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Abstract

The backbone of the Internet is comprised of a network of high performance 

routers. Every router receives packets and forwards them to the correct outgoing 

port. Routers are designed to achieve a specific capacity, and network operators 
expect routers to provide predictable performance. This thesis is about how to design 
practical routers with predictable performance.

Network operators expect certain performance characteristics; for example, if the 
arrival rate is less than the router’s advertised capacity, they can reasonably assume 

the router can handle the traffic. Somewhat surprisingly, no commercial router can do 

this today. And some operators would like to provide customers with service guaran­

tees such as guaranteed bandwidth and delay through their network. To provide these 
guarantees, each individual router within the network must also provide bandwidth 

and delay guarantees.
Most high performance routers built today use crossbars and a centralized sched­

uler. Building crossbar-based routers which provide these performance guarantees is 

difficult using current technology. Scheduling the crossbar is a bottleneck and limits 

scalability. It also makes it impractical to provide performance guarantees. As line 

rates and the number of ports increase, the scheduling problem will only become more 
difficult.

This thesis describes crossbar scheduling algorithms that provide deterministic 
throughput, bandwidth, and delay guarantees. Each technique is based on an ana­

lytical counting method. The first result — for crossbar switches — is primarily a 
theoretical observation of what is possible, but is too complex to be practical. To

iv
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make the result more practical, I describe crossbars with a small amount of inter­
nal buffering. A buffered crossbar simplifies the scheduling process and provides a 
practical way to build routers with performance guarantees.
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Chapter 1

Introduction

The Internet consists of end-hosts, links, and routers. This thesis is about the 

design and architecture of high performance Internet routers that make up the back­
bone of the Internet — in particular, how to design them to perform predictably and 
yet still be implementable.

A router consists of several processing stages. When designing a router to have pre­
dictable performance (we will explain below exactly what we mean by “predictable”), 

we need to make sure that each processing stage behaves predictably. At the very 

least, a router has two main processing stages: address lookup and switching. In 

the address lookup stage, the router examines the packet header to decide where the 
packet should be sent next. In the switching stage, the router transfers the packet 

to the correct outgoing port in preparation to depart. This thesis focusses on the 
switching stage of the router.

Some routers have more processing stages. For example, if a router provides band­
width or delay guarantees to different packet flows, it needs to be “flow-aware” [1]. 

Flow-aware routers include firewalls, load-balancers, and routers that provide per- 

flow delay and bandwidth guarantees. When a packet arrives to a flow-aware router, 
the router first has to decide which flow the packet belongs to. This is called classifi­
cation. Usually, a packet is then buffered in a queue dedicated to its flow so that the 

packets within a flow are all treated the same way and are processed in FIFO order.
Figure 1-1 shows how a packet is processed by a flow-aware router from when it 

arrives on the ingress line until it departs on the egress line. The packet goes through

1
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Figure 1-1: Datapath of a packet through a flow-aware router.

the following stages. In the address lookup stage, the router determines the outgoing 

port of the packet. Then, the router determines which flow the packet belongs to 

in the classification stage. In the switching stage, packets are segmented into cells, 

traverse the switch fabric as cells, and reassembled back into packets again before 
they leave the router.1

Network operators need to design and plan their networks. They know the ca­
pacity of the links, and they are told the capacity of the router. However, although 

they can use up to 100% of the links, it is perhaps surprising that they can not use 

up to 100% of the router capacity. A router’s capacity depends on the arriving traf­

fic patterns that expose imperfections in the router, such as blocking or inefficient 
scheduling algorithms. No commercial router today can guarantee that 100% of its 

capacity is available to the network operator. This makes it hard to plan a network 

— not just under normal operating conditions (when utilizations are typically low), 
but under failure conditions when traffic is rerouted and the utilization of links and 
routers grows. Put another way, when a network operator spends millions of dollars 

on a router for its backbone network, it seems reasonable to expect that one can use 

all of the router capacity, regardless of the arrival process of packets. In other words, 

as long as the router receives packets at a rate within its capacity, it should be able 
to fully utilize the links and, therefore, guarantee 100% throughput.

Furthermore, network operators want their networks to be designed to provide 
their customers with a number of service guarantees. These services (which are the

1 Although packets arriving to the router may have variable length, we will assume th a t they are 
treated internally as fixed-length cells. This is common in high performance routers [2, 3].
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CHAPTER 1. INTRODUCTION 3

basis of Service Level Agreements (SLAs)) provide guaranteed bandwidth and delay 
through their networks. For example, large corporations might want to guarantee a 
fixed bandwidth between their company sites. Similarly, if a network operator can 

guarantee a maximum delay through their networks, they can also sell services to 

customers who run real-time applications such as video and voice. In order for a 
network to provide bandwidth and delay guarantees, each individual router within 

the network must also provide bandwidth and delay guarantees.
In summary, network operators want routers which provide throughput, band­

width, and delay guarantees. However, most high performance routers built today use 

architectures based on crossbars; and building crossbar-based routers which provide 
these performance guarantees is difficult using current technology. The bottleneck 

that prevents routers from providing these guarantees is scheduling in the switching 
stage. A crossbar-based router requires a centralized scheduler to determine when 

cells are to traverse the switch fabric. As line rates and number of ports increase, 
due to growth of Internet traffic, the scheduling problem will only become more dif­

ficult. In this thesis, I will introduce a set of new scheduling algorithms that provide 
performance guarantees and simplify the scheduling process.

The remainder of the introductory chapter describes in detail the desired perfor­

mance guarantees and gives an overview of switch architectures and previous work. 

Finally, the chapter describes the motivation of the thesis and outlines new algorithms 
and architectures presented later in this thesis.

1.1 Performance Guarantees

Network operators would like to build their networks using routers that give per­

formance guarantees. They want routers that provide throughput, bandwidth and 

delay guarantees. These guarantees are the same guarantees an output queued (OQ) 
switch (shown in Figure 1-2) can provide.

When a packet arrives at an OQ switch, it is immediately placed in a memory 
dedicated to its outgoing line, where it waits until it leaves the switch. The output 

chooses which packet to send next from among all the packets waiting to leave from
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CHAPTER 1. INTRODUCTION 4

Memory

Memory

Memory
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Figure 1-2: Output Queued (OQ) Switch

the output. Because nothing prevents an output from keeping the output line busy 
whenever it has a packet, we say the switch is “work conserving” . A work conserving 
switch has the highest throughput of any switch because the output line cannot 

carry any higher workload. It also has the lowest expected packet delay because — 
on average — packets leave earlier in a work-conserving switch than in any other 

switch.2

It is also well known that an OQ switch can allocate bandwidth to different flows 
of packets using techniques such as weighted fair queueing (WFQ) [4, 5] and deficit 

round robin (DRR) [6]. Furthermore, with an appropriate scheduling algorithm and 
sufficient internal buffers, an OQ switch can control the delay of individual packets 

through the switch [4, 5].

2If packets are all the same length, then a work-conserving switch with any service policy — 
such as FCFS — minimizes expected packet delay. If packets are of unequal length, then a specific 
work-conserving policy — such as shortest remaining processing time — minimizes expected packet 
delay.
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CHAPTER 1. INTRODUCTION 5

1.1.1 Throughput Guarantees

A generic switch with N  inputs and N  outputs is shown in Figure 1-3. Assume 

time is slotted into cell times. A y  (n) is the cumulative number of arrivals to input i 
of cells destined to output j  at time n while Ai{n) is the aggregate number of arrivals 

to input i. During each cell time, at most one cell can arrive at each input. Ay is the 
arrival rate of Ay(n). D y(n) is the cumulative number of departures from output j  

of cells that arrived from input i while Dffn) is the aggregate number of departures 
from output j .  Similarly, during each cell time, at most one cell can depart from 

each output. A y  (n) is the total number of cells from input i to output j  still in the 
system at time n. The evolution of cells from input i to output j  can be represented 
as

A y  (n +  1) =  A y  (n) +  A y ( n )  — Z )y (n ) .

Let A (n)  denote the vector of all arrivals ( A y ( n ) } ,  D(n) denote the vector of all 

departures { Z )y (n )} ,  and A(n) denote the vector of the number of cells still in-the 
system. With this notation, the evolution of the system can be described as

A (n  +  1) =  A (n) +  A(n) -  D{n).

Definition 1 An arrival process is said to be admissible when no input or output is 

oversubscribed, i.e., when Ay < 1> Xy ^i,j < ^  — 0-

D efinition 2 Traffic is called independent and identically distributed (iid) if and only

ffi
1. Every arrival is independent of all other arrivals both at the same input and at 

different inputs.
2. All arrivals at each input are identically distributed.

Definition 3 A switch is said to achieve 100% throughput if under any admissible 
iid traffic, for every e > 0, there exists B  > 0 such that

lim Pr(S~^ Aj An) > B } < e
n-»  oo ’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 6

DM)A («)

AN{n)

Figure 1-3: A simple model of a generic switch with N  inputs and N  outputs.

Definition 4 A switch is said to be work-conserving if whenever there is a cell in the 
system for an output, then that output must be busy.

In an OQ switch, an output can select any cell destined to that output to be 

placed on the outgoing line. Therefore, if an output selects a cell when any of the 

queues associated with that output is nonempty, an OQ switch is work-conserving. 

Note that when a switch is work-conserving, outputs are idle only if there are no cells 
in the system for that output. This is the busiest any system can be and therefore 
maximizes throughput and minimizes the number of cells stored in the switch. So a 
switch that is work-conserving also provides 100% throughput.

1.1.2 Bandwidth and Delay Guarantees

Bandwidth and delay guarantees can be provided by implementing a weighted 
fair queuing (WFQ) scheduler in an OQ switch. Arriving packets are classified into 

flows and stored in per-flow queues. When a packet arrives, its finishing time is
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CHAPTER 1. INTRODUCTION 7

m
•. WFQ 
scheduler

Figure 1-4: A diagram of one output of an OQ switch using a weighted fair queueing 
(WFQ) scheduler.

calculated. Packets are then serviced by the weighted fair queueing scheduler in the 

order of their finishing times. This has been proved to guarantee that each packet 

will depart the switch by its assigned finishing time and therefore makes it possible 
to bound the delay of the packet through the switch. More information can be found 
in the following references [4, 5]. Figure 1-4 shows the usual way to represent an OQ 

switch that implements WFQ. Each output consists of many logical First-In-First- 

Out (FIFO) queues, one for each flow. The WFQ scheduler decides which packet to 
transmit next by considering the head-of-line packet in each FIFO, and choosing the 
one with the earliest finishing time.

For our purposes here, we are going to use a different way to represent an OQ 
switch that implements WFQ. Instead of one queue for each flow, we are going to 

represent the output using a single queue that we call a Push-In-First-Out (PIFO) 
queue. As we will see later, this turns out to be a useful and equivalent abstraction of 

WFQ, that is easier to analyze. We will use the PIFO queue in several of our results 
in this thesis.

A PIFO is a single queue of all packets waiting to depart from an output. When 
a new packet arrives for the output, it is “pushed-in” to some location in the queue. 

Once in the queue, the cell’s relative ordering with packets already in the queue 
does not change; packets can not switch places. Of course, new packets can arrive
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CHAPTER 1. INTRODUCTION 8

Figure 1-5: An Input Queued (IQ) switch.

later and get pushed-in ahead of (or behind) the packet. Packets can only depart 

from the head of line. Essentially, when a packet arrives, the WFQ scheduler picks 
its departure order relative to other packets already in the output. In this way, a 

WFQ scheduler with a PIFO queue is exactly equivalent to a WFQ scheduler with 
per-flow FIFO queues. By selecting the finishing times of packets as before, an OQ 

switch using a PIFO queueing policy per output can provide bandwidth and delay 
guarantees. Furthermore, the PIFO model includes several other queueing policies 

such as weighted round-robin and strict priorities. For an OQ switch, each output 
maintains a queue for the cells waiting to depart the switch. A single PIFO queue 

can be used to model this by arranging the cells in the queue based on the departure 
order of the cells.

1.2 Switch Architectures

An OQ switch can behave as well as an ideal router and provides the best perfor­
mance guarantees; however, an OQ switch is impractical for high performance routers 

since the memory bandwidth of a N  x Ar OQ switch must run N  times as fast as the 

line rate. Unfortunately, with high line rates, memories with sufficient bandwidth are
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CHAPTER 1. INTRODUCTION 9

VOQs

VOQs

Figure 1-6: An Input Queued (IQ) switch with Virtual Output Queues (VOQs).

simply not available.

On the other hand, an input queued (IQ) switch shown in Figure 1-5 needs mem­
ory to run only as fast as the line rate. This makes input queueing very appealing 

for switches with fast line rates or with a large number of ports. For this reason, 

the highest performance switches and routers use input-queued (IQ) switches [2, 3]. 

