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Abstract

In many engineering disciplines, such as digital design or software engineering, there

is an abundance of theoretical foundations and practical tools for verification and

debugging. In sharp contrast, the field of networking mostly relies on rudimentary

tools such as ping and traceroute, together with the accrued wisdom and intuition

of network administrators, for verification and debugging of networks. Debugging

networks is becoming harder as networks are getting bigger and more complicated.

The verification and debugging of networks is difficult because (1) the forwarding

state—the set of rules that determines how an incoming packet is processed and

forwarded by network boxes—is distributed across multiple boxes, expressed in vendor

dependent command line interface (CLI) formats, and is defined by the forwarding

tables, filter rules, and other configuration parameters. As a result it is hard to observe

and analyze the forwarding state and understand the overall system behavior. (2)

The forwarding state is written by multiple independent programs, protocols, and

humans. This may result in complex and unpredictable interactions between these

independently generated forwarding states.

Therefore, the first step in making tools for network verification and debugging is

to create a simple model for the forwarding functionality of the network that abstracts

away the complexities of understanding the forwarding state. One observation is that

packet headers, despite carrying multiple protocols, are just sequences of bits, and

networking boxes, despite all their complexities, simply rewrite and forward packet

headers. Therefore, in our analytical framework, called the Header Space Analysis

(HSA), a packet header is viewed as a flat sequence of bits and is modeled as a point

in a {0, 1}L space, called the Header Space, where L is the length of the header. Each
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dimension in the header space corresponds to one bit in the packet header. Also,

networking boxes are modeled as Transfer Functions, transforming packets from one

point in the header space to another point or set of points.

This easy-to-use formalism abstracts away the complexity of the protocols and

vendor-specific semantics of network boxes and gives us a model to analytically prove

properties about networks that are otherwise hard to ensure. For example, in a typical

network, it is hard to find the reachability of two ports, that is, whether any packet can

reach from port A to B and if so, which packets? However, using HSA, one can make

a transfer function for each box in the network by reading and parsing the forwarding

states, and use those transfer functions for answering reachability questions.

HSA is a useful foundation for building techniques and tools for network verifica-

tion, testing, and debugging. In this dissertation I will describe three set of techniques

and tools for network verification and testing based on HSA.

1. In Chapter 3, I use HSA to develop algorithms and build a tool, called Hassel,

for static analysis of networks. Hassel can answer questions that are critical for

the operational correctness of networks, such as determining the reachability

between end hosts, detecting forwarding loops, counting the repetition of loops,

and checking the isolation of network slices.

2. In Chapter 4, I describe the design and implementation of a tool based on HSA,

called NetPlumber, which can verify—in real time—a wide range of policies

including header and path predicates on flows, lack of forwarding loops, and

black hole freedom.

3. In Chapter 5, I introduce a framework called Automatic Test Packet Genera-

tion (ATPG) which uses HSA to automatically generate a minimal set of test

packets to maximally test all forwarding rules, queues, or links in the network.

By periodically sending these test packets, ATPG can test the liveness of the

underlying network topology and the congruence between the data plane state

and the observed behavior of the network at all times.

All of these tools were tested on real-world networks. Hassel found some loops

in Stanford University’s backbone network, NetPlumber verified—in real time—the

vi



all-pair connectivity of Google’s data centers via its wide area network, and ATPG

detected and localized a fault as a result of a configuration mistake in the network of

the computer science and electrical engineering department at Stanford University.

This dissertation shows that by making the right model for the forwarding func-

tionality of networks, we can create verification, testing, and debugging tools that

are practical, systematic, and provably correct. Tools similar to the ones introduced

in this dissertation can replace the ad hoc methods used for network troubleshooting

today, and as a result, can greatly simplify the job of network administrators and

reduce the operational costs of networks.
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Chapter 1

Introduction

1.1 Problem Statement

It is notoriously hard to debug networks. It requires analyzing the state of multi-

ple devices from different vendors running numerous protocols and distributed across

multiple tables. Yet, there are ver few methods and tools to help network adminis-

trators to troubleshoot networks. Instead network administrators must rely on their

wisdom and experience of network administrators to hunt down root causes of prob-

lems using simple tools such as ping and traceroute. My goal in this dissertation

is to develop a rigorous foundation for analyzing the behavior of networks and use

it to build methods and tools to help network admins with testing and debugging

networks.

1.2 Motivations

In the beginning, a switch or router was breathtakingly simple. About all the device

needed to do was index into a forwarding table using a destination address and de-

cide where to send the packet next. Over time, forwarding grew more complicated.

Middleboxes (e.g., NAT and firewalls) and encapsulation mechanisms (e.g., VLAN

and MPLS) appeared to overcome IP’s limitations: e.g., NAT bypasses address limits

and MPLS allows flexible routing. Further, new protocols for specific domains, such

1



2 CHAPTER 1. INTRODUCTION

as data centers, WANs and wireless, have greatly increased the complexity of packet

forwarding. Today, there are over 6,000 Internet RFCs, and it is not unusual for a

switch or router to handle ten or more encapsulation formats simultaneously. At the

same time, networks are growing in size: modern data centers may contain 10,000

switches, a campus network may serve 50,000 users, and a 100 Gb/s long haul link

may carry 100,000 flows.

Despite this added complexity, managing a network is still mostly a manual pro-

cess. When a network administrator adds a new route to the network, he or she must

login to configure each switch or router along the path. The process is cumbersome

and error-prone; in a recent survey [57] network administrators reported configura-

tion errors as one of the most common problems in their network. Also the tools for

debugging networks are very rudimentary: network engineers hunt down bugs using

the simple tools (e.g., ping, traceroute, SNMP, and tcpdump), and track down root

causes using a combination of accrued wisdom and intuition, as evidenced in [57]. No

wonder that network engineers have been labeled “masters of complexity” [47].

Troubleshooting a network is difficult for two reasons. First, the forwarding state

is distributed across multiple routers, firewalls and other boxes and is defined by their

forwarding tables, filter rules and other configuration parameters. As a result, the

forwarding state is hard to observe and parse, because it typically requires manually

logging into every box in the network and understanding every protocol and CLI

output format. Second, there are many different programs, protocols and humans

updating the forwarding state simultaneously, which interact in complex ways. The

forwarding state of networks is not generated in a way that lends itself well to ver-

ification. As a result, the best practice for network debugging today is to use ad

hoc tools like ping and traceroute to indirectly probe and infer the current set of

forwarding rules and use that information to debug the network.

As a consequence, even simple questions about a network are hard to answer. For

example:

1. Can host A talk to host B? If so, using which packet headers?

2. If host A can’t talk to host B, where are the packets dropped?
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3. What will happen if I remove a forwarding entry from a router or a line form a

configuration file?

4. Are two slices of my network completely isolated?

5. Is there a forwarding loop in my network?

6. Why is my network so slow? Where is the congestion happening?

As we will see in Section 1.3, the answers to these questions are directly related to

the type of problems most commonly seen by network administrators.

1.3 Network Troubleshooting Today

In this section, I report the result of a survey conducted during May–June 2012 to

gather data from 61 subscribers to the NANOG1 mailing list (full report available

in [57]). This survey was conducted to understand the problems administrators face

in their networks, the potential causes and how problems are diagnosed today. The

respondents included 12 administrators of small (< 1k hosts) networks, 23 of medium

(1k−10k hosts) networks, 11 of large (10k−100k hosts) and 12 of very large (> 100k

hosts) networks. The goal was to understand what network debugging in the real

world looks like, and how well the solutions offered in the rest of this dissertation

address these challenges.

Network administrators face various “symptoms” and “diseases” in their networks.

Table 1.1 demonstrates that “reachability” and “throughput/latency” problems are

among those that happen most often. Not only are the faulty behaviors diverse, but

the possible causes are also complex. “Hardware failure”, “switch/router software

bug” and “misconfigurations” are among the top three causes for network problems

(Table 1.2). A long tail of other symptoms/causes exists, which complicates the

search space during debugging. The categories are coarse-grained, so there can be

more symptoms/causes that are missed.

1North American Network Operators’ Group
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We are also interested in the debugging tools that administrators use today (Ta-

ble 1.3). ping, traceroute and SNMP are the most popular tools. When asked

what the ideal tool for network debugging would be, 70.7% of respondents thought

that automatic test generation to check performance and correctness problems are

important. Some of them explicitly write down “long running tests to detect jitter

or intermittent issues,” “real-time link capacity monitoring,” “monitoring tools for

network state,” etc.

Category Avg % of ≥ 4
Reachability Failures 3.67 56.90%
Intermittent Problems 3.38 53.45%
Throughput Degradation/High Latency 3.39 52.54%
Router CPU High Utilization 2.87 31.67%
Congestion 2.65 28.07%
Security Policy Violation 2.33 17.54%
Forwarding Loop 1.89 10.71%
Broadcast/Multicast Storm 1.83 9.62%

Table 1.1: Rankings of various error symptoms in networks by administrators.
5=most often, 1=least often. Average rankings and percentages of respondents who ranked
≥ 4 are shown.

Category Avg % of ≥ 4

Misconfigurations
Protocol Misconfig. 2.29 23.64%
ACL Misconfig. 2.44 20.00%
QoS/TE Misconfig. 1.70 7.41%

External Errors 3.06 42.37%
Hardware Failure 3.07 41.07%
Switch/Router Software Bug 3.12 40.35%
Attacks (DOS, Security, etc) 2.67 29.82%
Software Upgrade 2.35 18.52%
Host Network Stack Bug 1.98 16.00%

Table 1.2: Rankings of various causes of network errors by administrators.
5=most often, 1=least often. Average rankings and percentages of respondents who ranked
≥ 4 are shown.
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Category Avg % of ≥ 4
ping 4.50 86.67%
traceroute 4.18 80.00%
SNMP 3.83 60.10%
Config. Version Control 2.96 37.50%
sFlow/NetFlow 2.60 26.92%
netperf/iperf 2.35 17.31%

Table 1.3: Rankings of tools usage by administrators.
5=most often, 1=least often. Average rankings and percentages of respondents who ranked
≥ 4 are shown.

1.4 My Thesis Goal

As stated in Section 1.2, the forwarding state of networks is not created in a way

that lends itself well to verification. As a result, it is hard to formally verify the

correctness of networks and pinpoint the errors. However, I believe that if we define

the right abstraction model for the forwarding functionality of networks, regardless

of where that forwarding state comes from or to which protocol or table it belongs to,

then we can use it to design algorithms and build tools to formally verify and debug

networks.

In fact, defining the right abstraction model is an important step in analyzing

complex systems in the other fields of engineering as well. For example, in the field

of communication engineering, a typical system consists of many different compo-

nents such as filter, amplifier, antenna and communication channel. To analyze these

systems, the behavior of each component is modeled using a transfer function. Trans-

fer function provides a simple and unified representation of the behavior of various

components in the system which greatly simplifies the analysis. Similarly, in digital

hardware design, instead of looking at individual transistors that make a circuit, the

logical gate abstraction is used to model groups of transistors. The logical gate ab-

straction enables the use of higher-level methods for analyzing and designing a digital

circuits, such as boolean algebra and Karnaugh map.
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Figure 1.1: Geometric representation of packets in header space.

Inspired by this, I will define a simplem, protocol-independent abstraction for the

forwarding functionality of networks and use it to build a framework for analyzing

networks, called the Header Space Analysis (HSA) framework. This framework gives

us a unified view of the forwarding state of all boxes in a network in such a way that

is suitable for formally checking different properties and invariants of the network.

To demonstrate the power of this framework, I will use it to design algorithms for

checking important network properties such as reachability between hosts, lack of

forwarding loops and isolation of network slices. I will also use HSA to build a

tool for real-time policy checking in networks and another framework for monitoring

health of network data plane by generating carefully-crafted test packets. I will show

how these techniques work on real-world networks such as the Stanford University

backbone network, the Internet 2 nationwide network and the Google inter-data center

WAN.

1.5 Header Space Analysis: A Brief Overview

Header Space Analysis (HSA) [23] is an abstraction model for the forwarding func-

tionality of networks and a framework for analyzing networks. HSA is the foundation

for all the algorithms, techniques and tools introduced in this dissertation. Key to
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HSA is a generalization of the geometric approach to packet classification in which

classification rules over K packet fields are viewed as subspaces in a K dimensional

space [29]. HSA jettisons the notion of pre-specified fields in favor of a header space

of L bits where each packet is represented by a point in {0, 1}L space, where L is the

header length (see Figure 1.1). This allows us to work with emerging protocols and

arbitrary field formats.

HSA models networking boxes using a Switch Transfer Function T , which trans-

forms a header h received on input port p to a set of packet headers on some output

ports: T : (h, p) → {(h1, p1), (h2, p2), ...}. Each transfer function consists of an or-

dered set of rules R. A typical rule consists of a set of physical input ports, a match

which is a wildcard expression, and a set of actions to be performed on packets that

match the wildcard expression. Examples of actions include forward to a port, drop,

rewrite, encapsulate, and decapsulate. Network topology is modeled using a Topology

Transfer Function, Γ, which models the physical connection between ports. If port

psrc is connected to pdst by a physical link, then Γ will have a rule that transfers

(h, psrc) to (h, pdst): Γ(h, psrc) = (h, pdst).

One application of the HSA framework is to compute reachability of packets and

flows in the network: to find how flow f , represented by its header wildcard expression

(hf ), reaches from port A to B, we need to compose transfer functions as follows:

RA→B =
⋃

A→B paths

{Tn(Γ(Tn−1(......(Γ(T1(hf , A)...))},

i.e., for each possible path between A and B (A → S1 → ... → Sn−1 → Sn → B),

we find how the flow along that path is processed by networking boxes. The flow at

the destination port is the sum (union) of all the sub-flows received on each of these

paths.

1.6 Thesis Organization

I start by introducing the Header Space Analysis (HSA) framework in Chapter 2.

I will define header space, network space, transfer function and header space set
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algebra. These are the basic building blocks of HSA. I show how we can create

transfer function for different boxes in a network.

In Chapter 3, I show how HSA framework can be used for network verification. In

particular, I will introduce algorithms for finding reachability, detecting forwarding

loops and checking isolation of network slices and will discuss their run times. Then, I

will describe our implementation of the header space library (Hassel) in C and Python

and discuss the implementation of these verification algorithms on top of Hassel along

with some examples. Chapter 2 and 3 of this dissertation were first published in [23].

Next, in Chapter 4 I will show how the HSA framework can be used as the building

block for a system to check design policies and invariants of networks in real time

and showcase the performance on three real-world networks. This chapter is based

on [22].

To detect hardware failures such as link or ASIC failure or performance issues

such as congestion, we need to passively monitor or actively test the data plane. In

Chapter 5, I will introduce a framework called Automatic Test Packet Generation

(ATPG), which uses HSA as its foundation to generate test packets in way that

maximizes coverage of network and minimizes the number of test packets required.

The content of this chapter was originally published in [56].

Finally, I will conclude this dissertation in Chapter 6. I will summarize my con-

tributions, put them into perspective, and mention some future directions.



Chapter 2

Header Space Analysis

The goal of this chapter is to define a simple, protocol independent abstraction for

packets and forwarding functionality of networks that can be used as foundation

for systematic verification of networks. To achieve this, I developed a general and

protocol-agnostic framework called Header Space Analysis in which protocol header

fields are not first-class entities; instead, we look at the entire packet header as a

concatenation of bits without any associated meaning. Each packet is a point in the

{0, 1}L space, where L is the maximum length of a packet header, and networking

boxes transform packets from one point in the space to another point or set of points.

The concepts defined here will be used as basic building blocks throughout this thesis

and will lead to design and implementation of practical tools for network testing and

debugging.

2.1 Terminology

The header space framework is built on a geometric model of packets. Packets are

represented as points in a geometric space, and network boxes are transfer functions

on the same space. We should first define these spaces.

9
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2.1.1 Header Space, H
Packets in a network are processed based on their header bits. Therefore, as far as

forwarding functionality of networks is concerned, a packet is represented by its header

bits. To define a protocol-independent model for packets, we ignore the protocol-

specific meanings associated with header bits (i.e., fields) and view a packet header

as a flat sequence of ones and zeros. Formally, a packet is a point and a flow is a

region in the {0, 1}L space, where L is an upper bound on the header length and

each bit corresponds to one dimension in the space. We call this space Header Space,

H. Figure 1.1 shows a simple example in which three-bit headers are represented

geometrically in the header space.

A wildcard expression is the basic building block used to define objects inH. Each

wildcard expression is a sequence of L bits. where each bit can be either 0, 1 or x.

Each wildcard expression corresponds to a hypercube in H. Every region, or flow, in

H is defined as a union of wildcard expressions.

H abstracts away the data portion of a packet because we assume it does not

affect packet processing. If it does, as in an intrusion-detection box, then L must be

the length of the entire packet. If the fields are fixed, we can define macros for each

field in H to reduce dimensionality. However, the general notion of header space is

critical when dealing with different protocols that interpret the same header bits in

different ways.

2.1.2 Network Space, N
We model the network as a set of boxes called switches with external interfaces called

ports, each of which is modeled as having a unique identifier. We use “switches” to

denote routers, bridges and any other middleboxes.

If we take the cross-product of the switch-port space (the space of all ports in

the network, S) with H, we can represent a packet traversing on a link as a point in

{0, 1}L×{1, ..., P} space, where {1, ..., P} is the list of ports in the network. We call

the space of all possible packet headers, localized at all possible input ports in the

network, the Network Space, N .
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2.1.3 Switch Transfer Function, T ()

As a packet traverses the network, it is transformed from one point in Network Space

to other point(s) in Network Space. For example, a layer 2 switch, that merely

forwards a packet from one port to another, without rewriting headers, transforms

packets only along the switch-port axis, S. On the other hand, an IPv4 router that

rewrites some fields (e.g., MAC address, TTL, checksum) and then forwards the

packet, transforms the packet both in H and S.

As these examples suggest, all networking boxes can be modeled as Transformers,

with a Transfer Function, that models their protocol dependent functions. More

precisely, a node can be modeled using its transfer function, T , that maps header h

arriving on port p:

T (h, p) : (h, p)→ {(h1, p1), (h2, p2), ...}

In general, the transfer function may depend on the input port to model input-

port-specific behavior, and the output may be a set of (header, port) pairs to allow

multicasting.1

A transfer function consists of an ordered set of rules. A typical rule consists of

a match condition, which determines the packets to be processed by the rule, and an

action, which is the processing to be done on the matching packets. The match part of

the rule may include a set of input ports and a match wildcard expression. Examples

of actions include forward to a port, drop, rewrite, encapsulate and decapsulate. In

Section 2.2, we will see how to make a transfer function for some networking boxes

used today.

2.1.4 Network Transfer Function, Ψ()

A notation that we use heavily is the network transfer function, Ψ(.). Given that

switch ports are numbered uniquely, we combine all the switch transfer functions

1It also enables us to model load balancing boxes for which the output port is a pseudo-random
function of the header bits.
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Figure 2.1: Multi-hop traversal of packets in a network by applying Φ(.) = Γ(Ψ(.)).
Header h at port 1 is transformed to h′ at port 2 by transfer function of box A (or equiva-
lently by Ψ). h′ is then forwarded to port 3 by Γ, where it is transformed to h′′ by TB (or
equivalently by Ψ).

into a composite transfer function describing the overall behavior of the network.

Formally, if a network consists of n boxes with transfer functions T1(.), ..., Tn(.), then

Ψ(h, p) =





T1(h, p) if p ∈ switch1

... ...

Tn(h, p) if p ∈ switchn

2.1.5 Topology Transfer Function, Γ()

A unidirectional link connects a source port Psrc to a destination port Pdst and delivers

packets from Psrc to Pdst. The topology of a network is defined by the set of links in

the network, each represented by its source and destination ports. We can model the

network topology using a topology transfer function, Γ(), defined as:

Γ(h, p) =




{(h, p∗)} if p connected to p∗

{} if p is not connected.

Γ models the behavior of links in the network. It accepts a packet at one end of a

link and returns the same packet, unchanged, at the other end. Note that links are

unidirectional in this model. To model bidirectional links, one rule should be added

per direction.
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Using the network and topology transfer function, we can model a packet as it

traverses the network by applying Φ(.) = Γ(Ψ(.)) at each hop. For example, if a

packet with header h enters a network on port p, the header after k hops will be

Γ(Ψ(...(Γ(Ψ(h, p)...), or simply Φk(h, p): each Γ forwards the packet on a link and

each Ψ passes the packet through a box.

2.2 Modeling Networking Boxes

As we will see in the next chapters, transfer functions will be used to analyze of

networks quite extensively. We wrote parsing scripts that read the configuration

state and forwarding tables from network boxes and automatically create transfer

functions. To solidify our understanding of transfer functions, this section shows how

they can model different boxes, illustrating their power in modeling in a unified way.

As we will see in this section, transfer functions can perfectly capture the behavior of

stateless devices. However, stateful devices whose behavior change based on external

factors such as load condition or history of observed packets cannot be accurately

modeled by a transfer function.

To be more clear and concise, we use the following helper macros in this section:

protocol field() : refers to a particular field in a particular protocol. For example,

ip src(h) refers to the source IP address bits of header h.

R(h, fields, values) : refers to a rewrite action in which thefields in h are rewritten

with values. For example, R(h, mac dst, d) rewrites the MAC destination

address to d. Note that the rewrite action can be implemented by simple log-

ical operations. To rewrite some header bits, we need to first zero them out

using a masking AND, and then rewrite the new value by an OR operation. For

example, assume we have an 8-bit header, xx0101xx. To write the right-most

three bits with value 011, we need to first AND it with 11111000: xx0101xx

& 11111000 = xx010000. Then we need to OR the result with 00000011:

(xx0101xx & 11111000) | 00000011 = xx010011.
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2.2.1 IPv4 Router

Let’s start by modeling an IPv4 router that processes packets as follows: 1) decrement

TTL, 2) update checksum, 3) rewrite source and destination MAC addresses and 4)

forward to outgoing port. Thus, the transfer function of an IPv4 router composes

four functions as follows:

TIPv4(.) = Tfwd(Tmac(Tchksum(Tttl(.)))).

We examine each function in turn. Tfwd(.) looks up ip dst(h) in a lookup table

and returns the output port. If we represent this function as ip lookup(h), then

Tfwd(h, p) = {( h, ip lookup(ip dst(h)) )}

As a simple example, assume we have an IPv4 router with the forwarding table

as in Table 2.1. Then the forwarding transfer function would look like this:

Tfwd(h, p) =





{(h, 1)} if ip dst(h) ∈ 192.168.1.x

{(h, 2)} if ip dst(h) ∈ 192.168.2.x

{(h, 3)} if ip dst(h) ∈ 192.168.x.x − (192.168.1.x ∪ 192.168.2.x)

{} otherwise.

