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Abstract

During peak viewing time, well over 50% of US Internet tra�c is streamed video from

Netflix and YouTube. To provide a better streaming experience, these services adapt their

video rates by observing and estimating the available capacity. However, accurate capacity

estimation is di�cult due to highly variable throughput and complex interactions between

layers. As a result, existing rate adaptation algorithms often lead to suboptimal video

quality and unnecessary rebu↵ers.

This thesis proposes an alternative bu↵er-based approach to adapt video rate. Rather

than presuming that capacity estimation is always required, this approach starts the design

by only using the playback bu↵er occupancy, and then ask when capacity estimation can

be helpful. This design process leads to two separate phases of operation: during the

steady-state phase, when the bu↵er encodes adequate information, we choose the video rate

based only on the playback bu↵er; during the startup phase, when the bu↵er contains little

information, we augment the bu↵er-based design with capacity estimation. This approach

is tested with a series of field experiments spanning millions of Netflix users from May

to September, 2013. The results demonstrate that although a simple capacity estimation

is important during the startup phase, it is unnecessary in the steady state. The bu↵er-

based approach allows us to reduce the rebu↵er rate by 10–20% compared to a commercial

algorithm used in Netflix, while delivering a similar overall average video rate and a higher

video rate in steady state.
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Chapter 1

Introduction

Video streaming is a huge and growing fraction of Internet tra�c. During the evening peak

hours (8pm - 1am EDT), well over 50% of US Internet tra�c is video streamed from Netflix

and YouTube [28, 29]. Unlike traditional video downloads that must complete fully before

playback can begin, streaming video starts playing within seconds. Each video is encoded at

a number of di↵erent rates (typically 235kb/s standard definition to 5Mb/s high definition)

and stored on servers as separate files. The video client—running on a home TV, game

console, web browser, DVD player, etc.—chooses which video rate to stream by monitoring

network conditions and estimating the available network capacity. This process is referred

to as adaptive bitrate selection or ABR.

In this thesis, we propose an alternative approach to designing ABR algorithms. Rather

than presuming that capacity estimation is always required, we propose to start the design

by only using the playback bu↵er occupancy, and then ask when capacity estimation can be

helpful. Before developing the motivation for this bu↵er-based approach in Chapter 2 and

3, we will first explain how rate selection works today and explain the challenges faced by

the current practice.

1.1 Common Architecture for Internet Video

Most commercial video streaming services currently run over HTTP and TCP (e.g., Hulu,

Netflix, Vudu, YouTube) and stream data to the client from one or more third-party com-

mercial CDNs (e.g., Akamai, Level3 or Limelight). Streaming over HTTP has several

benefits: It is standardized across CDNs (allowing a portable video streaming service), it is

1
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Figure 1.1: Common architecture of video streaming services over HTTP.

universally accessible (CDNs have already made sure their service can reach through NATs

to end-hosts), and it is cheap (the service is simple, commoditized, and the CDNs compete

on price). These benefits have made possible the huge growth in a↵ordable, high-quality

movie and TV streaming, for the viewers’ delight.

Currently (2014), the architecture of most commercial video streaming services can be

summarized as in Figure 1.1. Video content is hosted at multiple CDN providers and is

streamed over HTTP to the clients. A video service generally supports several di↵erent

platforms, e.g., web browser plugin, game console and TV. A video session has two phases:

authentication and streaming. When a client requests a video, the service provider au-

thenticates the user account and directs the client to a CDN hosting the video. The video

service provider tells the client which video streaming rates are available and issues a token

for each rate. The client then picks a video rate and requests the video at the selected rate

by presenting a token as a credential to the designated CDN.

Figure 1.2 provides details in the streaming phase and further illustrates how rate selec-

tion works over HTTP. A streaming service first encodes each video at a number of di↵erent

rates and deploys them on CDNs as separate files. The set of video rates typically ranges

from 235kb/s standard definition to 5Mb/s high definition. The client begins with a pre-

configured starting video rate and monitors the arriving tra�c to pick the next video rate.

Because the service runs over “vanilla HTTP,” the client makes the decision and the CDN
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server is not involved in picking the video rate.1 Once the ABR algorithm chooses which

video rate to stream, the client requests chunks of the corresponding file from the server.

Each chunk contains a fixed duration of video, typically 2 to 10 video seconds. The higher

the video rate, the larger the chunk (in bytes).

