Load balancing and parallelism for the Internet

LOAD BALANCING AND PARALLELISM FOR THE INTERNET

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
 AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY
 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
 FOR THE DEGREE OF
 DOCTOR OF PHILOSOPHY

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
®

UMI Microform 3332842
Copyright 2008 by ProQuest LLC.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway
PO Box 1346
Ann Arbor, MI 48106-1346
(c) Copyright by Sundar Iyer 2008

All Rights Reserved

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.
\qquad
(Prof. Balaji Prabhakar)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Approved for the University Committee on Graduate Studies.

To
 my late Grandpa, my late Grandma, and my "grand"Ma

\&

To
A sub-culture that values Academia

Abstract

Problem: High-speed networks including the Internet backbone suffer from a wellknown problem: packets arrive on high-speed routers much faster than commodity memory can support. On a $10 \mathrm{~Gb} / \mathrm{s}$ link, packets can arrive every 32 ns , while memory can only be accessed once every $\sim 50 \mathrm{~ns}$. By 1997, this was identified as a fundamental problem on the horizon. As link rates increase (usually at the rate of Moore's Law), the performance gap widens and the problem only becomes worse. The problem is hard because packets can arrive in any order and require unpredictable operations to many data structures in memory. And so, like many other computing systems, router performance is affected by the available memory technology. If we are unable to bridge this performance gap, then -

1. We cannot create Internet routers that reliably support links $>10 \mathrm{~Gb} / \mathrm{s}$.
2. Routers cannot support the needs of real-time applications such as voice, video conferencing, multimedia, gaming, etc., that require guaranteed performance.
3. Hackers or viruses can easily exploit the memory performance loopholes in a router and bring down the Internet.

Contributions: This thesis lays down a theoretical foundation for solving the memory performance problem in high-speed routers. It brings under a common umbrella several high-speed router architectures, and introduces a general principle called "constraint sets" to analyze them. We derive fourteen fundamental, not ephemeral solutions to the memory performance problem. These can be classified under two types - (1) load balancing algorithms that distribute load over slower memories, and guarantee that the memory is available when data needs to be accessed, with no exceptions whatsoever, and (2) caching algorithms that guarantee that data is available in cache 100% of the time. The robust guarantees are surprising, but their validity is proven analytically.

Results and Current Usage: Our results are practical - at the time of writing, more than 6 M instances of our techniques (on over 25 unique product instances)
will be made available annually. It is estimated that up to $\sim 80 \%$ of all high-speed Ethernet switches and Enterprise routers in the Internet will use these techniques. Our techniques are currently being designed into the next generation of $100 \mathrm{~Gb} / \mathrm{s}$ router line cards, and are also planned for deployment in Internet core routers.

Primary Consequences: The primary consequences of our results are that -

1. Routers are no longer dependent on memory speeds to achieve high performance.
2. Routers can better provide strict performance guarantees for critical future applications (e.g., remote surgery, supercomputing, distributed orchestras).
3. The router data-path applications for which we provide solutions are safe from malicious memory performance attacks, either now and provably, ever in future.

Secondary Consequences: We have modified the techniques in this thesis to solve the memory performance problems for other router applications, including VOQ buffering, storage, page allocation, and virtual memory management. The techniques have also helped increase router memory reliability, simplify memory redundancy, and enable hot-swappable recovery from memory failures. It has helped to reduce worstcase memory power (by $\sim 25-50 \%$) and automatically reduce average case memory and I/O power (which can result in dramatic power reduction in networks that usually have low utilization). They have enabled the use of complementary memory serialization technologies, reduced pin counts on packet processing ASICs, approximately halved the physical area to build a router line card, and made routers more affordable (e.g., by reducing memory cost by $\sim 50 \%$, and significantly reducing ASIC and board costs). In summary, they have led to considerable engineering, economic, and environmental benefits.

Applicability and Caveats: Our techniques exploit the fundamental nature of memory access, and so their applicability is not limited to networking. However, our techniques are not a panacea. As routers become faster and more complex, we will need to cater to the memory performance needs of an ever-increasing number of router applications. This concern has resulted in a new area of research pertaining to memory-aware algorithmic design.

Preface

"Do you have a book on stable marriages?", I asked her with a straight face ${ }^{1}$. It was the first book I was told to read at Stanford, and I knew full well where I could find it. But the moment of humor was there, waiting to be exploited. She looked at me as only a nineteen-year-old girl could - simultaneously playfully, flabbergasted, and unimpressed ...

Why is it hard to build high-speed routers? Because high-speed routers are like marriages: they are unpredictable, provide no guarantees, and become vulnerable in adversity. Not that I'm asking you to allow a 31 -year-old unmarried male to lecture you about marriage - thankfully, this thesis makes no attempt to comment on human marriage, a topic about which the author is clueless.

This thesis is about solving the memory performance bottlenecks in building highspeed routers. More specifically, it is about managing and resolving the preferences and contention for memory between packets from participating inputs and outputs in a router.
"But no one really reads a thesis ...", is a lament ${ }^{2}$ one often hears in academia. It's a remark that is neither very motivating or useful for a grad student to hear. We humans are driven by the proud notion that the work we do (e.g., writing a thesis) has a point. I would like to challenge the notion that a thesis is not intended to be read. To that end, I have tried to structure the chapters so that they can be read independently.

Almost all the research pertaining to this thesis was done in the High Performance Network Group at Stanford University. The thesis was then written over ten months from October 2007 to July 2008, and is now being completed after four years of development and deployment of some of the academic ideas expounded herein (initially at Nemo Systems, and currently in the Network Memory Group at Cisco Systems).

[^0]My industry experience benefitted me tremendously, by giving me a sense of what is practical. Working in industry before finishing my thesis helped me ground my ideas in reality. It also enabled me to write from an insider's perspective, which I hope to convey to you, the reader. While aging four years hasn't made me any faster, I believe it may have improved the quality of the writing - you be the judge.

If you should find typos or errors of fact, please contact me: sundaes@cs.stanford.edu. Oh, and if you find mistakes in the proofs - you know what to do ... "Mum's the word!" I hope that you will enjoy your reading, and that you'll take away something of value. So long, and thanks for all the pisces ...

- Stanford, CA

July 2008

Acknowledgements

"You have to thank some people all the time, and all people some of the time".

- Quick Quotations Corporation

Nick - the above quote was created for you! I am deeply indebted to you for being a great mentor, a stellar advisor, and most important, a caring and trusted friend. I would like to thank you for giving me your collegial respect, for guiding me in identifying important problems, bringing out my best, and giving me the latitude to be an independent researcher. You have inspired me in many ways, and I have learned from your attention to detail, your focus on quality of research and writing, and your ability to tackle big problems.

Balaji - I want to thank you for our many positive interactions, and for your guidance, support, and deep insight into problems. I cherish and am in awe of your mathematical abilities. Sunil, Mark, Frank, and Rajeev - thank you for being on my dissertation and reading committee, and for your quality comments and feedback over time.

The work on buffered crossbars and statistics counters was done with two colleagues of whom I have always been in awe - Da and Devavrat. Amr, Rui, and Ramana, it has been a pleasure to work with you on some aspects of this thesis. I have met some extremely versatile people at Stanford - Martin, is there anything you do not do? Also Guido, Pankaj, Neda, Rong, Isaac, Nandita, Pablo, Youngmi, Gireesh, Greg, and Yashar, as well as members of the Stanford HPNG and ISN groups. It may be a given that you are smart, but you are also humble, genuine, and wonderful human beings, and that's what has made you interesting to me.

It takes time to churn out a thesis, and the research of course occasionally entails inadvertent mistakes. I would like to thank the many reviewers of my work, especially Isaac Keslassy and Bruce Hajek, for pointing out errors in a constructive manner, thereby helping me improve my work. I would also like to acknowledge the many readers who helped refine the thesis, in particular Morgan, Rong, Tarun, Da, Guido, Mainak, Pankaj, Urshit, Deb, Shadab and Andrew. Special thanks to Angshuman for painstakingly and rigorously checking the proofs; George Beinhorn for playing

Strunk and White; Henrique for helping with an early LaTeX draft; and to the many picturesque towns of northern California where I traveled to write my thesis. I am grateful for the fellowships provided by Cisco and Siebel Systems, and grants by the NSF, ITRI, and Sloan Foundation.

A number of people helped make this thesis relevant to industry and helped make its deployment a success. They include the investors at Nemo Systems and my colleagues at Nemo and the Network Memory Group at Cisco Systems. I reserve special thanks for Tom Edsall, Ramesh Sivakolundu, Flavio Bonomi, and Charlie Giancarlo, for taking a keen interest and helping champion this technology at Cisco. Last but not the least, I would like to credit Da ("colleague extraordinaire") for being the main force behind the delivery of these ideas. I am in awe of your sharp mind, your ability to multitask, and your untiring efforts. Without you, these ideas would never have reached their true potential.

Special thanks to Stanford University, for giving me the opportunity to interact with some extraordinary and talented people from all over the world. Finally, I would like to thank close friends who overlapped my IIT and Stanford experience - Kartik, Kamakshi, Urshit, and Manoj, and the extended network of mentors and friends (see Facebook!) who have given me many wonderful, meaningful, creative and of course, hilarious moments.

I would never have made it to Stanford without the efforts of my many inspiring professors at IIT Bombay, plus the backing of Ajit Shelat and SwitchOn Networks, and Prof. Bhopardikar, who nurtured my love of math.

This journey would not be possible without the efforts of an amazing woman, a.k.a. Mom, and my late grandparents. I also want to cherish Ajit for his inspirational views and deep love of academia even as a seven-year-old, and my extended family for their unconditional love and support in hard times. I miss you a lot. Finally, important and too easily forgotten, I would like to acknowledge the subculture that I grew up in during my childhood in India, which inculcates and gives tremendous (if sometimes naïve) value to academic and creative pursuits. "Look, Ma, I ..."

Contents

Abstract v
Preface vii
Acknowledgements ix
1 Introduction 1
I Load Balancing and Caching for Router Architecture 34
2 Analyzing Routers with Parallel Slower Memories 37
3 Analyzing Routers with Distributed Slower Memories 62
4 Analyzing CIOQ Routers with Localized Memories 85
5 Analyzing Buffered CIOQ Routers with Localized Memories 117
6 Analyzing Parallel Routers with Slower Memories 138
II Load Balancing and Caching for Router Line Cards 172
Part II: A Note to the Reader 173
7 Designing Packet Buffers from Slower Memories 177
8 Designing Packet Schedulers from Slower Memories 221
9 Designing Statistics Counters from Slower Memories 259
10 Maintaining State with Slower Memories 280
11 Conclusions 301
Epilogue 310
III Appendices \& Bibliography 312
A Memory Terminology 313
B Definitions and Traffic Models 317
C Proofs for Chapter 3 320
D Proofs for Chapter 5 323
E A Modified Buffered Crossbar 332
F Proofs for Chapter 6 334
G Centralized Parallel Packet Switch Algorithm 340
H Proofs for Chapter 7 344
I Proofs for Chapter 9 356
J Parallel Packet Copies for Multicast 358
List of Figures 369
List of Tables 371
List of Theorems 372
List of Algorithms 376
List of Examples 377
References 379
End Notes 395
List of Common Symbols and Abbreviations 397
Index 401

Chapter 1: Introduction

Nov 2007, Mendocino, CA

Contents
1.1 Analogy 1
1.2 Goal 2
1.3 Background 3
1.3.1 The Ideal Router 3
1.3.2 Why is it Hard to Build a High-speed Ideal Router? 5
1.3.3 Why is Memory Access Time a Hard Problem? 7
1.3.4 Historical Solutions to Alleviate the Memory Access Time Problem 9
1.4 Mandating Deterministic Guarantees for High-Speed Routers 12
1.4.1 Work Conservation to Minimize Average Packet Delay 13
1.4.2 Delay Guarantees to Bound Worst-Case Packet Delay 13
1.5 Approach 16
1.5.1 Analyze Many Different Routers that Have Parallelism 16
1.5.2 Load-Balancing Algorithms 17
1.5.3 Caching Algorithms 18
1.5.4 Use Emulation to Mandate that Our Routers Behave Like Ideal Routers 19
1.5.5 Use Memory as a Basis for Comparison 20
1.6 Scope of Thesis 21
1.7 Organization 23
1.8 Application of Techniques 27
1.9 Industry Impact 28
1.9.1 Consequences 29
1.9.2 Current Usage 30
1.10 Primary Consequences 30
1.11 Summary of Results 31

A Note to the Reader

The Naga Jolokia, a chili pepper with a Scoville rating of 1 million units that grows in northeastern India, Sri Lanka, and Bangladesh, is the hottest chili in the world, as confirmed by the Guinness World Records [1]. To understand just how hot it is, consider that to cool its blow torch-like flame, you would have to dilute it in sugar water over a million times! ${ }^{3}$ A milder way to put your taste buds to the test would be to stop by an Indian, Chinese, or Thai restaurant and order a hot soup. However, your request would be ambiguous; the context isn't helpful, and you might confuse the waiter - that's because the English language, among its many nuances and oddities, doesn't have unique terms to distinguish "temperature hot" and "spicy-hot".

Fortunately or unfortunately (depending on your perspective), high-speed routers offer no such confusion. They are definitely hot (and we are not referring to the colloquial use of the term by undergrads). They consume tremendous power — sometimes more than 5000 watts! - and dissipate that energy as heat. This means that packet processing ASICs on these high-speed routers are routinely built to withstand temperatures as high as $115^{\circ} \mathrm{C}$ - temperatures so high that even the smallest contact can blister your skin. And so, if you want to understand the workings of a high-speed router, I do not recommend that you touch it. Instead, here are some guidelines that I believe will help make your study of high-speed routers pleasant and safe.

- Introduction: The introductory chapter is written in a self-contained manner, with terms defined inline. It defines the general background and motivation for solving the memory access time problem for high-speed routers. Appendix A has a short tutorial on memory technology.
- Independent Chapters: The chapters in this thesis are written so that, for most part, they can be read independently. Section dependencies and additional readings are listed at the beginning of each chapter.
- Organization: Examples and Observations are categorized separately. The key idea in each chapter is specified in an idea box. Gray-shaded boxes contain supplementary information. A summary is available at the end of each chapter, and an index is provided at the end of the thesis.

[^1]"You are rewarding a teacher poorly
if you remain always a pupil".

Introduction

1.1 Analogy

Guru: Consider a set of pigeon holes, each of which is capable of holding several pigeons. Up to N pigeons may arrive simultaneously, and each pigeon must have immediate access to a pigeon hole. In the same interval in which the pigeons arrive, up to N pigeons must leave their holes. How many pigeon holes are required to guarantee that the departing pigeons can leave their holes, and that the arriving pigeons can enter a hole?

Shisya ${ }^{1}$: It would require just one pigeon hole with an entrance sufficiently wide to allow N pigeons to arrive and N pigeons to depart simultaneously.

Guru: That is the ideal. But what if no pigeon hole has an entrance sufficiently wide?
Shisya: In that case, I would create N pigeon holes. Each arriving pigeon would be directed to a separate pigeon hole. At any time, each pigeon hole must be wide enough to receive one pigeon and allow up to N pigeons to depart.

Guru: Suppose I constrain the pigeon hole so that at any time it can either allow at most one pigeon to arrive, or allow at most one pigeon to depart? Furthermore, no pigeon may enter a pigeon hole while another is departing...

[^2]The question posed in the imaginary conversation is directly applicable to the design of Internet routers. The analogy is that an Internet router receives N arriving packets (pigeons) in a time slot, one packet from each of its N inputs. Each packet can be written and stored temporarily in one of several memories (analogous to pigeons arriving in a pigeon hole). Packets can later be read from a memory (pigeons departing from a hole). No more than N packets (destined to each of N outputs) can depart the router during any time slot.

In defining the problem in this manner, we make several assumptions and overlook some potential constraints. For example, (1) the available memory may in fact be several times slower than the rate at which packets arrive, (2) the memory may not be able to hold many packets, (3) the interconnect used to access the memories may not support the inputs (outputs) writing to (reading from) any arbitrary combination of memories at the same time, (4) when a packet arrives, its time of future departure may be unknown.

We can infer from the above dialogue that if the memory was faster, or if the packets arrived and departed at a slower rate, or if there were fewer constraints, it would be easier to ensure that packets can leave when they need to. We will see that the answer to the question in the conversation is fundamental to our understanding of the design of high-speed Internet routers.

1.2 Goal

Our goal in this thesis is to design high-speed Internet routers for which we can say something predictable and deterministic (we will formalize this shortly) regarding their performance. There are four primary reasons for doing this:

1. Internet end-users are concerned primarily about the performance of their applications and their individual packets.
2. Suites of applications (such as VoIP, videoconferencing, remote login, Netmeeting, and storage networking) are very sensitive to delay, jitter, and packet
drop characteristics, and do not tolerate non-deterministic performance (e.g., unpredictable delays) very well.
3. Hackers or viruses can easily exploit non-deterministic and known deficiencies in router performance and run traffic-adversarial patterns to bring down routers and the Internet.
4. If the individual routers that form the underlying infrastructure of the Internet can be made to deliver deterministic guarantees, we can hope to say something deterministic about the performance of the network as a whole. The network would then potentially be able to provision for different classes of applications, cater to delay-sensitive traffic (e.g., voice, Netmeeting, etc.), and provide end-toend guarantees (e.g., bandwidth, delay, etc.) when necessary.

In addition there are various secondary reasons why we want deterministic performance guarantees from our high-speed routers. For example, unlike computer systems, where occasional performance loss is acceptable and even unavoidable (e.g., due to cache or page misses) router designers do not like non-deterministic performance in their ASICs. This is because they cause instantaneous stalls in their deep pipelines, as well as loss of performance and eventually even unacceptable packet loss. Also, many routers are compared in "bake-off" tests for their ability to withstand and provide guaranteed performance under even worst-case traffic conditions.

1.3 Background

1.3.1 The Ideal Router

Which factors prevent us from building an ideal router that can give deterministic performance guarantees? Consider a router with N input and N output ports. We will denote R (usually denoted in Gb / s) to be the rate at which packets ${ }^{2}$ arrive at every input and depart from every output. We normalize time to the arrival time

[^3]

Figure 1.1: The architecture of a centralized shared memory router. The total memory bandwidth and interconnect bandwidth are $2 N R$.
between cells (C / R) at any input, and refer to it as a time slot. ${ }^{3}$ Assume that a single shared memory can store all N arriving packets and service N departing packets. This architecture is called the centralized shared memory router, and an example with $N=8$ ports and $R=10 \mathrm{~Gb} / \mathrm{s}$ (these numbers are typical of mid-range routers typically deployed by smaller local Internet Service Providers) is shown in Figure 1.1. The shared memory router would need a memory that would meet the following requirements:

1. Bandwidth: The memory would need to store all N packets arriving to it and allow up to N packets to depart from it simultaneously, requiring a total memory bandwidth of $2 N R \mathrm{~Gb} / \mathrm{s}$.
2. Access Time: If we assume that arriving packets are split into fixed-size cells of size C, then the memory would have to be accessed every $A_{t}=C / 2 N R$ seconds.
[^4]For example, if $C=64$ bytes, the memory would need to be accessed ${ }^{4}$ every 3.2 ns. ${ }^{5}$
3. Capacity: Routers with faster line rates require a large shared memory. As a rule of thumb, the buffers in a router are sized to hold approximately $R T T \times R$ bits of data during times of congestion (where RTT is the round-trip time for flows passing through the router ${ }^{6}$), for those occasions when the router is the bottleneck for TCP flows passing through it. If we assume an Internet $R T T$ of approximately 0.25 seconds, a $10 \mathrm{~Gb} / \mathrm{s}$ interface requires 2.5 Gb of memory. With 8 ports, we would need to buffer up to 20 Gb .

If the memory meets these three requirements, and the switching interconnect has a bandwidth of $2 N R$ to transport all N arriving packets and all N departing packets from (to) the central memory, then the packets face no constraints whatever on how and when they arrive and depart; and the router has minimum delay. Also, the memory is shared across all ports of the router, minimizing the amount of memory required for congestion buffering. This router behaves ideally and is capable of delivering the predictable performance that we need.

1.3.2 Why is it Hard to Build a High-speed Ideal Router?

What happens if we design this high-speed ideal router using available memory technology? Of course, we will need to use commodity memory technology. By a commodity part, we mean a device that does not stress the frontiers of technology, is widely used, is (ideally) available from a number of suppliers, and has the economic benefits of large demand and supply. ${ }^{7}$ Two main memory technologies are available in

[^5]the market today: SRAM and DRAM. Both offer comparable memory bandwidth; however, SRAMs offer lower (faster) access time, but lower capacity than DRAMs.

Example 1.1. At the time of writing, with today's CMOS technology, the largest available commodity SRAM [2] is approximately 72 Mbits , has a bandwidth of $72 \mathrm{~Gb} / \mathrm{s}$, an access time of 2 ns , and costs $\$ 70 .{ }^{8}$

To meet the capacity requirement, our router would need more than 275 SRAMs, and the memories alone would cost over $\$ 19 \mathrm{~K}$ - greatly exceeding the selling price of an Enterprise router today! Although possible, the cost would make this approach impractical.

Example 1.2. The largest commodity DRAM [3] available today has a capacity of 1 Gb , a bandwidth of $36 \mathrm{~Gb} / \mathrm{s}$, an access time of 50 ns , and costs $\$ 5$.

We cannot use DRAMs because the access rate ${ }^{9}$ is an order of magnitude above what is required. If our router has more than $N=16$ ports, the access time requirement would make even the fastest SRAMs inapplicable.

The centralized shared memory router is an example of a class of routers called output queued $(O Q)$ routers. In an OQ router (as shown in Figure 1.2), arriving packets are placed immediately in queues at the output, where they contend with other packets destined to the same output. Since packets from different outputs do not contend with each other, OQ routers minimize delay and behave ideally. An OQ router can have N memories, one memory per output. Each memory must be able to simultaneously accept (write) N new cells (one potentially from every input) and read one cell per time slot. Thus, the memory must have an access rate proportional to $N+1$ times the line rate. While this approximately halves the access time requirement compared to the centralized shared memory router, this approach is still extremely impractical at high speeds.

[^6]

Figure 1.2: The architecture of an output queued router. The memory bandwidth on any individual memory is $(N+1) R$.

In summary, although OQ routers are ideal and have attractive performance, they are not scalable due to the memory access time limitations.

1.3.3 Why is Memory Access Time a Hard Problem?

If memory bandwidth or capacity were a problem, we could simply using more memories in parallel! For example, many Ethernet and Enterprise line cards [4] ${ }^{10}$ use up to 8 memories in parallel to meet the bandwidth requirements. Similarly, the CRS-1 [5] core router, one of the highest-speed Internet routers available today, uses up to 32 memories to meet its large buffer capacity requirement. While this approach has its limits (having a large number of memories on a line card is unwieldy, and the number of parts that can be used in parallel is limited by the die area of the chips, board size, and cost constraints), it offers a simple way to achieve higher memory capacity and bandwidth.
$\sqrt{3}$ Observation 1.1. However, memory access time is a more fundamental limitation. While packets can easily be spread and written over multiple parallel

[^7]memories, it is difficult to predict how the data will be read out later. If we want to read from our memory subsystem, say, every 3.2 ns , and all the consecutive packets reside in a DRAM with a much slower access time, then having other parallel memories won't help.

Although the access time ${ }^{11}$ will be reduced over time, the rate of improvement is much slower than Moore's Law [6]. Note that even newer DRAMs with fast I/O pins - such as DDR, DDRII, and Rambus DRAMS [7] - have very similar access times. While the I/O pins are faster for transferring large blocks, the access time to a random location in memory is still approximately 50 ns . This is because high-volume DRAMs are designed for the computer industry, which favors capacity over access time. Also, the access time of a DRAM is determined by the physical dimensions of the memory array (and therefore line capacitance), which stays constant from generation to generation.

Commercial DRAM manufacturers have recently developed fast DRAMs (RLDRAM [8] and FCRAM [9]) for the networking industry. These reduce the physical dimensions of each array by breaking the memory into several banks. This worked well for $10 \mathrm{~Gb} / \mathrm{s}$ line rates, as it meant these fast DRAMs with 20 ns access times could be used. But this approach has a limited future, for two reasons: (1) as the line rate increases, the memory must split into more and more banks, which leads to an unacceptable overhead per bank, ${ }^{12}$ and (2) even though all Ethernet switches and Internet routers have packet buffers, the total number of memory devices needed is a small fraction of the total DRAM market, making it unlikely that commercial DRAM manufacturers will continue to supply them. ${ }^{13}$

Observation 1.2. Fundamentally, the problem is that networking requires extremely small-size data accesses, equal to the size of the smallest-size 64-byte

[^8]packet. By 1997, this was identified as a fundamental upcoming problem.

As line rates increase (usually at the rate of Moore's Law), the time it takes these small packets to arrive grows linearly smaller. In contrast, the random access time of commercial DRAMs has decreased by only 1.1 times every 18 months (slower than Moore's Law) [10]. And so the problem only becomes harder. If we want to design high-speed routers whose capacity can scale, and that can give predictable performance, then we need to alleviate the memory access time problem.

Observation 1.3. By 2005, routers had to be built to support the next-generation $40 \mathrm{~Gb} / \mathrm{s}$ line cards. By then, this had become a pressing problem in immediate need of a solution.

1.3.4 Historical Solutions to Alleviate the Memory Access Time Problem

Since the first routers were introduced, the capacity of commercial routers ${ }^{14}$ has increased by about 2.2 times every 18 months (slightly faster than Moore's Law). By the mid-1990s, router capacity had grown to the point where the centralized shared memory architecture (or output queuing) could no longer be used, and it became popular to use input queueing instead.

In an input queued router, arriving packets are buffered in the arriving line cards as shown in Figure 1.3(a). The line cards were connected to a non-blocking crossbar switch which was configured by a centralized scheduling algorithm. From a practical point of view, input queueing allows the memory to be distributed to each line card, where it can be added incrementally. The switching interconnect needs to carry up to N packets from the inputs to the respective outputs and needs a bandwidth of

[^9]

Figure 1.3: The input-queued and $C I O Q$ router architectures.
$2 N R$. More important, each memory only needs to run at a rate $2 R$ (instead of $2 N R$), enabling higher-capacity routers to be built.

A router is said to give 100% throughput if it is able to fully utilize its output links. ${ }^{15}$ Theoretical results have showed that with a queueing structure called virtual output queues (VOQs), and a maximum weight matching scheduling algorithm, an input queued router can achieve 100% throughput [11, 12]. However, in an input queued router, it is known that a cell can be held at an input queue even though its output is idle. This can happen for an indefinitely long time. So there are known simple traffic patterns [13] that show that an input queued router cannot behave identically to an OQ router.

Another popular router architecture is the combined input-output queued (CIOQ) router, shown in Figure 1.3(b). A CIOQ router buffers packets twice - once at the input, and again at the output. This router can behave identically ${ }^{16}$ to an output queued router if the memory on each line card runs at rate $3 R$, the switching interconnect runs at rate $2 N R$, and it implements a complex scheduling algorithm [13].

Table 1.1 summarizes some well-known results for the above router architectures. While the results in Table 1.1 may appeal to the router architect, the algorithms

[^10]required by the theoretical results are not practical at high speed because of the complexity of the scheduling algorithms. For these reasons, the theoretical results have not made much difference in the way routers are built. Instead, most routers use a heuristic scheduling algorithm such as iSLIP [14] or WFA [15], and a memory access rate between $2 R$ and $3 R .{ }^{17}$ Performance studies are limited to simulations that suggest most of the queueing takes place at the output, potentially allowing it to behave similarly to an output queued router. While this may be a sensible engineering compromise, the resulting system has unpredictable performance, cannot give throughput guarantees, and the worst case is not known.

Other multi-stage and multi-path router architectures have been used. They include Benes, Batcher-banyan [16], Clos, and Hypercube switch fabrics. However, they either require large switching bandwidth, require multiple stages of buffering, or have high communication complexity between the different stages. The implementation complexity and hardware costs involved have restricted their popular use.

In comparison to CIOQ routers, other router architectures tend to hit their hardware limits earlier. This affects their scalability, and so, primarily as a compromise, CIOQ routers have emerged as a common router architecture, even though the performance of practical CIOQ routers is difficult to predict. This is not very satisfactory, given that CIOQ routers make up such a large fraction of the Internet infrastructure. While the architectures described above are an improvement over OQ routers, these routers require that the access rate of the memories is at least as fast as the line rate R. Even an input queued router needs a memory that can be accessed at least twice (once to read and once to write a packet) during every time slot. As line rates increase, this may become impossible even with SRAMs.

[^11]Table 1.1: Comparison of router architectures.

Router Type	$\#$ mem	Mem. Access Rate.	Total mem. BW	Interconnect $\mathbf{B W}$	Comment
Centralized Shared Memory	1	$\equiv \Theta(2 N R)$	$2 N R$	$2 N R$	Ideal Router (Shared Memory)
Output Queued	N	$\equiv \Theta(N+1) R$	$N(N+1) R$	$N R$	Ideal Router (Distributed Memory)
Input Queued	N	$\equiv \Theta(2 R)$	$2 N R$	$N R$	Cannot emulate an ideal router
CIOQ	$2 N$	$\equiv \Theta(3 R)$	$6 N R$	$2 N R$	Can emulate an ideal router [13]

QExample 1.3. For example, with the advent of the new $100 \mathrm{~Gb} / \mathrm{s}$ line cards, even an input queued router would need an access time of 2.56 ns to buffer 64 -byte packets. This is already out of reach of most commodity SRAMs today.

1.4 Mandating Deterministic Guarantees for HighSpeed Routers

Our goal is to build high-speed routers than can give performance guarantees. As we saw, building a slow-speed router with performance guarantees is easy. But the problem is hard when designing high-speed routers. In fact, today, there are no high-speed routers with bandwidths greater than $10 \mathrm{~Gb} / \mathrm{s}$ that give deterministic guarantees. There are typically two types of performance guarantees: statistical (the most common example being 100% throughput) and deterministic (the most common examples being work-conservation and delay guarantees).

Even statistical guarantees are hard to achieve. In fact, no commercial high-speed router today can guarantee 100% throughput. If we buy a router with less than 100% throughput, we do not know what its true capacity is. This makes it particularly hard for network operators to plan a network and predict network performance. In normal times (when the utilization of the network is quite low), this does not matter, but

[^12]during times of congestion (usually due to link failures), when network performance really matters, this is unacceptable. We want to design routers that give 100% throughput.

However, we will specifically demand that our high-speed routers give deterministic performance guarantees on individual packets, since this will enable us to meet the goals outlined in Section 1.2. Also, if routers give deterministic guarantees, they automatically give statistical guarantees. We are interested in two classes of deterministic guarantees, both of which have relevance for the end-user.

1.4.1 Work Conservation to Minimize Average Packet Delay

\aleph Definition 1.1. Work-conserving: A router is said to be work-conserving if an output will always serve a packet when a packet is destined for it in the system.

We want our routers to be work-conserving. If a router is work-conserving, then it has 100% throughput, because the outputs cannot carry a higher workload. It also minimizes the expected packet delay, since, on average, packets leave earlier in a work-conserving router than in any other router. ${ }^{19}$ To achieve work conservation, we will use first come first served (FCFS) as the main service policy in our analysis of routers. This means that packets to a given output depart in the order of their arrival. However, the techniques that we use to analyze router architectures allow us to extend our results to any work-conserving router if the departure time ${ }^{20}$ is known on arrival.

1.4.2 Delay Guarantees to Bound Worst-Case Packet Delay

A standard way that routers can provide delay guarantees is to introduce harder constraints by shaping or streamlining the arrival traffic; for example, the leaky-bucket

[^13]constraint. ${ }^{21}$ The constrained arriving streams are then serviced by a scheduler (such as, say, a weighted fair queueing [17] scheduler) that provides service guarantees. There are two ways to achieve this -

Maintaining separate FIFO queues: Every arrival stream is constrained and stored in a separate queue. A scheduler works in round robin order by looking at these queues and taking the head-of-line packets from the queues. The packets are serviced in the order of their departure time ${ }^{22}$ and leave the output in that sorted order. Figure 1.4(a) shows an example of the input traffic, $A(t)$, constrained and split into its three constituent streams, $A(1), A(2)$, and $A(3)$, and stored in their three respective queues. The three queues are serviced by a scheduler in the ratio $2: 1: 1$. From well-known results on weighted fair queueing [18], it is then possible to define bounds on the worst-case delay faced by a packet transiting the router.

Maintaining a single logical queue: Another way to do this is to move the sorting operation into a "logical" queue known as the push-in first-out (PIFO) queue. A PIFO queue has a number of key features:

1. Arriving packets are "pushed-in" to an arbitrary location in the departure queue, based on their finishing time.
2. Packets depart from the head of line (HoL).
3. Once the packet is inserted, the relative ordering between packets in the queue does not change.

Therefore, once a packet arrives to a PIFO queue, another packet that arrives later may be pushed in before or after it, but they never actually switch places. This is the characteristic that defines a PIFO queue. PIFO includes a number of queueing policies, including weighted fair queueing [17] and its variants such as GPS [18], Virtual Clock [19], and DRR [20]. It also includes strict priority queueing. ${ }^{23}$

[^14]

Figure 1.4: Achieving delay guarantees in a router. (a) Multiple FIFO queues, (b) A "logical" push in first out queue.

> Example 1.4. As Figure 1.4(b) shows, the PIFO queue always maintains packets in a sorted order. When packets come in, they are inserted in the sorted order of their departure times. In Figure 1.4(a), arriving cell $A 2$ is inserted at the tail of FIFO $Q 1$ and awaits departure after cell $A 1$ but before cell $B 1$. In Figure 1.4(b), it is inserted directly into the sorted PIFO queue after cell $A 1$ but before cell $B 1$.

Depending on the architecture being used, we choose either the set of logical FIFO queues, or the sorted PIFO queue to make our analysis easier.

1.5 Approach

1.5.1 Analyze Many Different Routers that Have Parallelism

While it is difficult to predict the course of technology and the growth of the Internet, it seems certain that in the years ahead routers will be required with: (1) increased switching capacity, (2) support for higher line rates, and (3) support for differentiated qualities of service. Each of these three requirements presents unique challenges. For example, higher-capacity routers may require new architectures and new ways of thinking about router design; higher line rates will probably exceed the capabilities of commercially available memories (in some cases this transition has already happened), making it impractical to buffer packets as they arrive; and the need for differentiated qualities of service will mandate deterministic performance guarantees comparable to the ideal router.

Observation 1.4. There will probably be no single solution that will meet all needs. Each router architecture will have unique tradeoffs. Very-high-speed interconnect technologies may make certain new router architectures possible, or possibly simplify existing ones. Memory access speeds may continue to lag router requirements to such a degree that architectures with memories with much slower access rates may become mandatory. If memory capacity lags router buffer sizing requirements, architectures with shared memory will become important.

We won't concern ourselves with whether a particular technique is currently implementable, nor will we prefer one router architecture over another, since the cost and technology tradeoffs will be driven by future technology. We will also be agnostic to trends in future technology. The only assumption we will make is that memory access time will continue to be a bottleneck in one form or another. In order to alleviate this bottleneck, we will consider router architectures that have parallelism.

Our approach is to analyze different types of parallel router architectures, work within the technology constraints on them, and ask what it will take for these routers to give deterministic performance guarantees. We will not attempt to analyze all router architectures exhaustively; in fact, future technologies may lead to completely novel architectures. Instead, we will focus on architectural and algorithmic solutions that exploit the characteristic of memory requirements on routers, so that they can be applied to a broad class of router architectures. We will focus on two key ideas: load balancing and memory caching, ${ }^{24}$ that alleviate the load on memory.

1.5.2 Load-Balancing Algorithms

A load balancing algorithm is motivated by the following idea -

> 次Idea. "We could intelligently distribute load among parallel memories. ${ }^{a}$ such that no memory needs to be accessed faster than the rate that it can support".

${ }^{a}$ Ideally, there will be no limit as to how slow these parallel memories can operate.

In order to realize the above idea, a load balancing algorithm usually needs to be aware a priori of the time when a memory will be accessed. We introduce a new mathematical technique called constraint sets which will help us analyze load balancing algorithms for routers. We have found that memory accesses in routers are fundamentally clashes between writers (e.g., arriving packets that need to be buffered) and readers (e.g., packets that need to depart at a particular future time) that need to simultaneously access a memory that cannot keep up with both requirements at the same time. Constraint sets are a formal method to mathematically capture these constraints. While the constraint set technique is agnostic to the specifics of the router architecture, the actual size and definition of these sets vary from router to router. This helps us separately analyze the load balancing algorithm constraints for each individual router, and:

[^15]1. identify the memory access time, memory, and switching bandwidth required for a specific router architecture to be work-conserving,
2. define a switching algorithm for the router,
3. identify the design tradeoffs between memory access time, memory bandwidth, switch bandwidth, and switching algorithms, and
4. perhaps surprisingly, exactly characterize the cost of supporting delay guarantees in a router.

1.5.3 Caching Algorithms

The second approach we use is building a memory hierarchy, and is motivated by the following idea:

Idea. "We can use a fast on-chip cache memory that can be accessed at high rates, and a slow ${ }^{a}$ off-chip main memory that can be accessed at low rates".
${ }^{a}$ The slow memory can potentially be off-chip and have a large memory capacity.

The idea is similar to that used in most processors and computing systems. Packets or data that are likely to be written or read soon are held in fast cache memory, while the rest of the data is held in slower main memory. If we have prior knowledge about how the memory will be accessed (based on knowledge of the data structures required to be maintained by routers), then we can (1) write data in larger blocks at a slower access rate, and (2) pre-fetch large blocks of data from main memory at slower access rates and keep it ready before it needs to be read.

Observation 1.5. But unlike a computer system, where is acceptable for a cache to have a miss rate, such behavior is unacceptable in networking, since it can lead to loss of throughput and packet drops.

Therefore, our cache design should be able to guarantee a 100% hit rate under all conditions. We will see that, within bounds, such caching algorithms exist for
certain applications that are widely used on most routers. As an example, packets are maintained in queues; the good thing is that we know which data will be needed soon - it's sitting at the head of the queue. We will borrow some existing mathematical techniques to propose and analyze caching algorithms, such as difference equations and Lyapunov functions, which have been used extensively in queueing analysis.

1.5.4 Use Emulation to Mandate that Our Routers Behave Like Ideal Routers

We want to ensure that any router that we design will give us deterministic performance guarantees. We therefore compare our router to the ideal OQ router. To do this, we assume that there exists an OQ router, called the "shadow $O Q$ router", with the same number of input and output ports as our router. The ports on the shadow OQ router receive identical input traffic and operate at the same line rate as our router. This is shown in Figure 1.5. Consider any cell that arrives to our router. We denote $D T$, the departure time of that cell from the shadow OQ router. We say that our router mimics $[13,22,23]$ the ideal router if under identical inputs, the cells also depart our router at time $D T$. If we want work conservation, we will compare our router to a shadow OQ router performing an FCFS policy (called an FCFS-OQ router). If we want delay guarantees, our comparison will be with a PIFO-OQ shadow router.

Note that the router we compare may have some fixed propagation delays that we wish to ignore (perhaps the data transits a slower interconnect, or is buffered in a slower memory, etc.). In particular, we are only interested in knowing whether our cell faces a relative queueing delay, i.e., an increased queueing delay (if any) relative to the delay it receives in the shadow OQ router. We are now ready to formally compare our router with an ideal router.
§Definition 1.2. Emulate: A router is said to emulate an ideal shadow OQ router if departing cells have no relative queueing delay, compared to the shadow OQ router.

Figure 1.5: Emulating an ideal output queued router.

Note that the definition of emulation makes no assumptions on the packet sizes, the bursty nature of packet arrivals, or the destination characteristics of the packets, and requires that the cells face no relative delay irrespective of the arrival pattern. An important consequence of this definition is as follows - the ideal output queued router is safe from adversarial traffic patterns (such as can be created by a hacker or virus) that exploit potential performance bottlenecks in a router. If our router can emulate an OQ router, then our router is also safe from adversarial performance attacks!

1.5.5 Use Memory as a Basis for Comparison

Throughout this thesis, we will use memory for comparison. We will look at architectures that alleviate memory access time requirements. And we will see that doing so requires tradeoffs on other components; for example, we may need more total memory bandwidth, more interconnect bandwidth, an on-chip cache, etc. We believe that memory serves as a good metric, for three reasons:

1. Routers are, and will continue to be, limited by the access rate and memory bandwidth of commercially available memories in the foreseeable future. All else being equal, a router with smaller overall access rate and memory bandwidth requirements can have a higher capacity.
2. Memory components alone contribute approximately 20% of the cost of materials, on average. In certain high-speed market segments, almost a third of the cost comes from memory [24]. Cisco Systems, the leading Internet router vendor, alone spends roughly $\$ 800 \mathrm{M}$ p.a. on memory components. Routers with lower memory bandwidth will need less memory, and will be more cost-efficient.
3. A router with higher memory bandwidth will, in general, consume more power. Routers are frequently limited by the power that they consume (because they are backed up by batteries) and dissipate (because they must use forced-air cooling). The total memory bandwidth indicates the total bandwidth of the high-speed I/Os that connect the memories to control logic. As an example, high-speed memory I/O contributes to approximately 33% of the overall power on Ethernet switches and Enterprise routers [25].

Similar to computing systems, memories are (and in the foreseeable future will continue to be) the main bottleneck to scaling the capacity and meeting the cost and power budgets of high-speed routers.

1.6 Scope of Thesis

This thesis is about the router data-plane, which processes every incoming packet, and needs to scale with increasing line rates. ${ }^{25}$ The data-plane needs to perform many computational tasks, such as parsing arriving packets, checking their integrity, extracting and manipulating fields in the packet, and adding or deleting protocol headers, as shown in Figure 1.6. In addition it performs several algorithmic tasks, such as forwarding lookups to determine the correct packet destination, packet and flow

[^16]

Figure 1.6: The data-plane of an Internet router.
classification (e.g., for security, billing and other applications), deep packet inspection (e.g., for virus filtering), etc. A number of algorithms and specialized hardware (such as CAMs, hardware assisted classifiers, complex parsers, etc.) have been proposed to make these tasks efficient. We do not address any of these computational or algorithmic tasks in this thesis. Instead, we focus on the tasks in the router data-path for which memory is a bottleneck, as shown in Figure 1.6.

At a minimum, a router needs to buffer and hold packets in memory during times of congestion. It needs to switch packets across a switching fabric and move these
packets to their correct output line cards (where it may again be buffered temporarily). As shown in the figure, switching can be performed centrally, or by each line card in a distributed manner. In addition, routers perform measurements and keep statistics in memory, for purposes of billing, metering, and policing traffic. Statistics are also useful for planning, operating, and managing a network. Routers perform packet scheduling as described in Section 1.4 .2 to provide various qualities of service. In some cases, specialized application-aware routers maintain state for flows to perform complex tasks such as application proxies, network address translation, etc., as well as maintain policing, shaping, and metering information. In some cases, routers need to support packet multicasting, where packets may need to be copied multiple times. As we shall see, each of the above tasks requires high memory access rates. This thesis studies the nature of the data structures needed by the above tasks, and takes advantage of their associated memory accesses to alleviate their memory bottlenecks.

1.7 Organization

In Section 1.3.1, we saw that an ideal output queued router requires a memory access rate that is proportional to the product of the number of ports N and the line rate of each port R. In the remainder of the thesis, we will look at ways to reduce the access rate of the memory on high-speed routers. This is done by trading off memory access time with memory bandwidth, capacity or a cache as summarized in Table 1.2. We divide the rest of this thesis into two parts:

Part I: Load Balancing and Caching Algorithms for Router Architecture

In the first part of the thesis, we will consider how we can scale the performance of the router as a whole. Thus, in Chapter 2, we first define a new class of router architectures, called "single-buffered" routers that are of particular interest. We also answer the question posed in the conversation in the Introduction, since it sheds light on the analysis of all single-buffered routers. Then, in each chapter, we ask a question about the technology and the architectural constraints that the memory on a router

Table 1.2: Organization of thesis.

Chpt.	Analysis	Memory Tradeoff
1	Output Queued Router	Ideal router
2	Parallel Shared Mem. Router	More Memory bandwidth
$3-(\mathrm{a})$	Distributed Shared Mem. Router	More Memory bandwidth
$3-(\mathrm{b})$	Parallel Distributed Shared Mem. Router	More Memory bandwidth
4	CIOQ Router	More Memory bandwidth
5	Buffered CIOQ Router	Line rate cache
$6-(\mathrm{a})$	Parallel Packet Switch	More Memory bandwidth
6 -(b)	Buffered Parallel Packet Switch	Line rate cache
7 -(a)	Packet Buffer Cache	Line rate cache
$7-(\mathrm{b})$	Pipelined Packet Buffer Cache	Line rate pipelined cache
8	Packet Scheduler Cache	Line rate cache
9	Statistics Counter Cache	Line rate cache
10	Parallel Packet State	More memory bandwidth, capacity
App. J	Parallel Packet Copy	More memory bandwidth

might face, as it pertains to its overall architecture:

Chpt. 2: What if the memories must be shared? Memory capacity could become a problem, and shared memory architectures could become mandatory. In Chapter 2, we look at a parallel shared memory router architecture that allows the access rate on each memory to be arbitrarily small, while allowing all of the memories to be shared among all ports of the router.

Chpt. 3-(a): What if memories must be distributed? Memory power could become a problem, forcing routers to distribute memories across several line cards to achieve better cooling, etc. Also, product constraints sometimes require that additional router bandwidth (and the extra memory it requires) be added incrementally. This mandates the use of distributed memories. In Chapter 3, we analyze a distributed shared memory architecture.

Chpt. 3-(b): What if the memories must be limited? If memory access time lags router system requirements, then a large number of memories that operate in parallel are needed. If there are too many memories, it may become infeasible to manage, and this may become a bottleneck. In Chapter 3, we will consider
a parallel distributed shared memory architecture that limits the number of memories that need to be managed, and alleviates this problem.

Chpt. 4: What if memories must be localized? Many routers have line cards that have different port speeds and features, and support different protocols. Because the line cards have different processing and memory capabilities, such a system cannot use distributed processing or distributed memory. In Chapter 4, we look at a fairly common CIOQ architecture that has localized buffering.

Chpt. 5: What if on-chip memory capacity is plentiful? New memory technologies such as embedded DRAM [26] allow the storage of large amounts of on-chip memory. In Chapter 5, we will consider the addition of on-chip cache memory to the commonly used crossbar switching fabric of a CIOQ router. We will show that the resulting buffered CIOQ router can greatly simplify and make practical the CIOQ architecture introduced in Chapter 4.

Chpt. 6-(a,b): What if memories run really slow? If line rates become much faster than the memory access time, we will need to look at massively parallel memory architectures. In Chapter 6, we analyze the parallel packet switch (PPS). The PPS is a high-speed router that can be built from a network of slower-speed routers. We consider two variants of the PPS - (1) an unbuffered version, and (2) a buffered PPS (which has a small cache).

Part II: Load Balancing and Caching Algorithms for Router Line Cards

In the second part of the thesis, we consider how we can scale the performance of the memory-intensive tasks on a router line card that were described in Figure 1.6. Again, we consider several questions pertaining to the memory usage of these data-path tasks.

Chpt. 7-(a): What if the memory departure time cannot be predicted?
The time at which a packet needs to depart from memory is decided by a scheduler. Architectural or hardware design constraints may prevent the buffer
from knowing the time at which a packet will depart from memory. This prevents us from using load balancing algorithms that require knowledge of packet departure times. In Chapter 7, we will look at a memory caching algorithm that can overcome this limitation to build high-speed packet buffers. We will show how this caching algorithm can be readily extended for use in other router data-plane tasks such as packet scheduling, page management, etc.

Chpt. 7-(b): What if we can tolerate large memory latency? Many highperformance routers use deep pipelines to process packets in tens or even hundreds of consecutive stages. These designs can tolerate a large (bit fixed) pipeline latency between when the data is requested and when it is delivered. Whether this is acceptable will depend on the system. In Chapter 7, we will consider optimizations that reduce the size of the cache (for building high-speed packet buffers) to exploit this.

Chpt. 8: What if we can piggyback on other memory data structures?

Routers perform packet scheduling in order to provide varied qualities of service for different packet flows. This requires the scheduler to be aware of the location and size of every packet in the system, and requires a scheduler database whose memory access rate is as fast as the buffer from which it schedules packets. In Chapter 8, we describe a mechanism to encode, piggyback, and cache the scheduler database along with the packet buffer cache implementation described in Chapter 7 . This eliminates the need for a separate scheduler database.

Chpt. 9: What if we can exploit the memory access pattern? Many datapath applications maintain statistics counters for measurement, billing, metering, security, and network management. We can exploit the way counters are maintained and build a caching hierarchy that alleviates the need for high-access-rate memory. This is described in Chapter 9.

Chpt. 10: What if we can't exploit the memory access pattern?
Networking applications such as Netflow, NAT, TCP offload, policing, shaping, scheduling, state maintenance, etc., maintain flow databases. A facet of
these databases is that their memory accesses are completely random, and the memory address that they access is dependent completely on the arriving packet, whose pattern of arrival cannot be predicted. These applications need high access rates, but have minimal storage and bandwidth requirements. In many cases, the available memories (especially DRAMs) provide an order of magnitude more capacity than we need, and have a large number of independently accessible memory banks. ${ }^{26}$ High-speed serial interconnect technologies [27] have enabled large increases in bandwidth. At the time of writing, a serial interconnect can provide 5-10 times more bandwidth per pin compared to the commonly used parallel interconnects used by commodity memory technology. In Chapter 10, we will look at how we can exploit increased memory capacity and bandwidth to achieve higher memory access rates to benefit the above applications.

App. J: What if we need large memory bandwidth? There are a number of new real-time applications such as Telepresence [28], videoconferencing, multiplayer games, IPTV [29], etc., that benefit from multicasting. While we cannot predict the usage and deployment of the Internet, it is likely that routers will be called upon to switch multicast packets passing over very-high-speed lines with a guaranteed quality of service. Should this be the case, routers will have to support the extremely large memory bandwidths needed for multicasting. This is because an arriving packet can be destined to multiple destinations, and the router may have to make multiple copies of the packet. We briefly look at methods to efficiently copy packets in Appendix J. ${ }^{27}$

1.8 Application of Techniques

We now outline how the two key architectural techniques - load balancing and caching - are applied in this thesis.

[^17]Table 1.3: Application of techniques.

Chpt.	Analysis	Load-Balancing Algorithm	Caching Algorithm
1	Output Queued Router	None	None
2	Parallel Shared Memory Router	Memories	None
$3-(\mathrm{a})$	Distributed Shared Memory Router	Line cards	None
$3-(\mathrm{b})$	Parallel Distributed Shared Memory Router	Line cards, Memories	None
4	CIOQ Router	Time	None
5	Buffered CIOQ Router	Time	VOQ Heads
$6-(a)$	Parallel Packet Switch	Switches	None
$6-(b)$	Buffered Parallel Packet Switch	Switches	Arriving, Departing Packets
$7-(a)$	Packet Buffer Cache	Memories	Queue Head and Tails
$7-(b)$	Pipelined Packet Buffer Cache	Memories	Queue Head and Tails
8	Packet Scheduler Cache	Packets	Packet Lengths
9	Statistics Counter Cache	None	Counter Updates
10	Parallel Packet State	None	
App. J	Parallel Packet Copy	Memory banks	None

Depending on the requirement, we load-balance packets over unique memories, memory banks, line cards, and switches. If there is only one path (or memory) that a packet can access, then the load balancing algorithms distribute their load over time. A special case occurs for packet scheduling, where load balancing of packet lengths is done over packets written to memory. These are summarized in column two of Table 1.3. The advantage with load balancing algorithms is that there is no theoretical limit to how slow the memories can operate. The caveat is that these algorithms usually need more memory bandwidth (than the theoretical minimum), and the algorithms require complete knowledge of all memory accesses.

In contrast, caching algorithms appear simpler to implement, but they need a cache that runs at the line rate $(\equiv \Theta(R))$. We demonstrate caching architectures and algorithms for a number of data-path tasks. The cache may hold heads and tails of queues, arriving or departing packets, packet lengths, or counters, depending on the data-path task, as shown in column three of Table 1.3.

1.9 Industry Impact

Throughout this thesis, we present practical examples and details of the current widespread use of these techniques in industry. The current technology constraints
have allowed caching algorithms to find wide acceptance; however, we do not mandate one approach over another, as the constraints may change from year to year due to product requirements and available technology.

> Observation 1.6. A problem solved correctly is analogous to a meme. ${ }^{28}$ A good technology meme solves a fundamental (not ephemeral) problem, lays the foundation for solving related problems, spreads rapidly, and can lead to the application of complementary technologies.

1.9.1 Consequences

At the time of writing, we have demonstrated, applied, and in some cases modified the techniques presented in this thesis to scale the performance of various networking applications, including packet buffering, measurements, scheduling, VOQ buffering, page allocation, virtual memory management, Netflow, and state-based applications to $40 \mathrm{~Gb} / \mathrm{s}$ and beyond, using commodity DRAM-based memory technologies. Surprisingly, these techniques (in particular caching), because they use memory in a monolithic manner across all memories, have also resulted in increased router memory reliability, simplified router memory redundancy (e.g., they have enabled $N+1$ memory redundancy similar to RAID-3 and RAID-5 protection for disks [30]), and enabled hot-swappable recovery from router memory failures.

They have helped reduce worst-case memory power (by $\sim 25-50 \%$ [31]), and are currently being modified for use in automatically (without manual intervention) reducing the average-case memory and I/O power consumption in routers. The power reduction capabilities of caches have considerable engineering, economic, and environmental benefits.

They have also paved the way for the use of complementary high-speed interconnect and memory serialization technologies [32]. ${ }^{29}$ Unforeseen by us, new markets (e.g.,

[^18]high-performance computing and storage networks) can also benefit from caching. These techniques have made high-speed routers more affordable by reducing yearly memory costs at Cisco Systems by $>\$ 149 \mathrm{M}[33]$ ($\sim 50 \%$ of memory cost), reducing ASIC and I/O pin counts, and halving the physical area required to build high-speed routers.

1.9.2 Current Usage

We estimate that more than 6 M instances of the technology (on over 25 unique product instances) will be made available annually, as Cisco Systems proliferates its next generation of $40 \mathrm{~Gb} / \mathrm{s}$ high-speed Ethernet switches and Enterprise routers; and up to $\sim 80 \%^{30}$ of all high-speed Ethernet switches and Enterprise routers in the Internet will use one or more instances of these technologies. They are currently also being designed into the next generation of $100 \mathrm{~Gb} / \mathrm{s}$ line cards (for high-volume Ethernet, storage, and data center applications). In the next phase of deployment, we also expect to cater to Internet core routers.

Finally, in the concluding chapter we describe some of the optimizations, implementation challenges, and potential caveats in scaling these techniques across different segments of the router market. We will also describe the limitations of some of our algorithms, and present some open problems that are still in need of solution.

1.10 Primary Consequences

The primary consequences of our work are -

1. Routers are no longer dependent on memory speeds to achieve high performance.
2. Routers can better provide strict performance guarantees for critical future applications (e.g., remote surgery, supercomputing, distributed orchestras).
3. The router applications that we analyze are safe from malicious memory performance attacks. Their memory performance can never be compromised, either now, and provably, ever in future.
[^19]
1.11 Summary of Results

This thesis lays down a foundation for solving the memory performance problem in high-speed routers. It describes robust load balancing algorithms (which can emulate the performance of an ideal router) and robust caching algorithms (which can achieve 100% hit rates). It brings under a common umbrella many well-known high-speed router architectures, and introduces a general principle called "constraint sets", which unifies several results on router architectures. It also helps us derive a number of new results, and more important, vastly simplifies our understanding of high-speed routers.

The following are the 14 main results of this thesis. In what follows, N and R denote, as usual, the number of ports and the line rate of a router.

Robust Load Balancing Algorithms: We derive load balancing algorithms that use memories in parallel, for a number of router architectures. We derive upper bounds on the total memory bandwidth (as well as the switching bandwidth where appropriate), which is within a constant, $S=\Theta(1)$ of the theoretical minimum for the given architecture. ${ }^{31}$ These include: (1) $S=3$ for the FCFS parallel shared memory (PSM) router and $S=4$ for a PSM router that supports qualities of service, (2) Two variants of load balancing algorithms with $S=3,4$ for the FCFS distributed shared memory (DSM) router, and two variants with $S=4,6$ for a DSM router which supports qualities of service, (3) $S=6,8$ for the FCFS parallel distributed shared memory (PDSM) router and $S=12,18$ for a PDSM router which supports multiple qualities of service (both with a number of variations), (4) $S=6+\epsilon$ for the FCFS combined input output queued (CIOQ) router, and (5) $S=4$ for the FCFS parallel packet switch (PPS), and $S=6$ for a PPS that supports qualities of service (with both centralized and distributed implementations). We also develop load balancing algorithms for two very generic applications that are widely used in systems including routers. These include: (6) An algorithm that speeds up the random cycle time to perform memory updates by a factor $\Theta(\sqrt{h})$ (where h is the number of parallel memory

[^20]banks, and used for state maintenance by routers), and (7) An algorithm that can create m copies of data (used for supporting multicasting by routers) by using memories that run only at access rate $\Theta(\sqrt{m})$.

Robust Caching Algorithms: We describe several robust caching algorithms that ensure, 100% of the time, that the cache never overflows or misses, along with related cache replenishment and cache replacement policies. The caches are of size (8) $\Theta\left(N^{2}\right)$ for an FCFS buffered crossbar, (9) two variants with cache size $\Theta\left(N^{2}\right)$ and $\Theta\left(N^{3}\right)$ for buffered crossbars that support qualities of service, (10) $\Theta(N k)$ for an FCFS parallel packet switch (where k is degree of parallelism, i.e., the number of center stage switches), (11) $\Theta(Q b \log Q)$ for packet buffers with Q queues (where b is the width of the memory access), (12) $\Theta\left(Q \log \frac{Q b}{x}\right)$ for pipelined buffers, which can tolerate a latency of x time slots, (13) $\Theta(\log \log N)$ for measurement infrastructure with N counters, and (14) $\Theta(Q b \log Q+R L) \frac{\log _{2} P_{\max }}{P_{\text {min }}}$ for packet schedulers with Q linked lists operating at rate R, and a communication latency of L time slots (where $P_{\max }$ and $P_{\min }$ are the maximum and minimum packet sizes respectively).

Summary

1. High-speed networks (e.g., the Internet backbone) suffer from a well-known problem: packets arrive on high-speed routers at rates much faster than commodity memory can support.
2. By 1997, this was identified as a fundamental approaching problem. As link rates increase (usually at the rate of Moore's Law), the performance gap widens and the problem becomes worse. For example, on a $100 \mathrm{~Gb} / \mathrm{s}$ link, packets arrive ten times faster than memory rates.
3. If we are unable to bridge this performance gap, then our routers cannot give any guarantees on performance. In this case, our routers (1) cannot reliably support links $>10 \mathrm{~Gb} / \mathrm{s}$, (2) cannot support the needs of real-time applications, and (3) are susceptible to hackers or viruses that can easily exploit the memory performance gap and bring down the Internet.
4. The goal of this thesis is to build routers that can provide deterministic performance guarantees. We are interested in two kinds of guarantees - (1) work conservation (which
ensures that our routers do not idle when a packet is destined for it), and (2) delay guarantees (i.e., bounds on the time it takes for a packet to transit a router).
5. This thesis attempts to provide fundamental (not ephemeral) solutions to the memory performance gap in routers.
6. The approach taken to alleviate the memory performance gap is to use parallelism. We analyze many router architectures, and various data-path applications on routers. We do not attempt to be exhaustive; rather, we assume that memory performance will be a constraint, and we attempt to solve some of the fundamental memory constraints that routers might face.
7. This thesis develops two classes of solutions, both of which use parallelism - (1) load balancing algorithms that attempt to distribute the load in a "perfect" manner among slower memories, and (2) caching algorithms that use a small, high-speed memory that can be accessed at very high rates while most of the data resides in slower memories. The trick is to guarantee, with no exceptions whatever, that data is available in the cache 100% of the time.
8. We analyze the performance of the above algorithms by comparing them to an ideal (output queued) router. We call this emulation.
9. This thesis only pertains to memory-intensive data-path tasks in a router. It does not attempt to solve the algorithmic and computationally intensive tasks on a router.
10. Each chapter in the thesis solves a different memory-related problem. Part I of the thesis pertains to router architectures, while Part II pertains to data-path tasks and applications on a router.
11. The thesis lays down the theoretical foundations for solving the memory performance problem, presents various solutions, gives examples of practical implementations, and describes the present widespread adoption of these solutions in industry.
12. As a consequence - (1) routers are no longer dependent on memory speeds to achieve high performance, (2) routers can better provide strict performance guarantees for critical future applications (e.g., remote surgery, supercomputing, distributed orchestras), and (3) the router applications that we analyze are safe from malicious memory performance attacks. Their memory performance can never be compromised either now or, provably, ever in future.
13. It presents solutions to 14 different memory performance problems in high-speed routers.

Part I

Load Balancing and Caching for Router Architecture

Chapter 2: Analyzing Routers with Parallel Slower Memories

Dec 2007, Monterey, CA

Contents

2.1 The Pigeonhole Principle 37
2.1.1 The Constraint Set Technique 38
2.2 Single-buffered Routers 39
2.3 Unification of the Theory of Router Architectures 43
2.4 The Parallel Shared Memory Router 46
2.4.1 Architecture 46
2.4.2 Why is a PSM Router Interesting? 48
2.4.3 Is the PSM Router Work-conserving? 48
2.5 Emulating an FCFS Shared Memory Router 49
2.6 QoS in a Parallel Shared Memory Router 51
2.6.1 Constraint Sets and PIFO queues in a Parallel Shared Memory Router 51
2.6.2 Complications When There Are N PIFO Queues 53
2.6.3 Modifying the Departure Order to Prevent Memory Conflicts 55
2.7 Related Work 57
2.7.1 Subsequent Work 57
2.8 Conclusions 57

List of Dependencies

- Background: The memory access time problem for routers is described in Chapter 1. Section 1.5.2 describes the use of load balancing techniques to alleviate memory access time problems for routers.

Additional Readings

- Related Chapters: The load balancing technique described here is also used to analyze routers in Chapters 3, 4, 6, and 10.

Table: List of Symbols.

c, C	Cell
$D(t)$	Departure Time
M	Total Number of Memories
N	Number of Ports of a Router
R	Line Rate
$S N R$	Aggregate Memory Bandwidth
T	Time Slot

Table: List of Abbreviations.

CIOQ	Combined Input Output Queued
DSM	Distributed Shared Memory
FCFS	First Come First Serve (Same as FIFO)
OQ	Output Queued
PIFO	Push In First Out
PPS	Parallel Packet Switch
PSM	Parallel Shared Memory
PDSM	Parallel Distributed Shared Memory
SB	Single-buffered
QoS	Quality of Service
WFQ	Weighted Fair Queueing

Analyzing Routers with Parallel Slower

Memories

2.1 The Pigeonhole Principle

Chapter 1 described the history of high-speed router architectures and introduced the memory access time problem. In this chapter we will analyze and bring under a common umbrella a variety of router architectures. But first we will answer the question posed by the conversation in Chapter 1 , since this will further our understanding of the memory access time problem in routers. We want to discover the number of pigeon holes that will allow a pigeon to enter or leave a pigeon hole within a given time slot, so that the N departing pigeons are guaranteed to be able to leave, and the N arriving pigeons are guaranteed a pigeon hole.

Consider a pigeon arriving at time t that will depart at some future time, $D(t)$. Let M be the total number of memories. We need to find a pigeon hole, H, that meets the following three constraints: (1) No other pigeon is arriving to H at time t; (2) No pigeon is departing from H at time t; and (3) No other pigeon in H wants to depart at time $D(t)$. Put another way, the pigeon is barred from no more than $3 N-2$ pigeon holes by $N-1$ other arrivals, N departures, and $N-1$ other future departures. In

[^21]keeping with the well-known pigeonhole principle (see Theorem 2.1), if $M \geqslant 3 N-1$, our pigeon can find a hole.

2.1.1 The Constraint Set Technique

Algorithm 2.1: The constraint set technique for emulation of $O Q$ routers.
input : Any Router Architecture.
output: A bound on the number of memories, total memory, and switching bandwidth required to emulate an OQ router.
for each cell c do
Determine packet's departure time, $D(t)$: If cells depart in FCFS order to a given output, and if the router is work-conserving, the departure time is simply one more than the departure time of the previous packet to the same output. If the cells are scheduled to depart in a more complicated way, for example using WFQ, then it is harder to determine a cells's departure time. We will consider this in more detail in Section 2.6. For now, we'll assume that the $D(t)$ is known for each cell.
Identify constraints: Identify all the constraints in the router architecture. This usually includes constraints on the memory bandwidth, memory access time, speed of the switch fabric, etc. The constraints themselves vary based on the router architecture being considered.
6 Define the memory constraint sets: Identify and set up the memory constraints for both the arriving and departing cells.
7 Apply the pigeonhole principle: Add up all the memory constraints, and apply the pigeonhole principle. This will identify the minimum number of memories and minimum memory bandwidth required to write and read all cells without any conflicts.
Solve the fabric constraints: Ensure that the switch fabric has sufficient bandwidth to read and write cells from memory, as derived in the previous step. Identify a switching algorithm to transport these cells. In some cases, if the router has a simple switching fabric (say, a broadcast bus), this step is not necessary.
"Constraint sets" are a simple way of formalizing the pigeonhole principle so that we can repeatedly apply it to a broad class of routers. In the routers that we will
consider, the arriving (departing) packets are written to (read from) memories that are constrained. In some cases, they may only allow either a read or a write operation in any one time slot. In other cases they may even operate slower than the line rate. We can use the constraint set technique to determine how many memories are needed (based on the speed at which the memory operates), and to design an algorithm to decide which memory each arriving packet is written into. The technique is described in Algorithm 2.1.

2.2 Single-buffered Routers

We now introduce a new class of routers called "single-buffered" routers. In contrast to the classical CIOQ router, which has two stages of buffering that "sandwich" a central switch fabric (with purely input queued and purely output queued routers as special cases), a SB router has only one stage of buffering sandwiched between two interconnects.
$\sqrt{3}$ Observation 2.1. Figure 2.1 illustrates both architectures. A key feature of the SB architecture is that it has only one stage of buffering. Another difference is in the way that the switch fabric operates. In a CIOQ router, the switch fabric is a non-blocking crossbar switch, while in an SB router, the two interconnects are defined more generally. For example, the two interconnects in an SB router are not necessarily the same, and the operation of one may constrain the operation of the other.

We will explore one architecture in which both interconnects are built from a single crossbar switch. In another case we will explore an architecture in which the interconnect is a Clos network.

A number of existing router architectures fall into the SB model, such as the input queued router (in which the first stage interconnect is a fixed permutation, and the second stage is a non-blocking crossbar switch), the output queued router (in

Figure 2.1: A comparison of the $C I O Q$ and $S B$ router architectures.
which the first stage interconnect is a broadcast bus, and the second stage is a fixed permutation), and the shared memory router (in which both stages are independent broadcast buses).

It is our goal to include as many architectures under the umbrella of the SB model as possible, then find tools to analyze their performance. We divide SB routers into two classes: (1) Routers with randomized switching or load balancing, for which we can at best determine statistical performance metrics, such as the conditions under which they achieve 100% throughput. We call these Randomized SB routers; and (2) Routers with deterministically scheduled switching, for which we can hope to find conditions under which they emulate a conventional output queued router and/or can provide delay guarantees for packets. We call these Deterministic SB routers.

In this thesis we will only study Deterministic SB routers. But for completeness, we will describe here some examples of both Randomized and Deterministic SB routers. For example, the well-known Washington University ATM Switch [34] - which is
essentially a buffered Clos network with buffering in the center stage - is an example of a Randomized SB architecture. The Parallel Packet Switch (PPS) [35] (which is further described in Chapter 6) is an example of a Deterministic SB architecture, in which arriving packets are deterministically distributed by the first stage over buffers in the central stage, and then recombined in the third stage.

In the SB model, we allow - where needed - the introduction of additional coordination buffers. This buffer is much smaller (and is usually placed on chip), compared to the large buffers used for congestion buffering. It can be used in either randomized or deterministic SB routers. For example, in the Washington University ATM Switch, resequencing buffers are used at the output because of the randomized load balancing at the first stage. In one version of the PPS, fixed-size coordination buffers are used at the input and output stages [36].

Other examples of the SB architecture include the load balancing switch proposed by Chang [37] (which is a Randomized SB and achieves 100% throughput, but missequences packets), and the Deterministic SB variant by Keslassy [38] (which has delay guarantees and doesn't mis-sequence packets, but requires an additional coordination buffer).

Observation 2.2. Table 2.1 shows a collection of results for different deterministic and randomized routers. The routers are organized into eight types (shown in roman numerals) based on the architecture being used. Within each type the deterministic routers are denoted by D, and the randomized routers are denoted by R.

We've found that within each class of SB routers (Deterministic and Randomized), performance can be analyzed in a similar way. For example, Randomized SB routers are usually variants of the Chang load balancing switch, so they can be shown to have 100% throughput using Lyapunov functions and the standard Loynes construction [37, 12]. In a previous paper [43] we use this technique to analyze the randomized buffered

Table 2.1: Unification of the theory of router architectures.

Name	Type	\# of memories	Memory Access Rate	Total Memory BW	Switch BW	Comment
Output Queued	I. D	N	$(N+1) R$	$N(N+1) R$	$N R$	OQ Router.
Centralized Shared Memory	I. D	1	$2 N R$	$2 N R$	$2 N R$	OQ Router built with shared memory.
Input Queued $[11,12,39]$	II. D	N	$2 R$	$2 N R$	$N R$	100% throughput with MWM. Can't emulate OQ Router.
Parallel Shared Memory (PSM) (Section 2.4.	III. D	k	$3 N R / k$	$3 N R$	$2 N R$	Emulates FCFS-OQ.
	III. D	k	$4 N R / k$	$4 N R$	$2 N R$	Emulates WFQ OQ.
$\begin{gathered} \text { PSM } \\ \text { (SMS - Prakash) [40] } \end{gathered}$	III. D	$2 N$	$2 R$	$4 N R$	$2 N R$	Emulates FCFS-OQ
Distributed Shared Memory (Section 3.2 \& 3.3)	IV. D	N	$3 R$	$3 N R$	$2 N R$	Emulates FCFS-OQ; Bus Based.
	IV.D	N	$4 R$	$4 N R$	$2 N R$	Emulates FCFS-OQ; Bus Based.
	IV.D	N	$3 R$	$3 N R$	$4 N R$	Emulates FCFS-OQ; Xbar schedule complex.
	IV.D	N	$3 R$	$3 N R$	$6 N R$	Emulates FCFS-OQ; trivial Xbar schedule.
	IV.D	N	$4 R$	$4 N R$	$5 N R$	Emulates WFQ OQ; Xbar schedule complex.
	IV.D	N	$4 R$	$4 N R$	$8 N R$	Emulates WFQ OQ ; trivial Xbar schedule.
	IV.D	N	$4 R$	$4 N R$	$4 N R$	Emulates FCFS-OQ; simple Xbar schedule.
	IV. D	N	$6 R$	$6 N R$	$6 N R$	Emulates WFQ OQ; simple Xbar schedule.
DSM (Two stage - Chang) [37]	IV.R	N	$2 R$	$2 N R$	$2 N R$	100% throughput with mis-sequencing.
DSM (Two stage -Keslassy) [38]	IV.D	$2 N$	$2 R$	$4 N R$	$2 N R$	100% throughput, delay guarantees, no mis-sequencing.
Parallel Distributed Shared Memory (PDSM) (Section 3.7)	V.D	$(2 h-1) x N$	R / h	$\frac{(2 h-1) x N R}{h}$	$y N R$	FCFS Crossbar-based PDSM router with memories slower than R, where x and y are variables (See Table 3.1).
Parallel Distributed Shared Memory (PDSM) (Section 3.7)	V.D	$(3 h-2) x N$	R / h	$\frac{(3 h-2) x N R}{h}$	$y N R$	PIFO Crossbar-based DSM router with memories slower than R, where x and y are variables (See Table 3.1).
$\begin{gathered} \text { CIOQ Router } \\ (\text { Box } 4.2,[41]) \\ \hline \end{gathered}$	VI. D	$2 N$	$5 R$	10 NR	$4 N R$	Emulates WFQ OQ with forced stable marriage.
CIOQ Router (Section 4.s, [13])	VI. D	$2 N$	$3 R$	$6 N R$	$2 N R$	Emulates WFQ OQ with complex preferred stable marriage.
CIOQ Router (Section 4.2)	VI. D	$2 N$	$(3+\epsilon) R$	$(6+2 \epsilon) N R$	$(2+\epsilon) N R$	Emulates constrained FCFS-OQ; trivial Xbar schedule.
Buffered CIOQ Router (Box 5.2)	VII. R	$2 N$	$3 R$	6 NR	$2 N R$	100% throughput with trivial input and output policy.
Buffered CIOQ Router $[42]$	VII. D	2 N	3 B	$6 N R$	$2 N R$	Emulates FCFS-OQ.
Buffered CIOQ Router (Section 5.5)	VII. D	2 N	$3 R$	$6 N R$	$3 N R$	Emulates WFQ OQ.
	VII. D	2 N	$3 R$	$6 N R$	$2 N R$	Emulates WFQ OQ with modified crossbar.
Parallel Packet Switch (PPS) (Section $6.5 \& 6.5$)	VIII. D	$k N$	$2(N+1) R / k$	$2 N(N+1) R$	$4 N R$	Emulates FCFS-OQ; centralized algorithm.
	VIII. D	$k N$	$3(N+1) R / k$	$3 N(N+1) R$	$6 N R$	Emulates WFQ OQ; centralized algorithm.
Buffered PPS (Section 6.7)	VIII. D	$k N$	$R(N+1) / k$	$N(N+1) R$	$2 N R$	Emulates FCFS-OQ; distributed algorithm

CIOQ router (type VII.R in Table 2.1^{1}) to prove the conditions under which it can give 100% throughput.

Likewise, the Deterministic SB routers that we have examined can be analyzed using constraint sets (described in Section 2.1.1) to find conditions under which they can emulate output queued routers. By construction, constraint sets also provide switch scheduling algorithms. We derive new results, switching algorithms, and bounds on the memory, and switching bandwidth for routers in each type (except the input queue router (type II) for which it is known that it cannot emulate an OQ router).

2.3 Unification of the Theory of Router Architectures

Constraint sets help us derive a number of new results, and more important, vastly simplify our understanding of high-speed router analysis and architectures. And so, we will show by the analysis of various router architectures that the "constraint set" technique unifies several results on router architectures under a common theoretical framework.
$\sqrt{3}$ Observation 2.3. Essentially, constraint sets are simply a way to capture the load balancing constraints on memory and thus can be applied extensively to memory sub-systems. Table 2.1 summarizes the different router architectures that are analyzed in this thesis using the constraint set technique.

In this thesis, we describe two versions of the constraint set technique to analyze deterministic routers, as follows -

1. Apply the basic constraint set technique (Algorithm 2.1) on deterministic SB routers: We describe four Deterministic SB architectures that

[^22]seem of practical interest but have been overlooked in the academic literature: (1) the parallel shared memory (PSM) router - a router built from a large pool of central memories (type III, analyzed in this chapter), (2) the distributed shared memory (DSM) router - a router built from a large but distributed pool of memories (type IV, Chapter 3), (3) the parallel distributed shared memory (PDSM) Router - a router that combines the techniques of the PSM and DSM router architectures (type IV, Section 3.7), and (4) the parallel packet switch (PPS) - a router built from a large pool of parallel routers running at a lower line rate (type VIII, Chapter 6). As we will see, we can use the basic constraint set technique to identify the conditions under which the above single-buffered router architectures can emulate an output queued router.
2. Apply the basic constraint set technique (Algorithm 2.1) on deterministic CIOQ Routers: We also apply the basic constraint set technique to analyze the CIOQ router (type IV, Chapter 4), which is not an SB router. In a CIOQ router, each packet gets buffered twice, as shown in Figure 1.3(b). We will consider two switch fabrics: (1) the classical unbuffered crossbar, and (2) the buffered crossbar, which is a crossbar with a small number of buffers. We will see that constraint sets can simplify our understanding of previously known results, and help derive new bounds to emulate an FCFS-OQ router.
3. Apply the extended constraint set technique (Algorithm 4.2) on deterministic CIOQ routers: In [13], the authors present a counting technique to analyze crossbar based CIOQ routers. In hindsight, the technique can be viewed as an application of the pigeonhole principle. So we will extend the basic constraint set technique and restate the methods in [13] in terms of the pigeonhole principle in Section 4.2. This helps to bring under a common umbrella the analysis techniques used to analyze deterministic routers. As we will see, the extended constraint set technique leads to tighter bounds and broader results for the CIOQ router as compared to the basic constraint set technique. We then apply this technique to a buffered CIOQ router to find the conditions under which a buffered CIOQ router can emulate an output queued router.

\$<Box 2.1: The Pigeonhole Principle $>$ ©

The pigeonhole principle states the following
Theorem 2.1. Given tuo natural numbers p and h with $p>h$, if p items (pigeons) are put into h pigeonholes, then at least one pigeonhole must contain more than one item (pigeon).

An equivalent way of stating this (used most often in this thesis and shown in Figure 2.2) [44] is as follows - if the number of pigeons is less than the number of pigeonholes, then there's at least one pigeonhole that must be empty.

Figure 2.2: The pigeonhole principle

The principle was first mentioned by Dirichlet in 1834, using the name Schubfachprinzip ("drawer principle"). It is rumored that the term pigeonhole itself was introduced to prevent any further discussion of Dirichlet's drawers! The principle itself is obvious, and humans have been aware of it historically. For example, the old game of musical chairs is a simple application of the pigeonhole principle.

Observation 2.4. The pigeonhole principle is powerful and has many uses in computer science and mathematics, e.g, it can be used to prove that any hashing algorithm (where the domain is greater than the number of hash indices) cannot prevent collision, or that a lossless compression algorithm cannot compress the size of all its inputs. Surprisingly, it is also used to find good fractional approximations for irrational numbers.

In terms of set theory, pigeons and pigeonholes are simply two finite sets, say P and H; and the pigeonhole principle can be applied if $|P|>|H|$. It is interesting to note that the pigeonhole principle can also be applied to infinite sets, but only if it can still be shown that the cardinality of P is greater than H^{n}.

Here's an interesting magic trick based on applying the pigeonhole principle A magician asks an audience member to randomly choose five cards from a card deck, then asks her to show them to an understudy. The understudy shows four of the five cards to the magician, one by one. The magician then guesses the fifth one.