To construct this transfer function, the routing table and interface configuration

information is used. Note that the third rule in the routing table has lower priority

over the first two rules; therefore, it only matches on packets that don’t match on

them. Also, we have a default drop rule in the transfer function for packets with no

matching forwarding entries.

Similarly, Tmac(.) looks up the next hop MAC address and updates source and

destination MAC addresses. If we are interested in including MAC rewriting in the

final transfer function, we can apply the appropriate rewrite action to the output
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Routing Table
Network Address Network Mask Gateway Interface

192.168.1.0 255.255.255.0 192.168.1.1 192.168.1.100
192.168.2.0 255.255.255.0 192.168.2.1 192.168.2.100
192.168.0.0 255.255.0.0 192.168.0.1 192.168.0.100

Interface Configuration
Name (ID) Interface MAC address Interface IP address

1 00:00:00:00:00:01 192.168.1.100
2 00:00:00:00:00:02 192.168.2.100
3 00:00:00:00:00:03 192.168.0.100

ARP Table
IP Address MAC address Interface Name(ID)
192.168.1.1 00:00:00:00:00:0A 1
192.168.2.1 00:00:00:00:00:0B 2
192.168.0.1 00:00:00:00:00:0C 3

Table 2.1: Example: Extracting Transfer Function from an IPv4 Routing Table.

header. In the previous example, this could be done as follows:

Tfwd(Tmac(h, p)) =





{( R(h, [mac src,mac dst], [: 01, : 0A]) , 1 )} if ip dst(h) ∈ 192.168.1.x

{( R(h, [mac src,mac dst], [: 02, : 0B]) , 2 )} if ip dst(h) ∈ 192.168.2.x

{( R(h, [mac src,mac dst], [: 03, : 0C]) , 3 )} if ip dst(h) ∈ 192.168.x.x −
(192.168.1.x ∪ 192.168.2.x)

{} otherwise.

The TTL decrement can also be included in the final transfer function. Tttl(.)

drops the packet if ip ttl(h) is 0 and otherwise does R(h, ip ttl(), ip ttl(h)

- 1). Tchksum(.) updates the IP checksum. Depending on the problem at hand,

one can include as much detail as desired in the final transfer function. For most

applications, only including Tfwd() or Tfwd(Tttl()) will suffice.
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2.2.2 Firewall

A firewall blocks access to certain IP address or transport port numbers, based on

a set of rules that is usually called a access control list, or ACL. As an example,

consider a very simple ACL with two rules: one that denies access to IP address A

unless TCP port = Q, and a second rule that denies access to IP address B if source

IP address is C. The transfer function of the firewall is

Tacl(h, p) =





{} if ip dst(h) = A & tcp dst(h) 6= Q

{} if ip dst(h) = B & ip src(h) = C

{(h, p)} otherwise

2.2.3 Tunneling End Points

We can model a tunneling end point using a shift and a rewrite operator. To model

an encapsulation action that put a k-bit encapsulating header, hencap, at bit position

s of an L bit header, h, we can do the following:

Let M := 1 ... 1︸ ︷︷ ︸
s times

0 ... 0︸ ︷︷ ︸
(L− s) times

Let h1 := (h & M)

Let h2 := [(h & M̄)� k] | [hencap � s]

Then T (h, p) = {(h1 | h2 , pout)}

Here, h1 keeps the first s bits of packet header unchanged. h2 shifts2 the last L−s
bits to the right by k bit positions and rewrites hencap at those k positions. The final

result is the concatenation of the first s bits from h1 and the last L− s bits from h2,

achieved by a logical OR operation.

2Logical shift where zeros are shifted in to replace the discarded bits.
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The decapsulation action is similar to encapsulation, but the shift is in the opposite

direction. To decapsulate the above packet, we can do the following:

Let M := 1 ... 1︸ ︷︷ ︸
s times

0 ... 0︸ ︷︷ ︸
(L− s) times

Let W := 0 ... 0︸ ︷︷ ︸
L− k times

x ... x︸ ︷︷ ︸
k times

Let h1 := (h & M)

Let h2 := [(h� k) & M̄ ] | W
Then T (h, p) = {(h1 | h2 , pout)}

Again, h1 keeps the first s bits of the packet header unchanged. h2 drops bits s

to s + k by shifting them to the left by k bits and then masking them out. It also

puts k wildcard bits at the right-most positions, because the values of these bits are

unspecified after decapsulation.

2.2.4 Network Address Translator

Network Address Translators (NATs) are deployed at the boundary of private net-

works to share one public IP address among several private hosts. A NAT remembers

the source IP address and transport port number of outbound packets and rewrites

the transport source port to a unique number, which we represent as NATout(h). For

the inbound packets, it looks up the destination transport port number in its lookup

table using NATin(h), and returns the corresponding (ip dst, tcp dst) pair to be

written back to the header. More concisely:

NATout : (ip src(h), tcp src(h))→ Tout,

where Tout is the source transport port of outbound packet and

NATin : tcp dst(h)→ (Tin, IPin),
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where Tin is the destination transport port and IPin the destination IP address to be

written back to the inbound packet.

NAT boxes can be modeled in two levels of detail, depending on whether we are

interested in the exact mapping state of the NAT box or not.

Exact Transfer Function of a NAT Box: Suppose a NAT box has a public

IP address, IPnat, and ports Pi and Po are connected to private and public sides,

respectively. Then we can write the exact transfer function of NAT box as follows:

Tnat(h, p) =





{( R(h, [ip src, tcp src], [IPnat, Tout]) , Po )} if p = Pi &

NATout(h) = Tout

{( R(h, [ip dst, tcp dst], [IPin, Tin]) , Pi )} if p = Po &

NATin(h) = (IPin, Tin)

There remains one problem: The following transfer function uses the current

translation state of the NAT box and uses that state to build the transfer function.

As a result, it won’t predict the behavior of the NAT box when a packet with new

[ip src, tcp src] is going through the box. This is due to the static nature of

transfer functions, which makes them incapable of modeling dynamic boxes. To

overcome such limitation, we need to resort to more general models such as the one

that comes next.

Coarse Transfer Function of a NAT Box: Let’s assume that the network be-

hind the NAT has subnet Snat. Also let X denote a wildcard on a packet field. Then

the overall behavior of the NAT box can be modeled using this transform function3:

Tnat(h, p) =





{( R(h, [ip src, tcp src], [IPnat,X]) , Po )} if p = Pi &

ip src(h) ∈ Snat

{( R(h, [ip dst, tcp dst], [Snat,X]) , Pi )} if p = po &

ip dst(h) = IPnat

3Note that by rewriting ip dst to Snat, which is a set of IP addresses and not one IP address,
we mean that the output packet can be any of the packets whose IP address ∈ Snat.
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The coarse model of NAT overcomes the shortcomings of the detailed model by

replacing the tcp src for outbound packets and tcp dst for inbound packets with

an unspecified port number4, X.

2.2.5 Load Balancer

A load balancer sends incoming packets to one of the output ports at random. One

possible way to create a transfer function for a load balancer is to transfer input

packets on all the output ports: T (h, p) = {(h, p1), ..., (h, pn)}, where {p1, ..., pn} is

the set of output ports. This is done to explore all possibilities at the output. Another

model would be to add probability as the third variable to the transfer function:

T (h, p, r) = {(h, p1, r/n), ..., (h, pn, r/n)}.

Here r is the probability of receiving a packet with header h, on port p. Each of the

output packets is generated with probability r/n because there are n equal probability

choices at the output.

2.3 Header Space Algebra

To use HSA to check network correctness conditions such as reachability, lack of

forwarding loops or isolation of network slices, we need to determine how different

header spaces overlap, whether a region of header space is a subset of the other

or what headers at which input ports will generate a certain header at an output

port. We therefore need to define basic set operations on H: intersection, union,

complementation and difference. We also define the Domain, Range and Inverse

for transfer functions. In Chapter 3, we use this algebra for checking properties of

networks.

4Note that the port translation in a NAT box is not deterministic.
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2.3.1 Set Operations on H
While set operations on bit vectors are well-known, we need set operations on wildcard

expressions. Since all header space regions can be represented as a union of wildcard

expressions, defining set operations on wildcard expressions allows these operations

to carry over to any header space region. For the rest of this section, we overload the

term header to refer to both packet headers (points in H) and wildcard expressions

(hyper-cubes in H).

Intersection: For two headers to have a non-empty intersection, both headers

must have the same bit value at every position that is not a wildcard. If two headers

differ in bit bi, then the two headers will be in different hyper-planes, defined by bi = 0

and bi = 1. On the other hand, if one header has an x (wildcard) in a position while

the other header has a 1 or 0, the intersection is non-empty. Thus, the single-bit

intersection rule for bi ∩ b′i is defined as follows:

HHH
HHHbi

b′i 0 1 x

0 0 z 0
1 z 1 1
x 0 1 x

In the table, z means the bitwise intersection is empty. The intersection of two

headers is found by applying the single-bit intersection rule, bit-by-bit, to the headers.

z is an “annihilator”: if any bit returns z, the intersection of all bits is empty. As an

example, 10xx ∩ 1xx0 = 10x0 and 10xx ∩ 0xx0 = z0x0 = φ. A simple trick allows

efficient software implementation. If each bit in the header is encoded using two bits:

0 → 01, 1 → 10, x → 11 and z → 00, then the intersection is simply an AND

operation on the encoded headers.

Union: In general, a union of wildcard expressions cannot be simplified. For

example, no single header can represent the union of 11xx and 00xx. This is why

a header space object is defined as a union of wildcard expressions. In some cases,

we can simplify the union (e.g.,11xx ∪ 10xx simplifies to 1xxx) by simplifying an

equivalent Boolean expression. For example, 10xx ∪ 11xx is equivalent to b4b3⊕ b4b3.
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This allows the use of Karnaugh Maps and Quine-McCluskey [4] algorithms for logic

minimization.

Complementation: The complement of header h—the union of all headers that

do not intersect with h—is computed as follows:

h′ ← φ

for bit bi in h do

if bi 6= x then

h′ ← h′ ∪ x...xbix...x

end if

end for

return h′

The algorithm finds all non-intersecting headers by replacing each 0 or 1 in the

header with its complement and putting a wildcard in all other bit positions. This

follows because just one non-intersecting bit (or z) in a term results in a disjointed

header. For example, (100x)′ = 0xxx ∪ x1xx ∪ xx1x.

Difference: The difference (or minus) operation can be calculated using inter-

section and complementation. A−B = A ∩B′. For example,

1xxx− 101x

= 1xxx ∩ (101x)′

= 1xxx ∩ (0xxx ∪ x1xx ∪ xx0x)

= φ ∪ 11xx ∪ 1x0x

= 11xx ∪ 1x0x;

i.e., 1xxx − 101x will be all packets whose first bit is 1, and whose second bit is 1 or

whose third bit is 0. The difference operation can be used to check the subset and

equality condition:

A ⊆ B ⇐⇒ A−B = φ

A = B ⇐⇒ A−B = φ & B − A = φ.
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2.3.2 Domain, Range and Inverse of Transfer Function

To capture the destiny of packets through a box or set of boxes, we define the domain,

range and range inverse as follows:

Domain: The domain of a transfer function is the set of all possible (header,

port) pairs that the transfer function accepts. Even headers for which the output

action is to drop the packet belong to the domain.

Range: The range of a transfer function is the set of all possible (header, port)

pairs that the transfer function can output after applying all possible inputs on every

port.

Inverse of Transfer Functions: Some applications of header space analysis

such as finding reachability and detecting forwarding loops requires working back-

wards from an output header to determine what input (header, port) pairs could

have produced it. For a given header at an output port, (ho, po), T
−1(ho, po) is the

set of all input headers at input ports, (hi, pi), such that (ho, po) ∈ T (hi, pi):

T−1(ho, po) := {(h, p) | (ho, po) ∈ T (h, p)}.

A transfer function maps each (h, p) pair to a set of other pairs. By following

the mapping backward, we can invert a transfer function. By applying the range to

the inverse of transfer function, we find all headers at the input that can generate

something at the output. This is called the range inverse of a transfer function.

2.4 Limitations

Transfer functions can perfectly capture the forwarding behavior of stateless devices,

because the forwarding behavior is reflected entirely by their forwarding state. How-

ever, stateful devices, whose behavior changes based on external states (such as his-

tory of packets or time characteristics of flows) cannot be modeled accurately, because

those external states are inaccessible to HSA. In fact, the header and port of a single

packet are the only state variables used in HSA. A NAT box is an example of a state-

ful device, and as we have seen previously, we need to sacrifice accuracy to model
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it using a transfer function. However, in principle, HSA can be extended by adding

more state variables to the model. For example, beyond (h, p), one can add a list of

previous packets observed by a particular network box to HSA.

2.5 Related Work

The geometric view of packet headers in HSA is a generalization of the geometric

approach to packet classification [29], in which packets are modeled based on their k

header fields as points in a k-dimensional space. In HSA, instead of pre-specified fields,

we look at each bit as an independent dimension. This allows HSA to be protocol-

independent and work with emerging protocols and arbitrary field formats. Also, the

notion of a transfer function in HSA is similar to ASE mapping defined in axiomatic

routing [21], where the authors develop tools to analyze a variety of protocols. While

the goals of these works (packet classification and protocol verification) are different

from ours (network testing and debugging), the similarity in models is an indicator

of more broader applicability of HSA abstractions.

2.6 Summary

In this chapter, I introduced the header space analysis (HSA) framework. HSA defines

the following key concepts:

• Header Space: Each packet, based on its header bits, is modeled as a point in

a {0, 1}L space called the header space.

• Box Transfer Function: The forwarding behavior of networking boxes is cap-

tured by a transfer function: T (h, p) : (h, p)→ {(h1, p1), (h2, p2), ...}.

• Topology Transfer Function: The topology of a network is modeled using a

topology transfer function, Γ(h, p). For each unidirectional link from Pa to Pb,

Γ(h, Pa) = (h, Pb).
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HSA also introduces a set algebra to find the intersection, union, complementation

and difference of header space regions. In this chapter, we reviewed the transfer

function of some of the widely used networking boxes and learned that while the

transfer function is perfect at capturing the behavior of stateless boxes, it cannot

accurately model the stateful network devices.



Chapter 3

Network Verification with Header

Space Analysis

In this chapter, I will use the Header Space Analysis (HSA) framework to develop

techniques and tools for network verification. In particular, I will describe algorithms

for finding reachability between two hosts (Section 3.1), detecting forwarding loops

(Section 3.2) and checking isolation of network slices (Section 3.3). We will see how

these basic checks can be used to verify more complicated policies and invariants

such as network black-hole freedom, isolation of flow paths, and maximum hop count

constraint on flows. I will also describe an optimized implementation of the header

space analysis techniques in a library called Hassel (Section 3.4), which enables fast

and simple implementation of these verification checks. Finally, I will review how

these checks may be applied in practical contexts (Section 3.5). The goal of this

chapter is to demonstrate the power of HSA abstractions and to show how they

can immediately lead to design of simple and practical verification algorithms for

networks.

3.1 Finding Reachability

One of the most important checks in networks is determining the reachability of end

hosts. This means answering the question of whether the end hosts can communicate

25
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and finding the set of all reachable packet headers. More formally, given two end

hosts, a and b, we want to answer the question of “which packets from host a can

reach host b?”

3.1.1 Reachability Algorithm

Xie et. al. [52] analyze reachability by tracing which of all possible packet headers

at a source can reach a destination. We follow a similar approach but generalize

to arbitrary protocols. Using HSA, we consider the space of all headers leaving the

source, and then we track this space as it is transformed by each successive networking

box along the path (or paths) to the destination. At the destination, if no header

space remains, the two hosts cannot communicate. Otherwise, we trace the remained

header spaces backward (using the inverse of transfer functions at each step) to find

the set of headers that the source can send to reach the destination.

More formally, we define the reachability function R between a and b as

Ra→b =
⋃

a→b paths

{Tn(Γ(Tn−1(...(Γ(T1(h, p)...))},

where for each path between a and b, {T1, ..., Tn−1, Tn} are the transfer functions

along the path. The switches in each path are denoted by:

a→ S1 → ...→ Sn−1 → Sn → b.

The range of Ra→b is the set of headers that can reach b from a. Notice that these

headers are seen at b and not necessarily headers transmitted by a because headers

may change in transit. We can find which packet headers can leave a and reach b

by computing the range inverse. If header h ⊂ H reached b along the a → S1 → ...

→ Sn−1 → Sn → b path, then the original header sent by a is

ha = T−1
1 (Γ(...(T−1

n−1(Γ(T−1
n (h, b)...),

using the fact that Γ = Γ−1.
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Find Reachability Range(a , b)
result← []
r ← {header : x̄ , port : a , history : []}
Q← [r]
while Q.size() > 0 do
r ← Q.pop front()
temp← Γ(Ψ(r.h, r.p))
for (h, p) in temp do
s← {header : h , port : p , history : r.history.copy().append(h, p)}
if p == b then
result.append(s)

else if (∗, p) ∈ r.history then
Loop Detected.

else
Q.push back(s)

end if
end for

end while
return result

Figure 3.1: DFS algorithm for finding the range of the reachability function between
a and b.

We can efficiently compute the range and range inverse of the reachability function

through a breadth-first-search (BFS) or depth-first-search (DFS) on the graph of net-

work topology, taking into account the transformation at each node. To find the range

of the reachability function—i.e., the set of reachable headers at the destination—we

start by applying an all-wildcard header to the transfer function of S1, which is the

box directly connoted to a: T1(X, a). The all-wildcard header represents the set of all

packet headers that host a can generate, and the output of T1(X, a) shows all packet

from host a that will be passed through S1. Then, we apply the resulting headers

to the topology transfer function to find the next hop boxes and apply the headers

to the transfer function of those boxes. By repeating this process, we can find all

the destinations that are reachable from a (including b) and all of the headers that

are reachable to those destinations. Figure 3.1 shows the formal description of the

algorithm for finding the range of the reachability function.
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Once we have computed the range of the reachability function together with the

path history of each reachable header, we can find its range inverse or the set of

reachable packet headers at the source. To do so, we apply each reachable header at

the destination to the inverse of transfer functions along the traversed path and find

the headers at the source. Note that in the algorithm described in Figure 3.1, the

history contains the path information.

To illustrate the process more clearly, we perform the reachability analysis for the

small toy example network in Figure 3.2. The transfer function of each box is shown

in Figure 3.3. To keep things simple, we only use 8-bit headers; because we cannot

easily depict eight dimensions, we represent the first 4 bits of the header on the x-axis

and the last 4 bits on the y-axis. Note that in this example, A and C are miniature

models of IP routers, B is a firewall, D is a simplified network address translator

(NAT) box and E behaves like an Ethernet switch.

Figure 3.3 shows how the network boxes transform the all-wildcard header at the

source along each path to the destination. By repeatedly applying the output of each

transfer function to the input of the next transfer function in each path, we can find

the range of the reachability function: 10010x10 ∪ 01011x10. Figure 3.4 shows the

progress of the reachability algorithm (Figure 3.1) as the search spreads through the

network. We refer to this graph as the propagation graph as it shows the propagation

of a flow in the network. Each node in the propagation graph shows the set of packet

headers, Hdr, that reached a Port and the set of ports visited previously on the path,

History. In other words, the nodes correspond with the elements put in the queue

Q in the pseudo code of Figure 3.1. Each child node in the propagation graph is

the result of applying (Hdr , Port) of the parent node to the network and topology

transfer functions (i.e., Γ(Ψ())).

If instead we have composed the transfer functions along the two paths, the reach-

ability function from a to b would become:

Ra→b(h, p) =




{(h,E2)} if h=10010x10, p = A0

{((h&00011111)|01000000, E2)} if h=10011x10, p = A0

.
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Figure 3.2: A toy network topology used for computing reachability from a to b.

a 

A0 

A1 

B0 

B1 

1001xxxx 
0011xxxx 

xxxxxxxx 

1001xx10 
0011xx10 

C0 

D0 

10011x10 

C1 C2 

E1 

10010x10 

01011x10 

E0 D1 

b 

01011x10 

10010x10 

E2 

C3 

TD(h, p) =

8
>>><
>>>:

if h=100xxxxx, p = D0 :
{((h&00011111)|01000000, D1)}
if h=110xxxxx, p = D1 :
{((h&00011111)|01100000, D0)}

Figure 3.3: Computing reachability from a to b in a toy example network.
For simplicity, we assume a header length of 8 and show the first 4 bits on the x-axis and the
last 4 bits on the y-axis. We show the range (output) of each transfer function composition
along the paths that connect a to b. At the end, the packet headers that b will see from a

are 01011x10 ∪ 10010x10.
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Hdr:All-x 
Port: A0 

History: - 

Hdr:0011xxxx 
Port: B0 

History: A0 

Hdr:1001xxxx 
Port: B0 

History: A0 

Hdr:0011xx10 
Port: C0 

History: A0,B0 

Hdr:1001xx10 
Port: C0 

History: A0,B0 
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Port: E1 

History: A0,B0,C0 

Hdr:01011x10 
Port: E0 

History: A0,B0,C0,D0 

Hdr:10010x10 
Port: b 

History: A0,B0,C0,E1 

Hdr:01011x10 
Port: b 

History: A0,B0,C0,D0,E0 

Reached 
destination 

Figure 3.4: Propagation graph when finding reachability from a to b in the network
of figure 3.2.

The range of Ra→b is 10010x10 ∪ 01011x10 as expected.

To find the set of headers that a can send to b, we can either compute

T−1
A (Γ(T−1

B (Γ(T−1
C (Γ(T−1

E (10010x10, E2)))))))

∪
T−1

A (Γ(T−1
B (Γ(T−1

C (Γ(T−1
D (Γ(T−1

E (01011x10, E2))))))),

or compute the range inverse of Ra→b, which both will be 10010x10 ∪ 10011x10.
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3.1.2 Checking Path Predicates

A path predicate is a constraint on the path of some flows in the network. For example,

the requirement that all http traffic from IP subnet A should pass through a middle

box m is a path predicate on http traffic from subnet A. Reachability analysis enables

us to check predicates on the path of flows in the network. The reachability algorithm

presented above finds all of the flows that can reach from a source to a destination

along with the path of those flows (history in the algorithm of Figure 3.1 captures

the path). We can use this information to check more complicated predicates. Below,

we review a few examples:

• Host a can not talk to host b. Compute reachability from a to b and verify

that the reachable set is empty.