The goal of ABR algorithms is to deliver a good streaming experience to the users. Cur-

rently there is still an on-going e↵ort to determine the metrics which contribute to quality

of experience (QoE), and it is not completely clear how user engagement depends on the

QoE metrics [7, 23]. However, user engagement is heavily a↵ected by viewing interrup-

tions and video rate [11, 19, 23]. The delay before playing and how often the video rate

changes can also have an e↵ect on user engagement [11, 34]. This thesis focuses on reducing

interruptions and improving video rate with some consideration for video rate changes.

1.2 Impact of Rate Selection on Streaming Experience

The choice of video rate a↵ects the playback bu↵er occupancy. Figure 1.3 shows the rela-

tionship between available capacity and video rate in a video playback bu↵er. The bu↵er

occupancy is generally tracked in seconds of video. Every second, one second of video is

removed from the bu↵er and played to the user. The bu↵er drains at unit rate, since one

second is played back every second of real time. The bu↵er receives video at the rate that

1Services that control both the server and the client (e.g., YouTube) can involve the server and the client
when picking a rate.
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Figure 1.3: The video playback bu↵er, tracked in seconds. Every second, the bu↵er outputs
one second of video to play to the user. The bu↵er also receives video at the rate that can be
represented as a ratio between the system capacity and the selected video rate, C(t)/R(t).

can be represented as a ratio between the system capacity, C(t), and the selected video

rate, R(t). For example, if C(t) is 9Mb/s and R(t) is 3Mb/s, for every second, 3 seconds

worth of video is inserted into the bu↵er.

If the ABR algorithm picks a video rate that is lower than the system capacity, the input

rate of the bu↵er is larger than the drain rate (C(t)/R(t) > 1) and the bu↵er increases.

However, this higher input rate means that the algorithm does not maximize the video rate

and does not fully utilize the capacity. On the other hand, if the ABR algorithm picks a

video rate that is greater than the system capacity, then new data is put into the bu↵er

at rate C(t)/R(t) < 1 and the bu↵er decreases. Put another way, if more than one chunk

is played before the next chunk arrives, then the bu↵er is depleted. If the ABR algorithm

keeps requesting chunks that are too big for the network to sustain (i.e., the video rate

is too high), eventually the bu↵er will run dry, playback freezes, and the viewer see the

familiar “Rebu↵ering...” message on the screen. These interruptions are often referred to

as rebu↵ers or rebu↵ering events. Note that if rebu↵ers happen because the capacity is

not able to sustain even the minimum video rate R

min

, there is nothing an ABR algorithm

can do to avoid them. However, if rebu↵ers happen because the ABR algorithm chooses a

non-sustainable rate, they are avoidable with a better algorithm design and we call them

unnecessary rebu↵ers.
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ing events.

1.3 Challenges of Existing Rate Selection Algorithms

ABR algorithms need to balance two overarching goals. On one hand, they try to maximize

the video quality by picking the highest video rate the network can support. On the other

hand, they try to minimize rebu↵ering events. It is easy for a streaming service to meet

either one of these two objectives on its own. To maximize video quality, a service could just

stream at the maximum video rate R

max

all the time. Of course, this would risk extensive

rebu↵ering. To minimize rebu↵ering, the service could just stream at the minimum video

rate R

min

all the time—but this extreme would lead to low video quality. The design goal

of an ABR algorithm is to simultaneously obtain high performance on both metrics in order

to give users a good viewing experience, as shown in Figure 1.4.

Existing ABR algorithms approach this design goal by picking a video rate based on

capacity estimation. However, accurate estimation is challenging, especially in an environ-

ment with highly variable throughput. Figure 1.5 is a sample trace reported by a Netflix

video player, showing how the measured throughput varies wildly from 17Mb/s to 500kb/s.

The throughput is measured at the video player, and each point represents the average

throughput over each video chunk download. This variation has a significant impact on
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Figure 1.5: A sample throughput trace of a Netflix video session. This session is originated
from a major US ISP and the throughput is reported by Netflix’s browser-based player in
June, 2013. Each point represents an average throughput over a video chunk download.
End-to-end throughput is often highly variable within a session.

customers: approximately 10% of sessions in this service experience at least this much vari-

ation, and 22% of sessions experience at least half as much variation.2 Variation can be

caused by many factors, such as WiFi interference, congestion in the network, congestion

in the client (e.g., anti-virus software scanning incoming HTTP tra�c), or an overloaded

video server. Whatever the cause, with capacity varying unpredictably, it is challenging to

accurately estimate future capacity from past and present observations.