[^23]As we will show later in this thesis, we also use constraint sets to analyze two router data path tasks that use load balancing - (1) state maintenance (Chapter 10) and multicasting (Appendix J).

In the rest of the thesis, we will repeatedly use the following lemmas in our analysis using constraint sets. They are both direct consequences of the pigeonhole principle.

Lemma 2.1. Let $A_{1}, A_{2} \ldots A_{n}$ be n sets, such that $\forall i \in\{1,2, \ldots, n\},\left|A_{i}\right| \leqslant k$, where k is the size of the universal set. If $\left|A_{1}\right|+\left|A_{2}\right|+\cdots+\left|A_{n}\right|>(n-1) k$, then there exists at least one element which is common to all sets, i.e., $\exists e, e \in A_{1} \cap A_{2} \cap \ldots A_{n}$.

Lemma 2.2. Let $A_{1}, A_{2} \ldots A_{n}$ be n sets, such that $\forall i \in\{1,2, \ldots, n\},\left|A_{i}\right| \leqslant k$, where $n k+1$ is the size of the universal set. Then there exists at least one element that does not belong to any of the sets, i.e., $\exists e, e \notin A_{1} \cup A_{2} \cup \ldots A_{n}$.

2.4 The Parallel Shared Memory Router

2.4.1 Architecture

A shared memory router is characterized as follows: When packets arrive at different input ports of the router, they are written into a centralized shared buffer memory. When the time arrives for these packets to depart, they are read from this shared buffer memory and sent to the egress line. The shared memory architecture is the simplest technique for building an OQ router.

Q Example 2.1. Early examples of commercial implementations of shared memory routers include the SBMS switching element from Hitachi [46], the RACE chipset from Siemens [47], the SMBS chipset from NTT [48], the PRELUDE switch from CNET [49,50], and the ISE chipset by Alcatel [51]. A recent example is the ATMS2000 chipset from MMC Networks [52].

In general, however, there have been fewer commercially available shared memory routers than those using other architectures. This is because (as described in Chapter 1)

Figure 2.3: The parallel shared memory router.
it is difficult to scale the capacity of shared memory switches to the aggregate capacity required today.

An obvious question to ask is: If the capacity of a shared memory router is larger than the bandwidth of a single memory device, why don't we simply use lots of memories in parallel? However, this is not as simple as it first seems.
$\sqrt[3]{3}$ Observation 2.5. If the width of the memory data bus equals a minimum length packet (about 40 bytes), then each packet can be (possibly segmented and) written into memory. But if the width of the memory is wider than a minimum length packet, ${ }^{2}$ it is not obvious how to utilize the increased memory bandwidth.

We cannot simply write (read) multiple packets to (from) the same memory location, as they generally belong to different queues. The shared memory contains multiple queues (at least one queue per output; usually more).

But we can control the memories individually, and supply each device with a separate address. In this way, we can write (read) multiple packets in parallel to (from)

[^24]different memories. We call such a router a parallel shared memory router, as shown in Figure 2.3. $k \geqslant 2 N R / B$ physical memories are arranged in parallel, where B is the bandwidth of one memory device. A central bus transports arriving (departing) packets to (from) different line cards. The bus carries all the $2 N$ packets across it and has a bandwidth of $2 N R$.

2.4.2 Why is a PSM Router Interesting?

The main appeal of the PSM router is its simplicity - the router is simply a bunch of memories. Also, it is scalable in terms of memory access time. If we had only one memory, as in the centralized shared memory router described in Chapter 1, a PSM router would not be scalable. However, in a PSM router, the access rate of the individual memories can be arbitrarily small, in which case we will simply need more memories.

2.4.3 Is the PSM Router Work-conserving?

We are interested in the conditions under which the parallel shared memory router can emulate an FCFS output queued router. This is equivalent to asking if we can always find a memory that is free for writing when a packet arrives, and that will also be free for reading when the packet needs to depart. Consider the following example.

Example 2.2. Figure 2.4 shows a PSM router with $N=3$ ports. The outputs are numbered a, b, and c. Packets ($a 4$), ($a 5$), and ($c 3$) arrive to the router, where $(a 4)$ denotes a packet destined to output a with departure time $D T=4$. Packets $(a 1),(b 1)$, and (c1) depart from the PSM router in the current time slot, with $D T=1$. Some packets that have arrived earlier, such as ($a 3$) and ($b 3$), are shown buffered in some of the memories of the PSM router. If arriving packets $(a 4)$ and $(a 5)$ are sent to the first two memories, then packet $c 3$ is forced to be buffered in the memory numbered 5 .

Figure 2.4: An example where $k=7$ memories are not enough, but $k=8$ memories suffice.

Clearly, if the packets were allocated as shown, and the memory numbered 5 was not present, the PSM router would not be work-conserving for this allocation policy. We are interested in knowing whether the PSM router is work-conserving in the general case, i.e., for any value of N and k, irrespective of the arriving traffic pattern.

2.5 Emulating an FCFS Shared Memory Router

Using constraint sets, it is easy to see how many memories are needed for the parallel shared memory router to emulate an FCFS output queued router.

Theorem 2.2. (Sufficiency) A total memory bandwidth of $3 N R$ is sufficient for a parallel shared memory router to emulate an FCFS output queued router.

Proof. (Using constraint sets) Assume that the aggregate memory bandwidth of the k memories is $S N R$, where $S>1$. We can think of the access time T of a memory, as equivalent to k / S decision slots. ${ }^{3}$ We will now find the minimum value of S needed for the switch to emulate an FCFS output queued router. Assume that all packets are segmented into cells of size C, and reassembled into variable-length packets before

[^25]they depart. As follows, we define two constraint sets: one set for when cells are written to memory, and another for when they are read.
\aleph Definition 2.1. Busy Write Set (BWS): When a cell is written into a memory, the memory is busy for $\lceil k / S\rceil$ decision slots. $B W S(t)$ is the set of memories that are busy at the time, due to cells being written, and therefore cannot accept a new cell. Thus, $B W S(t)$ is the set of memories that have started a new write operation in the previous $\lceil k / S\rceil-1$ decision slots. Clearly $|B W S(t)| \leqslant\lceil k / S\rceil-1$.
\aleph Definition 2.2. Busy Read Set (BRS): Likewise, the $B R S(t)$ is the set of memories busy reading cells at time t. It is the set of memories that have started a read operation in the previous $\lceil k / S\rceil-1$ decision slots. Clearly $|B R S(t)| \leqslant\lceil k / S\rceil-1$.

Consider a cell c that arrives to the shared memory switch at time t destined for output port j. If c 's departure time is $D T(t, j)$ and we apply the constraint set technique, then the memory l that c is written into must meet these constraints:

1. Memory l must not be busy writing a cell at time t. Hence $l \notin B W S(t)$.
2. Memory l must not be busy reading a cell at time t. Hence $l \notin B R S(t)$.
3. We must pick a memory that is not busy when the cell departs from the switch at $D T(t, j)$: Memory l must not be busy reading another cell when c is ready to depart: i.e., $l \notin B R S(D T(t, j))$.

Hence our choice of memory l must meet the following constraints:

$$
\begin{equation*}
l \notin B W S(t) \wedge l \notin B R S(t) \wedge B R S(D T(t, j)) \tag{2.1}
\end{equation*}
$$

A sufficient condition to satisfy this is:

$$
\begin{equation*}
k-|B W S(t)|-|B R S(t)|-|B R S(D T(t, j))|>0 \tag{2.2}
\end{equation*}
$$

From Definitions 2.1 and 2.2, we know that Equation 2.2 is true if:

$$
\begin{equation*}
k-3(\lceil k / S\rceil-1)>0 \tag{2.3}
\end{equation*}
$$

This is satisfied if $S \geqslant 3$, and corresponds to a total memory bandwidth of $3 N R$. \square

Note that it is possible that an arriving cell must depart before it can be written to the memory, i.e., $D T(t, j)<t+T$. In that case, the cell is immediately transferred to the output port j, bypassing the shared memory buffer. The algorithm described here sequentially searches the line cards to find a non-conflicting location for an arriving packet. Hence the complexity of the algorithm is $\Theta(N)$. Also, the algorithm needs to know the location of every packet buffered in the router. The bus connecting the line cards to the memory must run at rate $2 N R$. While this appears expensive, in Chapter 3 we will explore ways to reduce the complexity using a crossbar switch fabric.

2.6 QoS in a Parallel Shared Memory Router

We now consider routers that provide weighted fairness among flows, or delay guarantees using WFQ [17] or GPS [18]. We find the conditions under which a parallel shared memory router can emulate an output queued router that implements WFQ. We will use the generalization of WFQ known as a "Push-in First-out" (PIFO) queue as described in Chapter 1. As follows, we will explore how a PSM router can emulate a PIFO output queued router that maintains N separate PIFO queues, one for each output.

2.6.1 Constraint Sets and PIFO queues in a Parallel Shared Memory Router

We saw above that if we know a packet's departure time when it arrives - which we do for FCFS - we can immediately identify the memory constraints to ensure the packet can depart at the right time. But in a router with PIFO queues, the departure time of a packet can change as new packets arrive and push in ahead of it. This complicates
the constraints; but as we will see, we can introduce an extra constraint set so as to choose a memory to write the arriving packet into. First, we'll explain how this works by way of an example; the general principle follows easily.

Example 2.3. Consider a parallel shared memory router with three ports, and assume that all packets are of fixed size. We will denote each packet by its initial departure order: Packet $(a 3)$ is the third packet to depart, packet (a4) is the fourth packet to depart, and so on. Figure 2.5(a) shows a sequence of departures, assuming that all the packets in the router are stored in a single PIFO queue. Since the router has three ports, three packets leave the router from the head of the PIFO queue in every time slot. Suppose packet ($a 3^{\prime}$) arrives and is inserted between ($a 2$) and ($a 3$), as shown in Figure 2.5(b). If no new packets push in, packet $\left(a 3^{\prime}\right)$ will depart at time slot 1 , along with packets (a1) and ($a 2$) (which arrived earlier and are already in memory). To be able to depart at the same time, packets (a1), (a2), and ($a 3^{\prime}$) must be in different memories. Therefore, they must be written into a different memory.

Things get worse when we consider what happens when a packet is pushed from one time slot to the next. Figure $2.5(\mathrm{c})$ shows ($a 1^{\prime}$) arriving and pushing ($a 3^{\prime}$) into time slot 2. Packet ($a 3^{\prime}$) now conflicts with packets $(a 3)$ and $(a 4)$, which were in memory $\left(a 3^{\prime}\right)$ when they arrived, and are also scheduled to depart in time slot 2. To be able to depart at the same time, packets ($a 3^{\prime}$), ($a 3$), and ($a 4$) must be in different memories.

In summary, when $\left(a 3^{\prime}\right)$ arrives and is inserted into the PIFO queue, there are only four packets already in the queue that it could conflict with: $(a 1)$ and (a2) ahead of it, and ($a 3$) and ($a 4$) behind it. Therefore, we only need to make sure that $\left(a 3^{\prime}\right)$ is written into a different memory than these four packets. Of course, new packets that arrive and are pushed in among these four packets will be constrained and must pick different memories, but these four packets will be unaffected.

Figure 2.5: Maintaining a single PIFO queue in a parallel shared memory router. The order of departures changes as new cells arrive. However, the relative order of departures between any two packets remains unchanged.

In general, we can see that when a packet arrives to a PIFO queue, it should not use the memories used by the $N-1$ packets scheduled to depart immediately before or after it. This constrains the packet not to use $2(N-1)$ memories.

2.6.2 Complications When There Are N PIFO Queues

The example above is not quite complete. A PSM router holds N independent PIFO queues in one large pool of shared memory (not one PIFO queue, as the previous example suggests). When a memory contains multiple PIFO queues, the memory as a whole does not operate as a single PIFO queue, and so the constraints are more complicated. We'll explain by way of another example.

2 Example 2.4. Consider the same parallel shared memory router with three ports: a, b, and c. We'll denote each packet by its output port and its departure order at that output: packets (b3) and (c3) are the third packets to depart from outputs b and c, and so on. Figure 2.6(a) shows packets waiting to depart - one packet is scheduled to depart from each output during each time slot.

Figure 2.6: Maintaining N PIFO queues in a parallel shared memory router. The relative order of departure of cells that belong to the same output remains the same. However, the relative order of departure of cells among different outputs can change due to the arrival of new cells.

Assume that packet ($a 2^{\prime}$) arrives to output port a and is inserted between ($a 1$) and ($a 2$) (two packets scheduled to depart consecutively from port a). ($a 2^{\prime}$) delays the departure time of all the packets behind it destined to output a, but leaves unchanged the departure time of packets destined to other outputs. The new departure order is shown in Figure 2.6(b).

Taken as a whole, the memory (which consists of N PIFO queues) does not behave as one large PIFO queue. This is illustrated by packet $(a 3)$, which is pushed back to time slot 4 , and is now scheduled to leave after ($b 3$). The relative order of ($a 3$) and ($b 3$) has changed after they were in memory, so by definition of a PIFO, the queue is not a PIFO.

The main problem in the above example is that the number of potential memory conflicts is unbounded. This could happen if a new packet for output a was inserted between ($a 2$) and ($a 3$). Beforehand, ($a 3$) conflicted with ($b 4$) and ($c 4$); afterward, it conflicts with ($b 5$) and ($c 5$), both of which might already have been present in memory when ($a 3$) arrived. This argument can be continued. Thus, when packet (a3) arrives, there is no way to bound the number of memory conflicts that it might have with
packets already present. In general, the arrivals of packets create new conflicts between packets already in memory.

2.6.3 Modifying the Departure Order to Prevent Memory Conflicts

We can prevent packets destined to different outputs from conflicting with each other by slightly modifying the departure order, as described in the following idea -

> 冷Idea. "Instead of sending one packet to each output per time slot, we can transmit several packets to one output, then cycle through each output in turn".

More formally, consider a router with n ports and k shared memories. Let Π be the original departure order. This is described in Equation 2.4. In each time slot, a packet is read from memory for each output port. We will permute Π to give a new departure order Π^{\prime}, as shown in Equation 2.5. Exactly k packets are scheduled to depart each output during the k time slots. Each output receives service for k / n consecutive time slots, and k packets leave per output consecutively. The outputs are serviced in a round robin manner.

$$
\begin{array}{r}
\Pi=(a 1, b 1, \ldots, n 1), \\
(a 2, b 2, \ldots, n 2), \tag{2.5}\\
\ldots, \\
(a k, b k, \ldots, n k) .
\end{array}
$$

$$
\begin{array}{r}
\Pi^{\prime}=(a 1, a 2, \ldots, a k), \\
(b 1, b 2, \ldots, b k) \\
\ldots \\
(n 1, n 2, \ldots, n k)
\end{array}
$$

Note that II' allows each output to simply read from the k shared memories without conflicting with the other outputs. So, when an output finishes reading the k packets, all the memories are now available for the next output to read from. This resulting conflict-free permutation prevents memory conflicts between outputs.

The conflict-free permutation Π^{\prime} changes the departure time of a packet by at most $k-1$ time slots. To ensure that packets depart at the right time, we need a small coordination buffer at each output to hold up to k packets. Packets may now depart at, at most, $k-1$ time slots later than planned.

We can now see how a parallel shared memory router can emulate a PIFO output queued router. First, we modify the departure schedule using the conflict-free permutation above. Next, we apply constraint sets to the modified schedule to find the memory bandwidth needed for emulation using the new constraints. The emulation is not quite as precise as before: the parallel shared memory router can lag the output queued router by up to $k-1$ time slots.

Theorem 2.3. (Sufficiency) With a total memory bandwidth of $4 N R$, a parallel shared memory router can emulate a PIFO output queued router within $k-1$ time slots.

Proof. (Using constraint sets) Consider a cell c that arrives to the shared memory router at time t destined for output j, with departure time $D T(t, j)$ based on the conflict-free permutation. The memory l that c is written into must meet the following four constraints:

1. Memory l must not be busy writing a cell at time t. Hence $l \notin B W S(t)$.
2. Memory l must not be busy reading a cell at time t. Hence $l \notin B R S(t)$. The above constraints are similar to the conditions derived for an FCFS PSM router in Theorem 2.2.
3. Memory l must not have stored the $\lceil k / S\rceil-1$ cells immediately in front of cell c in the PIFO queue for output j, because it is possible for cell c to be read out in the same time slot as some or all of the $\lceil k / S\rceil-1$ cells immediately in front of it.
4. Similarly, memory l must not have stored the $\lceil k / S\rceil-1$ cells immediately after cell c in the PIFO queue for output j.

Hence our choice of memory l must meet four constraints. Unlike Theorem 2.2, there is an additional memory constraint to satisfy, and so this requires a total memory bandwidth of $4 N R$ for the PSM router to emulate a PIFO output queued router.

2.7 Related Work

Our results on the use of the pigeonhole principle for parallel shared memory routers were first described in [53]. In work done independently, Prakash et al. [40] also analyze the parallel shared memory router. They prove that $2 N-1$ dual-ported memories (i.e., where each memory can perform a read and a write operation per time slot) is enough to emulate an FCFS-OQ router (the authors do not consider WFQ policies). This requires a total memory bandwidth of $(4 N-2) R$. The bound obtained in our work is tighter than in [40], because single-ported memories allow for higher utilization of memory. We have not considered the implementation complexity of our switching algorithm, which allocates packets to memories. The proof techniques derived above implicitly assume $\Theta(N)$ time complexity. In [40], the authors take a different approach, demonstrating a parallel switching algorithm with time complexity $O\left(\log ^{2} N\right)$. However, the algorithm utilizes additional memory bandwidth up to $\Theta(6 N R)$ to efficiently compute the packet allocation, and requires a parallel machine with $O\left(N^{2}\right)$ independent processors.

2.7.1 Subsequent Work

In subsequent work $[54,55]$, the authors describe a randomized algorithm with low time complexity that can match packets to memories with high probability.

2.8 Conclusions

It is widely assumed that a shared memory router, although providing guaranteed 100% throughput and minimum delay, does not scale to very high capacities. Our results show that this is not the case. While our results indicate that a parallel shared memory router requires more overall memory bandwidth as compared to a
centralized shared memory router, the bandwidth of any individual memory can be made arbitrarily small by using more physical devices. The bounds we derive for the PSM router are upper bounds on the number of memories required to emulate an output queued router. Clearly, $3 N-1$ memories are sufficient, and at least $2 N$ memories are necessary. However, we have been unable to show a tighter bound in the general case, and this remains an interesting open problem.

Summary

1. In Chapter 1, we introduced a conversation about pigeons and pigeonholes. We posed a question and showed its analogy to the design of high-speed routers.
2. We solve the analogy by the use of the pigeonhole principle.
3. We introduce a technique called "constraint sets" to help us formalize the pigeonhole principle, so that we can apply it to a broad class of router architectures.
4. The constraint set technique will help us determine the conditions under which a given router architecture can provide deterministic performance guarantees - the central goal of this thesis. Specifically, it will help us identify the conditions under which a router can emulate an FCFS-OQ router and a router that supports qualities of service.
5. We would like to bring under one umbrella a broad class of router architectures. So we propose an abstract model for routers, called single-buffered (SB) routers, where packets are buffered only once.
6. Single-buffered routers include a number of router architectures, such as centralized shared memory, parallel shared memory, and distributed shared memory, as well as input queued and output queued routers.
7. In Chapters 2, 3, and 7, we apply the pigeonhole principle to analyze single-buffered routers.
8. In Chapters 4, 5, we analyze combined input output queued (ClOQ) routers that have two stages of buffering.
9. The results of our analysis are summarized in Table 2.1.
10. The first router that we analyze is the parallel shared memory (PSM) router. The PSM router is appealing because of its simplicity; the router is built simply, from k parallel memories, each running at the line rate R.
11. A parallel shared memory router that does not have a sufficient number of memories, or that allocates packets to memories incorrectly, may not be work-conserving.
12. We show that a parallel shared memory router can emulate an FCFS output queue router with a memory bandwidth of $3 N R$ (Theorem 2,2).
13. We also show that a PSM router can emulate an $O Q$ router that supports qualities of service with a memory bandwidth of $4 N R$ (Theorem 2.3).
14. It was widely believed that a shared memory router, although providing guaranteed 100% throughput and minimum delay, does not scale to very high capacities. Our results show that this is not the case.
Chapter 3: Analyzing Routers with Distributed Slower Memories
Jan 2008, Half Moon Bay, CA
Contents
3.1 Introduction 62
3.1.1 Why Are Distributed Shared Memory Routers Interesting? 63
3.1.2 Goal 64
3.2 Bus-based Distributed Shared Memory Router 64
3.3 Crossbar-based DSM Router 64
3.4 An XBar DSM Router Can Emulate an FCFSS-OQ Router 66
3.5 Minimizing the Crossbar Bandwidth 67
3.6 A Tradeoff between XBar BW and Scheduler Complexity 69
3.6.1 Implementation Considerations for the Scheduling Algorithm 73
3.7 The Parallel Distributed Shared Memory Router 74
3.8 Practical Considerations 75
3.9 Conclusions 80

List of Dependencies

- Background: The memory access time problem for routers is described in Chapter 1. Section 1.5.2 describes the use of load balancing techniques to alleviate memory access time problems for routers.

Additional Readings

- Related Chapters: The distributed shared memory (DSM) router introduced in this chapter is an example of a single-buffered router (See Section 2.2), and the general load balancing technique to analyze this router is described in Section 2.3. The load balancing technique is also used to analyze other router architectures in Chapters 2, 4, 6, and 10.

Table: List of Symbols.

Δ	Vertex Degree of a Graph
c, C	Cell
$D T$	Departure Time
N	Number of Ports of a Router
R	Line Rate
T	Time Slot

Table: List of Abbreviations.

CIOQ	Combined Input Output Queued
DRAM	Dynamic Random Access Memory
DSM	Distributed Shared Memory
FCFS	First Come First Serve (Same as FIFO)
OQ	Output Queued
PIFO	Push In First Out
PDSM	Parallel Distributed Shared Memory
QoS	Quality of Service
RTT	Round Trip Time
SB	Single-buffered
TCP	Transmission Control Protocol
WFQ	Weighted Fair Queueing

"A distributed system is one in which the
failure of a computer you didn't even know existed can render your own computer unusable".

- Leslie Lamport ${ }^{\dagger}$

Analyzing Routers with Distributed Slower Memories

3.1 Introduction

In Chapter 2, we considered the parallel shared memory router. While this router architecture is interesting, it has the drawback that all k memories are in a central location. In a commercial router, we would prefer to add memories only as needed, along with each new line card. And so we now turn our attention to the distributed shared memory router shown in Figure 3.1. We assume that the router is physically packaged as shown in the figure, and that each line card contains some memory buffers.

At first glance, the DSM router looks like an input queued router, because each line card contains buffers, and there is no central shared memory. But the memories on a line card don't necessarily hold packets that have arrived to or will depart from that line card. In fact, the N different memories (one on each line card) can be thought of as collectively forming one large shared memory. When a packet arrives, it is transferred across the switch fabric (which could be a shared bus backplane, a crossbar switch, or some other kind of switch fabric) to the memory in another line card. This is shown in Figure 3.2. When it is time for the packet to depart, it is read

[^26]from the memory, passed across the switch fabric again, and sent through its outgoing line card directly to the output line. Notice that each packet is buffered in exactly one memory, and so the router is an example of a single-buffered router.

3.1.1 Why Are Distributed Shared Memory Routers Interesting?

From a practical viewpoint, the DSM router has the appealing characteristic that buffering is added incrementally with each line card. This architecture is similar to that employed by Juniper Networks in a commercial router [56], although analysis of the router's performance has not been published. ${ }^{1}$
${ }^{7}$ Observation 3.1. A DSM router has a peculiar caveat that is inherent in all distributed systems. If a line card fails, it may have packets destined for it from multiple (if not all) line cards. Thus, a failure in one line card can cause packet drops to flows that arrive from and are destined to line cards that have nothing to do with the failed line card! However, this is an ephemeral problem, and only packets that are temporarily buffered in the failed line card are lost. The system can continue operating (albeit at a slower rate) in the absence of the failed line card. Alternatively, an additional line card can be provided that is automatically utilized in case of failure, allowing the system to operate at full line rates. (This is typically referred to as $N+1$ resiliency.)

The DSM router's resiliency to failures, its graceful degradation, and the faulttolerant nature of the system make it particularly appealing.

[^27]
3.1.2 Goal

Our goal is to find the conditions under which a high-speed DSM router can give deterministic performance guarantees, as described in Section 1.4. In particular, this means we want to derive the conditions under which a DSM router can emulate an FCFS-OQ router and a PIFO-OQ router. We will consider two switch fabrics in a DSM router - (1) a bus, and (2) a crossbar.

3.2 Bus-based Distributed Shared Memory Router

In a bus-based DSM router, the switch fabric is a bus that carries all arriving and departing packets. This router is logically equivalent to a parallel shared memory router as long as the shared bus has sufficient capacity, i.e., a switching bandwidth $2 N R$. Rather than placing all the memories centrally, they are moved to the line cards. Therefore, the theorems for the PSM router derived in Chapter 2 also apply directly to the distributed shared memory router. While these results may be interesting, the bus bandwidth is too large.
© Example 3.1. Consider a bus-based DSM router with $N=32$ ports and $R=$ $40 \mathrm{~Gb} / \mathrm{s}$, i.e., a router with a capacity of $1.28 \mathrm{~Tb} / \mathrm{s}$. The switch fabric would have to switch twice the bandwidth, and would require a shared multidrop broadcast bus with a capacity of $2.56 \mathrm{~Tb} / \mathrm{s}$. This is not practical with today's serial link and connector technologies, as it would require over 400 links!

3.3 Crossbar-based DSM Router

We can replace the shared broadcast bus with an $N \times N$ crossbar switch, then connect each line card to the crossbar switch using a short point-to-point link. This is similar

Figure 3.1: Physical view of the DSM router. The switch fabric can be either a backplane or a crossbar. The memory on a single line card can be shared by packets arriving from other line cards.

Figure 3.2: Logical view of the DSM router. An arriving packet can be buffered in the memory of any line card, say x. It is later read by the output port from the intermediate line card x.
to the way input queued routers are built today, although in a distributed shared memory router every packet traverses the crossbar switch twice.

The crossbar switch needs to be configured each time packets are transferred, and so we need a scheduling algorithm that will pick each switch configuration. (Before, when we used a broadcast bus, we didn't need to pick the configuration, as there was sufficient capacity to broadcast packets to the line cards.) We will see that there are several ways to schedule the crossbar switch, and that each has its pros and cons. We will find different algorithms, and for each algorithm we will find the speed at which the memories and crossbar need to run.

We will define the bandwidth of a crossbar to be the speed of the connection from a line card to the switch, and we will assume that the link bandwidth is the same in both directions. So, for example, we know that each link needs a bandwidth of at least $2 R$ just to carry every packet across the crossbar fabric twice. In general, we find that we need a higher bandwidth than this in order to emulate an output queued router. The additional bandwidth serves three purposes:

1. It provides additional bandwidth to write into (read from) the memories on the line cards to overcome the memory constraints.
2. It relaxes the requirements on the scheduling algorithm that configures the crossbar.
3. Because the link bandwidth is the same in both directions, it allocates a bandwidth for the peak transfer rate in one direction, even though we don't usually need the peak transfer rate in both directions at the same time.

3.4 A Crossbar-based DSM router Can Emulate an FCFS Output Queued Router

We start by showing trivially sufficient conditions for a Crossbar-based DSM router to emulate an FCFS output queued router. We then follow with tighter results that show how the crossbar bandwidth can be reduced at the cost of either increased memory bandwidth, or a more complex crossbar scheduling algorithm.

Theorem 3.1. (Sufficiency) A Crossbar-based DSM router can emulate an FCFS output queued router with a total memory bandwidth of $3 N R$ and a crossbar bandwidth of $6 N R$.

Proof. Consider operating the crossbar in two phases: first, read all departing packets from memory and transfer them across the crossbar. From Theorem 2.2, this requires at most three transfers per line card per time slot. In the second phase, write all arriving packets to memory, requiring at most three more transfers per line card per time slot. This corresponds to running the link connecting the line card to the crossbar at a speed of $6 R$, and a crossbar bandwidth of $6 N R$.

Theorem 3.2. (Sufficiency) A Crossbar-based DSM router can emulate a PIFO output queued router with a total memory bandwidth of $4 N R$ and a crossbar bandwidth of $8 N R$ within a relative delay of $2 N-1$ time slots.

Proof. This will follow directly from Theorem 2.3 and the proof of Theorem 3.1. How the crossbar is scheduled is described in the proof of Theorem 3.4.

3.5 Minimizing the Crossbar Bandwidth

We can represent the set of memory operations in a time slot using a bipartite graph with $2 N$ vertices, as shown in Figure 3.3. An edge connecting input i to output j represents an (arriving or departing) packet that needs to be transferred from i to j. In the case of an arrival, the output incurs a memory write; and in the case of a departure, the input incurs a memory read. The degree of each vertex is limited by the number of packets that enter (leave) the crossbar from (to) an input (output) line card. Recall that for an FCFS router, there are no more than three memory operations at any given input or output. Given that each input (output) vertex can also have an arrival (departure), the maximum degree of any vertex is four.

Theorem 3.3. (Sufficiency) A Crossbar-based DSM router can emulate an FCFS output queued router with a total memory bandwidth of $3 N R$ and a crossbar bandwidth of $4 N R$.

(a) Request Graph, G

Matrix

(b) Request Matrix, G

Figure 3.3: A request graph and a request matrix for an $N \times N$ switch.

Proof. From the above discussion, the degree of the bipartite request graph is at most 4. From [57,58] and Theorem 2.2, a total memory bandwidth of $3 N R$, a crossbar link speed of $4 R$, and a crossbar bandwidth of $4 N R$ is sufficient.

Theorem 3.4. (Sufficiency) A Crossbar-based DSM router with a total memory bandwidth of $4 N R$ and a crossbar bandwidth of $5 N R$ can emulate a PIFO output queued router within a relative delay of $2 N-1$ time slots.

Proof. The proof is in two parts. First we shall prove that a conflict-free permutation schedule Π^{\prime} over N time slots can be scheduled with a crossbar bandwidth $5 R$. Unlike the crossbar-based distributed shared memory router, the modified conflict-free permutation schedule Π^{\prime} cannot be directly scheduled on the crossbar, because the conflict-free permutation schedules N cells to each output per time slot. However, we know that the memory management algorithm schedules no more than 4 memory accesses to any port per time slot. Since each input (output) port can have no more than N arrivals (departures) in the N time slots, the total out-degree per port in the request graph for Π^{\prime} (over N time slots), is no more than $4 N+N=5 N$. From König's method [57,58], there exists a schedule to switch the packets in Π^{\prime}, with a crossbar link speed of $5 R$. This corresponds to a crossbar bandwidth of $5 N R$.

Now we show that a packet may incur a relative delay of no more than $2 N-1$ time slots when the conflict-free permutation Π^{\prime} is scheduled on a crossbar. Assume that
the crossbar is configured to schedule cells departing between time slots (a_{1}, a_{N}) (and these configurations are now final), and that other cells prior to that have departed. The earliest departure time of a newly arriving packet is time slot a_{1}. However, a newly arriving cell cannot be granted a departure time between (a_{1}, a_{N}), since the crossbar is already being configured for that time interval. Hence, Π^{\prime} will give the cell a departure time between $\left(a_{N+1}, a_{2 N}\right)$, and the cell will leave the switch sometime between time slots $\left(a_{N+1}, a_{2 N}\right)$. Hence the maximum relative delay that a cell can incur is $2 N-1$ time slots. From Theorem 2.3, the memory bandwidth required is no more than $4 N R$.

3.6 A Tradeoff between Crossbar Bandwidth and Scheduler Complexity

Theorem 3.3 is the lowest bound that we have found for the crossbar bandwidth $(4 N R)$, and we suspect that it is a necessary condition to emulate an FCFS output queued router. Unfortunately, edge-coloring has complexity $O(N \log \Delta)$ [31] (where Δ is the vertex degree of the graph), and is too complex to implement at high speed. We now explore a more practical algorithm which also needs a crossbar bandwidth of $4 N R$, but requires the memory bandwidth to be increased to $4 N R$. The crossbar is scheduled in two phases:

1. Write-Phase: Arriving packets are transferred across the crossbar switch to memory on a line card, and
2. Read-Phase: Departing packets are transferred across the crossbar from memory to the egress line card.

Theorem 3.5. (Sufficiency) A Crossbar-based DSM router can emulate an FCFS output queued router with a total memory bandwidth of $4 N R$ and a crossbar bandwidth of $4 N R$.

Proof. (Using constraint sets). We will need the following definitions to prove the theorem.
\aleph Definition 3.1. Busy Vertex Write Set (BVWS): When a cell is written into an intermediate port x during a crossbar schedule, port x is no longer available during that schedule. $B V W S(t)$ is the set of ports busy at t due to cells being written, and therefore cannot accept a new cell. Since, for a given input, no more than $N-1$ other arrivals occur during that time slot, clearly $\left.|B V W S(t)| \leqslant\left\lfloor(N-1) / S_{W}\right\rfloor\right)$.
\aleph Definition 3.2. Busy Vertex Read Set (BVRS): Similarly, $B V W S(t)$ is the set of ports busy at t due to cells being read, and that therefore cannot accept a new cell. Since, for a given output, no more than $N-1$ other arrivals occur during that time slot, clearly $|B V R S(t)| \leqslant$ $\left.\left\lfloor(N-1) / S_{R}\right\rfloor\right)$.

Consider cell c that arrives to the crossbar-based distributed shared memory router at time t destined for output j, with departure time $D T(t, j)$. Applying the constraint set method, our choice of intermediate port x to write c into must meet these constraints:

1. Port x must be free to be written to during at least one of the s_{W} crossbar schedules reserved for writing cells at time t. Hence, $x \notin B V W S(t)$.
2. Port x must not conflict with the reads occurring at time t. However, since the write and read schedules of the crossbar are distinct, this will never happen.
3. Port x must be free to be read from during at least one of the S_{R} crossbar schedules reserved for reading cells at time $D(t)$. Hence, $x \notin B V R S(D(t))$.

Hence our choice of memory must meet the following constraints:

$$
\begin{equation*}
x \notin B V W S(t) \wedge x \notin B V R S(D T(t, j)) \tag{3.1}
\end{equation*}
$$

This is true if $S_{R}, S_{W} \geqslant 2$. Hence, we need a crossbar link speed of $S_{C} R=\left(S_{R}+S_{W}\right) R=4 R$. Because a memory requires just two reads and two writes per time slot, the total memory bandwidth is $4 N R$.

Theorem 3.6. (Sufficiency) A Crossbar-based DSM router can emulate a PIFO output queued router within a relative delay of $N-1$ time slots, with a total memory bandwidth of $6 N R$ and a crossbar bandwidth of $6 N R$.

Proof. (Using constraint sets). Similar to Theorem 3.5, we consider a cell c arriving at time t, destined for output j and with departure time $D T(t, j)$ (which is based on the conflict-free permutation departure order Π^{\prime}). Applying the constraint set method, our choice of x to write c into meets these constraints:

1. Port x must be free to be written to during at least one of the S_{W} crossbar schedules reserved for writing cells at time t.
2. Port x must not conflict with the reads occurring at time t. However, since the write and read schedules of the crossbar are distinct, this will never happen.
3. Port x must not have stored the $\left\lceil N / S_{R}\right\rceil-1$ cells immediately in front of cell c in the PIFO queue for output j, because it is possible for cell c to be read out in the same time slot as some or all of the $\left\lceil N / S_{R}\right\rceil-1$ cells in front of it.
4. Port x must not have stored the $\left\lceil N / S_{R}\right\rceil-1$ cells immediately after cell c in the PIFO queue for output j.

Hence our choice of port x must meet one write constraint and two read constraints, which can be satisfied if $S_{R}, S_{W} \geqslant 3$. Hence, we need a crossbar link speed of $S_{C} R=\left(S_{R}+S_{W}\right) R=6 R$. A memory can have three reads and three writes per time slot, corresponding to a total memory bandwidth of $6 N R$. Note that $S_{R}=2, S_{W}=4$ will also satisfy the above theorem.

In summary, we have described three different results. Let's now compare them based on memory bandwidth, crossbar bandwidth, and the complexity of scheduling the crossbar switch when the router is emulating an ideal FCFS shared memory router. First, we can trivially schedule the crossbar with a memory bandwidth of $3 N R$ and a crossbar bandwidth of $6 N R$ (Theorem 3.1). With a more complex scheduling algorithm, we can schedule the crossbar with a memory bandwidth of $4 N R$ and a
crossbar bandwidth of $4 N R$ (Theorem 3.5). But our results suggest that, although possible, it is complicated to schedule the crossbar when the memory bandwidth is $3 N R$ and the crossbar bandwidth is $4 N R$. We now describe a scheduling algorithm for this case, although we suspect there is a simpler algorithm that we have been unable to find.

The bipartite request graph used to schedule the crossbar has several properties that we can try to exploit:

1. The total number of edges in the graph cannot exceed $2 N$, i.e., $\sum_{i} \sum_{j} R_{i j} \leqslant 2 N$. This is also true for any subset of vertices; if I and J are subsets of indices $\{1,2, \ldots, N\}$, then $\sum_{i \in I} \sum_{j \in J} R_{i j} \leqslant|I|+|J|$. We complete the request graph by adding requests so that it has exactly $2 N$ edges.
2. In the complete graph, the degree of each vertex is at least one, and is bounded by four, i.e., $1 \leqslant \sum_{i} R_{i j} \leqslant 4$ and $1 \leqslant \sum_{j} R_{i j} \leqslant 4$.
3. In the complete graph, $\sum_{j} R_{i j}+\sum_{j} R_{j i} \leqslant 5$. This is because each vertex can have at most three operations to memory, and one new arrival (which may get buffered on a different port), and one departure (which may be streamed out from a memory on a different port). ${ }^{2}$
4. The maximum number of edges between an input and an output is 2, i.e., $R_{i j} \leqslant 2$. We call such a pair of edges a double edge.
5. Each vertex can have at most one double edge, i.e., if $R_{i j}=2$, then $R_{i k}<2(k \neq j)$ and $R_{k j}<2(k \neq i)$.
6. In a complete request graph, if an edge connects to a vertex with degree one, the other vertex it connects to must have a degree greater than one. This means, if $\sum_{j} R_{m j}=R_{m n}=1$, then $\sum_{i} R_{i n} \geqslant 2$; if $\sum_{i} R_{i n}=R_{m n}=1$, then, $\sum_{j} R_{m j} \geqslant 2$. To see why this is so, suppose an edge connects input i, which has degree one, and output j. This edge represents a packet arriving at i and stored at j. But j has a departure that initiates another request, thus the degree of j is greater

[^28]than one. By symmetry, the same is true for an edge connecting an output of degree one.

3.6.1 Implementation Considerations for the Scheduling Algorithm

Our goal is to exploit these properties to find a crossbar scheduling algorithm that can be implemented on a wave-front arbiter (WFA [15]). The WFA is widely used to find maximal size matches in a crossbar switch. It can be readily pipelined and decomposed over multiple chips [60].
\aleph Definition 3.3. Inequalities of vectors $-v_{1}$ and v_{2} are vectors of the same dimension. The index of the first non-zero entry in $v_{1}\left(v_{2}\right)$ is $i_{1}\left(i_{2}\right)$. We will say that $v_{1} \geqslant v 2$ iff $i_{1} \leqslant i_{2}$, and $v_{1}=v_{2}$ iff $i_{1}=i_{2}$.
\aleph Definition 3.4. Ordered - The row (column) vectors of a matrix are said to be ordered if they do not increase with the row (column) index. A matrix is ordered if both its row and column vectors are ordered.

Lemma 3.1. A request matrix can be ordered in no more than $2 N-1$ alternating row and column permutations.

Proof. See Appendix C.1.

Theorem 3.7. If a request matrix S is ordered, then any maximal matching algorithm that gives strict priority to entries with lower indices, such as the WFA [15], can find a conflict-free schedule.

Proof. See Appendix C. 2.

This algorithm is arguably simpler than edge-coloring, although it depends on the method used to perform the $2 N-1$ row and column permutations.

3.7 The Parallel Distributed Shared Memory Router

The DSM router architecture assumes that each memory allows one read or one write access per time slot. This requires the scheduler to keep track of $3 N-1(4 N-2)$ memories in order to emulate an FCFS (WFQ) OQ router. For line rates up to $10 \mathrm{~Gb} / \mathrm{s}$, it seems reasonable today to use a single commercially available DRAM on each line card to run at that rate. For line rates above $10 \mathrm{~Gb} / \mathrm{s}$, we need even more memories operating in parallel. If there are too many memories for the scheduler to keep track of, it may become a bottleneck. So we will explore ways to alleviate this bottleneck, as motivated by the following idea -

Idea. "Local to each line card, we could allocate packets to parallel memories running at a slower rate (i.e., $<R$), even though the scheduler believes that there is one memory which operates at rate R ".

So we have to find a way in which a memory that runs at rate R can be emulated locally on each line card by multiple memories running at a slower rate. This is done as follows - The scheduler allocates packets to memories assuming that they run at rate R. It assumes that there are a total of $3 N-1(4 N-2)$ memories in the router, so that it can emulate an FCFS (WFQ) OQ router. However, in reality, when the scheduler informs a line card to access a memory at rate R, the memory accesses will be load-balanced locally by the line card over multiple memories operating at a slower rate R / h. In other words, the scheduler operates identically to the DSM router described in Section 3.3, while each line card operates like the parallel shared memory router described in Chapter 2. We call this router the parallel distributed shared memory (PDSM) router. We will use constraint sets to determine how many memory devices are needed locally to perform this emulation.

Theorem 3.8. A set of $2 h-1$ memories of rate R / h running in parallel can emulate a memory of rate R in an FCFS PDSM router.

Proof. Consider the memory that runs at rate R that is going to be emulated by using load balancing. Since the scheduler has already ensured that at any give time, a packet is either written to or read from this memory (and not both), the read and write constraints at the current time collapse into a single constraint. The rest of the analysis is similar to Theorem 2.2. This results in requiring only $2 h-1$ memories running at rate R / h.

Theorem 3.9. A set of $3 h-2$ memories of rate R / h running in parallel can emulate a memory of rate R in a PIFO PDSM router.

Proof. The analysis is similar to Theorem 3.8. As assumed in that proof, we will modify the departure time of packets leaving the output (see Section 2.6.3) so that packets from different outputs do not conflict with each other, and a PIFO order of departures is maintained. Also, since the scheduler has already ensured that, at any given time, a packet is either written to or read from the memory (and not both) that will be emulated, the read and write constraints at the current time collapse into a single constraint. This results in only three constraints, and requires only $3 h-2$ memories running at rate R / h.

We can apply the above emulation technique shown in Theorem 3.8 and Theorem 3.9 for all the results obtained for the DSM router. Table 3.1 summarizes these results.

3.8 Practical Considerations

In this section, we investigate whether we could actually build a DSM router that emulates an output queued router. As invariably happens, we will find that the architecture is limited in its scalability, and that the limits arise for the usual reasons when a system is big: algorithms that take too long to complete, buses that are too wide, connectors and devices that require too many pins, or overall system power that is impractical to cool. Many of these constraints are imposed by technologies available today, and may disappear in future. We will therefore, when possible, phrase our comments to allow technology-independent comparisons, e.g., "Architecture A has half the memory bandwidth of Architecture $B^{\prime \prime}$.

Table 3.1: Comparison between the DSM and PDSM router architectures.

Name	Type	Row	\# of mem	Mem. Access Rate	Total Mem. BW	Switch BW	Comment
Crossbar-based Distributed Shared Memory Router (Section 3.3)	IV.D	$1 a$	3 N	R	$3 N R$	$4 N R$	Emulates FCFS-OQ, complex crossbar schedule.
		$1 b$	3 N	R	$3 N R$	$6 N R$	Emulates FCFS-OQ, trivial crossbar schedule.
		1 c	$4 N$	R	$4 N R$	$5 N R$	Emulates OQ with WFQ, complex crossbar schedule.
		$1{ }^{\text {d }}$	$4 N$	R	$4 N R$	$8 N R$	Emulates OQ with WFQ, trivial crossbar schedule.
		$1 e$	$4 N$	R	$4 N R$	$4 N R$	Emulates FCFS-OQ, simple crossbar schedule.
		$1 f$	6 N	R	$6 N R$	$6 N R$	Emulates OQ with WFQ, simple crossbar schedule.
Crossbar-based Parallel Distributed Shared Memory Router (Section 3.7)	V.D	$2 a$	$3 N(2 h-1)$	R / h	$\approx 6 N R$	$4 N R$	Theorem 3.8 applied to Row $1 a$.
		$2 b$	$3 N(2 h-1)$	R / h	$\approx 6 N R$	$6 N R$	Theorem 3.8 applied to Row $1 b$.
		$2 c$	$4 N(3 h-2)$	R / h	$\approx 12 N R$	$5 N R$	Theorem 3.9 applied to Row 1c.
		$2 d$	$4 N(3 h-2)$	R / h	$\approx 12 N R$	$8 N R$	Theorem 3.9 applied to Row 1d.
		$2 e$	$4 N(2 h-1)$	R / h	$\approx 8 N R$	$4 N R$	Theorem 3.8 applied to Row $1 e$.
		$2 f$	$6 N(3 h-2)$	R / h	$\approx 18 N R$	$6 N R$	Theorem 3.9 applied to Row $1 f$.

We will pose a series of questions about feasibility, and attempt to answer each in turn.

1. A PIFO DSM router requires lots of memory devices. Is it feasible to build a system with so many memories? We can answer this question relative to a CIOQ router (since it's the most common router architecture today) that emulates an OQ router. From [13], it is known that a CIOQ router with a crossbar bandwidth of $2 N R$ can emulate a WFQ OQ router with $2 N$ physical memory devices running at rate $3 R$ for an aggregate memory bandwidth of $6 N R$. The PIFO DSM router requires N physical devices running at rate $4 R$ for an aggregate memory bandwidth of $4 N R$. So the access rates of the individual memories are comparable, and the total memory bandwidth is less than that
needed for a CIOQ router. It seems clear, from a memory perspective, that we can build a PIFO DSM router with at least the same capacity as a CIOQ router. This suggests that, considering only the number of memories and their bandwidth, it is possible to build a $1 \mathrm{~Tb} / \mathrm{s}$ single-rack DSM router.
2. A crossbar-based PIFO DSM router requires a crossbar switch with links operating at least as fast as $5 R$. A CIOQ router requires links operating at only $2 R$. What are the consequences of the additional bandwidth for the DSM router? Increasing the bandwidth between the line card and the switch will more than double the number of wires and/or their data rate, and place more requirements on the packaging, board layout, and connectors. It will also increase the power dissipated by the serial links on the crossbar chips in proportion to the increased bandwidth. But it may be possible to exploit the fact that the links are used asymmetrically.

Observation 3.2. For example, we know that the total number of transactions between a line card and the crossbar switch is limited to five per time slot. If each link in the DSM router was half-duplex rather than simplex, then the increase in serial links, power, and size of connectors is only 25%. Even if we can't use half-duplex links, the power can be reduced by observing that many of the links will be unused at any one time, and therefore need not have transitions. But overall, in the best case it seems that the DSM router requires at least 25% more bandwidth.

3. In order to choose which memory to write a packet into, we need to know the packet's departure time as soon as it arrives. This is a problem for both a DSM router and a CIOQ router that emulates an output queued router. In the CIOQ router, the scheduling algorithm needs to know the departure time to ensure that the packet traverses the crossbar in time. While we can argue that the DSM router is no worse, this is no consolation when the CIOQ router itself is impractical! Let's first consider the simpler case, where a DSM router
is emulating an FCFS shared memory router. Given that the system is workconserving, the departure time of a packet is simply equal to the sum of the data in the packets ahead of it. In principle, a global counter can be kept for each output, and updated at each time slot depending on the number of new arrivals. All else being equal, we would prefer a distributed mechanism, since the maintenance of a global counter will ultimately limit scalability. However, the communication and processing requirements are probably smaller than for the scheduling algorithm itself (which we will consider next).
4. How complex is the algorithm that decides which memory each arriving packet is written into? There are several aspects to this question:

- Space requirements: In order to make its decision, the algorithm needs to consider k different memory addresses, one for each packet that can contribute to a conflict. How complex the operation is, depends on where the information is stored. If, as currently seems necessary, the algorithm is run centrally, then it must have global knowledge of all packets. While this is also true in a CIOQ router that emulates an output queued router, it is not necessary in a purely input or output queued router.
- Memory accesses: For an FCFS DSM router, we must read, update, and write bitmaps representing which memories are busy at each future departure time. This requires two additional memory operations in the control structure. For a PIFO DSM router, the cost is greater, as the control structures are most likely arranged as linked lists, rather than arrays. Finding the bitmaps is harder, and we don't currently have a good solution to this problem.
- Time: We have not found a simple distributed algorithm that does not use any additional memory bandwidth, and so currently we believe it to be sequential, requiring $O(N)$ operations to schedule at most N new arrivals. However, it should be noted that each operation is a simple comparison of three bitmaps to find a conflict-free memory.
- Communication: The algorithm needs to know the destination of each arriving packet, which is the minimum needed by any centralized scheduling algorithm.

5. We can reduce the complexity by aggregating packets at each input into frames of size F, and then schedule frames instead of packets. This is called frame scheduling (a technique in wide use in some Cisco Ethernet switches and Enterprise routers). Essentially, this is equivalent to increasing the size of each "cell". The input line card maintains one frame of storage for each output, and a frame is scheduled only when F bits have arrived for a given output, or until a timeout expires. There are several advantages to scheduling large frames rather than small cells. First, as the size of frame increases, the scheduler needs to keep track of fewer entities (one entry in a bitmap per frame, rather than per cell), and so the size of the bitmaps (and hence the storage requirement) falls linearly with the frame size. Second, because frames are scheduled less often than cells, the frequency of memory access to read and write bitmaps is reduced, as is the communication complexity, and the complexity of scheduling as shown in the following example.

2 Example 3.2. Consider a DSM router with 16 OC768c line cards (i.e., a total capacity of $640 \mathrm{~Gb} / \mathrm{s}$). If the scheduler were to run every time we scheduled a 40-byte cell, it would have to use off-chip DRAM to store the bitmaps, and access them every 8 ns. If, instead, we use 48 kB frames, the bitmaps are reduced more than 1,000 -fold and can be stored on-chip in fast SRAM. Furthermore, the bitmap interaction algorithm needs to run only once every $9.6 \mu \mathrm{~s}$, which is readily implemented in hardware.

The appropriate frame size to use will depend on the capacity of the router, the number of line cards, and the technology used for scheduling. This technique can be extended to support a small number of priorities in a PIFO DSM router, by aggregating frames at an input for every priority queue for every output. One disadvantage of this approach is that the strict FCFS order among all
inputs is no longer maintained. However, FCFS order is maintained between any input-output pair, which is all that is usually required in practice.
6. Which requires larger buffers, a DSM router or a CIOQ router? In a CIOQ router, packets between a given input and output pass through a fixed pair of buffers. The buffers on the egress line cards are sized so as to allow TCP to perform well, and the buffers on the ingress line card are sized to hold packets while they are waiting to traverse the crossbar switch. So the total buffer size for the router is at least $N R \times R T T$ because any one egress line card can be a bottleneck for the flows that pass through it. On the other hand, in a DSM router we can't predict which buffer a packet will reside in; the buffers are shared more or less equally among all the flows. It is interesting to note that if the link data rates are symmetrical, not all of the egress line cards of a router can be bottlenecked at the same time. As a consequence, statistical sharing reduces the required size of the buffers. This reduces system cost, board area, and power. As a consequence of the scheduling algorithm, the buffers in the DSM router may not be equally filled. We have not yet evaluated this effect.

3.9 Conclusions

It seems that the PIFO DSM router has two main problems: (1) The departure times of each packet must be determined centrally (or at least by each output separately) with global knowledge of the state of the queues in the system, and (2) A sequential scheduler must find an available memory for each packet (similar to that faced in a PSM router).

The frame scheduling approach described in Section 3.8 can help alleviate the former problem by reducing the rate at which departure times need to be calculated. In subsequent work, the authors [54, 55] propose parallel or randomized bi-partite matching algorithms to allocate packets to memories for the PSM router. These algorithms can also be applied to alleviate the latter problem by eliminating the need for a sequential scheduler for the DSM router. This requires us to extend the algorithms in $[54,55]$, and take into account the additional link access required for
the arriving (departing) packet as described in Section 3.5. In some cases this requires additional memory bandwidth. Also, if the memories operate slower than the line rate, the PDSM router can be used, and can help reduce the number of memories that the centralized scheduler needs to keep track of. This simplifies the scheduler's complexity, but comes at the expense of additional memory bandwidth.

Our conclusion is that a PIFO DSM router is less complex (see Table 2.1 for a comparison) than a PIFO CIOQ router (has lower memory bandwidth, fewer memories, a simpler scheduling algorithm, but slightly higher crossbar bandwidth).

Summary

1. In this chapter, we analyze the distributed shared memory (DSM) router and the parallel distributed shared memory (PDSM) router.
2. When a packet arrives to a DSM router, it is transferred across the switch fabric to the memory in another line card, where it is held until it is time for the packet to depart.
3. DSM routers have the appealing characteristic that buffering is added incrementally with each line card.
4. Although commercially deployed, the performance of a DSM router is not widely known.
5. We use the constraint set technique (introduced in the previous chapter) to analyze the conditions under which a DSM router can emulate an OQ router. We consider two fabrics: (1) a bus and (2) a crossbar.
6. We show that a parallel shared memory router can emulate an FCFS output queue router with a memory bandwidth of $3 N R$ (Theorem 3.1), and can emulate an OQ router that supports qualities of service with a memory bandwidth of $4 N R$ (Theorem 3.2).
7. The results for the memory bandwidth are the same as those described for the PSM router, since from a memory perspective the two routers are identical.
8. The interesting problem for DSM routers is: how do we schedule packets (which are allocated to memories based on the pigeonhole principle) across a crossbar-based fabric?
9. We show that there is a tradeoff between the memory bandwidth, crossbar bandwidth, and the complexity of the scheduling algorithm. We derive a number of results that take advantage of these tradeoffs (Table 3.1).
10. The central scheduler for the DSM router must keep track of all the memories in the
router. If the memories operate at a very low rate, it would require more memories to keep track of. This can limit the scalability of the scheduler.
11. So, we explore ways in which the central scheduler believes that it load-balances over a smaller number of memories. However, when the central scheduler allocates these packets to memories, the line card that receives these packets load-balances them locally over a larger number of slower memories operating in parallel. These slower memories are not visible to the scheduler.
12. We call this the parallel distributed shared memory (PDSM) router, because the router appears as a standard DSM router from the central scheduler's perspective, while it appears as a PSM router from the line card's perspective.
13. We derive bounds on the memory bandwidth required for a PDSM router to emulate an FCFS-OQ router (Theorem 3.8) and emulate an OQ router that supports qualities of service (Theorem 3.9).
14. Based on the results derived in this chapter, we believe that the DSM and PDSM router architectures are promising. However, questions remain about their complexity. But we find that the memory bandwidth, and potentially the power consumption of the router, are lower than for a CIOQ router.

Chapter 4: Analyzing CIOQ Routers with Localized Memories

Feb 2008, Bombay, India

Contents

4.1 Introduction 85
4.1.1 A Note to the Reader 88
4.1.2 Methodology 88
4.2 Architecture of a Crossbar-based CIOQ Router 89
4.3 Background 90
4.3.1 Charny's Proof 91
4.3.2 Why Is Charny's Proof Complex? 92
4.4 Analyzing FCFS-OQ Routers Using the Pigeonhole Principle 93
4.5 A Simple Proof to Emulate an FCFS CIOQ Router 95
4.5.1 Interesting Consequences of the Time Reservation Algorithm 98
4.6 The Problem with Time Reservation Algorithms 99
4.7 A Preferred Marriage Algorithm for Emulating PIFO-OQ Routers 1 100
4.8 A Re-statement of the Proof 102
4.8.1 Indicating the Priority of Cells to the Scheduler 102
4.8.2 Extending the Pigeonhole Principle 103
4.8.3 Using Induction to Enforce the Pigeonhole Principle 105
4.9 Emulating FCFS and PIFO-OQ Routers 106
4.10 Related Work 107
4.10.1 Statistical Guarantees 107
4.10.2 Deterministic Guarantees 110
4.11 Conclusions 112

List of Dependencies

- Background: The memory access time problem for routers is described in Chapter 1. Section 1.5.2 describes the use of load balancing techniques to alleviate memory access time problems for routers.

Additional Readings

- Related Chapters: The general load balancing technique used to analyze the Combined Input Output Queued (CIOQ) router is described in Section 2.3. The technique is also used to analyze other router architectures in Chapters 2, 3, 5, 6, and 10.

Table: List of Symbols.

B	Leaky Bucket Size
c, C	Cell
$D T$	Departure Time
k	Maximum Transfer Delay
N	Number of Ports of a Router
R	Line Rate
S	Speedup
T	Time Slot
t_{f}	First Free Time Index

Table: List of Abbreviations.

CIOQ	Combined Input Output Queued Router
FCFS	First Come First Serve (Same as FIFO)
i.i.d	Independently and Identically Distributed
LAN	Local Area Network
MWM	Maximum Weight Matching
OQ	Output Queued
PIFO	Push In First Out
SB	Single-buffered
SOHO	Small Office Home Office
QoS	Quality of Service
VOQ	Virtual Output Queue
WAN	Wide Area Network
WFQ	Weighted Fair Queueing

"Whoever does the proposing gets a better deal".

- Social Commentary by Harry Mairson ${ }^{\dagger}$

Analyzing CIOQ Routers with Localized Memories

4.1 Introduction

In this chapter, we will analyze the combined input output queued (CIOQ) router. A CIOQ router (unlike the single-buffered (SB) routers that we introduced in Chapter 2), has two stages of buffering. In a CIOQ router, a packet is buffered twice - once when it arrives and once before it leaves. The first buffer is on the local line card it arrives on. The second buffer is on the line card that it departs from. Intuitively, the two buffers make the job easier for a central switch scheduler based on the following idea

> 凉Idea. "If the switch fabric is not ready to transfer packets as soon as they arrive, it can hold them in the input line card. Similarly, if the scheduler has the opportunity to send a packet to the output, it doesn't need to wait until the output line is free; the output line card will buffer it until the line is free".

Our goal is to scale the performance of CIOQ routers and find the conditions under which they can give deterministic performance guarantees, as described in Section 1.4.

[^29]Localized Buffering is a consequence of product requirements. Most routers today are built with backplane chassis that allow line cards to be added independently. Each line card may have different features, support different protocols, and process cells at different line rates. This allows customers to purchase line cards incrementally, based on their budget, bandwidth needs, and feature requirements. Because each line card may process cells differently, it becomes necessary to process and store cells locally on the arriving line card.

> Example 4.1. Figure 4.1 shows a router with multiple line cards. The line cards perform different functions. The router in the figure has three gigabit Ethernet line cards for local area network (LAN) switching, and two wide area network (WAN) line cards that provide an uplink to the Internet. The backup WAN line card, has a large congestion buffer due to its slow uplink. A 100GE LAN card that provides for faster connectivity is also shown. Finally, a fiber channel [61] based line card (which implements a separate protocol), provides connectivity to storage LANs. The five different kinds of line cards in the router might all have different architectures - i.e., different packet processing ASICs, features, and memory architectures.

Because of the costs involved in deploying high-speed routers, customers usually deploy new line cards separately over time, on an as-needed basis. A CIOQ router allows this, and so can be upgraded gradually. As a consequence, it has become the most common architecture among high-speed routers today. ${ }^{1}$ Cisco Systems, currently the world's largest manufacturer of Ethernet switches and IP routers, deploys the CIOQ architecture in Enterprise [4], Metro [62], and Internet core routers. [5].

[^30]

Figure 4.1: A router with different line cards.

4.1.1 A Note to the Reader

This chapter pertains to analytical work done over several years of research on CIOQ routers by multiple researchers. Many CIOQ scheduling algorithms have been proposed to obtain statistical guarantees (such as 100% throughput), as well as deterministic performance guarantees such as work-conservation (to minimize average delay) and emulation of an OQ router (to minimize the worst-case delay faced by packets). In this chapter, we only focus on the emulation of an OQ router, and we consider both FCFS and PIFO queuing policies. If a CIOQ router emulates an OQ router, then it automatically guarantees 100% throughput and is also work-conserving.

We make several fine points in this chapter and attempt to succinctly capture the underlying theory behind the emulation of OQ routers. We want to do three things - (1) present the existing theory in a very simple manner, (2) derive more intuitive algorithms that emulate an OQ router using the pigeonhole principle, and (3) re-state previously known results in terms of the pigeonhole principle.

In order to do this, we present the material in an order which is not chronological, but which builds up the theory step by step. We present only the results that, in hindsight, are insightful and clarifying to the reader. ${ }^{2}$

4.1.2 Methodology

We will use our constraint set technique (first described in Chapter 2) which is a formal way to apply the pigeonhole principle and analyze the CIOQ router. We will consider the crossbar-based CIOQ router, since this is the most common switch fabric deployed today. However, as we will see, this basic application of constraint sets has two problems when it is applied to this non-single-buffered router - (1) It requires us to make certain assumptions about the arrival traffic, and (2) It is only useful in analyzing an FCFS CIOQ router; we cannot analyze a PIFO-CIOQ router.

As we will see, the main reason why we cannot analyze a PIFO-CIOQ router is that the basic constraint set technique attempts to specify the transfer time of a packet

[^31]to the output line card as soon as the packet arrives. It does not take full advantage of the architecture of a CIOQ router - i.e., the switch fabric does not immediately need to commit to transferring packets that are waiting in the input line card, especially if there are more urgent packets destined to the same output.

Therefore, in the later part of this chapter, we will extend the constraint set technique to analyze and take advantage of the architecture of the (non-single-buffered) CIOQ router. We will show that this extended constraint set technique allows us to analyze both FCFS and PIFO CIOQ routers without making any assumptions about the arrival traffic. As we will see, this requires us to use a class of algorithms called stable matching algorithms [63] to schedule the crossbar, so as to meet the conditions mandated by the extended constraint set technique.

4.2 Architecture of a Crossbar-based CIOQ Router

Figure 4.2 shows an example of a crossbar-based CIOQ router. We denote the CIOQ router to have a speedup of S, for $S \in\{1,2,3, \ldots, N\}$ if it can remove up to S cells from each input and transfer at most S cells to each output in a time slot. Note that the CIOQ router can be considered to be a generalization of the IQ router and the OQ router. At one extreme, in an IQ router (i.e., $S=1$) only one cell can reach the output from every input in a time slot. At the other extreme, in an OQ router (i.e., $S=N$), all the arriving N cells can be transferred to a specific output in a given time slot.

The crossbar-based CIOQ router shown in the figure has a speedup of $S=2$, and has $N=8$ ports. As described in Chapter 3, a crossbar fabric is restricted to perform a matching (i.e., a permutation) between inputs and outputs in every time slot. If the crossbar has a speedup S, then it can perform two independent matchings in every time slot, as shown in Figure 4.2.

We will assume that cells are logically arranged on each line card as N virtual output queues (VOQs). VOQs allow an input to group cells for each output separately,

Figure 4.2: The physical and logical view of a CIOQ router with crossbar speedup $S N R=$ $2 N R$.
and so a total of N^{2} VOQs are maintained in the router. VOQs are needed to prevent head of line blocking [64]. Head of line blocking occurs when the head-of-line cell c, queued at some input i, destined to some output j, prevents other cells at input i from being scheduled. This can occur if output j is receiving cells from some other input in the same time slot. Hence cell c cannot be scheduled (because its output j is busy), while cells queued behind c (destined to other outputs) cannot be scheduled because they are not at the head of the input queue.

4.3 Background

In [65], Charny proved that a CIOQ router can emulate an FCFS-OQ router under restricted arrival traffic. Her algorithm was motivated by the following nice idea, i.e.,

> 次Idea. "We can use maximal matching ${ }^{a}$ scheduling algorithms to emulate an FCFS-OQ router".

[^32]We will first present her proof, and then derive a simpler and more intuitive proof based on the pigeonhole principle.

4.3.1 Charny's Proof

Charny [65] placed the following restrictions on the arrival traffic when she analyzed the CIOQ router:

1. Outputs can only be finitely congested: Charny constrained the arriving traffic to be single leaky bucket constrained. The arriving traffic is said to be single leaky bucket constrained if for every output j, the number of cells that arrive destined to j in the time interval $\left(t_{1}, t_{2}\right)$ is given by $N\left(t_{1}, t_{2}\right) \leqslant \lambda_{j}\left(t_{2}-t_{1}\right)+B_{j}$, where B_{j} is some constant, and $0 \leqslant \lambda_{j}<1$ for the traffic to be admissible. ${ }^{3}$ Note that if $\lambda_{j}>1$, then output j receives more traffic than it can handle in the long term - this means that we need a router that supports a faster line rate! We can see that the above traffic constraint is equivalent to assuming that the shadow OQ router has a finite buffer size B_{j} for every output, and that no output is over-subscribed. If any output becomes congested and has more than B_{j} cells destined to it temporarily, then such cells are dropped.
2. Inputs can only receive one cell per time slot: Charny restricted the arrival traffic model such that no more than one cell can arrive at each input of the CIOQ router, in any given time slot.

In practice, both the above restrictions are always true:

[^33]1. Router buffers are finite and their size is determined during design. If we let $B=\max \left\{\forall j, B_{j}\right\}$, then the output buffer size is bounded by B.
2. Cells arrive on physical links, and even though there may be multiple input channels that can send cells in parallel, there is a cumulative maximum rate at which a single cell can arrive.

We are now ready to present the main theorem in Charny's work [65]:
Theorem 4.1. (Sufficiency, by Reference) Any maximal algorithm with a speedup $S>2$, which gives preference to cells that arrive earlier, ${ }^{4}$ ensures that any cell arriving at time t will be delivered to its output at a time no greater than $t+[B /(S-2)]$, if the traffic is single leaky bucket B constrained.

Proof. This is proved in section 2.3, Theorem 5 of [65]. ${ }^{5}$ We provide the outline of the proof here. Charny uses a maximal matching algorithm (called oldest cell first) that gives priority to cells that arrive earlier to the CIOQ router, and uses the fact that for any maximal algorithm, if there is a cell waiting at input i destined to output j, then either input i is matched or output j is matched (or both). ${ }^{6}$ The proof counts all cells (called competing cells) that can prevent a particular cell from being transferred, and classifies the competing cells into two types - cells at input i, or cells destined to output j. It is shown that after a cell arrives, it cannot be prevented from being transferred to output j for more than $[B /(S-2)]$ time slots.

4.3.2 Why Is Charny's Proof Complex?

The argument presented in Charny's proof above is somewhat complex, for two reasons. Consider any cell c :

1. Cell c can be repeatedly prevented - by competing cells arriving to the same input later than it - from being transferred to its output over multiple time slots. It would be nice if we can prevent this from happening.

[^34]2. Cell c can be overtaken - by competing cells arriving later at different inputs but destined to the same output as cell c - and potentially prevented from getting serviced by the output. It would be nice if we can somehow ensure that this does not affect when cell c gets serviced by the output.

In what follows, we solve both the above problems [66] by fixing the time at which a cell is transferred from the input to the output ("transfer time"), as soon as it arrives. In this way, the time at which a cell is serviced by the output can't be affected by cells arriving later than it.

Observation 4.1. Note that fixing a cell's transfer time does not prevent the cell from being overtaken by other cells arriving later at different inputs, but destined to the same output. It merely ensures that these other cells do not affect the time at which cell c gets serviced by the output.

4.4 Analyzing FCFS-OQ Routers Using the Pigeonhole Principle

First consider the physical structure of the crossbar CIOQ router. If a cell c arrives at input i destined for output j, the router is constrained to transfer the cell only when input i and output j are both free. So we can think of cells contending with cell c (because they are from input i or destined to output j) as pigeons, contending for a transfer time (pigeonholes). As described in Chapter 2, constraint sets are a convenient accounting method to maintain and update this information. We are now ready to analyze the conditions under which the CIOQ router will emulate an FCFS-OQ router. We will use the algorithm described below, which is a direct consequence of the pigeonhole principle. More formally, the algorithm is an example of a time reservation algorithm $[67,68,69,70]$, since it reserves a future time for the arriving cell to be
transferred from the input to the output, immediately on arrival of a cell.

```
Algorithm 4.1: Constraint set-based time reservation algorithm.
    input : Arrival and departure times of each cell.
    output: A transfer time for each cell.
    for each cell \(c\) do
        When a cell arrives at input \(i\) destined to output \(j\) with FCFS-OQ departure time
        \(D T\), the cell is scheduled to depart at the first time in the future (larger than \(D T\) )
        when both the input \(i\) and output \(j\) are free to participate in a matching.
```

We start by describing the algorithm when speedup $S=1$, before generalizing to larger speedup values:

1. Maintaining constraint sets: All inputs and outputs maintain a constraint set. Each entry in the constraint set represents an opportunity to transmit a cell in the future, one entry for each future time slot. For each future time slot that an input is busy, the corresponding entry in its constraint set represents a cell that it will transmit across the switch fabric to an output. Similarly, for each future time slot that an output is busy, the entry represents a cell that it will receive from one of the inputs. If, at some time in the future, there is no cell to be transferred from an input (or to an output), then the corresponding entry is free and may be used to schedule newly arriving cells.
2. Negotiating a constraint-free time to transfer: When a cell arrives at input i destined to output j, input i communicates its input constraint set to output j and requests a time in the future for it to transmit that cell. Output j then picks the first time in the future t_{f} in the interval $(D T, D T+k)$ (where k is a constant which we will determine shortly) for which both input i and output j are free to transmit and receive a cell, i.e., time index t_{f} is free in the constraint sets of input i and output j. Output j grants input i the time slot t_{f} in future for transmitting the cell.

Allocated departure time as seen by the input

Figure 4.3: The constraint set as maintained by the input.
3. Updating constraint sets: Both input i and output j update their respective constraint sets to note the fact that time t_{f} in the future is reserved for transmitting the cell from input i to output j in the CIOQ router.

Note that, for any crossbar speedup S, an entry in the input constraint set is said to be free in a particular time slot if the input is scheduled to send fewer than S cells. Likewise, an entry in the output constraint set is said to be free if the output is scheduled to receive fewer than S cells (from any input) in the corresponding time slot.

4.5 A Simple Proof to Emulate an FCFS CIOQ Router

We now use constraint sets to find the value of k for which every packet in the CIOQ router is transferred from its input to its output within k time slots of its FCFS-OQ departure time, i.e., $t_{f} \leqslant D T+k$ or $t_{f} \in(D T, D T+k)$ (where t is the arrival time of a cell and k is a constant). The larger the speedup, the smaller the value of k.

Lemma 4.1. The number of time slots available in the input constraint set (ICS) for any input i at any given time is greater than

$$
\begin{equation*}
[k-\lfloor(k+B) / S\rfloor] . \tag{4.1}
\end{equation*}
$$

Proof. Consider a cell that arrives to input i at time t, destined for output j with FCFS-OQ departure time $D T$. The cell is scheduled to be transferred from input i to output j in the CIOQ router in the interval $(D T, D T+k)$, as shown in Figure 4.3 . Since the traffic is single leaky bucket (B) constrained, no cell that arrived before time $D T-B$ at input i has an FCFS-OQ departure time in the interval $(D T, D T+k)$. Hence, no cell that arrived before time $D T-(B+k)$ at input i is allocated to be transferred from input i in the CIOQ router in the interval $(D T, D T+k)$. If the speedup is S, then the number of time slots available in the input constraint set for the newly arriving cell is at least $[k-\lfloor(k+B) / S\rfloor]$.

Qxample 4.2. Consider a CIOQ router with $B=100$ and $k=150$. Assume that until now all cells have been given a transfer time within $k=150$ time slots of its FCFS-OQ departure time, $D T$. Consider a cell c that arrives at time $t=1000$. If it came to the shadow OQ router, it can never see more than $B=100$ cells waiting at its output. Its FCFS-OQ departure time, $D T$ (which is allocated by the shadow OQ router based on the number of cells already at the output) will be in the time interval $[1000,1100]$. Say, $D T=1055$. We will attempt to give cell c a transfer time within $k=150$ time slots of $D T$, i.e., in the interval [1055, 1205]. How many cells could have already requested a transfer time between $[1055,1205]$ at the time of arrival? Definitely, no cells that arrived before time $1055-100-150=805$. For example, the cell that arrived at time 804, must have had a departure time less than 904 and hence a transfer time lesser than 1054, and will not interfere with our cell c. If not, it would violate the fact that until now all cells have been given a transfer time which is within $k=150$ time slots of its FCFS-OQ departure time.

Allocated departure time as seen by the output

Figure 4.4: The constraint set as maintained by the output.

Lemma 4.2. The number of time slots available in the output constraint set (OCS) for any output at any given time is greater than

$$
\begin{equation*}
[k-\lfloor(k / S)\rfloor] . \tag{4.2}
\end{equation*}
$$

Proof. Consider a cell that arrives at input i at time t, destined for output j with FCFS-OQ departure time $D T$. The cell is scheduled to be transferred from input i to output j in the CIOQ router in the interval $(D T, D T+k)$, as shown in Figure 4.4. Since all cells are scheduled to be transferred in the CIOQ router within k time slots of their FCFS-OQ departure time, no more than k cells that have FCFS-OQ departure times in the interval $(D T-k, D T-1)$ can already have been allocated to be transferred to output j in the CIOQ router in the interval $(D T, D T+k)$. Thus, if the speedup is S, then the number of time slots available in the output constraint set for the newly arriving cell is at least $\left[k-\lfloor(k / S)\rfloor\right.$. ${ }^{7}$

Lemma 4.3. (Sufficiency) With a speedup $S>2$, the algorithm ensures that each cell in the CIOQ router is delivered to its output within $[B /(S-2)]$ time slots of its FCFS-OQ departure time, if the traffic is single leaky bucket B constrained.

[^35]Proof. (Using constraint sets). Consider a cell that arrives at time t. It should be allocated a time slot t_{f} for departure such that $t_{f} \in I C S \cap O C S$. A sufficient condition to satisfy this is that $[k-\lfloor(k+B) / S\rfloor]>0,[k-\lfloor k / S\rfloor]>0$, and $[k-\lfloor(k+B) / S\rfloor+k-\lfloor k / S\rfloor\rfloor>k$. This is always true if we choose $k>B /(S-2)$.

Theorem 4.2. (Sufficiency) With a speedup $S>2$, a crossbar can emulate an FCFS$O Q$ router if the traffic is single leaky bucket B constrained.

Proof. This follows from Lemma 4.3.

By showing that the FCFS-CIOQ router emulates an FCFS-OQ router, it immediately follows from Theorem 4.2 that the router has bounded delay, and 100% throughput.

4.5.1 Interesting Consequences of the Time Reservation Algorithm

The time reservation algorithm, which is a consequence of using constraint sets, has three interesting consequences:

1. The application of the constraint set technique leads to an intuitive understanding of the scheduling constraints of the crossbar, and leads to a simpler scheduling algorithm. It simplifies Charny's well-known result (Theorem 4.1).
2. A more general result was later proved by Dai and Prabhakar (using fluid models) [12], and later by Leonardi et al. [71] using Lyapunov functions. However, unlike the work in [12] and [71], constraint sets lead to a hard bound on the worst-case delay faced by a packet in the CIOQ router. In other words, when subject to the same leaky bucket constrained arrival patterns, cells depart from the CIOQ router and the FCFS-OQ router at the same time, or at least within a fixed bound of each other.
3. The algorithm does not distinguish arriving cells based on their output destination. It only requires arriving cells to be stored in an input queue sorted based on their allocated departure time, irrespective of the outputs that they
are destined to. This means that line cards do not need VOQs, and it leads to different queuing architectures.

4.6 The Problem with Time Reservation Algorithms

There are two problems with the analysis described above - (1) We had to assume that the buffers were finite, and (2) We have no simple way to extend the analysis to a PIFO CIOQ router. While the former is a practical assumption to make, ${ }^{8}$ it is difficult to see how we can extend the time reservation algorithm to support a PIFO queueing policy. This is because we fixed the time at which a cell is transferred at the time of its arrival. If later cells that were of higher priority came to the same input, they would not be able to use the time slots that were allocated to the lower priority cells (which may be destined to the same or even different outputs) that arrived earlier. If we look at Figure 4.3 and Figure 4.4, the number of cells that compete for the same interval ($D T, D T+k$) can be unbounded since cells arriving later can be of higher priority, and this can happen indefinitely. This is a problem with any time reservation algorithm.

In summary, the main problem with time reservation algorithms is that every arriving cell c immediately contends for a time slot to be transferred to the output, even though it may not be scheduled for departure until some time in the future. This can happen because there are other cells already at the output that depart before cell c, or that it have a much lower priority than other cells that are already destined to cell c's output. So we need some way to delay such a cell c from immediately contending for a time slot. More generally, we need some way to indicate to the scheduler that cell c has a lower priority for transfer, so that the scheduler may choose to schedule some other higher-priority cell instead of cell c.

[^36]
4.7 A Preferred Marriage Algorithm for Emulating PIFO-OQ Routers

Chuang et al [13] were the first to show that if the priority of cells could be conveyed via a preference list by each input and output to a scheduler (without scheduling cells immediately on arrival), then it is possible for a CIOQ router to emulate a PIFO-OQ router. Their main idea was that a central scheduler would compute a matching (marriage) between the inputs and outputs based on their preferences for each other. The preferred marriages that are computed have the property that they are stable. (See Box 4.1.)

They introduce a counting technique and monitor the progress of every cell ${ }^{9}$ to ensure that it reaches its output on time, as compared to a PIFO-OQ router.

In what follows, our goal is to show that the counting technique introduced in [13] can be viewed as a re-statement of the pigeonhole principle. We will see that in order to do this, we will have to:

1. Indicate the priority of cells to the scheduler (Section 4.8.1),
2. Extend the application of the pigeonhole principle to make it aware of cell priorities (Section 4.8.2), and,
3. Find the conditions under which this extended pigeonhole principle is satisfied (Section 4.8.3).
[^37]
$3<$ Box 4.1: The Stable Marriage Problem $>$:

Consider the following succint description of stable marriages, defined in [72] Stable Marriages: Given N men and N women, where each person has ranked all members of the opposite ser with a unique number between 1 and N in order of preference, marry the men and women off such that there are no two people of opposite sex who would both rather have each other than their current partners. If there are no such people, the marriages are "stable".

Figure 4.5: A stable marriage

An easier way to understand this is captured in the following quote [73] which presupposes a married woman who professes interest in marrying another man. If she receives the reply, "Madam, I am flattered by your attention, but I am married to someone I love more than you, so I am not interested", and this happens to any woman who wants to switch (or vice versa) then the set of marriages is said to be stable.