• Host a can only talk to host b via middlebox m. Compute reachability from a

to b and verify that the path of all reachable flows pass through m.

• Http and https traffic from host a to host b do not share the same path. Com-

pute reachability from a to b and verify that the path of http and https headers

are different.

• Traffic from host a to host b doesn’t go through more than three hops. Compute

reachability from a to b and verify that the path length of all reachable flows is

less than three.

As we will see in Section 3.2, detecting forwarding loops also requires computing

reachability. However, we need to do more work in order to find the repetition of a

loop.

3.1.3 Complexity of Finding Reachability

In the reachability algorithm presented in Figure 3.1, as we push the all-wildcard

header toward the destination, the transfer function rules divide the input header

space into smaller pieces. If the input header space consists of a union of R1 wild-

card expressions and the transfer function has R2 rules, then the output can be a
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header space with O(R1R2) wildcard expressions. This is because each input wild-

card expression will match on every rule, generating R2 output wildcard expressions

per input wildcard expression. For example, if the first router has 1000 destination

IP prefixes, then the result of applying the all-wildcard flow to the first router can

be a header space consisting of 1000 wildcard expressions. If this is applied to a

second box with 100 ACLs to reject traffic from certain sources, then the output of

the second switch can have 1000 × 100 = 100, 000 wildcard expressions. However,

this is a worst-case scenario and happens only if the match expressions of the transfer

function are orthogonal to the input wildcard expressions, as in the example above.

In a real network whose purpose is to provide connectivity, there are certain bits,

such as the VLAN tag, MPLS tag or destination IP address that determine the routing

of packets in the core. Packet filtering, which is based on a different set of bits, such

as the TCP port number or source IP address, happens at the edges. In fact, the

rules at the core often aggregate flows into larger flows and do not divide them into

smaller sub-flows. Therefore as R1 wildcard expressions pass through R2 rules at the

core, they only match on a few of those rules, producing only cR1 output wildcard

expressions where c � R2 is a small constant called the fragmentation factor. We

call this, the linear fragmentation assumption.

Under the linear fragmentation assumption, the complexity of the reachability

algorithm described in this section is O(dR2), where d is the maximum diameter

of the network and R is the maximum number of rules in a network box. This

is because at each hop along the propagation paths, we need to apply O(R) input

wildcard expressions to O(R) rules in the boxes, which requires O(R2) computations.

However, this generates onlyO(R) output wildcard expressions (see Figure 3.5), which

will then go through the next hop transfer functions. There are at most d boxes in

any path; therefore, the overall computation cost will be O(dR2).

To check the validity of this assumption in real networks, we ran a test using

the transfer functions of Stanford university’s backbone network (see Section 3.5.1

for more details about the Stanford network). The test pushed an all-wildcard flow

from one of the input ports at the edge and tracked the generated flows as they went

through the box transfer functions. It then counted the total number of wildcard
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Figure 3.5: Fragmentation of the header space as it passes through the network.
The numbers on the arrows show the number of wildcard expressions required to describe
each header space.

expressions generated after each hop of forwarding across all the propagation paths.

Figure 3.6 shows the total number of wildcard expressions produced versus the hop

count for 12 different input ports. The figure suggests that after the first hop, the

number of wildcard expressions increased by a small constant (c < 10), and that

constant will be less than 1 during the rest of the path as the flows start reaching

their destinations.

3.2 Detecting Forwarding Loops

A forwarding loop occurs when a packet returns to a port that it visited earlier. We

are interested in detecting and avoiding forwarding loops as they cause forwarding

storms and waste network resources. Using the header space analysis framework, we

can find all of the forwarding loops in a given network, determine all packet headers

that can loop and specify how many times each packet will loop.
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Figure 3.6: Total number of wildcard expressions generated in the process of com-
puting reachability, counted at each propagation hop.
The graph is obtained by pushing 12 all-wildcarded flows from the edges to the core of the
Stanford backbone network and counting the total number of wildcard expressions generated
after each hop of forwarding across all of the paths.

The first step to detect a forwarding loop is to find out if there is any packet that

can visit the same port twice. We call these loops generic, as packets may go through

the loop only once before being dropped. Once we have detected the generic loops,

we can run an extra test to find the repetition of the loops—i.e., the number of times

that packets loop before being dropped.

3.2.1 Finding Generic loops

Given a network and its topology transfer function, we can detect all forwarding loops

by injecting an all-wildcard test flow from each port in the network that can be part

of a graph loop and track each resulting flow until:

• (Case 1) It leaves the network or is dropped;
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Figure 3.7: An example of running the complete loop detection check.
The solid lines show the changes to the all-wildcarded test packet injected from A1 as it
propagates in the network. Once a generic loop is detected and hret is found, the inverse of
transfer functions in the loop are used to find the loop-generating header space, horig. The
dashed lines show the process of finding horig.

• (Case 2) It returns to a port already visited (Pret); or

• (Case 3) It returns to the port1 from which it was injected (Pinj).

Only in case 3 (i.e., when the packet comes back to its injection port) do we report

a loop. Because we repeat the same procedure starting at every port, we will detect

the loops detected by case 2 when we inject the test flow from Pret. Ignoring case 2

avoids reporting the same loop twice.

This algorithm is similar to finding reachability except that the source and desti-

nation ports are the same. Therefore, we can implement it using a breadth first search

similar to the one in Figure 3.1. As an example, consider the network in Figure 3.7

where an all-wildcard test flow is injected from port A1. Figure 3.8 is the correspond-

ing propagation graph explored through the depth-first search procedure. As before,

each child node in the propagation graph is the result of applying (Hdr , Port) of

1While we could define a loop as a packet returning to a node visited earlier, using ports helps
detect infinite loops.
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Hdr:All-x 
Port: A1 

History: - 

Hdr:H1 
Port: a0 

History: A1 

Hdr:H2 
Port: C0 

History: A1 

Hdr:H3 
Port: B1 

History: C0,A1 

Hdr:H4 
Port: D2 

History: C0,A1 

Hdr:H7 
Port: B2 

History: D2,C0,A1 

Hdr:H9 
Port: b0 

History: B2,D2,C0,A1 

Hdr:H6 
Port: b0 

History: B1,C0,A1 

Loop! 

Hdr:H5 
Port: D0 

History: B1,C0,A1 

Hdr:H8 
Port: A1 

History: D0,B1,C0,A1 

Figure 3.8: Example of a propagation graph for a test packet injected from port A1

in the network of figure 3.7.

the parent node to the network and topology transfer functions. For example, in

Figure 3.8:

{(H3, B1), (H4, D2)} = Γ(Ψ(H2, C0)).

At any point during the expansion of the propagation graph, if Port appears in the

History list, we terminate that branch of the tree. If Port is the first element of

History, we have detected a loop.

3.2.2 Finding Repetition of Forwarding Loops

Not all packets in a generic loop will loop the same number of times. Because the

loop transfer functions may rewrite headers, some packets may get dropped in the

next round, and some may loop indefinitely. Our goal here is to find out how many

times each packet will loop. This is important because a loop that repeats only once

is not as harmful as an infinite loop.
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Case 1 Case 2 

horig 

hret 
hret 

horig horig 

hret 

Case 3 

Figure 3.9: Relative position of hret and horig and their effect on loop repetition.
In case 1, the loop only happens once. Case 2 represents an infinite loop. Case 3 is where
different points in horig loop different number of times.

We will explain the process of finding the loop repetition through the example

in Figure 3.7. Here, hret denotes the part of the header space that comes back to

the injection port, A1. We can use the inverse of loop transfer functions to find the

loop-generating header space, horig:

horig = Φ−1(Φ−1(Φ−1(Φ−1(hret, A1))))

∣∣∣∣
p=A1

,

where Φ(.) = Γ(Ψ(.)). horig represents the set of all headers that can loop through

port A1. Figure 3.7 demonstrates the process of finding horig symbolically.

hret and horig relate in one of three ways, as depicted in Figure 3.9:

1. hret∩horig = φ: In this case, all of the headers in horig will loop only once. This

is because every point in horig is mapped to a point in hret, which is outside the

loop-generating region, horig. Therefore, these headers cannot loop in the next

round.

2. hret ⊆ horig: In this case, the loop is infinite for all of the headers in horig

because every point in horig is mapped by the transfer function of the loop to at

least one point in hret. Because hret is completely within horig, those points will

loop again and will be mapped to other point(s) in hret. This process will never

stop, as points cannot escape from this mapping; therefore, the loop continues

indefinitely.
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3. Neither of the above: In this case, different points within horig will loop a

different number of times (between one and infinity). First, note that hret−horig

completely satisfies case 1’s condition and therefore cannot loop again. However,

we must examine hret ∩ horig. Thus, we define h
′
ret := hret ∩ horig and calculate

the new loop-generating header space, h
′
orig which generates h

′
ret. We repeat the

check for h
′
orig and h

′
ret, taking into account that they have already looped once.

For example if h
′
ret ∩ h

′
orig = φ, h

′
orig headers will loop twice, while horig − h′

orig

will loop only once. By repeating this check, we can determine the repetition

of each header involved in the loop. Figure 3.10 formally defines the algorithm

for checking loop repetition.

The forwarding loop that is taken care of by IP TTL is an example of the third

case. For a loop of length n, hret = ttl for 0 < ttl < 256− n and horig = ttl for

n < ttl < 256. In the first iteration, we find that packets with n < ttl ≤ 2n will

loop once. In the next round, h
′
ret := hret∩horig = ttl for n < ttl < 256−n and

h
′
orig := ttl for 2n < ttl < 256, and we find that packets with 2n < ttl ≤ 3n will

loop twice. In subsequent iterations, hret and horig shrink by n per iteration.

3.2.3 Dealing with Tortuous Forwarding Loops

Tortuous loops are forwarding loops where a packet passes through multiple loops

before coming back to a first loop. Figure 3.11 shows an example of a tortuous loop

consisting of two loops. We can generalize the loop repetition-counting algorithm as

follows: first, detect all of the loops that have originated from a single port, and for

each, find hreti and horigi
. Define

hret :=
n⋃

i=1

hreti , horig :=
n⋃

i=1

horigi
,

and then perform the same check on hret and horig to decide whether the combination

of loops is infinite or not. By combining all of the horig and hret regions, we have con-

sidered the effect of all of the loops simultaneously. This enables us to automatically
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Find Loop Repetition(hret , horig, pinj, Tloop, count = 0)
# hret: Returned header space to the injection port (pinj)
# horig: Loop-generating header space
# pinj: injection port
# Tloop: Loop transfer function—composition of transfer functions in the loop
# @Return: a set of (h, count) where h is a header wildcard expression in horig and
count is its loop repetition count
if hret ∩ horig = φ then

return {(horig, count+ 1)}
else if hret ⊆ horig then

return {(horig,∞)}
else
h

′
ret ← hret ∩ horig

h
′
orig ← T−1

loop(h
′
ret, pinj)

∣∣∣∣
p=pinj

return {(horig − h′
orig, count+ 1)} ∪

Find Loop Repetition(h
′
ret, h

′
orig, pinj, Tloop, count+ 1)

end if

Figure 3.10: A recursive algorithm for finding loop repetition of each header involved
in a loop.

A 

B 

Loop1 Loop2 

Figure 3.11: Example of a tortuous loop consisting of multiple loops.

evaluate any combination of single loops that results in a complete tortuous loop as

we have considered horig of all of the single loops simultaneously.

3.2.4 Complexity of Finding Loops

The algorithm for detecting forwarding loops is very similar to finding reachability.

The only difference is that we repeat the check on P ports that are part of the network

graph loops. Therefore, the complexity of loop detection check is O(dPR2). However,
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there is no such polynomial bound for finding the repetition of loops. Consider this

adversarial example: a header consisting of L bits, where all of the L bits act as TTL.

If this packet loops in a two-node network, finding the loop repetition requires 2L−1

iterations.

3.3 Checking Isolation of Network Slices

Slicing a network is a way to share network resources among multiple entities. For

example, two different banks may have branches in a financial center and share the

network equipments in the building. In order to make network slicing secure and

practical, the slices should be isolated from one another. This is like virtualization of

computer hardware, where different virtual machines are isolated from one another

and are given the illusion of full control over the hardware resources. Also, network

operators often limit the communication between different groups of hosts (or users)

by putting them in different isolated slices. A common requirement for isolated slices

is that traffic stay within its slice and not leak to another slice.

Traditionally, network slicing is done by VLANs, where each slice is defined by a

unique VLAN ID. However, for software defined networks (SDNs), FlowVisor [48] can

create dynamic slices based on any set of header fields (e.g., all packets with source

IP address 192.168.1.0/24 may define a slice). Similar to [16], we define a slice as:

• a topology consisting of switches, ports and links.

• a collection of predicates on packets belonging to the slice, one on each ingress

port in the slice topology.

Therefore, a network slice is defined by a region of network space, N , in header space

language.

Two slices of the network are isolated if:

1. The network space representation of the two slices are disjointed. This means

that no packet belongs to and is control by both slices simultaneously.
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2. The packets in one slice cannot leak to the other slice after being forwarded to

the next hop.

The first isolation condition should be checked when a slice is created. The second

condition should be checked every time a new forwarding rule is installed in the

network.

3.3.1 Checking Disjointness of Slice Definitions

Assume we have two network slices with the following network space definitions:

Na = {(αi, pi) | pi ∈ S} , Nb = {(βi, pi) | pi ∈ S},

where αi and βi are headers belonging to slice a and b, respectively, on each port, pi,

in the network.

If the two slices do not overlap, they have no header space in common on any

common port, i.e., αi ∩ βi = φ, for all i. If they intersect, we can determine precisely

where (which links) and how (which headers) by finding their intersection:

Na ∩Nb = {(αi ∩ βi, pi)
∣∣
pi∈Na&pi∈Nb

}.

A set intersection could, for example, be used to statically verify that communication

is allowed at one layer or is allowed with one protocol but not with another. A

simple check for overlap is extremely useful in any slicing environment (e.g., VLANs

or FlowVisor) to check for violations prior to creation of new slices. The test can flag

violations, or it could be be used to create one slice to monitor another.

3.3.2 Detecting Packet Leakage

Even if two slices do not overlap anywhere, packets can still leak from one slice

to another when headers are rewritten. We can use another algorithm to check

whether packets can leak. If there is leakage, the algorithm finds the set of offending

(header, port) pairs.
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Slice b 
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TE 

TD 

TD 

Leakage 

Figure 3.12: Detecting slice leakage by finding the image of slice a under network
transformation and intersecting it with slice b.

Assume that slices a and b have network space definition Na and Nb, as above.

Leakage occurs when a packet in a given slice at any switch-port can be rewritten

and forwarded to fall into the network space of another slice. If packets cannot leak

at any switch-port, then they cannot leak anywhere. Therefore, to check if packets

will not leak from slice a to slice b, we apply the network space definition of slice

a to the network transfer function. We refer to this as the image of slice a under

network transformation. This image shows all possible packets in slice a after they

are forwarded by network boxes. If this image does not have any intersection with

the network space definition of slice b, then packets cannot leak from a to b. More

formally, packets will not leak from slice a to slice b if and only if Γ(Ψ(Na))∩Nb = φ.

Figure 3.12 graphically represents this check. Note that the leakage test should be

repeated for every new forwarding rule added to the network.

3.3.3 Complexity of Checking Slice Isolation

To check for the isolation of two network slices, we need to find the intersection of

one slice’s network space definition with all of the other ones. If there are N slices

in the network, each described by O(W ) wildcard expressions on each of the P ports

in the slice topology, then finding the intersection has O(NW 2) complexity, as we
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need to find intersection of O(W ) wildcard expressions with O(NW ) other wildcard

expressions. If the definition of a slice is different on each port of the slice, then we

need to repeat the computation once for each port, and hence, the complexity will be

O(PNW 2).

To check if a new rule added to the network will result in packets leaking from

slice a to other slices, we need to apply the network space definition of slice a to the

new transformation rule. This has complexity O(W ) as slice a is described by O(W )

wildcard expressions on each port, each of which needs to be transformed by the new

rule. Then, we need to intersect the result of the transformation with all the existing

slices. This is similar to slice isolation check and will require O(NW×W ) = O(NW 2)

work. This is the run time for incrementally performing this test on every new rule

insertion. If we want to perform this test for all of the rules in the network from

scratch, then we need to repeat it for all of the O(R) rules in the transfer function of

O(k) boxes controlled by the slice. Therefore, the run time would be O(kRNW 2).

3.4 Hassel: the Header Space Library

The Header Space Library or Hassel is a set of tools written in Python 2.7 and C

that implement the header space framework and the applications described in this

chapter. The source code is available in [24]. Hassel’s basic building block is a header

space class, which implements HSA set operations (Section 2.3.1). Internally, it stores

a union of wildcard expressions that describes the header space object. In Hassel,

transfer function objects that implement network transfer functions are configured by

a set of rules. Given a header space object and port, a transfer function generates a

list of output header space objects and ports. Transfer functions can be built from

standard rules (i.e., by matching on an input port and wildcard expression) or from

custom rules supplied by the programmer through function pointers. Hassel can au-

tomatically compute the inverse of a transfer function for standard rules. Hassel also

includes a Cisco IOS parser and a Juniper Junos parser that parses router config-

urations and command line (CLI) outputs and generates a transfer function object

that models the static behavior of the router. While making a transfer function, the
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Wildcard Expression: L bit expression consisting of {0,1,x} 

Transfer Function Rule 
Standard Rule: 
•  List of input ports and match wildcard expressions 
•  Mask and rewrite wildcard expressions 
•  List of output ports 
Custom Rule: 
•  Function pointer to decide if a header space matches 
•  Function pointer to generate output header space 

Header Space Object   
Data Structure: 
•  Inclusive list of wildcard expressions  
•  Exclusive list of wildcard expressions(2)  
Operations: 
•  Intersection, Union, Complementation, Difference 
•  Subset and Equality Check 
•  Fast Dead Object Check(3) 

Cisco IOS Commands Used 
 
•  sh mac-address-table 
•  sh arp 
•  sh spanning-tree 
•  sh config 
•  sh ip cef 

Transfer Function Object 
Data Structure: 
•  Ordered list of transfer function rules 
•  For each rule, list of higher priority rules whose 

match pattern intersect with this rule(2) 
•  Lookup table for fast lookup of rules that may 

match an input header space and port(4) 

Operations: 
•  Calculate inverse transfer function rule for each 

standard rule. 
•  Apply transfer function or inverse of transfer 

function to an input header space and port. (or 
lazily postpone it(5)) 

Cisco Configuration Parser 
 

•  Read the IOS commands output 
•  Compress IP forwarding table.(1) 

•  Generate Transfer Function Object 

Applications 
•  Reachability Test 
•  Loop Detection 
•  Slice Isolation Check 

Figure 3.13: Architecture of Hassel—the Header Space Library.

parser keeps a mapping from each transfer function rule to the CLI line numbers that

generate the rule. This will come handy when we want to investigate the root cause

of problems.

Figure 3.13 shows the block diagram of Hassel. The parser uses the MAC address

table, the ARP table, the spanning tree, the IP forwarding table and the router con-

figuration of Cisco or Juniper boxes to generate the transfer function. The resulting

transfer function object is then used by applications such as loop detection.

3.4.1 Algorithmic Optimizations

Our implementation employs five key optimizations marked with superscript indices

in Figure 3.13 that are keyed to the rows in Table 3.1. Table 3.1 reports the impact

of disabling each optimization, in turn, when analyzing Stanford’s backbone network

(see Section 3.5.1 for more information about the Stanford network). For exam-

ple, loop detection for a single port with all optimizations enabled took 11 seconds,

however, disabling IP compression increased running time by 19x and disabling lazy

subtraction inflated running time by 400x. Because the optimizations are orthogonal,
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Disabled T.F. Reachability Loop
Optimization Generation Test Test

None 160s 12s 11s
(1) IP Table Compression 10.5x 15x 19x
(2) Lazy Subtraction 1x >400x >400x
(3) Dead Object Deletion 1x 8x 11x
(4) Lookup-based Search 0.9x 2x 2x
(5) Lazy T.F. evaluation 1x 1.2x 1.2x

Table 3.1: Impact of optimization techniques on the run time of the reachability and
loop detection algorithms.
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Figure 3.14: Compressing IP forwarding table using a binary tree representation.

the overall effect of all optimizations is around 10,000x, transforming Hassel from a

prototype to a tool.

IP table compression: We used IP forwarding table compression techniques

in [9] to reduce the number of transfer function rules and to make the run time of

Hassel faster. The compression works as follows:

• We store all of the IP forwarding rules in a binary tree. In this tree, the root

corresponds with the left-most bit of the IP address, the children of the root

correspond with the second bit of the IP address, and so on. The left edge out
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of each node matches on 0, and the right edge matches on 1. By following the

path from the root to each node in the tree, we can label the node with the bit

pattern that it represents. Each IP forwarding rule is stored at the node whose

label matches the non-wildcard bits of the IP address. Figure 3.14(a) shows the

binary tree representation of a forwarding table consisting of five IP forwarding

rules.

• Once we have stored all of the rules in the binary tree, we can compress them.

We start from the root of the tree and propagate the action of the rule stored

in the root (if any) downward. When reaching any rule stored in the tree, we

compare its action against the propagating action. If they are the same, we

safely remove that rule from the tree and the table because it is covered by a

more general rule. If the actions do not match, we stop propagating that action

down that branch and instead propagate the action of the newly encountered

rule. Figure 3.14(b) shows this process.

• Finally, when visiting each node during the propagation, we examine the left

and right children. If the two children store rules with the same action, we

merge them into one rule and store it in their parent node. In our example,

0.0.0.0/2 and 64.0.0.0/2 are merged into one rule (0.0.0.0/1), resulting in the

final graph and forwarding table in Figure 3.14(c).

Lazy subtraction: Forwarding rules in a transfer function are sorted according

to their priority for processing packets. For example, if a router has two destination

IP addresses, 10.1.1.x and 10.1.x.x, and uses the longest prefix match, only packets

matching on 10.1.x.x − 10.1.1.x will be processed by the second rule. Expressing

these matching headers as a union of wildcard expressions will require eight wildcard

expressions. To avoid this, the notion of a header space object is expanded to accept a

union of wildcard expressions minus a union of wildcard expressions: ∪{wi}−∪{wj}.
Then, when we want to process the input header by the 10.1.x.x rule, we simply

subtract from the final result the headers processed by the first rule. Lazy subtraction

allows for the postponement of the expansion of terms during intermediate steps,
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as this expansion is only done at the end. As the table suggests, performance is

dramatically improved.