However, IQ switches which use a single FIFO queue can suffer from head-of-line 
(HOL) blocking which occurs if the head-of-line cell blocks cells destined for a differ­

ent output to be scheduled. This phenomenon can have a severe effect on throughput. 
It is well known that if each input maintains a single FIFO, then HOL blocking can 

limit the throughput to just 58.6% [7].

Fortunately, HOL blocking can be removed by using a simple buffering strategy 

at each input. Rather than maintain a single FIFO queue for all cells, each input 
maintains a separate FIFO queue for each output [8, 9, 10] as shown in Figure 1-6. 

This queueing discipline is often referred to as virtual output queueing (VOQ). HOL 
blocking does not occur because a cell cannot be blocked by a cell queued ahead of it 
that is destined for a different output. Furthermore, no additional speedup is required 
because at most one cell can arrive and depart from each input in a cell time. It has 

been shown that using a maximum weight matching algorithms such as MWM [9],
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VOQs

I I I 1 1 1
N

Figure 1-7: A Combined Input Output Queued (CIOQ) switch with Virtual Output 
Queues (VOQs).

OCF [11], or LPF [12], a switch using VOQs can achieve 100% throughput. However, 

these algorithms are too complex and are hard to implement in practice.
One method that has been proposed to increase performance is to increase the 

“speedup” of a switch. A switch with a speedup of S  can remove up to S  packets from 
each input and deliver up to S  packets to each output within a time slot, where a time 

slot is the time between packet arrivals at input ports. Hence, an OQ switch must 
have a speedup of N  whereas an IQ switch may have a speedup of one. For values 

of S  between 1 and N , packets need to be buffered at the inputs before switching 
as well as at the outputs after switching. We call this architecture a combined input 

and output queued (CIOQ) switch shown in Figure 1-7.
Both analytical and simulation studies of a CIOQ switch which maintains a single 

FIFO at each input have been conducted for various values of speedup [13, 14, 15,16]. 
A common conclusion of these studies is that with a speedup of four to five one can 
achieve about 99% throughput when arrivals are independent and identically dis­

tributed at each input and when the distribution of packet destinations is uniform 

across the outputs. However, not only do these studies consider only average delay
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CHAPTER 1. INTRODUCTION 11

(and simplistic input traffic patterns), they also make no guarantees about the de­

lay of individual packets. This is particularly important if a router is to offer QoS 

guarantees.

1.3 M otivation of Thesis

We believe that a well-designed network switch should perform predictably in 
the face of all types of arrival process and allow the delay of individual packets to 

be controlled. So instead of finding values of speedup that work well on average or 

with simplistic and unrealistic traffic models, we want to figure out how a CIOQ 

switch mimics an OQ switch for all types of traffic. (Here, “mimics” means that 
when the same inputs are applied to both the OQ switch and our crossbar-based 
switch, the corresponding output processes from the two switches are completely 
indistinguishable.) This thesis solves problems associated with designing a CIOQ 

switch that mimics an OQ switch.

1.3.1 M inimum Speedup to Emulate an OQ Switch

The approach of mimicking an OQ switch was first formulated in [17]. They 

showed that a CIOQ switch with a speedup of four can mimic a FIFO OQ switch 
for arbitrary input traffic patterns and switch sizes using an algorithm called Most 

Urgent Cell First Algorithm (MUCFA). Is there a speedup smaller than four that also 

provides the same behavior? Our objective is to find the minimum speedup required 

for a CIOQ switch to mimic an OQ switch.

1.3.2 Emulating a PIFO OQ Switch

In [17], it was shown that mimicking a FIFO OQ switch was achievable. A FIFO 
OQ switch is work-conserving, but does not provide delay guarantees. An OQ switch 

that employs a PIFO model such as WFQ can provide delay guarantees. Therefore, 

another problem is to find an algorithm that allows a CIOQ switch to mimic a PIFO 
OQ switch.
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CHAPTER 1. INTRODUCTION 12

1.3.3 Providing Emulation in a Practical Way

The MUCFA algorithm requires a speedup of four and is too complex to implement 

in practice. A centralized location was required to keep track of the exact departure 

time of each cell in the system. W ithout finding a practical algorithm, mimicking an 

OQ switch is only theoretically interesting. Another problem we solve in this thesis 

is to find practical methods to mimic an OQ switch.

1.4 Outline of Thesis

This thesis explains how to design a router to achieve the same throughput, band­
width, and delay guarantees as an ideal OQ router. In Chapter 2, we present an 

analytical counting method that can be used to show how a CIOQ switch using a 
traditional crossbar can mimic an OQ switch. Running at a speedup of two, we 

show how cell scheduling on a traditional crossbar can theoretically mimic an OQ 
switch with delay guarantees. We will then discuss the communication complexity 

and describe how it is impractical for implementation.
In Chapter 3, we introduce a crossbar with a small amount of internal buffering. 

We will show how the counting method can also be applied on a CIOQ switch using 
a buffered crossbar to achieve the same behavior while simplifying the scheduling 

process. The key to the buffered crossbar is to allow inputs and outputs to schedule 
independently and in parallel. We will also show how a buffered crossbar running 

at a speedup of two can achieve 100% throughput and mimic an OQ switch with 
a distributed algorithm. We will also introduce a novel mechanism called header 

scheduling which allows a buffered crossbar running at a speedup of two to mimic an 

OQ switch with delay guarantees.
In the concluding chapter, we will suggest how to implement a router which 

achieves the same throughput, bandwidth, and delay guarantees as an ideal router. 

The proposed architecture incorporates the practical benefits of a buffered crossbar 
and provides a simple path to scale crossbar-based routers.
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Chapter 2

M imicking an OQ Switch U sing a 
Traditional Crossbar

In this chapter, we show that a CIOQ switch with a speedup of two can behave 
identically to an OQ switch. The result holds for switches with an arbitrary number of 

ports and for any traffic arrival pattern. This result is also found to be true for a broad 

class of widely used output link scheduling algorithms such as weighted fair queueing, 

strict priorities, and FIFO. We introduce some specific scheduling algorithms that 
achieve this result. We also show more generally that a speedup of 2 — 1 /N  is both 

necessary and sufficient for a CIOQ switch to mimic a FIFO OQ switch.
It is worth briefly considering the implications of this result. It demonstrates 

that it is possible to mimic an N  x N  OQ switch using buffer memory operating 

at only twice the speed of the external line. Previously, an OQ switch could only 
be implemented with memories operating at N  times the speed of the external line. 

However, the advantages do not come for free. In essence, the memory bandwidth is 

reduced at the expense of a fast cell scheduling algorithm that is required to configure 

the crossbar. As we shall see, the scheduling algorithms are complex and not yet 
practicable to mimic fast OQ switches with a large number of ports. While we 

propose some strategies in this chapter, the later chapters provide a more practical 
solution.

13
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Input N Output N

Figure 2-1: A general Combined Input and Output Queued (CIOQ) switch

2.1 Background

Consider the single stage, N  x N  switch shown in Figure 2-1. Throughout this 
thesis we assume that the switch is empty before time t — 1. The switch is said to 

have a speedup of S  if it can remove up to S  cells from each input and transfer at 

most S  cells to each output in a time slot. A speedup of S  requires the switch fabric 
to run S  times as fast as the input or output line rate. For 1 < S  < N  buffering is 

required both at the inputs and at the outputs and leads to a combined input and 
output queued (CIOQ) architecture. We wish to solve the following problem:

The speedup problem: Determine the smallest value of S  and an appropriate 

cell scheduling algorithm ir that
1. allows a CIOQ switch to exactly mimic the performance of an output-queued 

switch (in a sense that will be made precise),
2. achieves this for any arbitrary input traffic pattern, and

3. is independent of the switch size.
We will require that any solution of the speedup problem provides the following 

feature: a CIOQ switch must behave identically to an OQ switch in the following 

sense:

Definition 5 : Identical Behavior -  A CIOQ switch is said to mimic an OQ 
switch if, under identical inputs, the departure time of every cell from both switches 

is identical.
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As a benchmark with which to compare our CIOQ switch, we will assume that 

there exists a shadow N  x N  OQ switch that is fed the same input traffic pattern as 
the CIOQ switch. Our goal is to arrange for each cell to depart from the CIOQ switch 
at exactly the same time as its counterpart cell departs from the OQ switch. In the 
CIOQ switch, the sequence in which cells are transferred from their input queues to 

the output queue is determined by a scheduling algorithm. In each time slot, the 

scheduling algorithm matches each non-empty input with at most one output and, 

conversely, each output is matched with at most one input. The matching is used 
to configure the traditional crossbar fabric before cells are transferred from the input 

side to the output side. A CIOQ switch with a speedup of S  is able to make S  such 
transfers during each time slot.

Selecting the appropriate scheduling algorithm is the key to making a CIOQ switch 

mimic its shadow OQ switch. In order to provide identical behavior, a cell must 

be transferred to the output of the CIOQ switch before the departure time of the 
counterpart cell in the OQ switch. If the cell is prevented from reaching its output in 

time, the departures from both switches are not identical, and we will fail to mimic 
the shadow OQ switch.

2.2 General Structure of Scheduling Algorithms

For most of this thesis, we break each time slot of a CIOQ switch with a speedup 

of S  into the following three phases:

• The Arrival Phase -  All arrivals of new cells to the input ports take place 
during this phase.

• The Scheduling Phases -  The scheduling algorithm selects cells to transfer 
from inputs to outputs and then transfers them across the crossbar. With a 

speedup of S, the scheduling algorithm makes S  crossbar configurations.

• The D eparture Phase — All departures of cells from the output ports take 

place during this phase.
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The order in which the three phases occur is not crucial to our algorithms. How­

ever, we shall use the above ordering as it makes our proofs simpler.
A matching of input ports to output ports is a set of cells waiting on the input side 

such that all these cells can be sent across the crossbar in a single transfer. During 
each scheduling phase the scheduler finds a stable matching between the input ports 

and the output ports.
In order to find a stable matching, it is assumed that each input of the CIOQ 

switch maintains a priority list, which can be thought of as an ordered set of cells 
waiting at the input port. A cell can be prevented from reaching its output on time 

by other cells at its input with a higher priority. The more cells ahead of it in the 
priority list, the longer it might take to be transferred to the output. Many orderings 

of the cells are possible — each ordering leading to a different scheduling algorithm, 

as we shall see.

Each output maintains a queue for the cells that have been transferred from the 
inputs and tha t are waiting to depart from the switch. In addition, each output also 

maintains an output priority list, an ordered list of cells at the inputs waiting to be 
transferred to this particular output. The output priority list is constructed based on 
the order in which the cells would depart from the OQ switch we wish to mimic, i.e., 

the shadow OQ switch. This priority list will depend on the queueing policy such as 

WFQ, strict priorities, FIFO, etc., followed by the OQ switch.

D efinition 6 : Stable M atching — A matching of input ports to output ports is 
said to be stable if for each cell c waiting in an input queue, one of the following holds:

1. Cell c is part of the matching; i.e., c will be transferred from the input side to 
the output side during this scheduling phase.

2. A cell that is ahead of c in its input priority list is part of the matching.
3. A cell that is ahead of c in its output priority list is part of the matching.

Notice that conditions 2 and 3 above may be simultaneously satisfied, but condi­

tion 1 excludes the other two. The conditions for a stable matching can be achieved 
using the so-called stable marriage problem. Solutions to the stable marriage problem 
are called stable matchings and were first studied by Gale and Shapley [18]; they gave
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an algorithm that finds a stable matching in at most M  iterations, where M  is the 

sum of the lengths of all the input priority lists.
Our specification of the scheduling algorithm for a CIOQ switch is almost com­

plete: the only thing that remains is to specify how the input queues are maintained. 
Different ways of maintaining the input queues result in different scheduling algo­

rithms. In fact, the various scheduling algorithms presented later differ only in the 

ordering of the cells in their input queues. For reasons that will become apparent, we 

restrict ourselves to a particular class of orderings, which is defined as follows:

Definition 7 : Input Priority List Ordering -  When a cell arrives, it is given a 
priority number that dictates its position in the list; i.e., a cell with priority number 

X  is placed at location (X +  l ) th from the head of the list. A cell is placed in an input 
priority list according to the following rules:

1. Arriving cells are placed at an arbitrary location in the list,
2. The relative ordering of cells in the list does not change once cells are in the 

list, i.e., cells in the list cannot switch places, and
3. Cells may be selected to depart from the list from any location.

Thus, to complete our description of the scheduling algorithms, we only need to 

specify an insertion policy which determines where an arriving cell gets placed in its 
input priority list.

On the output side, the CIOQ switch keeps track of the departure order of each 

waiting cell. During each time slot the cell that departs from an output and is placed 

onto the outgoing line is the one with the earliest departure order. For the CIOQ 
switch to successfully mimic the shadow OQ switch, we must ensure that each cell 

crosses over to the output side before it is time for the cell to leave.
Even before we finish defining the algorithm, we can already see that it must 

maintain a large amount of state. More importantly, the algorithm must keep track 
of a large amount of global state, taking into account information about the queues 

at all the inputs and all the outputs. We will discuss in Section 2.6 the information 
complexity of these algorithms, and the difficulty of implementing them at high speed.
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2.3 Definitions

Based on the input and output priority lists, we can describe the following defini­

tions that are crucial to the rest of the thesis.