PFO Observation 4.2. The algorithm was first applied for pairing medical students to hospital jobs, and an example is shown in Figure 4.5. Gale and Shapely [63] proved that there is always a set of stable marriages, irrespective of the preference lists. The latter fact is key to analyzing crossbar routers.

In a CIOQ router, inputs and outputs maintain a priority list as described in Section 4.8.1. The output prefers inputs based on the position of cells in its output priority queue, i.e., based on the departure order of cells destined to that output. Similarly, inputs prefer outputs based on the position of the cells in the input priority queues. In the context of routers, a set of marriages is a matching. Since there is always a stable marriage, a stable matching ensures that for every cell c waiting at an input queue:

1. Cell c is part of the matching.
2. A cell that is ahead of c in its input priority list is part of the matching.
3. A cell that is ahead of c in its output priority list is part of the matching.

So we can say that for every cell that is not transferred to its output in a scheduling phase, the number of contentions will decrease by one in every matching. With speedup two, this is enough to satisfy Property 1.1, which is required to emulate an OQ router.

Figure 4.6: Indicating the priority of cells to the scheduler.

4.8 A Re-statement of the Proof

4.8.1 Indicating the Priority of Cells to the Scheduler

In order to convey the priority of cells to a scheduler, we will need a priority queue to indicate the departure order of cells to the scheduler. A priority queue (as shown in Figure 4.6), gives the scheduler flexibility in servicing higher-priority cells that are still at their inputs, irrespective of their arrival time. The queue has the following features: ${ }^{10}$

1. Arriving packets are "pushed-in" to an arbitrary location in the queue, based on their departure order.
2. The position of the packets in the queue determines their priority of departure.
3. Once the packet is inserted, the relative ordering between packets in the queue does not change.
4. A packet can depart from an arbitrary location in the queue if packets ahead of it in the queue are unable to depart.
[^38]Example 4.3. The example in the figure shows a 3×3 CIOQ router. The ports are labelled A, B, and C. The input priority queue for ports A, B, C, and the three output queues for ports A, B, and C are shown. In the example shown, cells $A 5, A 6, B 7, B 8, C 7$, and $C 9$ are at the input priority queue for port C. None of the cells in the input priority queue are as yet scheduled. The input indicates to the scheduler the priority of the cells via its input priority queue. For example, cell $C 7$ has lower priority than cells $A 5, A 6, B 7$, and $B 8$; however, it has higher priority than cell $C 9$. In a given time slot, if the scheduler matches output ports A and B to some other inputs, then cell $C 7$ can be scheduled to leave before cells $A 5, A 6, B 7$, and $B 8$.

Why does cell $C 7$ have a lower priority than, say, cell $B 8$? We can see from the figure that cell $C 7$ has five cells $-C 2, C 3, C 4, C 5$, and $C 6-$ that are ahead of it at output port C. This means that cell $C 7$ does not have to be scheduled in the next five time slots. However, cell $B 8$ has only four cells - $B 1, B 3, B 4$ and $B 5$ - ahead of it in output port C. So, in a sense, cell $B 8$ has to more urgently reach its output than cell $C 7$.

Observation 4.3. Note that the introduction of a priority queue does not prevent cells from being queued in VOQs. In fact, there are two choices for implementation - (1) The cells may be queued in VOQs, or segregated further into queues based on differentiated classes of service for an output. An input priority queue is maintained separately to describe the order of priority between these cells, or (2) We can do away with VOQs altogether; the cells can be queued directly in an input priority queue.

4.8.2 Extending the Pigeonhole Principle

We can state the observations from Example 4.3 in terms of pigeons and pigeonholes.

1. Pigeons: For every cell c, the cells that are ahead of it in the input priority queue contend with it for a time slot, so that they can be transferred to their respective outputs. These cells are similar to contending pigeons.
2. Pigeonholes: Every cell that is already at cell c 's output and has an earlier departure time than cell c allows the cell more time to reach its output. These cells represent distinct opportunities in time for cell c to be transferred to the output. We will use pigeonholes to represent these opportunities.

In order to ensure that cells waiting in the input priority queue reach the output on time, we will mandate the following inequality: the number of opportunities (pigeonholes) for a cell is always equal to or greater than the number of cells that contend with it (pigeons). This inequality must be satisfied for every cell, as long as it resides in the input priority queue.

Let us contrast this to our analysis of SB routers. In an SB router, a cell gets allocated to a memory on arrival. This memory is available to the output when the cell needs to be read at its departure time. So, we can forget about the cell once it has been allocated to a memory. In contrast, in a CIOQ router, the cell may remain in the input priority queue for some time before it is transferred to the output. So we have to continually monitor the cell to ensure that it can reach the output on time for it to depart from the router. This is formalized in Algorithm 4.2.

We maintain two constraint sets to track the evolution of every cell - (1) An opportunity set (pigeonholes) that constrains the number of time slots that are available for a cell to be transferred, and (2) A contention set (pigeons) to track the cells that contend with a cell and prevent it from being transferred to its output.

Example 4.4. Table 4.1 shows an example of the opportunity and contention sets for each cell in the input priority queue for port C of Figure 4.6. Both these sets are easily derived from the position of the cell in its input priority queue and the state of the output queue as shown in Figure 4.6. Note that for every cell in Table 4.1, the number of opportunities (column 5) is currently greater than the number of contentions (column 3).

```
Algorithm 4.2: Extended constraint sets for emulation of \(O Q\) routers.
    1 input : CIOQ Router Architecture.
    2 output: A bound on the number of memories, total memory, and switching
            bandwidth required to emulate an OQ router.
    3 for each cell \(c\) which arrives at time \(T\) and departs at time \(D T\) do
        for \(t \leftarrow \in\{T, T+1, \ldots, D T\}\) do
            Opportunity Set (pigeonholes) \(\leftarrow\) cells ahead of \(c\), already at its output
            Contention Set (pigeons) \(\leftarrow\) cells ahead of \(c\) at its input
            if cell \(c\) is still at the input then
                    Ensure: |Pigeonholes \(|\geq|\) Pigeons \(\mid\).
```

Table 4.1: An example of the extended pigeonhole principle.

Cell	Cells Ahead in Input	\#Contentions (Pigeonholes)	Cells Ahead in Output	\#Opportunities (Pigeons)
$A 5$	-	0	$A 1, A 4$	2
$A 6$	$A 5$	1	$A 1, A 4$	2
$B 7$	$A 5, A 6$	2	$B 1, B 3, B 4, B 5$	4
$B 8$	$A 5, A 6, B 7$	3	$B 1, B 3, B 4, B 5$	4
$C 7$	$A 5, A 6, B 7, B 8$	4	$C 2, C 3, C 4, C 5, C 6$	5
$C 9$	$A 5, A 6, B 7, B 8, C 8$	5	$C 2, C 3, C 4, C 5, C 6, C 8$	6

4.8.3 Using Induction to Enforce the Pigeonhole Principle

How do we ensure that the conditions described in Algorithm 4.2 are met? To do this, we use simple induction to track the change in size of the contention and opportunity set in every time slot that a cell waits at the input. But we have two problems - (1) In every time slot, for every cell, it is possible that the contention set increases in size by one, due to newly arriving cells that may have higher priority than it. Also, the opportunity set will decrease in size by one, because a cell will depart from the output. The former increases the number of pigeons, while the latter decreases the number of pigeonholes available for the cell. Both of these are detrimental from the cell's point of view, and (2) When a cell arrives, it is inserted into the input priority queue. At the time of insertion, it must at least have equal or more opportunities as the number of contenting cells. If not, it may never make it to the output on time.

So, in order to meet the induction step (between consecutive time slots that the cell waits at the input) and the induction basis case (at the time slot when a cell arrives to the input), we mandate the following properties:
> $\sqrt{ }$ Property 4.1. Induction Step: In every time slot, the switch scheduler does the following at least twice - it either decrements the size of the contention set or increments the size of the opportunity set for every cell waiting at the input, i.e., it either decrements the number of pigeons or increments the number of pigeonholes for every cell.

$\sqrt{ }$ Property 4.2. Induction Basis Case: On arrival, a cell is inserted into a position in the input priority queue such that it has equal or more opportunities to leave than the number of contentions, i.e., it has equal or more pigeonholes than the number of pigeons.

4.9 Emulating FCFS and PIFO-OQ Routers Using the Extended Pigeonhole Principle

We have shown that the method of proof introduced in [13] is simply a re-statement of the pigeonhole principle, applied to every cell for every time slot that it waits at the input. We are now ready to re-state the results for the preferred marriage algorithm in [13] as follows - If Property 4.1 and Property 4.2 are met, the conditions for the extended constraint set technique (Algorithm 4.2) are satisfied. It follows that all cells reach their output on time, and a CIOQ router can emulate a PIFO-OQ router.

In order to satisfy Property 4.1, the authors [13] ensure that the preferred marriages are stable [63], and operate the crossbar at speedup $S=2$. Also, in order to satisfy Property 4.2 , the authors insert an arriving cell as far ahead in the input priority queue as required so that it has more opportunities than the number of contending cells at the time of insertion. ${ }^{11}$ In an extreme case, the arriving cell may have to be

[^39]inserted at the head of line. Note that the memories in the input line cards need to run at rate $3 R$ (to support one write for the arriving cell, and up to two reads into the crossbar). The memories in the output line cards also need to run at $3 R$ (to support two writes for cells arriving from the crossbar, and one read to send a cell to the output line). This requires a total memory bandwidth of $6 N R$. We can now state the following theorem:

Theorem 4.3. (Sufficiency, by Citation) A crossbar $C I O Q$ router can emulate a PIFO-OQ router with a crossbar bandwidth of $2 N R$ and a total memory bandwidth of $6 N R$.

Proof. Refer to [13] for the original proof.

4.10 Related Work

In what follows, we present a brief chronological history of the research in CIOQ routers. Due to the large body of previous work, this section is by no means exhaustive, and we only present some of the key salient results.

4.10.1 Statistical Guarantees

We first consider CIOQ routers with crossbar speedup $S=1$. Recall that such a CIOQ router is simply an IQ router. IQ routers that maintain a single FIFO buffer at their inputs are known to suffer from head-of-line blocking. Karol et al. [64] showed that the throughput of the IQ router is limited to 58% when the input traffic is independent, identically distributed (i.i.d) ${ }^{12}$ Bernoulli, and the output destinations are uniform.

Based on the negative results in [64], several authors [75, 76, 77, 78] did analytical and simulation studies of a CIOQ router (which maintains a single FIFO at each input) for various values of speedup. These studies show that with a speedup of four to five, one can achieve about 99% throughput when arrivals are i.i.d at each input and when the distribution of packet destinations is uniform across the outputs.

[^40]
$3<$ Box 4.2: The Stability of Forced Marriages $>^{*}$

The algorithm described to emulate an OQ router in Section 4.9 is an example of preferred marriage. Inputs and outputs maintain preference lists and communicate their choices to a central scheduler. The central scheduler computes a stable marriage and attempts to satisfy (to the best of its abilities) the preferences of the inputs and the outputs.

Suppose we deny the inputs and outputs choice. We can ask - What happens if the matchings (marriages) that we compute are forced marriages?a Prabhakar et al [41] describe an algorithm called MUCFA (Most Urgent Cell First Algorithm) whose analogy to forced marriages is as follows:

MUCFA: When a cell arrives it is given an urgency, which is the time remaining for it to leave the $O Q$ router. A cell progressively becomes more urgent in every time slot. In each scheduling phase, an input is forced to prefer outputs that have more urgent cells, and outputs are forced to prefer inputs based on which inputs have more urgent cells. The preferences lists are created simply as a consequence of the urgency of a cell. Inputs and outputs have no say in the matter. In each scheduling phase, a centralized scheduler computes a forced marriage which is stable.

The stable forced marriage computed by MUCFA gives priority to more urgent cells and has the following property. For every cell c waiting at an input queue:

1. Cell c is part of the matching
2. A cell that is more urgent than c in its input priority list is part of the matching.
3. A cell that is more urgent than c in its output priority list is part of the matching.

Prabhakar et al. [41] show using a reductio-ad-absurdum argument that MUCFA can emulate an $O Q$ router with speedup four.

Observation 4.4. It is interesting to apply the pigeonhole principle to analyze MUCFA. It can be easily seen that MUCFA satisfies Property 4.1 with speedup two. But there is no easy way to know whether MUCFA satisfies the induction base case, i.e., Property 4.2 on cell arrival. This is because unlike the preferred marriage algorithm, MUCFA does not give choice to an input to insert an arriving cell into its preference list.

Coincidentally, similar to marriages in certain traditional societies, the algorithms for forced marriages for CIOQ routers [41] preceded the algorithms for preferred marriages [13]. Note that both sets of marriages can be made stable, and are successful in emulating an OQ router.

It has been shown via counterexample [74] that MUCFA with speedup two cannot emulate an $O Q$ router. However, it is not known whether MUCFA can emulate an $O Q$ router with speedup three, and this remains an interesting open problem.
${ }^{a}$ Not to be confused with arranged marriage, a much-maligned and misused term, incorrectly used in the modern world to describe a large class of marriages!

It was later shown that the low throughput of IQ routers is due to head-of-line blocking, and it can be overcome using virtual output queues (VOQs) [79]. This led to a renewed interest in IQ routers. Tassiulas and Ephremides [39] and McKeown et al. [11] proved that an IQ router with VoQs can achieve 100% throughput with a maximum weight matching (MWM) algorithm, if the input traffic is i.i.d and admissible; the outputs are allowed to be non-uniformly loaded. Dai and Prabhakar [12] generalized this result and showed that MWM can achieve 100% throughput provided that the input traffic satisfies the strong law of large numbers and is admissible. However, MWM is extremely complex to implement and has a time complexity, $O\left(N^{3} \log N\right)$.

A different approach was considered by Chang et al. [80] and Altman et al. [81]. They showed (using the results of Birkhoff [82] and von Neumann [83]) that the crossbar can be scheduled by a fixed sequence of matchings (called frames) ${ }^{13}$ such that the IQ router can achieve 100% throughput for any admissible arrival pattern. These are similar to time division multiplexing (TDM) techniques in the switching literature [84]. However, their usage of frame scheduling requires prior knowledge of the arrival traffic pattern, and the router needs to maintain a potentially long sequence of matchings, and so these techniques have not found usage in practice.

One would expect that the maximum size matching (MSM) algorithm, which maximizes the instantaneous bandwidth of the crossbar (the most efficient algorithm has a lower time complexity $O\left(N^{2.5}\right)[85,86]$), would also be able to achieve 100% throughput. However, contrary to intuition, MSM is known to be unfair (if ties are broken randomly), can lead to starvation, and hence cannot achieve 100% throughput [87]. Not all MSM algorithms suffer from loss of throughput. In [88] it is shown that the longest port first (LPF) algorithm (an MSM algorithm that uses weights to break ties) achieves 100% throughput for Bernoulli arrivals.

In [89], Weller and Hajek give a detailed analysis on the stability of online matching algorithms (including MSM) using frame scheduling with a constrained traffic model. Our work in [90] extends some of the results in [89] by alleviating the traffic constraints and considering stochastic (Bernoulli) arrivals. It shows that with a slight modification

[^41]of frame scheduling (called batch scheduling), a class of MSM algorithms (called Critical Maximum Size Matching, or CMSM), can achieve 100% throughput for (uniform or non-uniform) Bernoulli i.i.d. traffic. Also, under the purview of batch scheduling, the unfairness of MSM reported in [88] is eliminated, and any MSM algorithm can achieve 100% throughput under Bernoulli i.i.d. uniform load. However, since the batch scheduling MSM algorithms described above can suffer from large worst case delay and have large time complexity, they are not used in practice.

There are two approaches that are more practical toward achieving 100% throughput. They involve speeding up the crossbar or randomizing the MWM scheduler. Dai and Prabhakar [12] in their seminal paper analyzed maximal matching algorithms and proved that any maximal matching algorithm can achieve 100% throughput with speedup, $S=2$ for a wide class of input traffic. Subsequently, Leonardi et al. [71] also proved a similar result. The authors in [36, 91, 92, 93] took a different approach. They describe load balancing algorithms ${ }^{14}$ that are simple to implement and achieve 100% throughput. They come at the expense of requiring two switching stages, and also require a higher crossbar speedup, $S=2 .{ }^{15}$

Tassiulas [94] showed that a randomized version of MWM (which is easier to implement) can achieve 100% throughput with speedup, $S=1$. Later, Giaccone et al. [95] described other randomized algorithms that achieve 100% throughput with $S=1$ and also closely realize the delay performance of the MWM scheduler.

4.10.2 Deterministic Guarantees

The algorithms described above make no guarantees about the delay of individual packets, and only consider average delay. The approach of mimicking (or emulating) an OQ router was first formulated in [41]. They showed that a CIOQ router with a speedup of four, and an algorithm called MUCFA (most urgent cell first algorithm),

[^42]
\%<Box 4.3: Work Conservation without Emulation>

A work-conserving router gives a deterministic performance guarantee-it always keeps its outputs busy. In Chapter 1, we mandated FCFS-OQ emulation as a condition to achieve work-conservation. This gave us an additional deterministic performance guarantee for each individual packet, i.e., it would leave at the same time as compared to an ideal FCFS-OQ router. We can relax this condition. In what follows, we will show that we can also apply the pigeonhole principle to find the conditions under which a CIOQ router is work-conserving without mandating FCFS-OQ emulation.

For a router to be work-conserving, we only need to ensure that its outputs are kept busy. So, in such a router, the order of departures of packets from outputs is irrelevant. It is sufficient that some packet leave the output at all times that the corresponding output in the shadow OQ router is also busy. So , from a cell's perspective, it is sufficient that either (1) some cell ahead of it in the input priority list leave the input, or (2) some cell (irrespective of its departure time) make it to the output in every scheduling opportunity. So we can make the following simple modification to the extended constraint set technique in order that our CIOQ router be work-conserving:

Algorithm 4.3: Extended constraint sets for work conservation.

input : CIOQ Router Architecture.
output: A bound on the number of memories, total memory and switching bandwidth required to emulate an $O Q$ router.
for each cell c which arrives at time T and departs at time $D T$ do for $t \longleftarrow \epsilon\{T, T+1, \ldots, D T\}$ do Opportunity Set (pigeonholes) - any cells already at its output Contention Set (pigeons) \leftarrow cells ahead of c at its input if cell c is still at the input then

Ensure: \mid Pigeonholes $|\geq|$ Pigeons \mid.

As a consequence, the scheduler which ensures that the preferred marriages described in Section 4.9 are stable (and which was used to ensure that a CIOQ router can emulate a PIEO router) can be simplified. It no longer needs to be aware of the priority between cells destined to the same output. This leads to the following theorem:

Theorem 4.4. A crossbar CIOQ router is work-conserving with a crossbar bandwidth of $2 N R$ and a total memory bandwidth of $6 N R$.
can emulate an OQ router for arbitrary input traffic patterns and router sizes. Later, in their seminal paper [13], the authors improved upon the result in [41] and were the first to show that a CIOQ router can emulate an OQ router with speedup two.

In contrast, Charny [65] also considered emulation, but required assumptions on the arrival traffic and only considered FIFO traffic, while Krishna et al. [23] independently showed that a CIOQ router is work-conserving with speedup two. Note that Stoica et al. [96] also considered the emulation of a CIOQ router with speedup two. Their paper had an error, which was later fixed [97] in consultation with the authors in [13]. Recently, Firoozshahian et al. [98] presented a surprising algorithm that (unlike all other previous algorithms) only uses local information to emulate a constrained OQ router that performs "port-ordered" scheduling policies.

4.11 Conclusions

We have extended the work done on providing delay guarantees in [65] and PIFO emulation in [13], as follows:

1. Our work on time reservation algorithms, presented in Section 4.4 for the classical unbuffered crossbar, extends Charny's result [65]. In [65] it was shown that a maximal matching algorithm would lead to the main result (Theorem 4.1). The result relied on a scheduler that examines the contents of the input queues during each time slot to determine which cells to schedule. In contrast, the constraint set technique leads to an almost identical result (Theorem 4.2), using a simpler algorithm that schedules cells as soon as they arrive. While algorithms for IQ and CIOQ routers that schedule cells immediately upon arrival have been proposed before $[67,68,69,70]$, we are not aware of any previous work that shows when such algorithms can achieve 100% throughput, give bounded delay, and emulate an FCFS-OQ router.
2. The analysis of non-SB routers was a hard problem, because cells that arrive to non-SB routers do not get queued for their outputs immediately. They may be held at one or more intermediate points before they are transferred to their
respective outputs. We introduced the extended constraint set technique, which follows the path of the cell and enforces constraints on the cell on every time slot before it reaches its output. The extended constraint set technique has given us a powerful tool to analyze non-SB routers. It has clarified our understanding of the results in [13] and brought it under the purview of the pigeonhole principle.

Summary

1. In this chapter, we analyze the combined input output queued (CIOQ) router. In a CIOQ router, a packet is buffered twice - once when it arrives, and once before it leaves. The first buffer is on the line card it arrives on. The second buffer is on the line card it departs from.
2. Intuitively, the two buffers make the job easier for a central scheduler - if the switch is not ready to transfer packets as soon as they arrive, it can hold them in the input line card. Similarly, if the scheduler has the opportunity to send a packet to the output, it doesn't need to wait until the output line is free - the output line card will buffer it in the output until the line is free.
3. We use the constraint set technique (introduced in Chapter 2) to analyze the conditions under which a CIOQ router can emulate an OQ router.
4. The use of the constraint set technique implies that our scheduling algorithm attempts to reserve a time slot (either now or in the future) to transfer a cell to the output line card as soon as it arrives. As a consequence, our switching algorithm belongs to a class of algorithms called "time reservation algorithms".
5. We show that a CIOQ router (using a time reservation algorithm) with a crossbar bandwidth greater than $2 N R$ and a memory bandwidth greater than $6 N R$ is work-conserving (Theorem 4.4) and can emulate an FCFS-OQ router (Theorem 4.2).
6. Our techniques lead to an intuitive understanding of the constraints faced in a CIOQ router, and also simplify the algorithms presented in [65].
7. However, we have to make assumptions (e.g., that the CIOQ router has a finite size buffer) in order to prove the above results. While these assumptions are practical, the constraint set technique unfortunately does not allow us to find the conditions under which a CIOQ router can emulate an OQ router that provides qualities of service.
8. This is because the basic constraint set technique does not take full advantage of the architecture of a CIOQ router as it commits to transferring a packet immediately on arrival.
9. We therefore introduce the extended constraint set technique to analyze the CIOQ router. The extended constraint set technique is a re-statement of the counting principle introduced in [13], and is a method to continuously track the progress of a cell while it waits at the input, in its attempt to be transferred to the output.
10. We re-state the previously known results in [13] in terms of the extended constraint set technique to show that a CIOQ router with a crossbar bandwidth of $2 N R$ and a memory bandwidth of $6 N R$ can emulate an $O Q$ router that supports multiple qualities of service (Theorem 4.3).
11. The extended constraint set technique has broadened our understanding of routers. It brings under the purview of the pigeonhole principle other router architectures that are not single-buffered.

Chapter 5: Analyzing Buffered CIOQ Routers with Localized Memories

Feb 2008, Santa Cruz, CA

Contents

5.1 Introduction . 117
5.1.1 Goal . 118
5.1.2 Intuition . 118
5.2 Architecture of the Buffered CIOQ Router 120
5.2.1 Why Are Buffered Crossbars Practical? 121
5.3 Applying the Pigeonhole Principle to Analyze Buffered Crossbars 123
5.3.1 Satisfying the Properties for the Extended Pigeonhole Principle 123
5.4 Analyzing Buffered FCFS-CIOQ Routers 125
5.5 Crosspoint Blocking . 126
5.6 Analyzing Buffered PIFO CIOQ Routers 128
5.6.1 Emulating a PIFO-OQ Router by Recalling Cells 128
5.6.2 Emulating a PIFO-OQ Router by Bypassing Cells 128
5.6.3 Emulating a PIFO-OQ Router by Disallowing Less Urgent Cells . . . 129
5.7 Conclusions . 133

List of Dependencies

- Background: The memory access time problem for routers is described in Chapter 1. Section 1.5.2 describes the use of load balancing techniques, and Section 1.5.3 describes the use of caching techniques; both these techniques are used to alleviate the memory access time problems for the buffered CIOQ router.

Additional Readings

- Related Chapters: The load balancing technique to analyze the buffered combined input output queued (CIOQ) router, introduced in this chapter, is described in Section 4.9. The load balancing technique is also used to analyze the CIOQ router architecture in Chapter 4.

Table: List of Symbols.

$B_{i j}$	Crosspoint for Input i, Output j
c, C	Cell
$D T$	Departure Time
N	Number of Ports of a Router
R	Line Rate
S	Speedup
$S V O Q$	Super VOQ
T	Time Slot

Table: List of Abbreviations.

ASIC	Application Specific Integrated Circuit
CIOQ	Combined Input Output Queued Router
eDRAM	Embedded Dynamic Random Access Memory
FCFS	First Come First Serve (Same as FIFO)
OQ	Output Queued
PIFO	Push In First Out
SB	Single-buffered
QoS	Quality of Service
VOQ	Virtual Output Queue
WFQ	Weighted Fair Queueing

"A (stable) marriage can be ruined by a good memory".

- Anonymous ${ }^{\dagger}$

Analyzing Buffered CIOQ Routers with Localized Memories

5.1 Introduction

In Chapter 4, we introduced the combined input output queued (CIOQ) router. CIOQ routers are widely used, partly because they have localized buffers that enable these routers to be easily upgraded. However they are hard to scale because the scheduler in a crossbar-based CIOQ router implements complex stable marriage algorithms [63]. This chapter is motivated by the following question: Can we simplify the scheduler to make CIOQ routers more scalable? The main idea is as follows -

> 次Idea. "By introducing a small amount of buffering (similar to a cache) in the crossbar, we can make the scheduler's job much simpler. The intuition is that when a packet is switched, it can wait in the buffer; it doesn't have to wait until both the input and output are free at the same time".

In other words, our scheduler doesn't have to resolve two constraints at the same time. As we will see, this will reduce the complexity of the scheduler from $O\left(N^{2}\right)$ to

[^43]$O(N)$ and remove the need for a centralized scheduler. In this chapter, we'll prove that anything we can do with a CIOQ router, we can do simpler with a buffered CIOQ router.

Example 5.1. Figure 5.1 shows a cross-sectional view of the crossbar ASIC in a CIOQ router. As can be seen, the central crossbar has to interface with all the line cards in the router. The current technology constraints are such that the size of the crossbar ASIC is determined by the number of interconnect pins. This leaves a large amount of on-chip area unused in the crossbar ASIC, which can be used to store on-chip buffers.

5.1.1 Goal

Our goal is to make high-speed CIOQ routers practical to build, while still providing deterministic performance guarantees. So, in what follows, we will not use complex stable marriage algorithms [63]. Instead we consider a crossbar with buffers (henceforth referred to as a "buffered crossbar") and answer the question - What are the conditions under which a buffered crossbar can emulate an $O Q$ router that supports qualities of service?

In what follows, we'll show simple schedulers that make a buffered crossbar give deterministic performance guarantees - and we'll derive the conditions under which they are work-conserving and can emulate an OQ router that supports qualities of service.

5.1.2 Intuition

Researchers first noticed via simulation that the introduction of buffers to a crossbar can provide good statistical guarantees. They showed that the buffered crossbar can achieve high throughput for admissible uniform traffic with simple algorithms [99, 100, 101, 102]. Simulations also indicated that with a modest speedup, a buffered crossbar can closely approximate fair queueing [103, 104]. This confirms our intuition that the addition of a buffer can greatly enhance the performance of a crossbar-based fabric.

Figure 5.1: Cross-sectional view of crossbar fabric.

Figure 5.2: The architecture of a buffered crossbar with crosspoint buffer.

However, until recently there were no analytical results on guaranteed throughput to explain or confirm the observations made by simulations. The first analytical results were by Javidi et al. who proved that, with uniform traffic, a buffered crossbar can achieve 100% throughput [105]. More recently, Magill et al. proved that a buffered crossbar with a speedup of two can emulate an FCFS-OQ router [42, 106]. Magill et al. also showed that a buffered crossbar with k cells per crosspoint can emulate an FCFS-OQ router with k strict priorities.

5.2 Architecture of the Buffered CIOQ Router

Figure 5.2 shows a 3×3 buffered crossbar with line rate R. Similar to the crossbar router, arriving packets are buffered locally on the same line card on which they arrive, and held there temporarily. Later they are switched to the corresponding output line card, where they are again held temporarily before they finally leave the router. Fixed-length packets or cells wait in the VOQs to be transferred across the switch. Each crosspoint contains a buffer that can cache one cell. The buffer between input i
and output j is denoted as $B_{i j}$. When the buffer caches a cell, $B_{i j}=1$, else $B_{i j}=0$. In a sense, when the buffer is non-empty, it contains the head of a VOQ, and thus allows the output to peek into the state of the VOQ. Similar to the crossbar-based CIOQ router in the previous chapter, the inputs maintain an input priority queue (refer to Figure 4.6) to maintain the priority of cells. As in the previous chapter, there are two choices for implementation - (1) Keep arriving cells in VOQs, and a separate input priority queue to describe the order between the cells, or (2) Keep the cells sorted directly in an input priority queue.

The key to creating a scheduling algorithm is determining the input and output scheduling policy that decides how input and output schedulers pick cells. We will see that different policies lead to different scheduling algorithms.

5.2.1 Why Are Buffered Crossbars Practical?

Unlike a traditional crossbar, the addition of memory (which behaves like a cache) in a buffered crossbar, obviates the need for the computation of complex stable matching algorithms. This is because the inputs and outputs are no longer restricted to performing a matching in every time slot, and have more more flexibility as described below.

The scheduler for a buffered crossbar consists of $2 N$ parts: N input schedulers and N output schedulers. The input schedulers (independently and in parallel) pick a cell from their inputs to be placed into an empty crosspoint. The output schedulers (independently and in parallel) pick a cell from a non-empty crosspoint destined for that output.
(C)Observation 5.1. A traditional crossbar fabric is limited to performing no more than N ! permutations to match inputs to outputs. In contrast (depending on the occupancy of the crosspoints), the buffered crossbar can allow up to N^{N} matchings between inputs and outputs.

The N input and N output schedulers can be distributed to run on each input and output independently, eliminating the single centralized scheduler. They can be
pipelined to run at high speeds, making buffered crossbars appealing for high-speed routers.

Observation 5.2. It is interesting to compare this scheduler with the scheduler for an unbuffered crossbar-based CIOQ router described in Chapter 4. The scheduler in Chapter 4 also gave deterministic performance guarantees, but in order to provide these guarantees, our scheduling algorithm required the inputs and outputs to keep a list of preferences and convey these preferences to a scheduler. This meant that the scheduler had to be aware of the states of all inputs and outputs, and be centrally located. The scheduler computed a matching by running a version of the stable marriage algorithm [63]. In [13], the authors describe two scheduling algorithms that can compute stable matching, the faster of which still takes $O(N)$ iterations to compute a matching. The high communication overhead between the inputs and outputs, the amount of state that needs to be maintained and communicated to the centralized scheduler, and the implementation complexity, make stable matching algorithms hard to scale when designing high-speed routers.

Of course, simplifying the scheduler requires a more complicated crossbar capable of holding and maintaining N^{2} packet buffers on-chip. In the past, this would have been prohibitively complex: the number of ports and the capacity of a crossbar switch were formerly limited by the N^{2} crosspoints that dominated the chip area; hence the development of multi-stage switch fabrics, e.g., the Clos, Banyan, and Omega switches, based on smaller crossbar elements. Now, however, crossbar switches are limited by the number of pins required to get data on and off the chip [107].

Example 5.2. Improvements in process technology, and reductions in geometries, mean that the logic required for N^{2} crosspoints is small compared to the chip size required for N inputs and N outputs. The chips are pad-limited, with an under-utilized die. A buffered crossbar can use the

Abstract

unused die for buffers, and further improvements in on-chip eDRAM memory technology [26] allow for storing a large amount of memory on-chip. With upcoming 45 nm chip technology, $\sim 128 \mathrm{Mb}$ of eDRAM can easily fit on an average chip. This can easily support a 256×256 router (with 256 -byte cells), making a buffered crossbar a practical proposition. ${ }^{1}$

5.3 Applying the Pigeonhole Principle to Analyze Buffered Crossbars

In Chapter 4, we introduced the extended pigeonhole principle (Algorithm 4.2) as a general technique to analyze whether a router can emulate an OQ router (and as a consequence give deterministic performance guarantees). The crossbar-based CIOQ router in Chapter 4 was able to emulate an OQ router because the stable matching algorithms that we described (and first mentioned in [13]) ensured that the pigeonhole principle is satisfied for every cell in every time slot.

5.3.1 Satisfying the Properties for the Extended Pigeonhole Principle

Since we are also interested in emulating an OQ router, we will choose a scheduling algorithm that also attempts to satisfy the conditions of the pigeonhole principle. Our scheduling algorithm consists of two parts, one each for the input and the output scheduler. This is shown in Algorithm 5.1. To show that our scheduling algorithm meets the pigeonhole principle, recall the two properties that we introduced in Section 4.9:
$\sqrt{ }$ Property 4.1. Induction Step: In every time slot, the switch scheduler does the following at least twice - it either decrements the size of the contention

[^44]
Algorithm 5.1: Buffered crossbar scheduler.

for each scheduling slot t do
Input Scheduler:
for each input i do
Serve the first cell (destined to any output) that it can find in the input priority queue, whose crosspoint is empty, i.e., $B_{i *}=0$.
Output Scheduler:
for each output j do
Serve the first cell with the earliest departure time, from any crosspoint $B_{* j}$ which is not empty, i.e., $B_{* j}=1$.
set or increments the size of the opportunity set for every cell waiting at the input, i.e., it either decrements the number of pigeons or increments the number of pigeonholes for every cell.

Consider a cell c in the input priority queue for input i destined to output j. If the cell is chosen by the input scheduler, then it is transferred to crosspoint $B_{i j}$ and is available to the output for reading at any time. We no longer need to consider it. If the cell is not chosen, then consider the state of the crosspoint buffer, $B_{i j}$, at the beginning of every time slot:

1. If $B_{i j}=0$: The input scheduler will select some other cell with a higher priority than cell c. So, the input scheduler decrements the size of the contention set (pigeons) for cell c.
2. If $B_{i j}=1$: The output scheduler will select either the cell in the crosspoint buffer $B_{i j}$ (which has an earlier departure time than cell c^{2}), or some other cell with an even earlier departure time than the cell in crosspoint $B_{i j}$. In either case, the output scheduler increments the number of opportunities ${ }^{3}$ (pigeonholes)
[^45]> for cell c.

So, for every cell c that remains at the input at the end of a time slot, either the input scheduler reduces the number of contending cells (pigeons), or the output scheduler increases the number of opportunities (pigeonholes). ${ }^{4}$ If the speedup of the crossbar is $S=2$, then similar to Section 4.9 , this is enough to offset the potential increment of the contention set (pigeonholes) and the definite decrement of the opportunity set (pigeons) in every time slot due to arriving and departing cells.

$\sqrt{ }$ Property 4.2. Induction Basis Case: On arrival, a cell is inserted into a position in the input priority queue such that it has equal or more opportunities to leave than the number of contentions, i.e., it has equal or more pigeonholes than the number of pigeons.

We will make our cell insertion policy identical to that introduced in Section 4.9, and so it satisfies Property 4.2.

5.4 Analyzing Buffered FCFS-CIOQ Routers Using the Extended Pigeonhole Principle

In the previous section, in order to meet the Property 4.1 we had to assume that the cell in the crosspoint $B_{i j}$ has an earlier departure time than the cells in $V O Q_{i j}$. In the case of an FCFS router this is trivially true - for cells that belong to the same VOQ, the input scheduler will only transfer the cell with the earliest departure time (since it will have a higher priority than other cells in the same VOQ). Also, cells that arrive later for the same VOQ will have a later departure time than the cell in the crosspoint, because of the FCFS nature of the router. It follows that all the conditions to meet the extended pigeonhole principle (Algorithm 4.2) are satisfied. Similar to Section 4.9, we can state that a buffered CIOQ router can emulate an FCFS-OQ router. These observations result in the following theorem:

[^46]Theorem 5.1. (Sufficiency, by Citation) A buffered crossbar can emulate an FCFS$O Q$ router with a crossbar bandwidth of $2 N R$ and a memory bandwidth of $6 N R$.

Proof. This was first proved by Magill et al. in [42, 106].

\%<Box 5.1: Work Conservation without Emulation>:

We can ask an identical question to the one posed in the previous chapter: What are the conditions under which a buffered CIOQ router is work-conserving without mandating FCFS-OQ emulation?

Recall that for a work-conserving router, we only need to ensure that its outputs are kept busy. So, the output scheduler for a work-conserving buffered crossbar can choose to serve any non-empty crosspoint, thus ignoring the order of cells destined to an output. This simplified scheduling policy would still meet the requirements of the modified pigeonhole principle for work-conserving routers (as described in Algorithm 1.3). This leads to the following theorem:

Theorem 5.2. A buffered crossbar (with a simplified output scheduler) is work-conserving with a crossbar bandwidth of $2 N R$ and a memory bandwidth of 6 NR .

5.5 Crosspoint Blocking

In the previous section, we simplified Magill's work on the FCFS buffered crossbar using the pigeonhole principle. We now extend this work and consider WFQ routers. When a cell arrives in a WFQ router, the scheduler picks its departure order relative to other cells already in the router. If the cell has a very high priority, it could, for example, be scheduled to depart immediately, ahead of all currently queued cells. This will cause problems for the buffered crossbar. Imagine the situation where the crosspoint buffer is non-empty and a new cell arrives that needs to leave before the cell in the crosspoint buffer. Because there is no way for the new cell to overtake the cell in the crosspoint buffer, we say there is "crosspoint blocking".

Crosspoint blocking is bad, because the cell in the crosspoint $B_{i j}$ may not have an earlier departure time than the cells in $V O Q_{i j}$. So we cannot satisfy Property 4.1 or
meet the requirements of the extended pigeonhole principle. This is a problem unique to supporting WFQ policies on a buffered crossbar, and did not occur for the FCFS policy that we considered in the previous section. ${ }^{5}$

How can we overcome crosspoint blocking? There are three ways to alleviate this problem - (1) fix it, (2) work around it, or (3) prevent it from occurring. We will consider each of them below.

WiMethod 1. What if we can recall less-urgent cells from the crosspoint? We can fix the crosspoint blocking problem by allowing the input to replace the cell in the crosspoint buffer with a more urgent cell, if we swap out the old one and exchange it for the new one. The new cell is put into position in the crosspoint buffer, ready to be read by the output scheduler in time to leave the switch before its deadline. Logically, the cell that was previously in the crosspoint buffer is recalled to the input, where it is treated like a newly arriving cell.

Method 2. What if we can bypass less-urgent cells in the crosspoint? We

 can work around crosspoint blocking by allowing the more urgent arriving cell to bypass the cell in the crosspoint buffer. The inputs could continuously inform the outputs when more urgent cells than those in the crosspoint buffer have arrived. In a sense, the output can choose to ignore the crosspoint buffer and directly read the more urgent cells from the input. This means that the outputs treat the buffered crossbar similar to a traditional crossbar.
Method 3. What if we can disallow less-urgent cells from entering the crosspoint? We can prevent the crosspoint blocking problem if the cells that cause crosspoint blocking are never put there in the first place! A way to do this is to ensure that a cell is sent to the crosspoint only if we know that the output will read it immediately.

[^47]
5.6 Analyzing Buffered PIFO CIOQ Routers Using the Extended Pigeonhole Principle

We will now derive three results to support WFQ-like policies on the buffered crossbar, based on the three unique methods described above.

5.6.1 Emulating a PIFO-OQ Router by Recalling Cells

We will need extra speedup in the crossbar, to allow time for the old (less-urgent) cell in the crosspoint to be replaced in the crosspoint buffer by the new cell. To perform this swapping operation, the switch now has a speedup of three. We don't need extra crossbar speedup to retrieve the old (less-urgent) cell from the crossbar and send it back to the input - in practice, the input would keep a copy of cells currently in the crosspoint buffer, and would simply overwrite the old one. The memory bandwidth on the input also does not need to change, since the old cell that is retrieved from the crossbar does not need to be re-written to the input VOQ. This leads us to the following theorem:

Theorem 5.3. (Sufficiency, by Reference) A buffered crossbar can emulate a PIFO$O Q$ router with a crossbar bandwidth of $3 N R$ and a memory bandwidth of $6 N R$.

Proof. This follows from the arguments above and 5.1. The original proof (which does not use the pigeonhole principle) appears in our paper [43].

5.6.2 Emulating a PIFO-OQ Router by Bypassing Cells

In order to bypass cells in the crosspoint, we needed to continually inform the outputs about newly arriving cells. But this creates a scheduling problem: it means we no longer split the scheduling into independent input and output stages, since the outputs must wait for the inputs to communicate if there are more urgent arriving cells. So the scheduler will become similar to (and just as complex as) the scheduler in the
unbuffered crossbar in Chapter 4. Of course, since the buffered crossbar can perform any matching that a traditional crossbar can, we have the following obvious corollary:

Corollary 5.1. (Sufficiency, by Citation) A crossbar CIOQ router can emulate a PIFO-OQ router with a crossbar bandwidth of $2 N R$ and a total memory bandwidth of $6 N R$.

Proof. This follows from Theorem 4.3.

5.6.3 Emulating a PIFO-OQ Router by Disallowing Less Urgent Cells

We are interested in a mechanism for knowing when an output will read a cell, so that the inputs can send only these cells into the crosspoint. How can the input know when an output will read a cell? One way of doing this is based on the following idea:

> 准Idea. "Instead of storing the cell in the crosspoint buffer, we can store a "cell header or identifier" that contains the departure time. The output can still pick a cell according to the time it needs to leave. The actual cell can be transferred later, once the output has made its decision".

This means we only send cells through the switch when they really need to be transferred. We don't need the extra speedup to overwrite cells in the crosspoints. We call this approach header scheduling.

The process of scheduling and transferring cells would now take place in two distinct phases, just as in an unbuffered crossbar. First, scheduling would be done by inputs and outputs: the inputs would send cell identifiers to their corresponding crosspoints, and the outputs would pick, or grant to, a cell identifier in the crosspoint. In the second phase, the actual cells would be transferred according to the grants made by the outputs. But we are not quite done:

Observation 5.3. Since the N output schedulers all operate independently, they

 could temporarily choose cell identifiers that are destined to them, from the same input. Since the actual cells are not as yet in the crosspoint buffer, they have to be provided by the inputs. Since the cell identifier grants come to the inputs in a bursty manner, the actual cells also reach the crosspoints in a bursty manner. It can be shown that the outputs need no more than N cells of buffering to accommodate this burst (see Appendix E).There are two ways to accommodate this burst, both of which come at an expense.

1. Expand the size of crosspoints: We could modify the crosspoint buffer $B_{i j}$, to store up to N cells. This results in a cache size of N^{3} cells in the crossbar as a whole. While this will require much more storage, it might make sense for small values of N. Our buffered crossbar will be similar to that shown in Figure 5.2, except that each crosspoint can store N cells.
2. Share the crosspoints destined to an output: We could take advantage of the fact that the burst size per output (irrespective of the inputs) is bounded by N cells, and share the crosspoint buffer for a specific output. Instead of one buffer per crosspoint buffer, there will now be N buffers per output as shown in Figure 5.4. The total cache size is still N^{2} cells in the crossbar, but the buffers are dedicated to outputs, rather than input/output pairs. This requires us to modify the design of the buffered crossbar. Also note that in such a design, the per-output buffer must have the memory access rate to allow up to N cells to arrive simultaneously.

The above modifications to the crossbar allow us to emulate a PIFQ-OQ router and provide delay guarantees without requiring any additional crossbar speedup or memory bandwidth.

$\$<$ Box 5.2: A Digression to Randomized Algorithms>0

While randomized algorithms are not a focus of this thesis, the buffered crossbar is a good example to show their power. Consider the scheduler in Algorithm 5.2. The input and output schedulers pick a cell to serve independently and at random. We can prove the following:

Theorem 5.4. A buffered crossbar with randomized scheduling, can achueve 100% throughput with a crossbar bandwidth of $2 N R$ and a memory bandwidth of $6 N R$.

What follows is an intuition of the proof. ${ }^{a}$. We define a super queue, $S V O Q_{i j}$ to track the evolution of each $V O Q_{i j}$. Let $S V O Q_{i j}$ denote the sum of the cells waiting at input i, and the cells destined to output j (including cells in the crosspoint for output j), as shown in Figure 5.3:

$$
\begin{equation*}
S V O Q_{i j}=\sum_{k} V O Q_{i k}+\sum_{k}\left(V O Q_{k j}+B_{k j}\right) . \tag{5.1}
\end{equation*}
$$

First we show that the expected value of every super

Algorithm 5.2: A ran-
domized scheduler.
for each scheduling slot
t do
2 for each input i do
$3 . \quad$ Serve any
non-empty VOQ
for which
$B_{i, *}=0$.
for each output j
do
Serve any
crosspoint buffer
for which
$B_{*, j}=1$. domized scheduler.
for each scheduling slot t do
for each input i do Serve any non-empty VOQ for which $B_{i, *}=0$.
for each output j
do
5
Serve any crosspoint buffer for which $B_{*, j}=1$. queue is bounded. It is easy to see, when $V O Q_{i j}$ is non-empty, that $S V O Q_{i j}$ decreases in every scheduling opportunity. There are two cases:

Case 1: $B_{i j}=1$. Output j will receive some cell; $\sum_{k}\left(V O Q_{k j}+B_{k j}\right)$ decreases by one.
Case 2: $B_{i j}=0$. Input i will send some cell; $\sum_{k} V O Q_{i k}$ decreases by one.
With $S=2, S V O Q_{i j}$ will decrease by two per time slot. When the inputs and outputs are not oversubscribed, the expected increase in $S V O Q_{i j}$ is strictly less than two per time slot. So the expected change in $S V O Q_{i j}$ is negative over the time slot; this means that the expected value of $S V O Q_{i j}$ is bounded. This in turn implies that the expected value of $V O Q_{i j}$ is bounded and the buffered crossbar has 100% throughput.

Figure 5.3: Super $\mathrm{VOQ}_{1,2}$
${ }^{a}$ The proof uses fluid models [12], and appears in Appendix D, and in our paper [43].

Figure 5.4: The architecture of a buffered crossbar with output buffers.

W3 Observation 5.4. We note that due to the bursty nature of the arrival of cells into the crossbar, the cells can get delayed in reaching their outputs. The bursts of N cells take up to $N / 2$ time slots (because the speedup is two) to reach their outputs. So the emulation is within a bound of $N / 2$ time slots.

Based on the above observations, we are now ready to prove the following theorem:

Theorem 5.5. (Sufficiency, by Reference) A modified buffered crossbar can emulate a PIFO-OQ router with a crossbar bandwidth of $2 N R$ and a memory bandwidth of $6 N R$.

Proof. A detailed proof is available in Section 6.C in our paper [43] and also in Appendix E.

Table 5.1: Comparison of emulation options for buffered crossbars.

Buffered Xbar Architecture	Cache Size	Type	\# of memories	Memory Access Rate	$\begin{aligned} & \text { Total } \\ & \text { Memory } \\ & \text { BW } \end{aligned}$	Switch BW	Comment
Crosspoints (Box 5.2)	N^{2}	VII. R	$2 N$	$3 R$	$6 N R$	$2 N R$	100% throughput with trivial input and output scheduler.
Crosspoints (Theorem \%.1)	N^{2}	VII. D	$2 N$	$3 R$	$6 N R$	$2 N R$	Emulates $\overline{F C F S}-O Q$ with simple input and output scheduler.
Crosspoints (Theorem 5.3)	N^{2}	VII. D	$2 N$	$3 R$	$6 N R$	$3 N R$	Emulates WFQ OQ with simple input and output scheduler.
Crosspoints (Corollary 3.3)	N^{2}	VII. D	$2 N$	$3 R$	$6 N R$	$2 N R$	Emulates WFQ OQ with complex stable marriage algorithm.
Crosspoints (Theorem 5.5)	N^{3}	VIII. D	$2 N$	$3 R$	$6 N R$	$2 N R$	Emulates WFQ OQ with N buffers per input-output pair, simple header scheduler.
Output Buffers (Theorem 5.5)	N^{2}	VII. D	$2 N$	$3 R$	$6 N R$	$2 N R$	Emulates WFQ OQ with N buffers per output, simpler header scheduler.

5.7 Conclusions

We set out to answer a fundamental question about the nature of crossbar fabrics: Can the addition of buffers make the crossbar-based CIOQ router practical to build, yet give deterministic performance guarantees?

Our results show that this is possible. Although the buffered crossbar is more complex than the traditional crossbar, the crossbar speedup is still two, the memory bandwidth and pin count is the same as in a crossbar-based CIOQ router, and no memory needs to run faster than twice the line rate. The scheduling algorithm is simple, and has the nice property of two separate, independent phases to schedule inputs and outputs, allowing high-speed, pipelined designs. Also, the use of the extended pigeonhole principle has allowed us a better understanding of the operation of the buffered crossbar, and we were able to develop a number of practical solutions (summarized in Table 5.1) that achieve our goal.

The use of buffered crossbars in some of Cisco's high-speed Ethernet switches and Enterprise routers [4] (though not with the exact architecture and algorithms suggested here) attests to the practicality of the overall architecture. We also currently plan to deploy buffered crossbars in the aggregated campus router [109] market, where the crossbar speeds exceed $400 \mathrm{~Gb} / \mathrm{s}$. Until crossbar switches and schedulers
improve in speed, we believe that the buffered crossbar provides a quick and easy evolutionary path to alleviate the problems inherent in a crossbar, and give statistical and deterministic performance guarantees.

Summary

1. CIOQ routers are widely used. However, they are hard to scale (while simultaneously providing deterministic guarantees) because of the complexity and centralized nature of the scheduler. In this chapter, we explore how to simplify the scheduler.
2. We show that by introducing a small amount of buffering in the crossbar (similar to a cache), we can make the scheduler's job much simpler. We call these "buffered crossbar" routers.
3. In a buffered crossbar, each input i and output j has a dedicated buffer in the crossbar. We call these "crosspoint buffers" (denoted $B_{i j}$), and a buffered crossbar has a total of N^{2} crosspoint buffers.
4. The intuition is that when a packet is switched, it doesn't have to wait until both the input and output are both free at the same time. In other words, the scheduler doesn't have to resolve two constraints simultaneously. This can reduce the complexity of the scheduler from $\Theta\left(N^{2}\right)$ for crossbar-based CIOQ routers (see Chapter 4) to $\Theta(N)$ for buffered crossbars.
5. In this chapter, we prove that anything we can do with a CIOQ crossbar-based router, we can do more simply with a buffered crossbar.
6. The scheduler for a buffered crossbar consists of $2 N$ parts: N input schedulers and N output schedulers. The schedulers can be distributed to run on each input and output independently, eliminating the need for a single centralized scheduler. They can be pipelined to run at high speeds, making buffered crossbars appealing for high-speed routers.
7. We prove that a buffered crossbar router with a simple scheduler that is distributed and runs in parallel can achieve 100% throughput (Theorem 5.4) and is work-conserving (Theorem 5.2), with a crossbar bandwidth of $2 N R$ and a memory bandwidth of $6 N R$.
8. In [42, 106] Magill et al. proved that a buffered crossbar can emulate an FCFS-OQ router with a crossbar bandwidth of $2 N R$ and a memory bandwidth of $6 N R$ (Theorem 5.1).
9. Unfortunately, we cannot extend the results in $[42,106]$ for a router that supports qualities of service. This is because buffered crossbars suffer from a type of blocking called
"crosspoint blocking".
10. Crosspoint blocking occurs when a lower-priority cell from some input i destined to some output j resides in the crosspoint $B_{i j}$. This cell prevents a higher-priority cell from the same input-output pair from being transferred to the crossbar.
11. We introduce three methods to eliminate crosspoint blocking. These methods trade off complexity of implementation for additional crossbar bandwidth. In some cases, we have to increase the amount of buffering (or the organization of the buffers) in the crossbar to overcome crosspoint blocking.
12. We show that a buffered crossbar can emulate an $O Q$ router that supports qualities of service with a crossbar bandwidth of $3 N R$ and a memory bandwidth of $6 N R$ (Theorem 5.3).
13. We also show that a modified buffered crossbar can emulate an $O Q$ router that supports qualities of service with a crossbar bandwidth of $2 N R$ and a memory bandwidth of $6 N R$ (Theorem 5.5).
14. There are two options to build a modified buffer crossbar. In one option, we can have N buffers per crosspoint (where each crosspoint is dedicated, as before, to an input-output pair), for a total of N^{3} buffers.
15. Another option is to have N buffers dedicated to each output, for a total of N^{2} buffers in the crossbar.
16. Our results are practical, and we believe that the buffered crossbar provides a quick and easy evolutionary path to alleviate the problems inherent in a crossbar and give statistical and deterministic performance guarantees.

Chapter 6: Analyzing Parallel Routers with Slower Memories

Mar 2008, Berkeley, CA

Contents

6.1 Introduction 138
6.1.1 Why Do We Need a New Technique to Build High-Speed Routers that Give Deterministic Performance Guarantees? 139
6.1.2 Why Can't We Use Existing Load Balancing Techniques? 141
6.1.3 Can We Leverage the Existing Load-Balancing Techniques? 142
6.1.4 Goal 143
6.2 Background 143
6.2.1 Organization 145
6.3 The Parallel Packet Switch Architecture 146
6.3.1 The Need for Speedup 147
6.4 Applying the Pigeonhole Principle to the PPS 148
6.4.1 Defining Constraint Sets 149
6.4.2 Lower Bounds on the Size of the Constraint Sets 150
6.5 Emulating an FCFS-OQ Router 151
6.5.1 Conditions for a PPS to Emulate an FCFS-OQ Router 152
6.6 Providing QoS Guarantees 153
6.7 Analyzing the Buffered PPS Router 159
6.7.1 Limitations of Centralized Approach 159
6.8 A Distributed Algorithm to Emulate an FCFS-OQ Router 162
6.8.1 Introduction of Caches to the PPS 163
6.8.2 The Modified PPS Dispatch Algorithm 164
6.9 Emulating an FCFS-OQ Switch with a Distributed Algorithm 166
6.10 Implementation Issues 167
6.11 Related Work 169
6.11.1 Subsequent Work 169
6.12 Conclusions 169

List of Dependencies

- Background: The memory access time problem for routers is described in Chapter 1. Section 1.5.2 describes the use of load balancing techniques, and Section 1.5.3 describes the use of caching techniques; both of which are used in this chapter.

Additional Readings

- Related Chapters: The router described in this chapter is an example of a single-buffered router (See Section 2.2), and the general technique to analyze this router is introduced in Section 2.3. The load balancing technique is also used to analyze other router architectures in Chapters 2, 3, 4, and 10.

Table: List of Symbols.

c, C	Cell
N	Number of Ports of a Router
k	Number of Center Stage Switches ("Layers")
R	Line Rate
S	Speedup
T	Time slot

Table: List of Abbreviations.

FCFS	First Come First Serve (Same as FIFO)
OQ	Output Queued
PIFO	Push In First Out
PPS	Parallel Packet Switch
CPA	Centralized Parallel Packet Switch Algorithm
DPA	Distributed Parallel Packet Switch Algorithm
DWDM	Dense Wavelength Division Multiplexing
WDM	Wavelength Division Multiplexing

Analyzing Parallel Routers with Slower Memories

6.1 Introduction

Our goal in this thesis was to build high-speed routers that give deterministic performance guarantees as described in Section 1.4. In Chapter 1 we introduced the OQ router. An OQ router gives theoretically ideal performance, is easy to build, and gives deterministic performance guarantees. As we saw, it is, unfortunately, not easy to scale the performance of an OQ router, because the access rate on the memories of an OQ router cannot keep up with increasing line rates. This chapter is motivated by the following question - Wouldn't it be nice if we could put together many slower-speed $O Q$ routers (which individually give deterministic performance guarantees) and build a high-speed router that can give deterministic performance guarantees?

Example 6.1. Figure 6.1 shows an example of a high-speed router (operating at rate R) which is built from k slower-speed routers. The arriving traffic is load-balanced and distributed over k slower speed OQ routers that operate at rate R / k.

[^48]

A high-speed router built from k slower speed routers

Figure 6.1: Using system-wide massive parallelism to build high-speed routers.

6.1.1 Why Do We Need a New Technique to Build HighSpeed Routers that Give Deterministic Performance Guarantees?

In the previous chapters, we analyzed various router architectures and described a number of load balancing techniques to alleviate the memory access time problem. The routers that we described were single chassis monolithic routers. They can support very high line rates, and provide deterministic performance guarantees. This begs the question - why do we need a new technique to build another high-speed router that can give deterministic guarantees?

There are three key reasons why we may want to build high-speed routers as described in Figure 6.1:

1. Rapidly increasing line rates mandate massive parallelism: We cannot predict the speeds at which line rates will increase. For example, the advent of optical technology such as dense wavelength division multiplexing (DWDM) will provide the capability to rapidly increase line rates. This is because it allows long-haul fiber-optic links to carry very high capacity by enabling a single fiber to contain multiple, separate high-speed channels. Today, channels operate at OC48c ($2.5 \mathrm{~Gb} / \mathrm{s}$), OC192c ($10 \mathrm{~Gb} / \mathrm{s}$), and in some systems, OC768c $(40 \mathrm{~Gb} / \mathrm{s})$. As channel speeds increase beyond OC192 to OC768, and even OC3072 ($160 \mathrm{~Gb} / \mathrm{s}$), and the number of channels increases, the access rate of the prevailing memory technology may become orders of magnitude slower than the arriving line rate.

It is not our purpose to argue that line rates will continue to increase - on the contrary, it could be argued that optical DWDM technology will lead to a larger number of logical channels, each operating no faster than, say, $10 \mathrm{~Gb} / \mathrm{s}$. We simply make the following observation: if line rates do increase rapidly, then the memories ${ }^{1}$ may be so slow in comparison to the line rate that we will be forced to consider architectures where the memory access rate is much slower than the line rate.
2. Cost: Instead of building a monolithic router, it may in fact be cheaper to take the most widely used commodity routers, connect many of them in parallel, and build a higher-speed router. At any given time, given the technological constraints and capabilities, there is always a router capacity beyond which it becomes prohibitively expensive (but still technologically feasible) to build a single-chassis monolithic router; such a router is expected to be cheaper when built in the manner suggested above.

[^49]3. Time to Market: The development-to-deployment cycle for a typical highspeed router is long: First, new hardware technologies (e.g., fabrication technology, interconnects, memories, boards etc.) that a router must use are evaluated and tested. Then the packet processing and other control and data-path ASICs are designed, and they undergo verification. These steps typically take anywhere between 9 and 18 months. Then the ASICs are sent for fabrication, testing, and packaging, and when they are ready (usually another 4-6 months), they are assembled on system boards or line cards. These boards and line cards are then tested individually. The router is then assembled by putting multiple such line cards into a system chassis. Then the router is tested in a "network testbed" among other routers. Finally, after undergoing customer field trials, it is ready to be deployed. For most high-speed routers, the above steps typically take $\sim 3-4$ years.
In contrast, if we can take a number of slower-speed routers (which are already tested and in deployment), and connect them together in parallel, we may be able to drastically shorten the time to build and deploy such high-speed routers. Of course, in order to do this, the architecture used to connect the slower-speed routers, and the load balancing algorithms used to distribute packets among them, must be made fairly simple to implement.

6.1.2 Why Can't We Use Existing Load Balancing Techniques to Build a Monolithic High-speed Router?

We are in search of router architectures, where the memory runs significantly slower than the line rate. In the previous chapters, we introduced a number of monolithic router architectures and described techniques that can achieve this goal. These techniques load-balanced packets across a number of parallel memories, such that each memory was slower than the line rate. But there are implementation limits to the number of parallel memories that can be interfaced to and load-balanced in a monolithic router.

Abstract

Example 6.2. For example, hardware chips today are already limited by interconnect pins. Using current 65 nm ASIC fabrication technology, any chip with over 1500 interconnect pins becomes prohibitively expensive. If each memory has approximately 50 pins (fairly typical of most commodity memory today), it is hard for a single ASIC to interface to (and loadbalance over) > 30 memories.

However, it is possible that line rates will increase so rapidly that we may need to load-balance over hundreds of memories. And so, even the load balancing techniques (that use parallel memories) that we described to alleviate the memory access time problem on the PSM (Section 2.4), DSM (Section $3.2 \& 3.3$), and PDSM (Section 3.7) router architectures may become impossible to scale to hundreds of memories, and will not give us the massive parallelism we require.

Observation 6.1. What about other router architectures? We considered CIOQ routers in Chapters 4 and 5. We showed that these routers give performance guarantees, but their memories run at 3 X the line rate. Obviously, this doesn't meet our goal that the memories in our router must run at a rate much slower than the line rate R. Even an IQ switch (for which it is known that it cannot give deterministic performance guarantees) requires memories that operate at rate $2 R$, which of course does not meet our requirements.

6.1.3 Can We Leverage the Existing Load-Balancing Techniques?

In Figure 6.1, the slower-speed routers (over which we load-balance) were OQ routers. However, we don't really need OQ routers, since when we load-balance across a large number of routers, we treat these routers as "black-boxes". This motivates the following idea -

> 水Idea. "Since we are not concerned with the internal architectures of the routers that we load-balance over, it will suffice that packets leave these routers at predictable times, ideally at the same time as an $O Q$ router".

This means that routers that emulate an OQ router are sufficient for our purpose! This means that we can use the more practical router architectures and leverage the load balancing techniques described in Chapters 2-5 such that they can emulate OQ routers.

6.1.4 Goal

So in order to meet our goals, we will explore an architecture that - (1) is practical to build, (2) allows for massive system-level parallelism that enables us to use memories that can run significantly slower than the line rate, and (3) can leverage the techniques we have described in the previous chapters to emulate OQ routers.

6.2 Background

The parallel packet router or switch (PPS) ${ }^{2}$ is comprised of multiple, identical lowerspeed packet switches operating independently and in parallel. An incoming stream of packets is spread, packet-by-packet, by a demultiplexor across the slower packet switches, then recombined by a multiplexor at the output. The PPS architecture resembles that of a Clos network [110] as shown in Figure 6.2. The demultiplexor, the center stage packet switches, and the multiplexor can be compared to the three stages of an unbuffered Clos network.

If the center stage switches are OQ, then each packet that passes through the system encounters only a single stage of buffering, making the PPS a single-buffered switch, and it fits our model of SB switches introduced in Chapter 2. As seen by an

[^50]

Figure 6.2: The architecture of a Parallel Packet Switch based on output queued switches. The architecture resembles a Clos network. The demultiplexors, slower-speed packet switches, and multiplexors can be compared to be the three stages of a Clos network.
arriving packet, all of the buffering is contained in the slower packet switches, and so our first goal is met because no buffers ${ }^{3}$ in a PPS need run as fast as the external line rate. The demultiplexor selects an internal lower-speed packet switch (or "layer") and sends the arriving packet to that layer, where it is queued until its departure time. When the packet's departure time arrives, it is sent to the multiplexor that places the packet on the outgoing line. However, the demultiplexor and multiplexor must make intelligent decisions; and as we shall see, the precise nature of the demultiplexing

[^51]("spreading") and multiplexing functions are key to the operation of the PPS.
As speed requirements rise, we suspect the PPS architecture is finding wider use in industry. Recent examples that we are aware of include Cisco's highest-speed Internet core router, the CRS-1 [5], and Nevis Networks' enterprise router [111]. We also suspect that some of Juniper's M series core routers (M160 and M320) use a similar architecture [112].

We are interested in the question: Can we select the demultiplexing and multiplexing functions so that a PPS can emulate ${ }^{4}$ (Definition 1.2) the behavior of an output queued switch and provide deterministic performance guarantees?

6.2.1 Organization

The rest of the chapter is organized as follows. In Section 6.3 we describe the PPS architecture. In Section 6.4 we introduce some terminology, definitions, and define constraint sets that will help us apply the pigeonhole principle. In Section 6.5, we find the conditions under which the PPS can emulate an FCFS-OQ switch. In Section 6.6, we show how a PPS can emulate an OQ switch with different qualities of service. However, our initial algorithms require a large communication complexity, which makes them impractical. So in Section 6.7 we modify the PPS and allow for a small cache (that must run at the line rate) in the multiplexor and demultiplexor. In Section 6.8 we describe a different distributed algorithm that eliminates the communication complexity and appears to be more practical. In Section 6.9, we show how the modified PPS can emulate an FCFS-OQ switch within a delay bound without speedup. We briefly describe some implementation issues in Section 6.10 and cover related work in 6.11 .

[^52]
6.3 The Parallel Packet Switch Architecture

We now focus on the specific type of PPS illustrated in Figure 6.2, in which the center stage switches are OQ. The figure shows a 4×4 PPS, with each port operating at rate R. Each port is connected to all three output queued switches (we will refer to the center stage switches as "layers"). When a cell arrives at an input port, the demultiplexor selects a layer to send the cell to, and the demultiplexor makes its choice of layer using a policy that we will describe later. Since the cells from each external input of line rate R are spread ("demultiplexed") over k links, each input link must run at a speed of at least R / k.

Each layer of the PPS may consist of a single OQ or CIOQ router with memories operating slower than the rate of the external line. Each of the layers receives cells from the N input ports, then switches each cell to its output port. During times of congestion, cells are stored in the output queues of the center stage, waiting for the line to the multiplexor to become available. When the line is available, the multiplexor selects a cell among the corresponding k output queues in each layer. Since each multiplexor receives cells from output queues, the queues must operate at a speed of at least R / k to keep the external line busy.

Externally, the switch appears as an $N \times N$ switch with each port operating at rate R. Note that neither the muliplexor or the demultiplexor contains any memory, and that they are the only components running at rate R. We can compare the memory bandwidth requirements of an $N \times N$ parallel packet switch with those of an OQ switch with the same aggregate bandwidth. In an OQ switch (refer to Table 2.1), the memory bandwidth on each port must be at least $(N+1) R$, and in a PPS at least $(N+1) R / k$. But we can further reduce the memory bandwidth by leveraging any of the load balancing and scheduling algorithms that we introduced for the PSM, DSM, PDSM, CIOQ, or buffered CIOQ router architectures described in previous chapters.

[^53]the OQ switches in the PPS with a CIOQ switch, without any change in operation. The memory bandwidth in the PPS is reduced to $3 R / k$ (one read operation and two write operations per cell time), which is independent of N and may be reduced arbitrarily by increasing k, the number of layers.

Choosing the value of k. Our goal is to design switches in which all the memories run slower than the line rate. If the center stage switches are CIOQ routers, this means that $3 R / k<R \Rightarrow k>3$. Similarly, for center stage OQ switches, we require that $(N+1) R / k<R \Rightarrow k>N+1$. This gives a lower bound on k. Further, one can increase the value of k beyond the lower bound, allowing us to use an arbitrarily slow memory device. The following example makes this clear.

Example 6.4. Consider a router with $N=1024$ ports, $R=40 \mathrm{~Gb} / \mathrm{s}$, and cells 64 bytes long. Then a PPS with $k=100$ center stage CIOQ routers can be built such that the fastest memories run at a speed no greater than $3 R / k=1.2 \mathrm{~Gb} / \mathrm{s}$. For a 64-byte cell this corresponds to an access time of 426 ns , which is well within the random access time of commercial DRAMs.

6.3.1 The Need for Speedup

It is tempting to assume that because each layer is output queued, it is possible for a PPS to emulate an OQ switch. This is actually not the case unless we use speedup. As can be seen from the following counter-example, without speedup a PPS is not work-conserving, and hence cannot emulate an OQ switch.

Theorem 6.1. A PPS without speedup is not work-conserving.
Proof. (By counter-example). See Appendix F.1.
\aleph Definition 6.1. Concentration: Concentration occurs when a disproportionately large number of cells destined to the same output are concentrated on a small number of the internal layers.

Concentration is undesirable, as it leads to unnecessary idling because of the limited line rate between each layer and the multiplexor. Unfortunately, the counterexample in Appendix F. 1 shows that concentration is unavoidable in our current PPS architecture. One way to alleviate the effect of concentration is to use faster internal links. In general, we will use internal links that operate at a rate $S(R / k)$, where S is the speedup of the internal link. Note that the N memories in any OQ switch in the center stage run at an aggregate rate of $N(N+1) R^{\prime}$, where $R^{\prime}=S R / k$. So the total memory bandwidth in the PPS when it is sped up is $k \times N(N+1) R^{\prime}=S N(N+1) R$.

Observation 6.2. Concentration can be eliminated by running the internal links at a rate R instead of $R / 2$ (i.e., a speedup of two). This solves the problem, because the external output port can now read the cells back-to-back from layer two. But this appears to defeat the purpose of operating the internal layers slower than the external line rate! Fortunately, we will see in the next section that the speedup required to eliminate the problem of concentration is independent of the arriving traffic, as well as R and N, and is almost independent of k. In particular, we find that with a speedup of 2, the PPS is work-conserving and can emulate an FCFS-OQ switch.

6.4 Applying the Pigeonhole Principle to the PPS

We will now apply the pigeonhole principle introduced in Chapter 2 to analyze the PPS. First, however, we need to carefully distinguish the operations in time of the external demultiplexor and multiplexor (which run faster), and the internal OQ switches (which run slower). So we will define two separate units of time to distinguish between them:
\aleph Definition 6.2. Time slot: This refers to the time taken to transmit or receive a fixed-length cell at a link rate of R.
\aleph Definition 6.3. Internal time slot: This is the time taken to transmit or receive a fixed-length cell at a link rate of R / k, where k is the number of center stage switches in the PPS.

6.4.1 Defining Constraint Sets

We are now ready to define constraint sets for the PPS as described in Algorithm 2.1. The operation of a PPS is limited by two constraints. We call these the Input Link Constraint and the Output Link Constraint, as defined below.
\aleph Definition 6.4. Input Link Constraint - An external input port is constrained to send a cell to a specific layer at most once every $\lceil k / S\rceil$ time slots. This is because the internal input links operate S / k times slower than the external input links. We call this constraint the input link constraint, or ILC.
\aleph Definition 6.5. Allowable Input Link Set - The ILC gives rise to the allowable input link set, $A I L(i, n)$, which is the set of layers to which external input port i can start sending a cell in time slot n. This is the set of layers to which external input i has not started sending any cells within the last $\lceil k / S\rceil-1$ time slots. Note that $|A I L(i, n)| \leqslant k, \forall(i, n)$.
$A I L(i, n)$ evolves over time, with at most one new layer being added to, and at most one layer being deleted from the set in each time slot. If external input i starts sending a cell to layer l at time slot n, then layer l is removed from $A I L(i, n)$. The layer is added back to the set when it becomes free at time $n+\lceil k / S\rceil$.
§Definition 6.6. Output Link Constraint - In a similar manner to the ILC, a layer is constrained to send a cell to an external output port at most once every $\lceil k / S\rceil$ time slots. This is because the internal output links operate S / k times slower than the external output links. Hence, in every time slot an external output port may not be able to receive cells from certain layers. This constraint is called the output link constraint, or OLC.
\aleph Definition 6.7. Departure Time - When a cell arrives, the demultiplexor selects a departure time for the cell. A cell arriving to input i at time slot n and
destined to output j is assigned the departure time $D T(n, i, j)$. The departure time for a FIFO queuing policy could, for example, be the first time that output j is free (in the shadow OQ switch) and able to send the cell. As we shall see later in Section 6.6, other definitions are possible in the case of WFQ policies.
$\aleph D e f i n i t i o n ~ 6.8 . ~ A v a i l a b l e ~ O u t p u t ~ L i n k ~ S e t ~-~ T h e ~ O L C ~ g i v e s ~ r i s e ~ t o ~ t h e ~ a v a i l a b l e ~$ output link set $A O L(j, D T(n, i, j))$, which is the set of layers that can send a cell to external output j at time slot $D T(n, i, j)$ in the future. $A O L(j, D T(n, i, j))$ is the set of layers that have not started sending any cells to external output j in the last $\lceil k / S\rceil-1$ time slots before time slot $D T(n, i, j)$. Note that, since there are a total of k layers, $|A O L(j, D T(n, i, j))| \leqslant k, \forall(j, D T(n, i, j))$.

Like $A I L(i, n), A O L(j, D T(n, i, j))$ can increase or decrease by at most one layer per departure time slot; i.e., if a layer l starts to send a cell to output j at time slot $D T(n, i, j)$, the layer is deleted from $A O L(j, D T(n, i, j))$ and then will be added to the set again when the layer becomes free at time $D T(n, i, j)+\lceil k / S\rceil$. However, whenever a layer is deleted from the set, the index $D T(n, i, j)$ is incremented. Because in a single time slot up to N cells may arrive at the PPS for the same external output, the value of $D T(n, i, j)$ may change up to N times per time slot. This is because $A O L(j, D T(n, i, j))$ represents the layers available for use at some time $D T(n, i, j)$ in the future. As each arriving cell is sent to a layer, a link to its external output is reserved for some time in the future. So, effectively, $A O L(j, D T(n, i, j))$ indicates the schedule of future departures for output j, and at any instant, $\max (D T(n, i, j)+1, \forall(n, i))$ indicates the first time in the future that output j will be free.

6.4.2 Lower Bounds on the Size of the Constraint Sets

The following two lemmas will be used shortly to demonstrate the conditions under which a PPS can emulate an FCFS-OQ switch.

Lemma 6.1. The size of the available input link set, for all $i, n \geqslant 0$; where is S the speedup on the internal input links is given by,

$$
\begin{equation*}
|A I L(i, n)| \geqslant k-\lceil k / S\rceil+1 . \tag{6.1}
\end{equation*}
$$

Proof. Consider external input port i. The only layers that i cannot send a cell to are those which were used in the last $\lceil k / S\rceil-1$ time slots. (The layer which was used $\lceil k / S\rceil$ time slots ago is now free to be used again). $|A I L(i, n)|$ is minimized when a cell arrives to the external input port in each of the previous $\lceil k / S\rceil-1$ time slots, hence $|A I L(i, n)| \geqslant k-(\lceil k / S\rceil-1)=k-\lceil k / S\rceil+1)$.

Lemma 6.2. The size of the available output link set, for all $i, j, n \geqslant 0$; where is S the speedup on the internal input links is given by,

$$
\begin{equation*}
|A O L(j, D T(n, i, j))| \geqslant k-(\lceil k / S\rceil+1) \tag{6.2}
\end{equation*}
$$

Proof. The proof is similar to Lemma 6.1. We consider an external output port that reads cells from the internal switches instead of an external input port that writes cells to the internal switches.

6.5 Emulating an FCFS-OQ Router

In this section we shall explore how a PPS can emulate an FCFS-OQ switch. Note that in this section, in lieu of the FCFS policy, the departure time of a cell arriving at input i and destined to output j at time $n, D T(n, i, j)$, is simply the first time that output j is free (in the shadow FCFS-OQ switch) and able to send a cell. We will now introduce an algorithm, Centralized Parallel Packet Switch Algorithm (CPA). CPA is directly motivated by the pigeonhole principle, and attempts to route cells to center stage switches as described below.

Algorithm 6.1: CPA for FCFS-OQ emulation.

1 input : Arrival and departure times of each cell.
2 output : A central stage switch for each cell to emulate an FCFS policy.
3 for each cell C do
Demultiplexor:
When a cell arrives at time n at input i destined to output j, the cell is sent to any center stage switch, l, that belongs to the intersection of $A I L(i, n)$ and $A O L(j, D T(n, i, j))$.
Multiplexor:
Read cell C from center stage switch l at departure time $D T(n, i, j)$.

Example 6.5. A detailed example of the CPA algorithm appears in Appendix A of [113].

6.5.1 Conditions for a PPS to Emulate an FCFS-OQ Router

We will now derive the conditions under which CPA can always find a layer l to route arriving cells to, and then analyze the conditions under which it can emulate an FCFS-OQ router.

Lemma 6.3. (Sufficiency) A speedup of 2 is sufficient for a PPS to meet both the input and output link constraints for every cell.

Proof. For the ILC and OLC to be met, it suffices to show that there will always exist a layer l such that $l \in\{A I L(i, n) \cap A O L(j, D T(n, i, j))\}$, i.e., that,

$$
\begin{equation*}
A I L(i, n) \cap A O L(j, D T(n, i, j)) \neq \varnothing \tag{6.3}
\end{equation*}
$$

We know that Equation 6.3 is satisfied if,

$$
\begin{equation*}
|A I L(i, n)|+|A O L(j, D T(n, i, j))|>k . \tag{6.4}
\end{equation*}
$$

From Lemma 6.1 and Lemma 6.2 we know that, $|A I L(i, n)|+$ $|A O L(j, D T(n, i, j))|>k$ if $S \geqslant 2$

Theorem 6.2. (Sufficiency) A PPS can emulate an FCFS-OQ switch with a speedup of $S \geqslant 2 .{ }^{5}$

Proof. Consider a PPS with a speedup of $S \geqslant 2$. From Lemma 6.3 we know that for each arriving cell, the demultiplexor can select a layer that meets both the ILC and the OLC in accordance with the CPA algorithm. A cell destined to output j and arriving at time slot n is scheduled to depart at time slot $D T(n, i, j)$, which is the index of $A O L(j, D T(n, i, j))$. By definition, $D T(n, i, j)$ is the first time in the future that output j is idle in the shadow FCFS-OQ switch. Since the center stage switches are OQ switches, the cell is queued in the output queues of the center stage switches and encounters zero relative delay. After subtracting for the propagation delays of sending the cell over lower-speed links of rate $2 R / k, D T(n, i, j)$ is equal to the time that the cell would depart in an FCFS-OQ switch. Hence a PPS can emulate an FCFS-OQ switch.

Observation 6.3. It is interesting to compare the above proof with the requirements for a 3-stage symmetrical Clos network to be strictly non-blocking [114, 115]. On the face of it, these two properties are quite different. A PPS is a buffered packet switch, whereas a Clos network is an unbuffered fabric. But because each theorem relies on links to and from the central stage being free at specific times, the method of proof is similar, and relies on the pigeonhole principle.

6.6 Providing QoS Guarantees

We now extend our results to find the speedup requirement for a PPS to provide QoS guarantees. To do this, we define constraint sets, and find the speedup required for a

[^54]
\$<Box 6.1: A Work-conserving PPS Router>:

We can ask an identical question to the one posed in the previous chapters: What are the conditions under which a buffered CIOQ router is work-conserving with and without mandating FCFS-OQ emulation? Because we need to keep the outputs of a work-conserving router busy, we start by ensuring that any cell that arrives at time n, leaves at the first future time the shadow $O Q$ switch is free, at time slot n. We denote this time as $D T(n, i, j)$.