Dead object deletion: At intermediate steps, header space objects often evalu-

ate to empty and should be removed. Lazy subtraction masks such empty objects, as

it postpones the evaluation of the subtracted expressions. As a result, in our reacha-

bility or loop algorithm, we propagate an object that would have been evaluated to

empty. Therefore, a quick test is added to detect empty header space objects without

explicit subtraction. This check is based on a simple heuristic that is fast, doesn’t

have any false positives, and works well in practice but may not catch all empty ob-

jects. The simple trick is that ∪{wi}−∪{wj} is a dead object if for each wi wildcard

expression, there is a wj, that is its superset.

Lookup-based search: To evaluate a transfer function on an input header space,

we must find which transfer function rules match the input header space. The simple

way to implement this is to do a linear search through the rules in the transfer

function. We avoid an inefficient linear search via a lookup table. The key to the

lookup table is a configurable set of bytes in the packet header, which defines the

buckets in the lookup table. Each bucket stores all of the rules that match on those

bits. Because the search key may have wildcard bits, the lookup key also contains all

possible combinations of 0,1 and x.

Lazy evaluation of transfer function rules: The number of wildcard expres-

sions required to describe the result of a reachability or loop detection test may grow

as the cross-product of the rules in transfer functions. For example, if some boxes

forward packets based on D destination addresses, while others filter packets based on

S source IP addresses, the range of the composed transfer function will have D × S
wildcard expressions. If two transfer functions are orthogonal (meaning that they

process packets based on different sets of bits), Hassel uses commutativity of transfer

functions to delay the computation of one set of rules until the end. To do so, a

header space object can carry a list of unevaluated transfer function rules. These

unevaluated rules may be applied to the header space object once it has reached

the intended destination. By delaying the computation, we prevent the explosion

of wildcard expressions at the intermediate steps. Figure 3.15 depicts the effect of
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Router with O(D) rules based on destination IP address 

Firewall with O(S) rules based on source IP address 

all-wildcard flow 

all-wildcard flow 

O(D) expressions 

O(D) expressions 

O(SD) expressions 

O(D) expressions 

O(SD) expressions 

O(D) expressions 

O(SD) expressions 

O(SD) expressions 

Figure 3.15: Lazy evaluation of transfer function rules: by switching the order of
applying transfer function rules, the overall computation complexity is reduced.

changing the order of applying transfer function rules on the overall complexity of .

The current implementation of Hassel may be configured with a list of header bits to

be treated as the primary bits for forwarding (e.g., IP destination bits). Rules that

process packets based on non-primary bits are lazily evaluated.

3.4.2 Implementation Optimizations

The implementation of Hassel in C is optimized for performance. To maximize per-

formance, it deploys some memory optimization and parallelism techniques on top of

the algorithmic optimizations discussed above.

Deferred memory allocation: When computing reachability or running a

loop detection test, we need to intersect the input header space of a transfer function

with the match wildcard expression of all of the rules in that transfer function. We

observed that a vast majority of these intersections resulted in an empty header space

object. Therefore, we deferred allocating a new header space object until the object

was guaranteed to be non-empty. This reduced the number of memory allocations by

90%.
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Wildcard expression reuse: Many rules are repeated in the transfer function

objects of a given network. All of these rules share the same match wildcard expres-

sion. For example, in the Stanford backbone network, 84% of rules are duplicated

more than once. To avoid unnecessarily enlarging the working set of Hassel, we stored

a unique copy of each rule in memory.

Data structure compaction: Building on the previous optimization, we ob-

served that our performance was limited by misses in the CPU cache. We thus packed

the transfer function data into a dense binary file. This reduced the size of each rule

by a factor of 4.

Parallelism: We added parallelism to the C-based Hassel by creating a thread

for each transfer function. Intuitively, this means that each router processes header

space objects independently of all other routers. Each transfer function (running in

its separate thread) maintains a global “task” queue containing the set of header

space objects to be processed by that transfer function. Once a transfer function

finishes processing a header space, it finds the next transfer function to process its

results and puts its results in the task queue of that thread.

Parallelism by itself and without the previous optimizations does not improve

performance significantly, as the tasks are memory-bound rather than CPU-bound.

However, once the working set is reduced in order to avoid too many cache misses,

parallelism starts to show its benefits.

3.5 Evaluation

In this section, I first demonstrate the functionality of Hassel on Stanford university’s

backbone network and report performance results of the reachability and loop detec-

tion algorithms on an enterprise network. Then, I benchmark the performance of the

slice isolation test on random slices created on Stanford’s backbone network, which

are similar to the existing VLAN slices. Finally, I showcase the applicability of Hassel

to new protocols. All of these tests ran on a Macbook Pro, with Intel core i7, 2.66

Ghz quad core CPU and 4 GB of RAM.



50 CHAPTER 3. NETWORK VERIFICATION WITH HSA

SW 2	

 SW 3	

 SW 4	



OZ 4a	



SW 5	

SW 1	

 Sw 6	

 SW 7	

 SW 8	

 SW 9	

 SW 10	



OZ 4b	

OZ 3b	

OZ 3a	

OZ 2b	

OZ 2a	

 OZ 5b	

OZ 5a	

 OZ 6b	

OZ 6a	

 OZ 7b	

OZ 7a	

OZ 1b	

OZ 1a	



L3 

L1 L2 

  Backbone 1	

 Backbone 2	



Figure 3.16: Topology of the backbone network of Stanford university and three types
of loops detected using Hassel. Overall, we found 26 loops on 14 loop paths, 10 of
which are infinite.

3.5.1 Verification of an Enterprise Network

We start by running Hassel on Stanford university’s backbone network. With a

population of more than 15,000 students, 2,000 faculty, and five /16 IPv4 subnets,

Stanford is a relatively large enterprise network. Figure 3.16 shows the network

that connects departments and student dorms to the outside word. There are 14

operational zone (OZ) routers at the bottom of Figure 3.16 that are connected via 10

switches to two backbone routers that connect Stanford to the outside world. Overall,

the network has more than 757,000 forwarding entries and 1,500 ACL rules.

The goals of this experiment is to demonstrate the utility of running Hassel checks

and to measure Hassel’s performance in a production network. When generating

transfer functions, the learned MAC addresses are intentionally removed from the

model. As a result, packets will be flooded on the spanning tree rather than directly

forwarded to the destination. This allowed us to discover problems that can be masked

by learned MAC addresses but may surface when learned entries expire.

Checking for loops: The loop detection test was performed on the entire back-

bone network by injecting test packets from 30 ports. It took 151 seconds to compress
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the forwarding table and to generate transfer functions. The python version of Hassel

needs 560 seconds to run the loop detection test for all 30 ports, while the C version

is done in 2.0 seconds. IP table compression reduced the forwarding entries2 to about

4,200.

The loop detection test found 12 infinite loop paths (ignoring TTL), such as path

L1 in Figure 3.16, for packets destined to 10 different IP addresses. These loops

are caused by interaction between spanning tree protocols of two VLANs: A packet

broadcast on VLAN 1 can reach the leaves of the spanning tree of VLAN 1, where IP

forwarding on a leaf node forwards it to VLAN 2. Then, the packet is broadcasted

on VLAN 2 and is forwarded at the leaf node of VLAN 2 back to the original VLAN,

where the process can continue.

Although IP TTL will terminate this process, if the TTL is 32 and the normal path

length is 3, this consumes 10 times the normal resources during looping periods. More

importantly, it shows how protocol interactions can lead to subtle problems. Each

VLAN has a separate spanning tree that prevents loops, but VLANs are often defined

manually. More generally, individual protocols often contain automated mechanisms

that guarantee correctness for the protocol by itself, but the interaction between

protocols is often done manually. Such manual configuration often leads to errors

which Hassel can check for; route redistribution [32] provides another example of how

manual connection of different routing protocols can lead to errors.

We also found four other loop paths, similar to L1, L2 and L3 in Figure 3.16 for

packets destined to 16 subnets. However, these loops were single-round loops because

when the packets return to the injection port, they are assigned to a VLAN not

defined on that box and hence will be dropped. Table 3.2 summarizes performance

results. Note that we can trivially speed up the loop detection test by running each

per-port test on a separate machine.

Detecting possible configuration mistakes: As a second example, consider

a configuration mistake that could cause packets to loop between backbone router

2There were four routers that together had 733,000 forwarding entries because no default BGP
route was received. As a result, they kept one entry for every Internet subnet of which they knew,
but all with the same output port. IP compression reduced their table size by three orders of
magnitude.
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Python C
Time to generate transfer functions 151 s -
Runtime of loop detection test (30 ports) 560 s 2.0 s
Average per port runtime 18.6 s 66 ms
Max per port runtime 135 s 500 ms
Min per port runtime 8 s 5 ms
Average runtime of reachability test 13 s 40 ms

Table 3.2: Run time of the loop detection and reachability tests on Stanford backbone
network, using implementations of Hassel in Python and C.

1 and the Internet. Stanford owns the IP subnet 171.64.0.0/14. However, not all

of these IP addresses are currently in use. The backbone routers have an entry to

route those IP addresses that are in use to the correct OZ router. Also, the default

route in the backbone routers (0.0.0.0/0) is to send packets to the Internet. To avoid

sending packets destined to the unused Stanford IP addresses to the outside world, the

backbone routers have a manually installed null rule that drops all packets destined

to 171.64.0.0/14 if they do not match any other rule.

Suppose that by mistake, the null rule is set to drop 171.64.0.0/16 IP addresses

(i.e., the /14 is fat-fingered to a /16). Assume that the ISP’s router does not filter

incoming traffic from Stanford destined to Stanford. Then, packets sent to unused

addresses in 17.64.0.0/14 that are not in 171.64.0.0/16 will loop between the backbone

routers and the ISP’s router. This scenario was simulated, and the test successfully

detected the loop in less than 10 minutes (as in Table 3.2). More importantly, the

tool allowed the loop to be traced to the line in the configuration file that caused the

error. In particular, the tool output shows that packets in the loop match the default

0.0.0.0/0 forwarding rule and not the 171.64.0.0/16 rule in the backbone router.

Verifying reachability to an OZ router: As a third example, Hassel was used

to calculate the reachability function from the OZ router connected to the student

dorms to the OZ router connected to the computer science department. This verified

that all of the intended security restrictions, as commented by the admin, in the

config file were met. These restrictions included ports and IP addresses that were

closed to outside users. Table 3.2 shows the run time for this test. We have heard
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from managers that many restrictions and ACLs were inserted by earlier managers

and are still preserved because current managers are afraid to remove them. Hassel

allows managers to do “what if” analysis to see the effect of deleting an ACL.

3.5.2 Checking Slice Isolation

Suppose we want to replace VLANs in the Stanford backbone network with the

more flexible slices made possible by FlowVisor. Stanford’s VLANs mostly carry

traffic belonging to a particular subnet—e.g., VLAN 74 carries subnet 171.64.74.0/24.

VLAN 74 is equivalent to a FlowVisor slice across the same routers with header space:

ip dst(h) = 171.64.74.0/24 or ip src(h) = 171.64.74.0/24.

We would like to understand how quickly we can verify new slices which are created

on-demand in the Stanford network. Recall from Section 3.3, we need to perform two

checks:

1. When creating a slice, we need to make sure its network space does not overlap

with an existing slice.

2. Whenever a new forwarding rule is added, we need to check that it cannot cause

packet leakage.

In this experiment, we generated random slices with a topology similar to the

existing VLANs, as follows: For each slice, we randomly picked two operational zones

together with all router ports and switches that connect them. Then, we added

random pieces of header space to the network space definition of each slice by picking

X source or destination subnets of random prefix length (or random TCP ports).

Here, X, the number of wildcard expressions used to describe a slice, denotes the

slice’s complexity. While all existing VLAN slices in Stanford require fewer than 10

wildcard expressions3, we explored the limits of performance by varying X from 10

to 1, 000. We ran experiments to create new slices of varying complexity, X, while

there were 10, 100, or 500 existing slices.

3In most cases, two expressions suffice.
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(a) Disjointness of slice definitions.
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(b) Non-leakage of a new forwarding rule.

Figure 3.17: Run time of the slice isolation check on Stanford backbone network
for randomly generated slices. The check uses the Python based implementation of
Hassel.

In the first experiment, we randomly created a new slice and checked the disjoint-

ness of slice definitions by looking for intersection with all the existing slices. This

test should be done every time a new slice is created, and we hope it will complete in

a few minutes or less. In the second experiment, we emulated the behavior of adding

a new rule with a rewrite action. We generated random rules and checked if it could

possibly cause a packet leak to another slice. This test has to run every time a new

rule is added, so it needs to be really fast.

Figure 3.17(a) and Figure 3.17(b) shows the run time of our tests using the Python

implementation of Hassel. As the figures suggest, if the slices are not very complex

(i.e., can be explained with fewer than 50 wildcard expressions)4, then the tests run

almost instantly. Surprisingly, the tests are very fast even when there are 500 slices—

more than adequate for existing networks. If there are only 10 or 100 slices, the

checks can be done on very complex slices. The experimental run times matches the

expected complexity in Section 3.3.3, which is quadratic in the number of wildcard

expressions per slice and linear in the number of slices.

4This includes wildcard expressions that are included in, or excluded from, the definition of a
slice.
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3.5.3 Debugging a Protocol Design

This section describes a plausible scenario in which a loop is caused by a protocol

design mistake. The scenario allows the loop size to be parameterized to examine

how detection time varies with loop size. It also showcases how Hassel can model IP

options and other variable length fields using custom transfer function rules.

In our scenario, Alice—a networking researcher—invents a new loose source rout-

ing protocol, IP*. IP* allows a source to specify the sequence of middle boxes that

a packet must pass through. Alice’s protocol has the header format shown in Fig-

ure 3.18(a). IP* works exactly like normal IP, except that it updates the header

at the first router where a packet enters the IP* network. Figure 3.18(b) shows an

example of header update for a stack size of three. The header update operation sets

the current source address to the “sender IP address” field, rewrites the destination

IP address to the address at the top of the stack, and rotates all the IP addresses

in the stack. After processing, a destination middlebox swaps the destination and

source IP addresses and resends the packet to a router. Alice designs IP* to allow

tunneling across existing IP networks.
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(a) Header format for IP* protocol.
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(b) IP* stack rotation.

Figure 3.18: Header format and stack rotation of IP* protocol.
IP* stack rotation consists of the following steps: 1. The packet’s IP source is replaced by
the sender IP source. 2. The packet’s IP destination is replaced by the top of the stack. 3.
The stack is rotated.

Alice tries IP* in the network topology of Figure 3.19 and verifies that packets

are successfully routed via middle boxes M1 and M2. Figure 3.19 also shows how

the packet header changes as it passes through M1 and M2 to the final destination,
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(1) Packet is sent to M1.	



(2) M1 swaps IP src and IP dst	


and sends the packet back. 	



(3) Packet enters IP* network.	


IP* rotation performed. 	


Packet is sent to new destination	



(4) M2 swaps IP src and IP dst	


and sends the packet back. 	


	



(6) Packet received. It shows 
all intermediate hosts visited.	



(5) Packet enters IP* network.	


IP* rotation performed. 	


Packet is sent to new destination	



IP* Network N1!

Figure 3.19: Example of an IP* network with routing through middleboxes..
The figure labels 6 steps of packet processing along with the transformed header at each
step. R2 is the entry point to the IP* network which performs IP* header updates.

DST , in six steps. At DST , the stack contains the IP address of all middleboxes

visited.

To continue her verification of IP*, Alice tries the more complex network in Fig-

ure 3.20 where the destination is attached to a different IP* network than the source.

Before deploying IP*, she uses the loop detection algorithm from Section 3.2 and

finds several loops. The most interesting one is an infinite loop consisting of the two

strange loops below:

1) R2 → R5 →M2 → R5 → R2 → R4 →M1 → R4 → R2 → R3 → R6 → R3 → R2

2) R2 → R4 →M1 → R4 → R2 → R5 →M2 → R5 → R2 → R3 → R6 → R3 → R2

Alice now realizes that having a second IP* network in the path can cause loops.

She removes the concept of a “first” router, instead adding a pointer that describes
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Figure 3.20: Alice’s second network topology can cause infinite loops.
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Figure 3.21: Running time of the loop detection test on Alice’s IP* network using
the Python based Hassel.

the middlebox to visit next. We should be clear that by no means are we proposing

IP* as a viable protocol. Instead, we hope this example suggests that Hassel could be

a useful tool for protocol designers as well as network managers. While this particular

loop could be caught by a simulation, if there were many sources and destinations

and the loop was caused by a more obscure pre-condition, then a simulation may not

uncover the loop. By contrast, static checking using Hassel will find all loops.
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Figure 3.21 shows the per-port performance of the infinite loop detection algorithm

for the ports participating in the loops. We varied the number of middle boxes

connected to R2 (e.g., M1 and M2) and the number of router forwarding entries. For

four middle boxes, the loop has a length of 72 nodes! Finding a large and complex

loop in a network with 100,000 forwarding rules and custom actions, in less than four

minutes using less than 50 lines5 of code (Figure 4.9), demonstrates the power of the

header space analysis framework.

def detect_loop(NTF, TTF, ports, test_packet):
    loops = []
    for port in ports:
        propagation = []
        p_node = {}
        p_node["hdr"] = test_packet
        p_node["port"] = port
        p_node["visits"] = []
        p_node["hs_history"] = []
        propagation.append(p_node)
        
        while len(propagation)>0:
            tmp_propag = []
            for p_node in propagation:
                next_hp = NTF.T(p_node["hdr"],p_node["port"])
                for (next_h,next_ps) in next_hp:
                    for next_p in next_ps:
                        linked = TTF.T(next_h,next_p)
                        for (linked_h,linked_ports) in linked:
                            for linked_p in linked_ports:
                                new_p_node = {}
                                new_p_node["hdr"] = linked_h
                                new_p_node["port"] = linked_p
                                new_p_node["visits"] = list(p_node["visits"])
                                new_p_node["visits"].append(p_node["port"])
                                new_p_node["hs_history"] = list(p_node["hs_history"])
                                new_p_node["hs_history"].append(p_node["hdr"])
                                if len(new_p_node["visits"]) > 0 \
                                    and new_p_node["visits"][0] == linked_p:
                                        loops.append(new_p_node)
                                        print "loop detected"
                                elif linked_p not in new_p_node["visits"]:
                                    tmp_propag.append(new_p_node)
            propagation = tmp_propag
    
    return loops

Figure 3.22: Loop detection code

5Not counting the underlying Hassel implementation
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3.6 Limitations

Hassel is a tool designed for static analysis of network, to detect forwarding and

configuration errors. It is no panacea, serving as one tool among many needed by

protocol designers, software developers and network operators. For example, while it

might tell us that a routing algorithm is broken because routing tables are inconsis-

tent, it does not tell us why. Even if the routing tables are consistent, header space

analysis offers no clues as to whether routing is efficient or meets the objectives of

the designer. Despite this, HSA-based verifications could play a similar role in net-

works as post-layout verification tools do in chip design or static analysis checkers

do in compilation. It checks the low-level forwarding state against a set of universal

invariants, without understanding the intent or aspirations of the protocol designer.

To analyze protocol correctness, other approaches such as [21] should be used.

Similarly, while Hassel can pinpoint the specific entry in the forwarding table or

line in the configuration file that causes a problem, it does not tell us how or why those

entries were inserted or how they will be evolved as the box receives future messages.

Finally, like all static checkers, Hassel cannot deal well with churn in the network

except to periodically run it based on snapshots; thus, it can only detect problems

that persist longer than the sampling period. In Chapter 4, we introduce a new tool,

based on header space analysis that can run these verifications incrementally and in

real time.

3.7 Related Work

Roscoe et al.’s predicate routing [45] introduces the notion of pushing a predicate as

part of designing a routing mechanism. This is similar to pushing an all-wildcard

flow which is used in our reachability and loop detection algorithms. Xie et al.’s

reachability analysis [52] uses test packets to determine reachability (not detecting

loops) for the special case of TCP/IP networks. The static analysis tools described

in [2,38,54] are designed specifically for TCP/IP firewalls, and Feamster et al.’s work

in [13] finds reachability failures in BGP routers.
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HSA is broader in two ways. First, it is a framework rather than a tool for detect-

ing a single type of network failure. It can perform a range of network verification

tasks and, as we will see in the next chapters, can be used as the foundation for

building more tools and techniques for testing and debugging networks. Second, the

algorithms developed in this framework are independent of protocols.

Model checkers, SAT solvers and theorem provers are among other commonly

used tools for network verification [36]. However, when these tools detect a violation

of a specification (e.g., reachability violations), they are limited to providing a single

counterexample and not the full set of failed packet headers that header space analysis

provides. Also, these tools are at least two orders of magnitude slower than is the

C-based Hassel when performing the same checks, as these off-the-shelf tools do not

benefit from various domain-specific optimizations that have gone into Hassel.

3.8 Summary

In this chapter, I used the header space analysis framework to design algorithms for

checking three important properties of networks: finding reachability between end

hosts, detecting forwarding loops and checking isolation of network slices. I described

the implementation of these algorithms using the header space library (Hassel) and

evaluated their functionality and performance. As we saw in Section 3.5, the loop

detection test could find a number of loops in the Stanford backbone network, the

reachability analysis verified correct implementation of access control policies in this

network, and the slice isolation check could verify isolation of complex slices created

randomly on the Stanford network.



Chapter 4

Real-Time Policy Checking using

Rule Dependency Graph

Network state may change rapidly in response to customer demands, load conditions

or configuration changes. The network must also ensure correctness conditions such

as isolating tenants from each other and from critical services. Hassel and other offline

policy checkers cannot verify correctness in real time because of the need to collect

“state” information from the entire network and the time it takes to analyze this

state. Software Defined Networks (SDNs) offer an opportunity in this respect as they

provide a logically-centralized view from which every proposed change can be checked

for policy compliance. But there remains a need for a fast compliance checker.

This chapter introduces a real-time policy checking tool called NetPlumber based

on the header space analysis framework. NetPlumber incrementally checks for the

compliance of state changes using a novel conceptual representation, called the Rule

Dependency Graph, that maintain a dependency graph between rules. It improves

upon Hassel in two ways. First, by running HSA checks incrementally, NetPlumber

enables real-time checking of updates, which in turn can detect rule changes violating

a policy before they hit the data plane or raise an alarm as soon as a link failure

breaks a policy. Second, NetPlumber provides a flexible way to express and check

complex policy queries without writing new ad hoc code for each policy check.