Other factors make it hard to even measure current throughput, let alone predict future

throughput. For example, ABR algorithms often operate on top of a third party framework

(e.g., Flash, Silverlight, HTML5), which hides accurate per-packet timing information from

the ABR algorithm by delivering video to the browser in video chunks a few seconds long.

Inaccurate throughput estimates lead to poor behaviors by video clients, such as rebu↵ers [9]

and “unfair” link sharing between multiple video players [16, 21].

Many techniques have been proposed to work with inaccurate estimates, by incorpo-

rating information about the playback bu↵er. Some leverage control theory to adjust

2The variation is designed to be the ratio of 75th to 25th percentile throughput; which is 5.6 for this
trace.
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the capacity estimation based on the bu↵er occupancy [8, 35], some smooth the quality

degradation according to the bu↵er occupancy [26], and some randomize chunk scheduling

depending on the bu↵er occupancy to have better samples of the channel [16].

At a high level, we can capture existing approaches using the abstract design flow in

Figure 1.6. The client measures how fast chunks arrive to estimate capacity, Ĉ(t). The

estimate is optionally supplemented with knowledge of the bu↵er occupancy, which we

represent by an adjustment factor F (B(t)), a function of the playback bu↵er occupancy.

The selected video rate is R(t) = F (B(t))Ĉ(t); di↵erent designs use di↵erent adjustment

functions F (·).

When the bu↵er contains many chunks, R(t) can safely deviate from C(t) without

triggering a rebu↵er. The client can “aggressively” try to maximize the video quality by

picking R(t) = Ĉ(t).

When the bu↵er is low, on the other hand, the client should be more “conservative”,

deliberately underestimating capacity so as to pick a lower video rate and quickly replenish

the bu↵er. In this case, designing the adjustment function is much harder, as the following

analysis shows. Consider the case when there is only one chunk in the bu↵er. The requested

chunk (V seconds) must arrive before the current chunk plays, else the bu↵er will run dry.

In other words, we require V R(t)/C(t) < B(t), where V R(t) is the chunk size in bytes.
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Thus, the selected video rate R(t) needs to satisfy:

R(t) <

✓
B(t)

V

◆
C(t)

to prevent rebu↵ers. Replacing the selected video rate R(t) with F (B(t))Ĉ(t) in the above

inequality, we get the following requirement on F (B(t)) to avoid rebu↵ers:

F (B(t)) <

✓
B(t)

V

◆ 
C(t)

Ĉ(t)

!
for all t. (1.1)

This tells us we must pick F (V ) to be smaller than the worst case ratio of C(t) to Ĉ(t).

Unfortunately, C(t)/Ĉ(t) is tiny if the throughput is varying wildly; and since we have to

choose F without knowing the actual capacity that will be observed, it leads to a very

conservative algorithm. For example, in Figure 1.5, the ratio C(t)/Ĉ(t) can be as small

as 0.03 (500 kb/s < C(t) < 17 Mb/s). In other words, for this session, we need to pick

F (V )  0.03 to prevent rebu↵ers, and the video rate will be just 3% of the rate we could pick

with an accurate estimate. Worse, if F (.) makes us pick a rate lower than the minimum video

rate available, the constraint becomes impossible to meet. In practice, large throughput

variation within a session is not uncommon. A random sample of 300,000 Netflix sessions

shows that roughly 10% of sessions experience a median throughput less than half of the

95th percentile throughput. When designing an ABR algorithm, the service provider needs

to choose a F (·) that works well for all customers, with both stable and variable throughput.

However, the notion of bu↵er-based adjustment used in current schemes is quite sugges-

tive: note that the occupancy of the playback bu↵er is the primary state variable we are

trying to manage. This inspires the following question: namely, can we take the design to

its logical extreme, and choose the video rate based only on the playback bu↵er occupancy?

In this thesis, we propose an alternative bu↵er-based approach: we start the design

by only using the playback bu↵er occupancy, and then ask when capacity estimation can

be helpful. This design process leads to two separate phases of operation: during the

steady-state phase, when the bu↵er encodes adequate information, we choose the video

rate based only on the playback bu↵er; during the startup phase, when the bu↵er contains

little information, we augment the bu↵er-based design with capacity estimation. We will

show that the bu↵er occupancy is in fact the primary state variable that an ABR algorithm



1.4. CONTRIBUTIONS 9

should control at the steady state. By focusing on the bu↵er, we can not only provide

performance guarantees, but also avoid the di�culties of handling estimation errors.