Lemma 6.4. (Sufficiency) If a PPS guarantees that each arriving cell is allocated to a layer l, such that $l \in A I L(i, n)$ and $l \in A O L(j, D T(n, i, j))$, then the switch is work-conserving.

Proof. Consider a cell C that arrives to external input port i at time slot n and destined for output port j. The demultiplexor chooses a layer l that meets both the MLC and the OLC; i.e., $l \in\{A I L(i, n) \cap A O L(j, D T(n, i, j))\}$. Since, the $I L C$ is met, cell C can be immediately written to layer l in the PPS. Cell C is immediately queued in the output queues of the center stage switch l, where it awaits its turn to depart. Since the departure time of the cell $D T(n, i, j)$ has already been picked when it arrived at time n, C is removed from its queue at time $D T(n, i, j)$ and sent to external output port j. Cell C can depart at $D T(n, i, j)$ because the link from multiplexor j to layer l satisfies, $l \in A O L(j, D T(n, i, j))$. Thus, if for cell C the chosen layer l meets both the ILC and OLC, then the cell can reach switch l, and can leave the PPS at time $D T(n, i, j)$.

By definition, each cell can be made to leave the PPS at the first time that output j would be idle in the shadow FCFS-OQ switch. The output is continuously kept busy if there are cells destined for it, similar to the output of the shadow OQ switch. And so, the PPS is work-conserving.

As a consequence of Lemma 6.1 and Lemma 6.3, we have the following theorem:
Theorem 6.3. (Digression) A PPS can be work-conserving if $S \geqslant 2$.
To achieve work conservation in Theorem 0.3 , we required that cell C leave at time $D T(n, i, j)$. While this is enough for work conservation, this requirement actually results in FCFS-OQ emulation! If we did not want FCFS-OQ emulation, the PPS is still workconserving as long as any cell leaves the multiplexor for output j at time $D T(n, i, j)$.

It is possible to permute the order in which cells are read by the multiplexor. Each permutation by the multiplexor could give greater choice to the demultiplexor to choose a center stage OQ switch (depending on the last few cells that the multiplexor reads in the permutation) when it routes newly arriving cells. So there may be different algorithms which can permute the packet order, and the PPS may be work-conserving with a lower speedup than what is derived in Theorem 6.3.a
${ }^{a}$ A direct analogy to this result is the work on re-arrangeably non-blocking Clos networks [116].

PPS to implement any PIFO scheduling discipline. As we will see, we will need to modify our CPA algorithm.

In Section 1.4.2, we saw that a PIFO queuing policy can insert a cell anywhere in its queue, but it cannot change the relative ordering of cells once they are in the queue. Consider a cell C that arrives to external input port i at time slot n and destined to output port j. The demultiplexor determines the time that each arriving cell must depart, $D T(n, i, j)$, to meet its delay guarantee. The decision made by the demultiplexor at input i amounts to selecting a layer so that the cell may depart on time. Notice that this is very similar to the previous section, in which cells departed in FCFS order, requiring only that a cell depart the first time that its output is free after the cell arrives. The difference here is that $D T(n, i, j)$ may be selected to be ahead of cells already scheduled to depart from output j. So, the demultiplexor's choice of sending an arriving cell C to layer l must now meet three constraints:

1. The link connecting the demultiplexor at input i to layer l must be free at time slot n. Hence, $l \in\{A I L(i, n)\}$.
2. The link connecting layer l to output j must be free at $D T(n, i, j)$. Hence, $l \in\{A O L(j, D T(n, i, j))\}$.
3. All the other cells destined to output j after C must also find a link available. In other words, if the demultiplexor picks layer l for cell C, it needs to ensure that no other cell requires the link from l to output j within the next $([k / S\rceil-1)$ time slots. The cells that are queued in the PPS for output port j (and have a departure time between $(D T(n, i, j), D T(n, i, j)+\lceil k / S\rceil-1)$, may have already been sent to specific layers (since they could have arrived earlier than time t). It is therefore necessary that the layer l be distinct from the layers that the next ($\lceil k / S\rceil-1$) cells use to reach the same output. We can write this constraint as $l \in\{A O L<(j, D T(n, i, j)+\lceil k / S\rceil-1)\}$.

The following natural questions arise:

1. What if some of the cells that depart after cell C have not yet arrived? This is possible, since cell C may have been pushed in toward the tail of the PIFO queue. In such a case, the cell C has more choice in choosing layers, and the constraint set $A O L(j, D T(n, i, j)+\lceil k / S\rceil-1)$ will allow more layers. ${ }^{6}$ Note that cell C need not bother about the cells that have not as yet arrived at the PPS, because the future arrivals, which can potentially conflict with cell C, will take into account the layer l to which cell C was sent. The CPA algorithm will send these future arrivals to a layer distinct from l.
2. Are these constraints sufficient? The definitions of the OLC and AOL mandate that when a multiplexor reads the cells in a given order from the layers, the layers should always be available. When a cell C is inserted in a PIFO queue, the only effect it has is that it can conflict with the $\lceil k / S\rceil-1$ cells that are scheduled to leave before and after it in the PIFO queue. For these $2(\lceil k / S\rceil-1)$ cells, the arriving cell C can only increase the time interval between when these cells depart. Hence these $2(\lceil k / S\rceil-1)$ cells will not conflict with each other, even after insertion of cell C. Also, if conditions 1 and 2 are satisfied, then these $2(\lceil k / S\rceil-1)$ cells will also not conflict with cell C. Note that cell C does not affect the order of departure of any other cells in the PIFO queue. Hence, if the PIFO queue satisfied the OLC constraint before the insertion of cell C, then it will continue to satisfy the OLC constraint after it is inserted.

We are now ready to summarize our modified CPA algorithm to emulate a PIFO-OQ router as shown in Algorithm 6.2.

Theorem 6.4. (Sufficiency) A PPS can emulate any OQ switch with a PIFO queuing discipline, with a speedup of $S \geqslant 3 .{ }^{7}$

[^55]Algorithm 6.2: Modified CPA for PIFO emulation on a PPS.
input : Arrival and departure times of each cell.
output: A central stage switch for each cell to emulate a PIFO policy.
for each cell C do
Demultiplexor:
When a cell arrives at time n at input i destined to output j, the cell is sent to any center stage switch that belongs to the intersection of $A I L(i, n), A O L(j, D T(n, i, j))$, and $A O L(j, D T(n, i, j)+\lceil k / S\rceil-1)$. Multiplexor:
Read cell C from center stage switch l whenever it reaches head of line.

Proof. In order for our modified CPA algorithm to support a PIFO queuing discipline, we require layer 1 to satisfy

$$
l \in\{A I L(i, n) \cap A O L(j, D T(n, i, j)) \cap A O L(j, D T(n, i, j)+\lceil k / S\rceil-1)\}
$$

For a layer 1 to exist we require

$$
A I L(i, n) \cap A O L(j, D T(n, i, j)) \cap A O L(j, D T(n, i, j)+\lceil k / S\rceil-1) \neq \varnothing
$$

which is satisfied when

$$
|A I L(i, n)|+|A O L(j, D T(n, i, j))|+|A O L(j, D T(n, i, j)+\lceil k / S\rceil-1)|>2 k
$$

From Lemma 6.1 and 6.2 we know that

$$
|A I L(i, n)|+|A O L(j, D T(n, i, j))|+|A O L(j, D T(n, i, j)+\lceil k / S\rceil-1)|>2 k
$$

if $S \geqslant 3$.

(a) Step 1

(c) Step 3

(b) Step 2

(d) Step 4

Figure 6.3: Insertion of cells in a PIFO order in a PPS with ten layers. $Q_{k, 1}$ refers to output queue number one in the internal switch k. The shaded layers describe the sets specified for each figure. (a) The AIL constrains the use of layers $\{1,2,4,5,7,8,10\}$. (b) The cell is to be inserted before cell number 7. The two AOLs constrain the use of layers $\{1,6,7,10\}$. (c) The intersection constrains the use of layers $\{1,7,10\}$. (d) Layer 10 is chosen. The cell number 7 is inserted.

Example 6.6. Figure 6.3 shows an example of a PPS with $k=10$ layers and $S=3$. A new cell C arrives at time t, destined to output 1 and has to be inserted in the priority queue for output 1 which is maintained in a PIFO manner. Assume that the AIL at time t constrains the use of layers $\{1,2,4,5,7,8,10\}$. These layers are shown shaded in Figure 6.3(a). It is decided that cell C must be inserted between $C 6$ and $C 7$. That means that cell C cannot use any layers to which the previous $\lceil k / S\rceil-1=3$ cells before $C 7$ (i.e., $C 4, C 5$, and $C 6$) were sent. Similarly, cell C cannot use any layers to which the 3 cells after $C 7$ including $C 7$ (i.e., $C 7, C 8, C 9$) were sent. The above two constraints are derived from the AOL sets for output 1. They require that only layers in $\{1,5,6,7,8,9,10\}$ be used, and only layers in $\{1,2,3,4,6,7,10\}$ be used respectively. Figure $6.3(\mathrm{~b})$ shows the intersection of the two AOL sets for this insertion. Cell C is constrained by the AOL to use layers $\{1,6,7,10\}$, which satisfies both the above AOL sets. Finally, a layer is chosen such that the AIL constraint is also satisfied. Figure 6.3 (c) shows the candidate layers for insertion i.e., layers 1, 7, and 10. Cell C is then inserted in layer 10 as shown in Figure 6.3(d).

6.7 Analyzing the Buffered PPS Router

Unfortunately, the load balancing algorithms that we have described up until now are complex to implement. In Chapter 4 we faced a similar problem with the CIOQ router. We showed in Chapter 6 that we could simplify these algorithms with the introduction of a cache. In the rest of the chapter we answer the following question: Can a cache (preferably small in size!) simplify the centralized load balancing algorithms for a PPS?

6.7.1 Limitations of Centralized Approach

The centralized approach described above suffers from two main problems:

\&<Box 6.2: A Discussion on Work Conservation>:

We introduced different router architectures in the previous chapters, i.e, the PSM, DSM, PDSM, and the time reservation-based CIOQ router. We can ask a general question: What are the conditions under which these routers achieve work-conservation (without mandating FCFS-OQ emulation)? Before we answer this, note that these routers share a common trait - i.e., they were all analyzed using the basic constraint set technique, because they all attempt to assign a packet to menory immediately on arrival.

1. Observation 6.4. The basic constraint set technique and the extended constraint set technique fundamentally differ in the way they schedule packets. In the latter case, packets are held back and transferred to the output memory based on their priority. In the former case, the scheduler attempts to assign packets to a memory immediately on arrival. ${ }^{a}$ As we will see, this has repercussions to work-conservation as described below.

A scheduler which uses the extended constraint set technique can pick any cell (which is still awaiting service at the input) to transfer to an output in future, since in a work-conserving router, all cells destined to an output have equal priority. In Chapters 4 and 5 we showed that for routers that do not assign a packet to memory inmediately (and which are analyzed using the extended pigeon hole principle), requiring work-conservation without FCFS-OQ emulation results in a simplified switch scheduler. Since this was a useful goal, we modified the extended constraint set technique (Algorithm 1.2) to create a simplified technique (Algorithm 13) to analyze work-conservation.

Unfortunately, for a scheduler that uses the basic constraint set technique, all previously arrived packets have already been allocated to memories. The only way that the scheduler can take advantage of the relaxed requirements of work-conservation is to permute the existing order of these cells which are already buffered (as described in Box 6.1). This has two problems - (1) it is impractical to compute permutations for existing packets (there can be a very large number of possible permutations) destined to an output, and (2) computing such a permutation only makes the scheduler more complex, not simpler!

So work-conservation is only of theoretical interest for routers that attempt to assign packets to memories immediately on arrival, i.e., the routers that are analyzed using the basic constraint set technique. This, of course, includes the PPS, as well as the PSM, DSM, PDSM, and the time reservation-based CIOQ router, which were described in previous chapters. And so, in contrast to the extended constraint set technique, we do not modify the basic constraint set technique (Algorithm 21) to analyze work-conserving SB routers.
${ }^{a}$ In the case of a time reservation-based CIOQ router, the assignment is done immediately, though the packet is actually transferred at a later time.

1. Communication complexity: The centralized approach requires each input to contact a centralized scheduler at every arbitration cycle. With N ports, N requests must be communicated to and processed by the arbiter during each cycle. This requires a high-speed control path running at the line rate between every input and the central scheduler. Furthermore, the centralized approach requires that the departure order (i.e., the order in which packets are sent from each layer to a multiplexor) be conveyed to each multiplexor and stored.
2. Speedup: The centralized approach requires a speedup of two (for an FCFS PPS) in the center stage switches. The PPS therefore over-provisions the required capacity by a factor of two, and the links are on average only 50% utilized. This gets worse for a PPS that supports qualities of service, where a speedup of three implies that the links, on average, are only 33% utilized.

Observation 6.5. In addition to the difficulty of implementation, the centralized approach does not distribute traffic equally among the center stage switches, making it possible for buffers in a center stage switch to overflow even though buffers in other switches are not full. This leads to inefficient memory usage. ${ }^{8}$
 Another problem with the centralized approach is that it requires each multiplexor to explicitly read, or fetch, each packet from the correct layer in the correct sequence. This feedback mechanism makes it impossible to construct each layer from a pre-existing unaltered switch or router.

Thus, a centralized approach leads to large communication complexity, high speedup requirement, inefficient utilization of buffer memory, and special-purpose hardware for each layer. In this section, we overcome these problems via the introduction of small memories (presumably on-chip) in the multiplexors and demultiplexors, and a distributed algorithm, that:

[^56]1. Enables the demultiplexors and multiplexors to operate independently, eliminating the communication complexity,
2. Removes the speedup requirement for the internal layers,
3. Allows the buffers in the center stage switches to be utilized equally, and
4. Allows a feed-forward data-path in which each layer may be constructed from pre-existing, "standard" output queued switches.

6.8 A Distributed Algorithm to Emulate an FCFSOQ Router

The goals outlined in the previous subsection naturally lead to the following modifications:

1. Distributed decisions. A demultiplexor decides which center stage switch to send a cell to, based only on the knowledge of cells that have arrived at its input. The demultiplexors do not know the $A O L($.$) sets, and so have no knowledge of$ the distribution of cells in the center stage switches for a given output. Hence a demultiplexor cannot choose a center stage switch such that the load is globally distributed over the given output. However, it is possible to distribute the cells that arrive at the demultiplexor for every output equally among all center stage switches. Given that we also wish to spread traffic uniformly across the center stage switches, each demultiplexor will maintain a separate round robin pointer for each output, and dispatch cells destined for each output to center stage switches in a round robin manner.
2. Small coordination buffers ("Cache") operating at the line rate. If the demultiplexors operate independently and implement a round robin to select a center stage, they may violate the input link constraint. The input link constraint can be met by the addition of a coordination buffer in the demultiplexor that can cache the cells temporarily before sending them to the center stage switches. Similarly, it is possible for multiple independent demultiplexors to choose the
same center stage switch for cells destined to the same output. This causes concentration, and cells can become mis-sequenced. The order of packets can be restored by the addition of a similar coordination buffer in each multiplexor to re-sequence the cells (and cache earlier-arriving cells) before transmitting them on the external line.

We will see that the coordination buffer caches are quite small, and are the same size for both the multiplexor and demultiplexor. More important, they help to eliminate the need for speedup. The co-ordination buffer operates at the line rate, R, and thus compromises our original goal of having no memories running at the line rate. However, we will show that the buffer size is proportional to the product of the number of ports, N, and the number of layers, k.

Depending on these values, it may be small enough to be placed on-chip, and so may be acceptable. Because there is concentration in the PPS, and the order of cells has to be restored, we will have to give up the initial goal of emulating an OQ switch with no relative queuing delay. However, we will show that the PPS can emulate an FCFS-OQ switch within a small relative queuing delay bound.

6.8.1 Introduction of Caches to the PPS

Figure 6.4 shows the introduction of small caches to the PPS. It describes how coordination buffers are arranged in each demultiplexor as multiple equal-sized FIFOs, one per layer. FIFO $Q(i, l)$ holds cells at demultiplexor i destined for layer l. When a cell arrives, the demultiplexor makes a local decision (described below) to choose which layer the cell will be sent to. If the cell is to be sent to layer l, the cell is queued first in $Q(i, l)$ until the link becomes free. When the link from input i to layer l is free, the head-of-line cell (if any) is removed from $Q(i, l)$ and sent to layer l.

The caches in each multiplexor are arranged the same way, and so FIFO $Q^{\prime}(j, l)$ holds cells at multiplexor j from layer l. We will refer to the maximum length of a FIFO $\left(Q(i, l)\right.$ or $\left.Q^{\prime}(j, l)\right)$ as the FIFO length. ${ }^{9}$ Note that if each FIFO is of length d,

[^57]

Figure 6.4: The demultiplexor, showing k FIFOs, one for each layer, and each FIFO of length d cells. The example PPS has $k=3$ layers.
then the coordination buffer cache can hold a total of $k d$ cells.

6.8.2 The Modified PPS Dispatch Algorithm

The modified PPS algorithm proceeds in three distinct parts.

1. Split every flow in a round-robin manner in the demultiplexor: Demultiplexor i maintains N separate round-robin pointers P_{1}, \ldots, P_{N}; one for each output. The pointers contain a value in the range $\{1, \ldots, k\}$. If pointer $P_{j}=l$, it indicates that the next arriving cell destined to output j will be sent to layer l. Before being sent, the cell is written temporarily into the coordination FIFO $Q(i, l)$, where it waits until its turn to be delivered to layer l. When the link from demultiplexor i to layer l is free, the head-of-line cell (if any) of $Q(i, l)$ is sent.
2. Schedule cells for departure in the center stage switches: When scheduling cells in the center stage, our goal is to deliver cells to the output link at
their corresponding departure time in the shadow OQ switch (except for a small relative delay).

Step (1) above introduced a complication that we must deal with: cells reaching the center stage have already encountered a variable queuing delay in the demultiplexor while they waited for the link to be free. This variable delay complicates our ability to ensure that cells depart at the correct time and in the correct order.

Shortly, we will see that although this queuing delay is variable, it is bounded, and so we can eliminate the variability by deliberately delaying all cells as if they had waited for the maximum time in the demultiplexor, and hence equalize the delays. Though not strictly required, we do this at the input of the center stage switch. Each cell records how long it was queued in the demultiplexor, and then the center stage delays it further until it equals the maximum. We refer to this step as delay equalization. We will see later that delay equalization helps us simplify the proofs for the delay bounds in Section 6.9.

After the delay equalization, cells are sent to the output queues of the center stage switches and are scheduled to depart in the usual way, based on the arrival time of the cell to the demultiplexor. When the cell reaches the head of the output queues of the center stage switch, it is sent to the output multiplexor when the link is next free.
3. Re-ordering the cells in the multiplexor: The co-ordination buffer in the multiplexor stores cells, where they are re-sequenced and then transmitted in the correct order.

The load balancing algorithm on the de-multiplexor that results as a consequence of this modification is summarized in Algorithm 6.3.

Algorithm 6.3: DPA for FCFS-OQ emulation on a PPS.
1 input : Arrival and departure times of each cell.
2 output : A central stage switch for each cell to emulate an FCFS-OQ policy.
3 for each cell C do
Demultiplexor:
When a cell arrives at time n at input i destined to output j, the cell is sent to the center stage switch that is next in the round robin sequence maintained for the input-output pair (i, j). Multiplexor:

Read cell C from center stage switch l at departure time $D T(n, i, j)$ after delay equalization.

Observation 6.6. It is interesting to compare this technique with the load-balanced switch proposed by Chang et al. in [91]. In their scheme, load balancing is performed by maintaining a single round robin list at the inputs (i.e., demultiplexors) for a 2 -stage switch. The authors show that this leads to guaranteed throughput and low average delays, although packets can be mis-sequenced. In [92], the authors extend their earlier work by using the same technique proposed here: Send packets from each input to each output in a round robin manner. As we shall see, this technique helps us bound the mis-sequencing in the PPS and also gives a delay guarantee for each packet.

6.9 Emulating an FCFS-OQ Switch with a Distributed Algorithm

Theorem 6.5. (Sufficiency) A PPS with independent demultiplexors and multiplexors and no speedup, with each multiplexor and demultiplexor containing a co-ordination
buffer cache of size $N k$ cells, can emulate an FCFS-OQ switch with a relative queuing delay bound of $2 N$ internal time slots.

Proof. The complete proof is in Appendix F.2. We describe the outline of the proof here. Consider the path of a cell in the PPS where it may potentially face a queuing delay:

1. The cell may be queued at the FIFO of the demultiplexor before it is sent to its center stage switch. From Theorem F. 1 in Appendix F, this delay is bounded by N internal time slots.
2. The cell first undergoes delay equalization in the center stage switches and is sent to the output queues of the center stage switches. It then awaits service in the output queue of a center stage switch.
3. The cell may then face a variable delay when it is read from the center stage switches. From Theorem F. 2 in Appendix F, this is bounded by N internal time slots.

Thus the additional queuing delay, i.e., the relative queuing delay faced by a cell in the PPS, is no more than $N+N=2 N$ internal time slots.

6.10 Implementation Issues

Given that our main goal is to find ways to make an FCFS PPS (more) practical, we now re-examine its complexity in light of the techniques described:

1. Demultiplexor: Each demultiplexor maintains a buffer cache of size $N k$ cells running at the line rate R, arranged as k FIFOs. Given our original goal of having no buffers run at the line rate, it is worth determining how large the cache needs to be, and whether the cache can be placed on-chip. The demultiplexor must add a tag to each cell indicating the arrival time of the cell to the demultiplexor. Apart from that, no sequence numbers need to be maintained at the inputs or added to cells.

Qxample 6.7. If $N=1024$ ports, cells are 64-bytes long, $k=100$, and the center stage switches are CIOQ routers, then the cache size for the coordination buffer is about 50 Mbits per multiplexor and demultiplexor. This can be (just) placed on-chip using today's SRAM technology, and so can be made both fast and wide. Embedded DRAM memory technology, which offers double density as compared to SRAM (but roughly half the access rate), could also potentially be used [26]. However, for much larger N or k this approach may not be practicable.
2. center stage OQ Switches: The input delay, D_{i} (the number of internal time slots for which a cell had to wait in the demultiplexor's buffer) can be calculated by the center stage switch using the arrival timestamp. If a cell arrives to a layer at internal time slot t, it is first delayed until internal time slot $\hat{t}=t+N-D_{i}$, where $1 \leqslant D_{i} \leqslant N$, to compensate for its variable delay in the demultiplexor. After the cell has been delayed, it can be placed directly into the center stage switch's output queue.
3. Multiplexors: Each multiplexor maintains a coordination buffer of size $N k$ running at the line rate R. The multiplexor re-orders cells based upon the arrival timestamp. Note that if the FCFS order only needs to be maintained between an input and an output, then the timestamps can be eliminated. A layer simply tags a cell with the input port number on which it arrived. This would then be a generalization of the methods described in [117].

Observation 6.7. We note that if a cell is dropped by a center stage switch, then the multiplexors cannot detect the lost cell in the absence of sequence numbers. This would cause the multiplexors to re-sequence cells incorrectly. A solution to this is to mandate the center stage switches to make the multiplexors aware of dropped cells by transmitting the headers of all dropped cells.

6.11 Related Work

Although the specific PPS architecture seems novel, "load balancing" and "inversemultiplexing" systems [118, 119, 120] have been around for some time, and the PPS architecture is a simple extension of these ideas. Related work studied inverse ATM multiplexing and how to use sequence numbers to re-synchronize cells sent through parallel switches or links [121, 122, 123, 124, 125, 126]. However, we are not aware of any analytical studies of the PPS architecture prior to this work. As we saw, there is an interesting and simple analogy between the (buffered) PPS architecture and Clos's seminal work on the (unbuffered) Clos network [110].

6.11.1 Subsequent Work

In subsequent work, Attiya and Hay [127, 128] perform a detailed analysis of the distributed PPS and prove lower bounds on the relative delay faced by cells in the PPS for various demultiplexor algorithms. Saad et al. [129] consider a PPS with a large link speed of $K N R$ in the center stage switches, and show that a PPS can emulate an OQ switch with low communication complexity. Attiya and Hay [128] also study a randomized version of the PPS.

6.12 Conclusions

In this chapter, we set out to answer a simple but fundamental question about high-speed routers: Is it possible to build a high-speed switch (router) from multiple slower-speed switches and yet give deterministic performance guarantees?

The PPS achieves this goal by exploiting system-level parallelism, and placing multiple packet switches in parallel, rather than in series as is common in multistage switch designs. More interestingly, the memories in the center stage switches can operate much slower than the line rate. Further, the techniques that we used to build high-speed switches that emulate OQ switches (Chapters 2-5) can be leveraged to build the center stage switches.

Our results are as follows: A PPS with a centralized scheduler can emulate an PIFO-OQ switch - i.e., it can provide different qualities of service; although the implementation of such a PPS does not yet seem practical. So we adopted a distributed approach, and showed that it is possible to build in a practical way a PPS that can emulate an FCFS-OQ packet switch (regardless of the nature of the arriving traffic).

We are aware of the use of distributed algorithms on a buffered PPS fabric in current commercial Enterprise routers [130, 111]. We suspect that Cisco's CRS-1 [5] and Juniper's M series [112] Internet routers also deploy some variant of distributed algorithms to switch packets across their PPS-like fabrics. These implementations show that high-speed PPS fabrics are practical to build. At the time of writing, switch fabrics similar to the PPS are also being considered for deployment in the next generation of the low-latency Ethernet market [131] as well as high-bandwidth Ethernet "fat tree" [132] networks.

In summary, we think of this work as a practical step toward building extremely high-capacity FIFO switches, where the memory access rates can be orders of magnitude slower than the line rate.

Summary

1. This chapter is motivated by the desire to build routers with extremely large aggregate capacity and fast line rates.
2. We consider building a high-speed router using system-level parallelism - i.e., from multiple, lower-speed packet switches operating independently and in parallel. In particular, we consider a (perhaps obvious) parallel packet switch (PPS) architecture in which arriving traffic is demultiplexed over k identical lower-speed packet switches, switched to the correct output port, then recombined (multiplexed) before departing from the system.
3. Essentially, the packet switch performs packet-by-packet load balancing, or "inversemultiplexing" over multiple independent packet switches. Each lower-speed packet switch operates at a fraction of the line rate R. For example, each packet switch can operate at rate R / k.
4. Why do we need a new technique to build high-performance routers? There are three
reasons why we may need system-level parallelism - (1) the memories may be so slow in comparison to the line rate that we may need the massive system parallelism that the PPS architecture provides, as there are limits to the degree of parallelism that can be implemented in the monolithic router architectures seen in the previous chapters; (2) it may in fact be cheaper to build a router from multiple slower-speed commodity routers; and (3) it can reduce the time to market to build such a router.
5. It is a goal of our work that all memory buffers in the PPS run slower than the line rate. Of course, we are interested in the conditions under which a PPS can emulate an FCFS-OQ router and an OQ router that supports qualities of service.
6. In this chapter, we ask the question: Is it possible for a PPS to precisely emulate the behavior of an output queued router with the same capacity and with the same number of ports?
7. We show that it is theoretically possible for a PPS to emulate an FCFS output queued (OQ) packet switch if each lower-speed packet switch operates at a rate of approximately $2 R / k$ (Theorem 6.2).
8. We further show that it is theoretically possible for a PPS to emulate an OQ router that supports qualities of service if each lower-speed packet switch operates at a rate of approximately $3 R / k$ (Theorem 6.4).
9. It turns out that these results are impractical because of high communication complexity. But a practical high-performance PPS can be designed if we slightly relax our original goal and allow a small fixed-size "co-ordination buffer" running at the line rate in both the demultiplexor and the multiplexor.
10. We determine the size of this buffer to be $N k$ bytes (where N is the number of ports in the PPS, and k is the number of center stage OQ switches), and show that it can eliminate the need for a centralized scheduling algorithm, allowing a full distributed implementation with low computational and communication complexity.
11. Furthermore, we show that if the lower-speed packet switch operates at a rate of R / k (i.e., without speedup), the resulting PPS can emulate an FCFS-OQ switch (Theorem 6.5).

Part II

Load Balancing and Caching for Router Line Cards

"So, why is your thesis my homework problem?"
— Grumblings of a Tired Graduate Student ${ }^{\dagger}$

Part II: A Note to the Reader

In Part I of the thesis, we considered the overall router architecture. The switch fabric in any router architecture receives data from all N ports of a router. The total memory access rate and bandwidth handled by the switch fabric are proportional to $N R$. We analyzed various switch fabrics and router architectures, and described several load balancing and caching algorithms in Chapters 2-6 to alleviate this memory performance bottleneck.

In the second part of the thesis, we will consider the design of router line cards. A line card may terminate one or more ports in a router; thus the rate at which packets arrive on a line card is the aggregate of the line rates of all the ports that are terminated by it. We will denote R to be this aggregated line rate. Indeed, there are routers where the data from all ports in the router is aggregated onto one line card, making the memory access rate and bandwidth requirements as stringent as the switch fabric designs we encountered in Part I.

Unlike switch fabrics, whose main job is to transfer packets, the tasks on a router line card are of many different types, as described in Figure 1.6. We will only consider those tasks on the line card for which memory is a significant bottleneck, as described in Chapter 1. These tasks include packet buffering (Chapter 7), scheduling (Chapter 8), measurement counters (Chapter 9), state maintenance (Chapter 10), and multicasting (Appendix J).

In the rest of this thesis, we will separately consider each of these memory-intensive tasks. Since the aggregated data rate on a line card is R, and since R is a variable, the
${ }^{\dagger}$ EE384Y, Stanford University, May 2002.
designs that we derive can be scaled to any line rate, and for line cards that terminate one or more ports. For example, a line card design with $R=100 \mathrm{~Gb} / \mathrm{s}$ can be used to built a system with one $100 \mathrm{~Gb} / \mathrm{s}$ port, ten $10 \mathrm{~Gb} / \mathrm{s}$ ports, or a hundred $1 \mathrm{~Gb} / \mathrm{s}$ ports.

We have implemented [33] the approaches described in Part II extensively in industry. In the rest of the chapters, we will give real-life examples of their use. ${ }^{10}$ Indeed, as noted above, the packet processing ASICs and memories on line cards built in industry can support any combination of ports and line rates demanded by the customer.

In the course of implementation, some of the techniques and algorithms that we present in this thesis have been modified. Changes were also made where necessary to adapt them for specific market requirements and applications, in addition to the ones described here. Chapter 11 summarizes these observations and describes some remaining open questions.

[^58]Chapter 7: Designing Packet Buffers from SlowerMemoriesApr 2008, Petaluma, CA
Contents
7.1 Introduction 177
7.1.1 Where Are Packet Buffers Used? 178
7.2 Problem Statement 181
7.2.1 Common Techniques to Build Fast Packet Buffers 183
7.3 A Caching Hierarchy for Designing High-Speed Packet Buffers 184
7.3.1 Our Goal 1.88
7.3.2 Choices 188
7.3.3 Organization 189
7.3.4 What Makes the Problem Hard? 190
7.4 A Tail Cache that Never Over-runs 191
7.5 A Head Cache that Never Under-runs, Without Pipelining 191
7.5.1 Most Deficited Queue First (MDQF) Algorithm 192
7.5.2 Near-Optimality of the MDQF algorithm 198
7.6 A Head Cache that Never Under-runs, with Pipelining 198
7.6.1 Most Deficited Queue First (MDQFP) Algorithm with Pipelining 201
7.6.2 Tradeoff between Head SRAM Size and Pipeline Delay 204
7.7 A Dynamically Allocated Head Cache that Never Under-runs 205
7.7.1 The Smallest Possible Head Cache 207
7.7.2 The Earliest Critical Queue First (ECQF) Algorithm 208
7.8 Implementation Considerations 211
7.9 Summary of Results 212
7.10 Related Work 213
7.10.1 Comparison of Related Work 214
7.10.2 Subsequent Work 215
7.11 Conclusion 215

List of Dependencies

- Background: The memory access time problem for routers is described in Chapter 1. Section 1.5.3 describes the use of caching techniques to alleviate memory access time problems for routers in general.

Additional Readings

- Related Chapters: The caching hierarchy described here is also used to implement high-speed packet schedulers in Chapter 8, and high-speed statistics counters in Chapter 9.

Table: List of Symbols.

b	Memory Block Size
c, C	Cell
$D(i, t)$	Deficit of Queue i at Time t
$F(i)$	Maximum Deficit of a Queue Over All Time
N	Number of Ports of a Router
Q	Number of Queues
R	Line Rate
$R T T$	Round Trip Time
T	Time Slot
$T_{R C}$	Random Cycle Time of Memory
x	Pipeline Look-ahead

Table: List of Abbreviations.

DRAM	Dynamic Random Access Memory
ECQF	Earliest Criticial Queue First
FIFO	First in First Out (Same as FCFS)
MDQF	Most Deficited Queue First
MDQFP	Most Deficited Queue First with Pipelining
MMA	Memory Management Algorithm
SRAM	Static Random Access Memory

Designing Packet Buffers from Slower Memories

7.1 Introduction

The Internet today is a packet switched network. This means that end hosts communicate by sending a stream of packets, and join and leave the network without explicit permission from the network. Packets between communicating hosts are statistically multiplexed across the network and share network and router resources (links, routers, memory etc.). Nothing prevents multiple hosts from simultaneously contending for the same resource (at least temporarily). Thus, Internet routers and Ethernet switches need buffers to hold packets during such times of contention.

Packets can contend for many different router resources, and so a router may need to buffer packets multiple times, once for each point of contention. As we will see, since a router can have many points of contention, a router itself can have many instances of buffering. Packet buffers are used universally across the networking industry, and every switch or router has at least some buffering. The amount of memory required to buffer packets can be large - as a rule of thumb, the buffers in a router are sized to hold approximately $R T T \times R$ bits of data during times of congestion (where $R T T$ is

[^59]the round-trip time for flows passing through the router, for those occasions when the router is the bottleneck for TCP flows passing through it. If we assume an Internet $R T T$ of approximately 0.25 seconds, a $10 \mathrm{~Gb} / \mathrm{s}$ interface requires 2.5 Gb of memory, larger than the size of any commodity DRAM [3], and an order of magnitude larger than the size of high-speed SRAMs [2] available today. Buffers are also typically larger in size than the memory required for other data-path applications. This means that packet buffering has become the single largest consumer of memory in networking; and at the time of writing, our estimates $[24,33]$ show that it is responsible for almost 40% of all memory consumed by high-speed switches and routers today.

As we will see, the rate at which the memory needs to be accessed, the bandwidth required to build a typical packet buffer, and the capacity of the buffer make the buffer a significant bottleneck. The goal of this chapter is motivated by the following question - How can we build high-speed packet buffers for routers and switches, particularly when packets arrive faster than they can be written to memory? We also mandate that the packet buffer give deterministic guarantees on its performance - the central goal of this thesis.

7.1.1 Where Are Packet Buffers Used?

Figure 7.1 shows an example of a router line card with six instances of packet buffers:

1. On the ingress line card, there is an over-subscription buffer in the MAC ASIC, because packets from multiple customer ports are terminated and serviced at a rate which is lower than their aggregate rate, i.e., $\sum R^{\prime}>R .{ }^{1}$ If packets on the different ingress ports arrived simultaneously, say in a bursty manner, then packets belonging to this temporary burst simultaneously contend for service. This requires the MAC ASIC to maintain buffers to temporarily hold these packets.

[^60]

Figure 7.1: Packet buffering in Internet routers.
2. Packets are then forwarded to a "Protocol Convertor ASIC", which may be responsible for performing lookups [134] on the packet to determine the destination port. Based on these results, it may (if necessary) modify the packets and convert it to the appropriate protocol supported by the destination port. If the lookups are offloaded to a central, possibly remote lookup unit (as shown in Figure 7.1), then the packets may be forced to wait until the results of the lookup are available. This requires a small latency buffer.
3. Packets are then sent to a "VOQ Manager ASIC", which enqueues packets separately based on their output ports. However, these packets will contend with each other to enter the switch fabric as they await transfer to their respective output line cards. Depending on the architecture, the switch fabric may not be able to resolve fabric contention immediately. So the ASIC requires a buffer in the ingress to hold these packets temporarily, before they are switched to the outputs.
4. On the egress line card, packets may arrive from an ingress line card, out of sequence to an "Output Manager ASIC". This can happen if the switch fabric is multi-pathed (such as the PPS fabric described in Chapter 6). And so, in order to restore packet order, it may have a small re-ordering buffer.
5. Packets may then be forwarded to a "Multicast Replication ASIC" whose job is to replicate multicast packets. A multicast packet is a packet that is destined to many output ports. This is typically referred to as the fanout of a multicast packet ${ }^{2}$. If there is a burst of multicast packets, or the fanout of the multicast packet is large, the ASIC may either not be able to replicate packets fast enough, or not be able to send packets to the egress MAC ASIC fast enough. So the ASIC may need to store these packets temporarily.
6. Finally, when packets are ready to be sent out, a buffer may be required on the egress MAC ASIC because of output congestion, since many packets may be destined to the same output port simultaneously.

[^61]
7.2 Problem Statement

The problem of building fast packet buffers is unique to - and prevalent in - switches and routers; to our knowledge, there is no other application that requires a large number of fast queues. As we will see, the problem becomes most interesting at data rates of $10 \mathrm{~Gb} / \mathrm{s}$ and above. Packet buffers are always arranged as a set of one or more FIFO queues. The following examples describe typical scenarios.

Example 7.1. For example, a router typically keeps a separate FIFO queue for each service class at its output; routers that are built for service providers, such as the Cisco GSR 12000 router [62], maintain about 2,000 queues per line card. Some edge routers, such as the Juniper Eseries routers [135], maintain as many as 64,000 queues for fine-grained IP QoS. Ethernet switches, on the other hand, typically maintain fewer queues (less than a thousand). For example, the Force 10 E -Series switch [136] has 128-720 queues, while Cisco Catalyst 6500 series line cards [4] maintain 288-384 output queues per line card. Some Ethernet switches such as the Foundry BigIron RX-series [137] switches are designed to operate in a wide range of environments, including enterprise backbones and service provider networks, and therefore maintain as many as 8,000 queues per line card. Also, in order to prevent head-of-line blocking (see Section 4.2) at the input, switches and routers commonly maintain virtual output queues (VOQs), often broken into several priority levels. It is fairly common today for a switch or router to maintain several hundred VOQs.

It is much easier to build a router if the memories behave deterministically. For example, while it is appealing to use hashing for address lookups in Ethernet switches, the completion time is non-deterministic, and so it is common (though not universal) to use deterministic tree, trie, and CAM structures instead. There are two main problems with non-deterministic memory access times. First, they make it much harder to build pipelines. Switches and routers often use pipelines that are several hundred packets
long - if some pipeline stages are non-deterministic, the whole pipeline can stall, complicating the design. Second, the system can lose throughput in unpredictable ways. This poses a problem when designing a link to operate at, say, $100 \mathrm{Mb} / \mathrm{s}$ or $1 \mathrm{~Gb} / \mathrm{s}$ - if the pipeline stalls, some throughput can be lost. This is particularly bad news when products are compared in "bake-offs" that test for line rate performance. It also presents a challenge when making delay and bandwidth guarantees; for example, when guaranteeing bandwidth for VoIP and other real-time traffic, or minimizing latency in a storage or data-center network. Similarly, if the memory access is nondeterministic, it is harder to support newer protocols such as fiber channel and data center Ethernet, which are designed to support a network that never drops packets.

Until recently, packet buffers were easy to build: The line card would typically use commercial DRAM (Dynamic RAM) and divide it into either statically allocated circular buffers (one circular buffer per FIFO queue), or dynamically allocated linked lists. Arriving packets would be written to the tail of the appropriate queue, and departing packets read from the head. For example, in a line card processing packets at $1 \mathrm{~Gb} / \mathrm{s}$, a minimum-length IP packet (40bytes) arrives in 320 ns , which is plenty of time to write it to the tail of a FIFO queue in a DRAM. Things changed when line cards started processing streams of packets at $10 \mathrm{~Gb} / \mathrm{s}$ and faster, as illustrated in the following example. ${ }^{3}$

Example 7.2. At $10 \mathrm{~Gb} / \mathrm{s}$ - for the first time - packets can arrive or depart in less than the random access time of a DRAM. For example, a 40-byte packet arrives in 32 ns, which means that every 16 ns a packet needs to be written to or read from memory. This is more than three times faster than the 50 -ns access time of typical commercial DRAMs [3]. ${ }^{4}$

[^62]
7.2.1 Common Techniques to Build Fast Packet Buffers

There are four common ways to design a fast packet buffer that overcomes the slow access time of a DRAM:

- Use SRAM (Static RAM): SRAM is much faster than DRAM and tracks the speed of ASIC logic. Today, commercial SRAMs are available with access times below 4 ns [2], which is fast enough for a $40-\mathrm{Gb} / \mathrm{s}$ packet buffer. Unfortunately, SRAMs are expensive, power-hungry, and commodity SRAMs do not offer high capacities. To buffer packets for 100 ms in a $40-\mathrm{Gb} / \mathrm{s}$ router would require 500 Mbytes of buffer, which means more than 60 commodity SRAM devices, consuming almost a hundred watts in power! SRAM is therefore used only in switches with very small buffers.
- Use special-purpose DRAMs with faster access times: Commercial DRAM manufacturers have recently developed fast DRAMs (RLDRAM [8] and FCRAM [9]) for the networking industry. These reduce the physical dimensions of each array by breaking the memory into several banks. This worked well for $10 \mathrm{~Gb} / \mathrm{s}$, as it meant fast DRAMs could be built with 20-ns access times. But the approach has a limited future for two reasons: (1) As the line rate increases, the memory must be split into more and more banks, leading to an unacceptable overhead per bank, ${ }^{5}$ and (2) Even though all Ethernet switches and Internet routers have packet buffers, the total number of memory devices needed is a small fraction of the total DRAM market, making it unlikely that commercial DRAM manufacturers will continue to supply them. ${ }^{6}$
- Use multiple regular DRAMs in parallel: Multiple DRAMs are connected to the packet processor to increase the memory bandwidth. When packets arrive, they are written into any DRAM not currently being written to. When a packet leaves, it is read from DRAM, if and only if its DRAM is free. The trick is to

[^63]have enough memory devices (or banks of memory), and enough speedup to make it unlikely that a DRAM is busy when we read from it. Of course, this approach is statistical, and sometimes a packet is not available when needed.

- Create a hierarchy of SRAM and DRAM: This is the approach we take, and it is the only way we know of to create a packet buffer with the speed of SRAM and the cost of DRAM. The approach is based on the memory hierarchy used in computer systems: data that is likely to be needed soon is held in fast SRAM, while the rest of the data is held in slower bulk DRAM. The good thing about FIFO packet buffers is that we know what data will be needed soon it's sitting at the head of the queue. But, unlike a computer system, where it is acceptable for a cache to have a miss-rate, we describe an approach that is specific to networking switches and routers, in which a packet is guaranteed to be available in SRAM when needed. This is equivalent to designing a cache with a 0% miss-rate under all conditions. This is possible because we can exploit the FIFO data structure used in packet buffers.

7.3 A Caching Hierarchy for Designing HighSpeed Packet Buffers

The high-speed packet buffers described in this chapter all use the memory hierarchy shown in Figure 7.2. The memory hierarchy consists of two SRAM caches: one to hold packets at the tail of each FIFO queue, and one to hold packets at the head. The majority of packets in each queue - that are neither close to the tail or to the head are held in slow bulk DRAM. When packets arrive, they are written to the tail cache. When enough data has arrived for a queue (from multiple small packets or a single large packet), but before the tail cache overflows, the packets are gathered together in a large block and written to the DRAM. Similarly, in preparation for when they need to depart, blocks of packets are read from the DRAM into the head cache. The trick is to make sure that when a packet is read, it is guaranteed to be in the head cache, i.e., the head cache must never underflow under any conditions.

Figure 7.2: Memory hierarchy of packet buffer, showing large DRAM memory with heads and tails of each FIFO maintained in a smaller SRAM cache.

The hierarchical packet buffer in Figure 7.2 has the following characteristics: Packets arrive and depart at rate R - and so the memory hierarchy has a total bandwidth of $2 R$ to accommodate continuous reads and writes. The DRAM bulk storage has a random access time of T. This is the maximum time to write to or read from any memory location. (In memory-parlance, T is called $T_{R C}$.) In practice, the random access time of DRAMs is much higher than that required by the memory hierarchy, i.e., $T \gg 1 /(2 R)$. Therefore, packets are written to bulk DRAM in blocks of size $b=2 R T$ every T seconds, in order to achieve a bandwidth of $2 R$. For example, in a $50-\mathrm{ns}$ DRAM buffering packets at $10 \mathrm{~Gb} / \mathrm{s}, b=1000$ bits. For the purposes of this chapter, we will assume that the SRAM is fast enough to always respond to reads and writes at the line rate, i.e., packets can be written to the head and tail caches as fast as they depart or arrive. We will also assume that time is slotted, and the time it takes for a byte to arrive at rate R to the buffer is called a time slot.

Internally, the packet buffer is arranged as Q logical FIFO queues, as shown in Figure 7.3. These could be statically allocated circular buffers, or dynamically

Figure 7.3: Detailed memory hierarchy of packet buffer, showing large DRAM memory with heads and tails of each FIFO maintained in cache. The above implementation shows a dynamically allocated tail cache and a statically allocated head cache.
allocated linked lists. It is a characteristic of our approach that a block always contains packets from a single FIFO queue, which allows the whole block to be written to a single memory location. Blocks are never broken - only full blocks are written to and read from DRAM memory. Partially filled blocks in SRAM are held on chip, are never written to DRAM, and are sent to the head cache directly if requested by the head cache via a "cut-through" path. This allows us to define the worst-case bandwidth between SRAM and DRAM: it is simply $2 R$. In other words, there is no internal speedup.

To understand how the caches work, assume the packet buffer is empty to start with. As we start to write into the packet buffer, packets are written to the head cache first - so they are available immediately if a queue is read. ${ }^{7}$ This continues until the head cache is full. Additional data is written into the tail cache until it begins to fill. The tail cache assembles blocks to be written to DRAM.

We can think of the SRAM head and tail buffers as assembling and disassembling

[^64]blocks of packets. Packets arrive to the tail buffer in random sequence, and the tail buffer is used to assemble them into blocks and write them to DRAM. Similarly, blocks are fetched from DRAM into SRAM, and the packet processor can read packets from the head of any queue in random order. We will make no assumptions on the arrival sequence of packets - we will assume that they can arrive in any order. The only assumption we make about the departure order is that packets are maintained in FIFO queues. The packet processor can read the queues in any order. For the purposes of our proofs, we will assume that the sequence is picked by an adversary deliberately trying to overflow the tail buffer, or underflow the head buffer.

In practice, the packet buffer is attached to a packet processor, which is either an ASIC or a network processor that processes packets (parses headers, looks up addresses, etc.) and manages the FIFO queues. If the SRAM is small enough, it can be integrated into the packet processor (as shown in Figure 7.2); or it can be implemented as a separate ASIC along with the algorithms to control the memory hierarchy.

We note that the components of the caching hierarchy shown in Figure 7.3 (to manage data streams) are widely used in computer architecture and are obvious.

Example 7.3. For example, there are well known instances of the use of the tail cache. A tail cache is similar to the write-back caches used to aggregate and write large blocks of data simultaneously to conserve write bandwidth, and is used in disk drives, database logs, and other systems. Similarly the head cache is simply a pre-fetch buffer; it is used in caching systems that exploit spatial locality, e.g., instruction caches in computer architecture.

We do not lay any claim to the originality of the cache design described in this section, and it is well known that similar queueing systems are already in use in the networking industry. The specific hard problem that we set to solve is to build a queue caching hierarchy that can give a 100% hit rate, as described below.

7.3.1 Our Goal

Our goal is to design the memory hierarchy that precisely emulates a set of FIFO queues operating at rate $2 R$. In other words, the buffer should always accept a packet if there is room, and should always be able to read a packet when requested. We will not rely on arrival or departure sequences, or packet sizes. The buffer must work correctly under worst-case conditions.

We need three things to meet our goal. First, we need to decide when to write blocks of packets from the tail cache to DRAM, so that the tail cache never overflows. Second, we need to decide when to fetch blocks of packets from the DRAM into the head buffer so that the head cache never underflows. And third, we need to know how much SRAM we need for the head and tail caches. Our goal is to minimize the size of the SRAM head and tail caches so they can be cheap, fast, and low-power. Ideally, they will be located on-chip inside the packet processor (as shown in Figure 7.2).

7.3.2 Choices

When designing a memory hierarchy like the one shown in Figure 7.2, we have three main choices:

1. Guaranteed versus Statistical: Should the packet buffer behave like an SRAM buffer under all conditions, or should it allow the occasional miss? In our approach, we assume that the packet buffer must always behave precisely like an SRAM, and there must be no overruns at the tail buffer or underruns at the head buffer. Other authors have considered designs that allow an occasional error, which might be acceptable in some systems [138, 139, 140]. Our results show that it is practical, though inevitably more expensive, to design for the worst case.
2. Pipelined versus Immediate: When we read a packet, should it be returned immediately, or can the design tolerate a pipeline delay? We will consider both design choices: where a design is either a pipelined design or not. In both cases, the packet buffer will return the packets at the rate they were requested, and in
the correct order. The only difference is that in a pipelined packet buffer, there is a fixed pipeline delay between all read requests and packets being delivered. Whether this is acceptable will depend on the system, so we provide solutions to both, and leave it to the designer to choose.
3. Dynamical versus Static Allocation: We assume that the whole packet buffer emulates a packet buffer with multiple FIFO queues, where each queue can be statically or dynamically defined. Regardless of the external behavior, internally the head and tail buffers in the cache can be managed statically or dynamically. In all our designs, we assume that the tail buffer is dynamically allocated. As we'll see, this is simple, and leads to a very small buffer. On the other hand, the head buffer can be statically or dynamically allocated. A dynamic head buffer is smaller, but slightly more complicated to implement, and requires a pipeline delay - allowing the designer to make a tradeoff.

7.3.3 Organization

We will first show, in Section 7.4, that the tail cache can be dynamically allocated and can contain slightly fewer than $Q b$ bytes. The rest of the chapter is concerned with the various design choices for the head cache.

The head cache can be statically allocated; in which case (as shown in Section 7.5) it needs just over $Q b \ln Q$ bytes to deliver packets immediately, or $Q b$ bytes if we can tolerate a large pipeline delay. We will see in Section 7.6 that there is a well-defined continuous tradeoff between cache size and pipeline delay - the head cache size varies proportionally to $Q \ln (Q / x)$. If the head cache is dynamically allocated, its size can be reduced to $Q b$ bytes as derived in Section 7.7. However, this requires a large pipeline delay.

In what follows, we prove each of these results in turn, and demonstrate algorithms to achieve the lower bound (or close to it). Toward the end of the chapter, based on our experience building high-performance packet buffers, we consider in Section 7.8 how hard it is to implement the algorithms in custom hardware. We summarize all
of our results in Section 7.9. Finally, in Section 7.10, we compare and contrast our approach to previous work in this area.

7.3.4 What Makes the Problem Hard?

If the packet buffer consisted of just one FIFO queue, life would be simple: We could de-serialize the arriving data into blocks of size b bytes, and when a block is full, write it to DRAM. Similarly, full blocks would be read from DRAM, and then de-serialized and sent as a serial stream. Essentially, we have a very simple SRAM-DRAM hierarchy. The block is caching both the tail and head of the FIFO in SRAM. How much SRAM cache would be needed?

Each time b bytes arrived at the tail SRAM, a block would be written to DRAM. If fewer than b bytes arrive for a queue, they are held on-chip, requiring $b-1$ bytes of storage in the tail cache.

The head cache would work in the same way - we simply need to ensure that the first $b-1$ bytes of data are always available in the cache. Any request of fewer than $b-1$ bytes can be returned directly from the head cache, and for any request of b bytes there is sufficient time to fetch the next block from DRAM. To implement such a head cache, a total of $2 b$ bytes in the head buffer is sufficient. ${ }^{8}$

Things get more complicated when there are more FIFOs ($Q>1$). For example, let's see how a FIFO in the head cache can under-run (i.e., the packet-processor makes a request that the head cache can't fulfill), even though the FIFO still has packets in DRAM.

When a packet is read from a FIFO, the head cache might need to go off and refill itself from DRAM so it doesn't under-run in future. Every refill means a read-request is sent to DRAM, and in the worst case a string of reads from different FIFOs might generate many read requests. For example, if consecutively departing packets cause different FIFOs to need replenishing, then a queue of read requests will form, waiting

[^65]for packets to be retrieved from DRAM. The request queue builds because in the time it takes to replenish one FIFO (with a block of b bytes), b new requests can arrive (in the worst case). It is easy to imagine a case in which a replenishment is needed, but every other FIFO is also waiting to be replenished, so there might be $Q-1$ requests ahead in the request queue. If there are too many requests, the FIFO will under-run before it is replenished from DRAM.

Thus, all of the theorems and proofs in this chapter are concerned with identifying the worst-case pattern of arrivals and departures, which will enable us to determine how large the SRAM must be to prevent over-runs and under-runs.

7.4 A Tail Cache that Never Over-runs

Theorem 7.1. (Necessity \S Sufficiency) The number of bytes that a dynamically allocated tail cache must contain must be at least

$$
\begin{equation*}
Q(b-1)+1 . \tag{7.1}
\end{equation*}
$$

Proof. If there are $Q(b-1)+1$ bytes in the tail cache, then at least one queue must have b or more bytes in it, and so a block of b bytes can be written to DRAM. If blocks are written whenever there is a queue with b or more bytes in it, then the tail cache can never have more than $Q(b-1)+1$ bytes in it.

7.5 A Head Cache that Never Under-runs, Without Pipelining

If we assume the head cache is statically divided into Q different memories of size w, the following theorem tells us how big the head cache must be (i.e., $Q w$) so that packets are always in the head cache when the packet processor needs them.

Theorem 7.2. (Necessity - Traffic Pattern) To guarantee that a byte is always available in head cache when requested, the number of bytes that a head cache must contain must be at least

$$
\begin{equation*}
Q w>Q(b-1)(2+\ln Q) \tag{7.2}
\end{equation*}
$$

Proof. See Appendix H.

It's one thing to know the theoretical bound; but quite another to design the cache so as to achieve the bound. We need to find an algorithm that will decide when to refill the head cache from the DRAM - which queue should it replenish next? The most obvious algorithm would be shortest queue first; i.e., refill the queue in the head cache with the least data in it. It turns out that a slight variant does the job.

7.5.1 Most Deficited Queue First (MDQF) Algorithm

The algorithm is based on a queue's deficit, which is defined as follows. When we read from the head cache, we eventually need to read from DRAM (or from the tail cache, because the rest of the queue might still be in the tail cache) to refill the cache (if, of course, there are more bytes in the FIFO to refill it with). We say that when we read from a queue in the head cache, it is in deficit until a read request has been sent to the DRAM or tail cache as appropriate to refill it.
§Definition 7.1. Deficit: The number of unsatisfied read requests for FIFO i in the head SRAM at time t. Unsatisfied read requests are arbiter requests for FIFO i for which no byte has been read from the DRAM or the tail cache (even though there are outstanding cells for it).

As an example, suppose d bytes have been read from queue i in the head cache, and the queue has at least d more bytes in it (either in the DRAM or in the tail cache taken together), and if no read request has been sent to the DRAM to refill the d
bytes in the queue, then the queue's deficit at time $t, D(i, t)=d$ bytes. If the queue has $y<d$ bytes in the DRAM or tail cache, its deficit is y bytes.

```
Algorithm 7.1: The most deficited queue first algorithm.
    input :Queue occupancy.
    output: The queue to be replenished.
    /* Calculate queue to replenish */
    repeat every b time slots
        CurrentQueues }\leftarrow(1,2,\ldots,Q
        /* Find queues with pending data in tail cache, DRAM */
        CurrentQueues }\leftarrow\mathrm{ FindPendingQueues(CurrentQueues)
        /* Find queues that can accept data in head cache */
        CurrentQueues }\leftarrow\mathrm{ FindAvailableQueues(CurrentQueues)
        /* Calculate most deficited queue */
        QMaxDef}\leftarrowF\mathrm{ FindMostDeficitedQueue(CurrentQueues)
        if \exists}\mp@subsup{Q}{MaxDef}{}\mathrm{ then
            Replenish( (Q MaxDef}
            UpdateDeficit( (Q MaxDef}
    /* Service request for a queue */
    repeat every time slot
        if }\exists\mathrm{ request for q}\mathrm{ then
            UpdateDeficit(q)
            ReadData (q)
```

MDQF Algorithm: MDQF tries to replenish a queue in the head cache every b time slots. It chooses the queue with the largest deficit, if and only if some of the queue resides in the DRAM or in the tail cache, and only if there is room in the head cache. If several queues have the same deficit, a queue is picked arbitrarily. This is described in detail in Algorithm 7.1. We will now calculate how big the head cache needs to be. Before we do that, we need two more definitions.
\aleph Definition 7.2. Total Deficit $F(i, t)$: The sum of the deficits of the i queues with the most deficit in the head cache, at time t.

More formally, suppose $v=\left(v_{1}, v_{2}, \ldots, v_{Q}\right)$, are the values of the deficits $D(i, t)$, for each of the $i=\{1,2, \ldots, Q\}$ queues at any time t. Let π be an ordering of the queues $(1,2, \ldots, Q)$ such that they are in descending order, i.e., $v_{\pi(1)} \geqslant v_{\pi(2)} \geqslant v_{\pi(3)} \geqslant \cdots \geqslant$ $v_{\pi(Q)}$. Then,

$$
\begin{equation*}
F(i, t) \equiv \sum_{k=1}^{i} v_{\pi(k)} \tag{7.3}
\end{equation*}
$$

\aleph Definition 7.3. Maximum Total Deficit, $F(i)$: The maximum value of $F(i, t)$ seen over all timeslots and over all request patterns.

Note that the algorithm samples the deficits at most once every b time slots to choose the queue with the maximum deficit. Thus, if $\tau=\left(t_{1}, t_{2}, \ldots\right)$ denotes the sequence of times at which MDQF samples the deficits, then

$$
\begin{equation*}
F(i) \equiv \max \{\forall t \in \tau, F(i, t)\} \tag{7.4}
\end{equation*}
$$

Lemma 7.1. For $M D Q F$, the maximum deficit of a queue, $F(1)$, is bounded by

$$
\begin{equation*}
b[2+\ln Q] . \tag{7.5}
\end{equation*}
$$

Proof. The proof is based on deriving a series of recurrence relations as follows.
Step 1: Assume that t is the first time slot at which $F(1)$ reaches its maximum value, for some queue i; i.e., $D(i, t)=F(1)$. Trivially, we have $D(i, t-b) \geqslant F(1)-b$. Since
queue i reaches its maximum deficit at time t, it could not have been served by MDQF at time $t-b$, because if so, then either, $D(i, t)<F(1)$, or it is not the first time at which it reached a value of $F(1)$, both of which are contradictions. Hence there was some other queue that was served at time $t-b$, which must have had a larger deficit than queue i at time $t-b$, so

$$
D(j, t-b) \geqslant D(i, t-b) \geqslant F(1)-b .
$$

Hence, we have:

$$
F(2) \geqslant F(2, t-b) \geqslant D(i, t-b)+D(j, t-b)
$$

This gives,

$$
\begin{equation*}
F(2) \geqslant F(1)-b+F(1)-b . \tag{7.6}
\end{equation*}
$$

Step 2: Now, consider the first time slot t when $F(2)$ reaches its maximum value. Assume that at time slot t, some queues m and n contribute to $F(2)$, i.e., they have the most and second-most deficit among all queues. As argued before, neither of the two queues could have been serviced at time $t-b$. Note that if one of the queues m or n was serviced at time $t-b$ then the sum of their deficits at time $t-b$ would be equal to or greater than the sum of their deficits at time t, contradicting the fact that $F(2)$ reaches its maximum value at time t. Hence, there is some other queue p, which was serviced at time $t-b$, which had the most deficit at time $t-b$. We know that $D(p, t-b) \geqslant D(m, t-b)$ and $D(p, t-b) \geqslant D(n, t-b)$. Hence,

$$
D(p, t-b) \geqslant \frac{D(m, t-b)+D(n, t-b)}{2} \geqslant \frac{F(2)-b}{2} .
$$

By definition,

$$
F(3) \geqslant F(3, t-b)
$$

Substituting the deficits of the three queues m, n and p, we get,

$$
F(3) \geqslant D(m, t-b)+D(n, t-b)+D(p, t-b)
$$

Hence,

$$
\begin{equation*}
F(3) \geqslant F(2)-b+\frac{F(2)-b}{2} \tag{7.7}
\end{equation*}
$$

General Step: Likewise, we can derive relations similar to Equations 7.6 and 7.7 for $\forall i \in\{1,2, \ldots, Q-1\}$.

$$
\begin{equation*}
F(i+1) \geqslant F(i)-b+\frac{F(i)-b}{i} \tag{7.8}
\end{equation*}
$$

A queue can only be in deficit if another queue is serviced instead. When a queue is served, b bytes are requested from DRAM, even if we only need 1 byte to replenish the queue in SRAM. So every queue can contribute up to $b-1$ bytes of deficit to other queues. So the sum of the deficits over all queues, $F(Q) \leqslant(Q-1)(b-1)$. We replace it with the following weaker inequality,

$$
\begin{equation*}
F(Q)<Q b \tag{7.9}
\end{equation*}
$$

Rearranging Equation 7.8,

$$
F(i) \geqslant F(i+1)\left(\frac{i}{i+1}\right)+b
$$

Expanding this inequality starting from $F(1)$, we have,

$$
F(1) \geqslant \frac{F(2)}{2}+b \geqslant\left(F(3) \frac{2}{3}+b\right) \frac{1}{2}+b=\frac{F(3)}{3}+b\left(1+\frac{1}{2}\right) .
$$

By expanding $F(1)$ all the way till $F(Q)$, we obtain,

$$
F(1) \geqslant \frac{F(Q)}{Q}+b \sum_{i=1}^{Q-1} \frac{1}{i}<\frac{Q b}{Q}+b \sum_{i=1}^{Q-1} \frac{1}{i}
$$

Since, $\forall N$,

$$
\sum_{i=1}^{N-1} \frac{1}{i}<\sum_{i=1}^{N} \frac{1}{i}<1+\ln N
$$

Therefore,

$$
F(1)<b[2+\ln Q] .
$$

Lemma 7.2. For $M D Q F$, the maximum deficit that any i queues can reach is given by,

$$
\begin{equation*}
F(i)<b i[2+\ln (Q / i)], \forall i \in\{1,2, \ldots, Q-1) \tag{7.10}
\end{equation*}
$$

Proof. See Appendix H. ${ }^{9}$
Theorem 7.3. (Sufficiency) For MDQF to guarantee that a requested byte is in the head cache (and therefore available immediately), the number of bytes that are sufficient in the head cache is

$$
\begin{equation*}
Q w=Q b(3+\ln Q) \tag{7.11}
\end{equation*}
$$

Proof. From Lemma 7.1, we need space for $F(1) \leqslant b[2+\ln Q]$ bytes per queue in the head cache. Even though the deficit of a queue with MDQF is at most $F(1)$ (which is reached at some time t), the queue can lose up to $b-1$ more bytes in the next $b-1$ time slots, before it gets refreshed at time $t+b$. Hence, to prevent under-flows, each queue in the head cache must be able to hold $w=b[2+\ln Q]+(b-1)<b[3+\ln Q]$ bytes. Note that, in order that the head cache not underflow, it is necessary to pre-load the head cache to up to $w=b[3+\ln Q]$ bytes for every queue. This requires a 'direct-write' path from the writer to the head cache as described in Figure 7.3.

[^66]
7.5.2 Near-Optimality of the MDQF algorithm

Theorem 7.2 tells us that the head cache needs to be at least $Q(b-1)(2+\ln Q)$ bytes for any algorithm, whereas MDQF needs $Q b(3+\ln Q)$ bytes, which is slightly larger. It's possible that MDQF achieves the lower bound, but we have not been able to prove it. For typical values of $Q(Q>100)$ and $b(b \geqslant 64$ bytes $)$, MDQF needs a head cache within 16% of the lower bound.

Wxample 7.4. Consider a packet buffer cache built for a $10 \mathrm{~Gb} / \mathrm{s}$ enterprise router, with a commodity DRAM memory that has a random cycle time of $T_{R C}=50 \mathrm{~ns}$. The value of $b=2 R T_{R C}$ must be at least 1000 bits. So the cache that supports $Q=128$ queues and $b=128$ bytes would require 1.04 Mb , which can easily be integrated into current-generation ASICs.

7.6 A Head Cache that Never Under-runs, with Pipelining

High-performance routers use deep pipelines to process packets in tens or even hundreds of consecutive stages. So it is worth asking if we can reduce the size of the head cache by pipelining the reads to the packet buffer in a lookahead buffer. The read rate is the same as before, but the algorithm can spend more time processing each read, and is motivated by the following idea:
> *I Idea. "We can use the extra time to get a 'heads-up' of which queues need refilling, and start fetching data from the appropriate queues in DRAM sooner!"

We will now describe an algorithm that puts this idea into practice; and we will see that it needs a much smaller head cache.

When the packet processor issues a read, we will put it into the lookahead buffer shown in Figure 7.6. While the requests make their way through the lookahead buffer,

Figure 7.4: $M D Q F P$ with a lookahead shift register with 8 requests.
the algorithm can take a "peek" at which queues are receiving requests. Instead of waiting for a queue to run low (i.e., for a deficit to build), it can anticipate the need for data and fetch it in advance.

As an example, Figure 7.4 shows how the requests in the lookahead buffer are handled. The lookahead buffer is implemented as a shift register, and it advances every time slot. The first request in the lookahead buffer (request A_{1} in Figure 7.4) came at time slot $t=T$ and is processed when it reaches the head of the lookahead buffer at time slot $t=T+x$. A new request can arrive to the tail of the lookahead buffer at every time slot. ${ }^{10}$

[^67]
§<Box 7.1: Why do we focus on Adversarial Analysis? : $^{\circ}$

On February 7, 2000, the Internet experienced its first serious case of a fast, intense, distributed denial of service (DDoS) attack. Within a week, access to major E-commerce and media sites such as Amazon, Buy.com, eBay, E-Trade, CNN, and ZDNet had slowed, and in some cases had been completely denied.

A DDoS attack typically involves a coordinated attack originating from hundreds or thousands of collaborating machines (which are usually compromised so that attackers can control their behavior) spread over the Internet. Since the above incident, there have been new attacks [141] with evolving characteristics and increasing complexity [142]. These attacks share one trait - they are all adversarial in nature and exploit known loopholes in network, router, and server design [143].

It is well known that packet buffers in high-speed routers have a number of loopholes that an adversary can easily exploit. For example, there are known traffic patterns that can cause data to be concentrated on a few memory banks, seriously compromising router performance. Also, the " 65 -byte" problem (which occurs because memories can only handle fixed-size payloads), can be easily exploited by sending and measuring the performance of the router for packets of all sizes. Indeed, tester companies [144, 145] that specialize in "bake-off" tests purposely examine competing products for these loopholes.
W. Observation 7.1. The caching algorithms and cache sizes proposed in this chapter are built to meet stringent performance requirements, and to be safe against the malicious attacks described above. The cache always guarantees a 100% hit rate for any type of packet writes (any arrival policy, bursty nature of packets, or arrival load characteristics), any type of packet reads (e.g, any pattern of packet departures, scheduler policy, or reads from a switching arbiter), any packet statistics (e.g. packets destined to particular queues, packet size distributions ${ }^{a}$, any minimum packet size, etc.). The caches are robust, and their performance cannot be compromised by an adversary (either now or ever in the future), even with internal knowledge of the design.

Note that there are many potential adversarial attacks possible on a host, server, or the network. Building a robust solution against these varied kind of attacks is beyond the scope of this thesis. We are solely concerned with those attacks that can target the memory performance bottlenecks on a router.
${ }^{a}$ The caches are agnostic to differences in packet sizes, because consecutive packets destined to the same queue are packed into fixed-sized blocks of size " b ". The width of memory access is always "b" bytes, irrespective of the packet size.

7.6.1 Most Deficited Queue First (MDQFP) Algorithm with Pipelining

With the lookahead buffer, we need a new algorithm to decide which queue in the cache to refill next. Once again, the algorithm is intuitive: We first identify any queues that have more requests in the lookahead buffer than they have bytes in the cache. Unless we do something, these queues are in trouble, and we call them critical. If more than one queue is critical, we refill the one that went critical first.

MDQFP Algorithm Description: Every b time slots, if there are critical queues in the cache, refill the first one to go critical. If none of the queues are critical right now, refill the queue that - based on current information - looks most likely to become critical in the future. In particular, pick the queue that will have the largest deficit at time $t+x$ (where x is the depth of the lookahead buffer ${ }^{11}$) assuming that no queues are replenished between now and $t+x$. If multiple queues will have the same deficit at time $t+x$, pick an arbitrary one.

We can analyze the new algorithm (described in detail in Algorithm 7.2) in almost the same way as we did without pipelining. To do so, it helps to define the deficit more generally.
\aleph Definition 7.4. Maximum Total Deficit with Pipeline Delay, $F_{x}(i)$: the maximum value of $F(i, t)$ for a pipeline delay of x, over all time slots and over all request patterns. Note that in the previous section (no pipeline delay) we dropped the subscript, i.e., $F_{0}(i) \equiv F(i)$.

In what follows, we will refer to time t as the current time, while time $t+x$ is the time at which a request made from the head cache at time t actually leaves the cache. We could imagine that every request sent to the head cache at time t goes

[^68]Algorithm 7.2: Most deficited queue first algorithm with pipelining.
input : Queue occupancy and requests in pipeline (shift register) lookahead.
output: The queue to be replenished.
/* Calculate queue to replenish*/
repeat every b time slots
CurrentQueues $\leftarrow(1,2, \ldots, Q)$
/* Find queues with pending data in tail cache, DRAM */
CurrentQueues \leftarrow FindPendingQueues (CurrentQueues)
/* Find queues that can accept data in head cache */
CurrentQueues \leftarrow FindAvailableQueues (CurrentQueues)
/* Calculate most deficited queue */
$Q_{\text {MaxDef }} \leftarrow$ FindMostDeficitedQueue (CurrentQueues)
/* Calculate earliest critical queue if it exists */ $Q_{E C r i t i c a l} \leftarrow$ FindEarliestCriticalQueue (CurrentQueues) /* Give priority to earliest critical queue */ if $\exists Q_{E C r i t i c a l}$ then

Replenish ($Q_{E C r i t i c a l}$)
UpdateDeficit ($Q_{E C r i t i c a l}$)
else
if $\exists Q_{M a x D e f}$ then
Replenish ($Q_{\text {MaxDef }}$)
UpdateDeficit ($Q_{\text {MaxDef }}$)
/* Register request for a queue */.
repeat every time slot
if \exists request for q then
UpdateDeficit (q)
PushShiftRegister (q)
/* Service request for a queue, x time slots later */
repeat every time slot
$q \leftarrow$ PopShiftRegister ()
if $\exists q$ then
ReadData (q)
into the tail of a shift register of size x. This means that the actual request only reads the data from the head cache when it reaches the head of the shift register, i.e., at time $t+x$. At any time t, the request at the head of the shift register leaves the shift register. Note that the remaining $x-1$ requests in the shift register have already been taken into account in the deficit calculation at time $t-1$. The memory management algorithm (MMA) only needs to update its deficit count and its critical queue calculation based on the newly arriving request at time t which goes into the tail of the shift register.

Implementation Details: Since a request made at time t leaves the head cache at time $t+x$, this means that even before the first byte leaves the head cache, up to x bytes have been requested from DRAM. So we will require x bytes of storage on chip to hold the bytes requested from DRAM in addition to the head cache. Also, when the system is started at time $t=0$, the very first request comes to the tail of the shift register and all the deficit counters are loaded to zero. There are no departures from the head cache until time $t=x$, though DRAM requests are made immediately from time $t=0$.

Note that MDQFP-MMA is looking at all requests in the lookahead register, calculating the deficits of the queues at time t by taking the lookahead into consideration, and making scheduling decisions at time t. The maximum deficit of a queue (as perceived by MDQFP-MMA) may reach a certain value at time t, but that calculation assumes that the requests in the lookahead have already left the system, which is not the case. For any queue i, we define:
\aleph Definition 7.5. Real Deficit $R_{x}(i, t+x)$, the real deficit of the queue at any time $t+x$, (which determines the actual size of the cache) is governed by the following equation,

$$
\begin{equation*}
R_{x}(i, t+x)=D_{x}(i, t)-S_{i}(t, t+x) \tag{7.12}
\end{equation*}
$$

where, $S_{i}(t, t+x)$ denotes the number of DRAM services that queue i receives between time t and $t+x$, and $D_{x}(i, t)$ denotes the deficit as perceived by MDQF at time t, after taking the lookahead requests into account. Note, however, that since $S_{i}(t, t+x) \geqslant 0$, if a queue causes a cache miss at time $t+x$, that queue would have been critical at time t. We will use this fact later on in proving the bound on the real size of the head cache.

Lemma 7.3. (Sufficiency) Under the MDQFP-MMA policy, and a pipeline delay of $x>b$ time slots, the real deficit of any queue i is bounded for all time $t+x$ by

$$
\begin{equation*}
R_{x}(i, t+x) \leqslant C=b(2+\ln [Q b /(x-2 b)]) \tag{7.13}
\end{equation*}
$$

Proof. See Appendix H.

This leads to the main result that tells us a cache size that will be sufficient with the new algorithm.

Theorem 7.4. (Sufficiency) With MDQFP and a pipeline delay of x (where $x>b$), the number of bytes that are sufficient to be held in the head cache is

$$
\begin{equation*}
Q w=Q(C+b) \tag{7.14}
\end{equation*}
$$

Proof. The proof is similar to Theorem 7.3.

7.6.2 Tradeoff between Head SRAM Size and Pipeline Delay

Intuition tells us that if we can tolerate a larger pipeline delay, we should be able to make the head cache smaller; and that is indeed the case. Note that from Theorem 7.4
the rate of decrease of size of the head cache (and hence the size of the SRAM) is,

$$
\begin{equation*}
\frac{\partial C}{\partial x}=-\frac{1}{x-2 b} \tag{7.15}
\end{equation*}
$$

which tells us that even a small pipeline will give a big decrease in the size of the SRAM cache.

QExample 7.5. As an example, Figure 7.5 shows the size of the head cache as a function of the pipeline delay x when $Q=1000$ and $b=10$ bytes. With no pipelining, we need 90 kbytes of SRAM, but with a pipeline of $Q b=10000$ time slots, the size drops to 10 kbytes. Even with a pipeline of 300 time slots (this corresponds to a 60 ns pipeline in a $40 \mathrm{~Gb} / \mathrm{s}$ line card) we only need approximately 55 kbytes of SRAM: A small pipeline gives us a much smaller SRAM. ${ }^{12}$

7.7 A Dynamically Allocated Head Cache that Never Under-runs, with Large Pipeline Delay

Until now we have assumed that the head cache is statically allocated. Although a static allocation is easier to maintain than a dynamic allocation (static allocation uses circular buffers, rather than linked lists), we can expect a dynamic allocation to be more efficient because it's unlikely that all the FIFOs will fill up at the same time in the cache. A dynamic allocation can exploit this to devote all the cache to the occupied FIFOs.

Let's see how much smaller we can make the head cache as we dynamically allocate FIFOs. The basic idea is as follows:

[^69]
$\$<$ Box 7.2: Benefits of Buffer Caching>

The buffer caching algorithms described in this chapter have been developed for a number of Cisco's next-generation high-speed Enterprise routers. In addition to scaling router performance and making their memory performance robust against adversaries (as was deseribed in Box 7.1), a number of other advantages have come to light.

1. Reduces Memory Cost: Caches reduce memory cost, as they allow the use of commodity memories such as DRAMs [3] or newly available eDRAM [26], in comparison to specialized memories such as FCRAM [9], RLDRAMs [8], and QDRSRAMs [2]. In most systems, memory cost (approximately $25 \%-33 \%$ of system cost) is reduced by 50%.
2. Increases Memory Capacity Utilization: The 'b-byte' memory blocks ensure that the cache accesses are always fully utilized. As a consequence, this eliminates the "65-byte" problem and leads to better utilization of memory capacity and memory bandwidth. In some cases, the savings can be up to 50% of the memory capacity.
3. Reduces Memory Bandwidth and Lowers Worst-Case Power: A consequence of solving the " 65 -byte" problem is that the memory bandwidth to and from cache is minimized and is exactly $2 R$. Statistical packet buffer designs require a larger bandwidth (above $2 N R$ as described in Section 7.8) to alleviate potential bank conflicts. Overall, this has helped reduce memory bandwidth (and worst-case I/O power) by up to 75% in some cases, due to better bandwidth utilization.
4. Reduces Packet Latency: The packets in a robust cache are always found onchip. So these caches reduce the latency of packet memory access in a router. Thus, caches have found applications in the low-latency Ethernet [131] and inter-processor communication (IPC) markets, which require very low network latency.
5. Enables the Use of Complementary Technologies: The packet-processing ASICs on high-speed routers are limited by the number of pins they can interface to. High-speed serialization and $1 / 0$ technologies [27] can help reduce the number of memory interconnect pins, ${ }^{a}$ but they suffer from extremely high latency. The caches can be increased in size (from the theoretical bounds derived in this chapter) to absorb additional memory latency, thus enabling these complementary technologies.
6. Enable Zero Packet Drops: A robust cache is sized for adversarial conditions (Box 7.1) and never drops a packet. This feature has found uses in the storage market [61], where the protocol mandates zero packet drops on the network.
7. ASIC and Board Cost Savings: As a consequence of the above benefits, the packet-processing ASICs require less pins, and there are fewer memory devices on the board, resulting in smaller ASICs and less-complex boards.

At the time of writing, we have implemented the cache in the next generation of Cisco high-speed enterprise router products, which span the Ethernet, storage, and inter-processor communication markets. The above benefits have collectively made routers more affordable, robust, and practical to build.
${ }^{a}$ With today's technology, a $10 \mathrm{~Gb} / \mathrm{s}$ differential pair serdes gives five times more bandwidth per pin than standard memory interfaces.

Figure 7.5: The SRAM size (in bold) as a function of pipeline delay (x). The example is for 1000 queues $(Q=1000)$, and a block size of $b=10$ bytes.