61
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NetPlumber can detect simple invariant violations such as loops and reachability

failures. It can also check more sophisticated policies that reflect the desires of human

operators; for example, “Web traffic from A to B should never pass through waypoints

C or D.” Or “Packets between A and B should not go through more than 3 hops.”

While NetPlumber is a natural fit for SDNs, its network model is conceptually

applicable to conventional networks as well. In SDNs, NetPlumber is deployed in

line with the control plane, and observes state changes (e.g., OpenFlow messages)

between the control plane and the switches (Figure 4.1). NetPlumber checks every

event, such as installation of a new rule, removal of a rule, port or switch up and down

events, against a set of policies and invariants. Upon detecting a violation, it calls a

function to alert the user or block the change. In conventional networks, NetPlumber

can acquire state change notifications through SNMP traps or by frequently polling

switches.

NetPlumber’s speed easily exceeds the requirements for an enterprise network in

which configuration state changes infrequently—say once or twice per day. But in

modern multi-tenant data centers, fast programmatic interfaces to the forwarding

plane allow control programs to rapidly change the network configuration—perhaps

thousands of times per second. For example, we may move thousands of virtual

machines (VMs) to balance the load, with each change requiring a tenant’s virtual

network to be reconfigured. With an average of less than 1 ms policy check time

on Google SDN, Internet2 and Stanford’s backbone network, NetPlumber can handle

more than 1, 000 rule updates per second.

4.1 NetPlumber Architecture

4.1.1 Overview of NetPlumber

NetPlumber has a much faster update time than Hassel because instead of recom-

puting all of the transformations each time the network changes, it incrementally

updates only the portions of the results affected by the change. Underneath, Net-

Plumber still uses HSA. Thus, it inherits the ability to verify a wide range of policies
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Figure 4.1: Deploying NetPlumber as a policy checker in SDNs.

from HSA, including reachability between ports, loop-freedom, and isolation between

groups, while remaining protocol agnostic.

Figure 4.1 shows NetPlumber checking policies in an SDN. An agent sits between

the control plane and switches and sends every state update (installation or removal

of rules, link up or down events) to NetPlumber. Internally, NetPlumber creates and

maintains a model of the network, which is used to verify policies in real time. In

response to network state changes, NetPlumber updates its network model and re-

evaluates the policy checks affected by the update. If a violation occurs, NetPlumber

performs a user-defined action such as removing the violating rule or notifying the

administrator.

The heart of NetPlumber is its network model, called the Rule Dependency Graph

(RDG), which captures all possible paths of flows1 through the network. Nodes in

the graph correspond to the rules in the network, and directed edges represent the

next hop dependency of these rules.

1In what follows, a flow corresponds to any region of header space.
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Figure 4.2: Example of finding next hop dependency in NetPlumber. Here, the
switches are connected by a link and the range of R1 and the domain of R2 has some
intersection: 01x.

• A rule is an OpenFlow-like <match, action> tuple where the action can be

forward,2 rewrite, encapsulate, decapsulate, etc.

• Rule a in box A has a next hop dependency to rule b in box B if (1) there is a

physical link from A to B, and (2) the domain of rule b and the range of rule a

have a non-empty intersection on the A-B link. The domain of a rule is the set

of input headers and ports, {(hi, pi)}, that match the rule. The range is the set

of output headers and ports, {(ho, po)}, created by the action transformation

on the rule’s domain. To clarify, consider the example in Figure 4.2 consisting of

two rules, R1 and R2, on two boxes that are connected by a physical link. The

range of R1 is {(0xx, 2)} and the domain of R2 is {(x1x, 1), (x1x, 2), (x1x, 3)}.
On the connecting link (1↔ 2), the intersection or domain of R1 and range of

R2 is 01x. Therefore, there will be a next hop dependency from R1 to R2 in

the rule dependency graph.

Initialization: NetPlumber is initialized by examining the forwarding tables to

build the rule dependency graph. It then computes reachability by computing the set

2A drop rule is a special case of a forward rule with an empty set of output ports.
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of packets from source port s that can reach destination port d. To do so, it starts by

pushing an“all-wildcard flow” into the rule dependency graph from s and propagating

it along the edges of the graph. At each rule node, the flow is filtered by the match

part of the rule and then transformed by the action part of the rule. The resulting

flow is then propagated along the outgoing edges to the next node. The portion of the

flow, if any, that reaches d is the set of all packets from s that can reach d. To speed

up future calculations, whenever a rule node transforms a flow, it stores a copy of

the flow locally in the node object before forwarding the flow to the next hop nodes.

This caching lets NetPlumber quickly update reachability results every time a rule

changes.

Operation: In response to the insertion or deletion of rules in switches, Net-

Plumber adds or removes nodes and updates the routing of flows in the dependency

graph. It also re-runs those policy checks that need to be updated.

4.1.2 The Rule Dependency Graph

As mentioned in the last section, NetPlumber creates and maintains a network model

in the form of a forwarding graph called the rule dependency graph. The nodes of this

graph are the forwarding rules, and directed edges represent the next-hop dependency

of these rules. We call these directed edges pipes because they represent possible paths

for flows. A pipe from rule a to b has a pipe filter that is the intersection of the range

of a and the domain of b. When a flow passes through a pipe, it is filtered by the

pipe filter. Conceptually, the pipe filter represents all packet headers at the output

of rule a that can be processed by b.

A rule node corresponds to a rule in a forwarding table in a switch. Forwarding

rules have priority; when a packet arrives to the switch, it is processed by the highest

priority matching rule. Similarly, the NetPlumber needs to consider rule priorities

when deciding which rule node will process a flow. For computational efficiency, each

rule node keeps track of higher priority rules in the same table. It calculates the

domain of each higher priority rule, subtracting it from its own domain. We refer to

this as intra-table dependency of rules.
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Figure 4.3: Rule dependency graph of a simple network.
The network consists of 4 switches, each with one table. Arrows represent pipes. Pipe
filters are shown on the arrows. Dashed lines indicate intra-table rule dependency. The
intersecting domain and input port is shown along the dashed lines.

Figure 4.3 shows an example network and its corresponding rule dependency

graph. It consists of 4 switches, each with one forwarding table. For simplicity, all

packet headers are 8 bits. We will use this example through the rest of this section.

Let’s briefly review how the rule dependency graph in Figure 4.3 was created:

1. There is a pipe from rule 1 in Table 1 (rule 1.1) to rule 2 in Table 2 (rule 2.2)

because

(a) ports 2 and 4 are connected, and

(b) the range of rule 1.1 (1010xxxx, 2) and the domain of rule 2.2 (10xxxxxx,

4) has a non-empty intersection (pipe filter: 1010xxxx).

2. Similarly, there is a pipe from rule 2.2 to rule 4.1 because

(a) ports 5 and 8 are connected, and

(b) the range of rule 2.2 (111xxxxx, 5) and the domain of rule 4.1 (xxxxx010,

8) has a non-empty intersection (pipe filter: 111xx010).

3. Rule 1.1 has an intra-table influence on rule 1.3 because their domains and

input port sets have a non-empty intersection (intersection: (1010xxxx, 1)).

4. The rest of this graph was created in a similar fashion.
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Figure 4.4: Finding reachability between S and P using the rule dependency graph.
Source node S is generating all-wildcard flow and inserting it into the rule dependency
graph. The solid lines show the path of flow from the source to the destination. Flow
expressions are shown along the flows.

4.1.3 Source and Sink Nodes

NetPlumber converts policy and invariants to equivalent reachability assertions. To

compute reachability, it inserts flow from the source port into the rule dependency

graph and propagates it toward the destination. This is done using a “flow generator”

or source node. Just like rule nodes, a source node is connected to the rule dependency

graph using directed edges (pipes), but instead of processing and forwarding flows, it

generates flow.

Continuing our example, we compute reachability between port 1 and 10 in Fig-

ure 4.4 by connecting a source node, generating an all-wildcard flow, to port 1. We

have also connected a special node called a probe node to port 10. Probe nodes will

be discussed in the next section. The propagation of flows in the rule dependency

graph occurs as follows:

1. The flow generated by the source node reaches rules 1.1, 1.2 and 1.3.

2. Rule 1.1 and 1.2 are not affected by any higher priority rules and do not rewrite

flows. Therefore, the input flow is simply forwarded to the pipes connecting

them to rule 2.2 (i.e., 1010xxxx and 10001xxx flows reach rule 2.2).
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3. Rule 1.3 has an intra-table dependency to rule 1.1 and 1.2. This means that

from the incoming 10xxxxxx flow, only 10xxxxxx − (1010xxxx ∪ 10001xxx)

should be processed by rule 1.3. The remainder has already been processed by

higher priority rules. Rule 1.3 is a simple forward rule and will forward the flow,

unchanged, to rule 3.1. However, when this flow passes through the pipe filter

between rule 1.3 and 3.1 (101xxxxx), it shrinks to 101xxxxxx − 1010xxxx.3

4. The flows that have reached rule 2.2 continue propagating through the rule

dependency graph until they reach the probe node (P), as depicted in Figure 4.4.

5. The flow which has reached rule 3.1 does not propagate any further as it cannot

pass through the pipe connecting rule 3.1 to rule 4.2 because the intersection

of the flow (101xxxxxx − 1010xxxx = 1011xxxx) and pipe filter (1010xxxx) is

empty.

Sink Nodes: Sink nodes are the dual of source nodes. A sink node absorbs flows

from the network. Equivalently, a sink node generates “sink flow,” which traverses

the rule dependency graph in the reverse direction. When reaching a rule node, a

sink flow is processed by the inverse of the rule.4 Reachability can be computed using

sink nodes. If a sink node is placed at the destination port D, then the sink flow at

source port S gives us the set of packet headers from S that will reach D. Sink nodes

do not increase the expressive power of NetPlumber; they only simplify or optimize

some policy checks, as explained in Section 4.2.

4.1.4 Probe Nodes

A fourth type of node, called a probe node, is used to check policy or invariants. Probe

nodes can be attached to appropriate locations of the rule dependency graph and can

be used to check the path and header of the received flows for violations of expected

behavior. In Section 4.2, we discuss how to check a policy using a source (sink) and

3[10xxxxxx − (1010xxxx ∪ 10001xxx)] ∩ 101xxxxx = 101xxxxx − 1010xxxx.
4The inverse of a rule gives us all input flows that can generate a given flow at the output of that

rule.
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probe node. As a simple example, consider checking the policy that in Figure 4.3,

port 1 and 10 can only talk using packets matching xxxxx010. To check this policy,

we place a source node at port 1 (S), a probe node at port 10 (P ), and configure P

to check whether all flows received from S match xxxxx010 (Figure 4.4).

There are two types of probe nodes—source probe nodes and sink probe nodes.

The former check constraints on flows generated by source nodes, and the latter

check flows generated by sink nodes. We refer to both as probe nodes.

4.1.5 Updating NetPlumber State

As events occur in the network, NetPlumber needs to update its rule dependency

graph and re-route the flows. There are six events that NetPlumber needs to handle:

1. Adding New Rules: When a new rule is added, NetPlumber first creates pipes

from the new rule to all potential next hop rules and from all potential previous

hop rules to the new rule. It also needs to find all intra-table dependencies

between the new rule and other rules within the same table. In our example in

Figure 4.5, a new rule is added at the 2nd position of Table 1. This creates three

new pipes to rules 2.1, 2.2 and the source node and one intra-table dependency

for rule 1.4.

Next, NetPlumber updates the routing of flows. To do so, it asks all of the

previous hop nodes to pass their flows on the newly created pipes. The prop-

agation of these flows then continues normally through the rule dependency

graph. If the new rule has caused any intra-table dependency for lower priority

rules, we need to update the flows passing through those lower priority rules by

subtracting their domain intersection from the flow. Continuing our example

in Figure 4.5, after adding the new rule, the new highlighted flows propagate

through the network. Also, the intra-table dependency of the new rule on rule

1.4 is subtracted from the flow received by rule 1.4, thus shrinks the flow to the

extent that it cannot pass through the pipe connecting it to rule 3.1 (empty

flow on the bottom path).
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Figure 4.5: Updating the rule dependency graph after rule insertion.
Rule 1.2 (shaded in green) is added to Table 1. As a result a) Three pipes are created
connecting rule 1.2 to rule 2.1 and 2.2 and to the source node. b) Rule 1.4 will have an
intra-table dependency to the new rule (1011xxxx,1). c) The flows highlighted in bold will
be added to the rule dependency graph. Also, the flow going out of rule 1.4 is updated to
empty.

2. Deleting Rules: Deleting a rule causes all flows that pass through that rule

to be removed from the rule dependency graph. Further, if any lower priority

rule has any intra-table dependency on the deleted rule, the effect should be

added back to those rules. Figure 4.6 shows the deletion of rule 1.1 in our

example. Note that deleting this rule causes the flow passing through rule 1.3

to propagate all the way to the probe node, because the influence of the deleted

rule is now added back.

3. Link-Up: Adding a new link to the network may cause additional pipes to be

created in the rule dependency graph, because more rules will now have physical

connections between them (first condition for creating a pipe). The nodes on

the input side of these new pipes must propagate their flows on the new pipes,

and then through the rule dependency graph as needed. Usually, adding a new

link creates a number of new pipes, making a link-up event slower to process

than a rule update.
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Figure 4.6: Updating the rule dependency graph after rule deletion.
Deleting rule 1.1 in Table 1 causes the flow that passes through it to be removed from the
rule dependency graph. Also, since the intra-table dependency of rule 1.3 to this rule is
removed, the flow passing through 1.3 via the bottom path is updated.

4. Link-Down: When a link goes down, all of the pipes created on that link are

deleted from the rule dependency graph, which in turn removes all of the flows

that pass through those pipes.

5. Adding New Tables: When a new table (or switch) is discovered, the rule

dependency graph remains unchanged. Changes only occur when new rules are

added to the new table.

6. Deleting Tables: A table is deleted from NetPlumber by deleting all of the

rules contained in that table.

4.1.6 Complexity Analysis

The complexity of NetPlumber for the addition of a single rule is O(r + spd), where

r is the number of entries in each table and s is the number of source (sink) nodes

attached to the rule dependency graph (which is roughly proportional to the number

of policies we want to check), p is the number of pipes to and from the rule, and d is

the diameter of the network.

The run time complexity arises as follows: When a new rule is added, we need to

first find intra-table dependencies. These require intersecting the match portion of
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the new rule with the match of all of the other rules in the same table. We also need

to create new pipes by doing O(r) intersections of the range of the new rule with the

domain of rules in the neighboring tables (O(r) such rules).

Next, we need to route flows. Let us use the term previous nodes to denote the

set of rules that have a pipe to the new rule. First, we need to route the flows at

previous nodes to the new rule. There are O(s) flows on each of these previous nodes

because each source (sink) node that is connected to NetPlumber can add a flow. We

need to pass these flows through O(p) pipes to route them to the new rule. This is

O(sp) work. With a linear fragmentation5 argument (as discussed in Section 3.1.3),

there will be O(s) flows that will survive this transformation through the pipes,6 and

not O(sp) flows. The surviving flows will be routed in the same manner through the

rule dependency graph, requiring the same O(sp) work at each node in the routing

path. Since the maximum path length is the diameter d, the overall run time of this

phase is O(spd).

We also need to take care of intra-table dependencies between this rule and lower

priority rules, and subtract the domain intersection from the flows received by lower

priority rules. This subtraction is done lazily and is therefore much faster than flow

routing; hence, we ignore its contribution to overall run time. Therefore, the overall

run time of NetPlumber for a single rule insertion will be O(r + spd).

4.2 Checking Policies and Invariants

A probe node monitors flows received on a set of ports and check policy conditions

on these flows. In the rule dependency graph, a probe node may be attached to the

output of every rule sending out flows on those ports. Each probe node is configured

with a filter flow expression and a test flow expression. A flow expression, or flowexp

5As a reminder, this argument states that if we have R flows at the output of a transfer function,
and we apply these flow to the next hop transfer functions with R rules per transfer function, we
will get cR flows at the output where c � R is a constant. This assumption is based on the
observation that flows are routed end-to-end in networks. They are usually aggregated, and not
randomly fragmented in the core of the network.

6An alternate way to reach the same conclusion is as follows: The new rule, after insertion, will
look like any other rule in the network and should on average have O(s) flows.
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for short, is a regular expression specifying a set of conditions on the path and the

header of the flows. The filter flowexp constrains the set of flows that should be

examined by the probe node, and the test flowexp is the constraint that is checked

on the matching flows. Probe nodes can be configured in two modes, existential and

universal. A probe fires when its corresponding predicate is violated. An existential

probe fires if none of the flows examined by the probe satisfy the test flow expression.

In contrast, a universal probe fires when a single flow is received that does not satisfy

the test constraint. More formally:

A universal probe checks the following: ∀{f | f ∼ filter} : f ∼ test. All flows f

that satisfy the filter expression, satisfy the test expression as well.

An existential probe checks the following: ∃{f | f ∼ filter} : f ∼ test. There

exist a flow f that satisfies both the filter and test expressions.

Sometimes, during a sequence of state updates, transient policy violations may

be acceptable (e.g., a black hole is acceptable while installing a path in a network).

NetPlumber probes can be turned off during the transition and turned back on when

the update sequence is complete.

Using flow expressions described via the flowexp language, probe nodes are capable

of expressing a wide range of policies and invariants. Section 4.2.1 will introduce the

flowexp language. Sections 4.2.2 and 4.2.3 discuss techniques for checking for loops,

black holes and other reachability-related policies.

4.2.1 Flowexp Language

Each flow at any point in the rule dependency graph, carries its complete path history,

because it has a pointer to the corresponding flow at the previous hop (node). By

traversing these pointers backward, we can examine the entire path history of the

flow and all of the rules that processed this flow along the path. The flow history

always begins at the generating source (or sink) node and ends at the probe node

checking the condition.
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Constraint → True | False | !Constraint
| (Constraint | Constraint)
| (Constraint & Constraint)
| PathConstraint
| HeaderConstraint;

PathConstraint → list(Pathlet );
Pathlet → Port Specifier [p ∈ {Pi}]

| Table Specifier [t ∈ {Ti}]
| Skip Next Hop [.]
| Skip Zero or More Hops [.∗]
| Beginning of Path [ ^ ]

(Source/Sink node)
| End of Path [ $ ]

(Probe node);
HeaderConstraint → Hreceived ∩ Hconstraint 6= φ

| Hreceived ⊂ Hconstraint

| Hreceived == Hconstraint;

Figure 4.7: Flowexp language grammar.

Flowexp is a regular expression language designed to check constraints on the

history of flows received by probe nodes. Figure 4.7 shows the grammar of flowexp

in a standard BNF syntax. Flowexp consists of logical operations (i.e., and, or, and

not) on constraints enforced on the path or header of flows received on a probe node.

A PathConstraint is used to specify constraints on the path taken by a flow. It

consists of an ordered list of pathlets that are checked sequentially on the path of the

flow. A pathlet is a constraint on part of the flow path, which may include a specific

set of ports or tables in the path or specified or unspecified number of hops. The

complete set of pathlets in flowexp language is available in Figure 4.7. For example,

a flow that originates from source S, with the path S → A→ B → C → P to probe

P , will match flowexp “ (̂p = A)” because port A comes immediately after the source

node. It also matches “(p = A).(p = C)” because the flow passes through exactly one

intermediate port from A to C.

A HeaderConstraint can check the following

1. If the received header has any intersection with a specified header; this is useful

when we want to ensure that some packets of a specified type can reach the

probe.
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2. If the received header is a subset of a specific header; this is useful when we

wish to limit the set of headers that can reach the probe.

3. If the received header is exactly equal to a specified header; this is useful to

check whether the packets received at the probe are exactly what we expect.

Since flowexp is very similar to (but much simpler than) standard regular expression

language, any standard regexp checking technique can be used at probe nodes.

4.2.2 Checking Loops and Black Holes

As flows are routed through the rule dependency graph, each rule by default (i.e.,

without adding probe nodes for this purpose) checks received flows for loops and black

holes. To check for a loop, each rule node examines the flow history to determine if the

flow has passed through the current table before. If it has, a loop-detected callback

function is invoked.7 If we are interested in knowing the repetition of the loop, we

can invoke the algorithm described in Section 3.2.2 inside the callback function.

Similarly, a black hole is automatically detected when a flow is received by a non-

drop-rule R that cannot pass through any pipes emanating from R. In this case, a

black-hole-detected callback function is invoked.

4.2.3 Checking Policies on Path Predicates

In this section, we describe how to express reachability-related policies and invariants

such as the isolation of two ports, reachability between two ports, reachability via a

middle box, and a constraint on the maximum number of hops in a path. We express

and check for such reachability constraints by attaching one or more source (or sink)

nodes and one or more probe nodes in appropriate locations in the rule dependency

graph. The probe nodes are configured to check the appropriate filter and test flowexp

constraints, as shown below.

Basic Reachability Policy: Suppose we wish to ensure that a server port S

should not be reachable from guest machine ports {G1, ...Gk}.
7The callback function can optionally check the repetition of the loop.
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Solution using a source probe: Place a source node that generates a wildcarded

flow at each of the guest ports. Next, place a source probe node on port S and

configure it to check for the flow expression: ∀f : f.path ∼![ ˆ (p ∈ {G1, ...Gk})], that

is, a universal probe with no filter constraint and a test constraint that checks that

the source node in the path is not a guest port.

If the policy instead requires S to be reachable from {G1, ...Gk}, we could configure

the probe node as follows: ∃f : f.path ∼ [ ˆ (p ∈ {G1, ...Gk})]. Intuitively, this states

that there exists some flow that can travel from guest ports to the server S. Note

that the server S is not specified in the flow expression because the flow expression

is placed at S.

Dual Solution using a sink probe: Alternately, we can put a sink node at port S

and a sink probe node in each of the Gi ports. We also configure the probes with

flowexp ∀f : f.path ∼![ ˆ (p ∈ {S})], that is, the probes at the guest ports should not

see any sink flow from the sink node at port S.

Reachability via a Waypoint: Next, suppose we wish to ensure that all traffic

from port C to port S must pass through a “waypoint” node M .

Solution: Put a source node at C that generates a wildcarded flow and a probe

node at S. Configure the probe node with the flowing expression: ∀{f | f.path ∼
[ ˆ (p ∈ {C})]} : f.path ∼ [ ˆ .∗(t = M)]. This is a universal probe that filters flows

that originate from C and verifies that they pass through the waypoint M .

Path length constraint: Suppose we wish to ensure that no flow from port C

to port S should go through more than 3 switches. This policy was desired for the

Stanford network, for which we found violations. The following specification does the

job, assuming that each switch has one table.

Solution: Place a probe at S and a source node at C as in the previous example.