1.4 Contributions

The contributions of this thesis is as follows. First, we identify the problems in the current

practice and understand the interactions between network layers. This part of the thesis was

published in ACM Internet Measurement Conference in 2012 and received the IRTF applied

network research prize in 2013. Second, we propose an alternative bu↵er-based approach,

which picks a video rate mainly based on the playback bu↵er occupancy. Through formal

analysis, we show that this approach is able to provide performance guarantee at the steady

state. This part of the thesis was published in ACM SIGCOMM Future Human-Centric

Multimedia Networking (FhMN) workshop in 2013. Finally, we verify the e↵ectiveness of

this approach through a real-world deployment in Netflix. We deploy bu↵er-based ABR

algorithms in Netflix’s browser-based player and conduct a series of experiments with mil-

lions of real users during May–September 2013. Our own investigation reveals that capacity

estimation is unnecessary in steady state; however using simple capacity estimation (based

on immediate past throughput) is important during the startup phase, when the bu↵er itself

is growing from empty. We find that bu↵er-based algorithms can reduce the rebu↵er rate by

10–20% compared to the production algorithm in Netflix, while improving the steady-state

video rate. This part of the thesis will be published in ACM SIGCOMM Conference in

2014. Since 2012, Netflix has incorporated some designs from the bu↵er-based approach in

their browser-based video player, serving over 40 millions Netflix subscribers. We currently

continue to work with Netflix to productize the rest of the designs.

1.5 Thesis Outline

The remaining thesis is organized as follows. In Chapter 2 and 3, we present case studies

and identify the challenges in the current practice. In Chapter 4, based on the observations

made in the previous chapters, we will motivate and propose the pure bu↵er-based approach.

In Chapter 5, we will describe our deployment of the bu↵er-based ABR algorithm in Netflix

and discuss the experimental results. Based on the results, we will also discuss design

principles for future ABR algorithm designers. In Chapter 6, we will discuss related works
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and other e↵orts to better support Internet video. Finally, we will conclude and discuss a

future roadmap in Chapter 7.



Chapter 2

Case Study: Suboptimal Video

Quality

In Chapter 1, we showed that capacity estimation is often inaccurate in environments with

highly variable capacity. Hence, existing algorithms often need to apply a safety margin

to the noisy estimates. However, it is hard to determine a safety margin that can simul-

taneously maximize video quality and minimize the rate of rebu↵er events. A given safety

margin can be too conservative for some customers and too aggressive for others. Being

conservative leads to suboptimal video rate, while being aggressive leads to unnecessary

rebu↵ers. In the following two chapters, we will present two case studies and investigate

the consequences of being either conservative or aggressive.

In this chapter, we show that being conservative can trigger a feedback loop between

network layers, leading to undesirably variable and low-quality video. We call this phe-

nomenon the downward spiral e↵ect, and we observed the e↵ect in all three video streaming

services we studied: Hulu, Netflix, and Vudu. We first describe how the three video ser-

vices work, then we demonstrate how they all experience the downward spiral e↵ect. Next,

we explain how this e↵ect is triggered by the interaction between ABR algorithms at the

application layer and TCP logics at the transport layer. Finally, we provide recommen-

dations to avoid the downward spiral. These recommendations are the precursor of the

bu↵er-based approach. They are now incorporated in the ABR algorithm in Netflix and

have demonstrated quality improvements in the real world.

11
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Provider Platform Download Strategy
Service A Web Browser Chunk-by-chunk download (Persistent connection)
Service B Sony PlayStation 3 Chunk-by-chunk download (New connection)
Service C Sony PlayStation 3 Progressive download (Open-ended download)

Table 2.1: Summary of the download strategies of the three services.

Provider HTTP Request Format Available Playback Rates (kb/s)
Service A GET /filename/byte range?token SD: 235, 375, 560, 750, 1050, 1400, 1750

HD: 2350, 3600
Service B GET /filename/clip num?br=bitrate&token 650, 1000, 1500, 2000, 2500, 3200

Service C GET /filename?token SD: 1000, 1500, 2000
HD: 3000, 4500, 6750, 9000

Table 2.2: Summary of the available playback rates for each of the three services.

2.1 The Three Streaming Services

The measurement study was done on three popular HTTP-based video streaming services,

Hulu, Netflix, and Vudu, between March and May, 2012. At the time of study, both Hulu

and Netflix o↵ered monthly subscription services, while Vudu o↵ered pay-per-view service.