> 冫Idea. At any time, some queues are closer to becoming critical than others. The more critical queues need more buffer space, while the less critical queues need less. When we use a lookahead buffer, we know which queues are close to becoming critical and which are not. We can therefore dynamically allocate more space in the cache for the more critical queues, borrowing space from the less critical queues that don't need it.

7.7.1 The Smallest Possible Head Cache

Theorem 7.5. (Necessity) For a finite pipeline, the head cache must contain at least $Q(b-1)$ bytes for any algorithm.

Proof. Consider the case when the FIFOs in DRAM are all non-empty. If the packet processor requests one byte from each queue in turn (and makes no more requests), we might need to retrieve b new bytes from the DRAM for every queue in turn. The head cache returns one byte to the packet processor and must store the remaining $b-1$ bytes for every queue. Hence the head cache must be at least $Q(b-1)$ bytes. \square

7.7.2 The Earliest Critical Queue First (ECQF) Algorithm

As we will see, ECQF achieves the size of the smallest possible head cache; i.e., no algorithm can do better than ECQF.

ECQF Algorithm Description: Every time there are b requests to the head cache, if there are critical queues in the cache, refill the first one to go critical. Otherwise, do nothing. This is described in detail in Algorithm 7.3.

Note that ECQF (in contrast to MDQFP) never needs to schedule most-deficited queues. It only needs to wait until a queue becomes critical, and schedule these queues in order. Also, with ECQF we can delay making requests to replenish a queue from DRAM until b requests are made to the buffer, instead of making a request every b time slots. If requests arrive every time slot, the two schemes are the same. However, if there are empty time slots, this allows ECQF to delay requests, so that the moment b bytes arrive from DRAM, b bytes also leave the cache, preventing the shared head cache from ever growing in size beyond $Q(b-1)$ bytes.

This subtle difference is only of theoretical concern, as it does not affect the semantics of the algorithm. In the examples that follow, we will assume that requests arrive every time slot.

[^70]| $A 1$ | $\mathrm{C1}$ |
| :---: | :---: |
| A 2 | $\mathrm{C2}$ |
| $\mathrm{B1}$ | $\mathrm{D1}$ |
| B 2 | D 2 |

Head Cache

Requests in Lookahead

$\mathrm{Al}^{\mathrm{C}} \mathrm{C1}|\mathrm{B1}| \mathrm{D1}|\mathrm{~A} 2| \mathrm{B} 2|A 3| A 4 \mid B 3$
$\mathrm{Q}(\mathrm{A}, 0)=2 ; \mathrm{Q}(\mathrm{A}, 6)$ critical.
$\mathrm{Q}(\mathrm{B}, 0)=2 ; \mathrm{Q}(\mathrm{B}, 8)$ critical.
Queue A is requested
(a) State at $\mathbf{t}=\mathbf{0}$

From DRAM

 Head Cache

Requests in Lookahead
 $\longrightarrow \quad B 1|C 1| A 1$ Returned Data
$\mathrm{Q}(\mathrm{A}, 3)=4 ; \mathrm{Q}(\mathrm{A}, 11)$ critical.
$Q(B, 3)=1 ; Q(B, 9)$ critical.
Bytes A3,A4,A5 arrive
Queue B requested
(b) State at $t=3$

From DRAM

Head Cache

Requests in Lookahead

$\longrightarrow B 2|A 2| D 1|B 1| \overline{C 1} \mid A 1$
Returned Data
$\mathrm{Q}(\mathrm{A}, 6)=3 ; \mathrm{Q}(\mathrm{A}, 11)$ critical.
$\mathrm{Q}(\mathrm{C}, 6)=2 ; \mathrm{Q}(\mathrm{C}, 13)$ critical.
Bytes B3,B4,B5 arrive.
Queue A is requested.
(c) State at $\mathbf{t}=6$

Figure 7.6: $E C Q F$ with $Q=4$ and $b=3$ bytes. The dynamically allocated head cache is 8 bytes and the lookahead buffer is $Q(b-1)+1=9$ bytes.

```
Algorithm 7.3: The earliest critical queue first algorithm.
    input : Queue occupancy and requests in pipeline (shift register) lookahead.
    output: The queue to be replenished.
    /* Wait for \(b\) requests, rather than \(b\) time slots */
    /* Ensure critical queues are not fetched "too early" ~
    /* Hence, delay replenishment if empty request time slots
    */
    /* Calculate queue to replenish */
    repeat every \(b\) time slots for every \(b\) requests encountered
        CurrentQueues \(\leftarrow(1,2, \ldots, Q)\)
        /* Calculate earliest critical queue if it exists */
        /* By design it will have space to accept data in cache
        */
        \(Q_{E C r i t i c a l} \leftarrow\) FindEarliestCriticalQueue (CurrentQueues)
        if \(\exists Q_{E C r i t i c a l}\) then
            Replenish ( \(Q_{E C r i t i c a l}\) )
            UpdateDeficit ( \(Q_{E C r i t i c a l}\) )
    /* Register request for a queue */
    repeat every time slot
        if \(\exists\) request for \(q\) then
            UpdateDeficit ( \(q\) )
            PushShiftRegister (q)
    /* Service request for a queue, \(Q b\) time slots later */
    repeat every time slot
        \(q \leftarrow\) PopShiftRegister ()
        if \(\exists q\) then
            ReadData \((q)\)
```

To figure out how big the head cache needs to be, we will make three simplifying assumptions (described in Appendix H) that help prove a lower bound on the size of the head cache. We will then relax the assumptions to prove the head cache need never be larger than $Q(b-1)$ bytes.

Theorem 7.6. (Sufficiency) If the head cache has $Q(b-1)$ bytes and a lookahead buffer of $Q(b-1)+1$ bytes (and hence a pipeline of $Q(b-1)+1$ slots), then $E C Q F$ will make sure that no queue ever under-runs.

Proof. See Appendix H.

7.8 Implementation Considerations

1. Complexity of the algorithms: All of the algorithms require deficit counters; MDQF and MDQFP must identify the queue with the maximum deficit every b time slots. While this is possible to implement for a small number of queues using dedicated hardware, or perhaps using a heap data structure [146], it may not scale when the number of queues is very large. The other possibility is to use calendar queues, with buckets to store queues with the same deficit. In contrast, ECQF is simpler to implement. It only needs to identify when a deficit counter becomes critical, and replenish the corresponding queue.
2. Reducing b : The cache scales linearly with b, which scales with line rates. It is possible to use ping-pong buffering [147] to reduce b by a factor of two (from $b=2 R T$ to $b=R T$). Memory is divided into two equal groups, and a block is written to just one group. Each time slot, blocks are read as before. This constrains us to write new blocks into the other group. Since each group individually caters a read request or a write request per time slot, the memory bandwidth of each group needs to be no more than the read (or write) rate R. Hence block size, $b=R T$. However, as soon as either one of the groups becomes full, the buffer cannot be used. So in the worst case, only half of the memory capacity is usable.
3. Saving External Memory Capacity and Bandwidth: One consequence of integrating the SRAM into the packet processor is that it solves the so-called " 65 byte problem". It is common for packet processors to segment packets into fixed-size chunks, to make them easier to manage, and to simply the switch fabric; 64 bytes is a common choice because it is the first power of two larger

Table 7.1: Tradeoffs for the size of the head cache.

Head SRAM Pipeline Delay (time slot)	Head SRAM (bytes, type, algorithm)	Source
0	$Q b(3+\ln Q)$, Static, MDQF	Theorem 7.3
x	$Q b(3+\ln [Q b /(x-2 b)])$, Static, MDQFP	Theorem 7.4
$Q(b-1)+1$	$Q(b-1)$, Dynamic, ECQF	Theorem 7.6

Table 7.2: Tradeoffs for the size of the tail cache.

Tail SRAM (bytes, type, algorithm)	Source
$Q b(3+\ln Q)$, Static, MDQF	By a symmetry argument to Theorem 7.3
$Q b$, Dynamic	Refer to Theorem 7.1

than the size of a minimum-length IP datagram. But although the memory interface is optimized for 64 -byte chunks, in the worst case it must be able to handle a sustained stream of 65 -byte packets - which will fill one chunk, while leaving the next one almost empty. To overcome this problem, the memory hierarchy is almost always run at twice the line rate: i.e., $4 R$, which adds to the area, cost, and power of the solution. Our solution doesn't require this speedup of two. This is because data is always written to DRAM in blocks of size b, regardless of the packet size. Partially filled blocks in SRAM are held on chip, are never written to DRAM, and are sent to the head cache directly if requested by the head cache. We have demonstrated implementations of packet buffers that run at $2 R$ and have no fragmentation problems in external memory.

7.9 Summary of Results

Table 7.1 compares various cache sizes with and without pipelining, for static and dynamic allocation. Table 7.2 compares the various tail cache sizes when implemented using a static or dynamic tail cache.

7.10 Related Work

Packet buffers based on a SRAM-DRAM hierarchy are not new, and although not published before, have been deployed in commercial switches and routers. However, there is no literature that describes or analyzes the technique. We have found that existing designs are based on ad-hoc statistical assumptions without hard guarantees. We divide the previously published work into two categories:

Systems that give statistical performance: In these systems, the memory hierarchy only gives statistical guarantees for the time to access a packet, similar to interleaving or pre-fetching used in computer systems [148, 149, 150, 151, 152]. Examples of implementations that use commercially available DRAM controllers are [153, 154]. A simple technique to obtain high throughputs using DRAMs (using only random accesses) is to stripe a packet ${ }^{13}$ across multiple DRAMs [138]. In this approach, each incoming packet is split into smaller segments, and each segment is written into different DRAM banks; the banks reside in a number of parallel DRAMs. With this approach, the random access time is still the bottleneck. To decrease the access rate to each DRAM, packet interleaving can be used [147, 155]; consecutive arriving packets are written into different DRAM banks. However, when we write the packets into the buffer, we don't know the order they will depart; and so it can happen that consecutive departing packets reside in the same DRAM row or bank, causing row or bank conflicts and momentary loss in throughput. There are other techniques that give statistical guarantees, where a memory management algorithm (MMA) is designed so that the probability of DRAM row or bank conflicts is reduced. These include designs that randomly select memory locations [156, 157, 139, 140], so that the probability of row or bank conflicts in DRAMs is considerably reduced. Using a similar interleaved memory architectures, the authors in [158] analyze the packet drop probability, but make assumptions about packet arrival patterns.

Under certain conditions, statistical bounds (such as average delay) can be found. While statistical guarantees might be acceptable for a computer system (in which we

[^71]are used to cache misses, TLB misses, and memory refresh), they are not generally acceptable in a router, where pipelines are deep and throughput is paramount.

Systems that give deterministic worst-case performance guarantees: There is a body of work in $[159,160,161,162,163]$ that analyzes the performance of a queueing system under a model in which variable-size packet data arrives from N input channels and is buffered temporarily in an input buffer. A server reads from the input buffer, with the constraint that it must serve complete packets from a channel. In [161, 162] the authors consider round robin service policies, while in [163] the authors analyze an FCFS server. In [159] an optimal service policy is described, but this assumes knowledge of the arrival process. The most relevant previous work is in [160], where the authors in their seminal work analyze a server that serves the channel with the largest buffer occupancy, and prove that under the above model the buffer occupancy for any channel is no more than $L(2+\ln (N-1)$), where L is the size of the maximum-sized packet.

7.10.1 Comparison of Related Work

Our work on packet buffer design was first described in [164, 165], and a complete version of the paper appears in $[166,167]$. Subsequent to our work, a similar problem with an identical service policy has also been analyzed in [168, 169, 170], where the authors show that servicing the longest queue results in a competitive ratio of $\ln (N)$ compared to the ideal service policy, which is offline and has knowledge of all inputs.

Our work has some similarities with the papers above. However, our work differs in the following ways. First, we are concerned with the size of two different buffer caches, the tail cache and a head cache, and the interaction between them. We show that the size of the tail cache does not have a logarithmic dependency, unlike [160, 168, 169, 170], since this cache can be dynamically shared among all arriving packets at the tails of the queues. Second, the size of our caches is independent of L, the maximum packet size, because unlike the systems in $[159,160,161]$, our buffer cache architecture can store data in external memory. Third, we obtain a more general bound by analyzing the effect of pipeline latency x on the cache size. Fourth, unlike the work done
in $[168,169,170]$ which derives a bound on the competitive ratio with an ideal server, we are concerned with the actual size of the buffer cache at any given time (since this is constrained by hardware limitations).

7.10.2 Subsequent Work

In subsequent work, the authors in [171], use the techniques presented here to build high-speed packet buffers. Also, subsequent to our work, the authors in [172] analyze the performance of our caching algorithm when it is sized smaller than the bounds that are derived in this chapter. Similar to the goal in [172], we have considered cache size optimizations in the absence of adversarial patterns. ${ }^{14}$ Unsurprisingly, when adversarial patterns are eliminated, the cache sizes can be reduced significantly, in some cases up to 50%.

The techniques that we have described in this chapter pertain to the packet-bypacket operations that need to be performed for building high-speed packet buffers, on router line cards. We do not address the buffer management policies, which control how the buffers are allocated and shared between the different queues. The reader is refereed to $[173,174]$ for a survey of a number of existing techniques.

7.11 Conclusion

Packet switches, regardless of their architecture, require packet buffers. The general architecture presented here can be used to build high-bandwidth packet buffers for any traffic arrival pattern or packet scheduling algorithm. The scheme uses a number of DRAMs in parallel, all controlled from a single address bus. The costs of the technique are: (1) a (presumably on-chip) SRAM cache that grows in size linearly with line rate and the number of queues, and decreases with an increase in the pipeline delay, (2) a lookahead buffer (if any) to hold requests, and (3) a choice of memory management algorithms that must be implemented in hardware.

[^72]> Example 7.7. As an example of how these results are used, consider a typical 48port commercial gigabit Ethernet switching line card that uses SRAM for packet buffering. ${ }^{15}$ There are four 12G MAC chips on board, each handling 12 ports. Each Ethernet MAC chip stores 8 transmit and 3 receive ports per 1 G port, for a total of 132 queues per MAC chip. Each MAC chip uses 128 Mbits of SRAM. With today's memory prices, the SRAM costs approximately $\$ 128$ (list price). With four Ethernet MACs per card, the total memory cost on the line card is $\$ 512$ per line card. If the buffer uses DRAMs instead (assume 16 -bit wide data bus, 400 MHz DDR, and a random access time of $T=51.2 \mathrm{~ns}$), up to 64 bytes 16 can be written to each memory per 51.2 -ns time slot. Conservatively, it would require 6 DRAMs (for memory bandwidth), which cost (today) about $\$ 144$ for the line card. With $b=384$ bytes, the total cache size would be $\sim 3.65 \mathrm{Mb}$, which is less than 5% of the die area of most packet processing ASICs today. Our example serves to illustrate that significant cost savings are possible.

While there are systems for which this technique is inapplicable (e.g., systems for which the number of queues is too large, or where the line rate requires too large a value for b, so that the SRAM cannot be placed on chip), our experience with enabling this technology at Cisco Systems shows that caching is practical, and we have implemented it in fast silicon. It has been broadly applied for the next generation of many segments of the enterprise market $[4,176,177,178]$. It is also applicable to some segments of the edge router market [179] and some segments of the core router market [180], where the numbers of queues are in the low hundreds.

We have also modified this technique for use in VOQ buffering [181] and storage [182] applications. Our techniques have also paved the way for the use of complementary high-speed interconnect and memory serialization technologies [32], since the caches hide the memory latency of these beneficial serial interconnect technologies,

[^73]enabling them to be used for networking. We estimate that a combination of caching and complementary serial link technologies has resulted in reducing memory power by a factor of $\sim 25-50 \%$ [31]). It has also made routers more affordable (by reducing yearly memory costs at Cisco Systems by $>\$ 100 \mathrm{M}$ [33] for packet buffering applications alone), and has helped reduce the physical area to build high-speed routers by $\sim 50 \%$. We estimate that more than 1.5 M instances of packet buffering-related (on over seven unique product instances) caching technologies will be made available annually, as Cisco Systems proliferates its next generation of high-speed Ethernet switches and Enterprise routers.

In summary, the above techniques can be used to build extremely cost-efficient and robust packet buffers that: (1) give the performance of SRAM with the capacity characteristics of a DRAM, (2) are faster than any that are commercially available today, and, (3) enable packet buffers to be built for several generations of technology to come. As a result, we believe that we have fundamentally changed the way high-speed switches and routers use external memory.

Summary

1. Internet routers and Ethernet switches contain packet buffers to hold packets during times of congestion. Packet buffers are at the heart of all packet switches and routers, which have a combined annual market of tens of billions of dollars, with equipment vendors spending hundreds of millions of dollars yearly on memory.
2. We estimate $[24,33]$ that packet buffers are alone responsible for almost 40% of all memory consumed by high-speed switches and routers today.
3. Designing packet buffers was formerly easy: DRAM was cheap, low-power, and widely used. But something happened at $10 \mathrm{~Gb} / \mathrm{s}$, when packets began to arrive and depart faster than the access time of a DRAM. Alternative memories were needed; but SRAM is too expensive and power-hungry.
4. A caching solution is appealing, with a hierarchy of SRAM and DRAM, as used by the computer industry. However, in switches and routers, it is not acceptable to have a "miss-rate", as it reduces throughput and breaks pipelines.
5. In this chapter, we describe how to build caches with 100% hit-rate under all conditions,
by exploiting the fact that switches and routers always store data in FIFO queues. We describe a number of different ways to do this, with and without pipelining, with static or dynamic allocation of memory.
6. In each case, we prove a lower bound on how big the cache needs to be, and propose an algorithm that meets, or comes close to, the lower bound.
7. The main result of this chapter is that a packet buffer cache with $\Theta(Q b \ln Q)$ bytes is sufficient to ensure that the cache has a 100% hit rate - where Q is the number of FIFO queues, and b is the memory block size (Theorem 7.3).
8. We then describe techniques to reduce the cache size. We exploit the fact that ASICs have deep pipelines, and so allow for packets to be streamed out of the buffer with a pipeline delay of x time slots.
9. We show that there is a well-defined continuous tradeoff between (statically allocated) cache size and pipeline delay, and that the cache size is proportional to $\Theta(Q b \ln [Q b / x])$ (Theorem 7.4).
10. If the head cache is dynamically allocated, its size can be further reduced to $Q b$ bytes if an ASIC can tolerate a large pipeline delay (Theorem 7.6).
11. These techniques are practical, and have been implemented in fast silicon in multiple high-speed Ethernet switches and Enterprise routers.
12. Our techniques are resistant to adversarial patterns that can be created by hackers or viruses. We show that the memory performance of the buffer can never be compromised, either now or, provably, ever in future.
13. As a result, the performance of a packet buffer is no longer dependent on the speed of a memory, and these techniques have fundamentally changed the way switches and routers use external memory.

Chapter 8: Designing Packet Schedulers from Slower Memories
 May 2008, Stateline, NV

Contents

8.1 Introduction 221
8.1.1 Background 222
8.1.2 Where Are Schedulers Used Today? 224
8.1.3 Problem Statement 226
8.1.4 Goal 227
8.1.5 Organization 228
8.2 Architecture of a Typical Packet Scheduler 229
8.3 A Scheduler Hierarchy for a Typical Packet Scheduler 232
8.4 A Scheduler that Operates With a Buffer Hierarchy 236
8.5 A Scheduler Hierarchy that Operates With a Buffer Hierarchy 238
8.6 A Scheduler that Piggybacks on the Buffer Hierarchy 240
8.6.1 Architecture of a Piggybacked Scheduler 241
8.6.2 Interaction between the Packet Buffer and Scheduler Cache 243
8.6.3 A Work-conserving Packet Scheduler 249
8.7 Design Options and Considerations 250
8.8 Conclusion 252

List of Dependencies

- Background: The memory access time problem for routers is described in Chapter 1. Section 1.5.3 describes the use of caching techniques to alleviate memory access time problems for routers in general.

Additional Readings

- Related Chapters: The caching hierarchy described in this chapter was first examined in Chapter 7 with respect to implementing high-speed packet buffers. The present discussion uses results from Sections 7.5 and 7.6. A similar technique is used in Chapter 9 to implement high-speed statistics counters.

Table: List of Symbols.

b	Memory Block Size
c, C	Cell
D	Descriptor Size
L	Latency between Scheduler Request and Buffer Response
$P_{\min }$	Minimum Packet Size
$P_{\max }$	Maximum Packet Size
Q	Number of Linked Lists, Queues
R	Line Rate
T	Time Slot
$T_{R C}$	Random Cycle Time of Memory

Table: List of Abbreviations.

DRAM	Dynamic Random Access Memory
MMA	Memory Management Algorithm
MDQF	Most Deficited Queue First
MDLLF	Most Deficited Linked List First
DRAM	Dynamic Random Access Memory
SRAM	Static Random Access Memory

"You say shed-ule, I say sked-ule, You like shed-ule, I like best effort!"

Designing Packet Schedulers from Slower Memories

8.1 Introduction

Historically, communication networks (e.g., telephone and ATM networks) were predominantly circuit-switched. When end hosts wanted to communicate, they would request the network to create a fixed-bandwidth channel ("circuit") between the source and destination. The connection could request assurances on bandwidth, as well as bounded delay and jitter. If the network had the resources to accept the request, it would reserve the circuit for the connection, and allow the end hosts to communicate in an isolated environment.

In contrast, as described in Chapter 7, the Internet today is packet switched. Hosts communicate by sending a stream of packets, and may join or leave without explicit permission from the network. Packets between communicating hosts are statistically multiplexed across the network, and share network and router resources (e.g., links, routers, buffers, etc.). If the packet switched network infrastructure operated in such a rudimentary manner, then no guarantees could be provided, and only best-effort service could be supported.

[^74]The purpose of this chapter is not to debate the merits of circuit vs. packet switched networks. ${ }^{1}$ Rather, we are motivated by the following question: How can a router in today's predominantly packet switched environment differentiate between, provide network resources for, and satisfy the demands of varied connections? More specifically, how can a high-speed router perform this task at wire-speeds?

8.1.1 Background

The Internet today can support a wide variety of applications and their unique performance requirements, because network and router infrastructures identify and differentiate between packets and provide them appropriate qualities of service. The different tiers of service are overlaid on top of a (usually over-provisioned) best-effort IP network.

Example 8.1. For example, IPTV [29] places strict demands on the bandwidth provided; VoIP, telnet, remote login, and inter-processor communication require very low latency; videoconferencing and Telepresence [28] require assurances on bandwidth, worst-case delay, and worst-case jitter characteristics from the network; and storage protocols mandate no packet drops. Box 8.2 provides a historical perspective, with further examples of the many applications currently supported on the Internet.

In order to provide different qualities of service, routers perform four tasks:

1. Identify flows via packet classification: First, packets belonging to different applications or protocols that need different tiers of service are identified via packet classification. Packet classification involves comparing packet headers against a set of known rules ("classifiers") so that the characteristics of the communication, i.e., the application type, source, destination characteristics, and transport protocol, etc., can be identified. Classification is an algorithmically intensive task. Many algorithms for packet classification have been proposed: for

[^75]example, route lookup algorithms [134] classify packets based on their source or destination characteristics; and flow classification algorithms [184] are protocol and application aware, and are used to more finely identify individual connections (commonly referred to as flows). Some routers can also perform deep packet classification [185].
2. Isolate and buffer flows into separate queues: Once these flows are classified, they need to be isolated from each other, so that their access to network and router resources can be controlled. This is done by buffering them into separate queues. Depending on the granularity of the classifier, and the number of queues maintained by the packet buffer, one or more flows may share a queue in the buffer. Packet buffering is a memory-intensive task, and we described a caching hierarchy in Chapter 7 to scale the performance of packet buffering.
3. Maintain scheduling information for each queue: Once the packets for a particular flow are buffered to separate queues, a scheduler or memory manager maintains "descriptors" for all the packets in the queues. The descriptors keep information such as the length and location of all packets in the queue. In addition, the scheduler maintains the order of packets by linking the descriptors for the consecutive packets that are destined to a particular queue. ${ }^{2}$ The scheduler makes all of this information available to an arbiter, and is also responsible for responding to the arbiter's requests, as described below.
4. Arbitrate flows based on network policy:Arbitration is the task of implementing network policy, i.e., allocating resources (such as share of bandwidth, order in which the queues are serviced, distinguishing queues into different priority levels, etc.) among the different queues. The arbiter has access to the scheduler linked lists (and so is made aware of the state of all packets in the queues) and other queue statistics maintained by the scheduler. Based on a programmed network policy, it requests packets in a specific order from the different queues. A number of arbitration algorithms have been proposed to implement the network policy. These include weighted fair queueing [17] and its

[^76]variants, such as GPS [18], Virtual Clock [19], and DRR [20]. Other examples include strict priority queueing and $\mathrm{WF}^{2} \mathrm{Q}$ [21]. A survey of existing arbitration policies and algorithms is available in [186]. ${ }^{3}$

8.1.2 Where Are Schedulers Used Today?

Broadly speaking, a scheduler is required wherever packets are stored in a buffer and those packets need to be differentiated when they access network resources.

Observation 8.1. A buffer (which stores packet data), a scheduler (which keeps descriptors to packet data so that it can be retrieved), and an arbiter (which decides when to read packets and the order in which they are read) always go together.

Figure 8.1 shows an example of a router line card where scheduling information is needed by the arbiter (to implement network policy) in four instances:

1. On the ingress line card, an arbiter serves the ports in the ingress MAC in different ratios, based on their line rates and customer policy.
2. Later, packets are buffered in separate virtual output queues (VOQs), and a central switch arbiter requests packets from these VOQs (based on the switch fabric architecture and the matching algorithms that it implements).
3. On the egress line card, the output manager ASIC re-orders packets that arrive from a switch fabric (that may potentially mis-order packets).
4. Finally, when packets are ready to be sent out, an arbiter in the egress MAC serves the output ports based on their line rates and quality of service requirements.

It is interesting to compare Figure 7.1 with Figure 8.1. The two diagrams are almost identical, and a scheduler is required in every instance where there is a buffer.

[^77]

Figure 8.1: Scheduling in Internet routers.

The only exception is the case where the buffer is a single first in first out (FIFO) queue, as in the lookup latency buffer and the multicast replication buffer in Figure 7.1. If there is only a single queue, it is trivial for a scheduler to maintain descriptors. Also, the FIFO policy is trivial to implement, and no arbiter is required.

8.1.3 Problem Statement

As far as we know, contrary to the other tasks described above, the task of maintaining the scheduler database, which involves maintaining and managing descriptor linked lists in memory, has not been studied before. We are particularly interested in this task, as it is a bottleneck in building high-speed router line cards, since:

1. It places huge demands on the memory access rate, and
2. It requires a large memory capacity (similar to packet buffers), and so cannot always be placed on-chip.

As we saw earlier, the scheduler and arbiter operate in unison with a packet buffer. Thus, the scheduler must enqueue and dequeue descriptors for packets at the rate at which they arrive and leave the buffer, i.e., R. In the worst case, this needs to be done in the time that it takes for the smallest-size packet to arrive.

In some cases, the scheduler may also have to operate faster than the line rate. This happens because packets themselves may arrive to the buffer faster than the line rate (e.g., due to speedup in the fabric). Another reason is that the buffer may need to support multicast packets at high line rates, for which multiple descriptors (one per queue to which the multicast packet is destined) need to be created per packet.

Example 8.2. At $10 \mathrm{~Gb} / \mathrm{s}$, a 40-byte packet arrives in 32 ns , which means that the scheduler needs to enqueue and dequeue a descriptor at least once every 32 ns , which is faster than the access rate of commercial DRAM [3]. If a sustained burst of multicast packets (each destined to, say, four ports) arrives, the scheduler will need to enqueue descriptors every 8 ns and dequeue descriptors every 32 ns , making the problem much harder.

Indeed, as the above example shows, the performance of the scheduler is a significant bottleneck to scaling the performance of high-speed routers. The memory access rate problem is at least as hard as the packet buffering problem that we encountered in Chapter 7 (and sometimes harder, when a large number of multicast packets must be supported at line rates).

Observation 8.2. The smallest-size packet on most networks today is ~ 40 bytes. ${ }^{4}$ Note that if the minimum packet size was larger, the scheduler would have more time to enqueue and dequeue these descriptors. However, the size of the smallest packet will not change anytime soon - applications keep their packet sizes small to minimize network latency. For example, telnet, remote login, and NetMeeting are known to send information about a keystroke or a mouse click immediately, i.e., no more than one or two bytes of information at a time. ${ }^{5}$

8.1.4 Goal

Our goal in this thesis is to enable high-speed routers to provide deterministic performance guarantees, as described in Chapter 1. If the scheduler (which maintains information about each packet in the router) cannot provide the location of a packet in a deterministic manner, then obviously the router itself would be unable to give deterministic guarantees on packet performance! So we will mandate that the scheduler give deterministic performance; and similar to our discussion on building robust routers (see Box 7.1), we will mandate that the scheduler's performance cannot be compromised by an adversary.

[^78]
8.1.5 Organization

The rest of this chapter is organized as follows: We will describe five different implementations for a packet scheduler [187] in sections 8.2-8.6:

> Method 1. A Typical Packet Scheduler: In Section 8.2 , we will describe the architecture of a typical packet scheduler. We will see that the size of the descriptor that needs to be maintained by a typical scheduler can be large, and even comparable in size to the packet buffer that it manages. And so, the memory for the scheduler will have a large capacity and require a high access rate.

Method 2. A Scheduler Hierarchy for a Typical Packet Scheduler: In Section 8.3, we will show how we can re-use the techniques described in Chapter 7 to build a caching hierarchy for a packet scheduler. This will allow us to build schedulers with slower commodity memory, and also reduce the size of the scheduler memory.

Method 3. A Scheduler that Operates with a Buffer Hierarchy: In Section 8.4, we show that the amount of information that a scheduler needs to maintain can be further reduced, if the packet buffer that it operates with is implemented using the buffer caching hierarchy described in the previous chapter.

Method 4. A Scheduler Hierarchy that Operates with a Buffer Hierarchy: As a consequence of using a buffer cache hierarchy, we will show in Section 8.5 that the size of the scheduler cache also decreases in size compared to the cache size in Section 8.3.

Method 5. A Scheduler that Piggybacks on the Buffer Hierarchy: Finally, in Section 8.6 we will present the main idea of this chapter, i.e., a unified technique where the scheduler piggybacks on the operations of the

Abstract

packet buffer. With this piggybacking technique, we will completely eliminate the need to maintain a separate data structure for packet schedulers.

In Section 8.7, we summarize the five different techniques to build a high-speed packet scheduler, and discuss where they are applicable, and their different tradeoffs.

Why do we not use just one common technique to build schedulers? We will see in Section 8.7 that there is no one optimal solution for all scheduler implementations. Each of the five different techniques that we describe here is optimal based on the system constraints and product requirements faced when designing a router. Besides, we will see that in some cases one or more of the above techniques may be inapplicable for a specific instance of a router.

8.2 Architecture of a Typical Packet Scheduler

A typical scheduler maintains a data structure to link packets destined to separate queues. If there are Q queues in the system, the scheduler maintains Q separate linked lists. Each entry in the linked list has a "descriptor" that stores the length of a particular packet, the memory location for that packet, and a link or pointer to the next descriptor in that queue; hence the data structure is referred to as descriptor linked lists. This is shown in Figure 8.2.

When a packet arrives, first it is classified, and the queue that it is destined to is identified. The packet is then sent to the packet buffer. A descriptor is created which stores the length of the packet and a pointer to its memory location in the buffer. This descriptor is then linked to the tail of the descriptor linked list for that queue.

[^79]Packet Data

Packet Descriptors
(Pointer and Length)

Figure 8.2: The architecture of a typical packet scheduler.

The scheduler makes the descriptor linked lists available to the arbiter. The arbiter may request head-of-line packets from these descriptor linked lists, in any order based on its network policy. When this request arrives, the scheduler must dequeue the descriptor corresponding to the packet, retrieve the packet's length and memory location, and request the corresponding number of bytes from the corresponding address in the packet buffer.

How much memory capacity does a scheduler need? The scheduler maintains the length and address of a packet in the descriptor. In addition, every descriptor must keep a pointer to the next descriptor. We can calculate the size of the descriptors as follows:

1. The maximum packet size in most networks today is 9016 bytes (colloquially referred to as a jumbo packet). So packet lengths can be encoded in $\left\lceil\log _{2} 9016\right\rceil=$ 13 bits. If the memory data is byte aligned (as is the case with most memories), this would require 2 bytes. ${ }^{6}$
2. The size of the packet memory address depends on the total size of the packet buffer. We will assume that they are 4 bytes each. This is sufficient to store 2^{32} addresses, which is sufficient for a 4 GB packet buffer, and is plenty for most networks today.
3. Since there is one descriptor per packet, the size of the pointer to the next descriptor is also 4 bytes long.

So we need approximately 10 bytes per packet descriptor. In the worst case, if all packets were 40 bytes long, the scheduler would maintain 10 bytes of descriptor information for every 40-byte packet in the buffer, and so the scheduler database would be roughly $\sim \frac{1}{4}^{\text {th }}$ the size of the buffer.

Example 8.4. For example, on a $100 \mathrm{~Gb} / \mathrm{s}$ link with a 10 ms packet buffer, a scheduler database that stores a 10-byte descriptor for each 40-byte

[^80]packet would need 250 Mb of memory, and this memory would need to be accessed every 2.5 ns. The capacity required is beyond the practical capability of embedded SRAM. Using currently available 36 Mb QDRSRAMs, ${ }^{7}$ this would require 8 external QDR-SRAMs, and over $\$ 200$ in memory cost alone!

Because of the large memory capacity and high access rates required by the scheduler, high-speed routers today keep the descriptors in expensive high-speed SRAM [2]. It is easy to see how the memory requirements of the scheduler are a bottleneck as routers scale to even higher speeds. In what follows, we describe various techniques to alleviate this problem. We begin by describing a caching hierarchy similar to the one described in Chapter 7.

8.3 A Scheduler Hierarchy for a Typical Packet Scheduler

Abstract

WObservation 8.3. An arbiter can dequeue the descriptors for packets in any order among the different linked lists maintained by the scheduler. However, within a linked list, the arbiter can only request descriptors for packets from the head of line. Similarly, when a packet arrives to a queue in the buffer, the descriptor for the packet is added to the tail of the descriptor linked list. So the descriptor linked lists maintained by the scheduler behave similarly to a FIFO queue.

In Chapter 7, we described a caching hierarchy that could be used to implement high-speed FIFO queues. Based on the observation above, we can implement the scheduler linked lists with an identical caching hierarchy. Figure 8.3 describes an example of such an implementation. In what follows, we give a short description of the scheduler memory hierarchy. For additional details, the reader is referred to Chapter 7.

[^81]

Packet Descriptor Cache (SRAM)
(Pointer and Length)

Figure 8.3: A caching hierarchy for a typical packet scheduler.

The scheduler memory hierarchy consists of two SRAM caches: one to hold descriptors at the tail of each descriptor linked list, and one to hold descriptors at the head. The majority of descriptors in each linked list - that are neither close to the tail or to the head - are held in slow bulk DRAM. Arriving packet descriptors are written to the tail cache. When enough descriptors have arrived for a queue, but before the tail cache overflows, the descriptors are gathered together in a large block and written to the DRAM. Similarly, in preparation for when the arbiter might access the linked lists, blocks of descriptors are read from the DRAM into the head cache. The trick is to make sure that when a descriptor is read, it is guaranteed to be in the head cache, i.e., the head cache must never underflow under any conditions.

The packets for which descriptors are created arrive and depart at rate R. Let $P_{\min }$ denote the size of the smallest packet, and D denote the size of the descriptor. This implies that the descriptors arrive and depart the scheduler at rate $R \frac{|D|}{P_{m i n}}$. Note that the external memory bandwidth is reduced by a factor of $\frac{|D|}{P_{\text {min }}}$ (as compared to the bandwidth needed for a packet buffer), because a scheduler only needs to store a descriptor of size $|D|$ bytes for every $P_{\text {min }}$ bytes stored by the corresponding packet buffer. Hence the external memory only needs to run at rate $2 R \frac{|D|}{P_{\text {min }}}$.

We will assume that the DRAM bulk storage has a random access time of T. This is the maximum time to write to, or read from, any memory location. (In memory-parlance, T is called $T_{R C}$.) In practice, the random access time of DRAMs is much higher than that required by the memory hierarchy. Therefore, descriptors are written to bulk DRAM in blocks of size $b=2 R \frac{|D|}{P_{\text {min }}} T$ every T seconds, in order to achieve a bandwidth of $2 R \frac{|D|}{P_{\min }}$. For the purposes of this chapter, we will assume that the SRAM is fast enough to always respond to descriptor reads and writes at the line rate, i.e., descriptors can be written to the head and tail caches as fast as they depart or arrive.

We will also assume that time is slotted, and the time it takes for a byte (belonging to a descriptor) to arrive at rate $R \frac{|D|}{P_{\text {min }}}$ to the scheduler is called a time slot.

Note that descriptors are enqueued and dequeued as before when a packet arrives or departs. The only difference (as compared to Figure 8.2) is that the descriptor
linked lists are cached. Our algorithm will be exactly similar to Algorithm 7.1, and is described for a linked list-based implementation in Algorithm 8.1.

Algorithm 8.1: The most deficited linked list first algorithm.

```
    input : Linked List Occupancy.
    output: The linked list to be replenished.
    /* Calculate linked list to replenish */
    repeat every b time slots
        CurrentLLists }\leftarrow(1,2,\ldots,Q
        /* Find linked lists with pending data */
        /* Data can be pending in tail cache or DRAM */
        CurrentLLists }\leftarrowF\mathrm{ FindPendingLLists(CurrentLLists)
        /* Find linked lists that can accept data in head cache
        */
        CurrentLLists }\leftarrowF\mathrm{ FindAvailableLLists(CurrentLLists)
        /* Calculate most deficited linked list */
        LLMaxDef}\leftarrowF\mathrm{ FindMostDeficitedLList (CurrentLLists)
        if \existsL\mp@subsup{L}{MaxDef}{}}\mathrm{ then
            Replenish(LL MaxDef)
                UpdateDeficit(LL MaxDef}
    /* Service request for a linked list */
    repeat every time slot
            if }\exists\mathrm{ request for q}\mathrm{ then
            UpdateDeficit(q)
            ReadData (q)
```

MDLLF Algorithm: MDLLF tries to replenish a linked list in the head cache every b time slots. It chooses the linked list with the largest deficit, if and only if some of the linked list resides in the DRAM or in the tail cache, and only if there is room in the head cache. If several linked lists have the same deficit, a linked list is picked arbitrarily.

So we can re-use the bounds that we derived on the size for the head cache from Theorem 7.3, and the size of the tail cache from Theorem 7.1. This leads us to the following result:

Corollary 8.1. (Sufficiency) A packet scheduler requires no more than $Q b(4+$ $\ln Q) \frac{|D|}{P_{m i n}}$ bytes in its cache, where $P_{\text {min }}$ is the minimum packet size supported by the scheduler, and $|D|$ is the descriptor size.

Proof. This is a consequence of adding up the cache sizes derived from Theorems 7.1 and 7.3 and adjusting the cache size by a factor of $\frac{|D|}{P_{\min }}$ bytes, because the scheduler only needs to store a descriptor of size $|D|$ bytes for every $P_{\text {min }}$ bytes stored by the corresponding packet buffer.

What is the size of the descriptor? Note that with the caching hierarchy, the scheduler only needs to maintain the length and address of a packet. It no longer needs to keep a pointer to the next descriptor, since descriptors are packed back-to-back. So the size of the packet descriptor can be reduced to $D=6$ bytes.

The following example shows how these results can be used for the same $100 \mathrm{~Gb} / \mathrm{s}$ line card.

Example 8.5. For example, on a $100 \mathrm{~Gb} / \mathrm{s}$ link with a 10 ms packet buffer, the scheduler database can be stored using an on-chip cache and an off-chip external DRAM. Our results indicate that with a DRAM with a capacity of 150 Mb and $T_{R C}=51.2 \mathrm{~ns}, b=640$ bytes, and $Q=96$ scheduler queues, the scheduler cache size would be less than 700 Kb , which can easily fit in on-chip SRAM.

8.4 A Scheduler that Operates With a Buffer Hierarchy

We will now consider a scheduler that operates a packet buffer that has been implemented with the caching hierarchy described in Chapter 7. This is shown in Figure 8.4.

Figure 8.4: A scheduler that operates with a buffer cache hierarchy.

Observation 8.4. Recall that the packet buffer cache allocates memory to the queues in blocks of b-bytes each. Consecutive packets destined for a queue are packed back to back, occupying consecutive locations in memory. ${ }^{8}$ From the scheduler's perspective, this means that it no longer needs to store the address of every packet. The buffer cache simply streams out the required number of bytes from the location where the last packet for that queue was read.

Based on the observation above, the scheduler can eliminate storing per-packet addresses, and only needs to store packet addresses and a pointer to the next descriptor. This would reduce the size of the packet descriptor to 6 bytes.

> Example 8.6. For example, on a $100 \mathrm{~Gb} / \mathrm{s}$ link with a 10 ms packet buffer, a scheduler database that stores a 6 -byte descriptor for each smallest-size 40-byte packet would need approximately 150 Mb of SRAM. This is smaller in size than the scheduler implementation shown in Example 8.4.

8.5 A Scheduler Hierarchy that Operates With a Buffer Hierarchy

Of course, we can now build a cache-based implementation for our scheduler, identical to the approach we took in Section 8.3. As a consequence, the implementation of the scheduler that operates with the buffer cache is the same as shown in Figure 8.4. The only difference is that the implementation of the scheduler is itself cached as shown in Figure 8.5. We can derive the following results:

[^82]

Packet Descriptor Cache (SRAM)
(Length)

Figure 8.5: A scheduler cache hierarchy that operates with a buffer cache hierarchy.

Corollary 8.2. (Sufficiency) A scheduler (which only stores packet lengths) requires no more than $Q b(4+\ln Q) \frac{\log _{2} P_{\max }}{P_{\min }}$ bytes in its cache, where $P_{\min }, P_{\max }$ are the minimum and maximum packet sizes supported by the scheduler.

Proof. This is a direct consequence of adding up the cache sizes derived from Theorems 7.1 and 7.3. From Theorem 7.1, we know that the tail cache must be at least $Q b$ bytes if packet data is being stored in a buffer. However, the scheduler only needs to store a descriptor of size $\log _{2} P_{\max }$ bytes (to encode the packet length) for every $P_{\min }$ bytes stored by the corresponding packet buffer. So, the size of the cache is reduced by a factor of $\frac{\log _{2} P_{\max }}{P_{\min }}$ bytes. This implies that the size of the tail cache is no more than $Q b \frac{\log _{2} P_{\text {max }}}{P_{\text {min }}}$ bytes. Similarly, the size of the head cache can be inferred from Theorem 7.3 to be $Q b(3+\ln Q) \frac{\log _{2} P_{\max }}{P_{\min }}$ bytes. Summing the sizes of the two caches gives us the result.

> Example 8.7. For example, on a $100 \mathrm{~Gb} / \mathrm{s}$ link with a 10 ms packet buffer, the scheduler database can be stored using an on-chip cache and an off-chip external DRAM. Our results indicate that with a DRAM with a capacity of 50 Mb and $T_{R C}=51.2 \mathrm{~ns} ; b=640$ bytes, and $Q=96$ scheduler queues, the scheduler cache size would be less than 250 Kb , which can easily fit in on-chip SRAM. Both the capacity of the external memory and the cache size are smaller in this implementation, compared to the results shown in Example 8.5.

8.6 A Scheduler that Piggybacks on the Buffer Hierarchy

In the previous section, we eliminated the need for maintaining per-packet addresses in the scheduler. This was possible because consecutive packets were packed back to back in consecutive addresses, and these addresses were maintained by the buffer cache hierarchy. However, the method described above requires the scheduler to keep a linked list of packet lengths. In this section we show how the scheduler can eliminate
the need for maintaining packet lengths, and so eliminate maintaining descriptors altogether!

In the technique that we describe, our scheduler will piggyback on the packet buffer cache hierarchy. Observe that packets already carry the length information that a scheduler maintains. ${ }^{9}$ This motivates the following idea:

次Idea. "The buffer cache could retrieve the lengths of the packets, which are pre-fetched in the head cache, and pass on these lengths to the scheduler a priori, just in time for the arbiter to make decisions on which packets to schedule. ${ }^{a \prime \prime}$

[^83]
8.6.1 Architecture of a Piggybacked Scheduler

Figure 8.6 describes the architecture of a piggybacked scheduler. The following describes how the scheduler and the buffer interact.

1. Arriving packets are written to the tail of the packet buffer cache.
2. Descriptors for the packet are not created. Note that this implies that the scheduler does not need to be involved when a packet arrives.
3. The length of the packet is encoded along with the packet data. In most cases this is not necessary, since packet length information is already part of the packet header - if not, then the length information is tagged along with the packet. In what follows, we assume that the packet length is available at (or tagged in front of) the most significant byte of the packet header. ${ }^{10}$

[^84]
$L 1$ is the latency on the request interface
$L 2+L 3$ is the total round-trip memory latency
$L 4$ is the latency for length parsing and the length interface
$L 1+L 2+L 3+L 4$ is the total latency between the buffer and scheduler/arbiter

Figure 8.6: A combined packet buffer and scheduler architecture.
4. The buffer memory management algorithm periodically fetches b-bytes blocks of data for a queue and replenishes the cache. When the packets are fetched into the head cache, their lengths are parsed and sent to the scheduler. The queue to which the corresponding packet belongs is also conveyed to the scheduler.
5. The scheduler caches the length information for these packets, and arranges them based on the queues that the packets are destined to.
6. Based on the network policy, the arbiter chooses a queue to service, dequeues a descriptor, and issues a read for a packet from the buffer.
7. On receiving this request, the buffer cache streams the packet from its head cache.

Note that there is no need to maintain a separate descriptor linked list for the scheduler. The linked list information is created on the fly! - and is made available just in time so that an arbiter can read packets in any order that it chooses.

8.6.2 Interaction between the Packet Buffer and Scheduler Cache

We are not quite done. We need to ensure that the arbiter is work-conserving - i.e., if there is a packet at the head of any queue in the system, the descriptor (or packet length in this case) for that packet is available for the arbiter to read, so that it can maintain line rate. However, the system architecture shown in Figure 8.6 is an example of a closed-loop system where the buffer cache, scheduler, and arbiter are dependent on each other. We need to ensure that there are no deadlocks, loss of throughput, or starvation.

Let us consider the series of steps involved in ensuring that the packet scheduler always has enough descriptors for the arbiter to schedule at line rate. First note that, by design, the arbiter will always have the length descriptors (delayed by at most $L 4$ time slots) for any data already residing in the head cache. Our bigger concern is: How can we ensure that the arbiter does not have to wait to issue a read for a packet that is waiting to be transferred to the head cache? We consider the system

8<Box 8.1: A Buffer and Scheduler Converse>:

The scheduler and buffer (played by Fräulein S. Duler and B. Uffer) are discussing how to maintain packet lengths as needed by the Arbiter (played by Herr Biter). .a
B. Uffer: Why do you maintain lengths of all packets in your linked lists?
S. Duler: So that l can know the exact size of the packets from each of your queues. Herr Biter is very particular about packet sizes.
B. Uffer: Why does he need the exact size? He could read one MTU's (maximum fransmission unit) worth from the head of each queue. He could parse the lengths by reading the packet headers, and send the exact number of bytes down the wire.
S. Duler: But the packet could be less than one MTU long.
B. Uffer: In that case, he could buffer the residual data.
S. Duler: Oh - 1 am not so sure he can do that
B. Uffer: Why? Surely, Herr Biter can read?
S. Duler: Of course! The problem is that he would need to store almost one MTU for each queue in the worst case.
B. Uffer: What's the big deal?
S. Duler: He doesn't have that much space!
B. Uffer: That's his problem!
S. Duler: Oh, come on. We all reside on the same ASIC.
B. Uffer: Well, can't he buffer the residual data for every queue?
S. Duler: Look who's talking!; I thought it was your job to buffer packets!
B. Uffer: 1 was trying to save you from keeping the lengths of all packets
S. Duler: Then come up with something better...
B. Uffer: Wait, I have an idea! I can send you the length of the head-of-line packet from every queue.
S. Duler: How will you do that?
B. Uffer: Well, I have pre-fetched bytes from every queue in my head cache. When data is pre-fetched, I can parse the length, and send it to you before Herr Biter needs it.
S. Duler: Yes - then I won't need to keep a linked list of lengths for all packets!
B. Uffer: But what about Herr Biter? Would he have the packet length on time, when he arbitrates for a packet?
S. Duler: Trust me, he's such a dolly! He will never know the difference!
${ }^{a}$ Fräulein (Young lady), Herr (Mister) in German.

$L 2+L 3$ is the total round-trip memory latency
$L 1+L 2+L 3+L 4$ is the total latency between the buffer and scheduler/arbiter

Figure 8.7: The closed-loop feedback between the buffer and scheduler.
from an arbiter's perspective and focus on a particular queue, say queue N, as shown in Figure 8.7.

1. Request: The arbiter dequeues a descriptor for queue N and requests a packet from queue N.
2. Read: The buffer cache receives this read request after a fixed time $L 1$ (this corresponds to the delay in step 6 in Figure 8.6), and streams the requested packet on the read interface.
3. Replenish: This creates a deficit for queue N in the head cache. If at this time queue N had no more data in the head cache, ${ }^{11}$ then the descriptors for the next packet of queue N will not be available. However, we are assured that at this time queue N will be the most-deficited queue or earliest critical queue (based on the algorithms described in Chapter 7). The buffer cache sends a request to

[^85]replenish queue N. We will denote $L 2$ to be the time that it takes the buffer cache to react and send a request to replenish queue N. This corresponds to part of the latency in step 4 in Figure 8.6.
4. Retrieve: The packet data for queue N is received from either the tail cache or the external memory after $L 3^{12}$ time slots. The length of the next packet for queue N is retrieved and sent to the scheduler. This corresponds to the other part of the latency in step 4 in Figure 8.6. Note that $L 2$ and $L 3$ together constitute the round-trip latency of fetching data from memory.
5. Request: The scheduler receives the new length descriptor for queue N after L4 time slots. This is the latency incurred in transferring data on the length interface in step 5 in Figure 8.6.

So, if the arbiter has no other descriptor available for queue N, then it will have to wait until the next descriptor comes back, after $L=L 1+L 2+L 3+L 4$ time slots, before it can make a new request and fetch more packets for queue N from the buffer. This can result in loss of throughput, as shown in the following counter-example:

> Example 8.8. The adversary runs the worst-case adversarial traffic pattern as described in Theorem 7.2, from time slot $T=0$ to $T=E$, where E is the total time it takes to run the worst-case adversarial pattern. This pattern results in creating the maximum deficit for a particular queue (in this case, queue N). Since queue N is the most-deficited queue, the buffer will issue a request to replenish the head cache for that queue. However, the adversary could simultaneously request data from queue N at line rate. Notice that it would take another L time slots for the length of the next packet to be retrieved and made available to the scheduler. Thus the arbiter cannot request any packets from queue N between time E and time $E+L$. This pattern can be

[^86]Packets and Encoded Lengths
(DRAM)

For Queue $\mathbf{N}(\mathbf{E}<$ Time $<\mathbf{E}+\mathbf{L})$:
(a) No packets read by arbiter
(b) No packets streamed by buffer
(c) Cache replinish data received by buffer

Figure 8.8: The worst-case pattern for a piggybacked packet scheduler.
repeated continuously over time over different queues, causing a loss of throughput as shown in Figure 8.8.

8<Box 8.2: Applications that Need Scheduling>*

In the last decade, a near-continuous series of new Internet-based applications ("killer apps") have entered widespread use. Each new application has introduced support challenges for its implementation over the current "best-effort" network infrastructures, and for restricting the amount of network resources that it consumes.

In the earliest days of the Internet, the most common application, email, required only best-effort service, but by 1995 the adyent of the browser introduced widespread adoption of Web protocols. The Internet was now used primarily for content sharing and distribution and required semi-real-time support. At the same time, applications for remote computer sharing became common, including telnet, ssh, and remote login. Although these applications didn't require high bandwidth, they ideally called for low latency.

By the late 1990s, the Internet had begun to be used to support E-commerce applications, and new routers were designed to identify these applications and provide broad quality-of-service guarantees. Load balancers and other specialized router equipment were built to provide optimally reliable service with zero packet drop for these financially sensitive applications.

In 1999, the first large-scale P2P protocol, freenet [188] was released. Freenet initiated a wave of popular file sharing tools, such as Napster, Kazaa, ete., to transfer large files, including digital content. P2P protocols have continued to evolve over the last eight years, and now place heavy bandwidth demands on the network. It has been estimated that over 70% of all Internet traffic consists of P2P traffic, and many businesses, universities, and Internet service providers (ISPs) now schedule, police, and linit this traffic.

By 2000, the Internet had begun to see widespread adoption of real-time communication applications such as Internet chat [189], instant messaging, etc. These applications were extremely sensitive to latency and jitter - for example, conversation quality is known to degrade when latency of communication exceeds $\sim 150 \mathrm{~ms}$. Thus, it would be another 5-6 years before business- and consumer-quality Internet telephony [190] became widespread.

The past few years have seen the advent of real-time, multi-point applications requiring assured bandwidth, delay, and jitter characteristics. These applications include multiplayer games [191], ${ }^{a}$ videoconferencing applications such as Telepresence [28], and IPTV [29].

Additionally, storage protocols [61] mandate high-quality communications with no packet drops, and inter-processor communications networks for supercomputing applications mandate extremely low latency. There is even an ongoing interest in using the Internet for sensitive and mission-critical applications, e.g., distributed orchestras and tele-surgery. All of these applications require a scheduler to differentiate them and provide the requisite quality of service.

With the ever-increasing range of applications, and their ever-changing demands, the need for scheduling has become correspondingly important. Thus, today nearly all switches and routers, including home office and small office units, support scheduling.

[^87]
8.6.3 A Work-conserving Packet Scheduler

To ensure that the scheduler is work-conserving, we will need to size both the packet buffer and the scheduler cache carefully. We are now ready to derive their sizes.

Theorem 8.1. (Sufficiency) The $M D Q F$ packet buffer requires no more than $Q[b(4+\ln Q)+R L]$ bytes in its cache in order for the scheduler to piggyback on it, where L is the total closed-loop latency between the scheduler and the MDQF buffer cache.

Proof. We know that if the buffer does not have a scheduler that piggybacks on it, then the size of the head cache is $Q[b(3+\ln Q)]$ (from Theorem 7.3), and the size of the tail cache is $Q b$ bytes (from Theorem 7.1). In order to prevent the adversarial traffic pattern described in Example 8.8, we will increase the size of the head cache by $R L$ bytes for every queue. This additional cache completely hides the round-trip latency L between the buffer and the scheduler. Summing up the above numbers, we have our result.

Theorem 8.2. (Sufficiency) A length-based packet scheduler that piggybacks on the $M D Q F$ packet buffer cache requires no more than $Q[b(3+\ln Q)+R L] \frac{\log _{2} P_{\max }}{P_{\min }}$ bytes in its head cache, where L is the total closed-loop latency between the scheduler and the $M D Q F$ buffer cache.

Proof. This is a consequence of Theorem 8.1 and Corollary 8.2. Note that the scheduler cache only needs to keep the lengths of all packets that are in the head cache of the packet buffer. From Theorem 8.1, the size of the head cache of the packet buffer is $Q[b(3+\ln Q)]$ bytes. Corollary 8.2 tells us that we need to scale the size of a lengthbased scheduler cache by $\frac{\log _{2} P_{\max }}{P_{\text {min }}}$ bytes. So the size of the cache for the scheduler is $Q[b(3+\ln Q)] \frac{\log _{2} P_{\max }}{P_{\min }}$ bytes. Note that the scheduler does not need a tail cache, hence its scaled size does not include the $Q b \frac{\log _{2} P_{\max }}{P_{\text {min }}}$ bytes that would be required if it had a tail cache.

Table 8.1: Packet buffer and scheduler implementation options.

Buf- fer ${ }^{14}$	Sche- duler	Desc- riptor	Pros	Cons	Sec- tion
U	U	Length, Address, NextPtr	Simple	Hard to scale buffer, scheduler performance	8.2
U	C	Length, Address	Reduces scheduler size, scales scheduler performance	Hard to scale buffer performance	8.3
C	U	Length, NextPtr	Reduces scheduler size, scales buffer performance	Hard to scale scheduler performance	8.4
C	C	Length	Minimizes scheduler size, scales buffer and scheduler performance	Requires two caches	8.5
Piggybacked					

Example 8.9. For example, on a $100 \mathrm{~Gb} / \mathrm{s}$ link with a 10 ms packet buffer, the scheduler database can be stored using an on-chip cache. It does not require an off-chip external DRAM, since the lengths are piggybacked on the packets in the packet buffer. Our results indicate that with a DRAM with $T_{R C}=51.2 \mathrm{~ns}$ used for the packet buffer, $b=640$ bytes, and $Q=96$ scheduler queues, and latency $L=100 \mathrm{~ns}$, the buffer cache size would be less than 5.4 Mb , and the scheduler cache size would be less than 270 Kb , which can easily fit in on-chip SRAM. The size of the scheduler database is almost identical ${ }^{13}$ to the results derived in Example 8.7, except that no separate DRAM needs to be maintained to implement the packet scheduler!

8.7 Design Options and Considerations

We have described various techniques to scale the performance of a packet scheduler. Table 8.1 summarizes the pros and cons of the different approaches. Note that we do not mandate any one technique over the other, and that each technique has its own tradeoffs, as discussed below.

[^88]1. If the total size of the scheduler and buffer is small, or if the line rates supported are not very high, the scheduler can be implemented in a typical manner as suggested in Section 8.2. It may be small enough that both the scheduler and buffer can fit on-chip - this is typically the case for the low-end Ethernet switch and router markets.
2. The solution in Section 8.3 is used when the buffer cache cannot fit on-chip, but a scheduler cache (which is typically smaller than the buffer cache) can. This can happen when the number of queues is very large, or the available memory is very slow compared to the line rate, both of which mandate a large buffer cache size. We have targeted the above implementation for campus backbone routers [109] where the above requirements hold true.
3. The solution in Section 8.4 is used when the number of packets that are to be supported by a scheduler is not very large, even though the buffer itself is large. This happens in applications that pack multiple packets into super frames. Since the scheduler only needs to track a smaller number of super frames, the size of the scheduler database is small and no caching hierarchy is needed for the scheduler. We have targeted the above implementations for schedulers that manage VOQs in the Ethernet switch and Enterprise router markets [193].
4. The solution in Section 8.5 allows scaling the performance of both the buffer and the scheduler to very high line rates, since both the buffer and scheduler are cached; however, it comes at the cost of implementing two separate caching hierarchies. We currently do not implement this technique, because the method described below is a better tradeoff for current-generation $10-100 \mathrm{~Gb} / \mathrm{s}$ line cards. However, we believe that if the memory latency L becomes large, this technique will find favor compared to the technique below, where cache size depends on the memory latency.
5. Finally, the solution in Section 8.6 is the most space-efficient, and completely eliminates the need for a scheduler database. However, it requires a modified caching hierarchy where the buffer and scheduler interact closely with each other. Also, if the round trip latency L is large (perhaps due to a large external memory latency), the cache size required may be larger than the sum of the

Table 8.2: Packet buffer and scheduler implementation sizes.

Buffer	Sche- duler	Buffer Cache Size	Scheduler Cache Size	Buffer Main Mem.	Sche- duler Main Mem.	Section
U	U	-	-	SRAM	SRAM	8.2
U	C	-	$Q(4+\ln Q) \frac{T D}{P_{m i n}}$	SRAM	DRAM	8.3
C	U	$Q b(4+\ln Q)$	-	DRAM	SRAM	8.4
C	C	$Q b(4+\ln Q)$	$Q b(4+\ln Q) \frac{\log _{2} P_{\max }}{P_{\min }}$	DRAM	DRAM	8.5
Piggy Backed		$Q[b(4+\ln Q)+R L]$	$Q[b(3+\ln Q)+R L] \frac{\log _{2} P_{\max }}{P_{\min }}$	DRAM	-	8.0

cache sizes if both the buffer cache and the scheduler cache are implemented separately (as suggested in Section 8.5). This technique is by far the most common implementation, and we have used it widely, across multiple instances of data-path ASICs for $10-100 \mathrm{~Gb} /$ s line cards in the high-speed Enterprise market.

Observation 8.5. Some schedulers keep additional information about a packet in their descriptors. For example, some Enterprise routers keep packet timestamps, so that they can drop packets that have spent a long time in the buffer (perhaps due to network congestion). The techniques that we describe here are not limited to storing only addresses and packet lengths; they can also be used to store any additional descriptor information.

Table 8.2 summarizes the sizes of the buffer and scheduler for the various implementation options described in this chapter. Table 8.3 provides example implementations for the various techniques for a $100 \mathrm{~Gb} / \mathrm{s}$ line card. All the examples described in Table 8.3 are for $Q=96$ queues and an external DRAM with a $T_{R C}$ of 51.2 ns and a latency of $L=100 \mathrm{~ns}$.

8.8 Conclusion

High-speed routers need packet schedulers to maintain descriptors to every packet in the buffer, so that the router can arbitrate among these packets and control their

Table 8.3: Packet buffer and scheduler implementation examples.

Buffer	Sche- duler	Buffer Cache Size	Scheduler Cache Size	Buffer Main Mem.	Scheduler Main Mem.	Exam- ple
U	U	-	-	1Gb SRAM	250Mb SRAM	8.4
U	C	-	700 Kb SRAM	1Gb SRAM	150Mb DRAM	8.5
C	U	4.4 Mb SRAM	-	1Gb DRAM	150Mb SRAM	8.6
C	C	$4.4 M b$ SRAM	250 kb SRAM	1Gb DRAM	50 Mb DRAM	8.7
Piggy Backed	$5.3 M b$ SRAM	270kb SRAM	1Gb DRAM	-	8.9	

access to network resources. The scheduler needs to support a line rate equal to or higher than (in case of multicast packets) its corresponding packet buffer, and this is a bottleneck in building high-speed routers.

We have presented four techniques that use the caching hierarchy described in Chapter 7 to scale the performance of the scheduler. The general techniques presented here are agnostic to the specifics of the QoS arbitration algorithm.

We have found in all instances of the networking market that we have encountered, that one of the above caching techniques can be used to scale the performance of the scheduler. We have also found that it is always practical to place the scheduler cache on-chip (primarily because it is so much smaller than a packet buffer cache).

We have demonstrated practical implementations of the different types of schedulers described in this chapter for the next generation of various segments of the Ethernet Switch and Enterprise Router market [4, 176, 177, 178], and their applicability in the campus router market [109].

The scheduler caching techniques mentioned here have been used in unison with the packet buffer caching hierarchy described in Chapter 7. Our scheduler caching techniques have helped further increase the memory cost, area, and power savings reported in Chapter 7. In instances where the piggybacking technique is used, packet processing ASICs have also been made significantly smaller in size, mainly because the on- or off-chip scheduler database has been eliminated. We estimate that more than 1.6 M instances of packet scheduler caches (on over seven unique product instances) will be made available annually, as Cisco Systems proliferates its next generation of high-speed Ethernet switches and Enterprise routers.

In summary, the techniques we have described can be used to build schedulers that are (1) extremely cost-efficient, (2) robust against adversaries, (3) give the performance of SRAM with the capacity characteristics of a DRAM, (4) are faster than any that are commercially available today, and (5) can be scaled for several generations of technology.

Summary

1. The current Internet is a packet switched network. This means that hosts can join and leave the network without explicit permission. Packets between communicating hosts are statistically multiplexed across the network and share network and router resources (e.g., links, routers, buffers, etc.).
2. In order for the Internet to support a wide variety of applications (each of which places different demands on bandwidth, delay, jitter, latency, etc.), routers must first differentiate these packets and buffer them in separate queues during times of congestion. Then an arbiter provides these packets their required quality of service and access to network resources.
3. Packet schedulers facilitate the arbiter's task by maintaining information ("descriptors") about every packet that enters a router. These descriptors are linked together to form descriptor linked lists, and are maintained for each queue in the buffer. The descriptor linked lists are also responsible for specifying the order of packets in a queue.
4. A typical descriptor in the packet scheduler contains the packet length, an address to the location of the packet in the buffer, and a pointer to the next descriptor that corresponds to the next packet in the queue.
5. A packet buffer, a scheduler, and an arbiter always operate in unison, so a scheduler needs to operate at least as fast as a packet buffer, and in some cases faster, due to the presence of multicast packets.
6. Maintaining scheduling information was easy at low speeds. However, above $10 \mathrm{~Gb} / \mathrm{s}$ (similar to packet buffering), descriptors begin arriving and departing faster than the access time of a DRAM, so packet scheduling is now a significant bottleneck in scaling the performance of a high-speed router.
7. Similar to packet buffering (see Chapter 7), a caching hierarchy is an appealing way to build packet schedulers. We present four different techniques to build schedulers (in unison
with packet buffers) that use the caching hierarchy.
8. In the first three techniques that we present, either the buffer or the scheduler (or both) are cached (Sections 8.3-8.5). The buffer and scheduler caching hierarchies (if present) operate independent of each other. A fourth caching technique allows a scheduler to piggyback on a packet buffer caching hierarchy.
9. The caching techniques allow us to eliminate the need to keep (1) addresses for every packet, and (2) a pointer to the next descriptor, thus significantly reducing the size of the scheduler database.
10. Why four different techniques? Because each of these techniques may be needed given the system constraints and product requirements for a specific router (Section 8.7).
11. The piggybacking technique even eliminates the need to keep any per-packet lengths in the descriptors, and is based on the following idea: packets already have the length information. The buffer caching hierarchy can parse these lengths (when it pre-fetches data into its head cache), and send them to the scheduler just in time, before the arbiter needs this information. Thus it completely eliminates the need to maintain a scheduler database.
12. However, this requires us to modify the buffer caching hierarchy introduced in Chapter 7. Also, the size of the buffer cache is now dependent on the total latency between the buffer and the scheduler.
13. Our main result is that a scheduler cache (which piggybacks on a packet buffer cache) requires no more than $Q[b(3+\ln Q)+R L] \frac{\log _{2} P_{\max }}{P_{\text {min }}}$ bytes in its head cache; where L is the total closed loop latency between the scheduler and the buffer cache, and Q is the number of queues - and b is the memory block size, $P_{\max }$ is the maximum packet size, and $P_{\min }$ is the minimum packet size supported by the router (Theorem 8.2).
14. A consequence of this result is that it completely eliminates the need to maintain a scheduler database.
15. The four different caching options to implement a packet scheduler (along with a typical packet scheduler implementation)are summarized in Table 8.1. We also summarize the sizes of the buffer and scheduler cache in Table 8.2, and present some examples for a $100 \mathrm{~Gb} / \mathrm{s}$ line card in Table 8.3.
16. As a result of our techniques, the performance of the scheduler is no longer dependent on the speed of a memory. Also, our techniques are resistant to adversarial patterns that can be created by hackers or viruses; and the scheduler's performance can never be
compromised either now or, provably, ever in future.
17. These techniques are practical and have been implemented in fast silicon in multiple high-speed Ethernet switches and Enterprise routers.
Chapter 9: Designing Statistics Counters fromSlower Memories

Apr 2008, Sonoma, CA

Contents
9.1 Introduction 259
9.1.1 Characteristics of Measurement Applications 261
9.1.2 Problem Statement 263
9.1.3 Approach 263
9.2 Caching Memory Hierarchy 265
9.3 Necessity Conditions on any CMA 267
9.4 A CMA that Minimizes SRAM Size 268
9.4.1 LCF-CMA 268
9.4.2 Optimality 269
9.4.3 Sufficiency Conditions on LCF-CMA Service Policy 270
9.5 Practical Considerations 273
9.5.1 An Example of a Counter Design for a $100 \mathrm{~Gb} / \mathrm{s}$ Line Card 273
9.6 Subsequent Work 275
9.7 Conclusions 275

List of Dependencies

- Background: The memory access time problem for routers is described in Chapter 1. Section 1.5.3 describes the use of caching techniques to alleviate memory access time problems for routers in general.

Additional Readings

- Related Chapters: The caching hierarchy described in this chapter was first described to implement high-speed packet buffers in Chapter 7. A similar technique is also used in Chapter 8 to implement high-speed packet schedulers.

Table: List of Symbols.

T	Time Slot
$T_{R C}$	Random Cycle Time of Memory
M	Total Counter Width
m	Counter Width in Cache
P	Minimum Packet Size
R	Line Rate
N	Number of Counters
$C(i, t)$	Value of Counter i at Time t
b	Number of Time Slots between Updates to DRAM

Table: List of Abbreviations.

LCF	Longest Counter First
CMA	Counter Management Algorithm
SRAM	Static Random Access Memory
DRAM	Dynamic Random Access Memory

"There are three types of lies - lies, damn lies, and statistics".

- Benjamin Disraeli ${ }^{\dagger}$

Designing Statistics Counters from Slower

 Memories
9.1 Introduction

Many applications on routers maintain statistics. These include firewalling [194] (especially stateful firewalling), intrusion detection, performance monitoring (e.g., RMON [195]), network tracing, Netflow [196, 197, 198], server load balancing, and traffic engineering [199] (e.g., policing and shaping). In addition, most routers maintain statistics to facilitate network management.
\$Example 9.1. Figure 9.1 shows four examples of measurement counters in a network - (a) a storage gateway keeps counters to measure disk usage statistics, (b) the central campus router maintains measurements of users who attempt to maliciously set up connections or access forbidden data, (c) a local bridge keeps usage statistics and performs load balancing and directs connections to the least-loaded web-server, and (d) a gateway router that provides connectivity to the Internet measures customer traffic usage for billing purposes.

[^89]

Figure 9.1: Measurement infrastructure.

The general problem of statistics maintenance can be characterized as follows: When a packet arrives, it is first classified to determine which actions will be performed on the packet - for example, whether the packet should be accepted or dropped, whether it should receive expedited service or not, which port it should be forwarded to, and so on. Depending on the chosen action, some statistics counters are updated.

We are not concerned with how the action to be performed is identified. The task of identification of these actions is usually algorithmic in nature. Depending on the application, many different techniques have been proposed to solve this problem (e.g., address lookup [134], packet classification [184], packet buffering [173, 174], QoS scheduling [186], etc.).

We are concerned with the statistics that these applications measure, once the action is performed and the counter to be updated (corresponding to that action) is identified. The statistics we are interested in here are those that count events: for example, the number of fragmented packets, the number of dropped packets, the total number of packets arrived, the total number of bytes forwarded to a specific destination, etc. In the rest of this chapter we will refer to these as counters.

As we will see, almost all Ethernet switches and Internet routers maintain statistics counters. At high speeds, the rate at which these counters are updated causes a memory bottleneck. It is our goal to study and quantitatively analyze the problem of maintaining these counters, ${ }^{1}$ and we are motivated by the following question - How can we build high-speed measurement counters for routers and switches, particularly when statistics need to be updated faster than the rate at which memory can be accessed?

9.1.1 Characteristics of Measurement Applications

Note that if we only want to keep measurements for a particular application, we could exploit the characteristics of that application to build a tailored solution. For example, in [201], Estan and Varghese exploit the heavy-tailed nature of traffic to quickly

[^90]identify the largest flows and count them (instead of counting all packets and flows that arrive) for the Netflow application [196, 197].

Observation 9.1. Most high-speed routers offer limited capability to count packets at extremely high speeds. Cisco Systems' Netflow [196] can sample flows, but the sampling only captures a fraction of the traffic arriving at line rate. Similarly, Juniper Networks [197] can filter a limited set of flows and maintain statistics on them.

But we would like a general solution that caters to a broad class of applications that have the following characteristics:

1. Our applications maintain a large number of counters. For example, a routing table that keeps a count of how many times each prefix is used, or a router that keeps a count of packets belonging to each TCP connection. Both examples would require several hundreds of thousands or even millions of counters to be maintained simultaneously, making it infeasible (or at least very costly) to store them in SRAM. Instead, it becomes necessary to store the counters in off-chip, relatively slow DRAM.
2. Our applications update their counters frequently. For example, a $100 \mathrm{~Gb} / \mathrm{s}$ link in which multiple counters are updated upon each packet arrival. These read-modify-write operations must be conducted at the same rate as packets arrive.
3. Our applications mandate that the counter(s) be correctly updated every time a packet arrives; no packet must be left unaccounted for in our applications.
4. Our applications require measurement at line rates without making any assumptions about the characteristics of the traffic that contribute to the statistics. Indeed, similar to the assumptions made in Chapter 7, we will require hard performance guarantees to ensure that we can maintain counters for these applications at line rates, even in the presence of an adversary.

The only assumption we make is that these applications do not need to read the value of counters in every time slot. ${ }^{2}$ They are only interested in updating their values. From the viewpoint of the application, the counter update operation can be performed in the background. Over time, a control path processor reads the values of these counters (typically once in a few minutes on most high-speed routers) for post processing and statistics collection.

9.1.2 Problem Statement

If each counter is M bits wide, then a counter update operation is as follows: 1) read the M bit value stored in the counter, 2) increment the M bit value, and 3) write the updated M bit value back. If packets arrive at a rate $R \mathrm{~Gb} / \mathrm{s}$, the minimum packet size is P bits, and if we update C counters each time a packet arrives, the memory may need to be accessed (read or written) every $P / 2 C R$ nanoseconds.

EExample 9.2. Let's consider the example of 40- byte TCP packets arriving on a $40 \mathrm{~Gb} / \mathrm{s}$ link, each leading to the updating of two counters. The memory needs to be accessed every 2 ns, about 25 times faster than the random-access speed of commercial DRAMs today.

If we do an update operation every time a packet arrives, and update C counters per packet, then the minimum bandwidth R_{D} required on the memory interface where the counters are stored would be at least $2 R M C / P$. Again, this can become unmanageable as the size of the counters and the line rates increase.

9.1.3 Approach

In this chapter, we propose an approach similar to the caching hierarchy introduced in Chapter 7, which uses DRAMs to maintain statistics counters and a small, fixed amount of (possibly on-chip) SRAM. We assume that N counters of width M bits are to be stored in the DRAM, and that N counters of width $m \ll M$ bits are stored in

[^91]Large DRAM memory with N counters of width M bits

Figure 9.2: Memory hierarchy for the statistics counters. A fixed-sized ingress SRAM stores the small counters, which are periodically transferred to the large counters in DRAM. The counters are updated only once every b time slots in DRAM.

SRAM. The counters in SRAM keep track of the number of updates not yet reflected in the DRAM counters. Periodically, under the control of a counter management algorithm (CMA), the DRAM counters are updated by adding to them the values in the SRAM counters, as shown in Figure 9.2. The basic idea is as follows:

> 准Idea. "If we can aggregate and update the DRAM counters relatively infrequently (while allowing for frequent on-chip SRAM updates), the memory bandwidth requirements can be significantly reduced".

We are interested in deriving strict bounds on the size of the SRAM such that irrespective of the arriving traffic pattern - none of the counters in the SRAM overflow, or the access rate and bandwidth requirements on the DRAM are decreased, while still ensuring correct operation of the counters.

We will see that the size of the SRAM, and the access rate of the DRAM, both depend on the CMA used. The main result of this chapter is that there exists a CMA
(which we call largest counter first, LCF) that minimizes the size of the SRAM. We derive necessary and sufficient conditions on the sizes of the counters (and hence of the SRAM that stores all these counters), and we prove that LCF is optimal. An example of how this technique can be used is illustrated below.

Example 9.3. Consider a $100 \mathrm{~Gb} / \mathrm{s}$ line card on a router that maintains a million counters. Assume that the maximum size of a counter is 64 bits and that each arriving packet updates one counter. Our results indicate that a statistics counter can be built with a commodity DRAM [3] with access time 51.2 ns, a DRAM memory bandwidth of $1.25 \mathrm{~Gb} / \mathrm{s}$, and 9 Mb of SRAM.

9.2 Caching Memory Hierarchy

We will now describe the memory hierarchy used to hold the statistics counters, and in the sections that follow we will describe the LCF-CMA (Largest Counter First Counter Management Algorithm).
\aleph Definition 9.1. Minimum Packet Size, P : Packets arriving at a switch have variable lengths. We will denote by P the minimum length that a packet can have.

As mentioned in Chapter 1, we will choose to re-define the unit of time as necessary to make our analysis simpler to understand. In what follows, we will denote a time slot as the time taken to receive a minimum-sized packet at a link rate R. The SRAM is organized as a statically allocated memory, consisting of separate storage space for each of the N counters. We will assume from this point forward that an arriving packet increments only one counter. If instead we wish to consider the case where C counters are updated per packet, we can consider the line rate on the interface to be $C R$.

Each counter is represented by a large counter of size M bits in the DRAM, and a small counter of size $m<M$ bits in SRAM. The small counter counts the most
recent events, while the large counter counts events since the large counter was last updated. At any time instant, the correct counter value is the sum of the small and large counters.

Updating a DRAM counter requires a read-modify-write operation: 1) Read an M bit value from the large counter, 2) Add the m bit value of the corresponding small counter to the large counter, 3) Write the new M bit value of the large counter to DRAM, and 4) Reset the small counter value.

In this chapter, we will assume that the DRAM access rate is slower than the rate at which counters are updated in SRAM. And so, we will update the DRAM only once every b time slots, where $b>1$ is a variable whose value will be derived later. So the I/O bandwidth required from the DRAM is $R_{D}=2 R M / P b$, and the DRAM is accessed only once every $A_{t}=P b / 2 R$ time slots to perform a read or a write operation. Thus, the CMA will update a large counter only once every b time slots. We will determine the minimum size of the SRAM as a function $g($.$) and show$ that it is dependent on N, M, and b. Thus, the system designer is given a choice of trading off the SRAM size $g(N, M, b)$ with the DRAM bandwidth R_{D} and access time $A_{t} .{ }^{3}$
\aleph Definition 9.2. Count $C(i, t)$: At time t, the number of times that the $i^{\text {th }}$ small counter has been incremented since the $i^{\text {th }}$ large counter was last updated.
\aleph Definition 9.3. Empty Counter: A counter i is said to be empty at time t if $C(i, t)=0$.

We note that the correct value of a large counter may be lost if the small counter is not added to the large counter in time, i.e., before an overflow of the small counter. Our goal is to find the smallest-sized counters in the SRAM, and a suitable CMA,

[^92]such that a small counter cannot overflow before its corresponding large counter is updated. ${ }^{4}$

9.3 Necessity Conditions on any CMA

Theorem 9.1. (Necessity) Under any CMA, a counter can reach a count $C(i, t)$ of

$$
\begin{equation*}
\frac{\ln \left[(b /(b-1))^{(b-1)}(N-1)\right]}{\ln (b /(b-1))} \tag{9.1}
\end{equation*}
$$

Proof. We will argue that we can create an arrival pattern for which, after some time, there exists k such that there will be $(N-1) /((b-1) / b)^{k}$ counters with count $k+1$ irrespective of the CMA.