D efinition 8 : O utput Cushion —  A t any time, the output cushion of a cell c, 
OC(c), is the number of cells waiting in the output buffer at cell c ’s output port with 
an earlier departure order than cell c.

Notice that if a cell is still on the input side and has a small (or zero) output

cushion, the scheduling algorithm must urgently deliver the cell to its output so that 
it may depart on time. Since the switch is work-conserving, a cell’s output cushion 

decreases by one during every time slot, and can only be increased by newly arriving 
cells that are destined to the same output with an earlier departure order.

Definition 9 : Input Thread —  At any time, the input thread of cell c, IT(c), is
the number of cells ahead of cell c in its input priority list.

In other words, IT (c ) represents the number of cells currently at the input that 

need to be transferred to their outputs more urgently than cell c. A cell’s input 
thread is decremented only when a cell ahead of it is transferred from the input and 

is possibly incremented by newly arriving cells. Notice that it would be undesirable 
for a cell to simultaneously have a large input thread and a small output cushion — 

the cells ahead of it at the input may prevent it from reaching its output before its 
departure time. This motivates our definition of slackness.

D efinition 10 : Slackness — At any time, the slackness of cell c, L(c), equals its 

output cushion minus its input thread; i.e., L{c) — OC(c) — IT(c).

Slackness is a measure of how large a cell’s output cushion is with respect to its 
input thread. If a cell’s slackness is small, then it urgently needs to be transferred 

to its output. Conversely, if a cell has a large slackness, then it may languish at 
the input without fear of missing its departure time.1 Our approach will be to find

1Note tha t a cell’s input thread and slackness are only defined when the cell is waiting at the 
input side of the switch.
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Figure 2-2: A snapshot of a CIOQ switch

scheduling algorithms for which the slackness is always non-negative. Although not 
strictly necessary, this will ensure that when a cell is transferred to the output its 

output cushion is non-negative. The idea is that when a cell’s output cushion reaches 
zero, the cell’s input thread must also equal zero. This means either: (1) that the 

cell is already at its output, and will depart the output on time, or (2) that the cell 
is at the head of its input priority list (because its input thread is zero), and will 

be transferred to the output immediately, which ensures tha t the cell will depart the 

output on time.

Figure 2-2 shows a snapshot of a CIOQ switch with a number of cells waiting at 
its inputs and outputs. For convenience we assume the time the snapshot was taken 

to be 1. Let P-t denote a cell that, in the shadow switch, will depart from output 
port P at time t. Consider, for example, the cell c denoted in the figure by A-3. For 

the CIOQ switch to mimic the shadow OQ switch, the cell must depart from port 
A at time 3. Its input thread is IT (c ) =  1, since B-l is the only cell ahead of c in 

the input priority list. Its output cushion is OC(c) =  2, since out of the three cells 
queued at A’s output buffer, only two cells A-l and A-2 will depart before it. Further, 

the slackness of cell c is given by L(c) =  OC(c) — I T (c) =  1.

2.4 N ecessity and Sufficiency

Having defined the general structure of the scheduling algorithms, we now address 

the next natural question: what is the minimum required speedup, S, for a CIOQ
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switch to mimic an OQ switch. The following theorem answers this question.

Theorem  1 (Necessity). An N  x  N  CIOQ switch needs a speedup of at least 2 — 1/N  
to mimic an N  x N  FIFO OQ switch.

Proof: The proof is by counter-example and is presented in Appendix A.I. ■ 
Remark: Since FIFO is a special case of a variety of output queueing disciplines, 

e.g., weighted fair queueing, strict priorities, etc., the lower bound applies to these 

queueing disciplines as well.

Theorem  2 (Sufficiency). An N  x N  CIOQ switch with a speedup of 2 — 1 /N  can 
mimic an N  x N  FIFO OQ switch.

Proof: The proof is based on an insertion policy that we call Last In Highest

Priority (LIHP) and is presented in Appendix A.2. ■

2.5 A Simple Input Queue Insertion Policy for a 

Speedup of 2

The proof of Theorem 2 is based on the LIHP input queue insertion policy and 

is, unfortunately, complex and somewhat counterintuitive. Further, LIHP is complex 

to implement, making it of little practical value. So in an attem pt to provide a more 

intuitive understanding of the speedup problem, we present a simple and slightly more 

practical insertion policy that, with a speedup of two, mimics an OQ switch with a 
PIFO queueing discipline. We call this insertion policy Critical Cells First (CCF). 
As shown in the introduction, the broad class of PIFO queueing policies includes 
widely-used queueing policies such as WFQ and strict priority queueing. Notice that 

with an arbitrary PIFO policy, the departure time of a cell never decreases, but may 

increase because of the arrival of higher priority cells.
Recall that to specify a scheduling algorithm for a CIOQ switch, we simply need 

to give an insertion policy for the input queues. Critical Cells First (CCF) inserts an
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arriving cell as far from the head of its input queue as possible, such that the input 

thread of the cell is not larger than its output cushion. More formally:

T h e  C C F  Insertion Policy: Suppose cell c arrives at input port P. Let X  be 
the output cushion of c. Insert cell c into the X  +  1th position from the front of the 

input priority list at P. Hence, upon arrival cell c has a slackness of zero. If the size 
of this list is less than X  cells, then place c at the end of the input priority list at P. 

Therefore, in this case, c has a positive slackness.

A consequence of CCF is that the slackness of a cell is always non-negative upon 
arrival. The intuition behind this insertion policy is that a cell with a small output 

cushion needs to leave soon (i.e., it is more critical) and therefore needs to be delivered 
to its output sooner than a cell with a larger output cushion. In other words, a cell 

with a large output cushion can safely reside further from the head of its input queue.
We now prove that CCF with a speedup of two mimics an OQ switch. Informally, 

the proof proceeds as follows. We first show a property of the CCF algorithm: that 

a cell never has a negative slackness, i.e., the input thread of a cell never exceeds its 
output cushion. We then proceed to show how this ensures tha t a cell always reaches 

the output side in time to leave.

L em m a 3 The slackness L(c) of a cell c waiting on the input side is non-decreasing 
from time slot to time slot.

Proof: Let the slackness of a cell c be L(c) at the beginning of a time slot. During 

the arrival phase, the input thread of c can increase by at most one because an arriving 

cell might be inserted ahead of c in its input priority list. During the departure phase, 
the output cushion of c decreases by one. Now consider what happens in a scheduling 
phase. If c is scheduled in a scheduling phase, then it is delivered to its output and 

we no longer need to concern ourselves with c. If c is not scheduled, either a cell 
ahead of c in its input priority list or a cell ahead of c in its output priority list is 
scheduled (by the property of stable matchings, see Definition 6). Therefore, during 

a scheduling phase, either the input thread of c decreases by one, or the output 

cushion of c increases by one. The slackness of c, therefore, increases by at least 
one during each scheduling phase. Counting the changes in each of the three phases
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(arrival, departure, and two scheduling phases), we conclude tha t the slackness of cell 

c cannot decrease from time slot to time slot. ■

C o ro lla ry  4 The slackness L(c) of a cell c is always non-negative.

Proof: Since the slackness of an arriving cell is non-negative due to the CCF

insertion policy, it follows from Lemma 3 that the slackness of a cell is always non­

negative. ■

T h eo rem  5 Regardless of the incoming traffic pattern, a CIOQ switch that uses CCF 

with a speedup of 2 mimics a PIFO OQ switch.

Proof: Suppose that the CIOQ switch has successfully mimicked the OQ switch 

up until time slot t — 1, and consider the beginning (first phase) of time slot t. We 
must show that any cell reaching its departure time is either: (1) already at the 

output side of the switch or (2) will be transferred to the output during time slot t. 
From Corollary 4, we know that a cell always has a non-negative slackness. Therefore, 

when a cell reaches its time to leave (i.e., its output cushion has reached zero), the 

cell’s input thread must also equal zero. This means either: (1) that the cell is already 

at its output and may depart on time or (2) that the cell is simultaneously at the 
head of its input priority list (because its input thread is zero) and at the head of 
its output priority list (because it has reached its departure time). In this case, the 
stable matching algorithm is guaranteed to transfer it to its output during the time 

slot, and therefore the cell departs on time. ■

2.6 Towards Making CCF Practical

CCF as presented above suffers from two main disadvantages. First, the stable 
matching that we need to find in each scheduling phase can take as many as M  
iterations, where M  is the sum of the lengths of all the input priority lists. Second, 

the algorithm has a high information complexity — CCF needs to know both the 

output cushion and departure order of each cell at the inputs, information that is not 

locally available at each input, but depends on the state of all the switch outputs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. MIMICKING A N  OQ SW ITCH 23

We address these disadvantages in this section. The Delay Till Critical (DTC) 
strategy reduces the number of iterations needed to compute a stable matching to N ; 

and the Group By Virtual Output Queue (GBVOQ) algorithm can mimic FIFO OQ 

switches without using global information. Unfortunately, combining the solutions 

does not help, i.e., we can reduce either the number of iterations to N  or reduce the 
information complexity, but not both at the same time using these algorithms.

2.6.1 The Delay Till Critical (DTC) Strategy

The Delay Till Critical strategy is as follows: During each scheduling phase, mark 

as “active” all cells with a slackness of zero and mark all other cells as inactive. The 

stable matching algorithm now considers only active cells. Intuitively, cells with zero 

slackness are the most critical and should be considered for immediate transfer across 
the fabric. Since the slackness of a cell can never become negative,2 CCF combined 
with DTC strategy can mimic any OQ switch that follows a PIFO queueing policy.

We will show that this simple strategy reduces the number of iterations required 

to compute a stable matching to N. Before we prove this fact, let us examine the 

problem that we are trying to remove. At any time instant, we define the dependency 

graph G to be a directed graph with a vertex corresponding to each active cell that 

is waiting on the input side of the CIOQ switch. Let a and b be two cells waiting at 
the input side. There is a directed edge from b to a if and only if cell a is ahead of 
b either in an input priority list or in an output priority list. Clearly two cells have 

to share either the same input port or the same output port if there is to be an edge 
between them. If we use CCF as defined in Section 2.5, there may be cycles in this 

dependency graph. These cycles are the main cause of inefficiency in finding stable 

matchings, and the DTC strategy is designed to remove these cycles.

Lemma 6 I f  DTC is used in conjunction with CCF then, during any scheduling 
phase, the dependency graph is acyclic.

2 As soon as the slackness becomes zero, the cell would be marked active and the slackness would 
increase by one during the current scheduling phase (see Lemma 3). To prevent the slackness of a 
cell from decreasing by two before the next scheduling phase, we assume th a t the departure phase 
occurs before the second scheduling phase.
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We defer the proof of Lemma 6 to Appendix B and instead focus on its impli­

cations, and how a match can be constructed in N  iterations. First, let us consider 
how the first cell in the match is found. Since there are no cycles in G, there has to 

be at least one “sink” (i.e., a cell with no outgoing edges). Let cell c be the sink. 
Since there are no active cells ahead of c in either its input priority list or its output 

priority list, cell c has to be part of any stable matching of active cells. Hence c is 
guaranteed to be transferred to the output side, and therefore we can remove from 

the graph all cells which have the same input or output port as c; they clearly cannot 
be part of the match. The resulting graph is again acyclic, and we can repeat the 

above procedure N  — 1 more times to obtain a stable matching. Notice that each 

iteration of the above N  iteration algorithm is quite straightforward.

We now address the second disadvantage of CCF, i.e., that of high information 

complexity.

2.6.2 The Group By Virtual O utput Queue (GBVOQ) Algo­
rithm

W ith CCF, the stable matching algorithm needs to calculate both the departure 

order and output cushion of each cell in the input queues. These quantities require 
centralized information about the state of all the queues in the system, making CCF 
(as described) unsuitable for a distributed implementation. However, for mimicking 

a FIFO OQ switch, we can group incoming cells into Virtual Output Queues and 
obtain an upper bound of N  on the number of cells that need to be considered from 

each input. GBVOQ, the algorithm which achieves this bound, is described below.

At each input, GBVOQ maintains a single priority list as before, as well as a VOQ 

for each output port. All cells belong to a VOQ and to the single input priority list. 
When a new cell arrives, it is always placed at the tail of the corresponding VOQ. If 

the VOQ is empty, the new cell is placed at the head of the input priority list. If, on 
the other hand, the VOQ is non-empty, the new cell is inserted in the input priority 
list just behind the last cell belonging to the same VOQ; i.e., all cells that are in the 

same VOQ occupy contiguous positions in the input priority list. Therefore, to make
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a scheduling decision, it is sufficient to only keep track of the relative priority ordering 
of VOQs. Since there are at most N  VOQs at an input port in a FIFO switch, the 
size of the input priority list is bounded. The following lemma, which is proved in 

Appendix C, shows that GBVOQ assigns a non-negative slackness to an incoming 

cell.