In 2012, Hulu had 3 million paid subscribers [15], Netflix had 25 million paid subscribers [27],

and Vudu had one of the largest libraries of streamed movies and was ranked as one of the

best streaming services by Consumer Reports [33]. Throughout this chapter we will refer

to the services by the names A, B, and C. All of the results can be reproduced by observing

the services externally, so the data is not confidential. However, we refer to the services as

A, B, and C to stress that this work is not a comparison of the services; rather, we wish to

show that existing algorithms must wrestle with the problem of noisy observations above

HTTP when picking a video rate based on capacity estimation.

Although the three services are very similar, they di↵er from each other in some impor-

tant ways.

Service A: The measurements for Service A are based on a web-browser client. The

Service A client sends HTTP byte range requests to the CDN, requesting 4-second chunks

of video over a persistent TCP connection. Unless it switches to a new rate, the client reads

the whole video from the same server. The client always starts out requesting the lowest

video rate, continuously estimates the available bandwidth, and only picks a higher rate if

it believes it can sustain it.
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Service B: Service B’s desktop client runs over a proprietary transport protocol; thus,

our measurements for Service B are based on its client on the Sony PlayStation 3 (PS3),

which operates over HTTP. Service B’s PS3 client also requests one chunk at a time, but

each chunk is stored as a separate file and each request for a new chunk is sent over a

new TCP connection. Each request is for about eight seconds of video. The video rate is

specified in the HTTP GET request; the player starts at one of the two lowest playback

rates, and steps up as it detects more bandwidth is available.

Service C: Our measurements for Service C are also based on its PS3 client, which

has access to a broader range of video qualities compared to its desktop client. Service C’s

PS3 client sends an open-ended HTTP request; i.e., it requests the whole file in one go. To

change video rate, the client must reset the TCP connection and request a new filename.

While Service A controls the occupancy of the playback bu↵er by varying the rate at which

clients request new chunks, Service B and Service C rely on the TCP receive window: when

the playback bu↵er is full, TCP reduces the receive window to slow down the server.

Table 2.1 and Table 2.2 summarize the three services.

2.2 Measurement Setup

In this section we describe our experimental setup and measurement approach. In particular,

we describe how to control bottleneck bandwidth and eliminate path variance through a

local proxy, how to identify the video playback rate, and how to create the competing flow.

2.2.1 Bandwidth Control and Proxy

Our experiments measure the behavior of video streams from Services A, B, and C when

they compete with other TCP flows. To create a controlled environment where we can set

the bottleneck link rate, all of the video streams must pass through a rate limiter between

the CDN and the client. Figure 2.1 shows how we place a NetFPGA machine [24] in-line

to limit bandwidth. In most cases, we limit the bandwidth to 5Mb/s and the bu↵er size to

120kbit, which is su�cient to sustain 100% throughput with a 4–20 ms RTT. We use these

configuration parameters throughout the chapter, unless stated otherwise. The competing

flow always passes through the NetFPGA too, and it shares the bottleneck link with the

video stream.
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Figure 2.1: The experimental setup. We control the bandwidth with a NetFPGA bandwidth
limiter. We also use a proxy server in experiments that require end-to-end control.

In instances where we want a tightly controlled experiment, we download videos from a

local proxy instead of the CDN, so as to eliminate any variance caused by the location of

the CDN server or in Internet paths.

2.2.2 Video Playback Rate Identification

To understand the system dynamics, we need to know what video playback rate the client

picks. Because this information is not externally visible, we have to deduce the mapping

between the filenames requested by the client and the playback rate of the video inside the

file. We developed a di↵erent technique for each service.

Service A: To figure out the mapping between filenames and the corresponding video

rates, we first extract tokens from our traces and get the size of each file via HTTP. We

divide the file size by the duration of the video to get the rough video playback rate. The

Service A client provides a debug window for users to monitor the current video playback

rate, and we use these rates to validate our mapping.

Service B: Unfortunately, Service B does not provide a debug facility to validate the

video playback rate. However, one of the parameters in the client’s HTTP request seems

to indicate the requesting video playback rate. But we needed to verify this. While the

segment size requested with the parameter set to 3200 kb/s is about 3.1 times larger than

the segments with 1000 kb/s, the same relationship does not hold between other video

rates. Instead, we use an indirect method of verification. We set the link bandwidth to a

value slightly higher than each of the parameter values and see if the client converges to

requesting with that parameter value. Indeed, the value of the parameter closely follows

the bandwidth setting. For example, when we set the available bandwidth to 3,350 kb/s,
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the HTTP parameter converges to 3200. Similarly, when we set the bandwidth to 1,650

kb/s, the HTTP parameter converges to 1500.