Consider the following arrival pattern. In time slot $t=1,2,3, \ldots, N$, small counter t is incremented. Every $b^{\text {th }}$ time slot one of the large counters is updated, and the corresponding small counter is reset to 0 . So at the end of time slot N, there are $N(b-1) / b$ counters with count 1 , and N / b empty counters. During the next N / b time slots, the N / b empty counters are incremented once more, and N / b^{2} of these counters are now used to update the large counter and reset. So we now have $[N(b-1) / b]+\left[N(b-1) / b^{2}\right]$ counters that have count 1 . In a similar way, we can continue this process to make $N-1$ counters have a count of 1 .

During the next time $N-1$ slots, all $N-1$ counters are incremented once, and $1 / b$ of them are served and reset to zero. Now, assume that all of the remaining approximately N / b empty counters are incremented twice in the next $2 N / b$ time slots, ${ }^{5}$ while $2 N / b^{2}$ counters become empty due to service. Note that the empty counters decreased to $2 N / b^{2}$ from N / b (if $b=2$, there is no change). In this way, after some time, we can have $N-1$ counters of count 2 .

[^93]By continuing this argument, we can arrange for all $N-1$ counters to have a count $b-1$. Let us denote by T the time slot at which this first happens.

During the interval from time slot $2(N-1)$ to $3(N-1)$, all of the counters are again incremented, and $1 / b$ of them are served and reset to 0 , while the rest have a count of two. In the next $N-1$ time slots, each of the counters with size 2 is incremented and again $1 / b$ are served and reset to 0 , while the rest have a count of three. Thus there are $(N-1)((b-1) / b)^{2}$ counters with a count of three. In a similar fashion, if only non-empty counters keep being incremented, after a while there will be $(N-1)((b-1) / b)^{k}$ counters with count $k+1$. Hence there will be one counter with count:

$$
\begin{aligned}
\frac{\ln (N-1)}{\ln (b /(b-1))} & =\frac{\ln (N-1)+(b-1) \ln (b /(b-1))}{\ln (b /(b-1))} \\
& =\frac{\ln \left[(b /(b-1))^{(b-1)}(N-1)\right]}{\ln (b /(b-1))}
\end{aligned}
$$

Thus, there exists an arrival pattern for which a counter can reach a count $C(i, t)$ of

$$
\frac{\ln \left[(b /(b-1))^{(b-1)}(N-1)\right]}{\ln (b /(b-1))}
$$

9.4 A CMA that Minimizes SRAM Size

9.4.1 LCF-CMA

We are now ready to describe a counter management algorithm (CMA) that will minimize the counter cache size. We call this, longest counter first (LCF-CMA).

```
Algorithm 9.1: The longest counter first counter management algorithm.
    input : Counter Values in SRAM and DRAM.
    output: The counter to be replenished.
    /* Calculate counter to replenish */
    repeat every \(b\) time slots
        CurrentCounters \(\leftarrow S R A M[(1,2, \ldots, N)]\)
        /* Calculate longest counter */
        \(C_{M a x} \leftarrow\) FindLongestCounter (CurrentCounters)
        /* Break ties at random */
        if \(C_{M a x}>0\) then
                \(D R A M\left[C_{M a x}\right]=\operatorname{DRAM}\left[C_{M a x}\right]+S R A M\left[C_{M a x}\right]\)
                /* Set replenished counter to zero */
                \(S R A M\left[C_{M a x}\right]=0\)
    /* Service update for a counter */
    repeat every time slot
        if \(\exists\) update for \(c\) then
        \(S R A M[c]=S R A M[c]+\) UpdateCounter (c)
```

Algorithm Description: Every b time slots, LCF-CMA selects the counter i that has the largest count. If multiple counters have the same count, LCF-CMA picks one arbitrarily. LCF-CMA updates the value of the corresponding counter i in the DRAM and sets $C(i, t)=0$ in the SRAM. This is described in Algorithm 9.1.

9.4.2 Optimality

Theorem 9.2. (Optimality of $L C F-C M A$) Under all arriving traffic patterns, LCFCMA is optimal, in the sense that it minimizes the count of the counter required.

Proof. We give a brief intuition of this proof here. Consider a traffic pattern from time t, which causes some counter C_{i} (which is smaller than the longest counter at time t) to reach a maximum threshold M^{*}. It is easy to see that a similar traffic pattern can
cause the longest counter at this time t to exceed M^{*}. This implies that not serving the longest counter is sub-optimal. A detailed proof appears in Appendix I.

9.4.3 Sufficiency Conditions on LCF-CMA Service Policy

Theorem 9.3. (Sufficiency) Under the LCF-CMA policy, the count $C(i, t)$ of every counter is no more than

$$
\begin{equation*}
S \equiv \frac{\ln b N}{\ln (b /(b-1))} \tag{9.2}
\end{equation*}
$$

Proof. (By Induction) Let $d=b /(b-1)$. Let $N_{i}(t)$ denote the number of counters with count i at time t. We define the following Lyapunov function:

$$
\begin{equation*}
F(t)=\sum_{i \geqslant 1} d^{i} N_{i}(t) . \tag{9.3}
\end{equation*}
$$

We claim that under LCF policy, $F(t) \leqslant b N$ for every time t. We shall prove this by induction. At time $t=0, F(t)=0 \leqslant b N$. Assume that at time $t=b k$ for some k, $F(t) \leqslant b N$. For the next b time slots, some b counters with count $i_{1} \geqslant i_{2} \geqslant \cdots \geqslant i_{b}$ are incremented. Even though not required for the proof, we assume that the counter values are distinct for simplicity. After the counters are incremented, they have counts $i_{1}+1, i_{2}+1, \ldots, i_{b}+1$ respectively, and the largest counter among all the N counters is serviced. The largest counter has at least a value $C(.) \geqslant i_{1}+1$.

- Case 1: If all the counter values at time t were nonzero, then the contribution of these b counters in $F(t)$ was: $\alpha=d^{i_{1}}+d^{i_{2}}+\cdots+d^{i_{b}}$. After considering the values of these counters after they are incremented, their contribution to $F(t+b)$ becomes $d \alpha$. But a counter with a count $C(.) \geqslant i_{1}+1$ is served at time $t+b$ and its count becomes zero. Hence, the decrease to $F(t+b)$ is at least $d \alpha / b$. This is because the largest counter among the b counters is served, and the contribution of the largest of the b counters to the Lyapunov function must be at least greater
than the average value of the contribution, $d \alpha / b$. Thus, the net increase is at most $d \alpha[1-(1 / b)]-\alpha$. But $d[1-(1 / b)]=1$. Hence, the net increase is at most zero; i.e., if arrivals occur to non-zero queues, $F(t)$ can not increase.
- Case 2: Now we deal with the case when one or more counters at time t were zero. For simplicity, assume all b counters that are incremented are initially empty. For these empty counters, their contribution to $F(t)$ was zero, and their contribution to $F(t+b)$ is $d b$. Again, the counter with the largest count among all N counters is served at time $t+b$. If $F(t) \leqslant b N-d b$, then the inductive claim holds trivially. If not, that is, $F(t)>b N-d b$, then at least one of the $N-b$ counters that did not get incremented has count $i^{*}+1$, such that, $d^{i^{*}} \geqslant b$; otherwise, it contradicts the assumption $F(t)>b N-d b$. Hence, a counter with count at least $i^{*}+1$ is served, which decreases $F(t+b)$ by $d^{i^{*}+1}=d b$. Hence the net increase is zero. One can similarly argue the case when arrivals occur to fewer than b empty counters.

Thus we have shown that, for all time t when the counters are served, $F(t) \leqslant b N$. This means that the counter value cannot be larger than i_{m}, where, $d^{i_{m}}=N b$, i.e.,

$$
\begin{equation*}
C(.) \leqslant \frac{\ln b N}{\ln d} . \tag{9.4}
\end{equation*}
$$

Substituting for d, we get that the counter value is bounded by S.
Theorem 9.4. (Sufficiency) Under the LCF policy, the number of bits that are sufficient per counter to ensure that no counter overflows, is given by

$$
\begin{equation*}
\log _{2} \frac{\ln b N}{\ln d} \tag{9.5}
\end{equation*}
$$

Proof. We know that in order to store a value x we need at $\operatorname{most}^{\log }{ }_{2} x$ bits. Hence the proof follows from Theorem 9.3. ${ }^{6}$

[^94]
$3<$ Box 9.1: Comparing Buffers and Counters ${ }^{*}$:

A number can be represented in many notations, e.g., the number 9 is shown in five different notations in Figure 0.3. Most computing systems (servers, routers, etc) store numbers in binary or hexadecimal format. In contrast, humans represent and manipulate numbers in decimal (base-10) format. Each notation has its advantages and is generally used for a specific purpose or from deference to tradition. For example, the cluster-5 notation (a variant of the unary notation) is in vogue for casual counting and tallying, because there is never a need to modify an existing value - increments are simply registered by concatenating symbols to the existing count.

QExample 9.4. Routers sometimes maintain counts in one-hot (or its inverse, one-cold) representation, where each con-

Figure 9.3: $N u$ meric Notations secutive bit position denotes the next number, as shown in Figure 93. With this representation, incrementing a counter is easy and can be done at high speeds in hardware - addition involves unsetting a bit and setting the next bit position, i.e, there are never more than two operations per increment.

Why are we concerned with counter notations? For a moment, assume that counts are maintained in unary - the number two would be denoted with two bits, the number three would have three bits, and so on. This means that each successive counter update simply adds or concatenates a bit to the tail of the bits currently representing the counter. Thus, in this unary representation, updates to the counter cache are "1-bit packets" that join the tail of a cached counter (which is simply a queue of "1-bit packets").

Viewed in this notation, we can re-use the bounds that we derived on the queue size for the head cache in Chapter 7 , Theorem 7.3 ! We can bound the maximum value of the counters in cache to $S \equiv[N b(3+\ln N)]$. Of course, when applying these results, instead of servicing the most deficited queue (as in Theorem 7.3), we would service the longest counter. If we represent these counters in base two, we can derive the following trivially: ${ }^{a}$

Corollary 9.1. (Sufficiency) A counter of size $S=\log _{2}[N b(3+\ln N)]$ bits is sufficient for LCF to guarantee that no counter overflows in the head cache.
${ }^{a}$ Of course this bound is weaker than Theorem 9.4, because it does not take advantage of the fact that when a counter is flushed it is cleared completely and reset to zero.

9.5 Practical Considerations

There are three constraints to consider while choosing b :

1. Lower bound derived from DRAM access time. The access time of the DRAM is $A_{t}=P b / 2 R$. Hence, if the DRAM supports a random access time $T_{R C}$, we require $P b / 2 R \geqslant T_{R C}$. Hence $b \geqslant 2 R T_{R C} / P$, which gives a lower bound on b.
2. Lower bound derived from memory I/O bandwidth. Let the I/O bandwidth of the DRAM be D. Every counter update operation is a read-modify-write, which takes $2 M$ bits of bandwidth per update. Hence, $2 R M / P b \leqslant D$, or $b \geqslant 2 R M / P D$. This gives a second lower bound on b.
3. Upper bound derived from counter size for LCF policy. From Theorem 9.4, the size of the counters in SRAM is bounded by $\log _{2} S$. However, since our goal is to keep only a small-sized counter in the SRAM we need that $\log _{2} S<M$. This gives us an upper bound on b.

The system designer can choose any value of b that satisfies these three bounds. Note that for very large values of N and small values of M, there may be no suitable value of b. In such a case, the system designer is forced to store all the counters in SRAM.

9.5.1 An Example of a Counter Design for a $100 \mathrm{~Gb} / \mathrm{s}$ Line Card

We consider an $R=100 \mathrm{~Gb} / \mathrm{s}$ line card that maintains a million counters. Assume that the maximum size of a counter update is $P=64$ bytes and that each arriving packet updates one counter. ${ }^{7}$ Suppose that the fastest available DRAM has an access time of $T_{R C}=51.2 \mathrm{~ns}$. Since we require $P b / 2 R \geqslant T_{R C}$, this means that $b \geqslant 20$. Given present DRAM technology, this is sufficient to meet the lower bound obtained on b using the memory I/O bandwidth constraint. Hence the lower bound on b is simply $b \geqslant 20$. We will now consider the upper bound on b.

[^95]
© Box 9.2: Application and Benefits of Caching>ः

We have applied the counter caching hierarehy described in this chapter to a number of applications that required measurements on high-speed Enterprise routers at Cisco Systems [33]. At the time of writing, we have developed statistics counter caches for security, logical interface statistics for route tables, and forwarding adjacency statistics. Our implementations range from 167M to 1B updates/s [202] and support both incremental updates ("packet counters") and variable-size updates ("byte counters"). Where required, we have modified the main caching algorithm presented in this chapter to make it more implementable. Also, in applications, where it was acceptable we have traded off reductions in cache size for a small cache overflow probability.

In addition to scaling router line card performance and making line card counter memory performance robust against adversaries (similar to the discussion in Box 7.1), in the course of deployment a number of advantages of counter caching have become apparent:

1. Reduces Memory Cost: In our implementations we use either embedded [26] or external DRAM [3] instead of costly QDR-SRAMs [2] to store counters. In most systems, memory cost (which is roughly 25% to 33% of system cost) is reduced by 50%.
2. Wider Counters: DRAM has much greater capacity than SRAM; so it is feasible to store wider counters, even counters that never overflow for the life of a product. ${ }^{a}$.
3. Decreases Bandwidth Requirements: The counter caching hierarchy only makes an external memory access once in b time slots, rather than every time slot. In the applications that we cater to, b is typically between 4 and 10 . This means that the external memory bandwidth is reduced by 4 to 10 times, and also aids in I/O pin reductions for packet processing ASICs.
4. Decreases Worst-Case Power: As a consequence of bandwidth reduction, the worst-case $1 / O$ power is also decreased by $4-10$ times.
${ }^{a}$ In fact, with ample DRAM capacity, counters can be made 144 bits wide. These counters would never overflow for the known lifetime of the universe for the update rates seen on typical Enterprise routers!

Example 9.5. We use two different examples for the counter size M required in the system.

1. If $M=64$, then $\log _{2} S<M$ and we design the counter architecture with $b=20$. We get that the minimum size of the counters in SRAM required for the LCF policy is 9 bits, and this results in
an SRAM of size 9 Mb . The required access rate can be supported by keeping the SRAM memory on-chip.
2. If we require $M=8$, then we can see that $\forall b, b \geqslant 20, \log _{2} S>M$. Thus there is no optimal value of b and all the counters are always stored in SRAM without any DRAM.

9.6 Subsequent Work

The LCF algorithm presented in this chapter is optimal, but is hard to implement in hardware when the total number of counters is large. Subsequent to our work, there have been a number of different approaches that use the same caching hierarchy, but attempt to reduce the cache size and make the counter management algorithm easier to implement. Ramabhadran [203] et al. described a simpler, and almost optimal CMA algorithm that is much easier to implement in hardware, and is independent of the total number of counters, but keeps 1 bit of cache state per counter. Zhao et al. [204] describe a randomized approach (which has a small counter overflow probability) that further significantly reduces the number of cache bits required. Their CMA also keeps no additional state about the counters in the cache. Lu [205] et al. present a novel approach that compresses the values of all counters (in a data structure called "counter braids") and minimizes the total size of the cache (close to its entropy); however, this is achieved at the cost of trading off counter retrieval time, i.e., the time it takes to read the value of a counter once it is updated. The technique also trades off cache size with a small probability of error in the value of the counter measured. Independent of the above work, we are also aware of other approaches in industry that reduce cache size or decrease the complexity of implementation [206, 207, 202].

9.7 Conclusions

Routers maintain counters for gathering statistics on various events. The general caching hierarchy presented in this chapter can be used to build a high-bandwidth statistics counter for any arrival traffic pattern. An algorithm, called largest counter first (LCF), was introduced for doing this, and was shown to be optimal in the
sense that it only requires a small, optimally sized SRAM, running at line rate, that temporarily stores the counters, and a DRAM running at slower than the line rate to store complete counters. For example, a statistics update arrival rate of $100 \mathrm{~Gb} / \mathrm{s}$ on 1 million counters can be supported with currently available DRAMs (having a random access time of 51.2 ns) and 9 Mb of SRAM.

Since our work (as described in Section 9.6), there have been a number of approaches, all using the same counter hierarchy, that have attempted to both reduce cache size and decrease the complexity of LCF. Unlike LCF, the key to scalability of all subsequent techniques is to make the counter management algorithm independent of the total number of counters. While there are systems for which the caching hierarchy cannot be applied (e.g., systems that cannot fit the cache on chip), we have shown via implementation in fast silicon (in multiple products from Cisco Systems [202]) that the caching hierarchy is practical to build. At the time of writing, we have demonstrated one of the industry's fastest implementations [33] of measurement infrastructure, which can support upwards of 1 billion updates $/ \mathrm{sec}$. We estimate that more than 0.9 M instances of measurement counter caches (on over three unique product instances ${ }^{8}$) will be made available annually, as Cisco Systems proliferates its next generation of high-speed Ethernet switches and Enterprise routers.

Summary

1. Packet switches (e.g., IP routers, ATM switches, and Ethernet switches) maintain statistics for a variety of reasons: performance monitoring, network management, security, network tracing, and traffic engineering.
2. The statistics are usually collected by counters that might, for example, count the number of arrivals of a specific type of packet, or count particular events, such as when a packet is dropped.
3. The arrival of a packet may lead to several different statistics counters being updated. The number of statistics counters and the rate at which they are updated is often limited by memory technology. A small number of counters may be held in on-chip registers or in

[^96](on- or off-chip) SRAM. Often, the number of counters is very large, and hence they need to be stored in off-chip DRAM.
4. However, the large random access times of DRAMs make it difficult to support high-speed measurements. The time taken to read, update, and write a single counter would be too large, and worse still, multiple counters may need to be updated for each arriving packet.
5. We consider a caching hierarchy for storing and updating statistics counters. Smaller-sized counters are maintained in fast (potentially on-chip) SRAM, while a large, slower DRAM maintains the full-sized counters. The problem is to ensure that the counter values are always correctly maintained at line rate.
6. We describe and analyze an optimal counter management algorithm (LCF-CMA) that minimizes the size of the SRAM required, while ensuring correct line rate operation of a large number of counters.
7. The main result of this chapter is that under the LCF counter management algorithm, the counter cache size (to ensure that no counter ever overflows) is given by $\log _{2} \frac{\ln b N}{\ln d}$ bits, where N is the number of counters, b is the ratio of DRAM to SRAM access time, and $d=b /(b-1)$ (Theorem 9.4).
8. The counter caching techniques are resistant to adversarial measurement patterns that can be created by hackers or viruses; and performance can never be compromised, either now or, provably, ever in future.
9. We have modified the above counter caching technique as necessary (i.e., when the number of counters is large) in order to make it more practical.
10. At the time of writing, we have implemented the caching hierarchy in fast silicon, and support upwards of 1 billion counter updates/sec in Ethernet switches and Enterprise routers.

Chapter 10: Maintaining State with Slower Memories

May 2008, Santa Rosa, CA

Contents

10.1 Introduction . 280
10.1.1 Characteristics of Applications that Maintain State 284
10.1.2 Goal . 285
10.1.3 Problem Statement . 285
10.2 Architecture . 286
10.2.1 The Ping-Pong Algorithm . 287
10.3 State Management Algorithm . 288
10.3.1 Consequences . 294
10.4 Implementation Considerations . 295
10.5 Conclusions . 297

List of Dependencies

- Background: The memory access time problem for routers is described in Chapter 1. Section 1.5.2 describes the use of load balancing techniques to alleviate memory access time problems for routers.

Additional Readings

- Related Chapters: The general load balancing technique called constraint sets, used for analysis in this chapter, was first described in Section 2.3. Constraint sets are also used to analyze the memory requirements of other router architectures in Chapters 2, 3, 4 and 6.

Table: List of Symbols.

C	Number of Updates per Time Slot
E	Number of State Entries
h	Number of Banks
M	Total Memory Bandwidth
R	Line Rate
S	Speedup of Memory
T	Time slot
$T_{R C}$	Random Cycle Time of Memory

Table: List of Abbreviations.

ISP	Internet Service Provider
I/O	Input-Output (Interconnect)
GPP	Generalized Ping-Pong
SMA	State Management Algorithm
SRAM	Static Random Access Memory
DRAM	Dynamic Random Access Memory

"To ping, pong, or ping-pong?"

- The Art of Protocol Nomenclature ${ }^{\dagger}$

10

Maintaining State with Slower Memories

10.1 Introduction

Many routers maintain information about the state of the connections that they encounter in the network. For example, applications such as Network Policing, Network Address Translation [208], Stateful Firewalling [194], TCP Intercept, Network Based Application Recognition [209], Server Load balancing, URL Switching, etc., maintain state. Indeed, the very nature of the application may mandate that the router keep state.

The general problem of state maintenance can be characterized as follows: When a packet arrives, it is first classified to identify the connection or flow (we will describe this term shortly) to which it belongs. If the router encounters a new flow, it creates an entry for that flow in a flow table and keeps a state entry in memory corresponding to that flow. If packets match an existing flow, the current state of the flow is retrieved from memory. Depending on the current state, various actions may be performed on the packet - for example, the packet may be accepted or dropped, it may receive expedited service, its header may be re-written, the packet payload may be encrypted, or it may be forwarded to a special port or a special-purpose processor for further

[^97]
(a) State Maintainence for Network Address Translation

(b) State Maintainence for Policing and Bandwidth Shaping

Figure 10.1: Maintaining state in Internet routers.
processing, etc. Once the action is performed, the state entry is modified and written back to memory.

Example 10.1. Figure 10.1 shows two examples of routers maintaining state - (a) A network address translator [208] keeps state for connections, so that it can convert private IP addresses to its own public IP address when sending packets to the Internet, (b) A gateway router belonging to a backbone Internet service provider (ISP) maintains state for packets arriving and departing from local ISPs, so that it can police data and provide the appropriate bandwidth based on customer agreements and policy.

We are not concerned with how the various flows are classified and identified, or the actions that are performed on the packet once the state entry is retrieved. The task of flow classification is algorithmic in nature, and a number of techniques have been proposed to solve this problem [134, 184]. Similarly, the actions that are performed on the packet (after the state entry is retrieved) are compute-intensive and are not a focus of this chapter. We are only concerned with how the actual state entry is updated because the operation is memory-intensive.

Observation 10.1. A flow is defined by the specific application that maintains state. The granularity of a flow can be a single connection or a set of aggregated connections. For example, a network address translator, a stateful firewall, and an application proxy maintain flow state entries for each individual TCP/UDP connection they encounter. A policer, on the other hand, may keep state entries at a coarser level - for example, it may only maintain state entries for all packets that match a certain set of pre-defined policies or an access control list.

In summary, a state entry needs to be read, modified, and written back to memory in order to update its state. This operation is usually referred to as a "read-modifywrite" operation. The set of tasks required to perform state maintenance is shown

Figure 10.2: Maintaining state on a line card.
in Figure 10.2. As we will see, the rate at which state entries can be updated is bottlenecked by memory access time. It is our goal to study and quantitatively analyze the problem of maintaining state entries [210]. We were not aware of any previous work that describes the problem of maintaining state entries at high speeds. And so we are motivated by the following question - How can we build high-speed memory infrastructure for high-speed routers, particularly when the updates need to occur faster than the memory access rate?

10.1.1 Characteristics of Applications that Maintain State

We are interested in a general solution (which does depend on the characteristics of any one particular application) that can maintain state entries at high speeds. The applications that our solution must cater to share the following characteristics:

1. Our applications maintain a large number of state entries, one for each flow. For example, a firewall keeps track of millions of flows, while an application proxy usually tracks the state of several hundreds of thousands of connections. These applications require a large memory capacity, making it unfeasible (or at least very costly) to store them on-chip in SRAM. Instead, it becomes necessary to store the state entries in off-chip memory.
2. Our applications update their state entries frequently, usually once for each packet arrival. In the worst case, they must keep up with the rate at which the smallest-sized packets can arrive.
3. Our applications are sensitive to latency. This is because the packets in our applications must wait until the state entry is retrieved before any action can be performed. So our solution should not have a large memory latency. More important, the latency to retrieve a state entry must be predictable and bounded. This is because packet processing ASICs often use pipelines that are several hundred packets long - if some pipeline stages are non-deterministic, the whole pipeline can stall, complicating the design. Second, the system can lose throughput in unpredictable ways.
4. Our applications mandate that state entries be updated at line rate. There must be no loss of performance, and no state entry must be left unaccounted for.

10.1.2 Goal

Our goal is to build a memory subsystem that can update state entries at high speeds that make no assumptions about the characteristics of the applications or the traffic. Indeed, similar to the assumptions made in Chapter 7, we will mandate that our memory subsystem give deterministic performance guarantees and ensure that we can update entries at line rates, even in the presence of an adversary. Of course, it is also our goal that the solution that caters to the above applications can update state entries at high speeds with minimum requirements on the memory.

Observation 10.2. Routers that keep measurement counters (as described in Chapter 9) also maintain state. Thus, the storage gateway, the central campus router, the local bridge, and the gateway router in Figure 9.1 may all maintain state. Conceptually there are two key differences between applications that keep state and applications that maintain statistics counters - (1) Applications do not need the value of the measurement counter (and hence do not need to retrieve the counter) for each packet, and (2) Counting is a special transformation of the data (i.e., depending on the way counters are stored and their value, only a few bits are modified at a time), whereas a state-based application can transform the read value in a more general manner.

10.1.3 Problem Statement

The task of state maintenance must be done at the rate at which a smallest-size packet can arrive and depart the router line card. For example, with a line rate of $10 \mathrm{~Gb} / \mathrm{s}$, a "read-modify-write" operation needs to be done (assuming 40-byte minimum-sized packets) once every 32 ns . Since there are two memory operations per packet, the memory needs to be accessed every 16 ns . This is already faster than the speed of the
most widely used commodity SDRAM memories, which currently have an access time of $\sim 50 \mathrm{~ns}$. It is extremely challenging to meet this requirement because, unlike the applications that we described in the previous chapters (packet buffering, scheduling, measurement counters, etc.), there is no structure that can be exploited when updating a state entry. Indeed, any state entry can be updated (depending on the packet that arrived). The memory subsystem must cater to completely random accesses. Further, as line rates increase, the problem only becomes worse.

> Example 10.2. At $100 \mathrm{~Gb} / \mathrm{s}$, a 40-byte packet arrives in 3.2 ns , which means that the memory needs to be accessed (for a read or a write) every 1.6 ns . This is faster than the speed of the highest-speed commercial QDR-SRAM [2] available today.

10.2 Architecture

In what follows, we will first describe the main constraint in speeding up the memory update rate in a standard memory, and then describe techniques to alleviate this constraint. We note that read-modify-write operations involve two memory accesses (1) the state entry is read from a memory location, and (2) then later modified and written back. Since the state entry for a particular flow resides in a fixed memory location, both the read and write operations are constrained, i.e., they must access the same location in memory.

In order to understand how memory locations are organized, we will consider a typical commodity SDRAM memory. An SDRAM's internal memory is arranged internally as a set of banks. The access time of the SDRAM (i.e., the time taken between consecutive accesses to any location in the memory) is dependent on the sequence of memory accesses. While there are a number of constraints on how the SDRAM can be accessed (see Appendix A for a discussion), the main constraint is that two consecutive accesses to memory that address the same bank must be spaced apart by time $T_{R C}$ (which is called the random cycle time of the SDRAM). However, if the two consecutive memory accesses belong to different banks, then they need to
be spaced apart by only around $T_{R R}$ time (called the cycle time of DRAM when there is no bank conflict).

Unfortunately, the bank that should be accessed on an SDRAM depends on where the state entry for the corresponding flow to which an arriving packet belongs is stored. Since we do not know the pattern of packet arrivals, the bank that is accessed cannot be predicted a priori. In fact, for any particular state entry, the read and the write operations must access the same bank (because they access the same entry), preventing consecutive memory operations from being accessed any faster than $T_{R C}$ time. Since designers have to account for the worst-case memory access pattern, the state entries can be updated only once in every two random cycle times in any commodity DRAM memory.

Observation 10.3. In general for any SDRAM, $T_{R R}<T_{R C}$, and so if one could ensure that consecutive accesses to DRAM are always made to different banks, then one can speed up the number of accesses that an SDRAM can support by accessing it once every $T_{R R}$ time. On the other hand, if these memory banks were completely independent (for example, by using multiple physical DRAMs, or if the memory banks were on-chip), and we could ensure that consecutive memory accesses are always to different banks, then depending on the number of banks available, we could potentially perform multiple updates per $T_{R C}$ time.

10.2.1 The Ping-Pong Algorithm

How can we ensure that consecutive memory accesses do not access the same bank? Consider the following idea:

WIdea. We can read the state from a bank that contains an entry, and write it back to an alternate bank that is currently not being accessed.

Indeed, the above idea is well known and is referred to in colloquia as the "pingpong" or "double buffering" algorithm [211, 212]. The technique is simple - a read access to an entry, and a write access to some other entry, are processed simultaneously. The read access always gets priority and is retrieved from the bank that contains the updated state entry. If the write accesses the same bank as the read, then it is written to an alternate bank. Thus every entry can potentially be maintained in one of two banks. A pointer is maintained for every entry, to specify the bank that contains the latest updated version of the state entry.

O Observation 10.4. Note that instead of a pointer, a bitmap could be maintained to specify which of the two banks contains the latest updated version of the entry. Only one bit per entry is needed to disambiguate the bank. In contrast, a pointer-based implementation that allocates a state entry to an arbitrary new location (when it updates the state entry) requires $\log 2 E$ bits per entry, where E is the total number of state entries. Of course, in order to maintain bitmaps, when a state entry is written to a bank, it must be written to a memory address that is the same as its previous address, except that it is different in the most significant bits that represent the bank to which it is written. Note that with the above technique, the memory update rate can be speeded up by a factor of two, at the consequence of losing half the memory capacity.

10.3 State Management Algorithm

The ping-pong technique can speed up state updates by a factor of two. However, it is not clear how we can extend the above algorithm to achieve higher speedup. The problem is that the read accesses to memory are still constrained. We are looking for a general technique that can be used to speed up the performance of a memory for any value of the speedup S. This motivates the following idea:

> 麻Idea. We can remove the constraints on the read by maintaining multiple copies of the state entry on separate banks, and alleviate the write constraints by load balancing the writes over a number of available banks.

The above idea is realized in two parts.

1. Maintaining multiple copies to remove bank constraints on read accesses: In order to remove the read constraints on a bank, multiple copies of the state entry are maintained on different banks. Depending on the banks that are free at the time of access, any one of the copies of the state entry is read from a free bank.
2. Changing the address and maintaining pointers to remove bank constrains on write accesses: When writing back the modified state entry, again depending on the banks that are free, multiple copies of the modified state entry are written to different banks, one to each distinct bank. Since the memory location to the modified state entry changes, a set of pointers (or a bitmap as described in Observation 10.4) to the multiple copies of the state entry for that flow is maintained. Note that we need to maintain multiple copies of the updated state entry, so that when the corresponding state entry is read (in future), the read access has a choice of the banks to read the updated state entry from.

We will now formally describe a State Management Algorithm called "Generalized Ping-Pong" (GPP-SMA) that realizes the above idea. Assume that GPP-SMA, performs C read-modify-write operations every random cycle time, $T_{R C}$. In what follows, C is a variable, and we can design our memory subsystem for any value of C. For GPP-SMA, C is also the number of copies of a state entry that must be maintained for each flow. Clearly this is the case, since the C read accesses in a random cycle time must all be retrieved from C distinct memory banks. GPP-SMA maintains the following two sets.

Figure 10.3: The read-modify-write architecture.
§Definition 10.1. Bank Read Constraint Set (BRCS): This is the set of banks that cannot be used in the present random cycle time because a state entry needs to be read from these banks. Note that at any given time $|B R C S| \leqslant C$, because no more than C read accesses (one for each of the C state entries that are updated) need to be retrieved in every time period.
\aleph Definition 10.2. Bank Write Constraint Set (BWCS): This is the set of banks that cannot be used in the present random cycle time because data needs to be written to these banks. During any time period, the state entry for up to " C " entries needs to be modified and written back to memory. Since C copies are maintained for each state entry, this requires $C \times C=C^{2}$ write accesses to memory. All these C^{2} write accesses should occur to C^{2} distinct banks (as each bank can be accessed only once in a time period). Hence $|B W C S| \leqslant C^{2}$.

Figure 10.3 describes the general architecture, and how state entries are moved from one bank to another after they are updated. We are now ready to prove the

```
Algorithm 10.1: The Generalized Ping-Pong SMA.
    input : Requests for Memory Updates.
    output: A bound on the number of memories and total memory bandwidth
                required to accelerate memory access time.
    \(C \leftarrow\) Number of updates per random cycle time
    \(U \leftarrow(1,2, \ldots, h) /\) * Univeral set of all banks */
    for each time period \(T\) do
        BRCS \(\leftarrow \varnothing\)
        BWCS \(\leftarrow \varnothing\)
        for each read update request to entry \(e\) do
            /* Retrieve set of all banks for entry e */
            AvailableBanks \(\leftarrow\) RetrieveBanks (e) \BRCS
            /* Choose bank and read entry */
            \(b \leftarrow\) AnyBank (AvailableBanks)
            Read entry \(e\) from bank \(b\)
            /* Update Bank Read Constraint Set */
            \(\mathrm{BRCS} \leftarrow \mathrm{BRCS} \cup b\)
            for each write update request to entry e do
            /* Choose \(C\) banks for every entry */
            \(B_{1}, B_{2}, \ldots B_{C} \leftarrow\) PickBanksForWrite ( \(U \backslash\) BRCS \(\backslash\) BWCS )
            Write entry \(e\) to chosen \(C\) banks \(B_{1}, B_{2}, \ldots B_{C}\)
            /* Update Bank Write Constraint Set */
            BWCS \(\leftarrow\) BWCS \(\cup B_{1}, B_{2}, \ldots B_{C}\)
            /* Update bitmap for entry \(e\) */
            UpdateBankBitmap ( \(e, B_{1}, B_{2}, \ldots B_{C}\) )
```

main theorem of this chapter:
Theorem 10.1. (Sufficiency) Using GPP-SMA, a memory subsystem with h independent banks running at the line rate can emulate a memory that can be updated at C times the line rate (C reads and C writes), if $C \leqslant \frac{\lfloor\sqrt{4 h+1}-1\rfloor}{2}$.

Proof. In order that all the C reads and C^{2} writes are able to access a free bank, we need to ensure that GPP-SMA has access to at least $C+C^{2}=C(C+1)$ banks. In

Figure 10.4: Tradeoff between update speedup and capacity using GPP-SMA.
any given time period, GPP-SMA first satisfies all the read accesses to memory. If we have at least C banks, then clearly it is possible to satisfy this and read from C unique banks, because each state entry is kept on C unique banks. However, we need more banks. The remaining C^{2} writes must be written to C^{2} distinct banks (which are distinct from the banks that were used to read C entries in the same random cycle time). Hence, there need to be at least $h \geqslant C+C^{2}$ independent banks. Solving for C , we get,

$$
\begin{equation*}
C \leqslant \frac{\lfloor\sqrt{4 h+1}-1\rfloor}{2} \tag{10.1}
\end{equation*}
$$

Note that our analysis assumes that up to C banks are independently addressable in the random cycle time of the memory. ${ }^{1}$ This completes the proof.

[^98]
$3<$ Box 10.1: Adversary Obfuscation $>$

A large portion of the cost (in terms of memory bandwidth, cache size, etc.) of deploying the memory management algorithms described in this thesis comes from having to defend against worst-case attacks by an adversary. In certain instances, the cost of implementing these algorithms may be impractical, e.g., they may require too many logic gates, or use a cache size too large to fit on packet processing ASICs. We could reduce this cost (e.g., our algorithms could be simplified, or the caches can be sized sub-optimally), if we could somehow prevent worst-case adversarial attacks or bound the probability of worst-case adversarial attacks.

In order to achieve this, we have deployed and re-used in multiple instances [33] (and this has also been proposed by other research [204] and development groups [213]) an idea called adversary obfuscation. The basic technique is simple -
*Idea. "If the first access or value (e.g, addresses, block offsets, initialization values) in a sequence of operations that manipulate the data structures of the memory management algorithms can be obfuscated, then the relation between an adversarial pattern and the state of the memory management algorithm cannot be deterministically ascertained":

For example, the above idea can be implemented by randomizing the first ${ }^{a}$ access (or value) used by certain data structures, by the use of a programmable seed that is not available to the adversary at run-time. Adversary obfuscation can be overlaid on many of our deterministic memory management techniques to reduce the probability of an adversarial attack to a pre-determined low probability that is acceptable in practice (for example, reducing the chance that an adversary is successful to less than 1 in 10^{30} tries).

Observation 10.5. Note that adversary obfuscation is a natural consequence of the GPP-SMA algorithm. Every time a new entry is added, or an existing entry updated, there is a natural choice of (a subset of h) banks that the new entry must be written to, C times. Since this choice is made at run-time, an adversary cannot predict the banks on which an updated entry is located. Over time, GPP-SMA exercises choice in every time slot, and the probability of an adversarial pattern becomes statistically insignificant. ${ }^{b}$

[^99]Figure 10.4 shows how GPP-SMA trades off update speedup with capacity. Note that by definition the update speedup $S=2 C$, because with a standard memory only one state entry can be updated every 2 random cycle times, whereas GPP-SMA performs C updates per random cycle time.

From the above analysis, only the even Diophantine ${ }^{2}$ solutions for h and Diophantine solutions for C that satisfy Equation 10.1 are true solutions. ${ }^{3}$ For example, only the following values of $(h, C)=(2,1),(6,2),(12,3) \ldots$ are valid. This is because the above analysis assumes that C updates are performed in a time period $T_{R C}$, where C is assumed to be an integer. But if we are interested in non-integer values of C (for example, $C=2.5$ updates per random cycle time), we could do the above analysis over a different time period which is a multiple of $T_{R C}$, say $y T_{R C}$, such that $y C$ is an integer. Then it is possible to find non-integer values of C. This will result in a tighter bound for the number of banks required to support non-integer values of C. In practice, non-integer values of C are almost always required.

Qxample 10.3. Consider a $10 \mathrm{~Gb} / \mathrm{s}$ line card with a state table of size 1 million entries, which are 256 bits in width. Suppose that a minimum-sized packet is 40 bytes, and so it arrives once every 32 ns . The state entries need to be updated once every 32 ns . Suppose we used a 1 Gb DRAM that has a random access time $T_{R C}=50 \mathrm{~ns}$ (i.e., and so can be updated once every 100 ns , i.e., over three times slower than the rate that is required). Then GPP-SMA, with a DRAM having 4 independent banks, can speed up the memory subsystem to update an entry every 25 ns (such that the DRAM has a capacity of 256 Mb), which is good enough for our purposes.

10.3.1 Consequences

We consider a number of consequences of the GPP-SMA algorithm.

[^100]1. Special case for Read Accesses: If state entries are only read (but not modified), then only the first part of GPP-SMA (i.e., maintaining multiple copies of the state entries) needs to be performed when a state entry is created. In such a case, GPP-SMA degenerates to an obvious and trivial algorithm where state entries are replicated across multiple banks to increase the read access rate supported by the memory subsystem.
2. Special case for the Ping-Pong Algorithm: Note that a special case for GPP-SMA (Algorithm 10.1), with $h=2$ and $C=1$, leads to the ping-pong algorithm described in Section 10.2.1. Since $C=1$, no copies need to be maintained. In such a case, only the second part of the GPP-SMA algorithm (i.e., load balancing the write accesses) needs to be performed.
3. Applicability to Other Applications: GPP-SMA makes no assumptions about the memory access pattern. It is orthogonal to the other load balancing and caching algorithms described throughout this thesis. And so, it can be used in combination with these techniques.

Example 10.4. For example, GPP-SMA with h banks can be applied in combination with the buffer and scheduler caching algorithms described in Chapters 7 and 9 respectively to reduce their cache size by a factor of \sqrt{h}.

10.4 Implementation Considerations

We consider a number of implementation-specific considerations and optimizations for GPP-SMA.

1. Optimizing the Data Structure: It is easy to implement GPP-SMA in hardware. For every memory access, the bank that contains the latest updated version of the state entry needs to be accessed. This can be done by maintaining C pointers to the C location(s) where the most updated version of the state entry is maintained. But if the memory addresses used for the " C " copies of a flow's state entry, which are on " C " different banks, are kept identical (except
for the bank number, which is different), then C separate pointers need not be maintained. We only require a bitmap of size $C(C+1)$ bits per entry to describe which C of the possible $C(C+1)$ banks have the latest updated version of the state entry for that particular entry. This reduces the size required to implement GPP-SMA.
2. Using DRAM Bandwidth Efficiently: GPP-SMA can be analyzed for a time period of $y T_{R C}$. In such a case, each bank can be accessed up to y times in a time period of $y T_{R C}$. When data is written back to a bank, multiple writes to that bank can be aggregated together and written to contiguous memory locations in an efficient manner. ${ }^{4}$ This allows GPP-SMA to utilize the DRAM I/O bandwidth efficiently.
3. Saving I/O Write Bandwidth: GPP-SMA performs C updates per random cycle time and creates C copies for each update, for a total of C^{2} writes per random cycle time. If the copy function was done in memory, or if the memory was on-chip, there would be no need to carry each of the C^{2} writes on the memory interconnect. With a copy function in memory, the number of distinct write entries that are carried over the interconnect would reduce to C per random cycle time. This would save memory I/O bandwidth, reduce the number of ASIC-to-memory interface pins, and reduce worst-case I/O power consumption. Indeed, with the advent of eDRAM [26]-based memory technology (which is based on a standard ASIC process), it is relatively easy to create memory logic circuitry that is capable of copying data over multiple banks.
4. Scalability and Applicability: GPP-SMA requires h banks (and hence only gives $\frac{1}{h}$ of the memory capacity) in order to be able to speed up the updates by a factor of $\Theta(\sqrt{h})$. Clearly, this is not very scalable for large values of speedup unless the memory capacity is very large. Based on current technology constraints and system requirements, we have noticed that GPP-SMA is practical for small values of speedup ($S \leqslant 4$). As the capacity of memory improves (roughly at the
[^101]Table 10.1: Tradeoffs for memory access rate and memory capacity.

Banks per Entry	\#Updates per TimeSlot	Memory Access Rate Speedup	Total Memory Bandwidth	Comment
h	\bar{C}	\bar{S}	$M \equiv C+C^{2}$	-
1	0.5	1	1	$\begin{gathered} \hline 1 \text { update in } 2 \\ T_{R C} \text { 's } \end{gathered}$
2	1	2	2	$\begin{gathered} 1 \text { update per } \\ T_{R C} \end{gathered}$
4	1.33	2.67	4	4 updates in 3 $T_{R C}$'s
5	1.5	3	4.5	3 updates in 2 $T_{R C}$'s
6	2	4	6	$\begin{gathered} 2 \text { updates per } \\ T_{R C} \\ \hline \end{gathered}$
12	3	6	12	3 updates per $T_{R C}$
h	$C \leqslant \frac{\lfloor\sqrt{4 h+1}-1\rfloor}{2}$	$S \leqslant\lfloor\sqrt{4 h+1}-1\rfloor$	$M \leqslant h$	$\begin{gathered} C \text { updates per } \\ T_{R C} \\ \hline \end{gathered}$

speed of Moore's law), higher values of update speedup may become practical, as more memory banks per area can be fitted on-chip.
$\sqrt{3}$ Observation 10.6. The advent of on-chip memory technology such as eDRAM [26] has allowed ASIC designers the flexibility to structure memory banks based on their application requirements. Today, it is not uncommon to have $h \geqslant 32$ banks with eDRAM-based memory. ${ }^{5}$

Table 10.1 summarizes the performance of GPP-SMA, and describes the tradeoff between the number of banks used, and the update speedup.

10.5 Conclusions

A number of data-path applications on routers maintain state. We used the "constraint set" technique (first described in Chapter 2) to build a memory subsystem that can be used to accelerate the perceived random access time of memory. An algorithm called GPP-SMA was described which can speed up memory by a factor $\Theta(\sqrt{h})$, where h is the number of banks that a state entry can be load balanced over. Our

[^102]algorithm makes no assumptions on the memory access pattern. The technique is easy to implement in hardware, and only requires a bitmap of size h bits for each entry, to be maintained in high-speed on-chip memory. The entries themselves can be stored in main memory (for example, commodity DRAM) running $\Theta(\sqrt{h})$ slower than the line rate. For example, a state table of size $\sim 160 \mathrm{Mb}$, and capable of updating 40 M updates $/ \mathrm{sec}$, can be built from DRAM that allows up to 6 banks to be independently addressed in a random cycle time, with capacity 1 Gb and a $T_{R C}$ of 50 ns (which could have supported no more than 10 M updates/s on its own).

Our technique has two caveats - (1) The DRAM capacity lost in order to speed up the random cycle time grows quadratically as a function of the speedup, limiting its scalability, and (2) The technique requires larger memory bandwidth.

While there are systems for which the above technique cannot be applied (e.g., systems that require extremely large speedup), we have seen that these techniques are practical for small values of speedup $(S \leqslant 4)$. While we have not used these techniques for current-generation $40 \mathrm{~Gb} / \mathrm{s}$ line cards (mainly due to the use of eDRAMs [26] which were able to meet the random cycle time requirements at $40 \mathrm{~Gb} / \mathrm{s}$), we are currently negotiating deployment of the above technique for the next-generation $100 \mathrm{~Gb} / \mathrm{s}$ Ethernet switch and Enterprise router line cards, where even eDRAM can be too slow to meet the random cycle time requirements.

Summary

1. A number of data-path applications on routers maintain state. These include: stateful firewalling, policing, network address translation, etc.
2. The state maintained is usually to track the status of a "flow". The granularity of a flow can be coarse (e.g., all packets destined to a particular server) or fine (e.g., a TCP connection), depending on the application.
3. When a packet arrives, it is first classified, and the flow to which it belongs is identified. An entry in the memory (to which the flow belongs) is identified. Based on the packet, some action is performed, and later the entry is modified and written back. This is referred to as a "read-modify-write" operation.
4. However, the large random access times of DRAMs make it difficult to support high-speed read-modify-write operations to memory.
5. We consider a load balancing algorithm that maintains copies of the flow state in multiple locations (banks) in memory. The problem is to ensure that irrespective of the memory access pattern, flow state entries can be read and updated faster than the memory access rate of any single memory bank.
6. We describe and analyze a state management algorithm called "generalized ping-pong" (GPP-SMA) that achieves this goal.
7. The main result of this chapter is that the generalized ping-pong algorithm, with h independent memory banks running at the line rate, can emulate a memory that can be updated at C times the line rate (C reads and C writes), if $C \leqslant \frac{\lfloor\sqrt{4 h+1}-1\rfloor}{2}$ (Theorem 10.1).
8. GPP-SMA is resistant to adversarial memory accesses that can be created by hackers or viruses; and its performance can never be compromised, either now, or provably, ever in future.
9. GPP-SMA requires a small bitmap to be maintained on-chip to track the entries maintained in DRAM, and is extremely practical to implement.
10. GPP-SMA can speed up the memory access time of any memory subsystem. Hence the technique is orthogonal to the various load balancing and caching techniques that are described in the rest of this thesis. Thus it can be applied in combination with any of the other memory management techniques. For example, it can reduce the cache sizes of the packet buffering and scheduler caches described in Chapters 7 and 8.
11. The main caveat of the technique is that it trades off memory capacity for random cycle time speedup, and requires additional memory bandwidth, and so its applicability is usually limited to low values of speedup $(S \leqslant 4)$.
12. At the time of writing, we are considering deployment of these techniques for the next generation of $100 \mathrm{~Gb} / \mathrm{s}$ Ethernet switch and Enterprise router line cards.

Chapter 11: Conclusions

June 2008, San Francisco, CA

Contents

11.1 Thesis of Thesis
 301

11.2 Summary of Contributions . 301
11.3 Remarks Pertaining to Industry . 302
11.4 Remarks Pertaining to Academia . 304
11.4.1 Spawning New Research . 305
11.5 Closing Remarks . 306
11.5.1 Limitations and Open Problems . 306
11.5.2 Applications Beyond Networking . 307
11.5.3 Ending Remarks . 308

You cannot simply cross the Bay Area on a whim. San Francisco Bay, more than 1600 square miles in size, neatly bisects the area in two separate halves. A series of freeways with toll booths connect the Peninsula and East Bay. For a picturesque crossing, you can take the Golden Gate Bridge at the mouth of the Bay, one of the world's largest suspension bridges, considered a marvel of engineering when it was built in 1937.

However, if you want to avoid the toll ($\$ 5$ if you are well-behaved) and are in a mood to inspect more recent engineering wonders, take the turnoff to Highway 237 at the Bay's opposite end. The freeway begins in Mountain View, home of Google, a small company specializing in niche search engine technology (we suggest you look them up). If you're not in a rush, take the last exit. You'll soon find yourself in a large campus with buildings that all look alike, the home of a networking systems vendor. Bear right on Cisco Way, and you'll see an inconspicuous sign - "Datacenter Networked Applications (DNA) lab, Cisco Systems".

Unlike its large, frugal setting, the DNA lab is small and holds an expensive assemblage of the highest-speed Ethernet switches and Enterprise routers, including storage equipment, high-performance computing systems, disk arrays, and high-density server farms. These products are placed neatly side by side to showcase the next-generation, high-speed data center networking technologies. Glance around and you'll see a large array of overhead projectors, and walls adorned with $\sim 20+$ onscreen displays. Go ahead, look around and experience the tremendous speed and capabilities of these modern engineering marvels. Be sure to ask a network expert for a demo. Legend has it that if you look carefully, you'll find (tell us if you do) a nondescript sticker on each router: "High-speed router - fragile, handle with care..."
"If you are afraid of change, leave it here".

- Notice on a Tip Box ${ }^{\dagger}$
"Make everything as simple as possible, but not simpler".
— Albert Einstein ${ }^{\ddagger}$

Conclusions

11.1 Thesis of Thesis

The thesis of this thesis is two-pronged, with one prong pertaining to industry and the other to academia -

1. We have changed the way high-speed routers are built in industry, and we have showed that (a) their performance can be scaled (even with slow memories), (b) their memory subsystems need not be fragile (even in presence of an adversary, either now or, provably, ever in future) and (c) they can give better deterministic memory performance guarantees.
2. We have contributed to, unified, and, more important, simplified our understanding of the theory of router architectures, by introducing (and later extending) a powerful technique, extremely simple in hindsight, called "constraint sets", based on the well-known pigeonhole principle.

11.2 Summary of Contributions

\propto Note 11.1. A summary of the 14 key results of this thesis is available in Section 1.11. For more details on (1) the specific problems solved in this thesis, refer to Section 1.7; and for (2) the industry impact and consequences of these ideas, see Section 1.9; and (3) for a list of academic contributions

[^103]that unify our understanding of the theory of router architectures, refer to Table 2.1 and Section 2.3.

The next two sections discuss the impact of this thesis on industry and academia respectively.

11.3 Remarks Pertaining to Industry

$\sqrt{3}$ Observation 11.1. Networking both reaps the boons and suffers the curses of massive current deployment. This means that new ideas can make a large impact, but that they have an extremely hard time gaining acceptance. Deploying a new idea in existing networks can be technically challenging, require cooperation among hosts in the network, and can sometimes be economically infeasible to put in practice. Consequently, we face the unfortunate reality that a large percentage of really good ideas, in academia and industry, are never deployed in networking. In that sense, we were fortunate, because our ideas pertain to the networking infrastructure layer, i.e., routers, so their acceptance does not need cooperation among existing routers.

Writing a thesis several years after finishing the main body of the research ${ }^{1}$ has at least the benefit that we don't need to predict the potential of our academic work. At the time of writing, we have managed to add to the repertoire several new research ideas relevant to this area, and most important we have brought these ideas to fruition. However, their deployment has been by no means easy. It has been a learning, challenging, and humbling experience.

Routers are complex devices - they must accommodate numerous features and system assumptions, require backward compatibility, and have ever-changing requirements due to the advent of new applications and network protocols. This has meant

[^104]that, in order to realize our techniques in practice, we have had to modify them, devise and introduce new techniques, and fine-tune existing ones. Achieving these goals has taken nearly four years and significant resources. In hindsight, it was important to spend time in industry, understand the real problems, and solve them from an insider's framework. In the course of implementation, we have learned that designs are complex to implement, and their verification is challenging.

Example 11.1. For example, the packet buffer cache (see Figure 7.3) has six independent data paths, each of which can access the same data structure within four clocks on $40 \mathrm{~Gb} / \mathrm{s}$ line cards. This leads to data structure conflicts, and requires several micro-architectural solutions to implement the techniques correctly. Similarly, almost all our designs have had to be parameterized to cater to the widely varying router requirements of Ethernet, Enterprise, and Internet routers. The state space explosion, to deal with massive feature requirements from different routers, meant that these solutions take years and large collaborative efforts to build and deliver correctly.

It is a good time to ask - Have we achieved the goals we set for ourselves at the onset of this thesis? At the current phase of deployment, I believe that it is an ongoing but incomplete success. At the time of this writing, we have largely met our primary goals - to scale the memory performance of high-speed routers, enable them to give deterministic guarantees, and alleviate their susceptibility to adversaries. We have designed, evangelized, and helped deploy these techniques on a widespread scale, and it is expected that up to 80% of all high-speed Ethernet switches and Enterprise routers ${ }^{2}$ will use one or more instances of these technologies. We are also currently deploying these techniques on the next generation of $100 \mathrm{~Gb} / \mathrm{s}$ line cards (for high-volume Ethernet, storage, and data center applications). However, our work is still incomplete, because we have yet to cater to high-speed Internet core routers. At this time, we are in discussions for deploying these ideas in those market segments as well.

[^105]The secondary consequences of our work have resulted in routers becoming more affordable - by reducing memory cost, decreasing pins on ASICs, and reducing the physical board space. They have also enabled worst-case and average-case power savings. In summary, our work has brought tremendous engineering, economic, and environmental benefits.
\leftrightarrow © Note 11.2. From a user's perspective, a network is only good if every switch or router (potentially from several different router vendors) in a packet's path can perform equally well, give deterministic guarantees, and be safe from adversarial attacks. To that end, most of the ideas described in this thesis were done at Stanford University, are open source, and available for use by the networking community at large.

11.4 Remarks Pertaining to Academia

I will now touch on the academic relevance of this work, and comment separately on load balancing and caching techniques. It is clear that the constraint set technique introduced in this thesis (to analyze load-balanced router memory subsystems) simplifies and unifies our understanding of router architectures. However, it also has an interesting parallel with the theory of circuit switching.

Observation 11.2. Note that router architecture theory deals with packets that can arrive and be destined to any output (there are a total of N^{N} combinations), while circuit switches deal with a circuit-switched, connectionbased network that only routes one among N ! permutations between inputs and outputs. In that sense, router architecture theory is a superset of circuit switching theory [110]. However, circuit switch theory and constraint sets both borrow from the same pigeonhole principle. This points to an underlying similarity between these two fields of networking. From an academic perspective, it is pleasing that the technique of analysis is accessible and understandable even by a high school student!

11.4.1 Spawning New Research

Our initial work has led to new research in both algorithms and architectural techniques pertaining to a broader area of memory-aware algorithmic design. Some significant contributions include - simplified caches using frame scheduling, VOQ buffering caches [181], packet caching [182], lightweight caching algorithms for counters [202, 203, 204, 205], caching techniques to manage page allocation, and increased memory reliability and redundancy [32].
> $\sqrt{3}$ Observation 11.3. Our caches have had some interesting and unforeseen benefits. L2 caches ${ }^{3}$ (which are built on top of the current algorithmic L1 caches) have been proposed and are currently being designed to decrease average case power [25]. Also, larger L1 caches have been implemented to hide memory latencies and allow the use of complementary high-speed interconnect and memory serialization technology [32]. The structured format in which our L1 caches access memory also allows for the creation of efficient memory protocols [214] that are devoid of the problems of variable-size memory accesses, and avoid the traditional "65-byte" problem and memory bank conflicts.

In the process of development, we have sometimes re-used well-known existing architectural techniques, and have in some cases invented new ones to deal with complex high-speed designs. For example, the architectural concepts of cache coherency, the use of semaphores, maintaining the ACID [215] properties of data structures (which are updated at extremely high rates), deep pipelining, and RAID [30] are all concepts that we have re-used (and tailored) for high-speed routers. Similarly, we have re-applied the ideas pertaining to adversary obfuscation (see Chapter 10) to many different applications. While these concepts are borrowed from well-known systems ideas in computer architecture [155], databases, and the like, they also have significant differences and peculiarities specific to networking.

[^106]Observation 11.4. From an academic perspective, it is heartening that there is a common framework of load balancing and caching techniques that are re-used for different purposes. Also, router data path applications, for the most part, have well-defined data structures, and so lend themselves to simple techniques and elegant results. I believe that routers have reached a semi-mature stage, and I hope that this thesis will convince the reader that we are converging toward an end goal of having a coherent theory and unified framework for router architectures.

11.5 Closing Remarks

11.5.1 Limitations and Open Problems

Based on my experience in the networking industry, I would like to divide the limitations of the techniques presented in this thesis into three broad categories. I hope that this will stimulate further research in these three areas.

1. Unusual Demands From Current Applications: There are additional features that data path applications are required to support on routers, outside their primary domain. In general, any features that break the assumptions made by the standard data structures of these applications can place unexpected demands on our memory management techniques, and make their implementation harder, and sometimes impractical. For example, unicast flooding requires packet order to be maintained among packets belonging to different unicast and unicast flood queues. This usually doubles the size of data structures for the queue caching algorithms. Similarly, dropping large numbers of packets back to back ${ }^{4}$ requires over-design of the buffer and scheduler cache; buffering packets received in temporary non-FIFO order makes the implementation of the tail cache more complex, and handling extremely small packets at line rates can cause resource

[^107]problems when accessing data structures. All of the above require special handling or more memory resources to support them at line rates.
2. Scalability of Current Applications: The complexity of implementation of our results (in terms of number of memories required, cache sizes, etc.) usually depends on the performance of the memory available. While our techniques are meant to alleviate the memory performance problem, and in theory, have no inherent limitations, there are practical limits in applying these approaches, especially when memories become extremely slow. Also, there are instances where the feature requirements are so large that our techniques are impractical to implement. As an example, some core routers require tens of thousands of queues. Multicast routers require $\Theta\left(2^{f}\right)$ queues, where $f \leqslant q$ is the maximum multicast fanout, and q is the number of unicast queues. The cache size needed to support this feature is $\Theta\left(f * 2^{f}\right)$, which can be very large. Similarly, load balancing solutions require a large $(\equiv \Theta(\sqrt{f})$) speedup (refer to Appendix J) to achieve deterministic performance guarantees for multicast traffic. This is an area of ongoing concern that needs further improvement.
3. Unpredictability of Future Applications: Our caching and load balancing solutions are not a panacea. The router today is viewed as a platform, and is expected to support an ever-increasing number of applications in its data path. These new applications may access memories in completely different ways and place unforeseen demands on memory. We cannot predict these applications, and new techniques and continued innovation will be necessary to cater to and scale their performance.

11.5.2 Applications Beyond Networking

Our techniques exploit the fundamental nature of memory access. While the most useful applications that we have found are for high-speed routers, their applicability is not necessarily limited to networking. In particular, the constraint set technique could be used wherever there are two (or more) points of contention in any load balancing application, for example, in job scheduling applications. They can also
be used in applications that keep FIFO and PIFO^{5} queues. Similarly, our caching techniques can be used in any application that uses queues, manipulates streams of data, walks linked lists (e.g., data structures that traverse graphs or state tables, as used in deterministic finite automata (DFA)), aggregates or pre-fetches blocks of data, copies data, or measures events.

Observation 11.5. Of course, the memory acceleration technique introduced in this thesis can be used to speed up (by trading off memory capacity) the random cycle time performance of any memory. The speedup is by a factor, $\Theta(\sqrt{h})$, where h is the number of memory banks. This points to an interesting and fundamental tradeoff. As memory capacity increases at the rate of Moore's law, we expect this to become a very useful and broadly applicable technique. In addition, this technique is orthogonal to the rest of the load balancing and caching techniques described in this thesis, and so can be used in combination with these various techniques to increase memory performance.

11.5.3 Ending Remarks

"Sufficiency is the child of all discovery".

- Quick Quotations Corporation

As system requirements increase, the capabilities of hardware may continue to lag. The underlying hardware can be slow, inefficient, unreliable, and perhaps even variable and probabilistic in its performance. Of course, some of the above are already true with regard to memory. And so, it will become necessary to find architectural and algorithmic techniques to solve these problems. If we can discover techniques that are sufficient to emulate the large performance requirements of the system, then it is possible to build solutions that can use such imperfect underlying hardware. I believe that such techniques will become more common in future, and are therefore a continuing area of interest for systems research.

[^108]High-speed routers are complex devices. They function at the heart of the tremendous growth and complexity of the Internet. While their inner workings can in some instances be complex (and, like musical notation, the underlying mathematics can at times be intimidating and can hide their inherent beauty), for the most part I hope to have conveyed in this thesis that they are, in fact, quite simple, have a common underlying framework, and lend themselves to elegant analysis. If a high school student can appreciate this fact, I would consider the thesis successful.

Epilogue

Penning an epilogue is a pleasure. It's not every day you can finish your thesis, polish the last words, attend your advisor's wedding in faraway Turkey, and sit back, relax, and feel just a little bit satisfied. Yet I can't help considering the irony! Academia teaches us to think outside the box, but this thesis ponders ideas inside the box.

In the preface, I alluded to a need to refrain from social commentary. I lied. I was attempting to put a finger on why I loved the Ph.D. process and the academic world. Indulge me while I share my perspective.

In contrast to the world at large, which is inherently unfair and holds us responsible for our moments of indecisiveness, irrationality, subjectivity, and prejudice, academic thought is (in principle) rational, objective, and idealistic. There's a certain utopian aura, a purity and fairness connected with the scholarly life. It can give joys that are (mostly) under your control, and even better, cannot be denied you. In many cases, and this is definitely true of most mathematical and analytical research, the only extremely portable tools you need are paper and pencil. ${ }^{6}$ Academic thought gives you avenues to be creative, feel challenged, and keep your mind active and engaged. Of course, one does experience frustration (e.g., nine-tenths of a proof is worth not very much), but the genuine happiness of a handful of "Aha!" moments beats all the hedonistic joys of the wider society.

I'm not trying to raise academia above society, but merely making some interesting comparisons. This thesis, for example, tries to devise solutions for the Internet and solve pressing problems of building high-speed networks. But, it pales in comparison to the complexities of human networks. ${ }^{\dagger}$ What humans could learn from networked routers is that routers communicate easily, are seldom offended, don't mandate arbitrary mores, and aren't shy about sparking instant conversations.

While writing my thesis, I tried to be uncharacteristically asocial (because it helped me concentrate). Yet over these ten months of writing, I've had many opportunities

[^109]to meet wonderful strangers, and collect their interesting anecdotes and amazing experiences. These networking opportunities brought surprise benefits - .- complimentary drinks, a lunch, several free dinners, a historical photo tour of Tiburon, a small town just north of San Francisco, complementary museum tickets, a private showing by a local artist, an invitation to go flying, a standing invitation to visit Malibu, an invite from a Hollywood producer to visit the location for an advertising shoot, introductions to interesting people and folksy advice in the kitschy small towns of northern California. There were also some hilarious moments, aptly captured by an old Turkish saying (perhaps you have heard it?), "What happens in Istanbul, stays in Constantinople".

And on that note, as I pen a roast on your wedding day, Asena and Nick, thank you for a wonderful wedding, and here's wishing you a long, happy, fulfilling, and what is that phrase? (see preface) - a stable marriage ...

- Istanbul, Turkey,

July $11^{\text {th }} 2008$

Part III

Appendices \& Bibliography

```
"Good, Fast, Cheap: Pick any two
(you can't have all three)".
- RFC 1925, The Twelve Networking Truths }\mp@subsup{}{}{\dagger
```


Memory Terminology

In this appendix, we will define some common terms related to memory. The two most widespread memories available today are SRAM [2] and DRAM [3]. In what follows, we will define the DRAM memory terminology, of which SRAM terms are a subset.

A. 1 Terminology

A DRAM's memory array is arranged internally in rows, where a set of contiguous rows form a bank. For example, Figure A. 1 shows a DRAM with K banks, where each bank has R rows. The four key memory terms of concern to us are:

1. Bandwidth: This refers to the total amount of data that can be transferred from a single memory per unit time.
2. Capacity: This refers to the total number of bits that can be stored in the memory.
3. Latency: This refers to the time it takes to receive data from memory, after a request to access it has been issued by the requester.

[^110]

Figure A.1: Internal architecture of a typical memory.
4. Access Time: This refers to the minimum amount of time that needs to elapse between any two consecutive requests to the memory. The memory access time can depend on a number of factors, and this will be explained in the next section.

Observation A.1. Note that the memory bandwidth is a function of three quantities - (1) the data width of the memory, (2) the clock speed, and (3) the number of edges used per clock to transfer data. For example, a DRAM with a 36 -bit data bus, running a 250 Mhz clock, which can support dual-data rate (DDR) transfer (i.e., it can transfer data on both edges of the clock) has a bandwidth of $36 \times 250 \times 2=18 \mathrm{~Gb} / \mathrm{s}$.

A. 2 Access Time of a DRAM

The access time T of the DRAM (i.e., the time taken between consecutive accesses to any location in the memory array) is dependent on the sequence of memory accesses made to the DRAM. These can be categorized as follows:

1. Consecutive cells in the same row and bank: The access time between two consecutive references to adjacent memory locations in the same row of the same bank is denoted by T_{C}. This is sometimes referred to as the burst mode in a DRAM. In Figure 2, consecutive references to cells A and B can be done in burst mode. T_{C} is usually about $5-10 \mathrm{~ns}$ today. Although this is fast, it is not common in a router to be able to use burst mode, because successive cells do not usually reside in the same row and bank.
2. Consecutive cells in different rows, but in the same bank: The access time between two consecutive references to different rows but belonging to the same bank is denoted by $T_{R C}$. As an example, consider the consecutive references to cells B and C in Figure A.1. We say that there is a bank conflict ${ }^{1}$ because the rows being accessed belong to the same bank. $T_{R C}$ represents the worst-case access time for random accesses to a DRAM, and it is of the order of $70-80 \mathrm{~ns}$ for commodity DRAMs available today.
3. Consecutive cells in adjacent banks: Some DRAMs such as RDRAM [7] incur a penalty when two consecutive references are made to adjacent banks, i.e., if a cell accesses bank x, then the next cell cannot access banks $x-1, x$, or $x+1$. This is called an adjacent bank confict, and we will denote it by $T_{A C}$. This can occur if adjacent DRAM banks share circuitry, such as sense-amps. As an example, consecutive references to cells D and E in Figure A. 1 cause an adjacent bank conflict. Most modern DRAMs do not share circuitry between adjacent banks, and hence do not exhibit adjacent bank conflicts.

[^111]4. Consecutive cells in different rows: The access time for two consecutive references to rows in different banks is denoted by $T_{R R}$ and is called the row to row access time. An example in Figure A. 1 would be a reference to cell A, B, or C followed by a reference to cell D. This number is of the order of 20 ns and usually represents the best-case random access time for a DRAM.

In a DRAM, there is usually a heavy penalty in the access time for a bank conflict. ${ }^{2}$ Thus $T_{R C} \ll T_{R R}, T_{A C}$. In this thesis, when we mention random access time, we will refer to the worst-case random access time of the DRAM, i.e., $T=$ $\max \left\{T_{R C}, T_{R R}, T_{A C}\right\}$.

[^112]
Definitions and Traffic Models

B. 1 Definitions

In this thesis, we are interested in deterministic performance guarantees. However, in some instances we refer to terms that are concerned with statistical performance guarantees informally. We define these terms rigorously in this section.

We assume that time is slotted into cell times. Let $A_{i, j}(n)$ denote the cumulative number of arrivals to input i of cells destined to output j at time n. Let $A_{i}(n)$ denote the cumulative number of arrivals to input i. During each cell time, at most one cell can arrive at each input. $\lambda_{i, j}$ is the arrival rate of $A_{i, j}(n) . D_{i, j}(n)$ is the cumulative number of departures from output j of cells that arrived from input i, while $D_{j}(n)$ is the aggregate number of departures from output j. Similarly, during each cell time, at most one cell can depart from each output. $X_{i, j}(n)$ is the total number of cells from input i to output j still in the system at time n. The evolution of cells from input i to output j can be represented as:

$$
\begin{equation*}
X_{i, j}(n+1)=X_{i, j}(n)+A_{i, j}(n)-D_{i, j}(n) . \tag{B.1}
\end{equation*}
$$

Let $A(n)$ denote the vector of all arrivals $\left\{A_{i, j}(n)\right\}, D(n)$ denote the vector of all departures $\left\{D_{i, j}(n)\right\}$, and $X(n)$ denote the vector of the number of cells still in the

[^113]

Figure B.1: Network traffic models.
system. With this notation, the evolution of the system can be described as

$$
\begin{equation*}
X(n+1)=X(n)+A(n)-D(n) . \tag{B.2}
\end{equation*}
$$

\aleph Definition B.1. Admissible: An arrival process is said to be admissible when no input or output is oversubscribed, i.e., when $\sum_{i} \lambda_{i, j}<1, \sum_{j} \lambda_{i, j}<1$, $\lambda_{i, j} \geq 0$.
\aleph Definition B.2. IID: Traffic is called independent and identically distributed (iid) if and only if:

1. Every arrival is independent of all other arrivals both at the same input and at different inputs.
2. All arrivals at each input are identically distributed.
\aleph Definition B.3. 100\% throughput: A router is said to achieve 100% throughput if under any admissible iid traffic, for every $\epsilon>0$, there exists $B>0$ such that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\sum_{i, j} X_{i, j}(n)>B\right\}<\epsilon
$$

"It only takes a memory bandwidth of $3 N R$?
We had a bit more speedup than that ...".

- Pradeep Sindhu ${ }^{\dagger}$

Proofs for Chapter 3

C. 1 Proof of Lemma 3.1

Lemma 3.1. A request matrix can be ordered in no more than $2 N-1$ alternating row and column permutations.

Proof. We will perform the ordering in a iterative way. The first iteration consists of one ordering permutation of rows or columns, and the subsequent iterations consist of two permutations, one of rows and one of columns. We will prove the theorem by induction.

1. After the first permutation, either by row or by column, the entry at $(1,1)$ is non-zero, and this entry will not be moved again. We can define sub-matrices of S as follows:

$$
\begin{align*}
& A_{n}=\left\{S_{i j} \mid 1 \leqslant i, j \leqslant n\right\}, \\
& B_{n}=\left\{S_{i j} \mid 1 \leqslant i \leqslant n, n \leqslant j \leqslant N\right\}, \tag{C.1}\\
& C_{n}=\left\{S_{i j} \mid n \leqslant i \leqslant N, 1 \leqslant j \leqslant n\right\} .
\end{align*}
$$

2. If a sub-matrix of S is ordered and will not change in future permutations, we call it optimal. Suppose A_{n} is optimal after the $n^{\text {th }}$ iteration. We want to prove

[^114]that after another iteration, the sub-matrix A_{n+1} is optimal. Without loss of generality, suppose a row permutation was last performed, then in this iteration, we will do a column permutation followed by a row permutation. There are four cases:
(a) The entries of B_{n} and C_{n} are all zeros. Then $S_{n+1, n+1}>0$ after just one permutation, so the sub-matrix A_{n+1} is optimal.
(b) The entries of B_{n} are all zeros, but those of C_{n} are not. After the column permutation, suppose $S_{m, n+1}(m>n)$ is the first positive entry in column $n+1$, then the first m rows of S are ordered and will remain so. Thus, column $n+1$ will remain the biggest column in B_{n}, and A_{n+1} is optimal.
(c) The entries of C_{n} are all zeros, but those of B_{n} are not. This case is similar to case (b).
(d) The sub-matrices B_{n} and C_{n} both have positive entries. The column permutation will not change row $n+1$ such that it becomes smaller than the rows below it. Similarly, the row permutation following will not change column $n+1$ such that it becomes smaller than the columns on its right. So A_{n+1} is optimal.

After at most N iterations, or a total of $2 N-1$ permutations, the request matrix is ordered.

C. 2 Proof of Theorem 3.7

Theorem 3.7. If a request matrix S is ordered, then any maximal matching algorithm that gives strict priority to entries with lower indices, such as the WFA [15], can find a conflict-free schedule.

Proof. By contradiction. Suppose the scheduling algorithm cannot find a conflict-free time slot for request (m, n). This means

$$
\begin{equation*}
\sum_{j=1}^{n-1} S_{m j}+\sum_{i=1}^{m-1} S_{i n} \geqslant 4 \tag{C.2}
\end{equation*}
$$

Now consider the sub-matrix S^{\prime}, consisting of the first m rows and the first n columns of S. Let's look at the set of the first non-zero entries of each row, L_{r}, and the set of the first non-zero entries of each column, L_{c}. Without loss of generality, suppose S_{11}^{\prime} is the only entry belonging to both sets. (If this is not true, and $S_{k l}^{\prime}$, where $k \neq 1$ or $l \neq 1$, also belongs to both L_{r} and L_{c}, then we can remove the first $k-1$ rows and the first $l-1$ columns of S^{\prime} of to obtain a new matrix. Repeat until L_{r} and L_{c} only have one common entry.) Then $\left|L_{r} \cup L_{c}\right|=m+n-1$. At most two of the entries in the $m^{\text {th }}$ row and those in the $n^{\text {th }}$ column are in $L_{r} \cup L_{c}$, so the sum of all the entries satisfies

$$
\begin{equation*}
\sum_{i} \sum_{j} S_{i j} \geqslant\left(\left|L_{r} \cup L_{c}\right|-2\right)+S_{m n}+\sum_{j=1}^{n-1} S_{m j}+\sum_{i=1}^{m-1} S_{i n} \geqslant 4 \tag{C.3}
\end{equation*}
$$

Hence we get,

$$
\begin{equation*}
\sum_{i} \sum_{j} S_{i j} \geqslant m+n+2, \tag{C.4}
\end{equation*}
$$

which conflicts with property 1 in Section 3.6.
"You were proving this on a friday evening?
You need to go get a life!".

- Da Chuang, Colleague Extraordinaire ${ }^{\dagger}$

Proofs for Chapter 5

In this appendix, we will prove that a buffered crossbar with a speedup of two using arbitrary input and output scheduling algorithms achieves 100% throughput. We will use the traffic models and definitions that were defined in Appendix B.

D. 1 Achieving 100\% Throughput in a Buffered Crossbar - An Outline

Figure D. 1 shows the scheduling phases in a buffered crossbar with a speedup of two. The two scheduling phases each consist of two parts: input scheduling and output scheduling. In the input scheduling phase, each input (independently and in parallel) picks a cell to place into an empty crosspoint buffer. In the output scheduling phase, each output (independently and in parallel) picks a cell from a non-empty crosspoint buffer to take from.

We know that the scheduling algorithm in a buffered crossbar is determined by the input and output scheduling policy that decides how inputs and outputs pick cells in the scheduling phases. The randomized algorithm that we considered in Chapter 5 to achieve 100% throughput was as follows:

[^115]

Figure D.1: The scheduling phases for the buffered crossbar. The exact order of the phases does not matter, but we will use this order to simplify proofs.

Randomized Algorithm: In each scheduling phase, the input picks any nonempty VOQ, and the output picks any non-empty crosspoint.

We will adopt the following notation and definitions. The router has N ports, and $V O Q_{i j}$ holds cells at input i destined for output $j . X_{i j}$ is the occupancy of $V O Q_{i j},{ }^{1}$ and $Z_{i j}=X_{i j}+B_{i j}$ is the sum of the number of cells in the VOQ and the corresponding crosspoint. We will assume that all arrivals to input $i \in 1,2,3, \ldots, N$ are Bernoulli i.i.d. with rate λ_{i}, and are destined to each output $j \in 1,2,3, \ldots N$ with probability $\lambda_{i j}$. We will denote the arrival matrix as $A \equiv\left[\lambda_{i j}\right]$, where for all i, j,

$$
\begin{equation*}
\lambda_{i}=\sum_{j=1}^{N} \lambda_{i j}, \lambda_{j}=\sum_{i=1}^{N} \lambda_{i j}, 0 \leqslant \lambda_{i j}<1 \tag{D.1}
\end{equation*}
$$

We will also assume that the traffic is admissible (see Definition B.1), i.e., $\sum_{i} \lambda_{i, j}<$ $1, \sum_{j} \lambda_{i, j}<1$. In what follows, we will show that the buffered crossbar can give 100% throughput. The result is quite strong in the sense that it holds for any arbitrary work-conserving input and output scheduling policy with a speedup of two. In other words, each input i can choose to serve any non-empty VOQ for which $B_{i j}=0$, and each output j can choose to serve any crosspoint for which $B_{i j}=1$.

First we describe an intuition and outline of the proof. Then, in the next section, we will give a rigorous proof.

[^116]Theorem D.1. (Sufficiency) A buffered crossbar can achieve 100% throughput with speedup two for any Bernoulli i.i.d. admissible traffic.

Proof. Intuition and Outline: For each $V O Q_{i j}$, let $C_{i j}$ denote the sum of the cells waiting at input i and the cells waiting at all inputs destined to output j (including cells in the crosspoint for output j),

$$
\begin{equation*}
C_{i j}=\sum_{k} X_{i k}+\sum_{k}\left(X_{k j}+B_{k j}\right) . \tag{D.2}
\end{equation*}
$$

It is easy to see that when $V O Q_{i j}$ is non-empty (i.e., $X_{i j}>0$), then $C_{i j}$ decreases in every scheduling phase. There are two cases:

- Case 1: $B_{i j}=1$. Output j will receive one cell from the buffers destined to it, and $\sum_{k}\left(X_{k j}+B_{k j}\right)$ will decrease by one.
- Case 2: $B_{i j}=0$. Input i will send one cell from its VOQs to a crosspoint, and $\sum_{k} X_{i k}$ will decrease by one. ${ }^{2}$

With $S=2, C_{i j}$ will decrease by two per time slot. When the inputs and outputs are not oversubscribed, the expected increase in $C_{i j}$ is strictly less than two per time slot. So the expected change in $C_{i j}$ is negative over the time slot, and this means that the expected value of $C_{i j}$ is bounded. This in turn implies that the expected value of $X_{i j}$ is bounded and the buffered crossbar has 100% throughput.