L em m a 7 The slackness L(c) of a newly arriving cell c is non-negative using the 
GBVOQ algorithm.

From Lemma 7, a CIOQ switch that uses GBVOQ with a speedup of two success­
fully mimics a FIFO OQ switch. At first glance, this insertion policy seems unfair. 

However, when a cell arrives to an empty VOQ, it is possible that there are no other 

cells in the system destined to that output. Therefore, the cell must immediately 

be transferred to the output in order to keep tha t output busy. The above insertion 
policy is designed to take care of this case.

Apart from small priority lists, GBVOQ has other desirable properties. First, the 
decision of where an incoming cell needs to be inserted is much simpler for GBVOQ 
than CCF — each input port can maintain its local priority queue without any access 

to global information. Second, during the stable matching phase, to determine which 

of two cells has a higher output priority, we only need to compare the arrival times­
tamps of the two cells. The cell which arrived earlier will have a smaller departure 

order (and hence a higher output priority) because of the FIFO property.
However, GBVOQ requires up to N 2 iterations. The reason is that if two cells at 

the same input port are destined to the same output port, the one with the earlier 
departure order occurs ahead of the other in both the input and output priority list. 

Therefore, only the cell at the head of a VOQ needs to be considered. The DTC 

strategy cannot be applied to GBVOQ since to determine if a cell needs to be marked 
active, we again need access to global state, namely the output cushion of each cell 

at the head of a VOQ. Finding a solution which simultaneously has low information 
complexity and low number of iterations is a problem solved in the next chapter.
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2.7 Conclusions

We have seen that a CIOQ switch with a speedup of just two can behave identically 

to an OQ switch which employs a wide variety of packet scheduling algorithms such 
as WFQ, strict priorities, etc. Perhaps more importantly, we show this to be true for 

any traffic arrival pattern and for arbitrary switch sizes.
However, while this result makes possible a significant reduction in memory band­

width, it comes at the expense of a scheduling algorithm. The scheduling algorithm is 
required to configure the crossbar, operating at least twice as fast as cells can arrive. 

While the algorithms that we describe here are quite simple, they require a stable 

matching of up to at least N  iterations making them unsuitable for fast switches with 
a large number or ports. The result does not, however, preclude algorithms that are 

more readily implemented at higher speed. In the next chapter, we describe how 

a buffered crossbar, i.e., a crossbar with a small amount of internal buffering, can 
reduce this scheduling complexity.
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Chapter 3

Buffered Crossbars

In the previous chapter, it was shown that a CIOQ switch using a traditional 

unbuffered crossbar with a speedup of two can mimic any PIFO OQ switch. However, 

the scheduling algorithms require high communication overhead and a large number 
of iterations making them impractical for fast OQ switches with a large number of 

ports.

In this chapter, we show how a buffered crossbar, i.e., a crossbar with a small 
amount of internal buffering, running at a speedup of two can also behave identically 
to an OQ switch. The scheduler for a buffered crossbar allows inputs and outputs 

to schedule independently and in parallel making it much simpler and, therefore, 

more practical than for a traditional unbuffered crossbar. We introduce a number of 

scheduling algorithms which provide throughput, rate, and delay guarantees. As we 

shall see, buffered crossbars removes the need for high information complexity and 
reduces scheduling to a single iteration.

3.1 Background

Figure 3-1 shows a 3 x 3 buffered crossbar, with line-rate R. To prevent head-of-line 

blocking, the inputs maintain virtual output queues (VOQs). Fixed length packets 

wait in the VOQs to be transferred across the switch. Each crosspoint contains a 
buffer that can hold one cell. The buffer between input i and output j  is denoted as 
B ij; when the buffer holds a cell, FQ =  1, else Bij =  0.

27
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Figure 3-1: The architecture of the buffered crossbar with three ports.

Because the packets are all the same length, time is slotted, with a time slot equal 
to the time it takes for a cell to arrive on the external line. Internally, the switch 

runs faster than the external line, and the ratio between the two is the speedup. If 
the switch can remove S  cells from each input and transfer S  cells to each output 

in a time slot, then it has a speedup of S. Throughout most of this chapter we will 
assume that S  — 2, and so the switch has output queues.

3.1.1 W hy use Buffered Crossbars?

Buffered crossbars are interesting because they have simpler scheduling algorithms 
than an unbuffered crossbar. In an unbuffered crossbar, the scheduler must find a 

matching between inputs and outputs that does not oversubscribe either. The appeal 
of a buffered crossbar switch is that its scheduler is much simpler. The scheduler 
operates in two stages. First, each input (independently and in parallel) picks a cell 

to place into a crosspoint buffer. Then in the second stage each output (indepen­

dently and in parallel) picks a crosspoint buffer to take a cell from. The processing
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can be distributed to run on each input and output, and so no longer requires a sin­

gle centralized scheduler. It can be pipelined to run at high speed, making buffered 

crossbars appealing for high performance switches and routers. At first glance, the 

architecture seems similar to the DSM and SMS architectures [26, 27] where memory 
is sandwiched between two switching stages. However, the buffered crossbar archi­

tecture is different; it still follows the CIOQ architecture with the caveat that there 
is a small amount of internal buffering in the crossbar.

Researchers first noticed via simulation that buffered crossbars provide good 

throughput for admissible uniform traffic with simple algorithms [19, 20, 21, 28]. 

Simulations also indicated that, with modest speedup, a buffered crossbar can closely 
approximate fair queueing [22]. In [25], the authors described a mechanism to pro­

vide fair allocation and confirmed through simulations that a buffered crossbar can 
allocate service in a weighted max-min fair manner. Until recently, there were no 

analytical results on guaranteed throughput to explain or confirm the observations 
made by simulations.

The first analytical results came in 2001, when Javidi et al. proved that, with 

uniform traffic, a buffered crossbar can achieve 100% throughput [23]. More recently, 

Magill et al. proved that a buffered crossbar with a speedup of two can mimic a first- 
in first-out output queued (FIFO OQ) switch with any arrival traffic pattern [24]. 

Magill et al. also showed that a buffered crossbar with k cells per crosspoint can 
mimic a FIFO OQ switch with k strict priorities.

In this chapter, we describe a series of algorithms with a broad class of performance 
guarantees over and above FIFO and strict priority FIFO emulation. We prove that 

these algorithms can achieve 100% throughput, can mimic an OQ switch using a 
weighted round robin scheduler (which gives rate guarantees), and can also achieve 

delay guarantees. The main benefit of these algorithms is that each input and output 
makes simple scheduling decisions independently and in parallel, eliminating the need 
for a centralized scheduler. Our results show buffered crossbars can greatly simplify 
the scheduling process.

Of course, simplifying the scheduler comes at the expense of a more complicated 

crossbar; it now has to hold and maintain N 2 packet buffers. In the past, this would
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Figure 3-2: The scheduling phases for the buffered crossbar. The exact order of the 
phases does not matter, but we will use this order to simplify proofs.

have been prohibitively complex; the number of ports and capacity of a crossbar 
switch used to be limited by the N 2 crosspoints that dominated the chip area (hence 

the development of multi-stage switch fabrics, such as Clos, Banyan and Omega 

switches based on smaller crossbar elements). But nowadays, crossbar switches are 
limited by the number of pins required to get data on and off the chip [29]. Im­

provements in process technology and reductions in geometries mean that the logic 

required for N 2 crosspoints is small compared to the size of chip needed for N  inputs 
and N  outputs. The chips are pad-limited, with an underutilized die. A buffered 

crossbar can use the unused die for packet buffers. For example, we believe that in 
current technology, the 128 x 128 unbuffered crossbar switch reported in [29] could 

hold 1282 cell buffers.

3.2 Achieving 100% throughput w ith an arbitrary 

scheduling algorithm

Figure 3-2 shows the scheduling phases in a buffered crossbar with a speedup 

of two. The two scheduling phases each consists of two parts: input scheduling, 
and output scheduling. In the input scheduling phase, each input (independently 

and in parallel) picks a cell to place into an empty crosspoint buffer. In the output 

scheduling phase, each output (independently and in parallel) picks a cell from a non­
empty crosspoint buffer to take from. The key to creating a scheduling algorithm is 
determining the input and output scheduling policy which decides how inputs and 
outputs pick cells in the scheduling phases. We will see a number of different policies 

each of which provides a different scheduling algorithm. The first algorithm we will
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consider is the most general. In each scheduling phase, the input picks any non-empty 

VOQ, and the output picks any non-empty crosspoint.
We will adopt the following notation and definitions. The switch has N  ports, 

and VOQij holds cells at input i destined for output j .  Xy is the occupancy of 
VOQij ,1 and Zi3 — X l3 +  By is the sum of the number of cells in the VOQ and the 

corresponding crosspoint. We will assume that all arrivals to input i G 1,2, 3,..., N  

are Bernoulli i.i.d. with rate Aj, and are destined to each output j  E 1,2,3, ...N  with 
probability Ay. We will denote the arrival matrix as 0  =  [Ay], where for all i, j ,

N  N

A j =  ^   ̂A y , A j   'y  ̂Ay , Ay A 0
j = 1 i = 1

In what follows, we will show that the buffered crossbar can give 100% throughput. 

The result is quite strong in the sense that it holds for any arbitrary work-conserving 

input and output scheduling policy with a speedup of two. In other words, each input 
i can choose to serve any non-empty VOQ for which By = 0, and each output j  can 
choose to serve any crosspoint for which By =  1.

Theorem 8 (Sufficiency) A buffered crossbar can achieve 100% throughput with 

speedup two for any Bernoulli i.i.d. admissible traffic.

Proof: We describe an intuition of the proof. The main proof appears in

Appendix D.
For each VO Q ij, let Cy denote the sum of the cells waiting at input i and the

cells waiting at all inputs destined to output j  (including cells in the crosspoint for

output j) ,

Cij — Xik +  +  Bkj) (3.1)
k k

It is easy to see that when VOQij is non-empty (i.e., Xy > 0), then Cy decreases 
in every scheduling phase. There are two cases:

xWe will see later th a t other queueing structures are useful and th a t it is not necessary to place 
cells in VOQs.
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• Case 1: B ,:I — 1. Output j  will receive one cell from the buffers destined to it 

and 5Zki^-kj +  B kl) will decrease by one.

• Case 2: B ^ — 0. Input i will send one cell from its VOQs to a crosspoint, and 

Ylk Xik will decrease by one.2

With 5 =  2, Cij will decrease by two per time slot. When the inputs and outputs 

are not oversubscribed, the expected increase in C^ is strictly less than two per time 
slot. So the expected change in Cp is negative over the time slot, and this means that 

the expected value of is bounded. This in turn implies that the expected value of 
Xij is bounded and the buffered crossbar has 100% throughput. ■

3.3 Counting M ethod with a Buffered Crossbar

We will now show how the buffered crossbar can mimic an OQ switch in a simple 

distributed manner where each input and output makes decisions independently and 
in parallel.

In chapter 2, a counting method is introduced to show that a CIOQ switch using a 
traditional unbuffered crossbar with a speedup of two can mimic a PIFO OQ switch. 
As a reminder, the counting method requires that in each scheduling phase, at least 

one of the following conditions for each cell c is satisfied: (1) cell c is transferred from 

the input side, (2) a cell that is ahead of cell c in its input priority list is transferred 

from the input side, or (3) a cell that is ahead of cell c in its output priority list is 
transferred to the output side.

It is proved that meeting the conditions of the counting method ensured that 

the slackness of a cell increased by at least one in each scheduling phase, which is 
essential in proving that the slackness of any cell is always non-negative. However, 

the scheduling algorithms require a stable marriage algorithm to meet the conditions 

of the counting method. The solution requires up to at least N  iterations of the

2If a cell from VOQij  is sent to crosspoint B ^ ,  then +  B kj)  stays the same at the end
of the input scheduling phase since Xij  decreases by one and B ^  increases by one. In the output 
schedule, Case 1 applies and Cij will further decrease by one. As a result, if a cell from VOQij  is 
sent to crosspoint Bij,  then Cij decreases by two in th a t scheduling phase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. BUFFERED CROSSBARS 33

stable marriage algorithm for a switch with N  ports, making them too complex to 
implement for fast switches with large number of ports.

In order to ensure that the slackness of a cell increases by at least one in each 

scheduling phase for a buffered crossbar, the input and output scheduling policies 
must carefully be selected to guarantee that the conditions of the counting method 
are met. The input scheduling policy gives preference to cells based on the input 
priority list. Similarly, the output scheduling policy gives preference to cells based on 

the output priority list. Since the output priority list is ordered based on departure 
order, preference is given to cells with an earlier departure order.

