a common bottleneck link, but with

different RTPDs. The round-trip delay of the common bottleneck link is 0.01 sec. and its

capacity is 640 Mb/s. Arriving flows are classified into ten groups. Flows in the same group

have the same end to-end RTPD, and each group has an RTPD of 0.02, 0.04, ..., 0.18, or

0.2 sec. All groups have the same flow arrival rate and total ρ = 0.9.

Fig. 4.15 shows the AFCT for these different groups of flows. The x-axis is each group’s

62 CHAPTER 4. FLOW COMPLETION TIMES UNDER RCP

RTPD. For each RTPD, RCP is close to PS, suggesting that RCP is not biased in favor

of flows with shorter RTPD. For a more explicit illustration of this fact, Fig. 4.16 shows

the AFCT for two different groups of flows. The top figure shows the AFCT for flows with

RTPD of 0.02s (smallest value) while the bottom figure is for flows with RTPD 0.2s (largest

value). RCP seems robust to variations in RTT and achieves close to the minimum AFCT

for each of the group of flows.

4.3.4 When the reverse link is congested

So far the flows encountered a single bottleneck link in the forward direction. In this section

the reverse link is also bottlenecked, allowing us to observe any effect on flow completion

times when the ACKs encounter congestion. Fig. 4.17 shows the performance of the three

protocols when the forward and reverse links are both loaded at 0.75. For comparison

purposes Fig. 4.18 shows the corresponding performance when there is no reverse traffic.

The only way we can expect a reverse congested link to affect the forward traffic is through

the ACKs experiencing queuing delay or being dropped. Since the queue sizes in RCP

and XCP are under control and are deliberately driven to zero, we can expect the reverse

congestion to have little or no effect on the forward traffic. The results in Figs. 4.17 and

4.18 confirm this. TCP on the other hand maintains large buffer occupancies resulting in

delayed or dropped ACKs. This results in increased timeouts at the sender and eventually

increased flow completion times.

TCP’s performance deterioration under reverse congestion is further illustrated in Fig. 4.19

where now there is a high offered load of 0.95 on both forward and reverse links. We saw

in Sec. 4.2.5 that under high loads TCP out-performs XCP. But in the presence of reverse

congestion, TCP performs just as poorly as XCP. In fact in this particular simulation with

a high load on both forward and reverse link, TCP and XCP appear to be stochastically

unstable in the sense that E[N(t)] does not converge. Unlike with TCP, XCP’s instability

is probably just due to the heavy offered load and has nothing to do with the reverse traffic.

In case of RCP, the performance is slightly worse than PS, nevertheless comparable to PS

and stable.

A final example is shown in Fig. 4.20 and 4.21 with a heavy load of 0.95 on the forward

link and a light load of 0.2 on the reverse link. The results reiterate the observations made

before — for the heavily loaded link, the active number of flows in XCP continually increases,

TCP flows see a large variance in the flow completion times, while RCP’s performance is

4.3. WHEN NETWORK CONDITIONS VARY 63

 0.1

 1

 10

 100

 0 5000 10000 15000 20000 25000 30000 35000 40000

A
FC

T
[s

ec
s]

Flow Size [pkts]

XCP (<= 40000 pkts)
RCP (<= 40000 pkts)
TCP (<= 40000 pkts)

Slow Start
PS

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 10 20 30 40 50

N
um

be
r o

f a
ct

iv
e

flo
w

s

Time (secs)

XCP
TCP
RCP

PS

Figure 4.17: Comparison of RCP, TCP and XCP when both forward and reverse link are
bottlenecked. Offered load = 0.75, E[L] = 46 pkts, C = 2.4 Gbps, RTT = 0.2 s. The left
plot shows the AFCT versus flow size and the right plot shows the number of active flows
over time. Compare the metrics here with Fig. 4.18 and notice the increased variance in
TCP’s delay and the number of active flows. The reverse traffic metrics (not shown here)
are qualitatively similar.

 0.1

 1

 10

 100

 0 5000 10000 15000 20000 25000 30000 35000 40000

A
FC

T
[s

ec
s]

Flow Size [pkts]

XCP (<= 40000 pkts)
RCP (<= 40000 pkts)
TCP (<= 40000 pkts)

Slow Start
PS

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50

N
um

be
r o

f a
ct

iv
e

flo
w

s

Time (secs)

XCP
TCP
RCP

PS

Figure 4.18: Comparison of RCP, TCP and XCP when only forward link is congested.
Offered load = 0.75, E[L] = 46 pkts, C = 2.4 Gbps, RTT = 0.2 s.

comparable to PS. In case of the lightly loaded link, as was seen in Sec. 4.2.5, XCP performs

better than TCP.

4.3.5 When there are multiple bottlenecks

While flows typically encounter only one bottleneck, it is possible for a flow to encounter

two or more. Fig. 4.22 shows a topology with n cascaded bottleneck links. Flows in group 0

traverse all the bottleneck links, and flows in group i(i = 1, .., n−1) use only the bottleneck

link i. All the bottleneck links have the same capacity C and the same delay, and all flow

64 CHAPTER 4. FLOW COMPLETION TIMES UNDER RCP

 0.1

 1

 10

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

A
FC

T
[s

ec
s]

Flow Size [pkts]

XCP (<= 20000 pkts)
RCP (<= 20000 pkts)
TCP (<= 20000 pkts)

Slow Start
PS

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30 35 40

N
um

be
r o

f a
ct

iv
e

flo
w

s
Time (secs)

XCP
TCP
RCP

PS

Figure 4.19: Comparison of RCP, TCP and XCP when both forward and reverse link are
bottlenecked. Offered load = 0.95, E[L] = 46 pkts, C = 2.4 Gbps, RTT = 0.2 s. The
top plot shows the AFCT versus flow size and the bottom plot shows the number of active
flows over time. XCP and TCP appear to be stochastically unstable. RCP’s performance
deviates slightly from PS but is stable.

 0.1

 1

 10

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

A
F

C
T

 [s
ec

s]

Flow Size [pkts]

XCP (<= 20000 pkts)
RCP (<= 20000 pkts)
TCP (<= 20000 pkts)

Slow Start
PS

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0 5 10 15 20 25 30 35 40

N
um

be
r

of
 a

ct
iv

e
flo

w
s

Time (secs)

XCP
TCP
RCP

PS

Figure 4.20: Comparison of AFCTs when both forward and reverse link are bottlenecked.
Forward link: offered load = 0.95, E[L] = 46 pkts, C = 2.4 Gbps, RTT = 0.2 s. The left
plot shows the AFCT versus flow size and the right plot shows the number of active flows
over time. XCP appears to be stochastically unstable. TCP flows have a large variance in
the flow completion times. RCP’s performance deviates slightly from PS but is stable.

4.3. WHEN NETWORK CONDITIONS VARY 65

 0.1

 1

 10

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

AF
C

T
[s

ec
s]

Flow Size [pkts]

XCP (<= 20000 pkts)
RCP (<= 20000 pkts)
TCP (<= 20000 pkts)

Slow Start
PS

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 5 10 15 20 25 30 35 40

N
um

be
r o

f a
ct

iv
e

flo
w

s

Time (secs)

XCP
TCP
RCP

PS

Figure 4.21: Comparison of RCP, TCP and XCP when both forward and reverse link are
bottlenecked. Reverse link: offered load = 0.2, E[L] = 46 pkts, C = 2.4 Gbps, RTT = 0.2
s. The left plot shows the AFCT versus flow size and the right plot shows the number of
active flows over time. As expected under low load, XCP performs better than TCP, while
RCP is close to PS.

flow

group 0

flow

group 1

flow

group 2

flow

group n-1

n bottleneck links

bottleneck

link 0

bottleneck

link 1

Figure 4.22: Multiple bottleneck topology. Flow group 0 traverses all the bottleneck links
and the other group of flows (group 1,..,n-1) use only one bottleneck link.

groups have the same arrival rate λ.

Here, we investigate the effect of increasing the number of bottlenecked hops on flows

in group 0. While fixing the RTPD of flow group 0 at 0.2s, we increase the number of hops

to one, two, four, eight and observe how AFCT changes. The AFCT for flow group 0 is

plotted in Fig. 4.23. RCP always achieves a delay close to the lower bound irrespective of

the number of hops. The performance of TCP degrades as the number of hops increase.

We noticed that TCP flows have a greater chance of experiencing losses when traversing

through multiple bottlenecks, and in general have a lower throughput.

The detailed plots of AFCT vs. flow-size as the number of bottlenecked links increase

are shown in Fig. 4.24. Notice how the performance of TCP degrades as the number of

66 CHAPTER 4. FLOW COMPLETION TIMES UNDER RCP

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8

A
F

C
T

 [
s
e
c
]

Network Size [hops]

XCP (< 500 pkts)
TCP (< 500 pkts)
RCP (< 500 pkts)

lower bound

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1 2 3 4 5 6 7 8

A
F

C
T

 [
s
e
c
]

Network Size [hops]

XCP (>= 500 pkts)
TCP (>= 500 pkts)
RCP (>= 500 pkts)

lower bound

Figure 4.23: The comparison of RCP, TCP and XCP under 1,2,4 8 bottlenecks, C=0.64
Gb/s, RTPD of flow group 0 is 0.1 s, ρ = 0.9. The left plot shows the AFCT of flow group
0 for flow sizes < 500; the right plot shows the AFCT of flow group 0 for flow sizes ≥ 500.

0.1

1

10

100

10 100 1000 10000 100000

A
vg

.
F

lo
w

 C
o

m
p

le
tio

n
 T

im
e

 [
se

c]

Flow Size [pkts]

XCP(1 hops)
TCP(1 hops)
RCP(1 hops)

SlowStart
1.5 x RTPD

0.1

1

10

100

10 100 1000 10000 100000

A
vg

.
F

lo
w

 C
o

m
p

le
tio

n
 T

im
e

 [
se

c]

Flow Size [pkts]

XCP(2 hops)
TCP(2 hops)
RCP(2 hops)

SlowStart
1.5 x RTPD

0.1

1

10

100

10 100 1000 10000 100000

A
vg

.
F

lo
w

 C
o

m
p

le
tio

n
 T

im
e

 [
se

c]

Flow Size [pkts]

XCP(4 hops)
TCP(4 hops)
RCP(4 hops)

SlowStart
1.5 x RTPD

0.1

1

10

100

10 100 1000 10000 100000

A
vg

.
F

lo
w

 C
o

m
p

le
tio

n
 T

im
e

 [
se

c]

Flow Size [pkts]

XCP(8 hops)
TCP(8 hops)
RCP(8 hops)

SlowStart
1.5 x RTPD

Figure 4.24: The comparison of RCP, TCP and XCP under 1,2,4 8 bottlenecks, C = 0.64
Gb/s, RTPD of flow group 0 is 0.1 s, ρ = 0.9. Top through bottom are plots showing AFCT
of flow group 0 for number of bottleneck links = 1, 2, 4 and 8 respectively.

4.4. IMPACT OF RCP’S SHORT FLOW COMPLETION TIMES 67

bottlenecks increase; the AFCT of TCP gets farther away from the Slow-Start curve as the

flow passes through more bottlenecks. This is because the probability of a loss increases as

a flow traverses through multiple bottlenecks, and hence having a greater chance of entering

into AIMD phase.

RCP achieves max-min bandwidth sharing in the multiple bottleneck case, and with

multiple bottlenecks, flows complete an order of magnitude faster with RCP than with

TCP or XCP.

4.4 Impact of RCP’s short flow completion times on network

users

We have hundreds of simulations illustrating RCP’s short flow completion times under

different network and traffic conditions, but we also want to understand how this will

impact end users’ experience. To that end, we articulate three distinct examples below on

how RCP will improve our day-to-day interactions over the network.

Example 1: Downloading short back-to-back files (e.g. pictures, video-clips)

A single short download often only takes such a short time, that improving upon it may

not be even discernible to a human eye. However latency is additive, and doing multiple

such back-to-back short downloads makes the difference more obvious, as is the case in

the following example: a network user, Zoe, with an access to 100 Mbps link is looking to

replace her desktop wallpaper. She goes to the popular photo sharing site, Flickr [61], and

searches for all images showing sunsets by the Golden Gate bridge. A page with thumbnail

images comes up, she then clicks on individual images to get larger versions. Suppose each

image is 1 MB each and she settles down on the one she likes after looking at 10 images.

With TCP, even in the very best case, with no packet losses and no congestion, each

image takes at least 10 round trips due to TCP’s slow-start. With an average round-trip

time of 80 ms., it will be at least 8 s. before Zoe finds the image she likes. With RCP, each

image downloads within one round-trip time and Zoe can find what she is looking for in

less than a couple of seconds.

An alternative way of looking at it is in the time it takes Zoe to download 10 of these

images with TCP, she can download 50 of them with RCP.

68 CHAPTER 4. FLOW COMPLETION TIMES UNDER RCP

Example 2: When users join and leave the network dynamically

We often use the network dynamically, one moment we are downloading email, the next

instance we are following a link in an email to browse through online pictures, and so on.

Naturally, we also want congestion control to keep pace by adapting just as quickly. TCP

cannot always keep up with the sudden changes or availability in link bandwidth, as is the

case in the example where a network user, Jessica, is watching videos from YouTube when

other network users start up different applications. The video quality degrades over time as

there are 20 other users sharing the link - some downloading email, some watching television

through the Internet, others downloading iTunes music, and yet others the latest release of

Linux kernel. Suppose, these users are all approximately sharing the the 100 Mbps link in

equal shares, and after a while they are done downloading what they have to and Jessica is

expecting to see her video quality jump up to as it was before any of these had started. But

the reality is, a TCP flow in congestion avoidance will take close to 1100 round-trip times

or a 118 seconds (with a round-trip time of 80 ms.) to fill the pipe with traffic. On the

other hand, RCP is capable of making quick use of available bandwidth within a reasonable

value of 10 RTTs i.e. within a second, and Jessica sees the video quality improve in a blast.

Example 3: Crisscrossing flows across the globe

With individual user content popping up in every continent, it is now quite common for

flows originating from half the way across the world to share links with flows originating

in the same city. In such situations, we want congestion control to treat all flows equally.

For example a network user at Stanford, Rui, is watching a video clip from University of

Melbourne with a round trip of 200 ms. Neda, another user at Stanford, is transferring a

file from a nearby server in Palo Alto with a round trip of 10 ms. Because TCP flows with

long round trips have a difficult time getting their fair-share of the bottleneck link, Rui’s

video from Australia is barely a trickle, while Neda’s flow ramps up fast and hogs the links.

RCP, on the other hand, ensures a fair allocation to all without distinguishing based on

RTTs, so all users are happy.

Chapter 5

Stability of RCP

In the last chapter we saw how RCP behaves under “normal” traffic conditions. However,

sudden and large changes in traffic can and will occasionally happen in real networks. They

are more likely to happen more often in access networks which typically have a low degree

of statistical multiplexing. Even in backbone networks, where traffic is usually smooth

and highly multiplexed, sudden changes can happen if there is a link or a router line-card

failure. After such an impulse change, the network can transition to one of two states - it

either settles down to a new stable equilibrium point, or it oscillates between under-flowing

and overflowing queues (depending on router buffer sizes). Naturally, network operators

and users would both like the system to reach equilibrium quickly and remain there. Over

the past years there has been a significant amount of understanding on the stability and

equilibrium properties of TCP under different network and traffic conditions [34, 37]. In this

chapter we are interested in the dynamics and equilibrium of RCP under sudden changes,

and particularly questions such as: can we choose RCP’s parameters such that it is stable

for a broad range of network conditions? Will it be stable even when flows with a large

difference in round-trip times share bottleneck links? How long will it take to converge to

a stable state? How well does its stability compare to TCP and other congestion control

mechanisms?

We will first derive the stable region of RCP’s parameters for a single bottleneck link

using a simple linearized model (Sec. 5.1), then see how the stable region changes when we

take the system non-linearities into consideration (Sec. 5.2) and when flows with heteroge-

neous round-trips share multiple bottleneck links (Sec. 5.3), and finally determine how to

choose RCP’s parameters not just for stability but also for fast convergence (Sec. 5.4).

69

70 CHAPTER 5. STABILITY OF RCP

5.1 Stability analysis

For a single bottleneck, the RCP system can be expressed as:1

Ṙ(t) = R(t)





α(C − y(t)) − β q(t)
d(t)

C · d(t)



 (5.1)

y(t) = N · R(t − d0) (5.2)

d(t) = d0 +
q(t)

C
(5.3)

q̇(t) = [y(t) − C]; q(t) > 0 (5.4)

= max[y(t) − C, 0]; q(t) = 0

where R(t) is RCP rate, C is link-rate, y(t) is aggregate incoming traffic rate, q(t) is queue

occupancy, N is number of flows, d0 is the round-trip propagation delay, and d(t) is the

round-trip time at t. If (R, q) represents the system state, then the equilibrium point

(defined by Ṙ = 0, q̇ = 0) is, (Re, qe) = (C
N , 0). The next step is to linearize the rate

equation (Eqn. 5.1) around the equilibrium point. The queue equation (Eqn. 5.4) is non-

linear as well, however the discontinuity is at the equilibrium point (qe = 0) making it hard

to deal with the non-linearity. In this section we first analyze stability assuming the queue

evolves as q̇(t) = y(t)−C, and in the next section we will see how the discontinuity in real

queue changes the stable region. The linearized system (the linearization steps are shown

in appendix B) is shown below:

δq̇(t) = N δR(t − d0) (5.5)

δṘ(t) = − α

d0
δR(t − d0) −

β

Nd2
0

δq(t)

where δR
.
= R − Re and δq

.
= q − qe are perturbations around the equilibrium point. The

Laplace transform of the linearized system (block diagram in Fig. 5.1) is:

sδR(s) = − α

d0
e−sd0δR(s) − β

Nd2
δq(s) (5.6)

sδq(s) = Ne−sd0δR(s)

1We are ignoring the “non-critical” parameter, η. Recall that under over-loaded conditions, η allows us
to target a peak link utilization of less than 100%. In all of our simulations and analysis we have chosen η to
be 1. If η is chosen < 1 we expect that it will only affect the equilibrium point and not the system stability.

5.1. STABILITY ANALYSIS 71

1/s

α
d

e−sd

β
2

d s
e−sd

δR(s)

0

0

0

0

Figure 5.1: Block diagram of the linearized RCP system

5.1.1 Bode Plot and Nyquist Analysis

Using Bode plot analysis, we can obtain the stable region of the system described by

Eqn. 5.6. The open loop transfer function is:

G(s) = e−sd0
αsd0 + β

s2d2
0

(5.7)

Note that the variables N and C do not appear in the transfer function, meaning the

stability is independent of number of flows and link capacity. This is a consequence of

RCP’s equation having the appropriate scaling with respect to the link rate and number of

flows. XCP’s equation is also stable independent of C and N . On the other hand, TCP is

shown to be unstable as the window size becomes large (i.e., under high bandwidth-delay

environments when C is large and N is small [38]). Let’s see if there is a region of (α, β)

that makes the RCP system stable for any d0.

From Eqn. (5.7) the magnitude and phase of G(s) are given by:

|G(jω)| =

√

β2 + (ωd0α)2

(ωd0)2
(5.8)

6 G(jω) = −ωd0 + arctan(
ωαd0

β
) − π

The stability criterion for the closed loop system is [62]:

|G(jω)| < 1 at 6 G(jω) = −π (5.9)

72 CHAPTER 5. STABILITY OF RCP

The criterion is true for systems where |G(jω)| crosses the magnitude = 1 line only once,

which holds for our system. If ωz is the frequency at which |G(jω)| = 1 and ωc is the

frequency at which 6 G(jω) = −π, then the criterion is equivalent to ωz < ωc i.e.