[^117]
D. 2 Achieving 100\% Throughput in a Buffered Crossbar - A Rigorous Proof

Lemma D.1. Consider a system of queues whose evolution is described by a discrete time Markov chain (DTMC) that is aperiodic and irreducible with state vector $Y_{n} \in \mathbb{N}^{M}$. Suppose that a lower bounded, non-negative function $F\left(Y_{n}\right)$, called Lyapunov function, $F: \mathbb{N}^{M} \rightarrow \mathbb{R}$ exists such that $\forall Y_{n}, E\left[F\left(Y_{n+1}\right) \mid Y_{n}\right]<\infty$. Suppose also that there exist $\gamma \in \mathbb{R}^{+}$and $C \in \mathbb{R}^{+}$, such that $\forall\left\|Y_{n}\right\|>C$,

$$
\begin{equation*}
E\left[F\left(Y_{n+1}\right)-F\left(Y_{n}\right) \mid Y_{n}\right]<-\gamma \tag{D.3}
\end{equation*}
$$

then all states of the DTMC are positive recurrent and for every $\epsilon>0$, there exists $B>0$ such that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\sum_{i, j} X_{i, j}(n)>B\right\}<\epsilon$.

Proof. This is a straightforward extension of Foster's criteria and follows from [39, 216, 217, 218].

We will use the above lemma in proving Theorem D.1. We are now ready to prove the main theorem, which we repeat here for convenience.

Theorem D.2. (Sufficiency) Under an arbitrary scheduling algorithm, the buffered crossbar gives 100% throughput with speedup of two.

Proof. In the rest of the proof we will assume that all indices i, j, k vary from $1,2, \ldots N$. Denote the occupancy of $V O Q_{i j}$ at time n by $X_{i j}(n)$. Also, let $Z_{i j}$ denote the combined occupancy of the $V O Q_{i j}$ and the crosspoint $B_{i j}$ at time n. By definition, $Z_{i j}(n)=X_{i j}(n)+B_{i j}(n)$.

Define,

$$
\begin{align*}
f_{1}(n) & =\sum_{i, j} X_{i j}(n)\left(\sum_{k} X_{i k}(n)\right), \tag{D.4}\\
f_{2}(n) & =\sum_{i, j} Z_{i j}(n)\left(\sum_{k} Z_{k j}(n)\right), \tag{D.5}\\
F(n) & =f_{1}(n)+f_{2}(n) \tag{D.6}
\end{align*}
$$

Observe that from Equation D. 4

$$
\begin{aligned}
f_{1}(n) & =\sum_{i, j} X_{i j}(n)\left(\sum_{k} X_{i k}(n)\right) \\
& =\sum_{i, j, k} X_{i j}(n) X_{i k}(n)
\end{aligned}
$$

Denote $D_{i j}(n)=1$ if a cell departs from $V O Q_{i j}$ at time n and zero otherwise. Also, let $A_{i j}(n)=1$ if a cell arrives to $V O Q_{i j}$ and zero otherwise. Then, $X_{i j}(n+1)=$ $X_{i j}(n)+A_{i j}(n)-D_{i j}(n)$. Henceforth, we will drop the time n from the symbol for $D_{i j}(n)$ and $A_{i j}(n)$, and refer to them as $D_{i j}$ and $A_{i j}$ respectively, since in the rest of the proof, we will only be concerned with the arrivals and departures of cells at time n.

Therefore, $\left[f_{1}(n+1)-f_{1}(n)\right]$

$$
=\sum_{i, j, k}\left[X_{i j}(n+1) X_{i k}(n+1)-X_{i j}(n) X_{i k}(n)\right]
$$

Then we get $\left[f_{1}(n+1)-f_{1}(n)\right]$

$$
\begin{aligned}
& =\sum_{i, j, k}\left(X_{i j}(n)+A_{i j}-D_{i j}\right)\left(X_{i k}(n)+A_{i k}-D_{i k}\right)- \\
& \quad X_{i j}(n) X_{i k}(n) \\
& =\sum_{i, j, k}\left(A_{i j}-D_{i j}\right) X_{i k}(n)+\left(A_{i k}-D_{i k}\right) X_{i j}(n)+ \\
& \quad\left(A_{i j}-D_{i j}\right)\left(A_{i k}-D_{i k}\right) \\
& = \\
& \sum_{i, j, k} 2\left(A_{i k}-D_{i k}\right) X_{i j}(n)+\left(A_{i j}-D_{i j}\right)\left(A_{i k}-D_{i k}\right)
\end{aligned}
$$

Since $\left|A_{i j}-D_{i j}\right| \leq 1$ and similarly $\left|A_{i k}-D_{i k}\right| \leq 1$, we get ${ }^{3}$

$$
\begin{equation*}
E\left[f_{1}(n+1)-f_{1}(n)\right] \leq N^{3}+\sum_{i, j, k} 2 E\left[A_{i k}-D_{i k}\right] X_{i j}(n) \tag{D.7}
\end{equation*}
$$

Denote $E_{i j}(n)=1$ if a cell departs from the combined queue of $V O Q_{i j}$ and the crosspoint $B_{i j}$, and zero otherwise. Note that $E_{i j}(n)=1$ only when a cell departs from the crosspoint $B_{i j}$ to the output at time n, since all departures to the output must occur from the crosspoint. Also recall that the arrival rate to the combined queue, $V O Q_{i j}$ and $B_{i j}$, is the same as the arrival rate to $V O Q_{i j}$. So we can write $Z_{i j}(n+1)=Z_{i j}(n)+A_{i j}(n)-E_{i j}(n)$. Again we will drop the time n from the symbol for $E_{i j}(n)$ and $A_{i j}(n)$, and refer to them as $E_{i j}$ and $A_{i j}$ respectively.

Then, similar to the derivation in Equation D.7, we can derive using Equation D.5,

$$
\begin{equation*}
E\left[f_{2}(n+1)-f_{2}(n)\right] \leq N^{3}+\sum_{i, j, k} 2 E\left[A_{k j}-D_{k j}\right] Z_{i j}(n) \tag{D.8}
\end{equation*}
$$

[^118]So from Equation D. 7 and Equation D. $8, E[F(n+1)-F(n)]$

$$
\begin{aligned}
\leq 2 N^{3}+2 \sum_{i, j, k} & \left(E\left[A_{i k}-D_{i k}\right] X_{i j}(n)\right. \\
& \left.+E\left[A_{k j}-E_{k j}\right] Z_{i j}(n)\right) \\
=2 N^{3}+2 \sum_{i, j} & \left(X_{i j}(n) \sum_{k} E\left[A_{i k}-D_{i k}\right]\right. \\
& \left.+Z_{i j}(n) \sum_{k} E\left[A_{k j}-E_{k j}\right]\right)
\end{aligned}
$$

Re-substituting $Z_{i j}=X_{i j}+B_{i j}$, we get $E[f(n+1)-f(n)]$,

$$
\begin{aligned}
& \leq 2 N^{3}+2 \sum_{i, j}\left(X_{i j}(n) \sum_{k} E\left[A_{i k}-D_{i k}\right]\right. \\
& \left.\quad+\left(X_{i j}(n)+B_{i j}(n)\right) \sum_{k} E\left[A_{k j}-E_{k j}\right]\right) \\
& =2 N^{3}+2 \sum_{i, j}\left(X_{i j}(n) \sum_{k} E\left[A_{i k}-D_{i k}+A_{k j}-E_{k j}\right]\right. \\
& \left.\quad+B_{i j}(n) \sum_{k} E\left[A_{k j}-E_{k j}\right]\right)
\end{aligned}
$$

We can substitute $R_{i j}=\sum_{k} E\left[A_{i k}-D_{i k}+A_{k j}-E_{k j}\right]$ and $S_{j}=\sum_{k} E\left[A_{k j}-E_{k j}\right]$ and re-write this as,

$$
\begin{equation*}
E[F(n+1)-F(n)] \leq 2 N^{3}+2 \sum_{i, j}\left(X_{i j}(n) R_{i j}+B_{i j}(n) S_{j}\right) \tag{D.9}
\end{equation*}
$$

But, we also have from Equation D.2,

$$
\begin{align*}
E\left[C_{i j}(n+1)-C_{i j}(n)\right] & \equiv R_{i j} \tag{D.10}\\
E\left[\sum_{k}\left(Z_{k j}(n+1)-Z_{k j}(n)\right)\right] & \equiv S_{j} . \tag{D.11}
\end{align*}
$$

In Section D.1, it was shown that for a buffered crossbar with speedup of two, $R_{i j}$
is strictly negative when $X_{i j}(n)>0$ and the traffic is admissible. So the first product term inside the summation sign in Equation D. 9

$$
\begin{equation*}
X_{i j}(n) R_{i j} \leq 0 \tag{D.12}
\end{equation*}
$$

Similarly, if the traffic is admissible, then $\sum_{k} E\left[A_{k j}\right]<1$. Also, when $B_{i j}(n)=1$, then from Equation D. 2 and case 1 of Theorem D. 1 in Section D.1, we know that the output j will receive at least one cell, and so at least one cell must have departed one of the crosspoints destined to output j at time n. And so when the traffic is admissible and $B_{i j}(n)=1$, then $S_{j}<0$. This implies that the second product term inside the summation sign in Equation D.9,

$$
\begin{equation*}
B_{i j}(n) S_{j} \leq 0 \tag{D.13}
\end{equation*}
$$

In both cases, $X_{i j}(n) R_{i j}$ and $B_{i j}(n) S_{j}$ are equal to zero only if $X_{i j}=0$ and $B_{i j}=0$ respectively. Now we want to use Lemma D. 1 and show that the whole right hand side of Equation D. 9 is strictly negative. All that needs to be done is to ensure that one of the $V O Q s X_{i j}$ in the summation in Equation D. 9 is large enough so that $2 X_{i j}(n) R_{i j}$ can negate the positive constant $2 N^{3}$.

In order to show this, let $\lambda_{\max }=\max \left(\sum_{k} \lambda_{i k}, \sum_{k} \lambda_{k j}\right), i, j \in(1,2, . . N)$. Choose any $\gamma^{\prime}>0$, and let

$$
\begin{aligned}
F & \equiv \sum_{i j k} X_{i j} X_{i k}+Z_{i j} Z_{k j}> \\
& N^{3}\left[\left(\frac{\left(1+\gamma^{\prime}\right) N^{3}}{1-\lambda_{\max }}\right)^{2}+\left(1+\frac{\left(1+\gamma^{\prime}\right) N^{3}}{1-\lambda_{\max }}\right)^{2}\right] \equiv C
\end{aligned}
$$

where, C corresponds to the constant in Lemma D.1. Recall that $Z_{i j} \leq X_{i j}+1$. Then the above inequality can only be satisfied if there exists $X_{i j}$ such that:

$$
X_{i j}>\frac{\left(1+\gamma^{\prime}\right) N^{3}}{1-\lambda_{\max }}
$$

As shown in Section D.1, when $X_{i j}>0$,

$$
R_{i j} \leq-\left(2-2 \lambda_{\max }\right)<-\left(1-\lambda_{\max }\right)
$$

Therefore, we have

$$
X_{i j} R_{i j}<-\left(1+\gamma^{\prime}\right) N^{3}
$$

If we substitute this in Equation D.9, then for all n such that $F(n)>B$,

$$
E[F(n+1)-F(n)]<-2 \gamma^{\prime} N^{3}
$$

Let γ correspond to the variable in Lemma D. 1 and set $\gamma=2 \gamma^{\prime} N^{3}$. Also it is easy to see that,

$$
E[F(n+1) \mid F(n)]<\infty
$$

From Lemma D.1, for every $\epsilon>0$, there exists $B>0$ such that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\sum_{i, j} X_{i, j}(n)>B\right\}<\epsilon$. From Definition B.3, the scheduling algorithm gives 100% throughput.
"We have a lot of empty space on our crossbar".

- Buffered Crossbars Vindicated ${ }^{\dagger}$

A Modified Buffered Crossbar

In this appendix, we will prove Theorem 5.5 which states that a modified buffered crossbar can mimic a PIFO-OQ router with a fixed delay of $N / 2$ time slots. In what follows, we will first show that the crux of the proof depends on showing that the size of the burst over any time period, to every output, is bounded by N cells. Then we prove the theorem for a buffered crossbar with N cells per output as shown in Figure 5.4, and we show that the theorem is trivially true for a buffered crossbar with N cells per crosspoint.

Bounding the size of the burst to any input: When header scheduling is performed, an input could receive up to N grants (one from each output) in a single output scheduling phase. Fortunately, over p consecutive phases the number of grants received by an input is bounded by $p+N-1$. This is because an input can communicate at most one header per input scheduling phase, and there are at most N outstanding headers (one for each crosspoint) per input. On the other hand, each output grants at most one header per scheduling phase. So there are at most p grants for an output over any p consecutive scheduling phases.

We are now ready to prove the following theorem:
Theorem 5.5. (Sufficiency, by Reference) A modified buffered crossbar can emulate a PIFO-OQ router with a crossbar bandwidth of $2 N R$ and a memory bandwidth of

[^119]$6 N R$.
Proof. An input can receive at most $p+N-1$ grants over any p consecutive scheduling phases. If the input adds new grants to the tail of a grant FIFO, and reads one grant from the head of the grant FIFO in each scheduling phase, then the grant FIFO will never contain more than $N-1$ grants. Each time the input takes a grant from the grant FIFO, it sends the corresponding cell to the set of N crosspoints for its output. Because the grant FIFO is served once per phase, a cell that is granted at scheduling phase p will reach the output crosspoint by phase $p+N-1$.

We need to verify that the per-output buffers in the crossbar never overflow. If the crosspoint scheduler issues a grant at phase p, then the corresponding cell will reach the output crosspoint between phases p and $p+N-1$. Therefore, during scheduling phase p, the only cells that can be in the output crosspoint are cells that were granted between phases $p-N$ to $p-1$.

In a modified crossbar with N buffers per output, the buffers will never overflow, and each cell faces a delay of at most N scheduling phases, i.e., $N / 2$ time slots (because $S=2$) .

Note that in a modified crossbar with N cells per crosspoint, the buffers will also never overflow and the above theorem will also hold.
"Oh, well. It still works, It's just not work-conserving!".

Proofs for Chapter 6

F. 1 Proof of Theorem 6.1

Theorem 6.1. A PPS without speedup is not work-conserving.

Proof. (By counter-example). Consider the PPS in Figure F. 1 with three ports and two layers ($N=3$ and $k=2$). The external lines operate at rate R, and the internal lines at rate $R / 2$.

Assume that the switch is empty at time $t=1$, and that three cells arrive, one to each input port, and all destined to output port A. If all the input ports choose the same layer, then the PPS is non-work-conserving. If not, then at least two of these inputs will choose the same layer and the other input will choose a different layer. Without loss of generality, let inputs 1 and 3 both choose layer 1 and send cells $C 1$ and $C 3$ to layer 1 in the first time slot. This is shown in Figure F.1(a). Also, let input port 2 send cell $C 2$ to layer 2 . These cells are shown in the output queues of the internal switches and await departure. Now we create an adversarial traffic pattern. In the second time slot, the adversary picks the input ports that sent cells to the same layer in the first time slot. These two ports are made to receive cells destined to output port B. As shown in the figure, cells $C 4$ and $C 5$ arrive at input ports 1 and 3 , and they both must be sent to layer 2 ; this is because the internal line rate between

[^120]

Figure F.1: $A 3 \times 3$ PPS with an arrival pattern that makes it non-work-conserving. The notation $C i: A, m$ denotes a cell numbered i, destined to output port A, and sent to layer m.
the demultiplexor and each layer is only $R / 2$, limiting a cell to be sent over this link only once every other time slot. Now the problem becomes apparent: cells $C 4$ and $C 5$ are in the same layer, and they are the only cells in the system destined for output port B at time slot 2 . These two cells cannot be sent back-to-back in consecutive time slots, because the link between the layer and the multiplexor operates only at rate $R / 2$. So, cell $C 4$ will be sent, followed by an idle time slot at output port B, and the system is no longer work-conserving. And so, trivially, a PPS without speedup cannot emulate an FCFS-OQ switch.

F. 2 Proof of Theorem 6.5

In what follows, we will use T to denote time in units of time slots. We will also use t to denote time, and use it only when necessary. Recall that if the external line rate is R and cells are of fixed size P, then each cell takes P / R units of time to arrive, and $t=T P / R$. Before we prove the main theorem, we will need the following results.

Lemma F.1. The number of cells $D(i, l, t)$ that demultiplexor i queues to $\operatorname{FIFO} Q(i, l)$ in time T slots, is bounded by

$$
\begin{array}{rll}
D(i, l, T) \leqslant T & \text { if } & T \leqslant N \\
D(i, l, T)<\frac{T}{k}+n & \text { if } & T>N .
\end{array}
$$

Proof. Since the demultiplexor dispatches cells in a round robin manner for every output, for every k cells received by a demultiplexor for a specific output, exactly one cell is sent to each layer. We can write $S(i, T)=\sum_{j=1}^{N} \bar{S}(i, j, T)$, where $\bar{S}(i, j, T)$ is the sum of the number of cells sent by the demultiplexor i to output j in any time interval of T time slots, and $S(i, T)$ is the sum of the number of cells sent by the
demultiplexor to all outputs in that time interval T. Let $T>N$. Then we have,

$$
\begin{align*}
D(i, l, T) \leqslant \sum_{j=1}^{N}\left\lceil\frac{\bar{S}(i, j, T)}{k}\right\rceil & \leqslant\left\lceil\sum_{j=1}^{N} \frac{\bar{S}(i, j, T)}{k}\right\rceil+N+1= \\
& \left\lceil\frac{S^{\prime}(i, T)}{k}\right\rceil+N-1 \leqslant\left\lceil\frac{T}{k}\right\rceil+N-1<\frac{T}{k}+N \tag{F.1}
\end{align*}
$$

since $S(i, T)$ is bounded by T. The proof for $T \leqslant N$ is obvious.
We are now ready to determine the size of the co-ordination buffer in the demultiplexor.

Theorem F.1. (Sufficiency) A PPS with independent demultiplexors and no speedup can send cells from each input to each output in a round robin order with a co-ordination buffer at the demultiplexor of size Nk cells.

Proof. A cell of size P corresponds to P / R units of time, allowing us to re-write Lemma F. 1 as $D(i, l, t) \leqslant R t / P k+N$ (where t is in units of time). Thus the number of cells written into each demultiplexor FIFO is bounded by $R t / P k+N$ cells over all time intervals of length t. This can be represented as a leaky bucket source with an average rate $\rho=R / P k$ cells per unit time and a bucket size $\sigma=N$ cells for each FIFO. Each FIFO is serviced deterministically at rate $\mu=R / P k$ cells per unit time. Hence, by the definition of a leaky bucket source [219], a FIFO buffer of length N will not overflow.

It now remains for us to determine the size of the co-ordination buffers in the multiplexor. This proceeds in an identical fashion.

Lemma F.2. The number of cells $D^{\prime}(j, l, T)$ that multiplexor j delivers to the external line from FIFO $Q^{\prime}(j, l)^{1}$ in a time interval of T time slots, is bounded by

$$
\begin{array}{rll}
D^{\prime}(i, l, T) \leqslant T & \text { if } & T \leqslant N \\
D^{\prime}(i, l, T)<\frac{T}{k}+n & \text { if } & T>N
\end{array}
$$

[^121]Proof. Cells destined to multiplexor j from a demultiplexor i are arranged in a round robin manner, which means that for every k cells received by a multiplexor from a specific input, exactly one cell is read from each layer. Define,

$$
\begin{equation*}
S^{\prime}(j, T)=\sum_{j=1}^{N} \overline{S^{\prime}}(i, j, T) \tag{F.2}
\end{equation*}
$$

where $\overline{S^{\prime}}(i, j, T)$ is the sum of the number of cells from demultiplexor i that were delivered to the external line by multiplexor j in time interval T, and $\overline{S^{\prime}}(i, T)$ is the sum of the number of cells from all the demultiplexors that were delivered to the external line by the multiplexor in time interval T. Let $T>N$. Then we have,

$$
\begin{align*}
& D^{\prime}(i, l, T) \leqslant \sum_{j=1}^{N}\left\lceil\frac{\overline{S^{\prime}}(i, j, T)}{k}\right\rceil \leqslant\left\lceil\sum_{j=1}^{N} \frac{\overline{S^{\prime}}(i, j, T)}{k}\right\rceil+N+1= \\
&\left\lceil\frac{S(i, T)}{k}\right\rceil+N-1 \leqslant\left\lceil\frac{T}{k}\right\rceil+N-1<\frac{T}{k}+N \tag{F.3}
\end{align*}
$$

since $S^{\prime}(i, T)$ is bounded by T. The proof for $T \leqslant N$ is obvious.

Finally, we can determine the size of the co-ordination buffers at the multiplexor.
Theorem F.2. (Sufficiency) A PPS with independent multiplexors and no speedup can receive cells for each output in a round robin order with a co-ordination buffer of size $N k$ cells.

Proof. The proof is almost identical to Theorem F.1. From Lemma F.2, we can bound the rate at which cells in a multiplexor FIFO need to be delivered to the external line by $R t / P k+N$ cells over all time intervals of length t. Cells are sent from each layer to the multiplexor FIFO at fixed rate $\mu=R / P k$ cells per unit time. We can see as a result of the delay equalization step in Section 6.8.2 that the demultiplexor and multiplexor systems are exactly symmetrical. Hence, if each FIFO is of length N cells, the FIFO will not overflow.

Now that we know the size of the buffers at the input demultiplexor and the output multiplexor - both of which are serviced at a deterministic rate - we can bound the relative queueing delay with respect to an FCFS-OQ switch.

Theorem 6.5. (Sufficiency) A PPS with independent demultiplexors and multiplexors and no speedup, with each multiplexor and demultiplexor containing a co-ordination buffer of size $N k$ cells, can emulate an $F C F S-O Q$ switch with a relative queuing delay bound of $2 N$ internal time slots.

Proof. We consider the path of a cell in the PPS. The cell may potentially face a queuing delay as follows:

1. The cell may be queued at the FIFO of the demultiplexor before it is sent to its center stage switch. From Theorem F.1, we know that this delay is bounded by N internal time slots.
2. The cell first undergoes delay equalization in the center stage switches and is sent to the output queues of the center stage switches. It then awaits service in the output queue of a center stage switch.
3. The cell may then face a variable delay when it is read from the center stage switches. From Theorem F.2, this is bounded by N internal time slots.

Thus the additional queuing delay, i.e., the relative queueing delay faced by a cell in the PPS, is no more than $N+N=2 N$ internal time slots.

Note that in the proof described above, it is assumed that the multiplexor is aware of the cells that have arrived to the center stage switches. It issues the reads in the correct FIFO order from the center stage switches, after they have undergone delay equalization. This critical detail was left out in the original version of the paper [36], leading to some confusion with subsequent work done by the authors in [128]. On discussion with the authors [220], we concurred that our results are in agreement. Their detailed proof appears in [128].
"It's a nice result, but think of yourself as an observer who happened to stumble upon it".

- Nick McKeown, Lessons in Humility ${ }^{\dagger}$

Centralized Parallel Packet Switch Algorithm

In this appendix, we present an example of the CPA algorithm that was described in Chapter 6. The example in Figure G. 1 and Figure G. 2 shows a 4×4 PPS, with $k=3$ center stage OQ switches.

The CPA algorithm functions like an insert and dispatch scheme, where arriving cells are "inserted" into the correct center stage OQ switches, so that they can be dispatched to the multiplexor at their correct departure time. Our example is for FCFS-OQ emulation, and so the PPS operates with speedup $S=2$, in accordance with Theorem 6.2.

Our example shows the following sequence of steps, as cells arrive in two consecutive external time slots.

1. Time Slot 1: In external time slot 1, cells $C 1, C 2$, and $C 3$ arrive to inputs 1,2 , and 3 respectively. They are destined to outputs 1,2 , and 1 respectively. Note that the notation $C i:(j, k)$, refers to a cell numbered i, destined to output j, which is sent to center stage OQ switch k. Cell $C 1$ is sent to center stage OQ switch 1, and cells $C 2$ and $C 3$ are both sent to center stage OQ switch 2 as shown in Figure G.1. The manipulations done on the $A I L($.$) and A O L($.

[^122]
(a1) Cell C 1 chooses layer 1 arbitrarily from $\{1,2,3\}^{\wedge}\{1,2,3\}$
(a2) $\operatorname{AOL}(1,1)$ is updated to $\{1,2,3\}-\{1\}=\{2,3\}$
(a3) $\operatorname{ALL}(1,1)$ is updated to $\{1,2,3\}-\{1\}=\{2,3\}$
(a4) Cell C 2 chooses layer 2 arbitrarily from $\{1,2,3\} \wedge\{1,2,3\}$

(b1) Cell C3 has a departure time $\mathrm{DT}(0,3,1)=1$
(b2) Cell C3 has to choose from $\operatorname{ALL}(3,0)^{\wedge} \operatorname{AOL}(1,1)$
(b3) Cell C3 chooses layer 2 from $\{1,2,3\} \wedge$ ^ $\{2,3\}$
(b4) $\mathrm{AOL}(1,2)$ is updated to $\{2,3\}-\{2\}+\{1\}=\{1,3\}$

Figure G.1: An example of the CPA algorithm.

(c1) Cell C4 has an expected departure time $\mathrm{DT}(1,1,1)=2$
(c2) Cell C4 has to choose from $\operatorname{AIL}(1,1) \wedge$ AOL(1,2)
(c3) Cell C4 chooses layer 3 from $\{2,3\} \wedge\{1,3\}$
(c4) $\operatorname{AOL}(1,3)$ is updated to $\{1,3\}-\{3\}+\{2\}=\{1,2\}$

(d1) Cell C5 has an expected departure time $\operatorname{DT}(4,1,1)=3$
(d2) Cell C5 has to choose from $\operatorname{ALL}(4,1)^{\wedge} \operatorname{AOL}(1,3)$
(d3) Cell C5 chooses layer 1 from $\{1,2,3\} \wedge\{1,2\}$
(d4) $\mathrm{AOL}(1,4)$ is updated to $\{1,2\}-\{1\}+\{3\}=\{2,3\}$

Figure G.2: An example of the CPA algorithm (continued).
sets for these cells are also shown in Figure G.1. Note that in the bottom of the figure, the cells are shown to be conceptually "buffered in the center stage switches". Of course, depending on the internal delays, this event may not have occurred.
2. Time Slot 2: In external time slot 2, cells $C 4$ and $C 5$ arrive to inputs 1 and 3 respectively. They are both destined to output 1 . Note that cells $C 1$ and $C 2$ are shown as conceptually "already having left" the center stage switches. However, depending on the internal delays on the links, this event may not have occurred. Cell $C 4$ is sent to center stage OQ switch 3 , and cell $C 5$ is sent to center stage OQ switch 1 as shown in Figure G.2. Again, the manipulations done on the $A I L($.$) and A O L($.$) sets for these cells are also shown in Figure G. 2$.
"You mean you want to drop a packet? Why?".

- The Customer is Always Right! ${ }^{\dagger}$

Proofs for Chapter 7

H. 1 Proof of Theorem 7.2

Theorem 7.2. (Necessity) To guarantee that a byte is always available in head cache when requested for any memory management algorithm, the head cache must contain at least $Q w>Q(b-1)(2+\ln Q)$ bytes.

Proof. In what follows we will consider a model where data can be written/read from the packet buffer in a continuous manner, i.e., 1 byte at a time. In reality, this assumption results in a more conservative bound on the cache size than what occurs when discrete packets (which have minimum size limitations) are taken into consideration.

Consider the particular traffic pattern with the pattern of requests shown in Figure.H.1. We will show that regardless of the memory management algorithm the following pattern is applicable. The pattern progresses in a number of iterations, where iteration number $x=1,2,3, \ldots$ consists of $Q(1-1 / b)^{x}$ time slots. Each successive iteration lasts fewer time slots than the previous one. In each successive iteration the pattern focuses on the queues that have not yet been replenished by the MMA in consideration.

[^123]
(a) Start

Read 1 byte from $Q(1-1 / b)$ queues

(c) Iteration $\mathrm{x}=2$

Read 1 byte from Q queues

$$
t_{1}=t_{0}+Q
$$

(b) Iteration $x=1$

Read 1 byte from $Q(1-1 / b)^{x}=1$ queue

$$
t_{x+1}=t_{x}+Q(1-1 / b)^{x}
$$

(d) Iteration x

Figure H.1: Traffic pattern that shows the worst-case queue size of the head SRAM. Starting with completely filled queues with occupancy of D, in every iteration the arbiter requests one byte from the lowest occupancy queues. At the end of iteration x, the last queue has a deficit of $x=\log _{b /(b-1)} Q$.

Initially at $t_{0}=0$, each queue has D bytes, where D is the minimum number of bytes required so that every byte request can be satisfied by the SRAM cache.

First iteration (\boldsymbol{Q} time slots): In time slots $t=1,2,3, \ldots, Q$, a request arrives for FIFO t. It takes b timeslots to read b bytes from the DRAM and replenish the SRAM cache of a specific FIFO. At the end of time slot Q, at most Q / b FIFOs will have received b bytes from the DRAM, and so at least $Q(1-1 / b)$ FIFOs will have $D(i, Q)=1$. Correspondingly, in the figure we can observe that the number of bytes in the first Q / b queues is $D-1+b$, while the remaining queues have a deficit of 1 .

Second iteration ($\boldsymbol{Q}(\mathbf{1}-1 / b)$ time slots): In the $2^{\text {nd }}$ iteration, consider the $Q(1-1 / b)$ FIFOs for which $D(i, Q)=1$. In the next $Q(1-1 / b)$ time slots, we will assume that a request arrives for each of these FIFOs. At the end of the $2^{\text {nd }}$ iteration, as shown in the Figure, $Q(1-1 / b) / b$ of these FIFOs will be replenished, and $Q(1-1 / b)^{2}$ will have $D(i, t)=2$.
$x^{\text {th }}$ iteration $\left(Q(1-1 / b)^{x}\right.$ time slots $):^{1}$ By continuing this argument, we can see that at the end of x iterations there will be $Q(1-1 / b)^{x}$ FIFOs with $D(i, t)=x$. Solving for $Q(1-1 / b)^{x}=1$, we get that

$$
x=\log _{b /(b-1)} Q=\frac{\ln Q}{\ln c},
$$

where $c=b /(b-1)$. Since, $\ln (1+x)<x$, we get

$$
\ln c=\ln \left[1+\frac{1}{b-1}\right]<\frac{1}{b-1}
$$

and it follows that $x>(b-1) \ln Q$.
So far, we have proved that if each FIFO can hold $(b-1) \ln Q$ bytes, then in $(b-1) \ln Q$ iterations at least one FIFO can have a deficit of at least $(b-1) \ln Q$ bytes. Imagine that this FIFO is left with an occupancy of $b-1$ bytes (i.e., it initially held $(b-1)(1+\ln Q)$ bytes, and 1 byte was read in each of $(b-1) \ln Q$ iterations). If in

[^124]successive times slots we proceed to read b more bytes from the most depleted FIFO, i.e., the one with occupancy $b-1$ bytes, it will certainly under-run (because it has never been replenished). Since we do not know a priori the queue for which this traffic pattern may occur, we require that $w>(b-1)(1+\ln Q)$ bytes to prevent under-run. But we are not quite done. Imagine that we initially had a head cache large enough to hold precisely $w=(b-1)(1+\ln Q)$ bytes for every FIFO, and assume that the arbiter reads 1 byte from one FIFO then stops indefinitely. After the 1 -byte read, the FIFO now contains $(b-1)(1+\ln Q)$ bytes, but is replenished b time slots later with b bytes from DRAM. Now the FIFO needs to have space to hold these additional b bytes. However, since only 1 byte has been read out of the FIFO, it needs to have space for an additional $b-1$ bytes. Therefore, the SRAM needs to be able to hold $w>(b-1)(2+\ln Q)$ bytes per FIFO, and so $Q w>Q(b-1)(2+\ln Q)$ bytes overall. \square

H. 2 Proof of Lemma 7.2

Lemma 7.2. Under the MDQF-MMA, which services requests without any pipeline delay,

$$
F(i)<b i[2+\ln (Q / i)], \forall i \in\{1,2, \ldots, Q-1\} .
$$

Proof. The case when $i=1$ is already proved in Lemma 7.1, and when $i=Q$ it is obvious as mentioned in Equation 7.9. For $\forall i \in\{2, \ldots, Q-1\}$, we again solve the recurrence relation obtained in Equation 7.8 to obtain,

$$
\begin{equation*}
F(i) \leq i\left[b+b \sum_{j=i}^{Q-1} \frac{1}{j}\right], \forall i \in\{2, \ldots, Q-1\} . \tag{H.1}
\end{equation*}
$$

We can write the summation term in the above equation as,

$$
\begin{equation*}
\sum_{j=i}^{Q-1} \frac{1}{j}=\sum_{j=1}^{Q-1} \frac{1}{j}-\sum_{j=1}^{i-1} \frac{1}{j}, \forall i \in\{2, \ldots, Q-1\} \tag{H.2}
\end{equation*}
$$

Since,

$$
\begin{equation*}
\forall N, \ln N<\sum_{i=1}^{N} \frac{1}{i}<1+\ln N \tag{H.3}
\end{equation*}
$$

we can use Equation H. 2 and Equation H. 3 to re-write Equation H. 1 as a weak inequality,

$$
F(i)<b i[2+\ln (Q-1) /(i-1))], \forall i \in\{2, \ldots, Q-1\} .
$$

Thus we can write $\forall i \in\{2, \ldots, Q-1\}, F(i)<b i[2+\ln (Q /(i-1))]{ }^{2}$

H. 3 Proof of Lemma 7.3

Lemma 7.3. (Sufficiency) Under the MDQFP-MMA policy, and a pipeline delay of $x>b$ time slots, the real deficit of any queue i is bounded for all time $t+x$ by

$$
\begin{equation*}
R_{x}(i, t+x) \leqslant C=b\left(2+\ln \left(Q \frac{b}{x-2 b}\right)\right) . \tag{H.4}
\end{equation*}
$$

Proof. We shall derive a bound on the deficit of a queue in the MDQFP-MMA system in two steps using the properties of both MDQF and ECQF MMA. First, we limit (and derive) the maximum number of queues that can cross a certain deficit bound using the property of MDQF. For example, in MDQF, for any k, since the maximum value of the sum of the most deficited k queues is $F(k)$, there are no more than k queues that have a deficit strictly larger than $F(k) / k$ at any given time. We will derive a similar bound for the MDQFP-MMA with a lookahead of x timeslots, $F_{x}(j) / j$, where $F_{x}(j)$ is the maximum deficit that j queues can reach under the MDQPF-MMA, and we choose $j=(x-b) / b$. With this bound we will have no more than j queues whose deficit exceeds $F_{x}(j) / j$ at any given time.

Then we will set the size of the head cache to b bytes more than $F_{x}(j) / j$. By definition, a queue that has become critical has a deficit greater than the size of the head cache, so the number of unique queues that can become critical is bounded by

[^125]j. This will also lead us to a bound on the maximum number of outstanding critical queue requests, which we will show is no more than j. Since $x \geqslant j b+b$, this gives us sufficient time available to service the queue before it actually misses the head cache. In what follows we will formalize this argument.

Step 1: We are interested in deriving the values of $F_{x}(i)$ for the MDQFP-MMA. But we cannot derive any useful bounds on $F_{x}(i)$ for $i<\{1,2, \ldots,(x-b) / b\}$. This is because MDQFP-MMA at some time t (after taking the lookahead in the next x time slots into consideration) may pick a queue with a smaller deficit if it became critical before the other queue, in the time $(t, t+x)$, ignoring temporarily a queue with a somewhat larger deficit. So we will look to find bounds on $F_{x}(i)$, for values of $i \geqslant(x-b) / b$. In particular we will look at $F_{x}(j)$, where $j=(x-b) / b$. First, we will derive a limit on the number of queues whose deficits can cross $F_{x}(j) / j$ at any given time.

We begin by setting the size of the head cache under this policy to be $F_{x}(j) / j+b$. This means that a critical queue has reached a deficit of $C>F_{x}(j) / j+b$, where $j=(x-b) / b$. The reason for this will become clear later. We will first derive the value of $F_{x}(j)$ using difference equations similar to Lemma 7.1.

Assume that t is the first time slot at which $F_{x}(i)$ reaches its maximum value, for some i queues. Hence none of these queues were served in the previous time slot, and either (1) some other queue with deficit greater than or equal to $\left(F_{x}(i)-b\right) / i$ was served, or (2) a critical queue was served. In the former case, we have $i+1$ queues for the previous timeslot, for which we can say that,

$$
\begin{equation*}
F_{x}(i+1) \geqslant F_{x}(i)-b+\left(F_{x}(i)-b\right) / i \tag{H.5}
\end{equation*}
$$

In the latter case, we have,

$$
\begin{equation*}
F_{x}(i+1) \geqslant F_{x}(i)-b+C . \tag{H.6}
\end{equation*}
$$

Since $C=F_{x}(j) / j+b$ and $\forall i \in\{j, j+1, j+2, \ldots, Q-1\}, F_{x}(j) \geqslant F_{x}(i) / i$, we will use Equation H.5, since it is the weaker inequality.

General Step: Likewise, we can derive relations similar to Equation H.5, i.e., $\forall i \in\{j, j+1, \ldots, Q-1\}$.

$$
\begin{equation*}
F_{x}(i+1) \geqslant F_{x}(i)-b+\left(F_{x}(i)-b\right) / i \tag{H.7}
\end{equation*}
$$

We also trivially have $F_{x}(Q)<Q b$. Solving these recurrence equations similarly to Lemma 7.2 gives us for MDQFP-MMA,

$$
\begin{equation*}
F_{x}(i)<b i[2+\ln (Q /(i-1))], \forall i \in\{j, j+1, \ldots, Q-1\} \tag{H.8}
\end{equation*}
$$

and $j=(x-b) / b$
Step 2: Now we are ready to show the bound on the cache size. First we give the intuition, and then we will formalize the argument. We know that no more than $j=(x-b) / b$ queues can have a deficit strictly more than $F_{x}(j) / j$. In particular, since we have set the head cache size to C, no more than j queues have deficit more than $C=F_{x}(j) / j+b$, i.e., no more than j queues can be simultaneously critical at any given time t. In fact, we will show that there can be no more than j outstanding critical queues at any given time t. Since we have a latency of $x>j b$ timeslots, this gives enough time to service any queue that becomes critical at time t before time $t+x$. The above argument is similar to what ECQF does. In what follows we will formalize this argument.
(Reductio-Ad-Absurdum): Let $T+x$ be the first time at which the real deficit of some queue $i, r_{x}(i, T+x)$ becomes greater than C. From Equation 7.12, we have that queue i was critical at time T, i.e., there was a request that arrived at time T to the tail of the shift register that made queue t critical. We will use the following definition to derive a contradiction if the real deficit becomes greater than C.
\aleph Definition H.1. $r(t)$: The number of outstanding critical queue requests at the end of any time slot t.

Consider the evolution of $r(t)$ till time $t=T$. Let time $T-y$ be the closest time in the past for which $r(T-y-1)$ was zero, and is always positive after that. Clearly
there is such a time, since $r(t=0)=0$.
Then $r(t)$ has increased (not necessarily monotonically) from $r(T-y-1)=0$ at time slot $T-y-1$ to $r(T)$ at the end of time slot T. Since $r(t)>0, \forall t \in\{T-y, T\}$, there is always a critical queue in this time interval and MDQFP-MMA will select the earliest critical queue. So $r(t)$ decreases by one in every b time slots in this time interval and the total number of critical queues served in this time interval is $\lfloor y / b\rfloor$. What causes $r(t)$ to increase in this time interval?

In this time interval a queue can become critical one or more times and will contribute to increasing the value of $r(t)$ one or more times. We will consider separately for every queue, the first instance it sent a critical queue request in this time interval, and the successive critical queue requests. We consider the following cases:

Case 1a: The first instance of a critical queue request for a queue in this time interval, and the deficit of such queue was less than or equal to $F_{x}(j) / j=C-b$ at time $T-y$. Such a queue needs to request more than b bytes in this time interval to create its first critical queue request.

Case 1b: The first instance of a critical queue request for a queue in this time interval, and the deficit of such queue was strictly greater than $F_{x}(j) / j=C-b$ but less than C at time $T-y$. Such queues can request less than b bytes in this time interval and become critical. There can be at most j such queues at time $T-y^{3}{ }^{3}$

Case 2 Instances of critical queue requests from queues that have previously become critical in this time interval. After the first time that a queue has become critical in this time interval (this can happen from either case 1a or case 1b), in order to make it critical again we require b more requests for that queue in the above time interval.

So the maximum number of critical queue requests created from case 1a and case 2 in the time interval $[T-y, T]$ is $\lfloor y / b\rfloor$, which is the same as the number of critical

[^126]queues served by MDQFP-MMA. The additional requests come from case 1 b , and there can be only j such requests in this time interval. Thus $r(T) \leqslant j$.

Since we know that queue i became critical at time T, and $r(T) \leqslant j$, it gets serviced before time $T+j b<T+x$, contradicting our assumption that the real deficit of the queue at time $T+x$ is more than C. So the size of the head cache is bounded by C. Substituting from Equation H.8,

$$
\begin{equation*}
C=F_{x}(j) / j+b \leqslant b[2+\ln Q b /(x-2 b)] . \tag{H.9}
\end{equation*}
$$

This completes the proof.

H. 4 Proof of Theorem 7.6

H.4.1 Proof of Theorem 7.6 with Three Assumptions

We will first prove Theorem 7.6 with three simplifying assumptions and derive the following lemma.

Assumption 1. (Queues Initially Full) At time $t=0$, the head cache is full with $b-1$ bytes in each queue; the cache has $Q(b-1)$ bytes of data in it.

Assumption 2. (Queues Never Empty) Whenever we decide to refill a queue, it always has b bytes available to be replenished.

Assumption 3. The packet processor issues a new read request every time slot.
Lemma H.1. If the lookahead buffer has $L_{t}=Q(b-1)+1$ time slots, then there is always at least one critical queue.

Proof. The proof is by the pigeonhole principle. We will look at the evolution of the head cache. At the beginning, the head cache contains $Q(b-1)$ bytes (Assumption 1). Because there are always $Q(b-1)+1$ read requests (Assumption 2) in the lookahead buffer, at least one queue has more requests than the number of bytes in head cache, and
so must be critical. Every b time slots, b bytes depart from the cache (Assumption 3) and are always refilled by b new bytes (Assumption 2). This means that every b time slots the number of requests is always one more than the number of bytes in head cache, ensuring that there is always one critical queue.

Now we are ready to prove the main theorem with the three assumptions.
Theorem 7.6. (Sufficiency) If the head cache has $Q(b-1)$ bytes and a lookahead buffer of $Q(b-1)+1$ bytes (and hence a pipeline of $Q(b-1)+1$ slots), then $E C Q F$ will make sure that no queue ever under-runs.

Proof. The proof proceeds in two steps. First, we will prove the theorem with the three assumptions listed above. Then we relax the assumptions to show that the proof holds more generally. The proof for the first step (with the three assumptions) is in two parts. First we show that the head cache never overflows. Second, we show that packets are delivered within $Q(b-1)+1$ time slots from when they are requested.

Part 1 We know from Lemma H. 1 that ECQF reads b bytes from the earliest critical queue every b time slots, which means the total occupancy of the head cache does not change, and so never grows larger than $Q(b-1)$.

Part 2 For every request in the lookahead buffer, the requested byte is either present or not present in the head cache. If it is in the head cache, it can be delivered immediately. If it is not in the cache, the queue is critical. Suppose that q^{\prime} queues have ever become critical before this queue i became critical for byte b_{i}. Then, the request for byte b_{i} that makes queue i critical could not have arrived earlier than $\left(q^{\prime}+1\right) b$ time slots from the start. The DRAM would have taken no more than $q^{\prime} b$ time slots to service all these earlier critical queues, leaving it with just enough time to service queue i, thereby ensuring that the corresponding byte b_{i} is present in the head cache.

Hence, by the time a request reaches the head of the lookahead buffer, the byte is in the cache, and so the pipeline delay is bounded by the depth of the lookahead buffer: $Q(b-1)+1$ time slots.

H.4.2 Removing the Assumptions from the Proof of Theorem 7.6

We need to make the proofs for Theorem 7.6 and Lemma H.1 hold, without the need for the assumptions made in the previous section. To do this, we make two changes to the proofs - (1) Count "placeholder" bytes (as described below) in our proof, and (2) Analyze the evolution of the head cache every time ECQF makes a decision, rather than once every b time slots.

Removing Assumption 1: To do this, we will assume that at $t=0$ we fill the head cache with "placeholder" bytes for all queues. We will count all placeholder bytes in our queue occupancy and critical queue calculations. Note that placeholder bytes will be later replaced by real bytes when actual data is received by the writer through the direct-write path as described in Figure 7.3. But this happens independently (oblivious to the head cache) and does not increase queue occupancy or affect the critical queue calculations, since no new bytes are added or deleted when placeholder bytes get replaced.

Removing Assumption 2: To do this, we assume that when ECQF makes a request, if we don't have b bytes available to be replenished (because the replenishment might occur from tail cache from a partially filled queue that has less than b bytes), the remaining bytes are replenished by placeholder bytes, so that we always receive b bytes in the head cache. As noted above, when placeholder bytes get replaced later, it does not increase queue occupancy or affect critical queue calculations.

Removing Assumption 3: In Lemma H.1, we tracked the evolution of the head cache every b time slots. Instead, we now track the evolution of the head cache every time a decision is made by ECQF, i.e., every time bytes are requested in the lookahead buffer. This removes the need for assumption 3 in Lemma H.1. In Theorem 7.6, we replace our argument for byte b_{i} and queue i as follows: Let queue i become critical when a request for byte b_{i} occurs. Suppose q^{\prime} queues
have become critical before that. This means that queue i became critical for byte b_{i}, no earlier than the time it took for q^{\prime} ECQF requests and an additional b time slots. The DRAM would take exactly the same time that it took ECQF to issue those replenishment requests (to service all the earlier critical queues), leaving it with at least b time slots to service queue i, thereby ensuring that the corresponding byte b_{i} is present in the head cache.

So the proofs for Lemma H. 1 and Theorem 7.6 hold independent of the need to make any simplifying assumptions.

Proofs for Chapter 9

\aleph Definition I.1. Domination: Let $v=\left(v_{1}, v_{2}, \ldots, v_{N}\right)$, and $u=\left(u_{1}, u_{2}, \ldots, u_{N}\right)$ denote the values of $C(i, t)$ for two different systems of N counters at any time t. Let π, σ be an ordering of the counters $(1,2,3, \ldots N)$ such that they are in descending order, i.e., for v we have, $v_{\pi(1)} \geqslant$ $v_{\pi(2)} \geqslant v_{\pi(3)} \geqslant \cdots \geqslant v_{\pi(N)}$ and for u we have $u_{\sigma(1)} \geqslant u_{\sigma(2)} \geqslant u_{\sigma(3)} \geqslant$ $\cdots \geqslant u_{\sigma(N)}$.

We say that v dominates u denoted $v \gg u$, if $v_{\pi(i)} \geqslant u_{\sigma(i)}, \forall i$. Every arrival can possibly increment any of N different counters. The set of all possible arrival patterns at time t can be defined as: $\Omega_{t}=\left\{\left(w_{1}, w_{2}, w_{3}, \ldots, w_{t}\right), 1 \geqslant w_{i} \geqslant N, \forall i\right\}$.

Theorem I.1. (Optimality of LCF-CMA). Under arrival sequence $a(t)=$ $\left(a_{1}, a_{2}, a_{3}, \ldots, a_{t}\right)$, let $q\left(a(t), P_{c}\right)=\left(q_{1}, q_{2}, q_{3}, \ldots, q_{N}\right)$ denote the count $C(i, t)$ of N counters at time t under service policy P_{c}. For any service policy P, there exists a 1-1 function $f_{P, L C F}^{t}:\left(\Omega_{t} \rightarrow \Omega_{t}\right)$, for any t such that $q\left(f_{P, L C F(w), P}^{t}\right) \gg q(w, L C F), \forall\left(w \in \Omega_{t}\right), \forall t$.

Proof. We prove the existence of such a function $f_{P, L C F}^{t}$ inductively over time t. Let us denote the counters of the LCF system by $\left(l_{1}, l_{2}, l_{3}, \ldots, l_{N}\right)$ and the counters of the P system by ($p_{1}, p_{2}, p_{3}, \ldots, p_{N}$). It is trivial to check that there exists such a function

[^127]for $t=1$. Inductively assume that $f_{P, L C F}^{t}$ exists with the desired property until time t, and we want to extend it to time $t+1$. This means that there exists ordering π^{t}, σ^{t} such that, $l_{\pi^{t}(i)} \leqslant p_{\sigma^{t}(i)}, \forall i$. Now, at the time $t+1$, a counter may be incremented and a counter may be completely served. We consider both these parts separately below:

- Part 1: (Arrival) Let a counter be incremented at time $t+1$ in both systems. Suppose that counter $\pi^{t}(k)$ is incremented in the LCF system. Then extend $f_{P, L C F}^{t}$ for $t+1$ by letting an arrival occur in counter $\sigma^{t}(k)$ for the P system. By induction, we have $l_{\pi^{t}(i)} \leqslant p_{\sigma^{t}(i)}, \forall i$. Let π^{t+1}, σ^{t+1} be the new ordering of the counters of the LCF and P systems respectively. Since one arrival occurred to both the systems in a queue with the same relative order, the domination relation does not change.
- Part 2: (Service) Let one of the counters be served at time $t+1$. Under the LCF policy, the counter $\pi^{t}(1)$ with count $l_{\pi^{t}(1)}$ will be served and its count is set to zero, i.e., $C\left(\pi^{t}(1), t+1\right)=0$, while under P any queue can be served out, depending on the CMA prescribed by P. Let P serve the counter with rank k, i.e., counter $\sigma^{t}(k)$. Then we can create a new ordering π^{t+1}, σ^{t+1} as follows:

$$
\begin{gather*}
\pi^{t+1}(i)=\pi^{t}(i+1), \quad 1 \leqslant i \leqslant N-1, \quad \pi^{t+1}(N)=\pi^{t}(1) \tag{I.1}\\
\sigma^{t+1}(i)=\sigma^{t}(i), \quad 1 \leqslant i \leqslant k-1 \\
\sigma^{t+1}(i)=\sigma^{t}(i+1), \quad k \leqslant i \leqslant N-1, \quad \sigma^{t+1}(N)=\sigma^{t}(k) . \tag{I.2}
\end{gather*}
$$

Under this definition, it is easy to check that, $l_{\pi^{t+1}(i)} \leqslant p_{\sigma^{t+1}(i)}, \forall i$ given $l_{\pi^{t}(i)} \leqslant p_{\sigma^{t}(i)}, \forall i$. Thus we have shown explicitly how we can extend to $f_{P, L C F}^{t}$ to $f_{P, L C F}^{t+1}$ with the desired property. Hence it follows inductively that LCF is dominated by any other policy P. \square

Parallel Packet Copies for Multicast

J. 1 Introduction

Multicasting is the process of simultaneously sending the same data to multiple destinations on the network in the most efficient manner. The Internet supports a number of protocols to enable multicasting. For example, it supports the creation of multicast groups [221], reserves a separate addressing space for multicast addresses [222, 223], supports the ability to inter-operate between multicast routing protocols [224], and specifies the support needed by end hosts [225] in order to provide an efficient multicast infrastructure.

Among the applications that require multicasting are real-time applications such as Telepresence [28], videoconferencing, P2P services, multi-player games, IPTV [29], etc. Multicasting is also used as a background service to update large distributed databases and enable coherency among Web caches.

While we cannot predict the future uses and deployments of the Internet, it is likely that routers will be called upon to switch multicast packets passing over very-high-speed lines with guaranteed quality of service. Specific enterprise networks already exist on which multicasting (primarily video multicasting) is expected to exceed $15-20 \%$ [226] of all traffic. In such cases, routers will have to support the

[^128]extremely high memory bandwidth requirements of multicasting. This is because an arriving multicast packet can be destined to multiple destinations, and the router may have to make multiple copies of the packet.

J.1.1 Goal

In this appendix, we briefly look at how high-speed routers can support multicast traffic. Our goal is to find the speedup required to precisely emulate a multicast OQ router so that we can provide deterministic performance guarantees. We will consider both FCFS and PIFO queueing policies.

J.1.2 Organization

In what follows, we will describe a load balancing algorithm for multicasting, and briefly discuss a solution based on caching. The rest of this appendix is organized as follows: In Section J.2, we describe two orthogonal techniques, copy and fanout multicasting, to support multicast traffic. In Section J.3, we describe a hybrid strategy to implement multicast, which we will later show is more efficient than either copy or fanout multicasting. We then use the constraint set technique in Section J. 4 (first described in Chapter 2) to derive a load balancing algorithm to support multicast traffic on singlebuffered routers. We use the parallel packet switch (PPS) architecture (introduced in Chapter 6) as an illustrative example of single-buffered routers, and use constraint sets to bound the speedup ${ }^{1}$ required to support multicast traffic. Later, we show that a similar load balancing algorithm can be used to find the conditions under which any single-buffered multicast router can give deterministic performance guarantees. In Section J. 5 we briefly consider caching algorithms to support multicasting.

J. 2 Techniques for Multicasting

A multicast packet (by definition) is destined to multiple different outputs. Thus, any router that supports multicast must (at some point) create copies of the packet. A

[^129]number of router architectures have been studied, and many techniques have been proposed to enable these architectures to support multicast. A survey of some of these techniques and the issues involved in supporting multicast traffic can be found in [227, 228, 229].

Observation J.1. Note that a memory only supports two kinds of operations a write and a read. The only way to create copies is to use either of these two operations. Therefore, in what follows we will define two orthogonal techniques to create copies of packets, called "copy multicasting" (where a packet is written multiple times) and "fanout multicasting" (where multicasting is done by reading a packet multiple times). Since a memory supports only two operations, all of the multicasting techniques described in $[227,228,229]$ use a combination of the above two orthogonal techniques to implement multicasting.

J.2.1 Copy Multicasting

\aleph Definition J.1. Copy Multicast: In "copy multicast", multiple unicast copies (one destined to each output of the multicast cell) are created immediately on arrival of the cell. Each copy is stored in a separate unicast queue.

Once the unicast copies of a multicast cell are created, these unicast cells can be read by their respective outputs and released from the buffer independent of each other. Note that in a PPS, the unicast copies must be immediately sent from the demultiplexor to the center stage OQ switches. Similarly, in an SB router, the unicast copies must be immediately written to memories.

Observation J.2. Note that copy multicasting places a tremendous burden on the bandwidth of a router. A multicast packet arriving on a line card at rate R, with multicast fanout m, requires an instantaneous write bandwidth of $m R$. It is a surprising fact that in spite of this, copy multicasting is commonly used in high-speed Enterprise routers. This
is because buffer resources such as queue sizes, free lists, etc., can be better controlled using copy multicasting. As we shall see shortly, it also does not suffer from what is colloquially called the "slow port" problem. Most high-speed Enterprise routers today are built to support no more than a fanout of two to three at line rates. If a sustained burst of multicast packets with larger fanouts arrives, these multicast packets will initially get buffered on-chip, and then if the on-chip buffer capacity is exceeded, they will eventually be dropped. ${ }^{2}$

J.2.2 Fanout Multicasting

$\aleph D e f i n i t i o n ~ J .2 . ~ F a n o u t ~ M u l t i c a s t: ~ I n ~ " f a n o u t ~ m u l t i c a s t ", ~ a ~ m u l t i c a s t ~ c e l l ~ i s ~ s t o r e d ~$ just once. The cell is read multiple times, as many times as the number of outputs to which it is destined.

In a PPS using fanout multicast, for example, the cell is sent just once to one of the center stage OQ switches. The layer to which the multicast cell is sent must therefore adhere to the output link constraints of all its outputs simultaneously. In a PPS using fanout multicast, the single center stage switch that is chosen to receive the multicast cell is responsible for delivering the cell to every output. ${ }^{3}$ Similarly, in an SB router, an arriving multicast cell is written to a memory that simultaneously satisfies the output link constraints of all outputs.

A standard way in which fanout multicasting is implemented on a router is to write the packet once to memory, and create multiple descriptors (one for each of the queues to which the multicast packet is destined) that point to the same packet. As

[^130]an example, refer to the descriptor and buffer hierarchy shown in Figure 8.2. Fanout multicasting is easily implemented by making the multiple descriptors point to the same multicast packet.

Observation J.3. Fanout multicasting suffers from what is colloquially called the "slow port" problem. Since a multicast cell is stored only once in the buffer, it can only be released when all the ports that participate in the multicast have completed reading the cell. If one of the ports is congested, that port may not read the multicast cell for a very long time. Such multicast cells will hog buffer resources, and if there are many such cells, they can prevent new cells from being buffered.

J.2.3 Comparison of Copy and Fanout Multicasting

A simple way to understand copy and fanout multicasting is that copy multicasting creates copies immediately when a packet arrives, while fanout multicasting creates copies just in time when a packet needs to be sent to the output (or transferred across the switch fabric). It is clear from the definition that a router requires more write bandwidth in order to support copy multicasting, because the copies have to be made immediately. Since packets are still read at the line rate, no read speedup is required. For fanout multicasting, packets are written (and read) at the line rate (because no copies need to be made), and so it would appear that no additional memory bandwidth is required to support fanout multicasting. However, since we are interested in providing deterministic performance guarantees, we will see that this is not the case.

We can make the following observations about multicasting:

Observation J.4. A multicast PPS router at rate R that copy multicasts with maximum fanout m appears to the demultiplexor as a unicast router running at rate $m R$. And so, for copy multicasting, it is obvious that the speedup required increases in proportion to the number of copies
made per cell, i.e., its multicast fanout, m. For fanout multicasting, a single cell is sent to the center stage switches in case of a PPS (or memory buffers in the case of a single-buffered router), and no additional speedup is required to physically transmit the cell to the center stage switches (or write the cell to memory in case of an SB router). However, a higher speedup is required to ensure the existence of a layer in the PPS (or memory in case of an SB router) that satisfies the output constraints of all outputs to which the multicast cell is destined. Since there are m output link constraints, the speedup required is also proportional to m. ${ }^{4}$

Note that the two techniques are fundamentally orthogonal. Copy multicast does not use the fact that multiple output constraints could be satisfied simultaneously by transmitting a multicast cell to a common central stage OQ switch in the PPS (or a common memory in a single-buffered router). On the contrary, fanout multicast does not utilize the potential link/memory bandwidth available to make copies of multicast packets when they arrive.

J. 3 A Hybrid Strategy for Multicasting

In any router, it is possible to implement either of the above methods. We will shortly show that the optimal strategy for multicast is to take advantage of both of the above methods. So we will introduce a technique called "hybrid multicasting".

Hybrid multicasting bounds the number of copies ${ }^{5}$ that can be made from a multicast cell. We define a variable q as the maximum number of copies that are made from a given multicast cell. Note that since the maximum fanout of any given multicast cell is m, at most $\lceil m / q\rceil$ outputs will receive a copied multicast cell.

[^131]In order to analyze a hybrid multicast strategy, we will need to find a lower bound on the size of the available input link set as a function of q. Before we proceed, recall that we defined a time slot for an SB router as follows:
\aleph Definition J.3. Time slot: This refers to the time taken to transmit or receive a fixed-length cell at a link rate of R.

Lemma J.1. For a PPS that uses the hybrid multicast strategy,

$$
\begin{equation*}
|A I L(i, n)| \geqslant k-(\lceil k / S\rceil-1) q, \forall i, n \geqslant 0 . \tag{J.1}
\end{equation*}
$$

Proof. Consider demultiplexor i. The only layers that i cannot send a cell to are those which were used in the last $\lceil k / S\rceil-1$ time slots. ${ }^{6}$ (The layer that was used $\lceil k / S\rceil$ time slots ago is now free to be used again.) $|A I L(i, n)|$ is minimized when a cell arrives to the external input port in each of the previous $\lceil k / S\rceil-1$ time slots. Since a maximum of q links are used in every time slot, $|A I L(i, n)| \geqslant k-(\lceil k / S\rceil-1) q, \forall i, n \geqslant 0$.

J. 4 A Load Balancing Algorithm for Multicasting

We are now ready to prove the main theorem, which first appeared in our paper [230].
Theorem J.1. (Sufficiency) A PPS, which has a maximum fanout of m, can mimic an FCFS-OQ switch with a speedup of $S \geqslant 2 \sqrt{m}+1$.

Proof. Consider a cell C that arrives at demultiplexor i at time slot n and is destined for output ports $\left\langle P_{j}\right\rangle$, where $j \in\{1,2, \ldots, m\}$. A maximum of q copies are created from this cell. We will denote each copy by C_{y} where $y \in\{1,2, \ldots, q\}$. Each copy $\left\langle C_{y}\right\rangle$ is destined to a maximum of $\left\langle P_{j}\right\rangle$ distinct output ports, where $j \in\{1,2, \ldots,\lceil m / q\rceil\}$. For the ILC and OLC to be met, it suffices to show that there will always exist a layer l such that the layer l meets all the following constraints for each copy C_{y}, i.e.,

[^132]\[

$$
\begin{array}{r}
l \in\left\{A I L(i, n) \cap A O L\left(P_{1}, D T\left(n, i, P_{1}\right)\right) \cap A O L\left(P_{2}, D T\left(n, i, P_{2}\right)\right) \ldots\right. \\
\left.A O L\left(P_{\lceil m / q\rceil}, D T\left(n, i, P_{\lceil m / q\rceil}\right)\right)\right\}
\end{array}
$$
\]

which is satisfied when,

$$
\begin{array}{r}
|A I L(i, n)|+\left|A O L\left(P_{1}, D T\left(n, i, P_{1}\right)\right)\right|+\mid A O L\left(P_{2}, D T\left(n, i, P_{2}\right)\right)+\ldots \\
\left|A O L\left(P_{\lceil m / q\rceil}, D T\left(n, i, P_{\lceil m / q\rceil}\right)\right)\right|>(\lceil m / q\rceil) k .
\end{array}
$$

Since there are q copies, it is as if the $A I L$ sees traffic at q times the line rate. Since each cell caters to $\lceil m / q\rceil A O L$ sets, the above equation is true if -

$$
k-(\lceil k / S\rceil-1) q+(\lceil m / q\rceil)(k-(\lceil k / S\rceil-1))>(\lceil m / q\rceil) k .
$$

This will be satisfied if,

$$
k-(\lceil k / S\rceil-1) q-(\lceil m / q\rceil)(\lceil k / S\rceil-1)>0 .
$$

i.e., if,

$$
(\lceil k / S\rceil-1)(q+\lceil m / q\rceil)<k
$$

Note that the above analysis applies to each copy C_{y} that is made in parallel. Thus each copy C_{y} of the multicast packet has the same input link constraint, and by definition the same $A I L$. In the case that two or more distinct copies C_{y}, where $y \in\{1,2, \ldots, q\}$, choose the same layer l, the copies are merged and a single cell destined to the distinct outputs of each of the copies C_{y} is sent. The speedup is minimized when $q+\lceil m / q\rceil$ is minimized. But $q+\lceil m / q\rceil<q+m / q+1$ and so the minimum value is obtained when $q=\sqrt{m}$; i.e., $S \geqslant 2 \sqrt{m}+1$.

Theorem J.2. (Sufficiency) A PPS that has a maximum fanout of m can mimic a PIFO-OQ switch with a speedup of $S \geqslant 2 \sqrt{2 m}+2$.

Proof. The proof is almost identical to the one above, but uses a PIFO-based analysis to compute the relevant $A I L$ and $A O L$ sets, similar to that described in Section 6.6.■

The following theorem represents the worst-case speedup required to support multicasting in a PPS. It is a consequence of the fact that the maximum multicast fanout $m \leqslant N .{ }^{7}$

Theorem J.3. (Sufficiency, by Reference) A PPS can emulate a multicast FCFS-OQ router with a speedup of $S \geqslant 2 \sqrt{N}+1$ and a multicast PIFO-OQ router with a speedup of $S \geqslant 2 \sqrt{2 N}+2$.

Theorem J.4. (Sufficiency) A single-buffered router can emulate a multicast FCFS$O Q$ router with a speedup of $S \equiv \theta(\sqrt{N})$ and a multicast PIFO-OQ router with a speedup of $S \equiv \theta(\sqrt{2 N})$.

Proof. This is a direct consequence of Theorem J.3. In a single-buffered router (e.g., the PSM, DSM, and PDSM), a packet is written to a memory that meets the $A O L$ constraints of $\left\langle P_{j}\right\rangle$ outputs, where, $j \in\{1,2, \ldots,\lceil m / q\rceil\}$. Each copy C_{y} is automatically available to all the $\left\langle P_{j}\right\rangle$ distinct output ports, when the copy C_{y} needs to be read by output j. There is no need for $\lceil m / q\rceil$ physical copies to be created in a center stage layer (as would need to be done by the OQ routers in the PPS if they maintained separate queues for each output), once a memory is chosen, since all outputs are assumed to have access to all memories. So the multicast speedup requirements are exactly the same as for the PPS router. Of course, N can be replaced by the maximum multicast fanout $m<N$ in the statement of the theorem.

[^133]
J. 5 A Caching Algorithm for Multicasting

In Chapter 7, we described a caching hierarchy to buffer and manage packets for high-speed routers. The caching technique can be trivially applied to copy multicasting, and this leads to the following theorem:

Theorem J.5. (Sufficiency) For MDQF to guarantee that a requested byte is in the head cache (for a copy multicast router with maximum fanout m), the number of bytes that are sufficient in the head cache is

$$
\begin{equation*}
Q w=Q(m+1) \frac{b}{2}(3+\ln Q) \tag{J.2}
\end{equation*}
$$

Proof. This a direct consequence of Theorem 7.3. In a unicast router, there is one write and one read for every cell, and the memory access time is split equally between the writes and reads, leading to a memory block size of b bytes. In a copy multicast router, there are m writes for every one read, and so the block size b is scaled as shown above.

We now consider fanout multicasting. Unfortunately, we do not currently know of any simple technique to support fanout multicast using caching. The main problem is that there is no way to associate a multicast packet with a specific queue, because fanout multicast packets are destined to multiple queues, all of which need access to it.

Another requirement in some routers is that they support in-order delivery of unicast and multicast traffic. ${ }^{8}$ In such a case, the number of multicast queues that must be maintained in the buffer is $\Theta\left(2^{m}\right)$, where $m \leqslant q$ is the maximum multicast fanout [231], and q is the number of unicast queues. The cache size needed to support this feature is $\Theta\left(f * 2^{f}\right)$, and can be very large.

[^134]
J. 6 Conclusions

While we cannot predict the usage and deployment of multicast, it is likely that Internet routers will be called upon to switch multicast packets passing over very-high-speed lines with a guaranteed quality of service. A conclusion that can be drawn from the results presented here is that the speedup required to support multicast traffic grows with the size of the allowable multicast fanouts. With small fanouts at each switch, moderate speedup (or cache size) suffices and delay guarantees are theoretically possible. For large fanouts, the speedup (or cache size) may become impracticably large. As a practical compromise, we have implemented multicast buffering solutions [231], using techniques similar to frame scheduling (see Section 3.8). While we have made these compromises to enable high-speed multicasting, supporting in-order multicast with deterministic performance guarantees remains an interesting open problem.

List of Figures

1.1 The architecture of a centralized shared memory router 4
1.2 The architecture of an output queued router. 7
1.3 The input-queued and CIOQ router architectures. 10
1.4 Achieving delay guarantees in a router. 15
1.5 Emulating an ideal output queued router. 20
1.6 The data-plane of an Internet router 22
2.1 A comparison of the CIOQ and SB router architectures. 40
2.2 The pigeonhole principle 45
2.3 The parallel shared memory router. 47
2.4 A bad traffic pattern for the parallel shared memory router. 49
2.5 Maintaining a single PIFO queue in a parallel shared memory router. 53
2.6 Maintaining N PIFO queues in a parallel shared memory router 54
3.1 Physical view of the distributed shared memory router. 65
3.2 Logical view of the distributed shared memory router. 65
3.3 A request graph and a request matrix for an $N \times N$ switch. 68
4.1 A router with different line cards. 87
4.2 The physical and logical view of a CIOQ router. 90
4.3 The constraint set as maintained by the input. 95
4.4 The constraint set as maintained by the output. 97
4.5 A stable marriage 101
4.6 Indicating the priority of cells to the scheduler. 102
5.1 Cross-sectional view of crossbar fabric. 119
5.2 The architecture of a buffered crossbar with crosspoint buffer. 120
5.3 SuperVOQ for a buffered crossbar 131
5.4 The architecture of a buffered crossbar with output buffers. 132
6.1 Using system-wide massive parallelism to build high-speed routers. 139
6.2 The architecture of a parallel packet switch. 144
6.3 Insertion of cells in a PIFO order in a parallel packet switch. 158
6.4 A parallel packet switch demultiplexor. 164
7.1 Packet buffering in Internet routers. 179
7.2 Memory hierarchy of packet buffer. 185
7.3 Detailed memory hierarchy of packet buffer. 186
7.4 The MDQFP buffer caching algorithm. 199
7.5 Buffer cache size as a function of pipeline delay. 207
7.6 The ECQF buffer caching algorithm. 209
8.1 Scheduling in Internet routers. 225
8.2 The architecture of a typical packet scheduler. 230
8.3 A caching hierarchy for a typical packet scheduler. 233
8.4 A scheduler that operates with a buffer cache hierarchy. 237
8.5 A scheduler hierarchy that operates with a buffer hierarchy. 239
8.6 A combined packet buffer and scheduler architecture. 242
8.7 The closed-loop feedback between the buffer and scheduler. 245
8.8 The worst-case pattern for a piggybacked packet scheduler. 247
9.1 Measurement infrastructure. 260
9.2 Memory hierarchy for the statistics counters. 264
9.3 Numeric notations 272
10.1 Maintaining state in Internet routers 281
10.2 Maintaining state on a line card. 283
10.3 The read-modify-write architecture. 290
10.4 Tradeoff between update speedup and capacity using GPP-SMA. 292
A. 1 Internal architecture of a typical memory. 314
B. 1 Network traffic models. 318
D. 1 The scheduling phases for the buffered crossbar. 324
F. 1 An non-work-conserving traffic pattern for a PPS. 335
G. 1 An example of the CPA algorithm. 341
G. 2 An example of the CPA algorithm (continued). 342
H. 1 A worst-case traffic pattern for the buffer cache. 345

List of Tables

1.1 Comparison of router architectures. 12
1.2 Organization of thesis. 24
1.3 Application of techniques. 28
2.1 Unification of the theory of router architectures. 42
3.1 Comparison between the DSM and PDSM router architectures. 76
4.1 An example of the extended pigeonhole principle. 105
5.1 Comparison of emulation options for buffered crossbars. 133
7.1 Tradeoffs for the size of the head cache. 212
7.2 Tradeoffs for the size of the tail cache. 212
8.1 Packet buffer and scheduler implementation options. 250
8.2 Packet buffer and scheduler implementation sizes. 252
8.3 Packet buffer and scheduler implementation examples. 253
10.1 Tradeoffs for memory access rate and memory capacity. 297

List of Theorems

Abstract

Theorem 2.1 (Pigeonhole Principle) Given two natural numbers p and h with $p>h$, if p items (pigeons) are put into h pigeonholes, then at least one pigeonhole must contain more than one item (pigeon).

Theorem 2.2 (Sufficiency) A total memory bandwidth of $3 N R$ is sufficient for
a parallel shared memory router to emulate an FCFS output queued router. 49

Theorem 2.3 (Sufficiency) With a total memory bandwidth of $4 N R$, a parallel
shared memory router can emulate a PIFO output queued router within
$k-1$ time slots. 56
Theorem 3.1 (Sufficiency) A Crossbar-based DSM router can emulate an FCFS output queued router with a total memory bandwidth of $3 N R$ and a crossbar bandwidth of $6 N R$. 67
Theorem 3.2 (Sufficiency) A Crossbar-based DSM router can emulate a PIFO output queued router with a total memory bandwidth of $4 N R$ and a crossbar bandwidth of $8 N R$ within a relative delay of $2 N-1$ time slots. 67
Theorem 3.3 (Sufficiency) A Crossbar-based DSM router can emulate an FCFS output queued router with a total memory bandwidth of $3 N R$ and a crossbar bandwidth of $4 N R$. 68
Theorem 3.4 (Sufficiency) A Crossbar-based DSM router with a total memory bandwidth of $4 N R$ and a crossbar bandwidth of $5 N R$ can emulate a PIFO output queued router within a relative delay of $2 N-1$ time slots. 68
Theorem 3.5 (Sufficiency) A Crossbar-based DSM router can emulate an FCFS output queued router with a total memory bandwidth of $4 N R$ and a crossbar bandwidth of $4 N R$. 69
Theorem 3.6 (Sufficiency) A Crossbar-based DSM router can emulate a PIFO output queued router within a relative delay of $N-1$ time slots, with a total memory bandwidth of $6 N R$ and a crossbar bandwidth of $6 N R$. 71
Theorem 3.7 If a request matrix S is ordered, then any maximal matching algorithm that gives strict priority to entries with lower indices, such as the WFA, can find a conflict-free schedule. 73
Theorem 4.1 (Sufficiency, by Reference) Any maximal algorithm with a speedup $S>2$, which gives preference to cells that arrive earlier, ensures that any cell arriving at time t will be delivered to its output at a time no greater than $t+[B /(S-2)]$, if the traffic is single leaky bucket B constrained. 92
Theorem 4.2 (Sufficiency) With a speedup $S>2$, a crossbar can emulate an FCFS-OQ router if the traffic is single leaky bucket B constrained. 98
Theorem 4.3 (Sufficiency, by Citation) A crossbar CIOQ router can emulate a PIFO-OQ router with a crossbar bandwidth of $2 N R$ and a total memory bandwidth of $6 N R$. 107
Theorem 4.4 A crossbar CIOQ router is work-conserving with a crossbar bandwidth of $2 N R$ and a total memory bandwidth of $6 N R$. 111
Theorem 5.1 (Sufficiency, by Citation) A buffered crossbar can emulate an FCFS-OQ router with a crossbar bandwidth of $2 N R$ and a memory band- width of $6 N R$. 126
Theorem 5.2 A buffered crossbar (with a simplified output scheduler) is work- conserving with a crossbar bandwidth of $2 N R$ and a memory bandwidth of $6 N R$. 126
Theorem 5.3 (Sufficiency, by Reference) A buffered crossbar can emulate a PIFO-OQ router with a crossbar bandwidth of $3 N R$ and a memory bandwidth of $6 N R$. 128
Corollary 5.1 (Sufficiency) A crossbar CIOQ router can emulate a PIFO-OQ router with a crossbar bandwidth of $2 N R$ and a total memory bandwidth of $6 N R$. 129
Theorem 5.4 A buffered crossbar with randomized scheduling, can achieve 100% throughput for any admissible traffic with a crossbar bandwidth of $2 N R$ and a memory bandwidth of $6 N R$. 131
Theorem 5.5 (Sufficiency, by Reference) A modified buffered crossbar can emulate a PIFO-OQ router with a crossbar bandwidth of $2 N R$ and a memory bandwidth of $6 N R$. 132
Theorem 6.1 A PPS without speedup is not work-conserving. 147
Theorem 6.2 (Sufficiency) A PPS can emulate an FCFS-OQ switch with a speedup of $S \geqslant 2$. 153
Theorem 6.3 (Digression) A PPS can be work-conserving if $S \geqslant 2$. 154
Theorem 6.4 (Sufficiency) A PPS can emulate any OQ switch with a PIFO queuing discipline, with a speedup of $S \geqslant 3$. 156Theorem 6.5 (Sufficiency) A PPS with independent demultiplexors and multi-plexors and no speedup, with each multiplexor and demultiplexor containinga co-ordination buffer cache of size $N k$ cells, can emulate an FCFS-OQswitch with a relative queuing delay bound of $2 N$ internal time slots.167
Theorem 7.1 (Necessity \& Sufficiency) The number of bytes that a dynamically allocated tail cache must contain must be at least $Q(b-1)+1$ bytes. 191Theorem 7.2 (Necessity - Traffic Pattern) To guarantee that a byte is alwaysavailable in head cache when requested, the number of bytes that a headcache must contain must be at least $Q w>Q(b-1)(2+\ln Q)$.192

Theorem 7.3 (Sufficiency) For MDQF to guarantee that a requested byte is in the head cache (and therefore available immediately), the number of bytes that are sufficient in the head cache is $Q w=Q b(3+\ln Q)$.

Theorem 7.4 (Sufficiency) With MDQFP and a pipeline delay of x (where $x>b$), the number of bytes that are sufficient to be held in the head cache is $Q w=Q(C+b)$.
Theorem 7.5 (Necessity) For a finite pipeline, the head cache must contain at least $Q(b-1)$ bytes for any algorithm.
Theorem 7.6 (Sufficiency) If the head cache has $Q(b-1)$ bytes and a lookahead buffer of $Q(b-1)+1$ bytes (and hence a pipeline of $Q(b-1)+1$ slots), then ECQF will make sure that no queue ever under-runs.
Corollary 8.1 (Sufficiency) A packet scheduler requires no more than $Q b(4+$ $\ln Q) \frac{|D|}{P_{\text {min }}}$ bytes in its cache, where $P_{\text {min }}$ is the minimum packet size supported by the scheduler, and $|D|$ is the descriptor size.
Corollary 8.2 (Sufficiency) A scheduler (which only stores packet lengths) requires no more than $Q b(4+\ln Q) \frac{\log _{2} P_{\max }}{P_{\min }}$ bytes in its cache, where $P_{\text {min }}, P_{\text {max }}$ are the minimum and maximum packet sizes supported by the scheduler.
Theorem 8.1 (Sufficiency) The MDQF packet buffer requires no more than $Q[b(4+\ln Q)+R L]$ bytes in its cache in order for the scheduler to piggyback on it, where L is the total closed-loop latency between the scheduler and the MDQF buffer cache.
Theorem 8.2 (Sufficiency) A length-based packet scheduler that piggybacks on the MDQF packet buffer cache requires no more than $Q[b(3+\ln Q)+R L] \frac{\log _{2} P_{\text {max }}}{P_{\text {min }}}$ bytes in its head cache, where L is the total closed-loop latency between the scheduler and the MDQF buffer cache.
Theorem 9.1 (Necessity) Under any CMA, a counter can reach a count $C(i, t)$ of $\frac{\ln \left[(N-1)(b /(b-1))^{b-1}\right]}{\ln (b /(b-1))}$.
Theorem 9.2 (Optimality) Under all arriving traffic patterns, LCF-CMA is optimal, in the sense that it minimizes the count of the counter required.
Theorem 9.3 (Sufficiency) Under the LCF-CMA policy, the count $C(i, t)$ of every counter is no more than $S \equiv \frac{\ln b N}{\ln (b /(b-1))}$.
Theorem 9.4 (Sufficiency) Under the LCF policy, the number of bits that are sufficient per counter, to ensure that no counter overflows, is given by $\log _{2} \frac{\ln b N}{\ln d}$.