However, the buffered crossbar has an additional requirement to meet the condi­
tions of the counting method. The input priority list must also be arranged so cells 
destined to the same output are ordered based on departure order. Specifically, cells 
to the same output with an earlier departure order must have a higher priority. Cells 

to different outputs can still be ordered in any way. This requirement is necessary 

to ensure that, in the output scheduling phase, the cell selected has the earliest de­

parture order of the cells stored in the input queues corresponding to the non-empty 

crosspoint, as can be seen in the following example.
Let cells a, b, and c all be destined to output j .  Cell a is stored in input queue 

i\, cell b is stored in input queue i2, cell c is stored in crosspoint and no other 

cells are destined to output j  at time t. The departure order is ta < R < tc for 
cells a, b, and c respectively. In the input scheduling phase, input R does not select 

cell a since cell c is already in the crosspoint B ^j, and input i2 selects cell b. In the 
output scheduling phase, cell b is selected since it has an earlier departure order than 

cell c. As a result, the conditions of the counting method is not met for cell a since 

cell b, which has a later departure order, does not have a higher priority than cell a 

in the output priority list. This occurred because at some point in time cell c was 
incorrectly given a higher priority than cell a in the input priority list. This motivates 
the following “Group By Virtual Output Queue” insertion policy previously described 

in Chapter 2.

GBVOQ Insertion Policy:

1. When a cell arrives to a non-empty VOQ, the cell is inserted in the input priority
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list just behind the last cell belonging to the same VOQ. This ensures that cells 
destined to the same output are ordered based on departure order.

2. When a cell arrives to an empty VOQ, the cell is inserted at the head of the 
input priority list.

We will now prove in the following lemma that the buffered crossbar can satisfy 
the conditions of the counting method.

L em m a 9 The slackness L(c) of a cell c decreases by at least one in each scheduling 

phase.

Proof: Let’s assume that cell c belongs to VOQij. There are two cases to

consider in a scheduling phase.

•  Case 1: If =  0, then we know tha t in the input scheduling phase, a cell will 

be transferred from input i to one of the buffers . If cell c is transferred to 
B ^, then we no longer need to consider it.3 If a different cell is transferred to 
its crosspoint buffer, the cell would belong to c’s input thread, and IT (c ) will 

decrease by one.

• Case 2: If B ^ — 1, then a cell will be transferred from one of the crosspoints 
B*j to output j  in the output scheduling phase. By definition of the GBVOQ 

insertion policy the cell in crosspoint B ^  has an earlier departure order than 
cell c. Since the output scheduling policy selects the non-empty crosspoint that 

contains the cell with the earliest departure order, OC(c) increases by one.

Therefore, L(c) increases by at least one per scheduling phase. ■

The counting method using the GBVOQ insertion policy can be applied trivially 

to show that a buffered crossbar can mimic a restricted PIFO OQ switch, i.e., a PIFO 

OQ switch with the restriction that cells from an input/ output pair depart the switch 
in the order they arrive. This restricted policy includes output link schedulers which 
are fair across all inputs, i.e., provide rate guarantees between each input/output 
pair.

3If a cell is transferred to  the crosspoint then it is available for selection in the output scheduling 
phase and can be placed on the output line whenever necessary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. BUFFERED CROSSBARS 35

Theorem  10 (Sufficiency) A buffered crossbar with a speedup of two can mimic the 

restricted PIFO OQ switch, regardless of the incoming traffic pattern.

Proof: See Appendix E.l. ■

3.4 Rate Guarantees with a Buffered Crosbar

Our goal is to find a way for a buffered crossbar to provide a pre-determined and 
guaranteed rate for each flow passing through the switch. In an OQ switch, this is 

straightforward to do with, e.g., a weighted round-robin (WRR) scheduler. A WRR 
scheduler serves each flow queue in turn in round-robin order, giving service to each 

queue in proportion to the weight assigned to it. If a queue is empty, it is skipped 
and not served. It is well known that — when packets are all of equal length — WRR 

gives each flow a rate in proportion to its weight, and hence can give a minimum rate 
guarantee to each flow. Furthermore, if the arrival processes are suitably constrained 

(e.g., by leaky buckets), then the delay of each packet through the switch can be 

bounded [5].
One approach to proving that a buffered crossbar can provide rate guarantees 

would be to show that the buffered crossbar can mimic a PIFO OQ switch. Then, 

because WRR is a special case of PIFO, we can conclude that the buffered crossbar 

can support W RR and provide rate guarantees just as an OQ switch can. But as we 

will see in the next section, it is harder for a buffered crossbar to mimic a PIFO OQ 

switch.
So instead, we are going to start by solving an easier problem by considering a 

restricted PIFO OQ switch. In what follows, a flow is defined to be those cells between 

a specific input/output pair. We will consider a WRR OQ switch that serves these 
flows in WRR order and try to mimic the same behavior with a buffered crossbar.

In the restricted WRR OQ switch, each arriving cell is assigned a virtual finishing 
time by the W RR scheduler. Reviewing the way a W RR scheduler works, let us 

consider the cells at just one output. The kth cell from input i is assigned virtual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. BUFFERED CROSSBARS 36

finishing time F f, where

F? =  m ax{F?-1, 7(aJ)} +  A

a\ is the arrival time of the k th cell from input i to that output, V(t)  is the virtual 

time (round number) at time t, and fa is the weight assigned to input i. When the 
output line is free, the WRR scheduler serves the cell with the smallest virtual finish 

time.
Similarly, in the WRR buffered crossbar, a virtual finishing time needs to be as­

signed to each cell so as to determine the correct departure order. The problem is 
that cells are buffered at both inputs and outputs (and in the crossbar). Calculat­

ing the virtual finishing time when the cell arrives would require the input to have 
information about the cell’s output and all the cells at other inputs destined to it. 

This is impractical. Fortunately with our restricted definition of flows, cells are held 
in the input priority list in their departure order and —r as we will show below — it 

is sufficient for the output to assign a virtual finish time only when cells reach the 
crosspoint buffer.

The output needs to know upon arrival of the kth cell to the switch whether the 
k — I th cell (from this input to the given output) has departed. If it has departed, 

then the kth cell is transferred to the crosspoint buffer immediately and is assigned 

the virtual finish time based only on the current virtual time. If it has not departed, 

then the kth cell is not be transferred immediately or the k — 1th cell must be in the 

output queue. Therefore, the kth cell is assigned the virtual finish time based on the 
virtual finish time of the k — 1th cell. We will formalize these cases in the proof.

T h eo rem  11 (Sufficiency) A buffered crossbar can mimic an OQ switch using a 
weighted round-robin policy with speedup two, regardless of the incoming traffic pat­

tern.

Proof: See Appendix E.2. ■

A consequence of the proof is that the scheduling of cells to mimic WRR service 
is practical, and can be done independently and in parallel by each input and output.
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An input independently generates its input priority list with only local knowledge. 

It picks a cell to place in the crosspoint knowing only which crosspoints are empty. 

An output calculates the virtual finish time of a cell when the cell arrives to the 
crosspoint buffer. The output just needs to know if the cell was transferred to the 

crosspoint immediately upon arrival which can be carried in one bit of the cell. Each 
output picks the cell in the crosspoint with the smallest virtual finish time.

3.5 Delay Guarantees in a Buffered Crossbar

In practice, an input/output pair of a switch carries many flows, not only one. 

For example, it carries TCP flows between source/destination pairs, and we might 
want to give each flow a different rate or delay guarantee. In order to do this, we 

need to relax our constraint on the definition of the flow, and determine how to assign 
a different rate to each flow. This is what we will do next, and we will see that it 

increases the complexity of the buffered crossbar and requires more speedup.
In a PIFO OQ switch, an arriving cell can be pushed into any location in the 

queue. It could, for example, be scheduled to depart ahead of all currently queued 
cells between the same input/output pair. In order to meet the conditions of the 
counting method, the cell in the crosspoint must have the earliest departure order of 
all cells stored in the input queue belonging to its input/output pair. This causes 

problems for the buffered crossbar switch. Imagine the situation in which a crosspoint 

has a cell in it, and an arriving cell has an earlier departure order than the cell in the 

crosspoint buffer. This causes what we call “crosspoint blocking” since the arriving 

cell cannot overtake the cell in the crosspoint buffer.

If each crosspoint had a cell buffer for each flow, crosspoint blocking could be 
avoided. However, this does not scale for a large number of flows. We now show how a 
buffered crossbar can overcome crosspoint blocking in a manner which is independent 
of the number of flows between an input/output pair.
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Figure 3-3: The insertion policy for achieving delay guarantees. The figure shows 
the priority list for a given input. The letter denotes the output destination, and the 
number denotes the cell’s departure order for a given output, (a) Arriving cell A3 
is inserted immediately after cell A2. (b) Arriving cell C l is inserted at the head of 
the priority list since no other cell has a departure order less than cell C l destined 
to output C.

3.5.1 Delay guarantees w ith speedup three

When a cell arrives to an input with an earlier departure order than the cell in the 
crosspoint buffer, we will swap the cell in the crosspoint with the newly arriving cell. 

Logically, the cell that was previously in the crosspoint is recalled to the input where 

it is treated like a newly arriving cell. By modifying the arrival phase to include 

swapping, crosspoint blocking can be avoided. This is at the expense of additional 

speedup to perform the swap.
The modified arrival phase requires a new insertion policy. This policy needs to 

meet two requirements: (1) To prevent crosspoint blocking, cells from an input/output 
pair must be inserted based on their departure order, and (2) The slackness of a cell 

must be non-negative when inserted.
T h e  In se rtio n  Policy: As a consequence of the first requirement, an arriving 

cell c destined to output port j  is inserted behind all cells destined to output j  with 
a departure order less than cell c. To satisfy the second requirement, cell c is inserted 
immediately behind the cell that departs before it (if it exists), destined to the same 
output. If no such cell exists, cell c is inserted at the head of the priority list. This 

ensures that the slackness of the cell c is non-negative.
The priority list defined by this insertion policy has the property that cells from
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input i to output j  are ordered based on their PIFO departure order. An example is 

shown in Figure 3-3.4

Theorem  12 (Sufficiency) A buffered crossbar can mimic a PIFO OQ switch (and 

hence give delay guarantees) with speedup three, regardless of the incoming traffic 
pattern.

Proof: See Appendix E.3. ■

3.5.2 Delay guarantees w ith speedup two

We overcame crosspoint blocking by swapping the cell in a crosspoint with a newly 

arriving cell. This was necessary because we allowed cells to be transferred to the 
buffered crossbar even before they were scheduled to depart. This early transfer was 

the cause of crosspoint blocking, and thus required swapping. But we could eliminate 
the need for swapping if we avoided transferring a cell to the crosspoint until it was 
really ready to be transferred to the output.

For example, we could put the cell header in the crosspoint buffer, and only 
transfer the cell across the crossbar when chosen by the output. Scheduling would 

now be done in two distinct phases. First, input and output scheduling would be 

done based on the cell headers. Second, the cell bodies would be transferred when 

the output chooses a cell. We call this header scheduling.
However, this creates a problem. An input could receive up to N  grants (one from 

each output) in a single output scheduling phase. Fortunately, over p consecutive 

phases the number of grants received by an input is bounded by p +  N  — 1. This is 

because an input can communicate at most one header per input scheduling phase, 

and there are at most N  outstanding headers (one for each crosspoint) per input. 
On the other hand, each output grants at most one header per scheduling phase. So 
there are at most p grants for an output over any p consecutive scheduling phases.

4This insertion policy should be contrasted with the CCF insertion policy, which does not main­
tain  cells from input i to output j  in the correct departure order. CCF does not need to maintain 
this ordering because the stable marriage problem considers all cells queued at the inputs when 
scheduling.
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Figure 3-4: The architecture of a modified buffered crossbar with three ports.

Since inputs send at most one cell per scheduling phase and an input can receive 

up to p + N  — 1 grants in p consecutive scheduling phases, the cell for a header granted 
in phase x might not be transferred until phase x + N  — 1. W ith only one cell per 

crosspoint, a cell can prevent an input from sending another cell to the same output 

for another N  — 1 scheduling phases. We, therefore, modify the buffered crossbar to 

have N  cells of buffering per output as shown in Figure 3-4. There are still N 2 buffers 
in the crossbar, but buffers are dedicated to outputs rather than input/output pairs.

Theorem  13 (Sufficiency) With speedup of two and N  cells of buffering per output, 
a buffered crossbar can mimic a PIFO-OQ switch with a fixed delay of N /2  time slots.

Proof: See Appendix F. ■

The result comes at the expense of a more complicated buffering scheme in the 

crossbar and requires N  cells buffering per output. Since these N  cells can arrive in 
the same scheduling phase, there is an additional implementation complexity. This 

can be eliminated by modifying the buffered crossbar so it has N  cells for each J5p for 
a total of N 3 cells. In the latter case, no more than one cell can arrive to a crosspoint 

in each scheduling phase. While requiring more storage, it will also mimic a PIFO
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OQ switch with a fixed delay of N /2  time slots with speedup of two. This might be 
practical for small values of N. In both modified buffered crossbar architectures, the 
number of crosspoints is independent of the number of flows in the switch.