Configure the probe node with the following constraint: ∀{f | f.path ∼ [ ˆ (p ∈
{C})]} : f.path ∼ [ ˆ .$ | ˆ ..$ | ˆ ...$ ]. The filter expression ensures that the check

is only done for flows from C, and the test expression only accepts a flow if it is one,

two, or three hops away from the source.

Source probes versus Sink probes: Roughly speaking, if a policy is checking

something at the destination, regardless of where the traffic comes from, then using
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sink probes is more efficient. For example, suppose a manager wishes to specify that

all flows arriving at a server S pass through waypoint M . Using source probes would

require placing one source probe at every potential source. This can be computa-

tionally expensive as the run time of NetPlumber grows linearly with the number of

source or sink nodes. On the other hand, if the policy is about checking a condition

for a particular source, for example computer C should be able to communicate with

all other nodes, then using a source probe will be more efficient. Intuitively, we want

to minimize the amount of flow in the rule dependency graph required to check a

given policy, as generating flow is computationally expensive.

4.2.4 Policy Translator

So far we have described a logical language called flowexp which is convenient for anal-

ysis and specifying precisely how flows are routed within the network. Flowexp is,

however, less appropriate as a language for network managers to express higher level

policy. Thus, for higher level policy specification, we decided to reuse the policy con-

structs proposed in the Flow-based Management Language (FML) [18], a high-level

declarative language for expressing network-wide policies about a variety of different

management tasks. FML essentially allows a manager to specify predicates about

groups of users (e.g., faculty, students) and stipulates which groups can communi-

cate. FML also allows additional predicates on the types of communication allowed,

such as the need to pass through waypoints.

Unfortunately, the current FML implementation is tightly integrated with an

OpenFlow controller, and so cannot be easily reused in NetPlumber. We worked

around this by encoding a set of constructs inspired by FML in Prolog. Thus, network

administrators can use Prolog as the frontend language to declare various bindings

inspired by FML, such as hosts, usernames, groups, and addresses. Network admin-

istrators can also use Prolog to specify different policies. For example, the following

policy describes 1) the guest and server groups, and 2) a policy: “Traffic should go

through firewall if it flows from a guest to a server.”

guest(sam).
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guest(michael).

server(webserver).

waypoint(HostSrc, HostDst, firewall):-

guest(HostSrc),

server(HostDst).

We have written a translator that converts such high-level policy specifications

written in Prolog into 1) the placement of source nodes, 2) the placement of probe

nodes, and 3) the filter and test expressions for each probe node. In the example

above, the translator generates two source nodes at Sam and Michael’s ports and

one probe node at the web server’s port. The waypoint keyword is implemented by

flowexp: .*(t=firewall).

The output of the translator is, in fact, a C++ struct that lists all source, sink, and

probe nodes. The source probes and sink probes are encoded in flowexp syntax using

ASCII text. Finally, NetPlumber reads the output of the translator and attaches the

source and probe nodes to the rule dependency graph as instructed.

Note that because FML is not designed to declare path constraints that can be

expressed in flowexp, we found it convenient to make the translator extensible. For

example, two new policy constructs we have built-in beyond the FML-inspired con-

structs are “at most N hops” and “immediately followed by,” and it is easy to add

more constructs.

4.3 Distributed NetPlumber

NetPlumber is memory-intensive because it maintains considerable data about every

rule and every flow in the rule dependency graph. For very large networks, with

millions of rules and a large number of policy constraints, NetPlumber’s memory

requirements can exceed that of a single machine. Further, as shown in Section 4.1.6,

the run time of NetPlumber grows linearly with the size of the tables. This can be

potentially unacceptable for very large networks.

Thus, a natural approach is to run parallel instances of NetPlumber, each verifying

a subset of the network and each small enough to fit into the memory of a single
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Figure 4.8: Clustering the rule dependency graph to enable parallelization.
A typical rule dependency graph consists of clusters of highly dependent rules corresponding
to FECs in the network. There may be rules whose dependency edges cross clusters. By
replicating those rules, we can create clusters without dependencies and run each cluster as
an isolated NetPlumber instance running on a different machine.

machine. Finally, a collector can be used to gather the check results from every

NetPlumber instance and produce the final result.

One might expect to parallelize based on switches, that is, each NetPlumber in-

stance creates a rule dependency graph for a subset of switches in the network (vertical

distribution). This can address the memory bottleneck, but may not improve perfor-

mance, as the NetPlumber instances can depend on each other. In the worst case,

an instance may not be able to start its job unless the previous instance is complete.

This technique can also require considerable communication between instances.

A key observation is that in every practical network we have seen, the rule de-

pendency graph looks like Figure 5.5: There are clusters of highly dependent rules

with very few dependencies between rules in different clusters. This is caused by for-

warding equivalence classes (FECs) that are routed end-to-end in the network with

possible aggregation. The rules belonging to a forwarding equivalence class have a

high degree of dependency among each other. For example, 10.1.0.0/16 subnet traffic

might be a FEC in a network. There might be rules that further divide this FEC

into smaller subnets (such as 10.1.1.0/24, 10.1.2.0/24), but there are very few rules
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outside this range that have any interaction with rules in this FEC (an exception is

the default 0.0.0.0/0 rule).

Our distributed implementation of NetPlumber is based on this observation. Each

instance of NetPlumber is responsible for checking a subset of rules that belong to one

cluster (i.e., a FEC). Rules that belong to more than one cluster will be replicated

on all of the instances with which they interact (see Figure 5.5). Probe nodes are

replicated on all instances to ensure global verification. The final probe result is

the aggregate of results generated by all the probes—that is, all probe nodes should

meet their constraints in order for the constraint to be verified. The instances do not

depend on each other and can run in parallel. The final result will be ready after the

last instance completes its job.

The run time of distributed NetPlumber, running on n instances for a single rule

update, is O(mavg(r/n + spd/m)), where m is the number of times that the rule is

replicated and mavg is the average replication factor for all rules. This is because

on each replica, the size of tables are O(mavgr/n) and the number of pipes to a rule

that is replicated m times is O(mavgp/m). Note that if we increase n too much, most

rules will be replicated across many instances (m,mavg → n,) and the additional

parallelism will not add any benefit.

How should we cluster rules? Graph clustering is hard in general; however, for

IP networks, we generated natural clusters heuristically. We start by creating two

clusters based on the IP address of our network. For example, if the host IP addresses

in the network belong to subnet 10.1.0.0/16, create two clusters, one for rules that

match this subnet, and one for the rest (i.e., 10.1.0.0/16 and 0.0.0.0/0 - 10.1.0.0/16

subnets). Next, divide the first cluster into two clusters based on bit 17 of the

destination IP address. If one of the resulting clusters is much larger than the other,

divide the larger cluster based on the next bit in the IP destination address. If

two clusters are roughly the same size, divide both clusters further. This process

continues until division does not reduce cluster size further (because of replication)

or the specified number of clusters is reached.
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Note that while we originally introduced the rule dependency graph to facilitate

incremental computation, it also allows us to decompose the computation much more

effectively than the naive decomposition by physical nodes.

4.4 Implementation

NetPlumber is implemented in C++ using Hassel’s foundation layer. The source code

is available at [24]. Figure 4.9 shows a simple block diagram of our implementation of

NetPlumber and its dependency on Hassel. As shown in the figure, the two systems

share the foundation layer, that is, the wildcard expression and header space objects,

but they create different models of the network and policies: Hassel uses transfer

function while NetPlumber uses rule, probe, and source nodes and flowexps language.

Also, the two systems have different ways of checking policies and invariants: Hassel

provides the basic functionality for checking reachability. Custom policy checks can

be implemented by invoking the basic reachability function and writing extra code

to check the specific policy on the result of the reachability check. On the other

hand, NetPlumber uses the rule dependency graph and the flow routing techniques

described Section 4.1 as a unified way to run all of the checks.

The NetPlumber management layer is the object that manages and controls differ-

ent nodes and the rule dependency graph. It provides the following API for updating

the NetPlumber state and checking policies:

• Add Table. Adds a new table to NetPlumber with a list of input/output ports

belonging to the table. For a single-table box, this is equivalent to adding the

box to the NetPlumber.

• Remove Table. Removes a table with a given table ID.

• Add New Rule. Adds a rule with the specified matching wildcard expression,

input ports, action, and output port and returns an ID for the created table.

• Delete Rule. Deletes a rule with the given ID.

• Add Link. Adds a unidirectional link from a source port to a destination port.
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• Remove Link. Removes a unidirectional link from a source port to a destination

port.

• Add Probe Node. Attaches a probe node to a particular port in the rule depen-

dency graph. The probe is configured at its creation time by a filter flowexp,

a test flowexp, a universal/existential mode bit, and a callback function to be

invoked upon violation. Returns an ID for the probe.

• Remove Probe Node. Removes a probe node with a given ID.

• Add Source/Sink Node. Attaches a source/sink node to a given port in the rule

dependency graph. The source/sink node is configured with the header space

of the flow it should generate.

• Remove Source/Sink Node. Removes a source/sink node with a given ID.

• Set Loop Detection Callback Function. Sets a global callback function for the

loop detection check. The callback function will receive all information about

the loop, that is, port, hret and the loop transfer functions.

• Set Black Hole Detection Callback Function. Sets a global callback function for

black holes detection.

NetPlumber gets its live stream of network state updates through its built-in

JSON server. We have also provided a JSON client that can feed a list of state

updates to the server.

4.5 Evaluation

In this section, we evaluate the performance and functionality of our C++ based

implementation of NetPlumber on three real world networks: the Google inter-

datacenter WAN, Stanford’s backbone network, and the Internet 2 nationwide net-

work. All of the experiments are run on Ubuntu machines, with six cores, hyper-

threaded Intel Xeon processors, a 12 MB L2-cache, and 12 GB of DRAM.
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Figure 4.9: NetPlumber software block diagram and its dependency on Hassel.

To feed the snapshot data from these networks into NetPlumber, we used Hassel’s

Cisco IOS and Juniper Junos parser and implemented an OpenFlow parser to parse

OpenFlow table dumps in protobuf [43] format. We used a json-rpc-based client to

feed this data into NetPlumber. NetPlumber has json-rpc server capability and can

receive and process updates from a remote source.

4.5.1 Our Data Set

In our evaluation of NetPlumber, the following data sets are used:

Google WAN: This is a software-defined network, consisting of OpenFlow switches

distributed across the globe. It connects Google data centers world-wide. Figure 4.10

shows the topology of this network. Overall, there are more than 143,000 OpenFlow

rules installed in these switches. Google WAN is one of the largest SDNs deployed

today; therefore, we stress-test NetPlumber on this network to evaluate its scalability.

Internet2 is a nationwide backbone network with 9 Juniper T1600 routers and

100 Gb/s interfaces, supporting over 66,000 institutions in United States. There are

about 100,000 IPv4 forwarding rules. All Internet2 configurations and FIBs of the

core routers are publicly available [19], with the exception of ACL rules, which are

removed for security reasons. We only use the IPv4 network of Internet 2 in this

paper.
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Figure 4.10: Google inter-datacenter WAN network—July 2012.

Stanford University Backbone Network. This is the same data set used in

Section 3.5.1.

4.5.2 All-pair Connectivity of Google WAN

As an internal inter-datacenter WAN for Google, the main goal of Google WAN

is to ensure connectivity between different data centers at all times. Therefore, in

our first experiment, we checked for the all-pair connectivity policy between all 52

leaf nodes (i.e., data center switches). We began by loading a snapshot of every

OpenFlow rule for Google WAN—taken at the end of July 2012—into NetPlumber.

NetPlumber created the initial rule dependency graph in 33.39 seconds (an average

per-rule runtime of 230µs). We then attach one probe and one source node at each

leaf of the network and set up the probes to look for one flow from each of the

sources. If no probes fire, then all data centers can reach each other. The initial

all-pair connectivity test took around 60 seconds. Note that the above run times
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are for the one-time initialization of NetPlumber. Once NetPlumber is initialized, it

can incrementally update check results much faster when changes occur. Note that

the all-pair reachability check in Google WAN corresponds to 522 or more than 2600

pair-wise reachability checks.

Next, we used a second snapshot taken six weeks later. We found the difference of

the two snapshots and applied them to simulate incremental updates. The difference

includes both the insertion and deletion of rules. Since we did not have timing

information for the individual updates, we knew the set of updates in the difference

but not the sequence of updates. So we simulated two different orders. In the first

ordering, we applied all of the rule insertions before the rule deletions. In the second

ordering, we applied all deletions before all insertions.

As expected, the all-pair connectivity policy was maintained during the first or-

dering of update events because new reachable paths are created before old reachable

paths are removed. However the second ordering resulted in violations of the all-

pair connectivity constraint during the rule deletion phase. Of course, this does not

mean that the actual Google WAN had reachability problems because the order we

simulated is unlikely to have been the actual order of updates. At the end of both

orderings, the all-pair connectivity constraint was met.

NetPlumber was able to check the compliance of each insertion or deletion rule

in an average time of 5.74ms with a median time of 0.77ms. The average run time

is much higher than the median because there are a few rules whose insertion and

deletion take a long time (about 1 second). These are the default forwarding rules

that have a large number of pipes and dependencies from/to other rules. Inserting

and deleting default rules require significant changes to the rule dependency graph

and routing of flows. The solid line in Figure 4.11 shows the run time CDF for all of

the updates.

To test the performance of distributed NetPlumber we repeated the same experi-

ment in distributed mode. We ran a simulation8 of NetPlumber on 2−8 machines and

measured the update times (dashed lines in Figure 4.11). Table 4.1 summarizes the

8To simulate, we run the the instances in serial on the same machine and collected the results
from each run. For each rule insertion/deletion, we reported the run time as the maximum run time
across all instances, because the overall job will only be done when the last instance is complete.
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Figure 4.11: CDF of the run time of NetPlumber per update, when checking the
all-pair reachability constraint in Google WAN with 1-5 instances and in Stanford
backbone with a single instance.

#instances: 1 2 3 4 5 8
median (ms) 0.77 0.35 0.23 0.2 0.185 0.180
mean (ms) 5.74 1.81 1.52 1.44 1.39 1.32

Table 4.1: Average and median run time of the distributed NetPlumber, checking
all-pair connectivity policy on Google WAN.

mean and median run times. This suggests that most of the benefits of distribution

are achieved when the number of instances is 5 because in the rule dependency graph

for the Google WAN, there are about 5 groups of FECs whose rules do not influence

each other. Trying to put these rules in more than 5 clusters will result in duplication

of rules, and the added benefit will be minimal.
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4.5.3 Checking Policy in Stanford network

Unlike the Google WAN, there are a number of reachability restrictions enforced in

the Stanford network by different ACLs. Examples of such policies include isolating

machines belonging to a particular research group from the rest of the network, or

limiting the type of traffic that can be sent to a server IP address. For example, all

TCP traffic to the computer science department is blocked except for those destined to

specific IP addresses or TCP port numbers. In addition, there is a global reachability

goal that every edge router be able to communicate with the outside world via the

uplink of a specified router called bbra rtr. Finally, due to the topology of the

network, the network administrators desired that all paths between any two edge

ports be no longer than 3 hops long to minimize network latency.

In this experiment, we test all of these policies. To do so, we connect 16 source

nodes, one to each router in the rule dependency graph. To test the maximum-three-

hop constraint, we connected 14 probe nodes, one to each operational zone (OZ)

router. We also placed a probe node at a router called yoza rtr to check reachability

policies at the computer science department. NetPlumber took 0.5 second to create

the initial rule dependency graph and 36 seconds to generate the initial check results.

We found no violation of the computer science department’s reachability policies.

However, NetPlumber did detect a dozen un-optimized routes, whose paths take 4

hops instead of 3. We also found 10 loops similar to those reported in Section 3.5.1.

We then tested the per-update run time of NetPlumber by randomly selecting

7% of rules in the Stanford network, deleting them and then adding them back.

Figure 4.11 shows the distribution of the per-update run time. Here, the median

runtime is 50µs and the mean is 2.34ms. The huge difference between the mean and

the median is due to a few outlier default rules that take a long time to get inserted

and deleted into NetPlumber.

4.5.4 Performance Benchmarking

The previous two experiments demonstrated the scalability and functionality of Net-

Plumber when checking the actual policies and invariants of two production networks.
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Network: Google Stanford Internet 2
Run Time mean median mean median mean median

Add Rule (ms) 0.28 0.23 0.2 0.065 0.53 0.52
Add Link (ms) 1510 1370 3020 2120 4760 2320

Table 4.2: Average and median run time of NetPlumber for a single rule and link
update when only one source node is connected to NetPlumber.

However, the performance of NetPlumber depends on s, the number of sources in the

network, which is a direct consequence of the quantity and type of policies specified

by each network. Thus, it seems useful to have a metric that is per source node and

even per policy, so we can extrapolate how run time will change as we add more inde-

pendent policies, each of which require adding a new source node.9 We provide such

a unit run time benchmark for NetPlumber running on all three data sets: Google

WAN, Stanford, and Internet 2.

To obtain this benchmark, we connect a single source node at one of the edge ports

in the rule dependency graph of each of our 3 networks. Then, we load NetPlumber

with 90% of the rules selected uniformly at random. Finally, we add the last 10%

and measure the update time. We then repeated the same experiment by choosing

links in the network that are in the path of injected flows, deleting them, and then

adding them back and measuring the time to incorporate the added link. The results

are summarized in Table 4.2. As the table suggests, link-up events take much longer

(seconds) to incorporate. This is in fact expected and acceptable because when a

link is added, a potentially large number of pipes will be created, which significantly

changes routing of flows. Fortunately, since the link-up/down event should be rare,

this run time appears acceptable.

4.6 Discussion

In this section, I first discuss some other contexts in which we can use NetPlumber

and then review the limitations of NetPlumber.

9In contrast, dependent policies can be checked using a single source node.



4.6. DISCUSSION 89

4.6.1 Other Use Cases

Deployment in conventional networks: Conceptually, NetPlumber can be used

with conventional networks as long as a notification mechanism is implemented to

acquire updated state information. One way to do this is through SNMP traps; every

time a forwarding entry or link state changes, NetPlumber receives a notification.

We can also implement a polling mechanism to obtain a new snapshot of the for-

warding states and apply the difference between consecutive snapshots as updates to

NetPlumber. The main drawback of these mechanisms is the resource consumption

at the switches due to state collection. Also, in the polling approach, we may miss

the transient violations that last less the the polling frequency.

Deployment in multi-tenant data centers: In multi-tenant data centers, the

set of policies might change dynamically upon VM migration. NetPlumber can handle

dynamic policy changes easily, but it needs to be set up appropriately in advance.

To handle dynamic policy changes, we attach a source node to every edge port in

the rule dependency graph (as we did in the case of Google WAN). This way, we can

update policies by only changing the location and test condition of probe nodes. The

idea is that flow routing, which is the most expensive operation in NetPlumber, is

pre-computed for all possible input flows. The policy to be checked on these flows is

updated on demand as VMs migrate. The update will be fast as long as the structure

of the rule dependency graph and routing of flows does not change significantly.

Using NetPlumber as the query engine of other tools: NetPlumber is use-

ful as a foundation that goes beyond static policy checking. It can be used alongside

other tools to provide real-time answers to a set of queries of interest. For exam-

ple, automatic test packet generation (ATPG), presented in Chapter 5 and [56], is

a framework that generates a test suite for a given network that achieves maximum

coverage with the minimum number of test packets. At its core, ATPG computes

reachability between test terminals and uses the reachability results in crafting the

test packets. NetPlumber can provide real-time updates to the reachability results

and feed that to the ATPG framework, which in turn can update the test suite.
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Also, NDB [17] may benefit from NetPlumber. Like GDB, NDB allows “break

points” to be set in the network when a specified condition is met. When packets

matching a specified condition is observed in the network, NDB gives a complete trace

of the packet, including its path, header at each hop, and the encountered switch

forwarding table. To achieve this goal, NDB adds a “postcard generating action” to

each rule that captures and sends headers of matching packets (called postcards) to a

central database. The current implementation of NDB adds postcard action to every

rule and generates postcards for all of the packets in the network; then, a filtering

system filters the postcards of interests. To make the system more efficient, NDB

could install postcard action for only those rules that the packets of interest would

math. Here, NetPlumber can be used as a query engine to detect those rules that

will process packets of interest.

While these are only two examples, the ability to incrementally and quickly ana-

lyze header spaces and answer questions about flows in the network will be a funda-

mental building block for network verification tools going forward.

4.6.2 Limitations

NetPlumber, like Hassel, relies on reading the state of network devices and therefore

cannot model middleboxes with dynamic state. To handle such dynamic boxes, the

notion of “flow” should be extended to include other kinds of states beyond header and

port. Another limitation of NetPlumber is its greater processing time for verifying link

updates. As a result, it is not suitable for networks with a high rate of link-up/down

events such as energy-proportional networks.

4.7 Related Work

Recent work on network verification, debugging, and troubleshooting, especially in

SDNs, focuses on the following directions.

Programming foundations: The goal of these works is to provide high-level

programming language abstractions for SDNs that make programming networks easier
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and less error-prone. For example, Frenetic [14] is a SQL-like, high-level programming

language for OpenFlow networks that automatically supports program composition

and [44] enables per-packet and per-flow consistency during network updates. While

high-level programming languages reduce the risk of errors, they will not eliminate

them. Besides, they cannot prevent violations that resulted from a hardware failure.

Therefore they cannot fill the need for verification and debugging tools.

Offline checking: Offline checking tools verify the correctness of the control

plane or data plane offline. For example, NICE [6] applies model checking techniques

to find bugs in OpenFlow control programs and verify the correctness of the control

plane software. Hassel [23] is a snapshot-based tool that checks data plane correctness

against network policies and invariants. Anteater [36] uses boolean expressions and

SAT solvers for network modeling and performs similar checks to Hassel. However,

offline checking cannot prevent bugs from damaging the network until the periodic

check runs.

Online monitoring: The goal of online monitoring tools is to monitor, test

or troubleshoot networks in run time. For example, OFRewind [51] captures and

reproduces the sequence of problematic OpenFlow command sequences in order to

use them for future diagnosis. ATPG [56] systematically generates test packets against

router configurations, and monitors network health by periodically sending these tests

packets. NDB [17] is a network debugger that gives a trace of network events that

leads to a failure. These tools complement but do not replace the need for real-

time policy checking, as they monitor the current state of network or capture faulty

states. The goal of real time policy checking is to verify network states before they

are installed.