Service C: Like Service A, Service C also has a mapping between the requested filename

and the video playback rate. Unfortunately, Service C does not directly tell us the current

rate. However, because the TCP flow is limited by the receive window when the playback

bu↵er is full, the average TCP throughput matches the video playback rate. We confirmed

that the converged receiver-limited TCP throughput reflects the rate information embedded

in the requested filename.

The video rates available from each of the three services are summarized in Table 2.2;

some playback rates may not be available for some videos.

2.2.3 The Competing Flow

The competing flow is a TCP flow doing a long file download. To eliminate any unfairness

due to variations in network path properties, we ensure that the competing flow is served by

the same CDN and, usually, by the same server. For Service A and Service C, the competing

flow is generated by an open-ended byte range request to the file with the highest rate.

Further, we use the DNS cache to make sure that the competing flow comes from the same

termination point (the server or the load-balancer) as the video flow. For Service B, because

the files are stored as small segments, an open-ended request creates only short-lived flows.

Instead, we generate the competing flow by requesting the Flash version of the same video

stored in the same CDN, using rtmpdump [32] over TCP.

2.3 The Downward Spiral E↵ect

All three services su↵er from what we call the downward spiral e↵ect – a dramatic anomalous

drop in the video playback rate in the presence of a competing TCP flow. The problem

is starkly visible in Figure 2.2. In all four graphs, the video stream starts out alone and

then competes with another TCP flow. As soon as the competing flow starts up, the client

mysteriously picks a video playback rate that is far below the available bandwidth. Our

goal is to understand why this happens.

To gain a first inkling into what is going on, we calculate the upper bound of what the

client might believe the instantaneous available bandwidth to be, by measuring the arrival

bitrate of the last video chunk. Specifically, we calculate the throughput upper bound as
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(d) Service C SD. Network bottleneck set to 5Mb/s.

Figure 2.2: The downward spiral e↵ect in the three services.
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the size of a received video chunk divided by the time it took to arrive, i.e., the time from

when the first byte arrived until the last byte arrived. Thus, the initial server response time

is excluded from the throughput calculation. This throughput upper bound is plotted as

the blue lines with cross markers in the graphs. In all of the graphs, the video playback

rate chosen by the client is quite strongly correlated with the calculated throughput. As

we will see, herein lies the problem: if the client is selecting the video rate based on some

function of the throughput it perceived, and the throughput is so di↵erent from the actual

available bandwidth, then it is not surprising that the client does such a poor job. Let’s

now see what goes wrong for each service in turn. For ease of discussion, we will use video

throughput to refer to the throughput a client perceived by downloading a video chunk.

2.3.1 Service A

Figure 2.2(a) shows the playback rate of a Service A video session along with the client’s

video throughput over time. Starting out, the video stream is the only flow and the client

requests the highest video rate (1750kb/s). The competing flow begins after 400 seconds;

the video rate steadily drops until it reaches the lowest rate (235kb/s), and it stays there

most of the time until the competing flow stops. In theory, both flows should be able to

stream at 2.5Mb/s (their fair share of the link) and the client should continue to stream at

1750kb/s.

We repeated the experiment 76 times over four days. In 67 cases (91%), the downward

spiral happens and the client picks either the lowest rate or bounces between the two or

three lowest rates. In just seven cases (9%), the client was able to maintain a playback rate

above 1400kb/s. To ensure accuracy and eliminate problems introduced by competing flows

with di↵erent characteristics (e.g., TCP flows with di↵erent RTTs), we make the competing

flow request the same video file from the same CDN. Unlike the video flow, the competing

flow is just a simple TCP file download and its download speed is only dictated by the TCP

congestion control algorithm and not capped by the video client.1

Why does the throughput of the video flow drop so much below available fair-share

bandwidth? Is it an inherent characteristic of streaming video over HTTP, or is the client

simply picking the wrong video rate?

1To eliminate variation caused by congestion at the server, we verified that the same problem occurs if
we download the competing video file from a di↵erent server at the same CDN.
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Figure 2.3: (Service A) Confirmation of the available bandwidth. When the ABR algorithm
is disabled, the client is able to to sustain the highest video rate. This indicates that ABR
algorithms might be the cause of the downward spiral e↵ect.