ωz =
1

d0

√

α2 +
√

α4 + 4β2

2
< ωc (5.10)

where ωc is the solution of the equation:

ω d0 α

β
= tan(ωd0) (5.11)

Unfortunately, there is no closed form solution. We need the following condition for exis-

tence of a non-zero solution to Eqn. 5.11 (details in appendix C):

α

β
> 1 (5.12)

What remains is to solve for α and β satisfying Eqns. 5.10, 5.11 and 5.12. Using Matlab,

the region (α, β) for which RCP is stable for any N , C and d0 is shown in Fig. 5.2.

A more rigorous way of obtaining the stable region is to use the Nyquist stability crite-

rion [62], the details and steps of which are in appendix D. As Fig. 5.2 shows, the Nyquist

criterion confirms the stable region obtained through Bode analysis.

The good news from our analysis is that we can choose RCP’s parameters to make the

system stable independent of link-rate, number of flows and round-trip times; and picking

the parameters is easy because the stable range of (α, β) is large.

5.1.2 Stable Region

Let’s step back and understand why the stable region looks the way it does. α is the gain

parameter that determines how quickly the system ramps up to grab unused capacity, so

understandably it cannot be arbitrarily large (in Fig. 5.2 the stable region is capped at

α < 1.6). On the other hand β determines how aggressively a queue is drained and it isn’t

clear why the stable region is capped by β ≤ 0.55. On further thought, it is perhaps because

the analysis is an approximation and does not take into account the discontinuity in the

queue, allowing the queue length to take negative values. This is a standard problem in

linearized systems. It is particularly problematic here because RCP’s equilibrium point lies

on the queue discontinuity.

5.1. STABILITY ANALYSIS 73

Figure 5.2: Stable region obtained from Bode analysis and Nyquist analysis

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
a0.3 b0.6

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
a0.9 b0.6

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
a1.2 b0.6

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
a1.5 b0.6

Figure 5.3: Plots showing RCP rate versus time for the following set-up: Five long flows, all
with the same round-trip time, start at time, t = 0. Their equilibrium rate is R/C = 0.2.
Five more flows then start at time, t = 40, changing the equilibrium rate to 0.1. The
original five flows then depart at time 100. This experiment is done for every value of
0.1 ≤ β ≤ 1, 0.1 ≤ α ≤ 2 in steps of 0.1, to plot the stable region. The particular plots
above show sample values for β = 0.6, for which the system is stable so long as α ≤ 1.2.

74 CHAPTER 5. STABILITY OF RCP

We hypothesize the actual stable region is larger and includes the one obtained by the

linearized model. Initial evidence of this is from simulations, wherein for particular set-ups

we obtained the stable region by testing for (α, β) values in the range 0.1 ≤ β ≤ 1, 0.1 ≤
α ≤ 2 in steps of 0.1. In fact simulations suggest that the region to the left of the line in

Fig. 5.4 is stable. Fig. 5.3 goes on to show an example of a stable point in the non-linear

system that is not captured by the linear system.

Packet level simulations can take a long time, so we will use a method known as phase-

plane analysis (widely used in the study of non-linear systems) to simulate the RCP sys-

tem for a broader range of network and traffic conditions. The RCP system described by

Eqns. 5.1-5.4, can be written as:

Ṙ(t) = f(R(t − T), R(t − d0), q(t), N, C) (5.13)

q̇(t) = g(R(t − d0), N, C)

where f(.) and g(.) are non-linear functions. If we take R and q as coordinates of a plane,

then to each state of the system there corresponds a point in this plane. As t varies, this

point describes a curve in the R-q plane, indicating the history of the system dynamics.

Such a geometrical representation of the system behavior in terms of trajectories is called a

phase-plane. The initial condition determines the initial location of a representative point on

the trajectory, and as time progresses, the representative point moves along the trajectory.

A family of such trajectories is called a phase-plane portrait. We can determine whether a

system is stable from the phase portraits.

We simulated the system for C = {56 Kbps, 0.15 Gbps, 2.5 Gbps, 10 Gbps, 1000 Gbps},
d0 = {0.01, 0.5, 1, 2 } seconds, and N = {10, 100, 1000, 5000 }, and in every case we found

the larger region shown in Fig. 5.4 holds good for stability. Appendix E has examples of

phase-plane plots for RCP.

5.2 Stability of non-linear system

The success of linear analysis depends on how well the system dynamics can be approx-

imated by its first-order behavior about the equilibrium point. In particular, when the

equilibrium point lies on a discontinuity in the system dynamics (which it does for RCP

and XCP because their equilibrium queue size is zero), stability of the linearized system

5.2. STABILITY OF NON-LINEAR SYSTEM 75

Figure 5.4: Stable Region obtained from linearization model (enclosed by the bell shaped
curve), Simulations and Phase Plane analysis (region to the left of solid lines).

gives no guarantees on the stability of the system, even for simple network topologies with

a single bottleneck links.

When we compare stability of the simulated switched RCP system (the system switches

behavior at q = 0 and is represented in Eqn. 5.14; henceforth referred to as SYSTEM 1)

with that obtained through linear analysis (represented in Eqn. 5.15), Fig. 5.5 suggests that

a potentially larger region, that to the left of the dotted line is stable [63]. If we simulate

both the linearization and the switched systems for two sets of parameter values (α = 0.8,

β = 0.55 and α = 1.4, β = 0.3), we notice that the first set of parameters results in a stable

system; while for the second set of parameters, linear analysis predicts a stable system,

while simulations indicate that the system is unstable [64]. The considerable difference

in the stable region predicted by linearization and the actual stable region motivates a

more careful analysis. We notice that SYSTEM 1 is a switched system with two modes of

operation, one when the queue length is positive, and one when the queue length is zero, and

that the equilibrium point lies on the line (q(t) = 0) when switching between the two systems

occurs. It is known that for a switched system, linearizing about an equilibrium point at

which the system dynamics are discontinuous could lead one to erroneous conclusions, even

76 CHAPTER 5. STABILITY OF RCP

on its local stability [64].

ẏ(t) = − α
d0

(y(t − d0) − C) − β
d2
0
q(t − d0)

q̇(t) =







y(t) − C, q(t) > 0

max(0, y(t) − C), q(t) = 0

(5.14)

ẏ(t) = − α
d0

(y(t − d0) − C) − β
d2
0
q(t − d0)

q̇(t) = y(t) − C.
(5.15)

Figure 5.5: (Left) Comparison of linearized stability region (shaded area) with simulated
stability region (area to the left of the dotted line), for the SYSTEM 1. (Right) Provably
safe regions of α and β (for d0 = 200 ms).

Ref. [63] proposes a method for taking discontinuities in the system dynamics into

account by modeling the protocol as a switched system. The approach involves choosing

particular Lyapunov functions that prove the stability of switched linear time-delay systems.

We present the key results here along with a few examples below, the details of the analysis

are in [64, 63].

The outer boundaries of the provably stable regions of parameters for a round-trip delay

of 200 ms are plotted in Fig. 5.5 (right). The smaller (dark) region corresponds to the stable

region predicted by linear analysis, which ignores the switch. The inset shows a closer look

at the region where the switched Lyapunov results are conservative (which is to be expected,

since they are derived from a sufficient condition for stability) – while the linear analysis

results predict a stable system, the switched system is unstable. Fig. 5.5 (right) also shows

5.3. STABILITY UNDER MULTIPLE BOTTLENECKS 77

Figure 5.6: Provably safe boundaries of α and β (for d0 = 10 ms to 200 ms). The dotted
lines in the figures on the right correspond to the simulated stability boundaries.

that the actual stable region is much larger than that predicted by the linearization.

The proposed Lyapunov functionals for switched systems provide us with sufficient con-

ditions for delay-dependent stability. Since studies have shown that 85% of Internet traffic

has round-trip delays between 15-500 ms., we analyze the stability for this range of round-

trip delays. The provable stability boundaries, in terms of α and β are shown in Fig. 5.6. We

find that for small delays, it is more difficult to prove the stability of the switched system.

We should bear in mind that these results are based on sufficiency conditions, and therefore

our not being able to prove stability does not imply instability. For values of delay more

than 100 ms, we can prove stability for a substantially large range of parameters. Even for

small values of delay, we note that the region stays larger than previously derived using

linearization. These techniques can also be extended to the case of heterogeneous delays on

bottleneck links [64].

5.3 Stability under multiple bottlenecks and heterogeneous

round-trip times

So far we have seen RCP’s stability in the case of a single bottleneck link. But a real network

often carries flows with vastly heterogeneous round-trip times sharing multiple bottleneck

78 CHAPTER 5. STABILITY OF RCP

 Link L1:
155 Mbps, delay = 1 msec. 1 Flow

 Link L2:
622 Mbps, delay = 10 secs.

 Link L3:
100 Mbps, delay = 1 msec.

49 Flows

Figure 5.7: A configuration where flows with heterogeneous round-trip times have different
bottleneck links. There are 50 flows, of which 49 flows with short round-trip times of 4 ms.
are bottlenecked at L3, while the 50th flow has a long round-trip time of 20 seconds and is
bottlenecked at L1.

links. We do not have a proof of general stability region for arbitrary networks, however

simulations of specifically chosen topologies and RTTs suggest that the same stable region

as we had seen for the single bottleneck holds true in the case of a general network.

Fig. 5.7 illustrates an example which is intuitively one of the worst case scenarios for

RCP’s stability [65]. Of the three links, L1 and L3 have a propagation delay of 1 ms

while L2 has a delay of 10 s.2 There are 50 flows, 49 with short round-trip times of 4 ms

are bottlenecked at L3, while the 50th flow has a long round-trip time of 20 seconds and is

bottlenecked at L1. The situation is interesting because of what’s happening at L1: the link

is shared by flows with four orders of magnitude difference in RTTs with most traffic from

short RTT flows. These flows are not bottlenecked at this link but nevertheless affect the

router’s estimate of average round-trip time (d). The control dynamics are that of the long

RTT flow which is bottlenecked here but its traffic is not a significant portion of the link. It

turns out the same stable region we have seen in the last section for single bottleneck with

homogeneous delay still holds true. Figs. 5.8, 5.9 show examples of some extreme points

in the stable region. For the sake of brevity only the results with the extreme parameter

values are included, and the same property holds true for all the in-between α, β values as

well.

RCP’s RTT estimation algorithm (first described in Sec. 3.5 and recapped below) plays a

2It is unlikely to have paths with such high propagation delays, however if there is a lot of buffering then
it is possible for delays to be this high.

5.3. STABILITY UNDER MULTIPLE BOTTLENECKS 79

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

R
(t

)/
C

Time [secs]

Link1 a0.1 b1 g1
Equilibrium R/C = 55/155

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0 100 200 300 400 500 600 700 800 900 1000

R
(t

)/
C

Time [secs]

Link3 a0.1 b1 g1
Equilibrium R/C = 1/49

 0
 2
 4
 6
 8

 10
 12

 0 100 200 300 400 500 600 700 800 900 1000

R
T

T
 [
s
e
c
s
]

Time [secs]

smoothed RTT (d)
dT

Figure 5.8: Plots showing the RCP rate at link L1 (top left) and L3 (top right) and
average RTT estimate at the L1 (bottom) in the configuration of Fig. 5.7. RCP parameters:
α = 0.1, β = 1, η = 1.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

R
(t

)/
C

Time [secs]

Link1 a0.5 b0.1 g1
Equilibrium R/C = 55/155

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0 100 200 300 400 500 600 700 800 900 1000

R
(t

)/
C

Time [secs]

Link3 a0.5 b0.1 g1
Equilibrium R/C = 1/49

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 100 200 300 400 500 600 700 800 900 1000

R
T

T
 [
s
e
c
s
]

Time [secs]

smoothed RTT (d)
dT

Figure 5.9: Plots showing the RCP rate at link L1 (top left) and L3 (top right) and
average RTT estimate at the L1 (bottom) in the configuration of Fig. 5.7. RCP parameters:
α = 0.5, β = 0.1, η = 1. Notice the difference in the smoothed RTT estimate (d) versus the
average RTT taken for every time interval, dT .

80 CHAPTER 5. STABILITY OF RCP

key role in maintaining stability under heterogeneous RTTs. RCP’s original RTT estimation

algorithm (d = θ · rttp + (1− θ) · d, where θ is the fixed gain of the moving average and rttp

is the round-trip time sample carried in the RCP packet) lead to instability in the system

under heterogeneous delays because the RTT estimate itself was unstable. A more robust

way of maintaining an RTT estimate has two parts:

1. The data-path of the RCP router simply averages the RTT over all packets seen in

the control interval:

dT =

∑

i rtti
nT

(5.16)

where dT is the rtt average over time-interval T , rtti is the RTT value carried in the

packet header and nT is the number of packets carrying a valid RTT.

2. The control path (which performs the RCP rate computation periodically) takes dT

as input and keeps track of a smoother RTT estimate, d. In particular, if dT is much

smaller than the smoothed version (d), it is better to age d and bring it down slowly

instead of dropping it suddenly. This is achieved by deciding the moving-average gain

as follows:

if (dT ≥ d)

θ = T
d

else

θ = R
C · T

d · dT

d

The smoothed RTT is updated as:

d = θ · dT + (1 − θ) · d (5.17)

The basic intuition is that the gain should be at most T/d since if T is small we have

many more RTT samples over a period of an average RTT, so we correspondingly give a

smaller weight to each of the samples. However, if the rtt sample (dT) is smaller than d we

want to be cautious in decreasing d suddenly, and so the gain is made smaller by weighing

it with dT /d.

5.4. PICKING VALUES FOR α AND β 81

 9.5
 10

 10.5
 11

 11.5
 12

 12.5
 13

 0.01 0.1 1 10 100

c
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

#
 a

v
g
R

tt
s
)

link-rate (Gbps)

alpha = 0.4

beta = 0.2
beta = 0.3
beta = 0.5
beta = 0.7
beta = 0.9

Figure 5.10: Plot shows the convergence times of RCP versus link-rates. Convergence time
is defined as the time taken for R and q to be within 98% and 99% of their equilibrium
values. Simulations were done for 0 ≤ α, β ≤ 1 in increments of 0.1 for link-rates varying
over four orders of magnitude. The plot shows that the link-rate does not affect the RCP
convergence time.

5.4 Picking values for α and β

Now that we know there is a broad range of (α, β) values for a stable system, we want

to pick values to maximize performance. To see what we mean by this, let’s consider the

following two distinct cases:

Case 1: Fast convergence times on sudden network changes

We are interested in the following question: How long does RCP take to converge for the

(α, β) values in its stable region?

The RCP equation is designed to scale well with the link-rate, number of flows, and

round-trip time, so it is perhaps not surprising that its convergence time to equilibrium is

independent of the link-rate (Fig. 5.10), the number of flows (Fig. 5.11) and value of the

round-trip time (Fig. 5.12). It does however depend on α, β, as well as on the amount of

buffering at the bottleneck link.

Fig. 5.13 shows how long it takes RCP to converge when α and β vary. RCP converges

slowly if α is too small or too big. When small, RCP is slow to use spare capacity; when

large, the rate overshoots many times before settling down on the equilibrium. The best

values for quick convergence will be the range: α ∈ (0.4, 0.6) and β ∈ (0.2, 0.6), for example

when (α, β) = (0.5, 0.5), the system converges within 10 round-trip times.

82 CHAPTER 5. STABILITY OF RCP

 9.5
 10

 10.5
 11

 11.5
 12

 12.5
 13

 13.5
 14

 0.01 0.1 1

c
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

#
 a

v
g
R

tt
s
)

Round-trip Time (seconds)

alpha = 0.4

beta = 0.1
beta = 0.2
beta = 0.4
beta = 0.6
beta = 0.8

beta = 1

Figure 5.11: Plot shows the convergence time of RCP versus increasing round-trip time.
The convergence time is defined as the time taken for R and q to be within 98% and 99%
of their equilibrium values. The plot shows that the RTT value does not affect the RCP
convergence time (measured in terms of #RTTs).

 10

 10.5

 11

 11.5

 12

 12.5

 13

 1 10 100 1000 10000 100000

c
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

#
 a

v
g
R

tt
s
)

Flows

alpha = 0.4

beta = 0.1
beta = 0.3
beta = 0.5
beta = 0.7
beta = 0.9

Figure 5.12: Figure showing the convergence time (in #RTTs) of RCP versus the number
of flows. In each case, the initial conditions correspond to half the equilibrium load, for
example: when N = 200, the equilibrium is Re/C = 0.005, qe = 0 and the initial conditions
are chosen as R(0)/C = 0.01, q(0) = 0. While the number of flows is different in every
experiment, the increase in load is the same in each case (equilibrium load is twice the
initial load). Convergence time is defined as the time taken for R and q to be within 98%
and 99% of their equilibrium values respectively.

5.4. PICKING VALUES FOR α AND β 83

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

#
 a

v
g
R

tt
s
)

alpha

|r - rEquil| < 0.02*rEquil AND |q - qEquil| < (0.01*C*Rtt)

beta = 0.1
beta = 0.2
beta = 0.4
beta = 0.6
beta = 0.8

beta = 1

Figure 5.13: Plot showing the convergence time of RCP for different α and β values.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 fl
ow

-d
ur

 [s
ec

s]

Buffer [packets]

alpha = 0.1, beta = 1
alpha = 0.4, beta = 1
alpha = 0.9, beta = 1

alpha = 0.1, beta = 0.5
alpha = 0.4, beta = 0.5
alpha = 0.9, beta = 0.5
alpha = 0.1, beta = 0.1
alpha = 0.4, beta = 0.1
alpha = 0.9, beta = 0.1

PS
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Lo
ss

 P
ro

ba
bi

lit
y

Buffer [packets]

alpha = 0.1, beta = 1
alpha = 0.4, beta = 1
alpha = 0.9, beta = 1

alpha = 0.1, beta = 0.5
alpha = 0.4, beta = 0.5
alpha = 0.9, beta = 0.5
alpha = 0.1, beta = 0.1
alpha = 0.4, beta = 0.1
alpha = 0.9, beta = 0.1

Figure 5.14: Plot illustrating the effect of α and β on FCT and Loss probability when
flow-sizes are large. The set-up is: C = 0.1 Gbps, RTT = 80 ms, ρ = 0.68, mean flow-size is
10000 packets (1000% BW-RTT). Buffer size is varied from 2% to 200% of bandwidth-delay.

Case 2: Fast flow completion times for a broad range of traffic conditions

We want to know if the same values of α and β for fast convergence will also work well from

the view point of how close RCP’s flow completion times are to processor sharing. It turns

out the optimal (α, β) depends on how the mean flow-size compares with the bandwidth-

delay product or the pipe size. When the flow-sizes are large (Fig. 5.14) it is best to choose

a large α and small β (example: when α = 0.9 and β = 0.1), as long flows care more on

maximizing their individual throughputs and less on minimizing the queuing delay. On

the other hand, a small α and large β (example: α = 0.1 and β = 1) work best for small

flow-sizes (Fig. 5.15), because this combination helps in keeping their queuing delay small.