Online checking: NetPlumber is an example of tools that fall in this category

in that it verifies the stream of network state changes against network policy in real

time. VeriFlow [25] is the work most closely related to NetPlumber. VeriFlow also

verifies the compliance of network updates with specified policies in real time. It

uses a trie structure to search rules based on equivalence classes (ECs), and upon an

update, determines the affected ECs and updates the forwarding graph for that class.

This in turn triggers a rechecking of affected policies. NetPlumber and VeriFlow offer
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similar run-time performance. While both systems support verification of forwarding

actions, NetPlumber additionally can verify arbitrary header modifications, including

rewriting and encapsulation, is protocol-independent, and can handle wildcard bits

at arbitrary locations in the match pattern of a rule.

4.8 Summary

This chapter introduces NetPlumber as a real-time policy checker for networks. Unlike

Hassel, which checks periodic snapshots of the network, NetPlumber is fast enough

to validate every update in real time. Users can express a wide range of policies to

be checked using an extensible regular expression-like language, called flowexp. Since

flowexp might be too low-level for administrators to use, we implemented a higher

level policy language (inspired by FML) in Prolog.

The fundamental idea of the rule dependency graph benefits us in three ways.

First, it allows incremental computation by allowing only the (smaller) dependency

subgraph to be traversed when a new rule is added. Second, it naturally leads us to

a flexible way to express and check policies by placement and configuration of source

and probe nodes in the dependency graph. Third, clustering the graph to minimize

inter-cluster edges provides a powerful way to parallelize computation.



Chapter 5

Automatic Test Packet Generation

Hassel and NetPlumber both verify the compliance of the forwarding state of a net-

work with its policy. An orthogonal check is to ensure that the actual behavior of

networking boxes complies with their forwarding state; a mismatch may result in

a violation of some network policy. My goal in this chapter1 is to design a testing

framework for detecting mismatch between the expected network behavior, based on

its forwarding state, and its observed behavior, based on the actual forwarding of

packets in the network.

Figure 5.1 is a simplified view of network state. At the bottom of the figure is the

forwarding state used to forward each packet, consisting of the L2 and L3 forwarding

information base (FIB), access control lists, etc. The forwarding state is written

by the control plane (which can be local, or as in the SDN model, remote), and

should correctly implement the network administrator’s policy. We can think of the

controller compiling the policy (A in Figure 5.1) into the device-specific forwarding

state (B), which in turn determines the forwarding behavior of each packet (C). To

ensure the network behaves as designed, all three steps should remain consistent at

all times, that is, A = B = C. In addition, the topology, shown to the bottom

right in the figure, should also satisfy a set of liveness properties L. Minimally, L

requires that sufficient links and nodes are working; if the control plane specifies that

1James Hongyi Zeng has contributed equally to the content of this chapter.
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Figure 5.1: Condition for correctness of a network: policy = forwarding state = actual
behavior.

a laptop can access a server, the desired outcome can fail if links fail. L can also

specify performance guarantees that detect flaky links.

Chapter 3 and Chapter 4 of this dissertation have proposed tools to check that

A = B, enforcing consistency between the policy and the forwarding state. While

these approaches can find (or prevent) software logic errors in the control plane, they

are not designed to identify liveness failures caused by failed links and routers, bugs

caused by faulty router hardware or software, or performance problems caused by

network congestion. Such failures require checking for L and whether B = C.

This chapter introduces the Automatic Test Packet Generation (ATPG) frame-

work, which automatically generates a minimal set of packets to test the liveness of

the underlying topology and the congruence between data plane state and configu-

ration specifications. It can also automatically generate packets to test performance

assertions such as packet latency. ATPG detects and diagnoses errors by indepen-

dently and exhaustively testing all forwarding entries, firewall rules, and any packet

processing rules in the network. In ATPG, test packets are generated algorithmically

from the device configuration files and FIBs, with the minimum number of packets

required for complete coverage. Test packets are fed into the network so that every

rule is exercised directly from the data plane—that is, at least one test packet matches
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and is forwarded by every rule. Since ATPG treats links just like normal forwarding

rules, its full coverage guarantees testing of every link in the network. It can also

be specialized to generate a minimal set of packets that merely test every link for

network liveness.

Organizations can customize ATPG to meet their needs; for example, they can

choose to merely check for network liveness (link cover) or check every rule (rule cover)

to ensure security policy. ATPG can be customized to check only for reachability,

or for performance as well. ATPG can adapt to constraints such as requiring test

packets from only a few places in the network or using special routers to generate test

packets from every port, and it can also be tuned to allocate more test packets to

exercise more critical rules. For example, a health care network may dedicate more

test packets to firewall rules to ensure HIPPA compliance.

We have tested ATPG on two real world data sets—the backbone networks of

Stanford University and Internet2, representing an enterprise network and a nation-

wide ISP respectively. The results are encouraging: thanks to the structure of real

world rulesets, the number of test packets needed is surprisingly small. For the Stan-

ford network, which has over 757,000 rules and more than 100 VLANs, we only need

4,000 packets to exercise all forwarding rules and ACLs. On Internet2, 35,000 packets

suffice to exercise all IPv4 forwarding rules. Put another way, we can check every

rule in every router on the Stanford backbone ten times every second, by sending test

packets that consume less than 1% of network bandwidth. The link cover is even

smaller—around 50 packets, which allows proactive liveness testing every millisecond

using 1% of network bandwidth.

5.1 ATPG System

Based on the network model provided by the header space analysis framework, ATPG

generates the minimal number of test packets so that every forwarding rule in the

network is exercised and covered by at least one test packet. When an error is

detected, ATPG uses a fault localization algorithm to determine the failing rules or

links.
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Figure 5.2: ATPG system block diagram.

Figure 5.2 is a block diagram of the ATPG system. The system first collects all

the forwarding states from the network (step 1 in Figure 5.2 ). This usually involves

reading the FIBs, ACLs, and config files, as well as obtaining the topology. ATPG

uses header space analysis to compute reachability between all the test terminals

(step 2). The result is then used by the test packet selection algorithm to compute

a minimal set of test packets that can test all rules (step 3). These packets will

be sent periodically by the test terminals (step 4). If an error is detected, the fault

localization algorithm is invoked to narrow down the possible causes of the error (step

5).

5.1.1 Test Packet Generation

Algorithm

We assume a set of test terminals in the network can send and receive test packets.

Our goal is to generate a set of test packets to exercise every rule in every switch
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function, so that any fault will be observed by at least one test packet. This is

analogous to software test suites that try to test every possible branch in a program.

The broader goal can be limited to testing every link or every queue.

When generating test packets, ATPG must respect two key constraints: (1) Port:

ATPG must only use test terminals that are available; (2) Header: ATPG must only

use headers that each test terminal is permitted to send. For example, the network

administrator may only allow using a specific set of VLANs. Formally:

Problem 1 (Test Packet Selection) For a network with the switch transfer func-

tions, {T1, ..., Tn}, and topology transfer function, Γ, determine the minimum set of

test packets to exercise all reachable rules, subject to the port and header constraints.

ATPG chooses test packets using an algorithm we call Test Packet Selection

(TPS). TPS first finds all equivalent classes between each pair of available ports.

An equivalent class is a set of packets that exercises the same combination of rules.

It then samples each class to choose test packets, and finally compresses the resulting

set of test packets to find the minimum covering set.

Step 1: Generate all-pairs reachability table. ATPG starts by computing

the complete set of packet headers that can be sent from each test terminal to every

other test terminal. For each such header, ATPG finds the complete set of rules it

exercises along the path. To do so, ATPG uses the reachability algorithm described

in Figure 3.1 from every test terminal: on every terminal port, an all-wildcard header

is applied to the transfer function of the first switch connected to each test terminal.

Header constraints are applied here. For example, if traffic can only be sent on VLAN

A, then instead of starting with an all-wildcard header, the VLAN tag bits are set

to A. As each packet traverses the network using the network transfer function, the

set of all matched rules are recorded in history. Doing this for all pairs of terminal

ports generates an all-pairs reachability table as shown in Table 5.1. For each row, the

header column is a wildcard expression representing the equivalence class of packets

that can reach an egress terminal from an ingress test terminal. All packets matching

this class of headers will encounter the set of switch rules shown in the Rule History

column.
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Header Ingress Port Egress Port Rule History
h1 p11 p12 [r11, r12, . . .]
h2 p21 p22 [r21, r22, . . .]
... ... ... ...
hn pn1 pn2 [rn1, rn2, . . .]

Table 5.1: All-pairs reachability table: all possible headers from every terminal to
every other terminal, along with the rules they exercise.

Header Ingress Port Egress Port Rule History
p1 dst ip=10.0/16, tcp=80 PA PB rA1, rB3, rB4, link AB
p2 dst ip=10.1/16 PA PC rA2, rC2, link AC
p3 dst ip=10.2/16 PB PA rB2, rA3, link AB
p4 dst ip=10.1/16 PB PC rB2, rC2, link BC
p5 dst ip=10.2/16 PC PA rC1, rA3, link AC

(p6) dst ip=10.2/16, tcp=80 PC PB rC1, rB3, rB4, link BC

Table 5.2: Test packets for the example network depicted in Figure 5.3. p6 is stored
as a reserved packet.

Figure 5.3 shows a simple example network and Table 5.2 is the corresponding

all-pairs reachability table. For example, an all-wildcard test packet injected at PA

will pass through switch A. A forwards packets with dst ip = 10.0/16 to B and those

with dst ip = 10.1/16 to C. B then forwards dst ip = 10.0/16, tcp = 80 to PB, and

switch C forwards dst ip = 10.1/16 to PC . These are reflected in the first two rows

of Table 5.2.

Step 2: Sampling. Next, ATPG picks at least one test packet in an equivalence

class to exercise every (reachable) rule. The simplest scheme is to randomly pick one

packet per class. This scheme only detects faults for which all packets covered by the

same rule experience the same fault (e.g., a link failure). At the other extreme, if we

wish to detect faults specific to a header, then we need to select every header in every

class. We discuss these issues and our fault model in Section 5.1.2.

Step 3: Compression. Several of the test packets picked in Step 2 exercise the

same rule. ATPG therefore selects a minimum subset of the packets chosen in Step

2 such that the union of their rule histories cover all rules. The cover can be chosen
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Figure 5.3: Example topology with three switches used for finding test packets.

to cover all links (for liveness only) or all router queues (for performance only). This

is the classical Min-Set-Cover problem [50]. While NP-Complete, a greedy O(N2)

algorithm provides a good approximation, where N is the number of test packets. We

call the resulting (approximately) minimum set of packets, the regular test packets.

The remaining test packets not picked for the minimum set are called the reserved test

packets. In Table 5.2, {p1, p2, p3, p4, p5} are regular test packets and {p6} is a reserved

test packet. Reserved test packets are useful for fault localization (Section 5.1.2).

Properties

The TPS algorithm has the following useful properties:

Property 1 (Coverage) The set of test packets exercise all reachable rules and re-

spect all port and header constraints.

Proof Sketch: Define a rule to be reachable if it can be exercised by at least

one packet satisfying the header constraint, and can be received by at least one test

terminal. A reachable rule must be in the all-pairs reachability table; thus set cover
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will pick at least one packet that exercises this rule. Some rules are not reachable:

for example, an IP prefix may be made unreachable by a set of more specific prefixes

either deliberately (to provide backup) or accidentally (due to misconfiguration).

Property 2 (Near-Optimality) The set of test packets selected by TPS is optimal

within logarithmic factors among all tests giving complete coverage.

Proof Sketch: This follows from the logarithmic (in the size of the set) approx-

imation factor inherent in greedy set cover [7].

Property 3 (Polynomial Runtime) The complexity of finding test packets is O(TDR2)

where T is the number of test terminals, D is the network diameter, and R is the av-

erage number of rules in each switch.

Proof Sketch: The complexity of computing reachability from one input port

is O(DR2) as shown in Section 3.1.3, and this computation is repeated for each test

terminal.

5.1.2 Fault Localization

ATPG periodically sends a set of test packets. If test packets fail, ATPG pinpoints

the fault(s) that caused the problem.

Fault model

A rule fails if its observed behavior differs from its expected behavior. ATPG keeps

track of where rules fail using a result function R. For a rule r, the result function is

defined as

R(r, pk) =





0 if pk fails at rule r

1 if pk succeeds at rule r

“Success” and “failure” depend on the nature of the rule: a forwarding rule fails

if a test packet is not delivered to the intended output port, whereas a drop rule

behaves correctly when packets are dropped. Similarly, a link failure is a failure of a

forwarding rule in the topology transfer function. On the other hand, if an output
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link is congested, failure is captured by the latency of a test packet going above a

threshold.

We divide faults into two categories: action faults and match faults. An action

fault occurs when every packet matching the rule is processed incorrectly. Examples

of action faults include unexpected packet loss, a missing rule, congestion, and mis-

wiring. On the other hand, match faults are harder to detect because they only

affect some packets matching the rule: for example, when a rule matches a header it

should not, or when a rule misses a header it should match. Match faults can only

be detected by more exhaustive sampling such that at least one test packet exercises

each faulty region. For example, if a TCAM bit is supposed to be x, but is “stuck at

1,” then all packets with a 0 in the corresponding position will not match correctly.

Detecting this error requires at least two packets to exercise the rule: one with a 1 in

this position, and the other with a 0.

We will only consider action faults, because they cover most likely failure condi-

tions, and can be detected using only one test packet per rule. We leave match faults

for future work.

We can typically only observe a packet at the edge of the network after it has

been processed by every matching rule. Therefore, we define an end-to-end version

of the result function

R(pk) =





0 if pk fails

1 if pk succeeds

Algorithm

Our algorithm for pinpointing faulty rules assumes that a test packet will succeed

only if it succeeds at every hop. For instance, a ping succeeds only when all the

forwarding rules along the path behave correctly. Similarly, if a queue is congested,

any packets that travel through it will incur higher latency and may fail an end-to-end

test. This leads to our fault propagation assumption:

Assumption 1 (Fault propagation) A test packet that is received successfully by

the test terminal indicates that all the rules, queues, and links that are exercised
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by the test packet are behaving correctly. More formally, R(pk) = 1 if and only if

∀r ∈ pk.history, R(r, pk) = 1

ATPG pinpoints a faulty rule by first computing the minimal set of potentially

faulty rules. Formally:

Problem 2 (Fault Localization) Given a list of test packets and their correspond-

ing test results, [(pk0, R(pk0)), (pk1, R(pk1)), . . .], find all rules, r, that causes the

failure of a test packet. More formally, find all r that satisfy ∃pki, R(pki, r) = 0.

We solve this problem opportunistically and in steps.

Step 1: Consider the test results obtained from sending the regular test packets.

For every passing test, place all rules they exercise into a set of passing rules, P .

Similarly, for every failing test, place all rules they exercise into a set of potentially

failing rules F . Any rule which is not part of a passing test is a failure suspect,

therefore F − P is a set of suspect rules.

Step 2: Next, ATPG trims the set of suspect rules by weeding out correctly

working rules. ATPG does this using the reserved packets (the packets eliminated by

Min-Set-Cover). ATPG selects reserved packets whose rule histories contain exactly

one rule from the suspect set, and sends these packets. Suppose a reserved packet p

satisfies this condition and exercises rule r from the suspect set. If the sending of p

fails, ATPG infers that rule r is in error; if p passes, r is removed from the suspect

set. ATPG repeats this process for each reserved packet chosen in Step 2.

Step 3: In most cases, the suspect set is small enough after Step 2 that ATPG

can terminate and report the suspect set. If needed, ATPG can narrow down the

suspect set further by sending test packets that exercise two or more of the rules in

the suspect set using the same technique underlying Step 2. If these test packets

pass, ATPG infers that none of the exercised rules are in error and removes these

rules from the suspect set.

False positives: If our fault propagation assumption holds, the fault localization

method will not miss any faults, and therefore will have no false negatives. However,

this method may introduce false positives for some rules left in the suspect set at
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the end of step 3, that is, one or more rules in the suspect set may in fact behave

correctly.

False positives are unavoidable in some cases. When two rules are in series and

there is no path to exercise only one of them, we say the rules are indistinguishable;

any packet that exercises one rule will also exercise the other. Hence if only one rule

fails, we cannot tell which one. For example, if an ACL rule is followed immediately

by a forwarding rule that matches the same header, the two rules are indistinguish-

able. Observe that if we have test terminals before and after each rule (impractical

in many cases), with sufficient test packets, we can distinguish every rule. Thus,

the deployment of test terminals affects not only test coverage, but also localization

accuracy.

5.2 Use Cases

We can use ATPG for both functional and performance testing, as the following use

cases demonstrate.

5.2.1 Functional Testing

We can test the functional correctness of a network by testing that every reachable

forwarding and drop rule in the network is behaving correctly:

Forwarding rule: A forwarding rule is behaving correctly if a test packet exer-

cises the rule and leaves on the correct port with the correct header.

Link rule: A link rule (i.e., a rule in the topology transfer function modeling

the behavior of a unidirectional link) is a special case of a forwarding rule. It can

be tested by making sure a test packet passes correctly over the link without header

modifications.

Drop rule: Testing drop rules is harder because we must verify the absence of

received test packets. We need to know which test packets might reach an egress test

terminal if a drop rule were to fail. To find these packets, in the all-pairs reachability

analysis we conceptually “flip” each drop rule to a broadcast rule in the transfer
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Figure 5.4: Generating packets to test drop rules by “flipping” the drop rule to a
broadcast rule in the analysis.

functions. We do not actually change rules in the switches—we simply emulate the

drop rule failure in order to identify all the ways a packet could reach the egress test

terminals.

As an example, consider Figure 5.4. To test the drop rule in R2, we inject the

all-wildcard test packet at Terminal 1. If the drop rule were instead a broadcast rule,

it would forward the packet to all of its output ports, and the test packets would

reach Terminals 2 and 3. Now we sample the resulting equivalent classes as usual: we

pick one sample test packet from A ∩ B and one from A ∩ C. Note that we have to

test both A ∩B and A ∩ C because the drop rule may have failed at R2, resulting in

an unexpected packet to be received at either test terminal 2 (A∩C) or test terminal

3 (A∩B). Finally, we send and expect the two test packets not to appear, since their

arrival would indicate a failure of R2’s drop rule.

5.2.2 Performance Testing

We can also use ATPG to monitor the performance of links, queues and QoS classes

in the network, and even monitor Service Level Agreements (SLAs).

Congestion: If a queue is congested, packets will experience longer queuing

delays. This can be considered as a (performance) fault. ATPG lets us generate
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one-way congestion tests to measure the latency between every pair of test terminals;

once the latency passed a threshold, fault localization will pinpoint the congested

queue, as with regular faults. With appropriate headers, we can test links or queues

as desired.

Available bandwidth: Similarly, we can measure the available bandwidth of a

link, or for a particular service class. ATPG will generate the test packet headers

needed to test every link, every queue, or every service class; a stream of packets

with these headers can then be used to measure bandwidth. One can use destructive

tests, such as iperf/netperf, or more gentle approaches such as packet pairs and

packet trains [28]. Suppose a manager specifies that the available bandwidth of a

particular service class should not fall below a certain threshold; if it does, ATPG’s

fault localization algorithm can be used to triangulate and pinpoint the problematic

switch/queue.

Strict priorities: Likewise, ATPG can be used to determine if two queues, or

service classes, are in different strict priority classes. If they are, then packets sent

using the lower priority class should never affect the available bandwidth or latency of

packets in the higher priority class. We can verify the relative priority by generating

packet headers to congest the lower class, and verifying that the latency and available

bandwidth of the higher class are unaffected. If they are, fault localization can be

used to pinpoint the problem.

5.3 Implementation

We implemented a prototype system to automatically parse router configurations and

generate a set of test packets for the network. The code is publicly available [55].

5.3.1 Test Packet Generator

The test packet generator, written in Python, contains a Cisco IOS configuration

parser and a Juniper Junos parser. The data plane information, including router

configurations, FIBs, MAC learning tables, and network topologies, is collected and
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parsed through the command line interface (Cisco IOS) or XML files (Junos). The

generator then uses the Hassel [24] to construct switch and topology transfer func-

tions.

All-pairs reachability is computed using the multiprocess parallel-processing

module shipped with Python. Each process considers a subset of the test ports,

and finds all the reachable ports from each one. After reachability tests are complete,

results are collected and the master process executes the Min-Set-Cover algorithm.

Test packets and the set of tested rules are stored in a SQLite database.

5.3.2 Network Monitor

The network monitor assumes there are special test agents in the network that are able

to send/receive test packets. The network monitor reads the database and constructs

test packets, and instructs each agent to send the appropriate packets. Currently,

test agents separate test packets by IP Proto field and TCP/UDP port number,

but other fields, such as IP option, can also be used. If some of the tests fail, the

monitor selects additional test packets from reserved packets to pinpoint the problem.

The process repeats until the fault has been identified. The monitor uses JSON to

communicate with the test agents, and uses SQLite’s string matching to look up test

packets efficiently.

5.3.3 Alternate Implementations

Our prototype was designed to be minimally invasive, requiring no changes to the

network except to add terminals at the edge. In networks requiring faster diagnosis,

the following extensions are possible:

Cooperative routers: A new feature could be added to switches/routers, so

that a central ATPG system could instruct a router to send/receive test packets. In

fact, for manufacturing testing purposes, it is likely that almost every commercial

switch/router can already do this; we just need an open interface to control them.

SDN-based testing: In a software defined network (SDN) such as OpenFlow [39],

the controller could directly instruct the switch to send test packets, and to detect
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and forward received test packets to the control plane. For performance testing, test

packets need to be time-stamped at the routers.

5.4 Evaluation

We evaluated our prototype system on two sets of network configurations: the Stan-

ford University backbone and the Internet2 backbone, representing a mid-size enter-

prise network and a nationwide backbone network respectively. Section 3.5.1 and

Section 4.5.1 provide more details about these networks.

5.4.1 Test Packet Generation

We ran ATPG on a quad core Intel Core i7 CPU 3.2 GHz and 6 GB memory using 8

threads. For a given number of test terminals, we generated the minimum set of test

packets needed to test all the reachable rules in the Stanford and Internet2 backbones.

Table 5.3 shows the number of test packets needed. For example, the first column

tells us that if we attach test terminals to 10% of the ports, then all of the reachable

Stanford rules (22.2% of the total) can be tested by sending 725 test packets. If every

edge port can act as a test terminal, 100% of the Stanford rules can be tested by

sending just 3,871 test packets. The “Time” row indicates how long it took ATPG to

run; the worst case took about an hour, the bulk of which was devoted to calculating

all-pairs reachability.