3.6 Conclusions

It is hard to scale crossbar-based routers because the scheduler for a crossbar 
must resolve the input and output constraints simultaneously. Whereas centralized 

schedulers get very complicated, the scheduler for a buffered crossbar allows inputs 

and outputs to make decisions independently and in parallel. With speedup of two 

and scheduling algorithms which are distributed and easy to implement, buffered 

crossbars provide throughput, rate, and delay guarantees.
Although the buffered crossbar is more complex than an unbuffered crossbar, the 

bandwidth and pin count are the same, the CIOQ architecture is maintained, and 
no memory needs to run faster than twice the line-rate. This provides a simple path 
to scale crossbar based routers. In the concluding chapter, we will discuss how a 

buffered crossbar can change the way crossbar-based routers are built.
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Conclusions

This thesis describes a practical architecture for a router that can achieve the same 
throughput, bandwidth, and delay guarantees as an ideal OQ router. We showed 

how a CIOQ switch using a traditional crossbar can mimic an OQ switch. However, 
using a traditional crossbar leads to a design which is impractical for implementation. 

Fortunately, a router using a buffered crossbar can also provide the same guarantees 
as an ideal router. A buffered crossbar simplifies the scheduling process and provides 

a practical way to build routers with performance guarantees. In this chapter, we 
will suggest a design of a high performance router which incorporates the buffered 
crossbar. We will then conclude the thesis by discussing future research on buffered 

crossbars.

4.1 Router Design Using Buffered Crossbars

As described in the Introduction, a typical high performance router usually con­
sists of two elements. These include the linecard and the switch fabric. The linecards 
are able to send cells to other linecards via the switch fabric. We will describe how 
a cell traverses through our suggested router in order to explain how to incorporate 

the buffered crossbar technology.
There are a number of advantages a buffered crossbar can provide. The main bene­

fit is the ability to make input/output scheduling decisions with very little complexity. 
This simplicity drastically increases the frequency at which decisions can be made.

42
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Another advantage is to remove centralized scheduling and allow the scheduling logic 
to be distributed to the linecards.

However, distributed scheduling requires that the buffered crossbar convey to 

each linecard empty/full status for each corresponding crosspoint. As a result, each 
linecard receives N  status bits for input scheduling and N  status bits for output 

scheduling for a total of 2N  status bits per time slot where N  represents the number 
of ports. Unfortunately, many router vendors require their boxes to be scalable in 

terms of the number of ports.

Another disadvantage to distributed scheduling is the need for crosspoints with 

storage for more cells. So far in this thesis, we assumed tha t the delay to send a cell or 
receive crosspoint status information between the linecard and the buffered crossbar 

was negligible. In practice, the round trip time between the linecard and buffered 
crossbar can correspond to many cells. To account for this delay, each crosspoint 

requires cell storage equivalent to the round trip time.

The router architecture we are proposing is not distributed and requires a central­
ized scheduler. On the other hand, the design still takes advantage of how the buffered 

crossbar simplifies the scheduling process. Figure 4-1 shows an ingress linecard, a 

centralized scheduler, a buffered crossbar, and an egress linecard. The centralized 
scheduler performs input and output scheduling and holds the occupancy state of the 
cells stored in the ingress linecards. We assume that the buffered crossbar can hold 
one cell per crosspoint. The life of a cell is described below:

1) A cell arrives to the ingress linecard and is destined to a specific outgoing port. 
The cell is stored in the packet buffer of the ingress linecard.

2) The ingress linecard then makes a request for this cell to traverse the buffered 
crossbar. The request is sent to the centralized scheduler.

3) The centralized scheduler receives the request and keeps track of the cells 

currently stored in each ingress linecard. This information is conveyed to the in­
put scheduler block. Sometime later, the input scheduler dedicated for that ingress 
linecard makes a grant for the cell to be transferred to the buffered crossbar. The 

grant is conveyed to the output scheduler block. In addition, the grant for that cell 

is sent to the ingress linecard.
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Packet Buffer Packet Buffer

Ingress Linecard Buffered Crossbar Egress Linecard

Input Scheduler

Output Scheduler

Centralized Scheduler

Figure 4-1: D atapath of a packet through a router using a buffered crossbar.

4) The ingress linecard receives the grant and sends the corresponding cell to the 
buffered crossbar. The cell is stored in the corresponding crosspoint buffer.

5) Sometime later, the output scheduler dedicated to the egress linecard schedules
the cell to be transferred to the egress linecard. This decision is conveyed to the

buffered crossbar.

6) The buffered crossbar sends the cell to the corresponding egress linecard. The 
cell is stored in the packet buffer of the egress linecard.

7) Sometime later, the cell is placed on the outgoing line.
In this suggested design, the communication between a linecard and the switch 

fabric is limited to one request, one grant, and one sending cell and one receiving cell 

per scheduling phase. The centralized scheduler stores requests for the cells currently 

waiting in the ingress linecard. Each input scheduler independently determines which 
cell to send to the empty crosspoints. Based on the crosspoint status, each output 

scheduler independently determines which cell to transfer to the egress linecards. 
Even though the input and output schedulers are located in a centralized location, 
the decisions are made independently and in parallel.
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4.2 Future Research

We noted that technology today is capable of allowing one cell per crosspoint 

when the number of ports was less than one hundred. As technology progresses, the 
size of memories that can fit on chip continues to grow. So, one question to ask is 

what other features are possible if a buffered crossbar can store a number of cells per 

crosspoint. In the following sections, we conjecture that there are a number of other 

possible guarantees a buffered crossbar with larger crosspoints can provide.

4.2.1 Larger Buffers per Crosspoint

In Section 3.4, a buffered crossbar with one cell per crosspoint was shown to mimic 

an OQ switch using a weighted round robin scheduler. A consequence of this result is 
that the scheduling of cells is practical, and can be done independently and in parallel 

by each input and output. However, this result made the assumption that cells from 
an input/output pair depart the switch in the order they arrive. Fortunately, if there 

are k cells per crosspoint, then the result can be trivially applied to include switches 
where there are at most k flows between an input/output pair.

These additional flows could be used to provide better quality of service or the 

support for subports. This feature comes at a cost of statically allocating a number 

of cells per crosspoint. Another possible direction for future research is to explore 

how cells could dynamically be allocated across a number of crosspoints. It would 

be interesting to investigate how the sharing of cells would influence the scheduling 
policies. We believe that throughput, rate, and delay guarantees can be provided 
with more efficient use of the crosspoint buffers.

4.2.2 100% Throughput w ith Larger Buffers

Another possible use of larger buffers could be to reduce the speedup required 

to provide throughput guarantees. For uniform traffic, Javidi et al. proved that a 
buffered crossbar with one cell per crosspoint can achieve 100% throughput [23]. In 
Section 3.2, a buffered crossbar with one cell per crosspoint running at a speedup of
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two was shown to provide 100% throughput. We believe that a buffered crossbar with 

N  cells per crosspoint, where N  is the number of ports in the switch, can achieve 
100% throughput at a speedup less than two. Future research could determine the 

speedup and combination of the input and output scheduling policies required to 
provide throughput guarantees.

4.2.3 Variable Length Packets

This thesis primarily focused on fixed sized cells. However, most packets in the 
Internet are variable length. If a crosspoint in a buffered crossbar could be the size 

of a packet, we believe that throughput, rate, and delay guarantees can be provided 
for packets. Many difficult problems can be avoided if routers only had to process 

packets.
Segmentation and reassembly has been a required function to convert packets into 

cells for cell switching. Because cells are a fixed size and packets are segmented to 

fit these cells, many cells are padded with useless data. This has been referred to as 

the 65-byte problem where the size of a cell is 64 bytes. The first cell holds 64 bytes 
of valid data. However, the second cell only holds 1 byte of valid data. To overcome 

this inefficiency, many router vendors run their linecards at twice the rate.
The algorithms to support variable length packets for the buffered crossbar would 

be similar. The only difference is that input and output scheduiers would make 

decisions on packets instead of cells. This also allows a system to be designed where 

linecards can run asynchronously. Future research could confirm that performance 

guarantees for variable length packets using buffered crossbars is achievable.
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N ecessity and Sufficiency o f a Speedup of
2 - 1  / N

A .l The Necessity of a Speedup of 2 — 1 / N

In this section, we show a lower bound of 2 — 1 /N  on the speedup of any N  x N  

CIOQ switch that mimics OQ switching, even when the OQ switch uses FIFO. Given 
the sufficiency of a speedup of two presented in Section 2.4, the algorithms that we 
have presented in this paper are almost optimal. In fact, the difference of 1 /N  can 

be ignored for all practical purposes.
Since a speedup between one and two represents a non-integral distribution of 

phases, we first describe how scheduling phases are distributed. A speedup of 2 — 1 /N  

corresponds to having one truncated time slot out of every N  time slots. The truncated 

time slot has only one scheduling phase, whereas the other N  — 1 time slots have two 
scheduling phases each. In Figure A-l, we show the difference between one-phased and 

two-phased time slots. For the purposes of our lower bound, we need to assume that 
the scheduling algorithm does not know in advance whether a time slot is truncated.

Recall from Section 2.3 that a cell is represented as P-t, where P represents which 
output port the cell is destined to, and t represents the departure time for the cell. 

For example, the cell C-7 must be scheduled for port C before the end of time slot 7.
The input traffic pattern that provides the lower bound for an N  x N  CIOQ 

switch is given below. The traffic pattern spans several time slots; the last of which

47
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Time Slot

Arrival Scheduling Departure
Phase Phase 1 Phase

One Scheduling Phase Time Slot

Arrival Scheduling Scheduling Departure
Phase Phase 1 Phase 2 Phase

Two Scheduling Phase Time Slot

Figure A-l: One scheduling phase and two scheduling phase time slots.

is truncated.
1 . In the first time slot, all input ports receive cells destined for the same output 

port, P\.
2. In the second time slot, the input port that had the lowest departure time in 

the previous time slot does not receive any more cells. In addition, the rest of the 

input ports receive cells destined for the same output port, P2.
3. In the ith time slot, the input ports that had the lowest departure time in each 

of the i — 1 previous time slots do not receive any more cells. In addition, the rest of 

the input ports must receive cells destined for the same output port, Pj.
We can repeat the above traffic pattern as often as required to create arbitrarily 

long traffic patterns. In Figure A-2, we show the above sequence of cells for a 4 x 4 

switch. The arrival events to the OQ switch are depicted on the left, and the departure 

events are on the right. For simplicity, we present the proof of our lower bound on 
this 4 x 4  switch. The proof immediately extends to N  x N  for N  > 4.

Figure A-3 shows the only possible schedule for transferring these cells across in 
seven phases. Of the four time slots, the last one is truncated, giving a total of seven 

phases. Cell A-l must leave the input side during the first phase since the CIOQ 
switch does not know whether the first time slot is truncated. Similarly, cells B-2, 

C-3, and D-4 must leave during the third, fifth, and seventh phases respectively (see 
Figure A-3(a)). Cell A-2 must leave the input side by the end of the third phase, but
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Time Slot
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Figure A-2: Lower bound input traffic pattern for a 4 x 4 switch.

Phase PA PB PC PD
1 A -l
2
3 B-2
4
5 C-3
6
5 D-4

(a)

Phase PA PB PC PD
1 A-l
2 A-2
3 A-3 B-2
4 B-3
5 B-4 C-3
6 C-4
5 D-4

(c)

Figure A-3: Scheduling order for the

Phase PA PB PC PD
1 A-l
2 A-2
3 B-2
4 B-3
5 C-3
6 C-4
5 D-4

(b)

Phase PA PB PC PD
1 A -l
2 A-2
3 A-3 B-2
4 A-4 B-3
5 B-4 C-3
6 C-4
5 D-4

(d)

bound input traffic pattern in Figure A-2.
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it cannot leave during the first or the third phase because of contention. Therefore, 

it must depart during the second phase. Similarly, cells B-3 and C-4 must depart 
during the fourth and sixth phases respectively (see Figure A-3(b)). Continuing this 

elimination process (Figure A-3(c), (d)), there is only one possible scheduling order. 

For this input traffic pattern, the switch needs all seven phases in four time slots 

which corresponds to a minimum speedup of 7/4 (or 2 — 1/4).

T h eo rem  14 A minimum speedup of 2 — 1 /N  is necessary for an N  x N  CIOQ 

switch operating under any algorithm which is not allowed to consider the number of 
scheduling phases in a time slot.

The proof of Theorem 14 is a straight-forward extension of the 4 x 4  CIOQ switch 

example.