84 CHAPTER 5. STABILITY OF RCP

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 fl
ow

-d
ur

 [s
ec

s]

Buffer [packets]

alpha = 0.1, beta = 1
alpha = 0.4, beta = 1
alpha = 0.9, beta = 1

alpha = 0.1, beta = 0.5
alpha = 0.4, beta = 0.5
alpha = 0.9, beta = 0.5
alpha = 0.1, beta = 0.1
alpha = 0.4, beta = 0.1
alpha = 0.9, beta = 0.1

PS
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Lo
ss

 P
ro

ba
bi

lit
y

Buffer [packets]

alpha = 0.1, beta = 1
alpha = 0.4, beta = 1
alpha = 0.9, beta = 1

alpha = 0.1, beta = 0.5
alpha = 0.4, beta = 0.5
alpha = 0.9, beta = 0.5
alpha = 0.1, beta = 0.1
alpha = 0.4, beta = 0.1
alpha = 0.9, beta = 0.1

Figure 5.15: Plot illustrating the effect of α and β on FCT and Loss probability when
flow-sizes are small. The set-up is: C = 0.1 Gbps, RTT = 80 ms, ρ = 0.8, mean flow-size
is 20 packets (2% BW-RTT). Buffer size is varied from 2% to 200% of bandwidth-delay.

To strike a middle-ground between the two extreme set of parameters, we recommend

choosing the values of α ∈ (0.4, 0.6) and β ∈ (0.2, 0.6).

Chapter 6

Practical considerations in building

an RCP network

We want to enable deployment of RCP in real networks. In prior chapters we studied RCP

through simulations and modeling; in particular we described the motivation behind RCP

and why flow completion time is the appropriate metric for congestion control (Chap. 2), the

RCP protocol, mechanisms, and algorithm (Chap. 3), simulations suggesting it is promising

under a broad range of conditions (Chap. 4), and control theoretic analysis to show that

RCP is stable independent of link-capacities, number of flows and network round-trip times

(Chap. 5). Although we have many thousands of promising ns2 simulations, we want to

find out how feasible it is to deploy RCP in real networks.

Deploying RCP requires solving many practical problems, such as: How is RCP conges-

tion information carried in presence of tunneling? What happens when the link-rate is not a

constant any more and instead varies with time and/or is unknown (e.g., in wireless links)?

How does RCP interact with middle-boxes, such as NATs and firewalls? How complex is it

to implement RCP? How can it be incrementally deployed? And how much buffering would

it require in routers and switches? Our goal is to enable a network, similar to that shown

in Fig. 6.1, where RCP coexists along-side legacy protocols, mechanisms and middle-boxes.

In this chapter we are interested in the last three questions: How is RCP implemented in

real systems and what is the additional complexity it introduces into end-hosts and routers?

How does RCP coexist in a network where a significant portion of traffic is non-RCP and a

large portion of queues do not yet implement RCP? How do we size router buffers for RCP

congestion control?

85

86 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

1 GigE

delay 200 ms

1 GigE

1 GigE

delay 50 ms

100 Mbps

100 Mbps

non-RCP Router

Firewall

RCP End-hosts

TCP End-hosts TCP Servers

RCP Servers

Firewall

RCP Router

non-RCP

Router

RCP Router

RCP Router

non-RCP Router

Figure 6.1: An example network where RCP coexists alongside with non-RCP traffic and a
variety of network devices like firewalls and NATs, not all of which necessarily understand
RCP.

We are particularly interested in how complex the changes are to the routers. Router

vendors are, understandably, very reluctant to add new features to the forwarding path of

their routers, particularly if they involve complex calculations. Routers are already over-

loaded with many features, and are limited by the power they consume. Great care needs

to be given to bloating the requirements further. So in Sec. 6.1, we describe our implemen-

tations of RCP for end-hosts and routers, and try to analyze the additional complexity in

routers.

Any research on congestion control that requires network participation will be irrelevant

if we cannot find a viable deployment path. Because the Internet is not controlled by any

single entity and there will be no fork-lift upgrades, we want to find out how RCP can be

deployed even when a significant number of network routers are not RCP-enabled and a

large portion of traffic is non-RCP. In Sec. 6.2 we describe heuristics, of varying degrees

of complexity, that enable RCP flows to share bandwidth equitably with non-RCP flows,

and that allow RCP flows to detect non-RCP bottlenecks and fall back to TCP congestion

control. And finally, in Sec. 6.3, we characterize the amount of buffering that routers will

require for RCP.

6.1. IMPLEMENTING AND EXPERIMENTING WITH RCP 87

rcp_bottleneck_rate

rcp_reverse_bottleneck_rate

0 1 2 3 30 31..14 15 16..

rcp_rtt

.. 23 24..

rcp_p unused

Figure 6.2: The 12-Byte RCP header: the rcp bottleneck rate (4 Bytes) carries the rate (in
Bytes/ms) of the most congested link along the path; rcp reverse bottleneck rate (4 Bytes)
is the bottleneck rate (in Bytes/ms) echoed by the receiver, so the sender can adapt its
rate; rcp rtt (2 Bytes) is the sender’s estimate of its round-trip time (in ms); rcp proto (1
Byte) is the protocol number of the higher transport layer.

6.1 Implementing and experimenting with RCP

We will first describe Linux-based implementations of RCP end-host and router, then a

hardware implementation of RCP router on Stanford’s NetFPGA system [68], analyze the

additional complexity that RCP introduces into end-hosts and routers, and finally describe

experiments that validate the implementation.

The descriptions of Linux and NetFPGA based implementations first appeared in [18],

and the experiments in [19].

6.1.1 RCP End-host

We have implemented the RCP end-system in Linux 2.6.16. An RCP sender maintains a

congestion-window which it modulates based on explicit feedback information from the net-

work. It also maintains a round-trip time estimate of the path, and spreads the transmission

of a window’s worth of packets (or “paces”) over a RTT. An RCP receiver echoes the net-

work rate feedback it receives to the sender by piggybacking it in the DATA/ACK packets

flowing from receiver to sender. We describe below the key pieces of an RCP end-system.

Placement and Format of RCP Header

RCP is implemented as its own protocol layer between IP and transport layers, as shown

in Fig. 6.3. Other places to carry RCP information would be IP or TCP options, each

88 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

having its pros and cons.1 The advantages of having RCP as a shim layer between IP and

transport are: a) routers which don’t understand RCP will let RCP packets pass through,

and b) the RCP rate information can be used by any transport protocol including TCP for

file-transfers, as well as by UDP for streaming content.

Fig. 6.2 illustrates the 12-Byte RCP congestion header, with the following four fields:

1. rcp bottleneck rate carries the bottleneck rate of the most congested link along the

path. The RCP sender puts in a zero here - meaning the sender would like as high a

rate as the network gives it. Alternatively, it can also put in the local interface rate.

The routers overwrite this rate as the packet passes through the network.

2. rcp reverse path bottleneck rate is filled by RCP receiver to communicate the bottle-

neck rate to an RCP sender.

3. rcp rtt carries the sender’s round-trip time estimate and is used by routers to update

their traffic-averaged RTT estimate.

4. rcp p is higher layer protocol number such as that of TCP or UDP.

All rates are expressed in Bytes/ms, and RTT in ms.

RCP End-host Functions

This section describes the RCP implementation at sender and receiver end-hosts. We will

focus here on the case of TCP transport protocol running over RCP. Fig. 6.3 shows the

placement of RCP in the network stack; there are two parts: the RCP layer between trans-

port and IP layer, which carries congestion information from network to the end-system,

and the congestion control component in transport layer which adapts the flow-rate based

on network feedback. One can think of congestion control consisting of two broad parts: a)

modulating the flow-rate (and congestion window), and b) deciding which packets to send

among the three pools of packets—those which have not yet been transmitted, those which

have been sent but not yet acknowledged, and finally packets which are known to be lost.

1One could argue that it belongs in any layer involved in packet-switching—in L2, L3, or between the
two. Recent studies [69] have shown that 70% of connections are not established when SYN segments have a
new IP option X, and a third of connections are not established even for known IP options. Further, packets
with IP options take the slow-path on routers. TCP options on the other hand are more widely used and
the same study showed only 0.2% of connections failed on introduction of new TCP option. The downside
is that routers would need to modify TCP header and be aware of every new transport protocol that uses
RCP information.

6.1. IMPLEMENTING AND EXPERIMENTING WITH RCP 89

Link

IP

RCP

TCP

Application

 Congestion Control

NewReno R-TCP BIC

Figure 6.3: RCP is a protocol between the IP and transport layers.

RCP only modifies the first of these functions in TCP, i.e., modulating the flow-rate, and

we call this part R-TCP. Starting from Linux 2.6.13, the TCP code was re-written to make

it more modular [70], as a result of which the specific TCP congestion control mechanism,

e.g., BIC TCP, HTCP, Scalable TCP, HighSpeed TCP can be chosen dynamically either

using sysctl or on a per-socket basis. R-TCP can also be chosen dynamically. The rest of

TCP functionality such as the state-machine and mechanisms for in-order packet delivery

remain unchanged.

The sender maintains the following variables: a) bottleneck rate of the forward path,

b) bottleneck rate of the reverse path, c) round-trip time estimate for the current path,

and d) the packet pacing interval. These are maintained in TCP’s tcp sock structure.

The sender fills in RCP fields of an outgoing packet: a) sender’s desired throughput,

rcp bottleneck rate, which can be the speed of the local interface, b) bottleneck rate of

the reverse path, rcp reverse bottleneck rate, which is zero if the host is not aware of the

rate yet, c) round-trip time estimate, which is zero for the first packet of the connection

(SYN) when the sender does not have an estimate yet, and d) the protocol number of TCP.

Fig. 6.4 (left plot) shows the paths that different packets take from TCP to the lower RCP

layer. SYN, RESET, DATA, and ACK packets take different paths, and RCP intercepts

all calls from TCP to IP, to attach the 12-Byte RCP header. The incoming RCP packets

from the network have only one path up the stack, where RCP intercepts the function calls

from IP to TCP, to strip off the 12-Byte header and pass the segment to TCP, as shown in

Fig. 6.4 (right plot).

90 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

tcp_v4_send_synack(.)

tcp_transmit_skb(.)

net/ipv4/tcp_ipv4.c

net/ipv4/tcp_output.c

tcp_v4_send_ack(.)

 net/ipv4/tcp_ipv4.c

tcp_v4_send_reset(.)

 net/ipv4/tcp_ipv4.c

ip_build_and_send_pkt(.)

 net/ipv4/ip_output.c

ip_queue_xmit(.)

 net/ipv4/ip_output.c

ip_send_reply(.)

 net/ipv4/ip_output.c

rcp_build_and_send_pkt(.)

 net/ipv4/rcp.c

rcp_queue_xmit(.)

 net/ipv4/rcp.c

rcp_send_reply(.)

 net/ipv4/rcp.c

TCP

RCP

IP

tcp_v4_rcv(.)

net/ipv4/tcp_input.c

ip_local_deliver(.)

 net/ipv4/ip_input.c

rcp_v4_rcv(.)

net/ipv4/rcp.c

TCP

RCP

IP

Figure 6.4: Left plot shows data path of outgoing packets, where RCP intercepts the func-
tion calls from TCP to IP, to introduce its 12-Byte RCP header and fill in the rate and RTT
fields. Right plot shows data path of incoming packets, where RCP intercepts the function
calls from IP to TCP, to strip of the 12-byte header and pass the segment to TCP.

An RCP receiver echoes the network rate feedback to the sender by copying the rcp bottleneck rate

value into rcp reverse bottleneck rate, and usually piggybacking on DATA/ACK packets.

For a pure ACK packet, the bottleneck rate and RTT fields are set to zero.

On receiving valid rate feedback, an R-TCP sender modulates its congestion window

as shown below, overriding the existing TCP slow-start and congestion avoidance window

changes:

snd_wnd = (rcp_bottleneck_rate * rcp_rtt)/(MSS + RCP_HEADER_SIZE

+ IP_HEADER_SIZE)

where MSS is the maximum segment size. Just as other flavors of TCP, R-TCP uses a

window which is the minimum of the above window calculation and window size advertised

by the receiver. It also maintains the window size to be least equal to one Maximum Segment

Size. R-TCP keeps track of the smoothed round-trip time estimate for the connection.

The sender paces packets from TCP’s send queue at the following pacing interval:

packet_pacing_interval = MSS/rcp_bottleneck_rate;

The retransmission mechanisms of TCP are left unchanged.

6.1. IMPLEMENTING AND EXPERIMENTING WITH RCP 91

6.1.2 RCP Software Router

A software router is one that is completely implemented in software (e.g. in Linux), and

requires no special hardware support. This section outlines the implementation of an RCP

router in Linux, based on the RCP description in Chap. 3, and specification in App. F. Such

an implementation allows us to easily verify the properties of RCP, as well as demonstrates

the feasibility and simplicity of supporting RCP within a software-based router. We begin

by describing the operation of a non-RCP router design before elaborating on our RCP

design.

Vanilla router functionality

The operation of a router [81] can be subdivided into two parts – the data path and the

control path.

The data path processes incoming packets and routes them towards their destination.

Tasks performed on each packet include verifying the IP header checksum, extracting the

destination address from the IP header, performing a longest prefix match look-up of the

address in the routing table, decrementing the packet’s time-to-live, updating the checksum,

and forwarding the updated packet out the correct interface. High-performance Internet

routers implement the data path in fast hardware since it needs to process every packet.

The control path is responsible for a set of tasks that are performed infrequently such

as maintaining the routing tables and providing a control interface to the router. Since

operations on the control path occur relatively infrequently, they are usually implemented

in software and executed on a CPU inside the router.

RCP router enhancements

An RCP-enabled router must additionally compute the fair-share rate (as per Eqn. 3.3) and

stamp that rate into the header of every RCP packet. The rate computation requires the

router to maintain an average round-trip time estimate for outgoing traffic on each interface

using the RTT information carried in RCP packets. The rate is computed once every control

interval, approximately once per round-trip time. Statistics (aggregate incoming traffic and

average RTT) are gathered during each control interval which are then used for the rate

computation. When an RCP packet arrives, the router adds RTT value of packet header

to the running sum it maintains and before departure the packet is stamped with the RCP

92 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

rate.

The RCP functionality is split between the data path and the software control path.

The additions to the data and control paths are summarized below:

1. Per-packet data-path processing:

• Identifying whether an incoming packet is an RCP packet

• Updating a running RTT sum of the outgoing interface, if the packet carries a valid

RTT

• Updating the aggregate traffic destined to the outgoing interface

• Stamping the RCP rate in the outgoing packet

2. Periodic control path computations:

The following are calculated approximately once per average RTT of traffic transiting

the router:

• The bandwidth, R(t), allocated to the average data flow as per Eqn. 3.3.

• The moving round-trip time average, as detailed in Chap. 3.

We run our RCP router implementation on a standard Linux system, implemented as

a Linux Kernel Module (LKM), namely rcp-router-driver.ko. This approach avoids the

complication of applying patches to Linux source distribution and recompiling the whole

Linux kernel.

The control plane is a timer driven function to compute the RCP rate, moving RTT

average on each outgoing interface, and the next wake-up interval for this timer. The timer

is maintained per network interface. The Data plane is built based on Linux’s NetFilter

feature, which allows customized per-packet operations in the packet processing chain of

the kernel. RCP requires only a small amount of per-packet processing—in the worst case

3 integer additions, 2 comparisons, and 1 write operation. No multiplications or divisions

are performed on the data path. Data plane operations on Ingress and Egress path are

described below:

• The Ingress function is registered with the IP FORWARDING hook in NetFilter.

When a packet arrives at the NIC driver and is destined to one of the outgoing interfaces,

this function updates the running RTT sum of the outgoing interface (if the packet carries

valid RTT); it also updates the aggregate traffic rate to the outgoing interface.

6.1. IMPLEMENTING AND EXPERIMENTING WITH RCP 93

IP_PRE_ROUTING IP_FORWARD

IP_LOCAL_IN

IP_LOCAL_OUT

Process

ROUTING

ROUTING
From

NIC Driver

Destined to this host

For another
Interface

IP_POST_ROUTING
To

NIC Driver

Locally generate packet

RCP
Ingress Function

RCP
Egress Function

Figure 6.5: Linux NetFilter: Packet processing paths and the points where RCP is hooked.

• The Egress function is registered with the IP POSTROUTING hook in NetFilter.

When a packet is ready for one of the outgoing interfaces, this function stamps the RCP

rate in the header and updates the TX queue occupancy for that interface.

Fig. 6.5 shows the packet processing chain in NetFilter and where exactly the RCP

functions are hooked up.

Validation Experiments

To verify the RCP implementation, we conducted our experimental study on a real test

network under different topologies and number of nodes [19]; we will restrict our discussion

here to the simple set-up in Fig. 6.6. We built the RCP software router from a regular

desktop PC (AMD Athelon 64 X2 Dual-Core 3600+ and 1 GB of DRAM) and a 2-port

Gigabit Ethernet card. The end-hosts are built from similar desktop PCs running a Linux

kernel with our RCP end-host modifications.

The RCP router in kernel mode can forward MTU size packets at 1 Gbps. However,

as the packet size becomes smaller, the router cannot keep pace with interrupt overheads

due to limited FPS (frame per second) processing power on this platform. To avoid such

performance bottlenecks, we used lower link speeds across the topology: on one side of

the RCP router, for the 192.168.1.0/24 network segment, we used a 100 Base-T switch to

connect end-hosts and a router, while for the 192.168.2.0/24 network segment, we used a 10

Base-T Ethernet switch. The bottleneck is the 10 Mbps TX queue at the RCP router’s Eth1

interface. The RCP kernel module operates at this interface to regulate flow throughput. We

set η at 0.9, which means the maximum rate an RCP router can advertise is 9 Mbps. Taking

94 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

RCP Router

Eth0:

192.168.1.1/

24

Eth 1:

192.168.2.1/

24RCP End-Host A1

Eth 0:

192.168.1.10/

24

RCP End-Host B1

Eth 0:

192.168.2.10/

24

RCP End-Host B2

Eth 0:

192.168.2.20/

24

RCP End-Host A2

Eth 0:

192.168.1.20/

24

Figure 6.6: A simple topology used for experiments

into account other protocol and application overhead, the maximum iperf2 throughput on

this link is about 7.5 Mbps.

The end-to-end delay is emulated using NetEmulation [72] on router’s Eth1 interface,

through which we can vary the delay, packet loss-rate or even packet corruption rate. We

set the end-to-end delay to 50 ms. On the end-host PCs, we use an iperf [71] client to

generate multiple continuous traffic flows and iperf server as the traffic sink. Statistics are

gathered at both the end-host PCs as well as at RCP router.

The RCP system is deterministic, and so with a fixed set of initial conditions (initial

rate-value R(0), parameters of the algorithm, and initial link state such as an empty queue)

and a deterministic input traffic pattern (fixed start times of flows and the amount of data

they transfer), the system output will always be the same.

The first step of validation is to determine if the RCP rate, R(t), converges to C/N , as

the number of ongoing flows, N , varies and the congestion window on the end-host can be

modulated accordingly.