To put these results into perspective, each test for the Stanford backbone requires

sending about 907 packets per port in the worst case. If these packets were sent over

a single 1 Gb/s link, the entire network could be tested in less than 1 ms, assuming

each test packet is 100 bytes and not considering the propagation delay. Put another

way, testing the entire set of forwarding rules ten times every second would use less

than 1% of the link bandwidth.

Similarly, all the forwarding rules in Internet2 can be tested using 4,557 test

packets per port in the worst case. Even if the test packets were sent over 10 Gb/s
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Stanford (298
ports)

10% 40% 70% 100% Edge
(81%)

Total Packets 10,042 104,236 413,158 621,402 438,686
Regular Packets 725 2,613 3,627 3,871 3,319
Packets/Port (Avg) 25.00 18.98 17.43 12.99 18.02
Packets/Port (Max) 206 579 874 907 792
Time to send (Max) 0.165ms 0.463ms 0.699ms 0.726ms 0.634ms
Coverage 22.2% 57.7% 81.4% 100% 78.5%
Computation Time 152.53s 603.02s 2,363.67s 3,524.62s 2,807.01s

Internet2 (345
ports)

10% 40% 70% 100% Edge
(92%)

Total Packets 30,387 485,592 1,407,895 3,037,335 3,036,948
Regular Packets 5,930 17,800 32,352 35,462 35,416
Packets/Port (Avg) 159.0 129.0 134.2 102.8 102.7
Packets/Port (Max) 2,550 3,421 2,445 4,557 3,492
Time to send (Max) 0.204ms 0.274ms 0.196ms 0.365ms 0.279ms
Coverage 16.9% 51.4% 80.3% 100% 100%
Computation Time 129.14s 582.28s 1,197.07s 2,173.79s 1,992.52s

Table 5.3: Test packet generation results for Stanford backbone (top) and Internet2
(bottom), against the number of ports selected for deploying test terminals.
“Time to send” packets is calculated on a per port basis, assuming 100B per test packet,
1Gbps link for Stanford and 10Gbps for Internet2.

links, all the forwarding rules could be tested in less than 0.5 ms, or ten times every

second using less than 1% of the link bandwidth.

We also found that achieving 100% link coverage (instead of rule coverage) requires

only 54 packets for Stanford and 20 for Internet2. The table also shows the large

benefit gained by compressing the number of test packets—in most cases, the total

number of test packets is reduced by a factor of 20–100 using the minimum set

cover algorithm. This compression may make proactive link testing (which has been

considered infeasible [42]) feasible for large networks.

Coverage is the ratio of the number of rules exercised to the total number of

reachable rules. Our results show that the coverage grows linearly with the number

of test terminals available. While it is theoretically possible to optimize the placement
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of test terminals to achieve higher coverage, we find that the benefit is marginal for

real data sets.

Rule structure: The reason we need so few test packets is because of the struc-

ture of the rules and the routing policy. Most rules are part of an end-to-end route,

and so multiple routers contain the same rule. Similarly, multiple devices contain

the same ACL or QoS configuration because they are part of a network-wide policy.

Therefore, the number of distinct regions of header space grow linearly, not exponen-

tially, with the diameter of the network.
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Figure 5.5: The cumulative distribution function of rule repetition, ignoring different
action fields.

We can verify this structure by clustering rules in Stanford and Internet2 that

match the same header patterns. Figure 5.5 shows the distribution of rule repetition

in Stanford and Internet2. In both networks, 60%-70% of matching patterns appear

in more than one router. We also find that this repetition is correlated to the net-

work topology. In the Stanford backbone, which has a two-level hierarchy, matching

patterns commonly appear in 2 (50.3%) or 4 (17.3%) routers, which represents the

length of edge-to-Internet and edge-to-edge routes. In Internet2, 75.1% of all distinct

rules are replicated 9 times, which is the number of routers in the topology.

5.4.2 Testing in an Emulated Network

To evaluate the network monitor and test agents, we replicated the Stanford backbone

network in Mininet [30], a container-based network emulator. We used Open vSwitch
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Figure 5.6: A portion of the Stanford backbone network showing the test packets
used for functional and performance testing examples as described in Section 5.4.2.

(OVS) [41] to emulate the routers, using the real port configuration information, and

connected them according to the real topology. We then translated the forwarding

entries in the Stanford backbone network into equivalent OpenFlow [39] rules and

installed them in the OVS switches with Beacon [3]. We used emulated hosts to send

and receive test packets generated by ATPG. Figure 5.6 shows the part of network

that is used for experiments in this section. We now present different test scenarios

and the corresponding results:
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Forwarding error: To emulate a functional error, we deliberately created a

fault by replacing the action of an IP forwarding rule in boza that matched dst ip =

172.20.10.32/27 with a drop action (we called this rule Rboza
1 ). As a result of this fault,

test packets from boza to coza with dst ip = 172.20.10.33 failed and were not received

at coza. Table 5.4 shows two other test packets we used to localize and pinpoint the

fault. These test packets, shown in Figure 5.6 in goza − coza and boza − poza,

are received correctly at the end terminals. From the rule history of the passing and

failing packets in Table 5.1, we deduce that only rule Rboza
1 could possibly have caused

the problem, as all the other rules appear in the rule history of a received test packet.

Table 5.4: Test packets used in the functional testing example.
In the rule history column, R is the IP forwarding rule, L is a link rule, and S is the broadcast
rule of switches. R1 is the IP forwarding rule matching on 172.20.10.32/27 and R2 matches
on 171.67.222.64/27. Le

b in the link rule from node b to node e. The table highlights the
common rules between the passed test packets and the failed one. It is obvious from the
results that rule Rboza

1 is in error.

Congestion: We detect congestion by measuring the one-way latency of test

packets. In our emulation environment, all terminals are synchronized to the host’s

clock so that the latency can be calculated with a single time-stamp and one-way

communication2.

To create congestion, we rate-limited all the links in the emulated Stanford net-

work to 30 Mb/s, and created two 20 Mb/s UDP flows: poza to yoza at t = 0 and

roza to yoza at t = 30s, which will congest the link bbra− yoza starting at t = 30s.

The bottom left graph next to yoza in Figure 5.6 shows the two UDP flows. After

starting the second flow, the bbra − yoza queue was congested and the test packets

going through this link experienced longer queuing delay. The bottom right graph

2To measure latency in a real network, two-way communication is usually necessary. However,
relative change of latency is sufficient to uncover congestion.
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next to pozb shows the latency experienced by two test packets, one from pozb to

roza and the other one from pozb to yoza. At t = 30s, the bozb − yoza test packet

experiences much higher latency, correctly signaling congestion. Since these two test

packets share the bozb− s1 and s1− bbra links, ATPG concludes that the congestion

is not happening in these two links; hence ATPG correctly infers that bbra− yoza is

the congested link.

Available Bandwidth: ATPG can also be used to monitor available bandwidth.

For this experiment, we used Pathload [20], a bandwidth probing tool based on packet

pairs/packet trains. We repeated the previous experiment, but decreased the two

UDP flows to 10 Mb/s, so that the bottleneck available bandwidth was 10 Mb/s.

Pathload indicated that bozb − yoza had an available bandwidth3 of 11.715 Mb/s,

and bozb − roza had an available bandwidth of 19.935 Mb/s, while the other (idle)

terminals reported 30.60 Mb/s. Using the same argument as before, ATPG concluded

that the bbra − yoza link was the bottleneck link with around 10 Mb/s of available

bandwidth.

Priority: We created priority queues in OVS using Linux’s htb scheduler and tc

utilities. We sent the previously “failed” test packet, pozb − yoza, on both the high

and low-priority queues by changing the priority field in the IP header.4 Figure 5.7

shows the result. We created congestion on bbra − yoza link in different ways by

congesting the low and high-priority queues respectively. When the low-priority queue

was congested (i.e., both UDP flows mapped to low-priority queues), only the low-

priority test packets were affected and experienced longer delay. However, when

the high-priority slice was congested, both the low and high-priority test packets

experienced congestion and were delayed.

5.4.3 Testing in a Production Network

We deployed an experimental ATPG system in three buildings in Stanford University

that host the Computer Science and Electrical Engineering departments. The pro-

duction network consists of over 30 Ethernet switches and a Cisco router connecting

3All numbers are the average of 10 repeated measurements.
4The Stanford data set does not include the priority settings.
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Figure 5.7: Priority testing: Latency measured by test agents when (a) low-priority
or (b) high-priority slice is congested.

to the campus backbone. For test terminals, we utilized the 53 WiFi access points

(running Linux) that were already installed throughout the buildings. This allowed

us to achieve high coverage on switches and links. However, we could only run ATPG

on essentially a layer 2 (bridged) network.

On October 1-10, 2012, the ATPG system was used for a 10-day ping experiment.

Since the network configurations remained static during this period, instead of reading

the configuration from the switches dynamically, we derived the network model based

on the topology. In other words, for a layer 2 bridged network, it is easy to infer the

forwarding entry in each switch for each MAC address without getting access to the

forwarding tables in all 30 switches. We used only ping to generate test packets.

Ping sufficed because in the subnetwork we tested there are no layer 3 rules or ACLs.

Each test agent downloaded a list of ping targets from a central web server every 10

minutes, and conducted ping tests every 10 seconds. Test results were logged locally

as files and collected daily for analysis.

During the experiment, a major network outage occurred on October 2. Figure 5.8

shows the number of failed test cases during that period. While both all-pairs ping

and ATPG’s selected test suite correctly captured the outage, ATPG used significantly

fewer test packets. In fact, ATPG used only 28 test packets per round compared with

2756 packets in all-pairs ping, a 100x reduction. It is easy to see that the reduction is

from quadratic overhead (for all-pairs testing between 53 terminals) to linear overhead
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Figure 5.8: The Oct 2, 2012, production network outages, captured by the ATPG
system, as seen from the lens of an inefficient cover (all-pairs, top picture) and an
efficient minimum cover (bottom picture).

(for a set cover of the 30 links between switches). We note that while the set cover

in this experiment is so simple that it could be computed by hand, other networks

will have Layer 3 rules and more complex topologies requiring the ATPG minimum

set cover algorithm.

The network managers confirmed that the later outage was caused by a loop that

was accidentally created during switch testing. This caused several links to fail and

hence more than 300 pings failed per minute. The managers were unable to determine

why the first failure occured. Despite this lack of understanding of the root cause,
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we emphasize that the ATPG system correctly detected the outage in both cases and

pinpointed the affected links and switches.

5.5 Discussion

Overhead and Performance: The principal sources of overhead for ATPG are

polling the network periodically for forwarding state and performing all-pairs reach-

ability. While one can reduce overhead by running the offline ATPG calculation less

frequently, this runs the risk of using out-of-date forwarding information. Instead,

we can reduce overhead by using NetPlumber to incrementally update the all-pair

reachability results in real time. Test agents within terminals incur negligible over-

head because they merely demultiplex test packets addressed to their IP address at

a modest rate (e.g., 1 per millisecond) compared to the link speeds (> 1 Gbps) most

modern CPUs are capable of receiving.

Limitations of ATPG framework: As with all testing methodologies, ATPG

has its own limitations:

• Dynamic boxes: ATPG cannot model boxes whose internal state can be changed

by test packets. For example, a NAT that dynamically assigns TCP ports to

outgoing packets can confuse the online monitor, as the same test packet can

give different results.

• Non-deterministic boxes: Boxes can load-balance packets based on a hash func-

tion of packet fields, usually combined with a random seed; this is common in

multipath routing such as ECMP. When the hash algorithm and parameters

are unknown, ATPG cannot properly model such rules. However, if there are

known packet patterns that can iterate through all possible outputs, ATPG can

generate packets to traverse every output.

• Invisible rules : A failed rule can make a backup rule active, and as a result no

changes may be observed by the test packets. This can happen when, despite

a failure, a test packet is routed to the expected destination by other rules. In

addition, an error in a backup rule cannot be detected in normal operation.
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Another example is when two drop rules appear in a row: the failure of one rule

is undetectable since the effect will be masked by the other rule.

• Transient network states: ATPG cannot uncover errors whose lifetime is shorter

than the time between each round of tests. For example, congestion may disap-

pear before an available bandwidth probing test concludes. Finer-grained test

agents are needed to capture abnormalities of short duration.

• Sampling: ATPG uses sampling when generating test packets. As a result,

ATPG can miss match faults since the error is not uniform across all matching

headers. In the worst case (when only one header is in error), exhaustive testing

is needed.

5.6 Related Work

We are unaware of earlier techniques that automatically generate test packets from

configurations. The closest related work we know of are offline tools that check in-

variants in networks. In the control plane, NICE [6] attempts to exhaustively cover

the code paths symbolically in controller applications with the help of simplified

switch/host models. In the data plane, Anteater [36] and Hassel can do static ver-

ification of network state against design policy. Recently, SOFT [27] was proposed

to verify consistency between different OpenFlow agent implementations that are

responsible for bridging control and data planes in the SDN context. ATPG comple-

ments these checkers by directly testing the data plane and covering a significant set

of dynamic or performance errors that cannot otherwise be captured.

End-to-end probes have long been used in network fault diagnosis in work such

as [8, 10, 11, 26, 34, 35, 37]. Recently, mining low-quality, unstructured data, such

as router configurations and network tickets, has attracted interest [15, 31, 49]. By

contrast, the primary contribution of ATPG is not fault localization, but determining

a compact set of end-to-end test packets that can cover every link or every rule.

Further, ATPG is not limited to liveness testing but can be applied to checking

higher level properties such as performance.
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There are many proposals to develop a measurement-friendly architecture for net-

works [12, 33, 40, 53]. Our approach is complementary to these proposals: by incor-

porating input and port constraints, ATPG can generate test packets and injection

points using existing deployment of measurement devices.

Our work is closely related to work in programming languages and symbolic de-

bugging. We made a preliminary attempt to use KLEE [5] and found it to be 10

times slower than even the unoptimized header space framework. We speculate that

this is fundamentally because in our framework we directly simulate the forward path

of a packet instead of solving constraints using an SMT solver. However, more work

is required to understand the differences and potential opportunities.

5.7 Summary

This chapter introduces an automated and systematic approach for testing the actual

behavior of networks called “Automatic Test Packet Generation” (ATPG). ATPG

uses Hassel to read the configurations and forwarding tables of networking boxes and

generate their device independent transfer function. It then uses the reachability

algorithm of HSA to find all the forwarding equivalence classes (FECs) between test

terminals along with the set of forwarding rules covered by each FEC. This is referred

to as all-pair reachability of test terminals. The all-pair reachability results are then

used to generate a minimum set of test packets to (minimally) exercise every link

in the network or (maximally) exercise every rule in the network. Test packets are

sent periodically, and detected failures trigger a separate mechanism to localize the

fault. ATPG can detect both functional (e.g., incorrect firewall rule) and performance

problems (e.g., congested queue).

We described our prototype ATPG implementation and results on two real-world

data sets: Stanford University’s backbone network and Internet2. We found that a

small number of test packets suffices to test all rules in these networks: For example

4000 packets can cover all rules in the Stanford backbone network, while 54 is enough

to cover all links. Sending 4000 test packets 10 times per second consumes less than

1% of link capacity.
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While many other industries such as ASIC and software design already have sys-

tematic tools for testing their systems, we hope that the ATPG framework plays a

similar role for testing networks. In fact, many months after we built and named

our system, we discovered to our surprise that ATPG was a well-known acronym in

hardware chip testing, where it stands for Automatic Test Pattern Generation [1].

We hope network ATPG will be equally useful for automated dynamic testing of

production networks.



Chapter 6

Conclusion

6.1 Summary of Dissertation

In this dissertation, I introduced Header Space Analysis (HSA) as a protocol-independent

model for forwarding functionality of networks. HSA looks at packets as a flat se-

quence of 0s and 1s and models them as points in a {0, 1}L space, called the header

space. When these packets are in the network, we need an extra dimension—the port

ID dimension—to model their location: {0, 1}L × {1, ...p}. This new space—which

shows the header bits and the location of a packet in the network—is called the net-

work space. HSA reads the forwarding state of networking boxes and generates a

unified model for the forwarding behavior of these boxes in the form of a transfer

function. Transfer functions move packets from one point in the network space to

another point (or set of points) in the same space.

HSA serves as a foundation for developing techniques and tools for network ver-

ification, testing, and debugging. In this dissertation, I described three use cases of

HSA in network verification and testing:

1. Offline Verification with Hassel: Hassel (Header Space Library) implements

the HSA framework and uses it for verifying network properties such as reacha-

bility of end hosts, predicates on the path of flows in the network, loop freedom

and isolation of network slices. The checks are snapshot-based and any change

in the network requires rerunning the checks from scratch.

119
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Analysis.

2. Online Policy Checking with NetPlumber: NetPlumber runs some of the

Hassel checks online and incrementally on a stream of network state changes.

The tool provides a flexible mechanism to express and test a wide range of path

and header-based policies about the flows in the network.

3. Online Testing and Monitoring with ATPG: Automatic Test Packet Gen-

eration (ATPG) uses the reachability analysis of HSA to generate test packets

for maximum coverage of rules, links, or queues in the network with the min-

imum number of test packets. It uses either Hassel (offline) or NetPlumber

(online and incremental) to compute reachability between test terminals in the

network.

Figure 6.1 shows the relation between HSA and these three tools: HSA provides

a model of the network based on its forwarding state. Hassel and NetPlumber verify

that the forwarding state, as modeled by HSA, implements the policies of the network

and does not violate invariants such as loop freedom or black hole freedom. On the

other hand, ATPG verifies that the actual network behavior, observed by its test
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packets, matches the expected network behavior based on the HSA model of the

forwarding state.

6.2 Contributions

This dissertation made the following contributions:

1. Introduced a protocol-independent framework for modeling and analyzing the

forwarding behavior of networks (HSA).

2. Defined a set algebra on packet headers for finding intersection, difference, and

complementation of flows and checking subset and equality conditions on flows.

3. Designed algorithms for determining reachability between end hosts, checking

path predicates on the flows, finding forwarding loops along with loop repetition

count, and checking isolation of network slices.

4. Implemented HSA and its checking algorithms as an open-source library as a

foundation for other network verification and testing tools.

5. Designed a system that can verify policies on path and header of flows in real

time (NetPlumber). The system also defined a flexible, regular expression-like

language for expressing policies.

6. Implemented NetPlumber as an open-source tool for online network policy

checking.

7. Designed ATPG, a framework for automatically and systematically generating

test packets based on the forwarding state of the network to achieve maximum

rule, queue, or link coverage with the minimum number of test packets.

8. Designed a fault localization scheme along with ATPG to localize a failure once

a test packet experiences an error.

9. Implemented ATPG as an open-source tool for generating test packets and

localizing faults.
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10. Tested all of the techniques and tools developed in this dissertation on real

networks such as Stanford University’s backbone network, Google inter-data

center WAN, and Internet2 nationwide network.

6.3 Future Directions

Header Space Analysis—as a modeling framework—can be used as the foundation

for building other tools for network verification, testing, debugging, or management.

For example in [46], a technique called correspondence checking is used to check

if the translation of policy by intermediate layers of SDN stack (e.g., logical view,

physical view, etc.) is consistent. The technique uses HSA transfer function and all-

pair reachability computation to compute the transfer function of a network between

access links (links adjacent to hosts) and ensures that the transfer functions obtained

from different layers are equivalent. Also, in [44], HSA models are used to design a

mechanism for consistently updating a network from one state to another.

There are other applications in which HSA may be useful. Also, future work

may focus on extending and improving the HSA framework itself. Below are a few

examples of future directions for HSA.

1. HSA may be useful for inferring the policy of a network from its forwarding

state.1 This might help network managers to sanity check the inferred policy

with their actual intention. HSA may come in handy here by providing the

all-pair reachability results between access links and giving insights into how

forwarding rules interact with each other through the rule dependency graph.

2. HSA may also be useful for detecting a sniffing attack, in which a compromised

switch or router sends copies of certain type of traffic to a malicious destination.2

Verification of forwarding state is a good first step here—it may detect the

anomaly in routing of some flows. However, “traffic stealing” may happen

1Thanks to George Varghese for mentioning this use case of HSA.
2Thanks to Hovav Shacham for mentioning this use case of HSA.
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silently, and the forwarding rules may not reflect such traffic copying action.

HSA may be useful here because of its ability to predict the value of rule counters

at the core of the network and detect any mismatch with the expected values,

which may signal that unexpected packets are being created. For example,

given the counter value of each rule matching on the micro flows at the edge,

HSA can find the path of those flows and predict the counter value of other

matching rules in the other parts of network.3

3. HSA may be used to create a policy-to-rule translation tool for SDNs. The

tool may translate policy into the necessary forwarding rules to be installed

in networking boxes, taking into account the capabilities of boxes such as sup-

ported action types, number of forwarding tables, etc. In this dissertation, HSA

was used to verify that the forwarding state correctly implements the network

policy—this is a reverse application of HSA, to generate the forwarding state

in a way to correctly implement the policy.

4. As discussed in Chapter 2, HSA cannot fully model stateful devices in which the

behavior of the device may change based on external events such as previous

packets or network load condition. This is because HSA only uses the header

and port of the current packet as its input, thus, it is stateless. Making a stateful

HSA framework, in which any necessary state, such as the previous k packets

or the network traffic matrix, can be added to and handled by the model, is a

useful extension to HSA.

6.4 Closing Remarks

Testing and verification is an essential part of all engineering disciplines, and net-

working is no exception. Networks are historically tested, verified, and debugged

manually, using simple and ad hoc tools. Naturally, this leads to lots of configura-

tion mistakes, security vulnerabilities, and network outages. As networks are getting

3HSA may not predict the counter value for rules matching on management traffic as that traffic
is not coming to network from the edges.
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bigger and more complicated, operating a network is becoming a very daunting task,

requiring a lot of skill and experience. However, the recent attention of the net-

working community to rigorous, automated, and systematic approaches to network

testing, verification, and management signals an imminent paradigm shift in the way

that networks will be managed and operated in the future.

The very first—and probably the most important—step in that direction is creat-

ing the right model for the network: a model that is simple to use and captures the

necessary information. Extracting simplicity is the key to creating a useful model for

complex systems such as networks. Header space analysis was an attempt in that di-

rection. I hope to convey the fact that networks—despite their apparent complexity—

perform a very simple task: modifying and forwarding packets. And packets—despite

carrying multiple protocols—are nothing but a series of bits. The techniques and tools

introduced in this dissertation are all based on this simple model of a network, and as

a result they are very simple to understand and to implement, and their correctness

properties are easily provable. This is an especially noteworthy contribution given

the fact that the problems that can be solved using these techniques have until now

been considered very difficult.
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