A .2 The Sufficiency of a Speedup of 2 — 1 / N  to  

Mimic a FIFO OQ Switch

We now show that it is possible to mimic a FIFO OQ switch using a speedup of 

2 — 1/N. Specifically, we show that identical behavior can be achieved by a CIOQ 

switch which follows the general framework described in Section 2.4. It uses a scheme 

that we call Last In Highest Priority (LIHP) to determine input priorities for incoming 

cells. As the name suggests, LIHP places a newly arriving cell right at the front of the 
input priority list. The analysis in this section borrows heavily from ideas described 

in Section 2.5.
In this section, we use a slightly different time slot structure. A “normal” time slot 

has an arrival phase followed by two scheduling phases and then a departure phase, 

whereas a “truncated” time slot has an arrival phase, a scheduling phase, and then 

a departure phase. Since the speedup is 2 — 1/N, we assume that there are N  — 1 
normal time slots between two truncated time slots. The CIOQ switch does not need 

to know which time slots are truncated.
At any time instant and for any cell c, let N TS(c)  denote the number of truncated 

time slots between now and the time when this cell leaves the OQ switch, inclusive.
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Recall from Section 2.3 that L(c) =  OC(c) — IT (c ) is the slackness of cell c, where 

OC(c) and IT (c ) refer to the output cushion and input thread of the cell, respectively.
The following lemma holds for CIOQ switches that use LIHP and operate at a 

speedup of 2 — 1/N.

Lem m a 15 I f  the OQ switch being mimicked is FIFO, then L(c) >  N T S (c) after 

the first scheduling phase and just before the arrival phase, for all cells c waiting on 

the input side.

Proof: Suppose the lemma has been true till the beginning of time slot t — 1.
We prove that the lemma holds at the end of the first scheduling phase and at the 

end of the departure phase in time slot t.
We first consider the end of the first scheduling phase. Cells which were already 

present on the input side at the beginning of time t satisfy L > N T S ,  as N T S  does 

not change (a property of FIFO -  the departure time of a cell from the OQ switch gets 
fixed upon arrival, and does not change), and L  can only go up (see Lemma 3 for an 
explanation of why L  can not decrease) during the arrival and the scheduling phases. 

Now consider a cell c which arrives during time slot t. Let k = NTS(c).  Since the 
slackness of a cell is at least zero upon arrival (remember that the input thread of an 

arriving cell is zero in LIHP), the slackness at the end of the first scheduling phase 

must be at least one. Therefore, c trivially satisfies the lemma if k <  1. Suppose 

k > 1 . At most N  cells could have arrived during the current time slot, and therefore, 
there must have been a cell d in the system with a N T S  of k — 1 and with the same 

output port as c at the beginning of time t  (this is where we use the fact that the 
truncated time slots are spaced at least N  apart). If d is waiting on the input side, 

then OC(d) > L(d) > k — 1. Since the OQ switch is FIFO, OC(c) > OC(d). But the 
input thread of the arriving cell c must be zero. Hence, the slackness of c is at least 

k — I after the arrival phase, and consequently, at least k after the first scheduling 
phase. The case where d is waiting at the output side is similar, and we omit the 

details.
Now concentrate on the end of time slot t. If this time slot turns out to be normal, 

then the slackness of any cell does not decrease during the second scheduling phase
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and the departure phase. Else, the slackness of any cell can go down by at most one. 

However, the N T S  value goes down by one for all cells in the system, and the lemma 
continues to hold. ■

T h eo rem  16 A speedup of 2 — 1 /N  suffices for a CIOQ switch that uses LIHP to 
mimic a FIFO OQ switch.

Proof: Suppose it is time for cell c to leave the OQ switch, and suppose that

the CIOQ switch has successfully mimicked a FIFO OQ switch so far. Clearly, OC(c) 
must be zero. If c has already crossed over to the output side, then we are done. So 
suppose c is still queued at its input port. If the current time slot were truncated, 

then L(c) would be at least one (Lemma 15). But then the input thread would be 
negative, which is not possible. Therefore, the current time slot has two scheduling 

phases. Invoking Lemma 15 again, L(c) must be at least zero after the first scheduling 

phase. Since OC(c) is zero, the input thread of c must be zero too. Cell c, therefore, 

is at the front of both its input and its output priority lists, and will cross ..the switch 
in the second scheduling phase just before the departure phase. This completes the 
proof of the theorem. ■
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A cyclic D ependency Graph

In this appendix, we will prove Lemma 6 which states that the dependency graph 
for a scheduling phase is acyclic when CCF is combined with the DTC strategy.

Proof: The proof is by contradiction. Assume there does exist a cycle in the

dependency graph on active cells. Pick a smallest cycle in this graph. If there is an 

edge from cell a to cell b, then b must be ahead of a either in the input queue ordering 

or in the output queue ordering. We call the edge an “input” edge in the former case 

and an “output” edge in the latter; ambiguities are resolved arbitrarily. The smallest 
cycle must have alternating input and output edges because two successive input or 
output edges could be collapsed into one resulting in a smaller cycle. If there is an 

output edge from a to 6, then the output cushion of b is at most as large as that of 

a. But a and b are both active, and the input thread of an active cell must equal its 
output cushion. Therefore, the input thread of b is no larger than the input thread 

of a. Also, if there is an input edge from a to b, then the input thread of b must be 
strictly smaller than that of a; that is, a appears in fc’s input thread. The smallest 

cycle must have at least two edges as there can be no self loops in the dependency 
graph. Consequently, the cycle must contain at least one input edge. But this implies 
that as we traverse the cycle once the input thread of the cell where we start must be 
larger than the input thread of the cell where we end. Since we start and end at the 

same cell as we traverse a cycle, this implies tha t the input thread of this cell must 

be less than itself. This is clearly impossible. Hence our assumption that there exists 

a cycle in the graph cannot be true, and the lemma is proved. ■
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N on-N egative Slackness w ith GBVOQ

In this appendix, we will prove Lemma 7 which states that the slackness of a 

newly arriving cell is non-negative when using the GBVOQ algorithm.

Proof: Consider any cell a that is inserted with a slackness of L(a). Following 
the arrival phase, L(a) increases by at least one in each of the two scheduling phases. 
And in the departure phase, L(a) will decrease by one. Therefore, at the end of the 

time slot, L(a) increases by at least one. For example, if arriving cell a, is inserted 
with a slackness of zero, then at the end of the time slot, the slackness of cell a will 

be at least one.

From Lemma 3 and the claim that the slackness of an arriving cell will increase 

by one at the end of the time slot relative to the slackness of the cell when it arrived, 

we know that if the slackness of a cell is less than one, then its slackness must have 

been negative when the cell was inserted. Let t  be the first time that an arriving cell 
is inserted with negative slackness. Consider two cases.

• C ase 1: If cell c was inserted at the head of the priority list, IT (c ) is zero. 

Since the output cushion is defined as a non-negative value, the slackness of the 

cell is non-negative when inserted which contradicts our assumption.

• Case 2: If cell c was not inserted at the head of the priority list, cell c must 

be inserted immediately behind another cell, c', destined to the same output 
as cell c. Since d  was inserted before time t, it must have been inserted with 

non-negative slackness. At the end of the time slot cell d  was inserted, its

54
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slackness increased by one. From Lemma 3, the slackness of cell d  is still at 

least one at time t. But since IT(c) =  IT (d )  +  1, and OC(c) =  OC(d), then 
L(d) =  L(c') — 1 > 0. So the slackness of the cell c must also be non-negative 
when inserted which again contradicts our assumption.
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Achieving 100% Throughput

In this appendix, we will prove that a buffered crossbar with a speedup of two 

using arbitrary input and output scheduling algorithms achieves 100% throughput.

Lemma 17 Consider a system of queues whose evolution is described by a discrete 
time markov chain (DTMC) which is aperiodic and irreducible with state vector Yn 6  

NM. Suppose that a lower bounded, non-negative function F(Yn), called Lyapunov 

function, F  : NM —> R exists such that VTn, E[F(Yn+i)\Yn] < oo. Suppose also that 
there exist 7  G R+ and C  G R+, such that V||yn|| > C,

E[F(Yn+1) -  F(Yn)\Yn] < - 7 , (D.l)

then all states of the DTMC are positive recurrent and for every e > 0, there exists 
B  > 0 such that limn_l.0O FV{]Tb . X if fn )  > B }  < t.

Proof: This is a straightforward extension of Foster’s criteria and follows

from [30, 31, 32, 33]. ■
We will use the above lemma in proving Theorem 8 .

Theorem  8 Under an arbitrary scheduling algorithm, the buffered crossbar gives 
100% throughput with speedup of two.

Proof: In the rest of the proof we will assume that all indices i , j ,  k vary from 

1,2, ..N. Denote the occupancy of VOQij at time n by Xij(n). Also, let Zij denote

56
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the combined occupancy of the VOQij and the crosspoint Bij at time n. By definition, 

Zij{n) — Xij{jT) T Bij(n).

Denote Dij(n) =  1 if a cell departs from VOQij at time n and zero otherwise. 
Also, let Aij(n) — 1 if a cell arrives to VOQij and zero otherwise. Then, X i:i(n + 1) =  
Xij(n) + Aij(n) — Dij(n). Henceforth, we will drop the time n from the symbol for 

Dij(n) and A^(n), and refer to them as Dtj and Aij respectively, since in the rest of 
the proof, we will only be concerned with the arrivals and departures of cells at time 

n.

Define,

(D.2)

(D.3)

F ( n ) =  h ( n ) + M n ) (D.4)

Observe that from (D.2)

k

Therefore, [/x(n +  1) -  / x(n)]

Y y X i:j{n +  1 )X ik(n + 1) -  Xij(n)Xik(n)}
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Then we get [fi(n +  1) — fi(n)]

=  ^  T  A i j  D i j ) ( X i k ( n )  -f- A i k  A ft)
i , j ,k 

X i j { n ) X i k { n )

=  'y 'X-Ajj Dij)Xih(n) T {Aik Dik)Xij(n)+ 
i , j ,k

{Aij Dij)(Aik Dik)

—  y  ^{Aik D i k ) X i j ( n )  - t -  { A y  D i j ) ( A i k  Di k)  
i , j ,k

Since |A ^  — D i j \ <  1 and similarly \ A i k  — D i k \ < 1 , we get1

E [h{n  +  1) -  h{n)] < N 3 + Y 1 2 E -  Dik]Xij(n) (D.5)

Denote Eij{n) =  1 if a cell departs from the combined queue of VOQij and the

crosspoint Bij, and zero otherwise. Note that Eij{n) =  1 only when a cell departs 

from the crosspoint B tJ to the output at time n, since all departures to the output 

must occur from the crosspoint. Also recall that the arrival rate to the combined 

queue, VOQij and A j ,  is the same as the arrival rate to VOQij. So we can write 
Zij{n + 1) =  Zij{n) +Aij{n) — Eij{n). Again we will drop the time n from the symbol 
for E i j { n ) and A tj  ( « ) , and refer to them as E i j  and A t:1 respectively.

Then, similar to the derivation in (D.5), we can derive using (D.3),

E [f2{n +  1) -  f 2{n)] < N 3 +  J 2  2E[Akj -  D k j \ Z i 3 { n ) (D.6)
i , j ,k

1This is in fact the conditional expectation given knowledge of the state  of all queues and cross-
points at time n. For simplicity in the rest of the proof (since we only use the conditional expec­
tation), we will drop the conditional expectation sign and simply use the symbol for expectation as 
its meaning is clear.
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So from (D.5) and (D.6), E[F(n + 1) — F(n)\ 

< 2iV3 + 2 j 2 ( E [ A ik -  D ^ X i j in )
i,j,k

+  E[Akj — Ekj\Zij(n  

=  2iV3 +  2 j 2 ( E lj( n ) Y , E [ A lk -  A * ]
ij k

+  Zij{n) E[Akj — E kj]j
k

Re-substituting Zij — Xij +  A p  we get E [f(n  +  1) — f(n)],

< 2iV3 +  2 (n) ^  E[Aik -  A*]

+ {Xij(n) 4- Bij(n)) ^  -  A j])
k

= 2JV3 +  2 ^  ( X ^  (n) J ]  -  Dik +  A fci -  A , ]
i,j k

+ Bij(n) A A j  — E kj
k

We can substitute A , =  ]Tfc E[Aik -  Dik +  A kj -  Ekj] and Sj = Y ,k E[Akj -  E kj\ 
and re-write this as,

E[F(n  +  1) -  F{n)} < 2N 3 + 2 j 2 ( x o(n )R lj +  B v ( n )Sj)  (D-7)
h3

But, we also have from equation 3.1,

A A >  +  i ) - A » ]  =  Rij (D.8)

E E A ( n  +  l ) - Z l3(n))] =  S, (D.9)
k

In Section 3.2, it was shown that for a buffered crossbar with speedup of two, A j

is strictly negative when Xij{n) > 0 and the traffic is admissible. So the first product
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term inside the summation sign in equation (D.7)

Xij(n)Rij < 0 (D.10)

Similarly, if the traffic is admissible, then J2k < 1- Also, when Bij (n) =  1,

will receive at least one cell and so at least one cell must have departed one of the 
crosspoints destined to output j  at time n. And so when the traffic is admissible 
and Bij(n ) =  1, then Sj < 0. This implies that the second product term inside the 

summation sign in equation (D.7),

In both cases, Xij(n)Rij and Bij(n)Sj are equal to zero only if Xij — 0 and B,:/ =  0 
respectively. Now we want to use Lemma 17 and show that the whole right hand side 

of equation (D.7) is strictly negative. All that needs to be done is to ensure that 
one of the VOQs X ^  in the summation in equation (D.7) is large enough so that 

2Xij(n)Rij can negate the positive constant 21V3.
In order to show this, let, Xmax — m a x (^ fe Xik, Xkj), i , j  £ (1,2, ..N). Choose 

any 7 ' > 0 , and let

where, C  corresponds to the constant in Lemma 17. Recall that Ztj < X ^  + 1. 