The experiment is as follows: End-hosts A1, A2, A3 and A4 start an iperf flow of length

100 s at times 0, 20, 40, 60 respectively, destined to the iperf sink on host B. At t = 0, A1

begins with a high RCP rate in the TCP SYN packet (the interface capacity is configured

to be 100 Mbps). Since the router’s bottleneck queue can only handle 8 Mbps, it overwrites

this rate with a smaller value. At t = 20, A2 also begins with 100 Mbps in its TCP SYN

packet, which is overwritten with the current RCP rate (8 Mbps). The new flow arrival

creates a sudden backlog on the Eth1 TX queue at t = 20 s (Fig. 6.7), in response to which

RCP reduces R(t) to about half the bottleneck rate. The dynamics are similar at t = 40,

60, when more new flows join in. The flows depart at t = 100, 120 and 140, freeing up

a fraction of the bottleneck link and causing the TX queue length to drop suddenly. The

2iperf is a tool to measure TCP and UDP throughput performance.

6.1. IMPLEMENTING AND EXPERIMENTING WITH RCP 95

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

 0 20 40 60 80 100 120 140 160

N
u
m

b
e
r

o
f
fl
o
w

s

Experiment Time [secs]

Actual
Estimate

 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120 140 160

T
ra

ff
ic

 o
ff
e
re

d
 [
M

b
p
s
]

Experiment Time [secs]

 4000
 6000
 8000

 10000
 12000
 14000
 16000

 0 20 40 60 80 100 120 140 160Q
d
is

c
 T

X
 Q

 l
e
n
g
th

 [
b
y
te

s
]

Experiment Time [secs]

Figure 6.7: Top left plot: Comparing RCP’s estimate of the number of flows, C/R(t), with
the true value. Top right plot: Aggregate incoming traffic at router’s output port. Bottom
plot: Qdisc TX Queue length on outgoing interface of RCP router.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160

T
h
ro

u
g
h
p
u
t
[M

b
p
s
]

Experiment Time [secs]

Total
Flow 1
Flow 2
Flow 3
Flow 4

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120 140 160
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

R
-T

C
P

 C
W

n
d
 S

iz
e
 [
p
k
ts

]

R
C

P
 R

a
te

 [
M

b
p
s
]

R-TCP CWnd Size
RCP Rate

Figure 6.8: Left plot: Per-flow and aggregate throughput. Right plot: R-TCP modulates
its congestion window based on RCP’s rate feedback.

RCP control plane increases the rate such that R = C/N still holds. Fig. 6.7 compares the

actual number of flows in the system with the N that RCP estimates. Fig. 6.8 shows how

the end-host A1 modulates its cwnd in response to the rate feedback information.

We have verified several key properties of RCP end-hosts and router implementa-

tions [19]. In the process we faced a few technical challenges that we had not thought

about in our simulations: for example, the calculation of average RTT and RCP rate in the

router’s control plane requires 64-bit arithmetic operations support, which is not available

96 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

Decode Hardware
Address

Longest
Prefix
Match

IP

Routing

Table

ARP
Table
Lookup

ARP

Table

Decode IPv4 Header

Identify RCP

RCP statistics
Port 1 Port N...Port 2

TTL Update

Cheksum

Update

Stamp RCP

Rate

Packet
Decision
and

New Packet
Creation

Next Hop IP

RCP Packet?

Process Packet?

Destination Port

Dest HW Address

RCP Packet?

RCP Rate

Incoming

Packets

To

Output

Queues

RCP Rate Calculations Router CPU

Data Path

Control Path

Figure 6.9: A generic hardware router with RCP support

on the 32-bit kernel we are running. We have added special handling to overcome this

problem.

6.1.3 RCP Router based on NetFPGA

Real routers implement the data path functionality in hardware for speed. And so to

demonstrate the feasibility and simplicity of supporting RCP within a router, we describe

an implementation of RCP in hardware, running at 1 Gbps.

Just as before, the RCP functionality is split between the data path and the software

control path. Fig. 6.9 shows the RCP enhancements to a vanilla router implementation. Per-

packet data-path processing includes RCP Identification (identifying whether an incoming

packet is an RCP packet), RCP stats per-port (updating a running RTT sum of the outgoing

interface if the packet carries a valid RTT, and updating the aggregate traffic destined to the

outgoing interface), and Stamp RCP Rate (stamping the RCP rate in the outgoing packet).

The periodic control path computations include calculating the rate, R(t), allocated to the

average data flow as per Eqn. 3.3, and the moving round-trip time average, as detailed in

Chap. 3.

Our hardware implementation utilizes the NetFPGA programmable hardware platform.

NetFPGA is a programmable hardware platform for networking research and teaching [66,

67, 68]. The platform consists of a PCI card, which hosts a user-programmable FPGA,

6.1. IMPLEMENTING AND EXPERIMENTING WITH RCP 97

Figure 6.10: A block diagram of the NetFPGA hardware platform. The platform consists
of a PCI card which hosts a user-programmable FPGA, SRAM, DRAM, and four 1 Gbps
Ethernet ports.

SRAM, DRAM, and four 1 Gbps Ethernet ports, together with associated software for

programming and control. A block diagram of the platform is shown in Fig. 6.10.

The remainder of this section describes the per-packet processing and the periodic com-

putations in more detail.

Per-packet processing in hardware

RCP requires only a small amount of per-packet processing – in the worst case 3 integer

additions, 2 comparisons, and 1 write operation. No multiplications or divisions are per-

formed in the data path hardware. Pseudo-code of the data path operations, listed below,

illustrates the modest processing requirements. Upon packet arrival the router must update

counts for the corresponding output port of the running RTT sum, the number of arriving

bytes, and the number of packets carrying a valid RTT. On packet departure the router

overwrites the bottleneck rate carried in the packet if need be.

Processing performed upon packet arrival

input_traffic_Bytes += packet_size_Bytes

if (this_packet_RTT < MAX_ALLOWABLE_RTT)

98 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

sum_rtt_Tr += this_packet_RTT

num_pkts_with_rtt += 1

Processing performed upon packet departure

if (packet_BW_Request > rcp_rate)

packet_BW_Request = rcp_rate

A quantification of the implementation complexity as well as achievable clock rates can

be found in Sec. 6.1.4.

The control path in software

The control path performs periodic rate and RTT computations, and since these are per-

formed infrequently they are implemented in software. In our implementation this software

runs on the host in which the NetFPGA board is installed—in practice this would run on

the CPU of the router.

The control path only performs work at initialization when each port of the RCP router

is brought online and at the expiration of each time-slot. The initialization performed by

the control path simply sets the various RCP parameters within the router to their default

values. Upon expiration of a timer the control path reads the hardware registers to retrieve

the RCP statistics, performs the necessary rate and RTT computations, writes the updated

RCP rate and time-slot interval to the hardware registers, and then restarts the time-slot

timer.

It should be noted that all multiplication and division operations required for rate

calculations are performed within the control path. This allows RCP to take advantage of

the multiplication/division operations of the router’s CPU.

The control path software interfaces with the hardware via the registers provided by

the hardware. The number of registers required per port is small—we provided 7 registers

per-port for input-traffic, queue occupancy, current time-slot duration, elapsed time within

the current time-slot, RCP rate to be stamped into the packet, sum of RTTs in packets,

and input traffic in bytes carrying valid RTT.

6.1. IMPLEMENTING AND EXPERIMENTING WITH RCP 99

6.1.4 Quantifying the Implementation Complexity

Complexity of RCP NetFPGA implementation

RCP takes 31,000 gates of the 4.1 ×106 gates used for the basic IPv4 router implementation

on the NetFPGA platform, amounting to 0.75% of the total logic used [18]. This translates

to a die area of 0.1 − 0.2 mm2 in a 90nm ASIC. Clearly, RCP is simple to implement in

high-speed routers.

Our reference router (running on a Xilinx Virtex II Pro 30) used a core clock frequency

of 62.5 MHz. The RCP implementation was not the bottleneck in this design.

Hardware resources:

• 5 × 32-bit software accessible registers per port

• 2 × 16-bit software accessible registers per port

• 2 × 16-bit counters per port (used by timers)

• 2 × 32-bit adders per port (packet/queue statistics)

• 1 × 32-bit counter per port (packet/queue statistics)

Lines of code (including comments, data structure declarations, etc.):

• Verilog (data path): approximately 600 lines

• C (control path): approximately 350 lines

Complexity of RCP End-host and RCP software router

The RCP end-host has 250 lines of C code (including commenting and declarations), and

does not involve any floating point computations.

For the software RCP router, the computations on the control plane (for periodic RCP

rate and average RTT calculations) and the data plane for each transit packet through the

router are shown in Table 6.1.

To compare the complexities between a standard linux router without RCP support and

that with RCP-enabled, we measured the time it takes a packet to traverse through the

IP forwarding path in both cases. For a non RCP-enabled kernel, each packet processing

takes 9.7368 jiffies, and when RCP-enabled it takes 9.9998 jiffies. Therefore, RCP-related

processing is only 2.6% of the IP packet forwarding in the kernel.

100 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

Table 6.1: Complexity of RCP software router
Control Data Plane
Plane Ingress Egress Total

LOC 28 11 13 24
U32 Comparison 3 3 2 5
U32 Additions 5 4 0 4

U32 Multiplication 26 0 0 0
U32 Assignments 9 5 6 11

 0
 0.1
 0.2
 0.3
 0.4

 0 20 40 60 80 100 120 140 160

R
(t

)/
C

Time

RCP Rate

Figure 6.11: Demonstrating the problem when RCP and TCP coexist: Bottleneck link
implements the RCP algorithm. Nine RCP flows start at time t = 0, and one TCP flow
joins in at t = 50. RCP rate is throttled immediately.

6.2 Incrementally deploying RCP

For RCP to see widespread deployment, we need to understand how it can be incrementally

deployed in the current Internet. Even if RCP received widespread adoption it would

need to be introduced into a network with two hindrances: (1) RCP will need to operate

alongside existing non-RCP traffic, such as TCP and UDP, without adversely affecting or

being adversely affected by the other traffic; and (2) RCP will need to operate in a network

where some routers are not RCP-enabled. In this section, we will explore both hindrances

in turn.

6.2.1 Hindrance 1: RCP must coexist with non-RCP traffic

Let’s first understand how severe the hindrance can be. Imagine a simple network in which

all routers are RCP-enabled, but must carry both RCP and TCP traffic. Fig. 6.11 illustrates

an example, where nine long-lived RCP flows share a link from time 0, and a TCP flow

joins the network at time 50. The RCP flows are throttled. This is because TCP fills up

router buffers until they overflow, while RCP attempts to keep the buffer occupancy low

and only makes use of the spare capacity. On seeing queued-up TCP packets and increasing

6.2. INCREMENTALLY DEPLOYING RCP 101

w_T (=1-w_R)

w_R

TCPQ (drop-tail FIFO)

RCPQ (original RCP)

TCP packets

RCP packets

capacity C

Figure 6.12: RCP and TCP traffic is isolated into separate queues that are served using
WFQ, with weights wR and wT respectively. TCPQ and RCPQ are both FIFO drop-tail
queues. RCPQ additionally uses the RCP algorithm to give rate feedback to RCP flows.

incoming traffic, RCP backs off and eventually stifles its own transmission rate.

To solve the above problem, we describe below some simple modifications to RCP

routers. Our approaches do not affect the end-host implementation. We restrict the discus-

sion to bandwidth sharing with TCP traffic and expect the same mechanisms to hold true

for other kinds of traffic as well.

The most obvious solution, illustrated in Fig. 6.12, is to isolate the RCP and TCP traffic

into two different queues. Both RCP and TCP queues are FIFO drop-tail queues. The RCP

queue uses the RCP algorithm to give a rate feedback to the RCP flows, with a key difference

that the link-rate C now varies with time, denoted as CR(t). The two queues are served

using schedulers such as Weighted Fair Queuing (WFQ), or Deficit Round Robin (DRR).

Our goal is for an RCP flow to receive its fair share of the link, regardless of how other

types of traffic behave. We estimate the average flow-rate of RCP and TCP and periodically

adapt the weights with which the two queues are served (wR for RCP queue and wT for

TCP queue), so as to equalize the average RCP and TCP flow-rate. These weights are also

used to determine the link-rate, CR(t), that RCP uses in its equation. More formally:

• yR(t) denotes the measured incoming RCP traffic-rate, CR(t) is the link-rate that

RCP rate computation uses, and qR(t) is its queue length.

• STEP C: Once every control update period Tc, do the following:

(C.1) Estimate the approximate number of active RCP and TCP flows, denoted by

NR(t) and NT (t).

(C.2) Find the weight, wR, to adaptively equalize the average flow-rates of RCP

102 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

(rR(t)) and TCP (rT (t)):

wR = wR − θ
rR(t) − rT (t)

rR(t) + rT (t)

where rR(t) = yR(t)
NR(t) , rT (t) = yT (t)

NT (t) , and θ is a parameter defined in (0, 1) controlling

how smooth the update is.

(C.3) Update the RCP link share, CR(t), as follows:

CR(t) = max(C − yT (t), C · wR)

• STEP R: Once every rate-update interval, compute the RCP rate:

R(t) = R(t − T)

(

1 +
T
d (α(η · CR(t) − yR(t)) − β qR(t)

d)

η · CR(t)

)

• STEP S: Serve the RCP and TCP queues using WFQ, with weights wR and wT

respectively.

In Step C.1, we estimate the number of flows NR(t) and NC(t) using a randomized

algorithm with Zombie list proposed in [74]. A zombie list is a fixed size array recording the

flow identifiers of recently seen packets. On each packet arrival, the flow Id either writes

to an empty entry or, with probability p, overwrites a stored entry if the list is full. The

number of flows, NR(t) and NT (t), is estimated by the reciprocal of the hit probability—

the probability that an incoming packet belongs to a flow in the list. There are several

other algorithms in the literature to achieve the same goal, such as techniques using Bloom

Filters [73].

This algorithm introduces another parameter, (the control update interval) Tc, whose

value impacts the system stability. For example, if Tc is too small, RCP reclaims the link-

share it relinquished to TCP sooner than TCP has had a chance to use it. This causes

oscillations in CR(t), CT (t) values (CT (t) is TCP’s share of the link bandwidth). On the

other hand, a large Tc value makes the algorithm sluggish, and RCP does not achieve its

fair share. For stability, Tc should at least be equal to the amount of time needed for TCP

to fill up the newly allocated link capacity to it. In TCP’s Congestion Avoidance mode,

the window size increases by one packet size per round-trip time (assuming TCP-Sack). In

general however, suppose the window size changes by b(δt) bytes in time δt, and there are

6.2. INCREMENTALLY DEPLOYING RCP 103

nT TCP flows, then the input traffic rate of TCP, yT (t), evolves as follows:

yT (t + RTT) = yT (t) +
nT · b(RTT)

RTT

Assume it takes K round-trip times for TCP to increase its sending rate from yT (t) to

a link capacity share CT allocated at time t. That is,

CT = yT (t + K · RTT) = yT (t) +
nT · b(RTT) · K

RTT

Then, the minimum Tc can be derived as:

T ∗
c = K · RTT =

CT − yT (t)

nT · b(RTT)
· RTT 2

Routers generally are not able to obtain the round-trip times of each TCP flow, but they

can estimate the average RTT by noting that:

ẏT (t) =
nT · b(RTT)

RTT 2

where ẏT (t) is the change in traffic-rate. Then T ∗
c becomes:

T ∗
c = K · RTT =

CT − yT (t)

nT · b(RTT)
· nT · b(RTT)

ẏT (t)
=

CT − yT (t)

ẏT (t)

For stability, the choice of Tc should be larger than T ∗
c . Note that we do not require

knowing the particular TCP flavor or a mix of flavors that RCP is coexisting with.

Fig. 6.13 shows an example of the above scheme where RCP and TCP flows share

bandwidth equally.

In some extreme situations a purpose-built RCP-enabled switch/router might not be

able to afford one more queue for all traffic. In this case, a variant of the above scheme

may be used: all traffic share a single queue that is served in a FIFO manner. The weights

computed in the scheme above are simply used to compute RCP’s (CR(t)) and TCP’s

(C − CR(t)) link-shares, achieving a “soft” isolation of traffic. RCP only fills up its share,

CR(t), leaving the remaining bandwidth for TCP flows. The algorithm has the same steps

as the scheme described above (except for STEP S, that schedules queues, is not necessary

here) and we omit restating the scheme.

104 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

0
20
40
60
80

100
120
140
160

0 10 20 30 40 50 60 70 80T
h

ro
u

g
h

p
u

t
[M

b
/s

]

Fair-RCP

RCP (aggregated)
TCP (aggregated)

0

400

800

1200

1600

2000

0 10 20 30 40 50 60 70 80Q
u

e
u

e
 O

c
c
u

a
n

c
y
 [

p
k
ts

]

Simulation Time [sec]

TCPQ
RCPQ

0
0.5

1
1.5

2
2.5

3

0 20 40 60 80 100N
or

m
al

iz
ed

 T
hr

ou
gp

ut

flow id

20 RCP flows/80 TCP flows

TCP
RCP

Figure 6.13: The scheme achieves fair bandwidth sharing among 80 RCP (existing on the
link from time 0) and 20 TCP (starting at time 10) flows sharing a bottleneck link. The top
left plot shows the aggregate throughput of RCP and TCP flows; the top right plot shows
their queue occupancies; the bottom plot shows the normalized fair-share rate of individual
flows.

An example of the simplified scheme in action is demonstrated in Fig. 6.14, in which

there are equal number of RCP and TCP flows, and both receive their fair shares. Note that

while this scheme achieves fair sharing of the bottleneck bandwidth, there are fluctuations

in RCP’s rate (R(t)), link-share (CR(t)) and its queue, corresponding to TCP’s saw-tooth

behavior in the shared queue.

Under Different Network Conditions

The above schemes achieve the fair link-share property, under various network conditions.

In this section, we show that these algorithms:

• Apply to multiple bottleneck links and still achieve equal bandwidth-sharing.

• Work for all flow sizes and RCP retains its property of short flow completion times.

The scenario of multiple bottleneck links can occasionally occur in real networks and

causes throughput degradation in TCP. We need to ensure that RCP does not have this

6.2. INCREMENTALLY DEPLOYING RCP 105

 0
 0.1
 0.2
 0.3
 0.4

 0 20 40 60 80 100 120 140 160 180 200
R

(t
)/

C
Time

RCP Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200N
o

rm
a

liz
e

d
 L

in
k
 C

a
p

a
c
it
y

Time

CR(t)
in traffic

out traffic 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 20 40 60 80 100 120 140 160 180 200

Q
u

e
u

e

Time

Total queue
TCP queue

RCP Queue

Figure 6.14: Five long RCP and TCP flows share a bottleneck link. The top plot shows
RCP’s rate; bottom left plot shows RCP’s computed link-share; bottom right plot shows
the queue occupancy of RCP and TCP flows. The average link shares are 0.5 each for RCP
and TCP. The fluctuations follow from TCP’s saw-tooth behavior.

problem and will not be affected by the coexisting TCP traffic. Fig. 6.15 illustrates an

example of this scenario. While TCP is unfavorable to flows passing through multiple

bottlenecks, RCP still achieves fair sharing in the sense that each RCP long flow achieves

the same share as single-hop TCP flows.

So far we have tested the schemes’ fairness properties under long-lived flows. To be

more realistic, we generate RCP and TCP flows arriving in a Poisson process and having

Pareto distributed flow-sizes. Results show that on average, long RCP flows not only share

the link bandwidth equally with long TCP flows, but RCP also retains the feature of short

flow completion times, as shown in Fig. 6.16.