We first confirm that the available bandwidth really is available for streaming video.

We do this using a feature provided by the Service A client that allows users to manually

select a video rate and disable the client’s automatic rate selection algorithm. We repeat the

above experiment, but with a slight modification. As soon as the client picks a lower rate, we

manually force the video to play at 1750kb/s. Figure 2.3 shows the results. Interestingly, the

client maintains a playback rate of 1750kb/s without causing rebu↵ers, and the throughput

also increases. This suggests that the downward spiral e↵ect is caused by underestimation of

the available bandwidth in the client’s rate selection algorithm. The bandwidth is available,

but the client needs to go grab it.

2.3.2 Service B

Figure 2.2(b) shows the same downward spiral e↵ect in Service B. As before, the bottleneck

bandwidth is 5Mb/s and the RTT is around 20 ms. We start a video streaming session

first, allow it to settle at its highest rate (3200kb/s) and then start a competing flow after

337 seconds, by reading the same video file from the same server.
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The client should drop the video rate to 2500kb/s (its fair share of the available band-

width). Instead, it steps all the way to the lowest rate o↵ered by Service B, 650kb/s, and

occasionally to 1000kb/s. The throughput plummets too.

2.3.3 Service C

We observe the downward spiral e↵ect in Service C as well. As Service C does not auto-

matically switch between its HD and SD bitrates, we do two separate experiments.

In the HD experiment, as shown in Figure 2.2(c), we set the bottleneck bandwidth to

22Mb/s. The client starts by picking the highest HD video rate (9Mb/s). When the client’s

playback bu↵er is full, the video flow is limited by the receive window, and the throughput

converges to the same value as the playback rate. We start the competing flow at 100

seconds, and it downloads the same video file (9Mb/s video rate) from the same CDN.

Each flow has 11Mb/s available to it, plenty for the client to continue playing at 9Mb/s.

But instead, the client resets the connection and switches to 4.5Mb/s and then 3Mb/s,

before bouncing around several rates.

SD is similar. We set the bottleneck bandwidth to 5Mb/s, and the client correctly picks

the highest rate (2000kb/s) to start with, as shown in Figure 2.2(d). When we start the

competing flow, the video client drops down to 1000kb/s even though its share is 2.5Mb/s.

As Service C only o↵ers three SD rates, we focus on its HD service in the rest of the chapter.

2.4 Walking the Downward Spiral

To understand how the downward spiral occurs, we examine each service in turn. Although

each service enters the downward spiral for a slightly di↵erent reason, there is enough

commonality for us to focus first on Service A (and Figure 2.2(a)) and then describe how

the other two services di↵er.

2.4.1 Initial Condition: No Competing Flow

In the absence of a competing flow (first 400 seconds), the Service A client correctly chooses

the highest playback rate. Because the available network bandwidth (5Mb/s) is much higher

than the playback rate (1750kb/s), the client busily fills up its playback bu↵er and the

bottleneck link is kept fully occupied. Eventually the playback bu↵er fills (after 185 seconds)

and the client pauses to let it drain a little before issuing new requests. Figure 2.4(a) shows
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Figure 2.4: (Service A) The TCP throughput and video request interval before and after
the playback bu↵er fills at 185 seconds. After the bu↵er is full, the client pauses the next
request until there is enough space freed up in the bu↵er. As a result, we observe an
ON-OFF tra�c pattern from the TCP throughput.

how the TCP throughput varies before and after the playback bu↵er fills up. After the

bu↵er is full, the client enters a periodic ON-OFF sequence. As we will see shortly, the

ON-OFF sequence is a part of the problem, albeit only one part. Before the bu↵er fills, the

client requests a new 4-second chunk of video every 1.5 seconds on average, because it is

filling the bu↵er. Figure 2.4(b) confirms that after the bu↵er is full, the client requests a

new 4-second chunk every 4 seconds, on average. The problem is that during the 4-second

OFF period, the TCP congestion window (cwnd) times out — due to inactivity longer than

200ms — and resets cwnd to its initial value of 10 packets [4, 5]. Even though the client is

using an existing persistent TCP connection, the cwnd needs to ramp up from slow start

for each new chunk download.