Corollary 9.1 (Sufficiency) A counter of size $S \equiv \log _{2}[N b(3+\ln N)]$ bits is sufficient for LCF to guarantee that no counter overflows in the head cache. 272
Theorem 10.1 (Sufficiency) Using GPP-SMA, a memory subsystem with h independent banks running at the line rate can emulate a memory that can be updated at C times the line rate (C reads and C writes), if $C \leqslant \frac{\lfloor\sqrt{4 h+1}-1 \mid}{2} .291$
Theorem J. 1 (Sufficiency) A PPS, which has a maximum fanout of m, can mimic an FCFS-OQ switch with a speedup of $S \geqslant 2 \sqrt{m}+1$. 364
Theorem J. 2 (Sufficiency) A PPS that has a maximum fanout of m can mimic a PIFO-OQ switch with a speedup of $S \geqslant 2 \sqrt{2 m}+2$. 366
Theorem J. 3 (Sufficiency, by Reference) A PPS can emulate a multicast FCFSOQ router with a speedup of $S \geqslant 2 \sqrt{N}+1$ and a multicast PIFO-OQ router with a speedup of $S \geqslant 2 \sqrt{2 N}+2$.
Theorem J. 4 (Sufficiency) A single-buffered router can emulate a multicast FCFS-OQ router with a speedup of $S \equiv \theta(\sqrt{N})$ and a multicast PIFO-OQ router with a speedup of $S \equiv \theta(\sqrt{2 N})$.366

Theorem J. 5 (Sufficiency) For MDQF to guarantee that a requested byte is in the head cache (for a copy multicast router with maximum fanout m), the number of bytes that are sufficient in the head cache is $Q w=$ $Q(m+1) \frac{b}{2}(3+\ln Q)$.

List of Algorithms

2.1 The constraint set technique for emulation of OQ routers. 38
4.1 Constraint set-based time reservation algorithm. 94
4.2 Extended constraint sets for emulation of OQ routers. 105
4.3 Extended constraint sets for work conservation. 111
5.1 A deterministic buffered crossbar scheduling algorithm. 124
5.2 A randomized buffered crossbar scheduling algorithm. 131
6.1 Centralized parallel packet switch algorithm for FCFS-OQ emulation. 152
6.2 Modified CPA for PIFO emulation on a PPS. 157
6.3 Distributed parallel packet switch algorithm for FCFS-OQ emulation. 166
7.1 The most deficited queue first algorithm. 193
7.2 Most deficited queue first algorithm with pipelining. 202
7.3 The earliest critical queue first algorithm. 210
8.1 The most deficited linked list first algorithm. 235
9.1 The longest counter first counter management algorithm. 269
10.1 The generalized ping-pong state management algorithm. 291

List of Examples

1.1 The largest available commodity SRAM. 6
1.2 The largest available commodity DRAM. 6
1.3 A $100 \mathrm{~Gb} / \mathrm{s}$ input queued router. 12
1.4 A push in first out queue. 15
2.1 Examples of shared memory routers. 46
2.2 Traffic pattern for a PSM router. 48
2.3 Maintaining PIFO order in a PSM router. 52
2.4 Violation of PIFO order in a PSM router. 53
3.1 Bus-based distributed shared memory router. 64
3.2 A frame-based DSM router 79
4.1 A router with different line cards. 86
4.2 Calculating the size of the input link constraint for a CIOQ router. 96
4.3 Maintaining input priority queues for a CIOQ router. 103
4.4 Opportunity and contentions sets for cells in a CIOQ router. 104
5.1 Cross section of a crossbar ASIC. 118
5.2 Implementation considerations for a buffered crossbar. 122
6.1 Using system-wide massive parallelism to build high-speed routers. 138
6.2 Limits of parallelism in a monolithic system. 142
6.3 Designing a parallel packet switch. 147
6.4 The centralized PPS scheduling algorithm 152
6.5 QoS guarantees for a PPS router 159
6.6 Designing a parallel packet switch. 168
7.1 Numbers of queues in typical Internet routers. 181
7.2 The random cycle time of a DRAM. 182
7.3 Uses of a queue caching hierarchy. 187
7.4 Size of head cache using MDQF. 198
7.5 Size of head cache with and without pipeline delay 205
7.6 Example of earliest critical queue first algorithm. 208
7.7 Size of packet buffer cache on a typical Ethernet switch. 216
8.1 Application and protocols on the Internet 222
8.2 Packet scheduler operation rate. 226
8.3 Architecture of a typical packet scheduler 229
8.4 Implementation of a typical packet scheduler. 231
8.5 A caching hierarchy for a packet scheduler. 236
8.6 A scheduler that operates with a buffer cache hierarchy. 238
8.7 A scheduler hierarchy that operates with a buffer hierarchy. 240
8.8 Counter-example pattern for a scheduler. 246
8.9 A scheduler that piggybacks on the buffer cache hierarchy. 250
9.1 Examples of measurement counters. 259
9.2 Memory access rate for statistics counters 263
9.3 Counter design for an $100 \mathrm{~Gb} / \mathrm{s}$ line card. 265
9.4 Implementation considerations for counter cache design. 274
10.1 Examples of state maintenance 282
10.2 Maintaining state for a $100 \mathrm{~Gb} / \mathrm{s}$ line card. 286
10.3 State design for an OC192 line card. 294
10.4 GPP-SMA with other caching and load balancing techniques. 295
11.1 Design and verification complexity of our techniques 303

References

[1] http://en.wikipedia.org/wiki/Naga_Jolokia. xiv
[2] http://www.qdrsram.com. 6, 178, 183, 206, 232, 274, 286, 313
[3] http://www.micron.com/products/dram. 6, 178, 182, 206, 226, 265, 274, 313
[4] Cisco Systems Inc. Cisco Catalyst 6500 Series Router. http: //www.cisco.com/en/US/products/hw/switches/ps708/\products_ data_sheet0900aecd8017376e.html. 7, 86, 133, 181, 216, 253
[5] Cisco Systems Inc. Cisco HFR. http://www.cisco.com/en/us/products/ ps5763/. 7, 86, 145, 170
[6] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison of contemporary DRAM architectures. In Proc. 26th International Symposium on Computer Architecture (ISCA '99), pages 222-233, Atlanta, Georgia, May 1999. 8
[7] http://www.rambus.com/. 8, 315
[8] http://www.rldram.com. 8, 183, 206
[9] http://www.fujitsu.com/us/services/edevices/ \microelectronics/memory/fcram. 8, 183, 206
[10] R. R. Schaller. Moore's law: Past, present and future. IEEE Spectrum, 34(6):5259, June 1997. 9
[11] N. McKeown, V. Anantharam, and J. Walrand. Achieving 100% throughput in an input queued switch. In Proc. of IEEE INFOCOM '96, volume 1, pages 296-302, March 1996. 10, 42, 109
[12] J. Dai and B. Prabhakar. The throughput of data switches with and without speedup. In Proc. of IEEE INFOCOM 'O0, pages 556-564, Tel Aviv, Israel, March 2000. 10, 41, 42, 98, 109, 110, 131
[13] S. Chuang, A. Goel, N. McKeown, and B. Prabhakar. Matching output queueing with a combined input/output queued switch. IEEE J.Sel. Areas in Communications, $17(6): 1030-1039$, June 1999. 10, 12, 19, 42, 44, 76, 100, 102, 106, 107, $108,112,113,114,122,123$
[14] N. McKeown. iSLIP: A scheduling algorithm for input queued switches. IEEE Transactions on Networking, 7(2), April 1999. 11
[15] Y. Tamir and H. C. Chi. Symmetric crossbar arbiters for VLSI communication switches. IEEE Transactions on Parallel and Distributed Systems, 4(1):13-27, January 1993. 11, 73, 321
[16] J. N. Giacopelli, J. J. Hickey, W. S. Marcus, W. D. Sincoslie, and M. Littlewood. Sunshine: A high performance self-routing broadband packet switch architecture. IEEE J. Select. Areas Commun., 9:1289-1298, 1991. 11
[17] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queuing algorithm. In ACM Computer Communication Review (SIGCOMM '89), pages $3-12,1989.14,51,223$
[18] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow control in integrated services networks: The single node case. IEEE/ACM Transaction on Networking, 1(3):344-357, June 1993. 14, 51, 224
[19] L. Zhang. Virtual clock: A new traffic control algorithm for packet switching networks. ACM Transactions on Computer Systems, 9(2):101-124, 1990. 14, 224
[20] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round robin. In Proc. of ACM SIGCOMM '95, pages 231-242, September 1995. 14, 224
[21] J. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair queueing. In Proc. of IEEE INFOCOM '96, pages 120-128, San Francisco, CA, March 1996. 14, 224
[22] B. Prabhakar and N. McKeown. On the speedup required for combined input and output queued switching. Automatica, 35:1909-1920, December 1999. 19, 92
[23] P. Krishna, N. Patel, A. Charny, and R. Simcoe. On the speedup required for work-conserving crossbar switches. IEEE J.Sel. Areas in Communications, 17(6):1057-1066, June 1999. 19, 112
[24] Cisco Systems Inc. Data obtained courtesy Global Commodity Management (GCM) Group. 21, 178, 217
[25] Cisco Systems Inc. Personal communication, Power Engineering Group, DCBU. 21, 305
[26] http://en.wikipedia.org/wiki/EDRAM. 25, 123, 168, 206, 274, 296, 297, 298
[27] http://en.wikipedia.org/wiki/SerDes. 27, 206
[28] Cisco Systems Inc. Cisco Telepresence. http://www.cisco.com/en/us/ netsol/ns669/networking_solutions_solution_segment_home.html. $27,222,248,358$
[29] International Telecommunications Union. IPTV Focus Group. http://www. itu.int/ITU-T/IPTV/. 27, 222, 248, 358
[30] http://en.wikipedia.org/wiki/RAID. 29, 305
[31] Cisco Systems Inc. Personal communication, Central Engineering, Power Systems Group. 29, 217
[32] Cisco Systems Inc. Skimmer, Serial Network Memory ASIC, DCBU. 29, 216, 297, 305
[33] Cisco Systems Inc. Network Memory Group, DCBU. 30, 174, 178, 217, 274, 276, 293
[34] T. Chaney, J. A. Fingerhut, M. Flucke, and J. Turner. Design of a gigabit ATM switching system. Technical Report WUCS-96-07, Computer Science Department, Washington University, February 1996. 40
[35] S. Iyer, A. Awadallah, and N. McKeown. Analysis of a packet switch with memories running slower than the line rate. In Proc. IEEE INFOCOM '00, June 2000. 41, 143
[36] S. Iyer and N. McKeown. Making parallel packet switches practical. In Proc. IEEE INFOCOM '01, volume 3, pages 1680-1687, 2001. 41, 110, 339
[37] C. S. Chang, D. S. Lee, and Y. S. Jou. Load balanced Birkhoff-von Neumann switches, part I: one-stage buffering. In IEEE HPSR Conference, pages 556-564, Dallas, TX, May 2001. http://www.ee.nthu.edu.tw/~cschang/Parti.ps. 41, 42
[38] I. Keslassy and N. McKeown. Maintaining packet order in two-stage switches. In Proc. of the IEEE INFOCOM, June 2002. 41, 42
[39] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Control, 37(12):1936-1949, 1992. 42, 109, 326
[40] A. Prakash, S. Sharif, and A. Aziz. An $O\left(\log ^{2} n\right)$ algorithm for output queuing. In Proc. IEEE INFOCOM '02, pages 1623-1629, June 2002. 42, 57
[41] B. Prabhakar and N. McKeown. On the speedup required for combined input and output queued switching. Technical Report STAN-CSL-TR-97-738, Stanford University, November 1997. 42, 108, 110, 112
[42] R. B. Magill, C. Rohrs, and R. Stevenson. Output queued switch emulation by fabrics with limited memory. IEEE Journal on Selected Areas in Communications, 21(4):606-615, 2003. 42, 120, 126, 134
[43] S. Chuang, S. Iyer, and N. McKeown. Practical algorithms for performance guarantees in buffered crossbars. In Proc. IEEE INFOCOM '05, pages 981-991, 2005. 41, 128, 131, 132
[44] Image courtesy http://en.wikipedia.org/wiki/Pigeonhole_principle. 45
[45] http://en.wikipedia.org/wiki/Hilbert's_paradox_of_the_Grand_ Hotel. 45
[46] N. Endo, T. Kozaki, T. Ohuchi, H. Kuwahara, and S. Gohara. Shared buffer memory switch for an ATM exchange. IEEE Transactions on Communications, 41(1):237-245, January 1993. 46
[47] R. H. Hofmann and R. Muller. A multifunctional high-speed switch element for ATM applications. IEEE Journal of Solid-State Circuits, 27(7):1036-1040, July 1992. 46
[48] H. Yamada, S. I. Yamada, H. Kai, and T. Takahashi. Multi-Purpose memory switch LSI for ATM-based systems. In GLOBECOM, pages 1602-1608, 1990. 46
[49] M. Devault, J. Y. Cochennec, and M. Servel. The 'PRELUDE' ATD experiment: Assessments and future prospects. IEEE Journal on Selected Areas in Communications, 6(9):1528-1537, December 1988. 46
[50] J. P. Coudreuse and M. Servel. PRELUDE: An asynchronous time-division switched network. In ICC, pages 769-772, June 1987. 46
[51] M. A. Henrion, G. J. Eilenberger, G. H. Petit, and P. H. Parmentier. A multipath self-routing switch. IEEE Communications Magazine, pages 46-52, December 1993. 46
[52] MMC Networks. ATMS2000: $5 \mathrm{~Gb} / \mathrm{s}$ switch engine chipset, 1996. 46
[53] S. Iyer and N. McKeown. Techniques for fast shared memory switches. Technical Report TR01-HPNG-081501, Computer Science Department, Stanford University, August 2001. 57
[54] Y. Xu, B. Wu, W. Li, and B. Liu. A scalable scheduling algorithm to avoid conflicts in switch-memory-switch routers. In Proc. ICCCN 2005, pages 57-64, October 2005. 57, 80
[55] A. Prakash. Architectures and Algorithms for High Performance Switching. Ph.D. Thesis Report, Univ. of Texas at Austin, August 2004. 57, 80
[56] P. S. Sindhu, R. K. Anand, D. C. Ferguson, and B. O. Liencres. High speed switching device. United States Patent No. 5905725, May 1999. 63
[57] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Math. Ann., 77:453-465, 1916. 68
[58] D. König. Gráfok és mátrixok. Matematikai és Fizikai Lapok, 38:116-119, 1931. 68
[59] S. Iyer, R. Zhang, and N. McKeown. Routers with a single stage of buffering. In Proc. ACM SIGCOMM '02, Pittsburg, PA, September 2002. 72
[60] H. C. Chi and Y. Tamir. Decomposed arbiters for large crossbars with multiqueue input buffers. In IEEE International Conference on Computer Design: VLSI in Computers and Processors, pages 233-238, Cambridge, MA, 1991. 73
[61] Technical Committee T11. Fiber Channel. http://www.t11.org. 86, 206, 248
[62] Cisco Systems Inc. Cisco GSR 12000 Series Quad OC-12/STM-4 POS/SDH line card. http://www.cisco.com/en/US/products/hw/routers/ps167/ \products_data_sheet09186a00800920a7.html. 86, 181
[63] D. Gale and L. S. Shapely. College admissions and the stability of marriage. American Mathematical Monthly, 69:9-15, 1962. 89, 101, 106, 117, 118, 122
[64] M. Karol, M. Hluchyi, and S. Morgan. Input versus output queueing on a spacedivision switch. IEEE Transactions on Communications, 35(12):1347-1356, December 1987. 90, 107
[65] A. Charny. Providing QoS Guarantees in Input-buffered Crossbars with Speedup. Ph.D. Thesis Report, MIT, September 1998. 90, 91, 92, 112, 113
[66] S. Iyer and N. McKeown. Using constraint sets to achieve delay bounds in CIOQ switches. IEEE Communication Letters, 7(6):275-277, June 2003. 93
[67] M. Akata, S. Karube, T. Sakamoto, T. Saito, S. Yoshida, and T. Maeda. A $250 \mathrm{Mb} / \mathrm{s} 32 \times 32 \mathrm{CMOS}$ crosspoint LSI for ATM switching systems. IEEE J. Solid-State Circuits, 25(6):1433-1439, December 1990. 93, 112
[68] M. Karol, K. Eng, and H. Obara. Improving the performance of input queued ATM packet switches. In Proc. of IEEE INFOCOM '92, pages 110-115, 1992. 93, 112
[69] H. Matsunaga and H. Uematsu. A $1.5 \mathrm{~Gb} / \mathrm{s} 8 \mathrm{x} 8$ cross-connect switch using a time reservation algorithm. IEEE J. Selected Area in Communications, 9(8):13081317, October 1991. 93, 112
[70] H. Obara, S. Okamoto, and Y. Hamazumi. Input and output queueing ATM switch architecture with spatial and temporal slot reservation control. IEEE Electronics Letters, pages 22-24, January 1992. 93, 112
[71] E. Leonardi, M. Mellia, M. Marsan, and F. Neri. Stability of maximal size matching scheduling in input queued cell switches. In Proc. ICC 2000, pages 1758-1763, 2000. 98, 110
[72] http://en.wikipedia.org/wiki/Stable_marriage_problem. 101
[73] H. Mairson. The stable marriage problem. http://www1.cs.columbia.edu/ ~evs/intro/stable/writeup.html, 1992. 101
[74] Personal communication with Da Chuang. 108
[75] I. Iliadis and W. E. Denzel. Performance of packet switches with input and output queueing. In Proceedings of ICC, pages 747-753, 1990. 107
[76] A. L. Gupta and N. D. Georganas. Analysis of a packet switch with input and output buffers and speed constraints. In Proc. of INFOCOM '91, pages 694-700, 1991. 107
[77] Y. Oie, M. Murata, K. Kubota, and H. Miyahara. Effect of speedup in nonblocking packet switch. In Proceedings of ICC, pages 410-414, 1989. 107
[78] J. S. C. Chen and T. E. Stern. Throughput analysis, optimal buffer allocation, and traffic imbalance study of a generic nonblocking packet switch. IEEE Journal on Selected Areas Communication, 9(3):439-449, April 2001. 107
[79] T. Anderson, S. Owicki, J. Saxie, and C. Thacker. High speed switch scheduling for local area networks. ACM Transactions of Computing Systems, 11(4):319-352, 1993. 109
[80] C. S. Chang, W. J. Chen, and H. Y. Huang. On service guarantees for input buffered crossbar switches: A capacity decomposition approach by Birkhoff and von Neumann. In Proc. of IEEE INFOCOM '00, Tel Aviv, Israel, 2000. 109
[81] E. Altman, Z. Liu, and R. Righter. Scheduling of an input queued switch to achieve maximal throughput. Probability in the Engineering and Informational Sciences, 14:327-334, 2000. 109
[82] G. Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucum an Rev. Ser. A, 5:147-151, 1946. 109
[83] J. von Neumann. A certain zero-sum two-person game equivalent to the optimal assignment problem: Contributions to the Theory of Games, volume 2. Princeton University Press, 1953. 109
[84] T. Inukai. An efficient SS/TDMA time slot assignment algorithm. IEEE Transactions on Communications, 27:1449-1455, 1979. 109
[85] J. E. Hopcroft and R. M. Karp. An $n^{2.5}$ algorithm for maximum matching in bipartite graphs. Soc. Ind. Appl. Math. J., 2:225-231, 1973. 109
[86] R. E. Tarjan. Data Structures and Network Algorithms. Bell laboratories, 1983. 109
[87] N. Mckeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achieving 100\% throughput in an input queued switch. IEEE Transactions on Communications, 47(8):1260-1267, August 1999. 109
[88] A. Mekkittikul and N. McKeown. A practical scheduling algorithm to achieve 100% throughput in input queued switches. In Proc. of IEEE INFOCOM '98, volume 2, pages 792-799, San Francisco, CA, April 1998. 109, 110
[89] T. Weller and B. Hajek. Scheduling nonuniform traffic in a packet switching system with small propagation delay. IEEE/ACM Transactions on Networking, $5(6): 813-823,1997.109$
[90] S. Iyer and N. McKeown. Maximum size matchings and input queued switches. In Proceedings of the 40 th Annual Allerton Conference on Communications, October 2002. 109
[91] C. S. Chang, D. S. Lee, and Y. Jou. Load balanced Birkhoff-von Neumann switches, part I: one-stage buffering. Computer Communications - special issue on Current Issues in Terabit Switching, 2001. 110, 166
[92] C. S. Chang, D. S. Lee, and C. Lien. Load balanced Birkhoff-von Neumann switches, part II: multi-stage buffering. Computer Communications - special issue on Current Issues in Terabit Switching, 2001. 110, 166
[93] I. Keslassy and N. McKeown. Analysis of scheduling algorithms that provide 100% throughput in input queued switches. In Proceedings of the 39th Annual Allerton Conference on Communications, 2001. 110
[94] L. Tassiulas. Linear complexity algorithms for maximum throughput in radio networks and input queued switches. In Proc. of IEEE INFOCOM '98, pages 533-539, New York, NY, 1998. 110
[95] P. Giaccone, B. Prabhakar, and D. Shah. Towards simple, high performance schedulers for high-aggregate bandwidth switches. In Proc. of IEEE INFOCOM '02, New York, NY, 2002. 110
[96] I. Stoica and H. Zhang. Exact emulation of an output queueing switch by a combined input output queueing switch. In Proc. of IEEE IWQoS'98, 1998. 112
[97] http://www.cs.berkeley.edu/~istoica/IWQoS98-fix.html. 112
[98] A. Firoozshahian, A. Manshadi, A. Goel, and B. Prabhakar. Efficient, fully local algorithms for CIOQ switches. In Proc. of IEEE INFOCOM '07, pages 2491-2495, Anchorage, AK, May 2007. 112
[99] Rojas-Cessa, E. Oki, Z. Jing, and H. J. Chao. CIXB-1: Combined input-one-cellcrosspoint buffered switch. In IEEE Workshop on High Performance Switching and Routing, 2001. 118
[100] Rojas-Cessa, E. Oki, Z. Jing, and H. J. Chao. CIXOB-k: Combined input-crosspoint-output buffered packet switch. In IEEE Globecom, pages 2654-2660, 2001. 118
[101] L. Mhamdi and M. Hamdi. MCBF: A high-performance scheduling algorithm for buffered crossbar switches. IEEE Communications Letters, 7(9):451-453, September 2003. 118
[102] K. Yoshigoe and K. J. Christensen. Design and evaluation of a parallel-polled virtual output queued switch. In Proceedings of the IEEE International Conference on Communications, pages 112-116, 2001. 118
[103] D. Stephens and H. Zhang. Implementing distributed packet fair queueing in a scalable switch architecture. In Proc. of INFOCOM '98, pages 282-290, 1998. 118
[104] N. Chrysos and M. Katevenis. Weighted fairness in buffered crossbar scheduling. In IEEE Workshop on High Performance Switching and Routing, 2003. 118
[105] T. Javidi, R. B. Magill, and T. Hrabik. A high throughput scheduling algorithm for a buffered crossbar switch fabric. In Proceedings of IEEE International Conference on Communications, pages 1586-1591, 2001. 120
[106] R. B. Magill, C. Rohrs, and R. Stevenson. Output queued switch emulation by fabrics with limited memory. IEEE Journal on Selected Areas in Communications, 21(4):606-615, May 2003. 120, 126, 134
[107] N. McKeown, C. Calamvokis, and S. Chuang. A $2.5 \mathrm{~Tb} / \mathrm{s}$ LCS switch core. In Hot Chips '01, August 2001. 122
[108] Shang-Tse Chuang. Providing Performance Guarantees in Crossbar-based routers. Ph.D. Thesis Report, Stanford University, January 2005. 123
[109] Cisco Systems Inc. Personal communication, Catalyst 4K Group, GSBU. 133, 251, 253
[110] C. Clos. A study of non-blocking switching networks. The Bell System Technical Journal, 32:406-424, 1953. 143, 169, 304
[111] Nevis Networks Inc. http://www.nevisnetworks.com/. 145, 170
[112] Juniper E Series Router. http://www.juniper.net/products_and_ services/m_series_routing_portfolio/. 145,170
[113] S. Iyer. Analysis of a packet switch with memories running slower than the line rate. M.S. Thesis Report, Stanford University, May 2000. 152
[114] V. E. Benes. Mathematical theory of connecting network and telephone traffic. Academic Press, New York, 1965. 153
[115] J. Hui. Switching and traffic theory for integrated broadband network. Kluwer Academic Publications, Boston, 1990. 153
[116] A. Jajszczyk. Nonblocking, repackable, and rearrangeable Clos networks: fifty years of the theory evolution. IEEE Communications Magazine, 41:28-33, 2003. 154
[117] H. Adiseshu, G. Parulkar, and George Varghese. A reliable and scalable striping protocol. In Proc. ACM SIGCOMM '96, 1996. 168
[118] P. Fredette. The past, present, and future of inverse multiplexing. IEEE Communications, pages 42-46, April 1994. 169
[119] J. Duncanson. Inverse multiplexing. IEEE Communications, pages 34-41, April 1994. 169
[120] J. Frimmel. Inverse multiplexing: Tailor made for ATM. Telephony, pages 28-34, July 1996. 169
[121] J. Turner. Design of a broadcast packet switching network. IEEE Trans. on Communications, pages 734-743, June 1988. 169
[122] H. Kim and A. Leon-Garcia. A self-routing multistage switching network for broadband ISDN. IEEE J. Sel. Areas in Communications, pages 459-466, April 1990. 169
[123] I. Widjaja and A. Leon-Garcia. The helical switch: A multipath ATM switch which preserves cell sequence. IEEE Trans. on Communications, 42(8):26182629, August 1994. 169
[124] F. Chiussi, D. Khotimsky, and S. Krishnan. Generalized inverse multiplexing of switched ATM connections. In Proc. IEEE Globecom '98 Conference. The Bridge to Global Integration, Sydney, Australia, 1998. 169
[125] F. Chiussi, D. Khotimsky, and S. Krishnan. Advanced frame recovery in switched connection inverse multiplexing for ATM. In Proc. ICATM '99 Conference, Colmar, France, 1999. 169
[126] Bandwidth ON Demand INteroperability Group. Interoperability requirements for $\mathrm{nx} 56 / 64 \mathrm{kbit} / \mathrm{s}$ calls, 1995 . ISO/IEC 13871. 169
[127] D. Hay and H. Attiya. The inherent queuing delay of parallel packet switches. IEEE Transactions on Parallel and Distributed Systems, 17(8), August 2006. 169
[128] H. Attiya and D. Hay. Randomization does not reduce the average delay in parallel packet switches. SIAM Journal on Computing, 37(5):1613-1636, January 2008. 169, 339
[129] S. Mneimneh, V. Sharma, and Kai-Yeung Siu. Switching using parallel in-put-output queued switches with no speedup. IEEE/ACM Transactions on Networking, 10(5):653-665, 2002. 169
[130] S. Iyer. Personal consultation with Nevis Networks Inc., 2003. 170
[131] Cisco Systems Inc. Personal communication, Low Latency Ethernet Product Group. 170, 206
[132] FocalPoint in Large-Scale Clos Switches. www.fulcrummicro.com/product._ library/applications/clos.pdf. 170
[133] http://www.cisco.com/. 174
[134] M. Sanchez, E. Biersack, and W. Dabbous. Survey and taxonomy of IP address lookup algorithms. IEEE Network, 15(2):8-23, 2001. 180, 223, 261, 282
[135] Juniper E Series Router. http://juniper.net/products/eseries. 181
[136] Force 10 E-Series Switch. http://www.force10networks.com/products/ pdf/prodoverview.pdf. 181
[137] Foundry BigIron RX-series Ethernet switches. http://www.foundrynet.com/ about/newsevents/releases/\pr5_03_05b.html. 181
[138] P. Chen and David A. Patterson. Maximizing performance in a striped disk array. In ISCA, pages $322-331,1990.188,213$
[139] B. R. Rau, M. S. Schlansker, and D. W. L. Yen. The Cydra 5 stride-insensitive memory system. In In Proc. Int Conf. on Parallel Processing, pages 242-246, 1989. 188, 213
[140] S. Kumar, P. Crowley, and J. Turner. Design of randomized multichannel packet storage for high performance routers. In Proceedings of Hot Interconnects, August 2005. 188, 213
[141] Distributed Denial-of-Service (DDoS) Attack. http://en.wikipedia.org/ wiki/Denial-of-service_attack\#Incidents. 200
[142] K. Houle and G. Weaver. Trends in Denial of Service Attack Technology. http://www.cert.org/archive/pdf/Dos_trends.pdf, 2001. 200
[143] M. Handley and E. Rescorla. RFC 4732: Internet denial-of-service considerations. http://tools.ietf.org/html/rfc4732, 2006. 200
[144] http://www.spirentcom.com. 200
[145] http://www.agilent.com. 200
[146] R. Bhagwan and B. Lin. Fast and scalable priority queue architecture for high-speed network switches. In Proc. of IEEE INFOCOM '00, 2000. 211
[147] Y. Joo and N. McKeown. Doubling memory bandwidth for network buffers. In Proc. IEEE INFOCOM '98, pages 808-815, San Francisco, CA, 1998. 211, 213
[148] J. Corbal, R. Espasa, and M. Valero. Command vector memory systems: High performance at low cost. In Proceedings of the 1998 International Conference on Parallel Architectures and Compilation Techniques, pages 68-77, October 1998. 213
[149] B. K. Mathew, S. A. McKee, J. B. Carter, and A. Davis. Design of a parallel vector access unit for SDRAM memory systems. In Proceedings of the Sixth International Symposium on High-Performance Computer Architecture, January 2000. 213
[150] S. A. McKee and W. A. Wulf. Access ordering and memory-conscious cache utilization. In Proceedings of the First International Symposium on HighPerformance Computer Architecture, pages 253-262, January 1995. 213
[151] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory access scheduling. In Proceedings of the 27th Annual International Symposium on Computer Architecture, pages 128-138, June 2000. 213
[152] T. Alexander and G. Kedem. Distributed prefetch-buffer/cache design for high performance memory systems. In Proceedings of the 2nd International Symposium on High-Performance Computer Architecture, pages 254-263, February 1996. 213
[153] W. Lin, S. Reinhardt, and D. Burger. Reducing DRAM latencies with an integrated memory hierarchy design. In Proc. 7th Int symposium on HighPerformance Computer Architecture, January 2001. 213
[154] S. I. Hong, S. A. McKee, M. H. Salinas, R. H. Klenke, J. H. Aylor, and W. A. Wulf. Access order and effective bandwidth for streams on a direct rambus memory. In Proceedings of the Fifth International Symposium on High- Performance Computer Architecture, pages 80-89, January 1999. 213
[155] D. Patterson and J. Hennessy. Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers, San Francisco, CA, 2nd edition, 1996. 213, 305
[156] L. Carter and W. Wegman. Universal hash functions. J. of Computer and System Sciences, 18:143-154, 1979. 213
[157] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proc. of the Thirtieth Annual Symposium on the Foundations of IEEE, 1989. 213
[158] G. Shrimali and N. McKeown. Building packet buffers with interleaved memories. Proceedings of IEEE Workship on High Performance Switching and Routing, pages 1-5, May 2005. 213
[159] A. Birman, H. R. Gail, S. L. Hantler, and Z. Rosberg. An optimal service policy for buffer systems. Journal of the Association for Computing Machinery, 42(3):641-657, May 1995. 214
[160] H. Gail, G. Grover, R. Guerin, S. Hantler, Z. Rosberg, and M. Sidi. Buffer size requirements under longest queue first. In Proceedings IFIP '92, volume C-5, pages 413-424, 1992. 214
[161] G. Sasaki. Input buffer requirements for round robin polling systems. In Proceedings of 27th Annual Conference on Communication Control and Computing, pages 397-406, 1989. 214
[162] I. Cidon, I. Gopal, G. Grover, and M. Sidi. Real-time packet switching: A performance analysis. IEEE Journal on Selected Areas in Communications, SAC-6:1576-1586, December 1988. 214
[163] A. Birman, P. C. Chang, J. Chen, and R. Guerin. Buffer sizing in an ISDN frame relay switch. Technical Report RC14286, IBM Research Report, Aug 1989. 214
[164] S. Iyer, R. R. Kompella, and N. McKeown. Analysis of a memory architecture for fast packet buffers. In Proc. IEEE HPSR, Dallas, TX, 2001. 214
[165] S. Iyer, R. R. Kompella, and N. McKeown. Techniques for fast packet buffers. In Proceedings. of GBN 2001, Anchorage, AK, April 2001. 214
[166] S. Iyer, R. R. Kompella, and N. McKeown. Designing packet buffers for router line cards. IEEE Transactions on Networking, 16(3):705-717, June 2008. 214, 348
[167] S. Iyer, R. R. Kompella, and N. McKeown. Designing packet buffers for router line cards. Technical Report TR02-HPNG-031001, Computer Science Department, Stanford University, March 2002. 214
[168] A. Bar-Noy, A. Freund, S. Landa, and J. Naor. Competitive on-line switching policies. Algorithmica, 36:225-247, 2003. 214, 215
[169] R. Fleischer and H. Koga. Balanced scheduling toward loss-free packet queueing and delay fairness. Algorithmica, 38:363-376, 2004. 214, 215
[170] P. Damaschek and Z. Zhou. On queuing lengths in on-line switching. Theoretical Computer Science, 339:333-343, 2005. 214, 215
[171] J. Garcia, J. Corbal, L. Cerda, and M. Valero. Design and implementation of high-performance memory systems for future packet buffers. Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, pages 372-384, 2003. 215
[172] G. Shrimali, I. Keslassy, and N. McKeown. Designing packet buffers with statistical guarantees. In HOTI '04: Proceedings of the High Performance Interconnects, pages 54-60. IEEE Computer Society, 2004. 215
[173] M. Arpaci and J. Copeland. Buffer management for shared-memory ATM switches. IEEE Comm. Surveys and Tutorials, 3(1):2-10, 2000. 215, 261
[174] M. L. Irland. Buffer management in a packet switch. IEEE Trans. Communication, COM-26(3):328-337, March 1978. 215, 261
[175] Cisco Systems Inc. http://www.cisco.com/en/US/products/hw/ switches/ps708/Aproducts_data_sheet0900aecd801459a7.htm. 216
[176] Cisco Systems Inc. Cisco nexus 5000 series switch. http://www.cisco.com/ en/US/products/ps9670/index.html. 216, 253
[177] Cisco Systems Inc. Cisco nexus 7000 series switch. http://www.cisco.com/ en/US/products/ps4902/index.htmi. 216, 253
[178] Cisco Systems Inc. Data Center Ethernet. http://www.cisco.com/en/US/ netsol/ns783/networking_solutions_package.html. 216, 253
[179] Cisco Systems Inc. Personal communication, Mid Range Routers Business Unit. 216
[180] Cisco Systems Inc. Personal communication, Core Router Project. 216
[181] Cisco Systems Inc. Personal communication, DC3 VOQ Buffering ASIC Group. 216, 305
[182] Cisco Systems Inc. Personal communication, DC3 Storage ASIC Group. 216, 305
[183] Pablo Molinero. Circuit Switching in the Internet. Ph.D. Thesis Report, Stanford University, June 2003. 222
[184] P. Gupta and N. McKeown. Algorithms for packet classification. IEEE Network, 15(2):24-32, 2001. 223, 261, 282
[185] S. Fide and S. Jenks. A survey of string matching approaches in hardware. http://spds.ece.uci.edu/~sfide/String_Matching.pdf. 223
[186] R. Geurin and V. Peris. Quality-of-Service in packet networks: Basic mechanisms and directions. Computer Networks, 31(3):169-189, February 1999. 224, 261
[187] S. Iyer and Da Chuang. Designing packet schedulers for router line cards. In preparation for IEEE INFOCOM '09. 228
[188] http://en.wikipedia.org/wiki/Ereenet. 248
[189] J. Oikarinen and D. Reed. RFC 1459: Internet relay chat protocol. http: //tools.ietf.org/html/rfci459, 1993. 248
[190] J. Rosenburg and H. Schulzrinne. RFC 2871: A framework for telephony routing over IP. http://tools.ietf.org/html/rfc2871, 2000. 248
[191] http://en.wikipedia.org/wiki/Multiplayer. 248
[192] http://en.wikipedia.org/wiki/Doom_(video_game). 248
[193] Cisco Systems Inc. Personal communication, DC3 and Catalyst 6K Group, ISBU, DCBU. 251
[194] D. Newman. RFC 2647: Benchmarking terminology for firewall performance. http://tools.ietf.org/html/rfc2647, 1999. 259, 280
[195] S. Waldbusser. RFC 2819: Remote network monitoring management information base. http://tools.ietf.org/html/rfc2819, 2000. 259
[196] Cisco Systems Inc. http://www.cisco.com/warp/public/732/Tech/ netflow. 259, 262
[197] Juniper Networks. www.juniper.net/techcenter/appnote/350003.html. 259, 262
[198] Huawei Inc. Technical Whitepaper for Netstream. http://www. huawei.com/ products/datacomn/pdf/view.do?f=65. 259
[199] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. RFC 3272: Overview and principles of Internet traffic engineering. http://tools.ietf.org/html/ rfc $3272,2002.259$
[200] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown. Analysis of a statistics counter architecture. IEEE Hot Interconnects 9, August 2001. 261
[201] C. Estan and G. Varghese. New directions in traffic measurement and accounting. In Proc. ACM SIGCOMM '01, pages 75-80, 2001. 261
[202] Cisco Systems Inc. Personal communication, Ethernet Address and Route Lookup Group, DC3. 274, 275, 276, 305
[203] S. Ramabhadran and G. Varghese. Efficient implementation of a statistics counter architecture. In Proc. ACM SIGMETRICS, pages 261-271, 2003. 275, 305
[204] Q. G. Zhao, J. J. Xu, and Z. Liu. Design of a novel statistics counter architecture with optimal space and time efficiency. In Proc. SIGMetrics/Performance, pages 261-271, 2006. 275, 293, 305
[205] Y. Lu, A. Montanari, B. Prabkahar, S. Dharmapurikar, and A. Kabbani. Counter Braids: A novel counter architecture for per flow measurment. In Proc. ACM Sigmetrics, 2008. 275, 305
[206] P. Gupta and D. Shah. Personal communication. 275
[207] S. Iyer and N. McKeown. High speed packet-buffering system. Patent Application No. 20060031565, 2006. 275,395
[208] K. Egevang and P. Francis. RFC 1631: The IP network address translator (NAT). http://tools.ietf.org/html/rfci631, 1994. 280, 282
[209] http://www.cisco.com/en/US/docs/ios/12_4t/qos/configuration/ guide/qsnbar1.html. 280
[210] S. Iyer. Maintaining state for router line cards. In preparation for IEEE Communication Letters. 284
[211] Y. Joo and N. McKeown. Doubling memory bandwidths for network buffers. In Proc. IEEE INFOCOM '98, pages 808-815, 1998. 288
[212] http://en.wikipedia.org/wiki/Double_buffering. 288
[213] Cisco Systems Inc. Personal communication, ISBU and DCBU ASIC Engineering Groups. 293
[214] Cisco Systems Inc., Network Memory Group. Skimmer Serial Network Memory Protocol. 305
[215] http://en.wikipedia.org/wiki/ACID. 305
[216] H.J. Kushner. Stochastic Stability and Control. Academic Press, 1967. 326
[217] G. Fayolle. On random walks arising in queuing systems: ergodicity and transience via quadratic forms as Lyapunov functions - Part I. Queueing Systems, 5:167-184, 1989. 326
[218] E. Leonardi, M. Mellia, F. Neri, and M.A. Marsan. On the stability of input queued switches with speed-up. IEEE Transactions on Networking, 9(1):104-118, 2001. 326
[219] R. L. Cruz. A Calculus for Network Delay: Part I. IEEE Transactions on Information Theory, 37:114-131, January 1991. 337
[220] Personal communication with David Hay. 339
[221] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan. RFC 3376: Internet group management protocol, v3. http://tools.ietf.org/html/ rfc $3376,2002.358$
[222] Z. Albanna, K. Almeroth, D. Meyer, and M. Schipper. RFC 3171: IANA guidelines for IPv4 multicast address assignments. http://tools.ietf.org/ html/rfe3171, 2001. 358
[223] R. Hinden and S. Deering. RFC 2375: IPv6 multicast address assignments. http://tools.ietf.org/html/rfc2375, 1998. 358
[224] D. Thaler. RFC 2715: Interoperability rules for multicast routing protocols. http://tools.ietf.org/html/rfc2715, 1999. 358
[225] S. Deering. RFC 1112: Host extensions for IP multicasting. http://tools. ietf.org/html/rfcil12, 1998. 358
[226] Cisco Systems Inc. Personal communication, DC3 100G MAC ASIC Group. 358
[227] Gua, Ming-Huang, and R.S. Chang. Multicast ATM switches: survey and performance evaluation. Computer Communication Review, 28(2), 1998. 360
[228] J. Turner and N. Yamanaka. Architectural choices in large scale ATM switches. IEICE Trans. Communications, E81-B(2):120-137, February 1998. 360
[229] N. F. Mir. A survey of data multicast techniques, architectures, and algorithms. IEEE Communications Magazine, 39:164-170, 2001. 360
[230] S. Iyer and N. McKeown. On the speedup required for a multicast parallel packet switch. IEEE Comm. Letters, 2001. 363, 364
[231] Cisco Systems Inc. Personal communication, DCBU. 367, 368
[232] S. Iyer and N. McKeown. High speed memory control and I/O processor system. Patent Application No. 20050240745, 2005. 395

End Notes

Preamble

[Preface] A riff on, "So long and thanks for all the fish!", from Douglas Adams book, "The Hitchhiker's Guide to the Galaxy".

Part I

[Thesis] All the techniques presented in this thesis (with the exception of the work done in Section 8.6) and Section 10.3 are open source, and are available for use to the networking community at large.

Chapter 4

[Extended Constraint Set Technique] (page 89) The work on the extended constraint set technique for CIOQ routers was chronologically done before the application of the basic constraint set technique.

Chapter 5

[Buffered Crossbars] (page 126) This work was done jointly with Da Chuang.

Chapter 6

[Parallel Packet Switches] (page 138) The pigeonhole principle for routers was chronologically first applied to the Parallel Packet Switch (PPS). However the chapter on the PPS is presented after the analysis of the PSM, DSM and PDSM routers, since the latter routers are architecturally simpler monolithic routers.

Part II

[Thesis] The approaches described in Part II, were originally conceived at Stanford University to demonstrate that specialized memories are not needed for Ethernet switches and routers. The ideas were further developed and made implementable [232, 207] by Nemo Systems, Inc. as one of a number of network memory technologies for Ethernet switches and Internet routers. Nemo Systems is now part of Cisco Systems.

Chapter 8

[Packet Scheduling] (page 221) The techniques described in Section 8.6 were conceived when the author was at Nemo Systems and later refined with Da Chuang in the

Network Memory Group, Data Center Business Unit, Cisco Systems. We would like to thank Cisco Systems for permission to publish this technique.

Chapter 9

[Statistics Counters] (page 259) This work was done independently, and later jointly with Devavrat Shah.

Chapter 10

[State Maintenance] (page 280) The techniques described in Section 10.3 were conceived when the author was at Nemo Systems, which is currently part of Cisco Systems. We would like to thank Cisco Systems for permission to publish this technique.

Chapter C

[Request Matrix] (page 320) The work done in Section C. 1 was done by Rui Zhang in collaboration.

List of Common Symbols and Abbreviations

Only the symbols and abbreviations which are used commonly throughout this thesis are defined here. A more detailed list of symbols and abbreviations are defined separately at the beginning of each chapter.

Δ	Maximum Vertex Degree of a Bi-partite Graph
B	Leaky Bucket Size
b	Memory Block Size
c, C	Cell, Number of Copies
$D T$	Departure Time
E	Number of State Entries
k	Number of memories, PPS layers
L	Latency between Scheduler Request and Buffer Response
M	Total Number of Memories
m	Multicast Fanout
N	Number of Ports of a Router, Counters
Q	Number of Queues
q	Number of Multicast Copies
R	Line Rate
$R T T$	Round Trip Time
S	Speedup
T	Time Slot
$T R C$	Random Cycle Time of Memory
x	Pipeline Look-ahead
ASIC	Application Specific Integrated Circuit
ATM	Asynchronous Transfer Mode

CAM	Content Addressable Memory
CIOQ	Combined Input Output Queued
CMA	Counter Management Algorithm
CMOS	Complementary Metal-Oxide-Semiconductor
CPA	Centralized Parallel Packet Switch Algorithm
CSM	Centralized Shared Memory Router
DDoS	Distributed Denial of Service
DDR	Double Data Rate
DPA	Distributed Parallel Packet Switch Algorithm
DRAM	Dynamic Random Access Memory
DRR	Deficit Round Robin
DSM	Distributed Shared Memory Router
DWDM	Dense Wavelength Division Multiplexing
ECC	Error Correcting Codes
ECQF	Earliest Criticial Queue First
eDRAM	Embedded Dynamic Random Access Memory
FCFS	First Come First Serve (same as FIFO)
FCRAM	Fast Cycle Random Access Memory
FIFO	First In First Out Queue
GPS	Generalized Processor Sharing
HoL	Head of Line
IP	Internet Protocol
IQ	Input Queued Router
ISP	Internet Service Provider
LAN	Local Area Network
LCF	Longest Counter First

MAC	Media Access Controller
MDQF	Most Deficited Queue First
MDQFP	Most Deficited Queue First with Pipelining
MMA	Memory Management Algorithm
MWM	Maximum Weight Matching
NAT	Network Address Translation
OQ	Output Queued Router
PDSM	Parallel Distributed Shared Memory Router
PIFO	Push In First Out Queue
PIRO	Push In Random Out Queue
PPS	Parallel Packet Switch
PSM	Parallel Shared Memory Router
QDR	Quad Data Rate
QoS	Quality of Service
RAID	Redundant Array of Independent Disks
RDRAM	Rambus Dynamic Random Access Memory
RLDRAM	Reduced Latency Random Access Memory
SB	Single-buffered Router
SDRAM	Synchronous Dynamic Random Access Memory
SOHO	Small Office Home Office
SRAM	Static Random Access Memory
SVOQ	Super Virtual Output Queue
TCP	Transmission Control Protocol
TLB	Translation Lookaside Buffer
VoIP	Voice over Internet Protocol
VOQ	Virtual Output Queue

W^{2} FQ Worst-Case Weighted Fair Queueing
WAN Wide Area Network
WFA Weighted Fair Arbiter
WFQ Weighted Fair Queueing

Index

Numbers corresponding to an entry refer to the page numbers where the particular entry is defined. Only the salient entries for a particular item are listed.
Symbols CMA 26465-byteproblemsolution200, 206, 212, 305206
A
admissible 91, 318
IID 318
adversary 200
adversary obfuscation 293, 305
algorithm
caching 28
load balancing 17, 28
randomized 131
time reservation 93
arbitration see scheduling
ASIC3
ATM5
B
batch scheduling 110
buffer 5, 177
packet 177
buffered crossbar $25,120,323,332$
bufferingdouble288
localized 25, 85
C
cache 18
benefits 206
buffered crossbar 25, 120
buffered pps 25, 159
L1 305
L2 305
memory 17
packet buffer 26, 184
packet buffer pipelined 26, 198
scheduler 26, 232, 238
piggyback 240
statistics counter 26, 263
CAM22
CIOQ $10,39,89,120$CMOS6
combined input-output queued 10
constraint set 17, 38
extended 44, 111
cost
savings
memory 206
countercount266
empty 266
CPA 151
critical queue 201
crosspoint 120
DDoS 200
DDR 8
deficit 192
maximum total 194, 201
real 203
total 194
demultiplexor 144, 154
departure time $13,14,149$
difference equation 19, 349
Diophantine 294
even 294
distributed shared memory 24
domination 356
double buffering 288
DPA 166
DRR 14, 224
DSM 24,44
DWDM 140
ECQF 208
emulate 19
Ethernet 5
FIFO 15
frame scheduling 79, 109, 368
G
generalized ping-pong 289 289
GPP-SMA 289
GPS 14, 224
graph 67
bipartite 67
request 68
H
HoL 90

I

inductionsimple105input queued 9
inter-processor communication 206
Internet service provider 282
IQ 9
ISP 282
L
LAN 86
LCF 265
Lyapunov function 19, 41, 270
M
MAC 216
marriage
arranged 108
forced 108
preferred 100, 108
stable 101, 106
matching
critical maximum size 110
maximal 110
maximum size 109
maximum weight 109
MDQF 192
MDQFP 199
memory
access pattern 26
access time 4, 314
bandwidth 4, 27, 313
capacity 5,313
commodity
26, 293
data structures
departure time 25
distributed 24, 64
distributed shared 24, 44
DRAM 6
eDRAM 25
FCRAM 8
latency 313
limited 24
localized 25, 89, 120
parallel distributed $25,44,74$
RDRAM 8
RLDRAM 8
SDRAM 286
shared 24, 46
slow 25
SRAM 6
mimic 19
MMA 203
multicast 359
copy 360
fanout 361
multiplexor 144network
Batcher-banyan 11
Benes 11
Clos 11, 143
buffered 41
re-arrangeable 154
strictly non-blocking 153
Hypercube 11
O
OQ 6
output queued 6
P
parallel distributed shared memory 25, 44
parallel packet switch 25
parallel shared memory $24,44,46$
PDSM 25, 44, 74
permutation 89, 160
conflict-free 56
matrix 320
PIFO 14, 51
pigeonhole principle 37, 45
extending 103
ping-pong 288
generalized 289, 291
pipeline $26,188,198$
PIRO 102
policing $23,26,259,280$
power 21, 75
worst-case 206
PPS $25,44,146$
PSM 24, 44, 46
Q
QDR-SRAM 206, 232, 274, 286
QoS 14
queue
FIFO 15
PIFO 14, 51
PIRO 102
strict priority 14, 224
super 131
virtual output $10,109,131$
Rrouter
buffered crossbar $25,120,323,332$
buffered pps 25,159
centralized shared memory 4
combined input-output queued $10,39,89$
buffered 120
crossbar 89
distributed shared 64
bus-based 64
crossbar-based 64
distributed shared memory 24, 44
DSM 64
input queued 9
output queued 6
parallel distributed shared 74
crossbar-based 74
parallel distributed shared memory 25,44
parallel packet switch $25,44,146$
parallel shared memory 24, 44, 46
single-buffered 23
deterministic 40
randomized 40
SOHO 86
RTT 5, 177SB23,40
223scheduler
scheduling
batch 110
frame 368
serdes 206
shaping $13,23,259$
single-buffered 23,40
SOHO 86
speedup 11
crossbar 89
link 148,359
state management 26, 289
T
TCP 5,178
test
bake-off 200
throughput
$100 \% 10,41,88,109,120,131,319,323$
time slot 4, 148, 185, 234, 265, 364
internal 148
traffic
admissible 91, 318
concentration 147
leaky bucket constrained 13
single leaky bucket constrained 91
VVOQ10, 109, 131
W
WAN 86
WDM 140
$W^{2}{ }^{2} \mathrm{Q}$ 14, 224
work-conserving $13,111,126,154$

[^0]: ${ }^{1}$ Mathematical and Computer Sciences Library, Stanford University. See Chapter 4 for its application to networking.
 ${ }^{2 " . . . I f ~ t h e ~ w o r k ~ i s ~ i n t e r e s t i n g, ~ t h e y ~ c a n ~ a l w a y s ~ r e a d ~ y o u r ~ p a p e r s " . ~}$

[^1]: ${ }^{3}$ In comparison, a standard pepper spray (shame on you!) may register just over 2 million units - mighty hot, yet quickly neutralized in flowing water.

[^2]: ${ }^{\dagger}$ Friedrich Nietzsche (1844-1900), German Philosopher.
 ${ }^{1}$ Sanskrit: "student".

[^3]: ${ }^{2}$ Although packets arriving to the router may have variable length, for the purposes of this thesis we will assume that they are segmented and processed internally as fixed-length "cells" of size C. This is common practice in high-performance routers - variable-length packets are segmented into cells as they arrive, carried across the router as cells, and reassembled back into packets before they depart.

[^4]: ${ }^{3}$ In later chapters we will re-define this term as necessary so as to normalize time for the router architecture under consideration.

[^5]: ${ }^{4}$ This is referred to in the memory industry as the random cycle time, $T_{R C}$.
 ${ }^{5}$ The memory bandwidth is the ratio of the width of the memory access and the random access time. For example, a 32 -bit-wide memory with 50 ns random access time has a memory bandwidth of $640 \mathrm{Mb} / \mathrm{s}$.
 ${ }^{6}$ The word router in this thesis also refers to Ethernet, ATM, and Frame Relay "switches". We use these words interchangeably.
 ${ }^{7}$ In reality there is a fifth requirement. Many high-speed routers have product cycles that last five or more years, so router vendors require that the supply of these memories is assured for long periods.

[^6]: ${ }^{8}$ As noted above, this does not preclude the existence of higher-speed and/or larger-capacity SRAMs, which are not as yet commodity parts.
 ${ }^{9}$ The access rate of a memory is the inverse of the access time, and is the number of times that a memory can be uniquely accessed in a time slot.

[^7]: ${ }^{10}$ For simplicity, we will use the terms line card and port interchangeably, and assume that a line card terminates exactly one port. In reality, a line card can receive traffic from many ports.

[^8]: ${ }^{11}$ The random access time should not be confused with memory latency, which is the time taken to receive data back after it has been issued by the requester.
 ${ }^{12}$ For this reason, the third-generation parts are planned to have a 20 ns access time, just like the second generation.
 ${ }^{13}$ At the time of writing, there is only one publicly announced source for future RLDRAM devices, and no manufacturers for future FCRAMs.

[^9]: ${ }^{14}$ We define the capacity of a router to be the sum of the maximum data rates of its line cards, NR. For example, we will say that a router with 16 OC192c line cards has a capacity of approximately $160 \mathrm{~Gb} / \mathrm{s}$.

[^10]: ${ }^{15}$ For a formal definition, see Appendix B.
 ${ }^{16} \mathrm{We}$ define this formally later and refer to it as emulate.

[^11]: ${ }^{17}$ This refers to a "speedup" between one and two. We will avoid the use of the metric commonly called "speedup" in our discussion of memory. The term speedup is used differently by different authors; there is no accepted standard definition. Instead, we will compare different router memory subsystems based on their memory access rate and memory bandwidth. We will, however, define "speedup" and use it as appropriate for other operations related to memory, e.g., when we refer to the speed at which switching interconnects operate, updates are done, or copies are made.

[^12]: ${ }^{18}$ The $\Theta(\cdot)$ notation is used to denote an asymptotically tight bound in the analysis of algorithms. In the context of this thesis it denotes that the actual value is within a constant multiple of the value given.

[^13]: ${ }^{19}$ Strictly speaking, this is only true if all packets have the same size. When packets have different sizes, a router could re-order packets based on increasing size and service the smallest packets first to minimize average delay. This is unimportant because the order of departure of packets cannot be arbitrarily changed by a router.
 ${ }^{20}$ The departure time for an arriving cell for an FCFS queuing service policy can be easily calculated. It is the first time that the server (output) is free and able to send the newly arriving cell.

[^14]: ${ }^{21}$ This is defined in Section 4.3.1.
 ${ }^{22}$ Also referred to in literature as finishing time.
 ${ }^{23}$ Note that some QoS scheduling algorithms such as $\mathrm{WF}^{2} \mathrm{Q}$ [21] do not use PIFO queuing.

[^15]: ${ }^{24}$ These are standard techniques in use in the fields of distributed systems and computer architecture.

[^16]: ${ }^{25}$ We do not consider problems in the router control plane, which usually runs much slower than line rate and is involved with management, configuration, and maintenance of the router and network connectivity.

[^17]: ${ }^{26}$ It is not uncommon today to have memories with 32 to 64 banks.
 ${ }^{27}$ Compared to the main body of work in this thesis, our results on multicast require a large memory bandwidth and cache size. They are impractical to implement in the general case (unless certain tradeoffs are made) for providing deterministic performance guarantees. And so, these results are included in the Appendix.

[^18]: ${ }^{28 " A n}$ idea that spreads" - Richard Dawkins coined the term meme in 1976, in his popular book, The Selfish Gene.
 ${ }^{29}$ Caches hide memory latency (i.e., the time it takes to fetch data) of these beneficial serial interconnect technologies, enabling them to be used for networking.

[^19]: ${ }^{30}$ Based on Cisco's current proliferation in the networking industry.

[^20]: ${ }^{31}$ Their total memory bandwidth is given by $S N R$. See Table 2.1 for details.

[^21]: ${ }^{\dagger}$ David Waitzman, RFC 1149: Standard for the Transmission of IP Datagrams on Avian Carriers, 1st April 1990.

[^22]: ${ }^{1}$ Henceforth when mentioning the router type, we drop the reference to the table number since it is clear from the context.

[^23]: ${ }^{a}$ And so, the principle can't be applied to the interesting mathematical paradox known as Hotel Infinity [45], where new guests can always be accommodated in a hotel that is full.

[^24]: ${ }^{2}$ For example, a $160 \mathrm{~Gb} / \mathrm{s}$ shared memory router built from memories with a random access time of 50 ns requires the data bus to be at least 16,000 bits wide (50 minimum length packets).

[^25]: ${ }^{3}$ There are N arriving packets for which we need to make a decision in any time slot. So we shall denote N decision slots to comprise a time slot.

[^26]: ${ }^{\dagger}$ Leslie Lamport (1941 -), Computer Scientist.

[^27]: ${ }^{1}$ The Juniper router appears to be a Randomized SB router. In the DSM router, the address lookup (and hence the determination of the output port) is performed before the packet is buffered, whereas in [56] the address lookup is performed afterward, suggesting that the Juniper router does not use the outgoing port number, or departure order, when choosing which line card will buffer the packet.

[^28]: ${ }^{2}$ This constraint was missed in an earlier publication [59].

[^29]: ${ }^{\dagger}$ Harry Mairson, The Stable Marriage Problem, Brandeis Review, vol 12(1), '92.

[^30]: ${ }^{1}$ In contrast, low-speed Ethernet switches and routers, e.g., wireless access points, small office home office (SOHO) routers, etc., are sold in fixed-function units (colloquially referred to as "pizza-boxes") which are not built for easy upgrades.

[^31]: ${ }^{2} \mathrm{~A}$ chronological order of the related work is described in Section 4.10 .

[^32]: ${ }^{a}$ In a maximal matching, by definition, if there is a packet waiting at input i destined to output j, then either input i or output j is part of the matching.

[^33]: ${ }^{3}$ Refer to Appendix B for an exact definition.

[^34]: ${ }^{4}$ This is defined in section 2.3 in [65].
 ${ }^{5}$ Charny uses a dual leaky bucket traffic model. The result in [65] has been restated here for the single leaky bucket model to facilitate comparison between Theorem 4.2 and 4.1.
 ${ }^{6}$ A similar analysis was used in [22].

[^35]: ${ }^{7}$ We do not consider cells that have an FCFS-OQ departure time in the interval ($D T+1, D T+k$), since the output policy is FCFS and these cells will be considered only after cell c is allocated a time $t_{f} \in(D T+1, D T+k)$ for it to be transferred from input to output in the CIOQ router.

[^36]: ${ }^{8}$ In what follows, we will see that we can eliminate this assumption too.

[^37]: ${ }^{9}$ The authors do this via the use of a variable called slackness.

[^38]: ${ }^{10}$ Since a cell can leave from an arbitrary location in a priority queue, it has been referred to as a push in random out (PIRO) queue in literature [13].

[^39]: ${ }^{11}$ Note that there are many insertion policies that satisfy Property 4.2 , since we only need to insert an arriving cell at any position where it has more opportunities than the number of contending cells.

[^40]: ${ }^{12}$ Refer to Appendix B for an exact definition.

[^41]: ${ }^{13}$ This is similar to the idea of frame scheduling described in Chapter 3.

[^42]: ${ }^{14}$ Note that the algorithms we proposed in [36] were first described for a parallel packet switch architecture, which is described in Section 6.7. But the results are immediately applicable to the CIOQ router.
 ${ }^{15}$ Note that when these algorithms have knowledge of the destination port of the incoming cell, they can emulate an FCFS-OQ router even under adversarial inputs.

[^43]: ${ }^{\dagger}$ The exact version of the quote differs in literature.

[^44]: ${ }^{1}$ Some detailed considerations regarding the implementation of buffered crossbars are described in [108].

[^45]: ${ }^{2}$ This implicitly assumes that the cell in the crosspoint buffer $B_{i j}$ has an earlier departure time than all cells in $V O Q_{i j}$. How this is ensured is explained in the later sections.
 ${ }^{3}$ Note that the number of opportunities for a cell is simply the number of cells in the output with an earlier departure time.

[^46]: ${ }^{4}$ This is in contrast to stable marriage algorithms, which try to resolve both the input and output contentions at once.

[^47]: ${ }^{5}$ In contrast, the analysis of FCFS and PIFO crossbar CIOQ routers in Theorem 4.3 was identical, because crosspoint blocking does not happen in unbuffered crossbars.

[^48]: ${ }^{\dagger}$ En route to Infocom 2000, at the Ben Gurion Airport in Tel Aviv, Israel.

[^49]: ${ }^{1}$ It would be desirable also to process packets in the optical domain, without conversion to electronic form; however, it is not economically feasible today to store packets optically, so for some time to come routers will continue to use electronic memories, which are much slower than current high-speed line rates.

[^50]: ${ }^{2}$ We used the terminology "switch" instead of router when we first analyzed this architecture in [35]. So we will continue to use this terminology and refer to this router as the parallel packet switch (PPS).

[^51]: ${ }^{3}$ There will, of course, be small staging buffers in the demultiplexors and multiplexors for rate conversion between an external link operating at rate R and internal links operating at rate R / k. Because these buffers are small (approximately k packets) we will ignore them in the rest of this chapter.

[^52]: ${ }^{4}$ Note that in a PPS, cells are sent over slower-speed internal links of rate $S R / k$, and so incur a larger (but constant) propagation delay relative to an OQ switch. So cells in a PPS can never leave at exactly the same time as an OQ switch. Thus a PPS cannot mimic (See Section 1.5.4) an OQ router; but as we will see, it can emulate an OQ router.

[^53]: Example 6.3. As an example, we can use a CIOQ router in the center stage. From Chapter 4, we know that an OQ switch can be emulated precisely by a CIOQ switch operating at a speedup of two. So we can replace each of

[^54]: ${ }^{5}$ A tighter bound, $S \geqslant k /\lceil k / 2\rceil$, can easily be derived, which is of theoretical interest for small k.

[^55]: ${ }^{6}$ FCFS is a special limiting case of PIFO. Newly arriving cells are pushed-in at the tail of an output queue, and there are no cells scheduled to depart after a newly arriving cell. Hence, $A O L(j, D T(n, i, j)+\lceil k / S\rceil-1)$ defined at time t, will include all the k layers, and so the constraint disappears, leaving us with just two of the three conditions above, as for FCFS-OQ in Section 6.5.
 ${ }^{7}$ Again, a tighter bound, $S \geqslant k /\lceil k / 3\rceil$, can easily be derived, which is of theoretical interest for small k .

[^56]: ${ }^{8}$ It is possible to create a traffic pattern that does not utilize up to 50% of the buffer memory for a given output port.

[^57]: ${ }^{9}$ It will be convenient for the FIFO length to include any cells in transmission.

[^58]: ${ }^{10}$ Our examples are from Cisco Systems [133].

[^59]: ${ }^{\dagger}$ Tom Edsall, CTO, SVP, DCBU, Cisco Systems, introducing caching techniques to new recruits.

[^60]: ${ }^{1}$ Over-subscription is fairly common within Enterprise and Branch Office networks to reduce cost, and take advantage of the fact that such networks are on average lightly utilized.

[^61]: ${ }^{2}$ Packet multicasting is discussed briefly in Appendix J and in the conclusion (Chapter 11).

[^62]: ${ }^{3}$ This can happen when a line card is connected to, say, 10 1-Gigabit Ethernet interfaces, four OC48 line interfaces, or a single POS-OC192 or 10GE line interface.
 ${ }^{4}$ Note that even DRAMs with fast I/O pins, such as DDR, DDRII, and Rambus DRAMS, have very similar access times. While the I/O pins are faster for transferring large blocks to and from a CPU cache, the access time to a random location is still approximately 50 ns . This is because, as described in Chapter 1, high-volume DRAMs are designed for the computer industry, which favors capacity over access time; the access time of a DRAM is determined by the physical dimensions of the array (and therefore line capacitance), which stays constant from generation to generation.

[^63]: ${ }^{5}$ For this reason, the third-generation parts are planned to have a 20 -ns access time, just like the second generation.
 ${ }^{6}$ At the time of writing, there is only one publicly announced source for future RLDRAM devices, and no manufacturers for future FCRAMs.

[^64]: ${ }^{7}$ To accomplish this, the architecture in Figure 7.3 has a direct-write path for packets from the writer, to be written directly into the head cache.

[^65]: ${ }^{8}$ When exactly $b-1$ bytes are read from a queue, we need an additional b bytes of space to be able to store the next b-byte block that has been pre-fetched for that queue. This needs no more than $b+(b-1)=2 b-1$ bytes.

[^66]: ${ }^{9}$ Note that the above is a weak inequality. However, we use the closed form loose bound later on to study the rate of decrease of the function $F(i)$ and hence the decrease in the size of the head cache.

[^67]: ${ }^{10}$ Clearly the depth of the pipeline (and therefore the delay from when a read request is issued until the data is returned) is dictated by the size of the lookahead buffer.

[^68]: ${ }^{11}$ In what follows, for ease of understanding, assume that $x>b$ is a multiple of b.

[^69]: ${ }^{12}$ The "SRAM size vs. pipeline delay" curve is not plotted when the pipeline delay is between 1000 and 10,000 time slots since the curve is almost flat in this interval.

[^70]: Example 7.6. Figure 7.6 shows an example of the ECQF algorithm for $Q=4$ and $b=3$. Figure 7.6(a) shows that the algorithm (at time $t=0$) determines that queues A, B will become critical at time $t=6$ and $t=8$, respectively. Since A goes critical sooner, it is refilled. Bytes from queues A, B, C are read from the head cache at times $t=0,1,2$. In Figure 7.6(b), B goes critical first and is refilled. Bytes from queues D, A, B leave the head cache at times $t=3,4,5$. The occupancy of the head cache at time $t=6$ is shown in Figure 7.6(c). Queue A is the earliest critical queue (again) and is refilled.

[^71]: ${ }^{13}$ This is sometimes referred to as bit striping.

[^72]: ${ }^{14}$ We have encountered designs where the arbiter is benign, reads in constant-size blocks, or requests packets in a fixed round robin (or weighted round robin) pattern, for which such optimizations can be made.

[^73]: ${ }^{15}$ Our example is from Cisco Systems [175].
 ${ }^{16}$ It is common in practice to write data in sizes of 64 bytes internally, as this is the first power of 2 above the sizes of ATM cells and minimum-length TCP segments (40 bytes).

[^74]: †A riff on the immortal line, "You like tomayto, I like tomahto", from the Ira and George Gershwin song "Let's Call the Whole Thing Off".

[^75]: ${ }^{1}$ The reader is referred to [183] for a detailed discussion and comparison of the two kinds of networks.

[^76]: ${ }^{2}$ The scheduler may also keep some overall statistics, e.g., the total occupancy of the queue, the total occupancy for a group of queues (which may be destined to the same output port), etc.

[^77]: ${ }^{3}$ In previous literature, the arbitration algorithms have also been referred to as "QoS scheduling" algorithms. In what follows, we deliberately distinguish the two terms: arbitration is used to specify and implement network policy, and scheduling is used to provide the memory management information needed to facilitate the actions of an arbiter.

[^78]: ${ }^{4}$ Packets smaller than 40 bytes are sometimes created within routers for control purposes. These are usually created for facilitating communication within the router itself. They are produced and consumed at a very low rate. We ignore such packets in the rest of this chapter.
 ${ }^{5}$ After encapsulating this information into various physical, link layer, and transport protocol formats to facilitate transfer of the packet over the network, this is approximately ~ 40 bytes.

[^79]: Example 8.3. As shown in Figure 8.2, the descriptor for packet $a 1$ stores the length of the packet and points to the memory address for packet $a 1$. Similarly, the descriptor for an arriving packet is written to the tail of the descriptor queue numbered two.

[^80]: ${ }^{6}$ This is also sufficient to encode the lengths of so-called super jumbo packets (64 Kb long) which some networks can support. Note that IPv6 also supports an option to create jumbograms whose length can be up to 4 GB long. If such packets become common, then the length field will need to be 4 bytes long.

[^81]: ${ }^{7}$ At the time of writing, 72 Mb QDR-SRAMs are available; however, their cost per Mb of capacity is higher than their 36 Mb counterparts

[^82]: ${ }^{8}$ Note that the buffer cache manages how these b-byte blocks are allocated and linked. The buffer cache does not need to maintain per-packet descriptors to store these packets; it only needs to maintain and link b-byte blocks. If these b-byte blocks are themselves allocated for a queue contiguously in large blocks of memory, i.e., "pages", then only these pages need to be linked. Since the number of pages is much smaller than the total number of cells or minimum-size packets, this is easy for the buffer cache to manage.

[^83]: ${ }^{a}$ The crux of the method can be captured in the mythical conversation between the scheduler and buffer (involving the arbiter) in Box 8.1.

[^84]: ${ }^{9}$ The length of a packet is usually part of a protocol header that is carried along with the packet payload. In case of protocols where the length of a packet is not available, the packet length can be encoded by, for example, preceding the packet data with length information at the time of buffering.
 ${ }^{10}$ Note that the packet length field can always be temporarily moved to the very front of the packet when it is buffered. The length field can be moved back to its correct location after it is read from the buffer, depending on the protocol to which the packet belongs.

[^85]: ${ }^{11}$ If queue N had additional data in the head cache, then by definition the scheduler has the length information for the additional data in head cache.

[^86]: ${ }^{12} L 3$ denotes the worst-case latency to fetch data from either external memory or tail cache. However, in practice it is always the latency to fetch data from external memory, because it usually takes much longer to fetch data from external memory than from on-chip tail cache.

[^87]: ${ }^{a}$ The earliest example was Doom [192], released in 1993.

[^88]: ${ }^{13}$ This can change if the latency L becomes very large.
 ${ }^{14}$ Note that \mathbf{U} in Table 8.1 and Table 8.2 refers to an un-cached implementation, and \mathbf{C} refers to an implementation that uses a caching hierarchy.

[^89]: ${ }^{\dagger}$ Also variously attributed to Alfred Marshall and Mark Twain.

[^90]: ${ }^{1}$ Our results were first published in [200], and we were not aware of any previous work that describes the problem of maintaining a large number of statistics counters.

[^91]: ${ }^{2}$ There are applications for which the value of the counter is required to make data-path decisions. We describe memory load balancing techniques to support these applications in Chapter 10.

[^92]: ${ }^{3}$ The variable $b(b \geqslant 1)$ is chosen by the system designer. If $b=1$, no SRAM is required, but the DRAM must be fast enough for all counters to be updated in DRAM.

[^93]: ${ }^{4}$ It is interesting to note that there is an analogy between the cache sizes for statistics counters and the buffer cache sizes that we introduced in Chapter 7. (See Box 9.1.)
 ${ }^{5}$ In reality, this is $(N-1) / b$ empty counters and $2(N-1) / b$ time slots.

[^94]: ${ }^{6}$ It is interesting to note that the cache size is independent of the width of the counters being maintained.

[^95]: ${ }^{7}$ This could also be an OC192 card with, say, $C=10$ updates per packet.

[^96]: ${ }^{8}$ The counter measurement products are made available as separate "daughter cards" and are made to be plugged into a family of Cisco Ethernet switches and Enterprise routers.

[^97]: ${ }^{\dagger}$ Ping is an application to troubleshoot networks. Pong is an internal Cisco proposal for synchronizing router clocks (currently subsumed by IEEE 1588). Ping-pong is a technique that is generalized in this chapter to maintain state entries on slower memories.

[^98]: ${ }^{1}$ Commercial DRAM memories limit the maximum number of banks that can be addressed by any single chip in a given random cycle time, due to memory bandwidth limitations. This limit can be increased by using multiple DRAM devices. Of course, if the memory banks are on-chip this is not an issue.

[^99]: ${ }^{a}$ This can also be done periodically rather than just at the first access.
 ${ }^{b}$ Of course, the function that exercises this choice can itself be seeded by a programmable value created at run-time, and hence not available to the adversary.

[^100]: ${ }^{2}$ The term Diophantine refers to integer solutions.
 ${ }^{3}$ This is because for any value of C, we need $h=C(C+1)$ banks, which is always an even number.

[^101]: ${ }^{4}$ DRAM memories are particularly efficient in transferring large blocks of data to consecutive locations. This is referred to as burst mode in DRAM. Refer to Appendix A for a discussion.

[^102]: ${ }^{5}$ As an example, Cisco Systems builds its own eDRAM-based memories [32] that have densities, capacities, and number of banks that cater to networking-specific requirements.

[^103]: †Unknown Cafe, Mountain View, CA, Oct 2004.
 ${ }^{\ddagger}$ An obscure scientist of the early twentieth century.

[^104]: ${ }^{1}$ I wouldn't recommend this to new students -- "all but dissertation" is not a pleasurable state of mind.

[^105]: ${ }^{2}$ Based on Cisco's current proliferation in the networking industry.

[^106]: ${ }^{3}$ These terms are borrowed from well known-computer architecture terminology [155].

[^107]: ${ }^{4}$ Packets can easily be dropped faster than the line rate, because in order to drop a packet of any size, only a constant-size descriptor needs to be dropped.

[^108]: ${ }^{5}$ This is defined in Section 1.4.2.

[^109]: ${ }^{6}$ Of course, not a pen. They tend to leak when you are traveling to Mars ...
 ${ }^{\dagger}$... Sorry, Cisco, there really is only one human network!

[^110]: ${ }^{\dagger}$ A more apt version for networking memories - "Dense, Fast, Cheap: Pick any two".

[^111]: ${ }^{1}$ This is also commonly called a row conflict, however this terminology is misleading, since it is the banks that conflict, not the rows!

[^112]: ${ }^{2}$ Note that there can be other penalties such as the read-write turnaround and refresh penalties associated with accesses to a DRAM.

[^113]: †Stanford University, CA, 1999.

[^114]: ${ }^{\dagger}$ Pradeep Sindhu, CTO, Juniper Networks.

[^115]: ${ }^{\dagger}$ Da Chuang, Humorous Moments in Proof, Stanford, 2002.

[^116]: ${ }^{1}$ We will see later that other queueing structures are useful and that it is not necessary to place cells in VOQs.

[^117]: ${ }^{2}$ If a cell from $V O Q_{i j}$ is sent to crosspoint $B_{i j}$, then $\sum_{k}\left(X_{k j}+B_{k j}\right)$ stays the same at the end of the input scheduling phase, since $X_{i j}$ decreases by one and $B_{i j}$ increases by one. In the output schedule, Case 1 applies and $C_{i j}$ will further decrease by one. As a result, if a cell from $V O Q_{i j}$ is sent to crosspoint $B_{i j}$, then $C_{i j}$ decreases by two in that scheduling phase.

[^118]: ${ }^{3}$ This is in fact the conditional expectation given knowledge of the state of all queues and crosspoints at time n. For simplicity in the rest of the proof (since we only use the conditional expectation), we will drop the conditional expectation sign and simply use the symbol for expectation as its meaning is clear.

[^119]: ${ }^{\dagger}$ Architectural Discussion, Campus Switching Group, Cisco Systems, California, May 2008.

[^120]: ${ }^{\dagger}$ HPNG Group Meeting, Stanford University, California, Jan 1999.

[^121]: ${ }^{1}$ FIFO $Q^{\prime}(j, l)$ holds cells at multiplexor j arriving from layer l.

[^122]: ${ }^{\dagger}$ Nick McKeown, Stanford University, California, Dec 1998.

[^123]: ${ }^{\dagger}$ There are cases in which packets delayed due to congestion may be dropped from the buffer. Cisco Systems, San Jose, California, Mar 2006.

[^124]: ${ }^{1}$ For example, when discrete packets that have constraints on the minimum size are read, there might be fewer queues that reach their maximum deficit simultaneously, and fewer iterations than the worst case mentioned in this continuous model, where one byte can be read at a time.

[^125]: ${ }^{2}$ Please note that in a previous version of the paper [166], this inequality was incorrectly simplified to $F(i)<b i[2+\ln (Q / i)]$.

[^126]: ${ }^{3}$ Note that no queues can have deficit greater than C at the beginning of timeslot $T-y$ because $r(T-y-1)=0$.

[^127]: †"Might as well submit a joint paper then!", Stanford University, 2001.

[^128]: ${ }^{\dagger}$ Cisco Systems, Bangalore, India, Oct 2007.

[^129]: ${ }^{1}$ Recall that in a PPS, we use internal links that operate at a rate $S(R / k)$, where S is the speedup of the internal link.

[^130]: ${ }^{2}$ Routers are usually built to give priority to unicast packets over multicast; so arriving unicast packets are never dropped, as far as possible.
 ${ }^{3}$ Note that the center stage OQ switch may in fact take the multicast cell and store it in a common shared buffer memory that is accessible to all its outputs, or it may actually make multiple copies of the multicast cell, if the memories for each of its outputs are not shared. How the multicast cell is handled by the center stage OQ switch is of no consequence to our discussion on fanout multicast. The fact that it may itself make local copies should not be confused with PPS copy multicasting. From the demultiplexor's perspective, if the PPS sends the multicast cell just once, then it is performing fanout multicasting.

[^131]: ${ }^{4}$ A more detailed discussion on these observations, and the exact speedup required for fanout and copy multicasting, is available in our paper [230].
 ${ }^{5}$ In an earlier paper we referred to this as "bounded copy" multicasting.

[^132]: ${ }^{6}$ Recall that in a PPS the time slot refers to the normalized time for a cell to arrive to the demultiplexor at rate R.

[^133]: ${ }^{7}$ Of course, in the above theorem, the variable N in the formulae for the speedup can be replaced by the maximum fanout of the multicast packets, m, if $m<N$. This is true in some routers.

[^134]: ${ }^{8}$ Thankfully, this is not a common and mandatory requirement on most routers.