6.2.2 Hindrance 2: Coexisting with non-RCP bottlenecks

Obviously, we cannot hope that all routers and other network devices will be equipped with

RCP functionality overnight. RCP end-hosts need to be able to communicate with non-

RCP enabled network devices. If after the initial handshake, an RCP flow does not receive

a valid rate, by default it switches to TCP congestion control since none of the routers along

the path understand RCP. This situation is the simplest to resolve.

When an RCP flow receives a valid rate, it needs to find out if the router suggesting

106 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

Link 2Link 1

Flow 5
Flow 4

Flow 3
Flow 2

Flow 1

Flow 0

n2

n1

Router
Router

n0
Router

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 80 100 120 140 160 180 200

In
s
ta

n
ta

n
e

o
u

s
 P

e
r

F
lo

w
 R

a
te

Time

Flow 0
Flow 1
Flow 2
Flow 3 0

 0.2

 0.4

 0.6

 0.8

 1

 60 80 100 120 140 160 180 200

In
s
ta

n
ta

n
e

o
u

s
 P

e
r

F
lo

w
 R

a
te

Time

Flow 0
Flow 1
Flow 2
Flow 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 80 100 120 140 160 180 200

In
s
ta

n
ta

n
e

o
u

s
 P

e
r

F
lo

w
 R

a
te

Time

Flow 0
Flow 1
Flow 2
Flow 3

Figure 6.15: Example of RCP and TCP flows coexisting in the presence of multiple bottle-
neck Links (top plot shows the topology). Simulation results are shown for Link 1; Link 2
gives a symmetric outcome. Middle left plot: When all six flows are RCP, each receives the
same rate. Middle right plot: When all flows are TCP, the two-hop flows (flows 0 and 1)
are throttled by the 1-hop flows. Bottom plot: In the case of RCP-TCP traffic mix, flows
1, 3 and 5 are RCP while flows 0, 2 and 4 are TCP. Each RCP flow and single-hop TCP
flows achieve the same rate.

 0.1

 1

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
lo

w
 C

o
m

p
le

tio
n

 T
im

e
 [

se
co

n
d

]

Flow Size [packets]

TCP
RCP

PS

Figure 6.16: Flow completion times when RCP and TCP coexist.

6.2. INCREMENTALLY DEPLOYING RCP 107

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0 50 100 150 200 250

R
T

T

Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

R
(t

)/
C

Time

RCP Rate

Figure 6.17: Example demonstrating the switching point for an end-host from RCP to
TCP: At the start, an RCP flow goes through a bottlenecked RCP-enabled link and a non-
bottlenecked non-RCP link. At time t = 150, a TCP flow joins in the non-RCP router,
which shifts the bottleneck to the non-RCP link. At this point, the end-host observes an
increase in RTT (left plot) as TCP fills up the buffer, while the received RCP rate feedback
remains unchanged (right plot).

this rate is in fact the bottleneck. In this case, a flow optimistically starts by transmitting

at the received RCP rate and uses a heuristic to figure out if in fact this is the bottleneck

rate. Once RCP determines that the suggested rate is not the bottlenecked rate, it switches

to TCP congestion control immediately to avoid overwhelming the bottleneck. We would

like a heuristic with the following properties:

• Zero false-negative rate (we do not want an RCP sender to use RCP if the bottleneck

is non-RCP) and,

• A small false-positive rate (i.e., we want the sender to use RCP if the bottleneck router

runs RCP).

Our heuristic is based on an invariant property of the RCP algorithm: When a queue

builds up, RCP will react by reducing its rate so as to drain the queue. An end-host

switches to TCP if it observes either of the following, without a corresponding decrease in

the received RCP rate:

• Estimated round-trip time at end-host is doubled, or

• Experiences packet-losses.

The rationale behind the heuristic is: If the non-RCP router has a buffer size that

equals the bandwidth-RTT product, then as the buffer fills up the RTT will increase to at

least twice the base RTT value, and if there is no corresponding reduction in RCP rate,

108 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

this is an indication to switch over. On the other hand, if the buffering is smaller than

bandwidth-RTT product, then packet losses occur before the RTT doubles, indicating the

need to switch.

Fig. 6.17 illustrates an example of this heuristic in action. The end-host switches to

TCP within 10 RTTs after the bottleneck shifts to a non-RCP router, and in this set-up

we also checked that there are no false positives.

6.3 Sizing router buffers for RCP congestion control

RCP will also exist in a network where switches and routers have very small or large buffers.

Our focus in this section is to find the amount of buffering RCP requires, and particularly

questions such as: How does its buffering scale with network bandwidth and round-trip

times? What happens when flows arrive and depart randomly, and have a mix of flow-

sizes? How does buffering depend on the offered network load? Does it depend on the

flow-size distribution?

With RCP, we find that if there are a fixed number of long-lived flows in the system

(Fig. 6.18 shows an example), the amount of buffering required is trivially O(1), i.e., the

required buffering is a constant independent of the link capacity, RTT and the number of

flows. Since the router can give an explicit rate feedback, all flows eventually converge to

the equilibrium fair-share rate with a steady state link utilization of 100% and zero losses,

independent of number of flows. Our simulations suggest that 100% link utilization can be

achieved with as few as 10-20 packets.

[75] goes a step further and characterizes the amount of buffering needed by explicitly

modeling flow arrivals and departures. The analysis indicates that in a dynamic environ-

ment, O(1) buffering is no longer sufficient. To maintain consistent performance (in terms

of flow completion times), buffers need to be scaled linearly with link-capacity, as O(C). The

good news is our simulations indicate that RCP can function very well even with buffers

as small as 5% of the bandwidth delay product. Because RCP is designed for short flow

completion times, we choose AFCT (Average flow completion time) to be the primary per-

formance metric and successfully capture the trade-off between the use of small buffers and

the increase in the flow completion times.

[75] derives buffer sizing results for two extreme cases:

• When the mean flow size is large compared to the bandwidth delay product, E[L] ≫

6.3. SIZING ROUTER BUFFERS FOR RCP CONGESTION CONTROL 109

C · RTT

• When the mean flow size is small compared to the bandwidth delay product, E[L] ≪
C · RTT

The first case is a natural extension of the static scenario in which a fixed number of

flows, N , stay in the system for an infinitely long-time. In this setting, the number of

flows in the network changes very slowly when compared to the convergence times of RCP.

Therefore, RCP can track the number of flows in the network quite accurately, thereby

making efficient use of link capacity.

The second case represents a network dominated only by short-flows. The motivation

for studying short-flows is the large number of short flows in the Internet today. Since

short-flows cannot be controlled, one could argue that large buffers must be employed to

eliminate large packet loss. [75] shows that even when no congestion control is imposed

on the short-flows, small buffers do not degrade the performance of RCP significantly. The

Internet consists of a large number of short-flows that contribute to a small fraction of the

traffic volume, and a small number of long-flows that contribute to a large fraction of the

traffic volume. The analysis in [75] considers the two extreme cases (short-flows and long-

flows) while the mixture is studied in simulations below. [75] also analytically characterizes

the impact of losses on the AFCT of flows, in particular calculates the AFCT of flows as a

function of packet loss probability p.

The analytical results indicate that - for both cases - the buffer size scales linearly with

the capacity. The simulations, described below, indicate that buffer sizes as small as 5-10%

of the bandwidth delay product are sufficient to maintain good performance.

6.3.1 Simulation Results

Our simulations use ns-2.29 and we have augmented the RCP end-host algorithm described

in Chap. 3 (code available at RCP web page [76]) with a simple retransmission scheme, which

works as follows: The receiver informs the sender of the cumulative number of packets

it has received so far, through the acknowledgment packets. After the sender completes

transmitting all packets of a flow, it waits for a certain amount of time (for example,

2×RTT) for the remaining packets in network to reach the destination host. Beyond that,

it assumes that the difference in the number of packets transmitted (the flow-size) and the

number of packets acknowledged by the destination host are lost. It transmits the difference

110 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

L
in

k
 u

ti
liz

a
ti
o
n

Time [secs]

RCP

 0
 200
 400
 600
 800

 1000

 0 50 100 150 200 250 300 350 400 450 500

Q
u
e
u
e
 [
p
k
ts

]

Time [secs]

RCP
bandwidth-delay product

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0 50 100 150 200 250 300 350 400 450 500

R
(t

)/
C

Time [secs]

RCP

Figure 6.18: Simulation illustrating that RCP achieves PS under small buffers for a static
scenario of N long-lived flows. The set-up is: C = 0.1 Gbps, RTT = 80 ms, 50 long flows
start at time 0, Buffer size = 20 packets (2% of BW-RTT). The top left plot shows the
normalized link utilization, the right plot shows the queue occupancy over time and the
bottom plot shows the normalized RCP rate.

and the flow completes when the sender knows that the receiver has received all the flow’s

packets. This abstraction simplifies significantly the retransmission mechanisms by which

the receiver informs the sender of exactly which packets were lost, at the same time it is

detailed enough to study the effects of small buffers on flow completion times.

Let’s first consider the simplest case with N static, long-lived flows. Because RCP does

not rely on loss as an indication of congestion, we expect it to settle down to its equilibrium

of (Re = C/N, qe = 0) irrespective of the buffer size at the congestion point. This is shown

in Fig. 6.18, where the buffer is 2% of the link-capacity3—the link-utilization is 100%,

steady-state queue is close to zero and every flow receives its fair-share.

We are interested in the case when flows arrive and depart with a mix of flow sizes.

Our metric of interest is average flow completion time (AFCT) (or equivalently the mean

number of active flows) and our reference is the Processor Sharing (PS) system. If RCP

implements PS accurately, then the mean FCT is given by,

2 · RTT +
E[L]

C · (1 − ρ)
(6.1)

The expression takes into account the time required for the connection setup.

Simulation Set-up: In the following we will see how RCP performs w.r.t. Eqn. 6.1 when

3This property holds true for smaller and larger buffers as well.

6.3. SIZING ROUTER BUFFERS FOR RCP CONGESTION CONTROL 111

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
e
ra

g
e
 F

C
T

 [
s
e
c
s
]

Buffer [packets]

RCP [Mean flow-size = 20 packets]
PS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
e
ra

g
e
 F

C
T

 [
s
e
c
s
]

Buffer [packets]

RCP [Mean flow-size = 10000 packets]
PS

Figure 6.19: Plot illustrating that small buffers increase AFCTs for small flows and do
not affect AFCTs as much for large flows. The set-up is: C = 0.1 Gbps, RTT = 80 ms,
ρ = 0.68, mean flow-size is 20 packets (2% BW-RTT) for left plot and 8200 packets (820%
BW-RTT) for the right plot. Buffer size is varied from 2% (20 pkts) to 200% (2000 pkts)
of bandwidth-delay.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.01 0.1 1 10

M
ea

n
#A

cti
ve

 F
low

s

Mean flow-size/bandwidth-delay

buf = 20
buf = 50

buf = 100
buf = 500

buf = 1000
buf = 2000

PS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.01 0.1 1 10

Lo
ss

 P
ro

ba
bil

ity

Mean flow-size/bandwidth-delay

buf = 2%
buf = 5%

buf = 10%
buf = 50%

buf = 100%
buf = 200%

Figure 6.20: Plot illustrating mean number of active flows (left) and loss probability (right)
versus mean flow-size under different buffer sizes. The set-up is the same as the last Figure.

buffer sizes are varied. In each case we will vary one of C, E[L], ρ and RTT while keeping

all else constant. The RCP parameters are chosen as (α, β) = (0.4, 0.5). Unless mentioned

otherwise, we will assume the flow arrival process is Poisson and the flow sizes are Pareto

distributed with shape parameter 1.2.

As the mean flow-size increases

The relative mean flow-size (compared to the bandwidth-delay product) is the single biggest

deciding factor on how close RCP is to PS with small buffers. To understand this, consider

two extremes - a small mean flow-size and extremely large mean flow-size. For infinitely

large flow-sizes, small buffers make little/no difference to how well RCP emulates PS, like

the example in Fig. 6.18. For smaller/medium flow-sizes the network dynamics are changing

more rapidly (due to higher λ for any fixed load ρ = λE[L]
C), and we would expect RCP to

112 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Av
er

ag
e

flo
w-

du
r [

se
cs

]

link-Cap [Gbps]

Buf = 2%
Buf = 5%

Buf = 10%
Buf = 50%

Buf = 100%
Buf = 200%

PS
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
ss

 P
ro

ba
bil

ity

link-cap [Gbps]

Buf = 2%
Buf = 5%

Buf = 10%
Buf = 50%

Buf = 100%
Buf = 200%

Figure 6.21: Plot illustrating mean FCT (left) and loss probability (right) versus link-
capacity under different buffer sizes. The set-up is: RTT = 80 ms, ρ

C = 0.68, C is varied

over three orders of magnitude and E[L] is varied so that E[L]
C·RTT equals 1.7 in every case.

deviate from the PS behavior for small buffers.

In the following simulations, new flows arrive according to a Poisson process and have

Pareto flow-size distributions. We fixed the link-capacity (C), offered load (ρ) and RTT

while varying E[L] from 2% to 1000% of the bandwidth-delay product for buffer sizes

ranging from 2% to 200% of the bandwidth-delay product. Fig. 6.19 shows the mean flow

completion time for the two extremes of mean flow-sizes. As expected, RCP clearly emulates

PS well for large flows even under small buffers. Small flows on the other hand, have larger

completion times as buffers become smaller, with the increase being at most 50% for a

buffer as small as 2% of bandwidth-delay product.

Fig. 6.20 shows the mean number of active flows and loss probability across a wide range

of mean flow-sizes. Note that the difference between RCP and PS gets negligible as the

mean flow-size increases. When the flow-size is small the RCP system is nothing but a

M/M/1-FCFS system where loss probability for any given buffer-size goes to zero as mean

flow-size goes to zero. For very large flows too the loss probability goes to zero (in the

extreme case N long-lived flows). So as the mean flow-size increases, we expect the loss

probability to first increase and then decrease. Fig. 6.20 confirms this.

As the link-capacity increases

There are two ways of looking at results with increasing link-capacities - 1) Vary C while

keeping all else constant; this amounts to varying the mean flow-size relative to bandwidth-

delay which we have already seen in Sec. 6.3.1 and 2) Vary C and scale E[L] to keep the

relative mean flow-size E[L]
(C·RTT) a constant, which we will see in this section.

Fig. 6.21 shows the mean FCT and the loss probability for different buffer sizes while

6.3. SIZING ROUTER BUFFERS FOR RCP CONGESTION CONTROL 113

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
o
s
s
 P

ro
b
a
b
il
it
y

link-cap [Gbps]

Buf = 2%
Buf = 5%

Buf = 10%
Buf = 50%

Buf = 100%
Buf = 200%

 0.16
 0.18
 0.2

 0.22
 0.24
 0.26
 0.28
 0.3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1A
v
e
ra

g
e
 f
lo

w
-d

u
r

[s
e
c
s
]

link-Cap [Gbps]

Buf = 2%
Buf = 5%

Buf = 10%
Buf = 50%

Buf = 100%
Buf = 200%

PS

Figure 6.22: Plot illustrating mean FCT (left) and loss probability (right) versus link-
capacity under different buffer sizes. The set-up is: RTT = 80 ms, ρ = 0.8, C and E[L] are
varied so that 1

µ(C·RTT) equals 0.005 in every case.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 fl
ow

-d
ur

 [s
ec

s]

load

Buf = 2%
Buf = 5%

Buf = 10%
Buf = 50%

Buf = 100%
Buf = 200%

PS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lo
ss

 P
ro

ba
bi

lit
y

load

Buf = 2%
Buf = 5%

Buf = 10%
Buf = 50%

Buf = 100%
Buf = 200%

Figure 6.23: Plot illustrating mean FCT (left) and loss probability (right) versus offered
load under different buffer sizes. The set-up is: C = 0.1 Gbps, RTT = 80 ms, E[L] is 1700

packets (E[L]
(C·RTT) = 1.7).

keeping ρ
C , RTT, E[L]

C constant and varying C over three orders of magnitude. In each case,

E[L] is chosen to be twice the bandwidth-delay product. As we would expect from Eqn. 6.1

the FCTs in RCP remain constant for fixed E[L]
C even while both E[L] and C vary for any

given buffer size. The increase in FCT is at most 50% under very small buffers. The loss

probability is constant over different link-speeds so long as the buffers are scaled with C: a

result that agrees well with the analytical results in [75].

While Fig. 6.21 is for large mean flow-sizes, Fig. 6.22 shows the loss probability versus

link-rates when the mean flow-size is small. The loss probability remains constant so long

as buffer sizes scale with link-rates, agreeing well with the analysis in [75].

114 CHAPTER 6. PRAC. CONSIDERATIONS IN BUILDING AN RCP NETWORK

 0.14
 0.16
 0.18
 0.2

 0.22
 0.24
 0.26
 0.28
 0.3

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1A
v
e
ra

g
e
 f
lo

w
-d

u
r

[s
e
c
s
]

load

Buf = 2%
Buf = 5%

Buf = 10%
Buf = 50%

Buf = 100%
Buf = 200%

PS

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
o
s
s
 P

ro
b
a
b
il
it
y

load

Buf = 2%
Buf = 5%

Buf = 10%
Buf = 50%

Buf = 100%
Buf = 200%

Figure 6.24: Plot illustrating mean FCT and loss probability versus offered load under
different buffer sizes. The set-up is: C = 0.1 Gbps, RTT = 80 ms, E[L] is 5 packets

(E[L]
(C·RTT) = 0.005). Flow sizes are constant.

As the offered load increases

The offered load ρ is varied from 0.1 to 0.8 (varying λ), while keeping everything else fixed.

Fig. 6.23 (large mean flow-size) and Fig. 6.24 (when mean flow-size is small) show the mean

FCT versus the offered load. The FCTs under RCP follow the PS curve well for large

buffers and are shifted by 50% for the very small buffer sizes. The shift is more pronounced

for higher loads as opposed to low loads. The loss probability versus load is shown in the

right hand plots of Fig. 6.23 (when mean flow-size is large) and Fig. 6.24 (when mean flow-

size is small). The nature of the curves (in complete agreement with the results in [75])

is as follows: For small flows, the loss probability increases with the offered load - similar

to a M/M/1/B-FCFS system. For large-flows, the loss probability first increases and then

decreases with the offered load. The intuitive reasoning is as follows: For large flows RCP

is analogous to a M/M/1/B-PS system where losses are caused by newly arriving flows and

because the system has a time-delay to adjust to a new rate. Beyond a certain load, the

processor sharing rate received by the new flows decreases faster than the rate at which new

flows are arriving and hence the decrease in losses.

There is good news and bad news about sizing buffers for RCP. The bad news is that

the amount of buffering scales with the bandwidth-delay product. The good news is that

we can reap the benefits of RCP with buffers as small as 5-10% of bandwidth-delay product.

Ultimately, the deployment of any congestion control mechanism, especially one involving

the network infrastructure, requires solving many practical problems. In this section, we

have convinced ourselves that RCP retains its appealing properties even with small buffers

and therefore its buffering requirements are unlikely to be a show stopper when it comes to

practical deployment.

6.4. OTHER PRACTICAL CONSIDERATIONS IN AN RCP NETWORK 115

6.4 Other practical considerations in an RCP network

There are a few other practical considerations, not addressed in this chapter, such as: How is

RCP information carried in the presence of tunneling? How does RCP coexist with middle-

boxes such as NATs and firewalls? What happens when the link-rate is not a constant and

varies with time, in some manner that is hard to predict? The latter of these questions

arises in at least two different contexts. First, in wireless environments where the link-rates

vary over time because of interference and mobility, and second, in routers and switches

with input queues that are arbitrated by some scheduling discipline.