Then the above inequality can only be satisfied if there exists X ^  such that:

then from (3.1) and case 1 of theorem 8 in section 3.2, we know that the output j

Bij(n)Sj < 0 (D .ll)

ijk

im a x 1m a x

1ma x
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As shown in section 3.2, when Xjj > 0,

R i j  A (2 2Arnax)  ^  (1 Am a x )

Therefore, we have
< - ( l  + i ) N 3

If we substitute this in equation D.7, then for all n such that F[n) > B,

E[F(n  +  1) -  F(n)} < - 2 7 'iV3

Let 7  correspond to the variable in Lemma 17 and set 7  =  2 j 'N 3. Also it is easy to 

see that,

E[F(n  +  1) |F(n)] < 00

From Lemma 17, for every e > 0, there exists B  > 0 such that
lim ^oo P r{^2 i • X ij(n )  > B} < e. From definition 3, the scheduling algorithm gives 
100% throughput. ■
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M imicking an OQ Switch

E .l Mimicking a Restricted PIFO OQ Switch

In this section, we will prove that a buffered crossbar with a speedup of two can 
mimic a restricted PIFO OQ switch. Before we prove Theorem 10, we will need the 

following lemmas.

L em m a 9 The slackness L(c) of a cell c waiting on the input side is non-decreasing 
from time slot to time slot.

Proof: Let L(c) be the slackness of cell c which belongs to VOQij at the
beginning of a time slot. During the arrival phase, IT (c ) can increase by at most one 

because an arriving cell might be inserted ahead of c in its input priority list. During 
the departure phase, OC(c) will decrease by at most one. So, L(c) can decrease by 

at most two in a single time slot.
From Lemma 9, L(c) increases by at least one per scheduling phase. With two 

scheduling phases per time slot, L(c) increases by at least two. Taking into account 
arrivals, departures, and both scheduling phases, L(c) cannot decrease from time slot 

to time slot. ■

Lem m a 10 The slackness L(c) of a newly arriving cell c is non-negative.

Proof: Consider any cell x  that is inserted with a slackness of L(x). Following 

the arrival phase, L(x) increases by at least one in each of the two scheduling phases.
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In the departure phase, L(x) will decrease by one. Therefore, at the end of the time 
slot, L(x) increases by at least one. For example, if arriving cell x  is inserted with 

a slackness of zero, then the slackness of cell x  will be at least one at the end of the 

time slot.
From Lemma 9 and the fact that the slackness of an arriving cell will increase by 

one at the end of the time slot relative to the slackness of the cell when it arrived, 

we know that if the slackness of a cell is less than one, then its slackness must have 
been negative when the cell was inserted. Let t  be the first time that an arriving cell 

is inserted with negative slackness. Consider two cases:

• C ase 1: If cell c was inserted at the head of the priority list, IT{c ) is zero. 
Since the output cushion is defined as a non-negative value, the slackness of the 

cell is non-negative when inserted which contradicts our assumption.

• C ase 2: If cell c was not inserted at the head of the priority list, cell c must 

be inserted immediately behind another cell, c', destined to the same output 
as cell c. Since d  was inserted before time t, it must have been inserted with 
non-negative slackness. At the end of the time slot cell d  was inserted, its 
slackness increased by one. From Lemma 9, the slackness of cell d  is still at 

least one at time t. But since IT (c ) =  IT (d )  +  1, and OC(c) =  OC(d), then 

L(c) = L (d ) — 1 > 0. So the slackness of the cell c must also be non-negative 

when inserted which again contradicts our assumption.

■

T h eo rem  2  (Sufficiency) A buffered crossbar with a speedup of two can mimic the 

restricted PIFO-OQ switch regardless of the incoming traffic pattern.

Proof: Suppose that the CIOQ switch has successfully mimicked the OQ switch 

up until time slot t  — 1. Consider the beginning of time slot t. We must show that 
any cell reaching its departure time is either: (1) already at the output side of the 

switch or (2) will be transferred to the output during time slot t.
From Lemma 9 and Lemma 10, we know that a cell always has a non-negative 

slackness. Therefore, when a cell reaches its departure time (i.e., its output cushion
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has reached zero), its input thread must also equal zero. This means either: (1) that 

the cell is already at its output and may depart on time, (2) that the cell is in the 

crosspoint buffer, or (3) that the cell is simultaneously at the head of its input priority 
list (because its input thread is zero) and has the earliest departure time (because it 
has reached its departure time). In case (3), the input scheduling phase is guaranteed 

to transfer the cell to the crosspoint. In both cases (2) and (3), since the cell is in 
the crosspoint after the input scheduling phase and has the earliest departure time, 

it will be selected in the output scheduling phase. The cell will then reach the output 
during the time slot, and therefore the cell departs on time. ■

E.2 Mimicking an OQ Switch Using a W R R  Policy

In this section, we will prove Theorem 11 which states that a buffered crossbar 

with a speedup of two can mimic an OQ switch using a W RR policy. In what follows, 

consider the following virtual finish time assignment policy when a cell arrives to the 
crosspoint. Assume a cell c arrives to the crosspoint Bij at time t. Without loss of 

generality, let this be the kth cell from input i to output j.
C ase 1: If the k — 1th cell is still present in output j  of the buffered crossbar, 

then the output of the buffered crossbar will assign the virtual finish time, .Ff-1 +  

C ase 2 : If the k — 1th cell is not present in output j  and the kth cell is not 
transferred to the crosspoint in the scheduling phase immediately after its arrival, 

then the output of the buffered crossbar will assign a virtual finish time of F.f -1 +  
Case 3: If the k — 1th cell is not present in the output j  of the buffered crossbar 

and the kth cell is transferred to the crosspoint immediately after its arrival, then the 
output of the buffered crossbar will assign the virtual finish time, V(t) + A.

We further assume that the buffered crossbar has a speedup of two, and the output 
picks cells with the smallest virtual finish time from the non-empty crosspoints.

L em m a 3 The virtual finish time of every cell c is the same in the WRR-buffered 

crossbar switch and the WRR-OQ switch.

Proof: Assume that the buffered crossbar has correctly calculated the virtual
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finish time of all cells which have arrived to the crosspoints up until time t — 1 and 

the outputs have chosen the cells from their crosspoints which have the smallest finish 
time in every scheduling phase. From the results in section 3.3, this means that the 

buffered crossbar with a speedup of two has mimicked the WRE-OQ switch up until 
time t — I. Let t  be the first time that the virtual finishing time of a cell calculated is 

different from the virtual finishing time calculated by the WRR-OQ switch. Consider 
that cell c which arrives to the crosspoint Bij at time t  was incorrectly calculated. 

W ithout loss of generality, let this be the kth cell from input i to output j .  We 
consider three cases.

C ase 1: If the k — 1th cell is still present in output j  of the buffered crossbar, 
then this means that it was also present in the WRR-OQ switch when the kth cell 
arrived. So both the WRR-OQ switch and the output of the buffered crossbar will 
assign the same virtual finish time, F *-1 +  which contradicts our assumption.

C ase 2: If the k — 1th cell is not present in output j  and the kth cell is not 

transferred to the crosspoint in the scheduling phase immediately after its arrival, 

then it must have been inserted behind the k — 1th cell in the input priority list or 

inserted to the head of the input priority list since the k — 1th cell is currently in the 
crosspoint. Since the buffered crossbar switch has mimicked the WRR-OQ switch up 
until time t — 1, this means that the (k — l ) th cell was also present in the WRR-OQ 

switch at time a*. The output of the buffered crossbar assigns a virtual finish time 

of F f  _1 +  j:  which matches the virtual finish time assigned by the WRR-OQ switch. 

The assignment is the same which contradicts our assumption.
Case 3: If the k — 1th cell is not present in the output j  of the buffered crossbar 

and the kth cell is transferred to the crosspoint immediately after its arrival, then 
since the buffered crossbar switch has mimicked the WRR-OQ switch up until time 

t — 1, neither switch has cells in the system from input i destined to output j .  So 
both the WRR-OQ switch and the output of the buffered crossbar will assign the 

same virtual finish time, V(t)  +  which again contradicts our assumption.
So the virtual finish time of a cell at time t can also be correctly calculated. ■

The above lemma and the fact that the WRR-OQ switch is a special case of the 
restricted PIFO-OQ policy imply the following theorem.
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T h eo rem  4 (Sufficiency) A buffered crossbar can mimic an OQ switch using a 

weighted round-robin policy with speedup of two, regardless of the incoming traffic 

pattern.

E.3 Mimicking a PIFO OQ Switch

In this section, we will prove that a buffered crossbar with a speedup of three can 

mimic any PIFO OQ switch. Before we prove Theorem 12, we will need the following 

lemmas.

L em m a 5 After the modified arrival phase, all cells in the crosspoints Bij will have 

earlier departure order than any cell queued at input i destined for output j.

Proof: Assume that the above property holds up until time t  — 1. Let t be the 

first time that any cell c in the crosspoint does not have the earliest departure order as 
compared to any cell queued at input i destined for output j .  At time t, there can be 

at most one newly arriving cell c to an input. If the arriving cell has a earlier departure 

order than the cell in the corresponding crosspoint, then the modified arrival phase 

allows cell c to swap with the cell in the corresponding crosspoint which contradicts 
our assumption. ■

L em m a 6  The slackness L(c) of a cell c decreases by at least one in each scheduling 

phase.

Proof: Since Lemma 5 guarantees that the cell in the crosspoint has the earliest 
departure order compared with any cell queued in the corresponding input queue, 

Lemma 9 still holds. ■

L em m a 7 The slackness L(c) of a cell c waiting on the input side is non-decreasing 
from time slot to time slot.

Proof: Given Lemma 6 , the only other difference as compared to Lemma 9 is

in the modified arrival phase. Irrespective of whether a swap occurred or not, there
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is only one newly arriving cell to deal with, i.e., if a swap does not occur, then it is a 

cell which just arrived at the input, else if a swap occurs, then the newly arriving cell 

is the cell from the swapped crosspoint. The rest of the proof is similar to Lemma 9.
■

L em m a 8 The slackness L(c) of a newly arriving cell c is non-negative.

Proof: As described in Lemma 7, we only need to be concerned about inserting 
one newly arriving cell to the priority list at the input irrespective of whether a swap 

occurred or not. The rest of the proof is similar to Lemma 10. ■

T heorem  4 A buffered crossbar can mimic a PIFO-OQ switch (and hence give delay 

guarantees) with speedup of three regardless of the incoming traffic pattern.

Proof: Given Lemma 7 and Lemma 8 , the proof is exactly the same as the proof 
for Theorem 10. ■
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A ppendix F

Buffered Crossbar w ith N  Cells Per 
Output

In this appendix, we will prove Theorem 13 which states that a buffered crossbar 

with a speedup of two and N  cells of buffering per output can mimic a PIFO-OQ 
switch with a fixed delay of N /2  time slots.

Proof: An input can receive at most p N  — 1 grants over any p consecutive

scheduling phases. If the input adds new grants to the tail of a grant FIFO, and reads 

one grant from the head of the grant FIFO in each scheduling phase, then the grant 

FIFO will never contain more than N  — 1 grants. Each time the input takes a grant 

from the grant FIFO, it sends the corresponding cell to the set of N  crosspoints for 
its output. Because the grant FIFO is served once per phase, a cell that is granted 

at scheduling phase p will reach the output crosspoint by phase p + N  — 1.
We need to verify that the per-output buffers in the crossbar never overflow. If the 

crosspoint scheduler issues a grant at phase p, then the corresponding cell will reach 

the output crosspoint between phases p and p + N  — 1. Therefore, during scheduling 

phase p, the only cells which can be in the output crosspoint are cells which were 
granted between phases p — N  to p — 1. W ith N  buffers per output, the buffers will 

never overflow, and each cell faces a delay of at most N  scheduling phases, i.e., N/2  
time slots (because 5  =  2). ■
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