An obvious solution to the above problem, is to observe how the link-rate, C, is used in

the RCP equation, and look to replace C with a term that would be a close approximation

to it. C appears at two places in the RCP rate equation: (C − y(t)) is the spare bandwidth

and C
R(t) is the router’s estimate of the equivalent number of flows. Note that when queue

length is positive, (C − y(t)) represents the change in queue length. Further, we also find

that an equally good estimate of the equivalent number of flows is y(t)
R(t) , where y(t) is the

aggregate incoming traffic rate. With these changes, the rate equation is as follows:

R(t) = R(t − T)



1 +

T
d

(

−αq̇(t) − β q(t)
d

)

y(t)



 (6.2)

where q̇(t) is the change in queue-length and y(t) is the aggregate incoming traffic rate

over the interval T . If q(t) = 0, then q̇(t) := θ—a user-defined value which determines the

increase in R(t) when there is no queue built up. It remains to be seen how the above rate

equation will perform in practical wireless networks and input-queued switches.

Chapter 7

Most Commonly Asked Questions

About RCP

The design, analysis and deployment of RCP happened over several years. In the many

talks I have given along the way, and from other interactions, I have collected a number of

commonly asked questions. Suspecting that the reader might still have open questions, I

am repeating them here, along with a response to each.

Question 1: Won’t RCP take a long time to converge after a sudden change in the

number of flows?

Like all feedback algorithms, RCP sets a rate that is out of date when it is used (a

round-trip time later). While most congestion control algorithms act conservatively (or

even timidly) to start with (e.g., the Slow-Start algorithm of TCP Sack that starts out

with a window size of just two packets; and the slow additive increase of XCP), RCP starts

up immediately at the best-estimate of the current fair-share rate. This means flows finish

quickly; but it also runs the risk of overshooting—particularly when there are rapid changes

in network traffic, for example because of a sudden flash crowd. A sudden increase in traffic

is the worst-case scenario for RCP.

It is a deliberate design decision to optimize RCP for fast flow completion times in the

common case as opposed to avoiding packet-losses in the worst-case network scenarios [77].

RCP is not optimized to prevent bad things from happening in the network, but instead,

to recover quickly if and when sudden things happen. In scenarios such as sudden traffic

changes, RCP will recover, and provably so in the control theoretic sense as we have seen

in Chap. 5. The good news is that in the recommended range of RCP’s parameters, α ∈

116

117

 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0 10 20 30 40 50

N
o

rm
a

liz
e

d
 r

a
te

Rtts

alpha = 0.6, beta = 0.2

Figure 7.1: Example illustrating that RCP converges within 10 round-trip times on a sudden
traffic change. There are 10 flows in equilibrium at time 0 (normalized RCP rate is 1/10),
when the traffic load doubles suddenly. RCP reduces its rate in response to this change and
finds the new equilibrium within 10 round-trip times.

(0.4, 0.6) and β ∈ (0.2, 0.6), RCP also recovers quickly—10 round-trip times independent

of the link-rate, number of flows and round-trip time value, as we have seen in Chap. 5.

Fig. 7.1 illustrates an example. I hypothesize that in the future this will be proved to be a

non-problem.

[20] describes a variant of RCP for readers who are looking for a more conservative

algorithm, with even shorter convergence times.

Question 2: Do I have to pick an alpha and beta based on my network conditions, or

can the router ship with a default?

Fortunately, the range of parameters for which RCP works well is broad and the algo-

rithm is not very sensitive to the exact choice within the range. The router can ship with

default values of α ∈ (0.4, 0.6) and β ∈ (0.2, 0.6). These values have been chosen among

values that : a) RCP is known to be stable, b) flow completion times are close to processor

sharing for a broad range of network and traffic conditions and, c) RCP recovers quickly

after sudden traffic changes, such as flash-crowds.

Question 3: What do you see as the deployment path for RCP? Will it appear first in

routers or switches?

RCP can first be deployed in special networks (often under the control of a single

administrative domain) such as Data Centers (flow completion time is an important metric

for distributed applications running in Data Centers) and Satellite networks (the unusually

long round-trip times make end-host based schemes sluggish). As for the general Internet, it

will first appear in routers and switches connecting bottlenecked links followed by end-host

118 CHAPTER 7. MOST COMMONLY ASKED QUESTIONS ABOUT RCP

stacks which will adopt RCP to take advantage of the more explicit information from the

network.

Question 4: If the problem is that TCP is too timid, why not increase the initial

Slow-Start size to a larger value and to possibly more than double the rate of increase in

Slow-Start. Minor changes seems preferable to major changes especially minor changes to

end nodes that needs no coordinated change in routers.

Slow-start is not the only reason why TCP’s flow completion times can be long. TCP’s

conservative AIMD and the unfair way of bandwidth sharing among flows is also a penalty

on FCTs. That said, the proposal above is a fair one considering that it may benefit the

vast majority of flows. However, some problems with this proposal are:

• Even in the best-case scenario, flows will still take O[logk(S/wInit)] rounds to finish,

where S is flow-size, wInit is the initial window size and k is the increase factor of

window size in Slow-Start mode—a logarithmic number of round-trip times even in

the best of the conditions, as opposed to O(1) round-trips for RCP.

• The above scheme sometimes makes problems much worse than a conservative Slow-

Start—it can increase packet losses in Slow-Start mode making FCTs even worse. It

increases unfairness among flows, especially with drop-tail buffers—flows can be in

different stages of Slow-Start, so those in the later rounds which are increasing their

windows rapidly, benefit at the expense of those in the earlier rounds.

• For more challenging conditions such as small buffers, the above proposal may turn

out to be even worse than the traditional Slow-Start.

In essence, just increasing the initial window size and/or the rate of increase in Slow-

Start while having only loss as feedback could be either be too aggressive or conservative,

depending on the network conditions.

Question 5: Apart from short flow completion times, what are the other consequences

of RCP?

Following are other consequences of RCP, some of which are useful from a network

operator’s point of view:

• RCP makes efficient use of high bandwidth-delay product networks such as the long

haul optical links, and does not have the associated problems with TCP.

119

• It is easy in RCP to police flows and ensure they adhere to congestion control (which

is generally not possible with just end-host based TCP schemes).

• Network operators can give preference (or weighted preference) to some sessions or

aggregates of sessions.

Question 6: Isn’t RCP similar to the ATM ABR style algorithms [39] [40] [41]?

RCP is similar to ATM ABR only in the sense that it receives an explicit congestion

feedback from the network. The RCP equation shares similarities to the UT algorithm [84]

developed by Sanqi Li for ATM networks. That aside, I am not aware of any ATM ABR

algorithm that has been demonstrated to achieve flow completion times close to processor

sharing for a broad range of traffic and network conditions in the presence of flow arrivals

and departures, without maintaining per-flow state or per-flow queues.

Question 7: Is Slow-Start (and the Slow-Start that XCP does) under certain circum-

stances, better than fair, better in the sense that XCP holds off the new flows and lets the

old flows complete, but always hands out any capacity actually unused, so the link loading

should remain high. But simulations suggest that this intuition is exactly backwards.

The Slow-Start that XCP does is good when the mean flow-size is large enough, so what

happens at the start is amortized over the duration of the flow. It is definitely not good

when most flows are capable of finishing within a few round-trip times. It is especially poor

when flow sizes are heavy-tailed in which case XCP’s Slow-Start—in holding off new flows

and letting old ones complete—is akin to emulating the FCFS discipline, whose average

flow completion time is worse compared to processor sharing.

Question 8: Suppose the router keeps track of the exact number of flows going through

a router, N(t), can RCP use this information?

There are two reasons why knowing the exact number of flows is not directly useful to

RCP.

• The skewed distribution of traffic in flows makes the knowledge of the exact value of

N(t) somewhat irrelevant.

• Different flows have different bottleneck links—there can be a large number of ongoing

flows at a link but most bottlenecked elsewhere. Knowing N(t) does not help much

in this case.

Question 9: Does RCP achieve max-min fairness in a network setting? Can RCP’s

mechanisms be used to achieve proportional bandwidth sharing in a network?

120 CHAPTER 7. MOST COMMONLY ASKED QUESTIONS ABOUT RCP

RCP provably achieves max-min fairness. [83] proposes a variant of RCP that achieves

α-fair rate allocations [83], including proportional fairness when α = 1.

Question 10: If the recently proposed end-host based scheme—PCP: Efficient Endpoint

Congestion Control [82]—becomes widespread, would there still be a need for explicit feedback

congestion control such as RCP?

PCP cannot be a replacement for explicit feedback congestion control, as it fails to

achieve many of their desired properties, of which I give four distinct examples below:

1. Short flow completion times: In the absence of any prior history information, a new

PCP connection takes O(logN) round-trips at start-up, and so short and medium

sized flows will not experience any smaller response times as compared with TCP. On

the other hand, explicit feedback schemes can finish flows in O(1) round-trips, even

in the absence of any history.

2. Short high-bandwidth flows: If a new flow on starting up wants to blast at a high

rate (e.g., 1 Gbps) for a short period (e.g., 2 round-trip times) and stop, PCP (and

TCP or any other end-host based schemes) cannot achieve it while explicit feedback

schemes can.

3. Policing misbehaving flows: Like TCP, PCP provides no means to counter misbe-

having hosts; network-based enforcement such as fair queuing is still the only way to

achieve this. On the other hand, policing flows to ensure they adhere to congestion

control is a simple byproduct in explicit feedback schemes such as RCP.

4. Fairness and stability for a broad range of network conditions: PCP’s operating regime

for good performance is a network with low load. Stability and fairness under high

loads are PCP’s secondary concerns, as opposed to the explicit feedback schemes

which operate well over a broader range of network and traffic conditions, including

extremely high loads.

In summary, if we would like our network to have the above properties, PCP is not the

solution.

Chapter 8

Conclusion

In this thesis we argue that flow completion time is a very important metric for congestion

control. We propose Rate Control Protocol, whose main goal is fast download times or flow

completion times. In RCP, routers maintain a single fair share rate for all flows passing

through a link. They update the rate periodically based on the congestion conditions, and

strive to emulate processor sharing among flows. We studied RCP through simulations,

modeling and experiments, and showed the following:

1. The flow completion times in RCP are close to those in ideal processor sharing for a

broad range of network and traffic conditions.

2. RCP is provably stable irrespective of the link-rates, round-trip times, and the number

of flows. Further, simulations indicate that it can be stable even under multiple

bottleneck links with vastly heterogeneous round-trip times.

3. RCP is easily implementable in high-speed routers and end-hosts. The simplicity of

operations on the data-path are particularly appealing.

4. We characterized the size of buffers for RCP in routers and switches, to understand

how they scale with link-rates, offered loads, and flow sizes.

5. We described how RCP can be incrementally deployed in real networks, in particular

how it can coexist with non-RCP traffic and routers that are not RCP enabled.

While RCP’s performance is convincing in simulations and experiments with synthetic

traffic, it is natural to ask if it works as well in real networks with real traffic, real users,

121

122 CHAPTER 8. CONCLUSION

and real applications. Will users be able to perceive a noticeable improvement with RCP?

While simulations and experiments definitely suggest so, ultimately running it on networks

such as GENI [78] will tell us if that will in fact be so in reality.

If deployed, RCP is likely to have a tremendous impact on applications including web-

browsing, watching videos, long file transfers (e.g. movies, uploading pictures), gaming, and

ultimately on users’ experience. Given that the impact is so huge, why isn’t it then already

widely prevalent in today’s networks? The biggest impediment is incremental deployment

in real networks. Today’s networks are patchy with many local optimizations, and don’t

allow new network technologies to be easily integrated. The biggest challenge by far is not

to come up with the next “better” algorithm, but instead explore how to seamlessly deploy

RCP (or RCP like) congestion control in today’s kludged networks.

On sudden changes in the network, we have seen in Chap. 5 that RCP provably converges

to a stable state. While simulations show us that RCP converges as fast as 10 round trips,

it turned out to be hard to prove this. It would be quite a relief to provably show that RCP

recovers to a stable state in a reasonable amount of time.

Appendix A

A model for the ‘U’ curve

In this section we propose an approximate model that predicts the expected flow duration

when the flow sizes have bounded Pareto distribution and the traffic in each flow is arriving

at a rate, R. The cumulative distribution function of a bounded Pareto distribution is:

F (x) =
1 − (m/x)α

1 − (m/M)α
; m ≤ x ≤ M, 0 < α ≤ 2

Following is the notation used in this section:

• C: Link capacity

• R = C
K : Flow rate (assume that K is an integer)

• E[L] and E[L2]: First and second moments of flow size

• E[Ql]: Expected queue length as seen on the arrival of the last packet of a flow

• λ: Poisson flow arrival rate (flows/s)

• ρ = λE[L]
C : Offered load

• E[τ]: Expected flow duration

From Eqn. 3.5, the expected flow duration is given as

E[τ] =
E[L]

R
+

E[Ql]

C
. (A.1)

123

124 APPENDIX A. A MODEL FOR THE ‘U’ CURVE

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������

���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

R = C/K

R = C/K

(a)

R = C/K

R = C/K

C

(b)

.

..

C/K

C/K

...

C/K

C/K

(c)

Figure A.1: The three systems: a) Our system of interest b) Flow-wise FCFS c) M/Pareto/K
system.

So for a given rate, in order to the find the expected flow duration, it suffices to find the

expected queue length seen by the last packet of a flow, which we will approximate as the

expected queue length. To find the expected queue length we will consider two cases:

Case 1: R < C

Consider the three systems shown in Fig. A.1. Fig. A.1(a) represents our system of

interest where flows arrive according to a Poisson process and each flow transmits data at

rate R where R = C/K, K > 1. Let us assume for now that K is an integer. The buffer is

served by an FCFS server of rate C. Fig. A.1(b) represents what we call a Flow-wise FCFS

system. This system has K servers, each of capacity C/K and the flow arrival process is

the same as that of system (a). Flows are queued according to when the first packet of a

flow arrives. Whenever a server becomes free, it picks the first flow in queue that is not

being served (if there are any) and serves the entire flow to completion. Note that a server

will not serve a flow if all flows in the queue have started being served by other servers.

Fig. A.1(c) represents the M/Pareto/K system, which is the same as (b) except each flow

arrives as a single entity.

Systems (a) and (b) have the same arrival process for all time instants, and systems (b)

and (c) have the same departure process for all time instants. Let Aj(t) denote the amount

of traffic that arrived into system j by time t and Dj(t) denotes the amount of traffic served

125

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Slope = R

L

t

Area = Li
2

i

i

/2R

Figure A.2: Difference in queue occupancy in systems (b) and (c)

by system j up to time t. Assume that all systems are empty at time 0, then the expected

queue size in system j is given by

E[Qj] = lim
t→∞

∫ t
0(Aj(t) − Dj(t))dt

t
. (A.2)

Systems (a) and (b) have the same arrival process, but (a) is work-conserving while (b)

is not, because an idle server in (b) cannot serve anything if all the flows in queue have

started being served. Thus, we have Db(t) ≤ Da(t), ∀t. So, it follows from (A.2) that:

E[Qa] ≤ E[Qb]. (A.3)

Systems (b) and (c) have the same departure process, while Ab(t) ≤ Ac(t), ∀t by setup.

Thus:

E[Qb] ≤ E[Qc]. (A.4)

Since the systems (b) and (c) differ only in their arrival processes, we can find the dif-

ference between the expected queue lengths as the difference between the arrival processes:

E[Qc] − E[Qb] = lim
t→∞

∫ t
0(Ac(t) − Ab(t))dt

t
.

Suppose N(t) flows have arrived to the system till time t, then the contribution of flow i to

the above difference, as shown in Fig. A.2, is
L2

i

2R . Summing over all flows gives:

E[Qc] − E[Qb] = lim
t→∞

∑N(t)
i=1

L2
i

2R

t

126 APPENDIX A. A MODEL FOR THE ‘U’ CURVE

= lim
t→∞

N(t)

t

∑N(t)
i=1

L2
i

2R

N(t)

= λ
E[L2]

2R
. (A.5)

From Eqns. A.3, A.4 and A.5, we have:

E[Qa] ≤ E[Qb] = E[Qc] − λ
E[L2]

2R
. (A.6)

We will now obtain an approximation for E[Qc], the expected queue length for an

M/Pareto/K system, using the results from [23]. In [23], the authors propose a simple model

that accurately predicts the expected response time of a flow in a M/Pareto/K system, where

the flows sizes have a bounded Pareto distribution. The expected flow response time in this

system is approximated as:

E[D] ≈ K E[L]

C
+

ρ

1 − ρ

E[L2]

2C E[L]
P (blocking), (A.7)

where

P (blocking) = 1 − FP (ρlK)(K(1 − ρs) − 1), (A.8)

FP (ρlK)(·) denotes the value of the cumulative density function of a Poisson distribution

with parameter ρlK,

ρs =
αA

E[L]
ρ,

ρl =
(1 − α)B

E[L]
ρ,

A = E[L] −
√

(E[L2] − (E[L])2)
1 − α

α
,

B = E[L] +

√

(E[L2] − (E[L])2)
α

1 − α
,

and α is the percentage of flows with sizes between m and M/20.

Now, in order to obtain E[Qc], suppose E[N] is the expected number of flows in the

M/Pareto/K system. The probability the system is busy is approximately ρ.1 If we assume

1The probability that system (a) is busy is ρ. Since system (c) is not work conserving the probability
that the system is busy is higher than ρ. For simplicity, we shall assume that it is approximately ρ

127

10
−2

10
−1

10
0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R/C = flow−rate/link−capacity

Simulation
Analysis
M/Pareto/1 delay

A
ve

ra
ge

 F
lo

w
 D

ur
at

io
n

Figure A.3: Analysis and simulation plots for average delay of bounded Pareto distributed
flow-sizes. Pareto distributed flow-sizes with mean 25pkts and shape 1.2, Flow arrivals is
Poisson with rate 600 flows/sec, server capacity C=150Mbps.

that when the system is busy all the K servers are busy, we get an approximation for E[Qc]:

E[Qc] ≈ ρ[(
E[N]

ρ
− K)E[L] + K E[Lr]], (A.9)

where E[Lr] is the expected residual file size and is equal to E[L2]
2E[L] . Using Little’s Law,

E[N] in the above expression is equal to λE[D] where an approximation to E[D] is given

in Eqn. A.7. Then, substituting for E[D] in (A.9) and using (A.6) we have:

E[Qa] ≈ λ
ρ

2(1 − ρ)

E[L2]

C
P (blocking), (A.10)

where P (blocking) is given in (A.8).

Now we have the expected queue occupancy of our system. If we approximate the

expected queue occupancy seen by the last packet of a flow, E[Ql], to be the expected

queue occupancy, E[Qa], then substituting A.10 in A.1, we get:

E[τ] ≈ E[L]
K

C
+ λ

ρ

2(1 − ρ)

E[L2]

C2
P (blocking). (A.11)

Case 2: R ≥ C

128 APPENDIX A. A MODEL FOR THE ‘U’ CURVE

Now let us consider the case when R ≥ C. Consider the three systems as in Fig. A.1,

but with K = 1 and R ≥ C. Then, systems (a) and (b) have the same arrival and departure

processes, therefore E[Qa] = E[Qb]. For systems (b) and (c), we again have Db(t) = Dc(t)

and Ab(t) ≤ Ac(t). Thus, E[Qb] ≤ E[Qc]. In the same way as in Case 1, the difference

E[Qc] − E[Qb] is found to be λE[L2]
2R . Thus,

E[Qa] = E[Qc] − λ
E[L2]

2R
,

where E[Qc] is the expected queue occupancy in an M/G/1 system and is equal to λE[L2]
2(1−ρ)C .

So,

E[Qa] =
λE[L2]

2

(

1

(1 − ρ)C
− 1

R

)

.

Substituting E[Qa] in the delay Eqn. A.1 gives

E[τ] =
E[L]

R
+

λE[L2]

2C

(

1

(1 − ρ)C
− 1

R

)

. (A.12)

Eqns. A.11 and A.12 model the expected flow duration, when R < C and R ≥ C

respectively. Plotting these delay equations verses R show that the expected flow duration

has a unique minimum. Fig. A.3 shows an example comparing the average flow duration

given by the model and the simulations.

Appendix B

Linearization of RCP rate equation

In this appendix we will linearize the RCP rate update equation. Equations describing the

system are:

q̇(t) = NR(t − d0) − C (B.1)

d(t) =
q(t)

C
+ d0

Ṙ(t) = R(t − T)





α(C − NR(t − d0)) − β q(t)
d(t)

Cd(t)





We define:

f(RT , Rd, q)
.
= RT (1 +

α(C − NRd) − β q
d

Cd
) (B.2)

g(Rd)
.
= NRd − C

where RT
.
= R(t − T), Rd

.
= R(t − d0), d

.
= d(t) and q

.
= q(t). Recall that the equilibrium

point is given by:

q̇(t) = 0 ⇒ NRe = C ⇒ Re =
C

N

Ṙ(t) = 0 ⇒ Re(
α(C − NRe) − β qe

de

Cde
) = 0 ⇒ qe = 0

From above, the equilibrium value of d(t) is de = d0. Evaluating partials of f and g at the

129

130 APPENDIX B. LINEARIZATION OF RCP RATE EQUATION

equilibrium point (Re, qe, de) = (C
N , 0, d0) gives:

∂f

∂Rd
= −NRT α

Cd
| RT = C

N
, d=d0

= − α

d0

∂f

∂RT
= −α

d
− NαRd

Cd
− βq

d2C
| Rd= C

N
, d=d0, q=0

= 0
∂f

∂q
= −βRT (q

C − d)

C(q
C + d)3

|RT = C

N
, q=0, d=d0

= − β

Nd2
0

∂g

∂Rd
= N

The linearized equations are:

δṘ(t) =
∂f

∂Rd
δR(t − d0) +

∂f

∂RT
δR(t − T) +

∂f

∂q
δq(t) (B.3)

= − α

d0
δR(t − d0) −

β

Nd2
0

δq(t)

δq̇(t) =
∂g

∂Rd
δR(t − d0)

= NδR(t − d0)

where

δR
.
= R − Re (B.4)

δq
.
= q − qe

Appendix C

Bode Plot Analysis

In this appendix we will see why we need the condition α
β > 1, in order for Eqn. 5.11 to have

a non-zero solution. Recall that if Eqn. 5.11 has a solution, ωc, then this is the frequency

at which the phase plot of G(s) crosses the −π line. In other words, at ωc we have:

6 G(jωc) = −ωcd0 + arctan(
ωcαd0

β
) − π = −π

Notice that 6 G(jω) = −π at ω = 0. And for large ω, 6 G(jω) is much smaller than −π. So,

unless 6 G(jω) first increases and then decreases, as ω increases from 0, it will not cross the

−π line. Thus, the condition is that there should exist a maxima for 6 G(jω). Differentiating

6 G(jω) and setting it to 0 gives:

d

dω
6 G(jωm) = −d0 +

αd0

β

1

1 + (ωmαd0
β)2

= 0

⇒ ωm =
β

αd0

√

α

β
− 1

Obviously, the above maxima exists only if α
β > 1.

Thus, if the condition α
β > 1 is satisfied then the the phase plot crosses the −π line.

Examples: Fig. C.1 shows a Bode Plot for (α, β) = (0.2, 0.4). Notice that the phase always

decreases starting from −π, and never crosses the −π line for any non-zero ω. Hence ωc

does not exist. Fig. C.2 shows a Bode Plot for the case (α, β) = (0.4, 0.2) and in this case,

since α
β > 1, ωc exists.

131

132 APPENDIX C. BODE PLOT ANALYSIS

−50

0

50

100

150

200

Ma
gn

itu
de

 (d
B)

10
−3

10
−2

10
−1

10
0

10
1

−220

−210

−200

−190

−180

Ph
as

e (
de

g)

alpha = 0.2, beta = 0.4

Frequency (rad/sec)

Figure C.1: (α, β) = (0.2, 0.4): ωc does not exist

−50

0

50

100

150

Ma
gn

itu
de

 (d
B)

10
−3

10
−2

10
−1

10
0

10
1

−200

−190

−180

−170

−160

Ph
as

e (
de

g)

alpha = 0.4, beta = 0.2

Frequency (rad/sec)

w
c

Figure C.2: (α, β) = (0.4, 0.2): ωc exists

Appendix D

The Nyquist Stability Analysis

In the last Section we obtained the stability region from the Bode plot analysis. There are

some conditions to be satisfied for the Bode analysis to hold. Specifically, the stability crite-

rion, |G(jω)| < 1 at 6 G(jω) = −π, holds for systems where |G(jω)| crosses the magnitude

= 1 line once, the most common situation. However, there are systems when the |G(jω)|
crosses magnitude = 1 more than once. A rigorous way to resolve these ambiguities is to

use the Nyquist stability criterion. So, in this Section we will use the Nyquist criterion and

confirm the stability region obtained before.

Recall that the open loop transfer function of our system is given by G(s) = e−sd0(αsd0+

β)/(sd0)
2. The closed loop transfer function is G(s)/(1 + G(s)). Therefore, the closed loop

roots are the solutions of 1 + G(s) = 0 i.e.:

d2
0s

2 + αd0e
−sd0s + βe−sd0 = 0 (D.1)

We will write d2
0s

2 +αd0e
−sd0s+βe−sd0 = 0 in the form 1+α b(s)

a(s) = 0. This is given by:

1 + α
d0e

−sd0s

d2
0s

2 + βe−sd0
= 0

i.e. b(s) = d0e
−sd0s and a(s) = d2

0s
2 + βe−sd0 . Let G1(s) denote d0e−sd0s

d2
0s2+βe−sd0

. Then, the

procedure for obtaining the stability region can be summarized as follows:

1. Fix a value of β. Plot the nyquist plot of G1(s)

2. Determine the number of unstable (i.e. Right Hand Plane) poles of G1(s) and call that

number P .

133

134 APPENDIX D. THE NYQUIST STABILITY ANALYSIS

3. Determine the region on the real axis where − 1
α should lie such that if N denotes the

number of encirclements of − 1
α , then N + P should be equal to zero. Z = N + P are

the number of unstable closed loop roots, and therefore we want Z to be equal to 0. Note

that, N is negative if the encirclement of − 1
α is in anti-clockwise direction and positive if

in clockwise direction.

To draw the nyquist plot of G1(s), we will use the Pade approximation for e−sd0 .1 Substi-

tuting this in G1(s) we get:

G1(s) =

d3
0

12s3 − d2
0
2 s2 + d0s

d4
0

12s4 +
d3
0
2 s3 + (d2

0 + β
d2
0

12 − d0β
2)s + β

Let’s go through the three steps above with an example. Let us take β = 0.3. Now, we want

to find the range of α for which the system is stable. The nyquist plot of G1(s) is shown

in Fig. D.1 for β = 0.3. The value of d0 taken does not matter, the plot does not change

with d0. G1(s) has two unstable poles and so P = 2. Therefore, in order for Z to be equal

to 0 we need N = −2, which means − 1
α must be encircled twice in anti-clockwise direction

in the plot. The only region in the plot where there are two anti-clockwise encirclements is

between points A and B shown in the figure. So the stable region is −2.91 < − 1
α < −0.696

i.e. 0.3436 < α < 1.436 when β = 0.3. And thus continuing, we can obtain the stable

range for α for every value of β. When β is larger than about 0.55 there does not exist any

value of α for which the system is stable. An example of such a nyquist plot is shown in

Fig. D.1 (right plot). As can be seen, there is no region on the plot where there are two

anti-clockwise encirclements, and hence we cannot get Z to be equal to 0, and therefore the

closed loop system will have at least one unstable pole for this value of β.

The stable region obtained from the procedure above is shown in Fig. 5.2. The region

obtained from the nyquist analysis is shown in + signs, while that obtained from the Bode

plot analysis is shown in solid line. As can be seen, the nyquist analysis confirms the region

that we obtained.

1e−sd0
≈ (1 −

sd0

2
+ (sd0)2

12
)/(1 + sd0

2
+ (sd0)2

12
)

135

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 dB

−20 dB

−10 dB

−6 dB

−4 dB

−2 dB

20 dB

10 dB

6 dB

4 dB

2 dB

Nyquist Diagram

Real Axis

Im
ag

in
ar

y
Ax

is

A B

Figure D.1: Left plot: Nyquist plot of G1(s) when β = 0.3. Right plot: Nyquist plot of
G1(s) when β = 0.6.

Appendix E

Phase Plane Analysis

In this section we will obtain the stability region of the RCP parameters, taking into account

the non-linearity in the queue length equation. We will use a method called phase-plane

analysis, which is used to solve and understand nonlinear control problems. We will first

give a brief introduction to this method. The RCP system described by Eqns. 5.1-5.4, can

be written as

Ṙ(t) = f(R(t − T), R(t − d0), q(t), N, C) (E.1)

q̇(t) = g(R(t − d0), N, C)

where f(.) and g(.) are non-linear functions. If we take R and q as coordinates of a plane,

then to each state of the system there corresponds a point in this plane. As t varies, this

point describes a curve in the R-q plane, indicating the history of the system dynamics.

Such a curve is called a trajectory. The geometrical representation of the system behavior

in terms of trajectories is called a phase-plane representation of the system dynamics. The

initial condition determines the initial location of a representative point on the trajectory.

As time increases, the representative point moves along the trajectory. A family of such

trajectories is called a phase-plane portrait.

We will now plot the phase-plane portraits of the RCP system, and determine the stability

region from these plots. The phase portraits are generated by a C program which given an

initial state (R, q) does a step-by-step evolution of the RCP system state from Eqns. 5.1-5.4.

Following is the set up for obtaining the phase portraits:

136

137

C = 0.15 Gbps, d0 = 0.2s, T = 0.01s and N = 10 flows

The initial conditions are chosen to be: γinit = {0.5, 0.1, 0.01} where γ is the normalized flow

rate i.e. γ = R
C , and qinit = {2 · C · d0, 0}. The trajectories are drawn for all combinations

of (γinit, qinit). α and β vary from (0.1, 2) in steps of 0.1

For each value of (α, β) we get a family of trajectories corresponding to each of the initial

conditions chosen. Note that the equilibrium state of the system is (γ, q) = (0.1, 0). So,

for a given (α, β), if for any of the initial conditions the trajectory does not finally end

at the equilibrium state we can conclude that this point does not lie in the stable region.

Figs. E.1, and E.2 show some sample phase portraits. Fig. E.1 shows the phase portrait

for (α, β) = (0.6, 0.2). This point is well within the linearized stability region and as seen

in this figure, all the trajectories converge to the equilibrium point. Fig. E.1 also shows

the phase portrait when (α, β) = (0.6, 0.8), which is a point outside the linearized stability

region but within our hypothesized stable region. Here too all the trajectories converge to

the equilibrium point. The left plot in Fig. E.2 shows phase portrait for (α, β) = (1.4, 0.8),

a point well outside the stable region. The right plot in Fig. E.2 shows that for the

initial condition (γinit, qinit) = (0.01, 2 · C · d0), the trajectory never settles down at the

equilibrium. It continuously keeps oscillating around the equilibrium point. The magnitude

of these oscillations only grow larger as we get farther away from the stable region. Finally,

Fig. E.3 shows the stable region obtained from the phase-plane analysis. The stable regions

obtained from the linearized analysis and simulations are also shown for the purposes of

comparison. As can be seen, the region obtained from the phase-plane analysis matched

well with that obtained via the simulations.

The stable region in Fig. E.3 holds true for varying C, d0 and N . The range that we tried

are:

C = {5.6Kbps, 0.15Gbps, 2.5Gbps, 10Gbps, 1000Gbps}
d0 = {0.01, 0.5, 1, 2}
N = {10, 100, 1000, 5000}
Under all these varying conditions the stable region that we obtained remained the same,

as shown in Fig. E.3.

138 APPENDIX E. PHASE PLANE ANALYSIS

Figure E.1: Left plot: Phase Portrait for α = 0.6, β = 0.2. Right plot: Phase Portrait for
α = 0.6, β = 0.8.

Figure E.2: Left plot: Phase Portrait for α = 1.4, β = 0.8. Right plot: Phase Portrait for
α = 1.4, β = 0.8. γinit = 0.01, queueinit = 2 · C · d0

139

Figure E.3: Stable Region obtained from linearization model, Simulations and Phase Plane
analysis

Appendix F

RCP Router Specification

F.1 Router calculations to be performed periodically

The router is intended to periodically (approximately once per average RTT of sessions

passion through it, but more frequently if appropriate) calculate how much bandwidth it

can allocate to the average data flow. The way it accomplishes this is described in Chap. 3.

When the Rate Estimation Timer expires, the router updates the rate as follows:

1. input_traffic_rate = input_traffic_Bytes/Tr

2. avg_rtt_Tr = sum_rtt_Tr/num_pkts_with_rtt

3. if (avg_rtt_Tr >= avg_rtt)

4. rtt_sample_weight = (Tr/avg_rtt)

5. else

6. rtt_sample_weight = (rcp_rate/link_rate) * (avg_rtt_Tr/avg_rtt)

* (Tr/avg_rtt)

7. avg_rtt = rtt_sample_weight*avg_rtt_Tr + (1 - rtt_sample_weight) * avg_rtt

8. rcp_rate = rcp_rate * (1 + ((Tr/avg_rtt) * (ALPHA * (ETA * link_rate

- input_traffic_rate) - BETA*Q_Bytes/avg_rtt))/(ETA*link_rate))

9. if (rcp_rate < MIN_RATE)

10. rcp_rate = MIN_RATE

11. else if (rcp_rate > ETA*link_rate)

12. rcp_rate = ETA*link_rate

13. Tr = min(avg_rtt, MAX_RATE_ESTIMATION_INTERVAL)

14. input_traffic_Bytes = 0

140

F.1. ROUTER CALCULATIONS TO BE PERFORMED PERIODICALLY 141

15. num_pkts_with_rtt = 0

16. sum_rtt_Tr = 0

17. schedule_rate_timer(Tr)

Before we explain what the code does, following is a glossary of the notation used above.

All variables below are for a particular outgoing interface. Variables that are measured in

the units of time - in milliseconds unless mentioned otherwise.

1. Tr: The Rate Estimation Interval or how often the router updates the bandwidth

offered to the flows for an outgoing interface. It is also the interval over which the

input statistics for the RCP algorithm (the aggregate incoming traffic rate for an

interface and average of the round-trip time values carried in RCP packet headers)

are gathered.

2. sum rtt Tr: The sum of round-trip time values seen in an interval Tr.

3. avg rtt Tr: The average of round-trip time values seen over all RCP packets in an

interval Tr.

4. avg rtt: The moving average of the round-trip time maintained by the router, that is

updated periodically once every Tr with an appropriate weight attached to the latest

sample (avg rtt Tr).

Variables measured in units of traffic-volume (Bytes, number of packets) or bandwidth

(Bytes/ms):

5. input traffic Bytes: is the aggregate amount of incoming RCP traffic (in Bytes) for

an output interface in an interval Tr. This includes packets that are dropped due to

a full buffer at the output interface.

6. input traffic rate: The aggregate amount of incoming traffic bandwidth (in Bytes/ms)

over the interval Tr .

7. num pkts with rtt: The number of packets in interval Tr that carry valid round-trip

time values. Ideally, this should include packets that are dropped due to a full buffer

at the output interface.

8. rcp rate: This is the bandwidth offered to a flow and is updated periodically once

every Tr.

142 APPENDIX F. RCP ROUTER SPECIFICATION

9. Q Bytes: The buffer occupancy at the output interface in Bytes.

Constants and dimensionless variables:

10. rtt sample weight: In updating avg rtt, this is the weight given to the most recent

RTT sample (avg rtt Tr).

11. ALPHA, BETA, ETA: Constants whose recommended values are discussed later in

this document.

12. MIN RATE: The minimum value for rcp rate.

13. MAX RATE ESTIMATION INTERVAL: The maximum value for Tr - the time in-

terval between any two updates for rcp rate.

14. link rate: Link bandwidth measured in Bytes/ms.

Line 1: The aggregate incoming traffic rate is computed by dividing the amount of traffic

(in bytes) that arrived in an estimation interval by the interval length, Tr.

Line 2: The average round-trip time of traffic that arrived in the current estimation

interval is the sum of the RTTs carried in the packets divided by the number of packets

carrying a valid RTT.

Lines 3, 4, 5 and 6: The round-trip time sample (computed in Line 2) is used to update

the router’s estimate of the average round-trip time using a simple exponentially moving

average. These lines decide how much weight the sample should receive in the moving

average. Because there are approximately avg rtt/Tr RTT samples in an average round-

trip time, the current sample should receive a weight of at most Tr/avg rtt. On the other

hand when the current RTT sample is smaller than the router’s RTT estimate we want

to conservatively age the RTT estimate by additionally weighing the current sample by

avg rtt Tr/avg rtt . This ensures stability in links shared by flows with vastly different

round-trip times.

Line 7: Updates the router’s RTT estimate (avg rtt) using an exponentially moving

average.

Line 8: This line updates the RCP rate that will be offered to flows over the next rate

estimation interval. The theoretical basis for this equation is described in Chap. 3. The

values of ALPHA and BETA for a stable network are derived in Chap. 5. The recommended

F.2. ROUTER CALCULATIONS TO BE PERFORMED PER-PACKET 143

values for stability and performance are in the range: ALPHA ∈ (0.4, 0.6) and BETA

∈ (0.2, 0.6).

ETA controls the target link-utilization and can be any value in the range 0.95 < ETA <

1. Choosing a value leass than 1 gives some headroom to drain excess traffic before building

up a queue.

Lines 9, 10, 11 and 12: These lines cap the RCP rate above to ETA * link rate and

below to MIN RATE. The recommended value of MIN RATE is (0.01 * MTU size of the

link)/avg rtt. This value is usually only reached in scenarios of extreme congestion.

Line 13: Decides the length of the next rate estimation interval. The RCP rate should be

updated at least once per average round-trip time. When updated more often it provides a

faster response to congestion. The recommended value of MAX RATE ESTIMATION INTERVAL

is 10 ms.

Lines 14, 15 and 16: Reset the variables. The data path will update them over the next

interval.

Line 17: Restart the rate estimation timer.

F.2 Router calculations to be performed per-packet

The following computations are performed on every packet that carries an RCP header.

Some calculations are done on packet arrival and some on packet departures. In the worst-

case the total number of per-packet computations are three additions and two comparisons.

F.2.1 Router calculations to be performed on packet arrival

18. input_traffic_Bytes += packet_size_Bytes

19. if (this_packet_RTT < MAX_ALLOWABLE_RTT)

20. sum_rtt_Tr += this_packet_RTT

21. num_pkts_with_rtt += 1

The notation used above is defined below.

1. this packet RTT: The RTT value carried in the RCP header.

2. MAX ALLOWABLE RTT: A constant that this packet RTT is compared to.

3. pkt size Bytes: The IP datagram size in Bytes.

144 APPENDIX F. RCP ROUTER SPECIFICATION

Line 18: Updates the total amount of incoming traffic in the current interval. The

packet-size is taken from the IP header.

Line 19, 20 and 21: If the packet carries a valid round-trip time, its RTT value is added

to the running sum and the number of packets carrying a valid RTT estimate is incremented.

MAX ALLOWABLE RTT serves a couple of purposes: a) packets with unrealistic round-

trip times should not skew the router’s avg rtt arbitrarily and b) As mentioned before, a

packet with an unknown or unspecified RTT has all ones in its RTT field (this is a value >

MAX ALLOWABLE RTT). The recommended value for MAX ALLOWABLE RTT is 20

seconds.

F.2.2 Router calculations to be performed before packet departure

22. if (packet_BW_Request > rcp_rate)

23. packet_BW_Request = rcp_rate

Lines 22 and 23: If the rate being requested in any given packet is unspecified or exceeds

the bandwidth being granted to data flows in the specified class, then it should be set to

the RCP rate.

Bibliography

[1] W. R. Stevens, “TCP/IP Illustrated, Volume 1: The Protocols.,” Addison Wesley,

1994. 4

[2] W. Noureddine, “Improving the Peformance of TCP Applications Using Network-

Assisted Mechanisms,” Ph.D. Thesis, Stanford University, June 2002. 4, 5

[3] E. He, P. V. Primet, M. Welzl, M. Goutelle, Y. Gu, S. Hegde, R. Kettimuthu, J. Leigh,

C. Xiong, M. M. Yousaf, “A Survey of Transport Protocols other than Standard TCP,”

Global Grid Forum Document GFD.55 , Data Transport Research Group, 23 November

2005. 4

[4] M. Duke, R. Braden, W. Eddy, E. Blanton, “A Roadmap for Transmission Control

Protocol (TCP) Specification Documents,” http://www.ietf.org/rfc/rfc4614.txt , RFC

4614, September 2006. 4

[5] D. D. Clark, S. Shenker, A. Falk, “GENI Research Plan,” http://www. geni.

net/GDD/GDD-06-28.pdf GENI Design Document 06-28 , Research Coordination

Working Group, April 2007. 1

[6] A. M. Odlyzko, “The Internet and other networks: Utilization rates and their implica-

tions,” Information Economics and Policy , 12 (2000), Pages 341-365. 16, 23

[7] A. M. Odlyzko, “Internet TV: Implications for the long distance network,” Internet

Television, E. Noam, J. Groebel, and D. Gerbarg, eds., Lawrence Erlbaum Associates,

2003, pp. 9-18. 16

[8] D. A. Patterson, “Latency Lags Bandwidth,” Communications of the ACM , Volume

47, Number 10 (2004), Pages 71-75. 17

145

146 BIBLIOGRAPHY

[9] J. Du, J. Y. Leung, G. H. Young, “Minimizing mean flow time with release time

constraint,” Theoretical Computer Science archive, Volume 75, Issue 3, October 1990.

17, 26

[10] J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker, “Complexity of machine scheduling

problems,” Annals of Discrete Mathematics, Volume 1, Pages 343-362, 1977. 17, 26

[11] D. Katabi, M. Handley, C. Rohrs, “Internet Congestion Control for High Bandwidth-

Delay Product Networks,” Proceedings of ACM Sigcomm 2002 , Pittsburgh, August,

2002. 5, 11, 18, 47

[12] http://www.ana.lcs.mit.edu/dina/XCP/ 47

[13] A. Falk, D. Katabi, Y. Pryadkin, “Specification for the Explicit Control Protocol

(XCP),” draft-falk-xcp-03.txt , July 2007. 12

[14] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, N. McKeown, “Processor Sharing Flows

in the Internet,” Thirteenth International Workshop on Quality of Service (IWQoS),

Passau, Germany, June 2005. 28, 46

[15] N. Dukkipati, N. McKeown, “Processor Sharing Flows in the Internet,” Stanford HPNG

Technical Report TR04-HPNG-061604 , http://yuba.stanford.edu/tr.html, June 2004.

28, 46

[16] N. Dukkipati, N. McKeown, “Why Flow-Completion Time is the Right metric for

Congestion Control and why this means we need new algorithms,” Stanford HPNG

Technical Report TR05-HPNG-112102 , http://yuba.stanford.edu/tr.html, November

2005. 16

[17] N. Dukkipati, N. McKeown, “Why Flow-Completion Time is the Right Metric for

Congestion Control,” ACM SIGCOMM Computer Communication Review, Volume

36, Issue 1, January 2006. 16

[18] N. Dukkipati, G. Gibb, N. McKeown, J. Zhu, “Building an RCP (Rate Control Proto-

col) Test Network,” in Hot Interconnects 15, Stanford, August 2007. 87, 99

[19] C. H. Tai, J. Zhu, N. Dukkipati, N. McKeown, “Making large-scale deployment of RCP

practical for real networks,” High Performance Networking Group Technical Report

TR07-HPNG-062207, Stanford University, June 2007. 87, 93, 95

BIBLIOGRAPHY 147

[20] N. Dukkipati, N. McKeown, A. G. Fraser “RCP-AC: Congestion Control to make flows

complete quickly in any environment,” High-Speed Networking Workshop: The Terabits

Challenge (In Conjunction with IEEE Infocom 2006), Barcelona, Spain, April 2006.

117

[21] L. E. Schrage, L. W. Miller, “The Queue M/G/1 with the Shortest Remaining Pro-

cessing Time Discipline”, Operations Research, Volume 14, Number 4 (July. - Aug.,

1966), Pages 687-690. 24, 27

[22] L. E. Schrage, “A proof of the optimality of the shortest remaining processing time

discipline”, Operations Research, Volume 16, Pages 687690, 1968. 25

[23] K. Psounis, P. Molinero-Fernandez, B. Prabhakar, F. Papadopoulos, “Systems with

multiple servers under heavy-tailed workloads,” Journal of Performance Evaluation,

Elsevier, Vol. 62, Number 1-4, pp. 456-474, 2005. 126

[24] The Network Simulator, http://www.isi.edu/nsnam/ns/ 19, 46

[25] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” RFC 3649 ,

http://www.icir.org/floyd/hstcp.html, December 2003. 5, 9, 23, 52

[26] M. Allman, S. Floyd, C. Partridge, “Increasing TCP’s Initial Window,” RFC 3390 ,

http://www.ietf.org/rfc/rfc3390.txt, October 2002. 3

[27] T. Kelly, “Scalable TCP: improving performance in highspeed wide area networks,”

ACM SIGCOMM Computer Communication Review , Volume 33 , Issue 2, April 2003.

9, 23

[28] S. Floyd, “Setting Parameters for RED,” http://www.icir.org/floyd/red.html. 25

[29] R. W. Wolff, “Stochastic Modeling and the Theory of Queues,” Prentice Hall, 1989.

26, 47

[30] M. E. Crovella, A. Bestavros, “Self Similarity in World Wide Web Traffic: Evidence and

Possible Causes,” IEEE/ACM Transactions on Networking , Vol. 5, No. 6, December

1997. 30, 38, 47

[31] S. Ben Fredj, T. Bonald, A. Proutiere, G. Regnie, J.W. Roberts, “Statistical Bandwidth

Sharing: A Study of Congestion at Flow Level,” Proceedings of ACM Sigcomm 2001,

San Diego, August 2001. 47

148 BIBLIOGRAPHY

[32] V. Paxson, S. Floyd, “Wide Area Traffic: The Failure of Poisson Modeling,”

IEEE/ACM Transactions on Networking, Vol. 3, No. 3, June 1995. 47

[33] B. Wydrowski, M. Zukerman, “MaxNet: A congestion control architecture,” IEEE

Communications Letters, Volume 6, Issue 11, Nov 2002, Page(s): 512 - 514. 34

[34] R. Srikant, “The Mathematics of Internet Congestion Control,” University of Illinois,

Urbana, IL. 69

[35] J. Paddy, V. Firoiu, D. Towsley, J. Kurose “Modeling TCP Throughput: A Sim-

ple Model and its Empirical Validation,” Proceedings of ACM Sigcomm 1998 , British

Columbia, Canada, August 1998. 5

[36] S. H. Low, D. E. Lapsley, “Optimization Flow Control, I: Basic Algorithm and Con-

vergence,” IEEE/ACM Transactions on Networking , 7(6):861-75, Dec. 1999.

[37] S. H. Low, F. Paganini, J. Wang, S. Adlakha, J. C. Doyle, “Dynamics of TCP/RED

and a Scalable Control,” Proceedings of IEEE Infocom 2002 , New York, June 2002. 69

[38] S. H. Low, F. Paganini, J. Wang, J. C. Doyle, “Linear stability of TCP/RED and a

Scalable Control,” Computer Networks: The International Journal of Computer and

Telecommunications Networking , Volume 43, Issue 5, December 2003. 71

[39] E. Altman, T. Basar, R. Srikant, “Robust Rate Control for ABR Sources,” Proceedings

of IEEE Infocom 1998 , San-Fransisco, March 1998. 119

[40] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, B. Vandalore, “The ERICA Switch

Algorithm for ABR Traffic Management in ATM Networks,” IEEE/ACM Transactions

on Networking , Vol. 8, No. 1, February 2000, pp. 87-98. 119

[41] A. Charny, “An Algorithm for Rate Allocation in a Packet Switching Network With

Feedback,” MS Thesis, MIT, April 1994. 119

[42] C. Jin, D. X. Wei, S. H. Low, “FAST TCP: Motivation, Architecture, Algorithms,

Performance,” Proceedings of IEEE Infocom 2004 , Hong Kong, March 2004. 9

[43] V. Jacobson, “Congestion Avoidance and Control,” SIGCOMM Symposium on Com-

munications Architectures and Protocols, pages 314-329, 1988. 4

BIBLIOGRAPHY 149

[44] C. Villamizar, C. Song, “High Performance TCP in ANSNET,” ACM Computer Com-

munication Review , Vo1. 24, No. 5, October 1994. 47

[45] G. Appenzeller, I. Keslassy, N. McKeown, “Sizing Router Buffers,” ACM SIGCOMM

2004, Portland, August 2004. 47

[46] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, T. Roughgarden, “Routers with very

small buffers”, Proceedings of the IEEE INFOCOM ’06, Barcelona, Spain, April 2006.

47

[47] M. Parulekar, “Buffer Engineering for Self Similar Traffic,” Ph.D. Thesis, Electrical

Engineering Department, University of Maryland, College Park, 1999. 38

[48] D. Bertsekas, R. Gallager, Data Networks, Prentice Hall, 1992. 35, 38

[49] S. Floyd, M. Allman, A. Jain, P. Sarolahti, “Quick-Start for TCP and IP,” RFC 4782 ,

http://www.icir.org/floyd/papers/rfc4782.txt, January 2007. 2

[50] K. Psounis, A. Ghosh, B. Prabhakar, G. Wang, “SIFT: a simple algorithm for track-

ing elephant flows and taking advantage of power laws,” 43rd Allerton Conference on

Communication, Control, and Computing , September 2005. 43

[51] L. Xu, K. Harfoush, I. Rhee, “Binary increase congestion control (BIC) for fast long-

distance networks,” Proceedings of IEEE Infocom 2004 , Hong Kong, March 2004. 9

[52] I. Rhee, L. Xu, S. Ha, “CUBIC for Fast Long-Distance Networks,”

http://www.ietf.org/internet-drafts/draft-rhee-tcp-cubic-00. txt, February 27, 2007. 9

[53] R.N. Shorten, D.J. Leith, “H-TCP: TCP for high-speed and long-distance networks,”

Proceedings of PFLDnet 2004 , Argonne, 2004. 9

[54] K. Tan, J. Song, Q. Zhang, M. Sridharan, “Compound TCP: A Scalable and TCP-

Friendly Congestion Control for High-speed Networks,” Proceedings of PFLDnet 2006 ,

Nara (Japan), 2006. 9

[55] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, R. Wang, “TCP Westwood: Band-

width Estimation for Enhanced Transport over Wireless Links,” Proceedings of ACM

Mobicom 2001 , pp 287-297, Rome, Italy, July 16-21 2001. 9

150 BIBLIOGRAPHY

[56] http://www-iepm.slac.stanford.edu/monitoring/bulk/sc2004/ 9

[57] K. Fall, S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and SACK TCP,”

ACM Computer Communication Review , Vol. 26 No. 3, July 1996, pp. 5-21. 5, 47

[58] Y. Tian, K. Xu, N. Ansari, “TCP in Wireless Environments: Problems and Solutions,”

IEEE (Radio) Communications Magazine, Vol. 43, No. 3, pp. S27 - S32 , March 2005.

6

[59] T.R. Henderson, R.H. Katz, “TCP Performance over Satellite Channels,” UCB Com-

puter Science Technical Report 99-1083, December 1999. 6

[60] S. Floyd, K. Fall, “Promoting the Use of End-to-End Congestion Control in the Inter-

net,” IEEE/ACM Transactions on Networking , August 1999. 8

[61] http://flickr.com 67

[62] G. Franklin, J. D. Powell, A. Emami-Naeini, “Feedback Control of Dynamic Systems,”

5/E Prentice Hall, 2006. 71, 72

[63] H. Balakrishnan, N. Dukkipati, N. McKeown, C. Tomlin, “Stability Analayis of Explicit

Congestion Control Protocols,” IEEE Communications Letters, 2007. 75, 76

[64] H. Balakrishnan, N. Dukkipati, N. McKeown, C. Tomlin, “Stability Analayis

of Explicit Congestion Control Protocols,” Technical Report SUDAAR 776,

http://yuba.stanford.edu/rcp/SUDAAR 776.pdf, September 2005. 75, 76, 77

[65] Private communication with Lachlan Andrew, Senior Research Engineer, Department

of Computer Science, California Institute of Technology (Caltech), September 2006. 78

[66] M. Casado, G. Watson, N. McKeown, “Reconfigurable Networking Hardware: A Class-

room Tool,” Hot Interconnects 13, Stanford, August 2005. 96

[67] M. Casado, G. Watson, N. McKeown, “Teaching Networking Hardware,” ITiCSE,

Monte de Caparica, Portugal, June 2005. 96

[68] “NetFPGA Web Page,” http://NetFPGA.org. 87, 96

[69] A. Medina, S. Floyd, M. Allman, “Measuring Evolution of Transport Protocols in the

Internet,” ACM Computer Communications Review, April 2005. 88

BIBLIOGRAPHY 151

[70] I. McDonald, R. Nelson, “Congestion Control Advancements in Linux,” linux.conf.au,

January 2006. 89

[71] “Network Performance Measuring Tool: iperf,” http://dast.nlanr.net/Projects/Iperf/.

94

[72] “Network Emulation,” http://linux-net.osdl.org/index.php/Netem/. 94

[73] C. Estan and G. Varghese. “New directions in traffic measurement and accounting,”

Proceedings of the ACM SIGCOMM 2002, October 2002. 102

[74] T.J. Ott and T. V. Lakshman and L.H. Wong, “SRED: Stabilized RED” Proceedings

of INFOCOM ’99, 1999. 102

[75] A. Lakshmikantha, N. Dukkipati, R. Srikant, N. McKeown, C. Beck, “Performance

Analysis of RCP,” Technical Report available at http://www.ifp.uiuc.edu/lkshmknt,

2006. 108, 109, 113, 114

[76] RCP Web Page. http://www.yuba.stanford.edu/rcp 109

[77] N. Dukkipati, Y. Ganjali, R. Zhang-Shen, “Typical versus Worst Case Design in

Networking,” Fourth Workshop on Hot Topics in Networks, College Park, Maryland,

November 2005. 116

[78] Global Environment for Network Innovations (GENI) Web Page. http://geni.net/ 122

[79] N. Bansal, M. Harchol-Balter, “Analysis of SRPT scheduling: investigating unfairness,”

Proceedings of the ACM SIGMETRICS 2001, Cambridge, Massachusetts, 2001. 27

[80] M. Nuyens, A. Wierman, “The foreground-background queue: a survey,” Performance

Evaluation, 2007. 26

[81] F. Baker, “Requirements for IP Version 4 Routers,”

RFC 1812 , http://www.faqs.org/rfcs/rfc1812.html, June 1995. 91

[82] T. Anderson, A. Collins, A. Krishnamurthy, J. Zahorjan, “PCP: Efficient Endpoint

Congestion Control,” NSDI, 2006. 120

[83] F. Kelly, G. Raina, T. Voice, “Stability and fairness of explicit congestion control with

small buffers,” http://www.statslab.cam.ac.uk/∼frank/PAPERS/KRV/krvpaper.pdf,

2007. 120

152 BIBLIOGRAPHY

[84] C. Fulton, S.-Q. Li, “UT: ABR feedback control with tracking,” Proceedings of IEEE

Infocom ’97, Kobe, Japan. 119

	Abstract
	Acknowledgments
	Introduction
	Transmission Control Protocol
	Problems with TCP
	A Wish List for Congestion Control
	High-speed TCPs: Pros and Cons
	eXplicit Control Protocol (XCP): Pros and Cons
	Rate Control Protocol (RCP): Pros and Cons

	Why we should make flows complete quickly
	Why minimizing flow completion time is a hard problem

	Rate Control Protocol
	RCP: Algorithm
	The Basic Mechanism
	Picking the Flow Rate

	Understanding the RCP Algorithm
	How good is the estimate "705EN = C/R?

	What is the role of the term, q(t)d?
	Is RCP stable?
	Estimating the average round-trip time
	Achieving differential bandwidth sharing
	Comparison with XCP's mechanisms

	Flow completion times under RCP
	Simulation Setup
	When Traffic Characteristics Vary
	Average Flow Completion Time vs. Flow Size
	When mean flow size increases
	Different flow size distributions
	Non-Poisson flow arrivals
	As load increases

	When Network Conditions Vary
	When link capacity increases
	When Round-Trip Propagation Delay increases
	Flows with different round-trip times
	When the reverse link is congested
	When there are multiple bottlenecks

	Impact of RCP's short flow completion times

	Stability of RCP
	Stability analysis
	Bode Plot and Nyquist Analysis
	Stable Region

	Stability of non-linear system
	Stability under multiple bottlenecks
	Picking values for and

	Prac. considerations in building an RCP network
	Implementing and experimenting with RCP
	RCP End-host
	RCP Software Router
	RCP Router based on NetFPGA
	Quantifying the Implementation Complexity

	Incrementally deploying RCP
	Hindrance 1: RCP must coexist with non-RCP traffic
	 Hindrance 2: Coexisting with non-RCP bottlenecks

	Sizing router buffers for RCP congestion control
	Simulation Results

	Other practical considerations in an RCP network

	Most Commonly Asked Questions About RCP
	Conclusion
	A model for the `U' curve
	Linearization of RCP rate equation
	Bode Plot Analysis
	The Nyquist Stability Analysis
	Phase Plane Analysis
	RCP Router Specification
	Router calculations to be performed periodically
	Router calculations to be performed per-packet
	Router calculations to be performed on packet arrival
	Router calculations to be performed before packet departure

	Bibliography