It is natural to ask if the repeated dropping back to slow-start reduces the client’s video

throughput, causing it to switch to a lower rate. With no competing flow, it appears the

answer is “no”. We verify this by measuring the video throughput for many requests. We

set the bottleneck link rate to 2.5Mb/s, use traces collected from actual sessions to replay

the requests over a persistent connection to the same server, and pause the requests at the

same interval as the pauses in the trace. Figure 2.5(a) shows the CDF of the client’s video

throughput for requests corresponding to various playback rates. The video throughput is

pretty accurate: except for some minor variation, the video throughput accurately reflects

the available bandwidth, and explains why the client picks the correct rate.
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(b) Service A with one competing flow.

Figure 2.5: (Service A) The throughput at HTTP layer, with and without a competing flow.
In both figures the available fair share of bandwidth for the video tra�c is 2.5Mb/s. When
there is no competing flow (Figure 2.5(a)), the bottleneck bandwidth is set to be 2.5Mb/s.
When there is one competing flow (Figure 2.5(b)), the bottleneck bandwidth is set to 5Mb/s
so that the fair share remains 2.5Mb/s. When competing with another flow, some chunk
downloads are able to get more than their fair share; in these cases, the competing flow
experiences losses and has not ramped up to its fair share yet. This is the reason why some
of the CDF curves do not end with 100% at 2.5Mb/s in Figure 2.5(b).

2.4.2 The Trigger: With a Competing Flow

Things go wrong when the competing flows starts (after 400 seconds). Figure 2.5(b) shows

that the client’s video throughput is mostly lower than its fair share (2.5Mb/s) when there

is a competing flow. If we look at the progression of cwnd for the video flow after it resumes

from a pause, we can tell how the server opens up the window di↵erently when there is a

competing flow. Because we don’t control the server (it belongs to the CDN), we instead

use our local proxy to serve both the video tra�c and the competing flow and use the

tcp probe kernel module to log the cwnd values. The video tra�c here is generated by

requesting a 235kbps video chunk. Figure 2.6(a) shows how cwnd evolves, starting from

the initial value of 10 at 1.5 seconds, then repeatedly being dropped down by the competing

wget flow. The competing wget flow has already filled the bu↵er during the OFF period,

and so the video flow sees very high packet loss. Worse still, the chunk is finished before

cwnd climbs up again, and we re-enter the OFF period. The process will repeat for every

ON-OFF period, and the throughput is held artificially low.



22 CHAPTER 2. CASE STUDY: SUBOPTIMAL VIDEO QUALITY

0.5 1.0 1.5 2.0 2.5 3.0
Time(s)

2

4

6

8

10

12

14

16

18

TC
P 

C
on

ge
st

io
n 

W
in

do
w

 (s
eg

m
en

t)

Competing Flow

Emulated Video Flow

(a) A 235kbps chunk.

7 8 9 10 11 12
Time(s)

2

4

6

8

10

12

14

16

18

TC
P 

C
on

ge
st

io
n 

W
in

do
w

 (s
eg

m
en

t) Competing Flow

Emulated Video Flow

(b) Five contiguous 235kbps chunks concate-
nated into one.

Figure 2.6: (Service A) The evolution of cwnd for di↵erent chunk sizes. With a larger chunk
size, the cwnd has a greater chance to reach the correct steady state value.

For comparison, and to understand the problem better, Figure 2.6(b) shows the result

of the same experiment with a chunk size five times larger. With a larger chunk size, the

cwnd has longer to climb up from the initial value, and it also has a much greater likelihood

of reaching the correct steady state value.

Now that we know the video throughput tends to be low (because of TCP), we would

like to better understand how the client reacts to the low throughput. We can track the

client’s behavior as we steadily reduce the available bandwidth, as shown in Figure 2.7. We

start with a bottleneck link rate of 5Mb/s (and no competing flow), drop it to 2.5Mb/s

(to mimic a competing flow), and then keep dropping it by 100kb/s every 3 minutes. The

dashed line shows the available bandwidth, while the solid line shows the video rate picked

by the client. The client chooses the video rate conservatively; when available bandwidth

drops from from 5Mb/s to 2.5Mb/s, the video rate goes down to 1400kb/s, and so on.

We can now put the two pieces together. Consider a client streaming at a playback rate of

1750kb/s; the median video throughput it perceives is 1787kb/s, as shown in Figure 2.5(b).

According to Figure 2.7, with an available bandwidth of 1787kb/s, the client reduces its

playback rate to 1050kb/s. Thus, we expect the video rate will go down to 1050kb/s once

the competing flow starts.

It is interesting to observe that the Service A client is behaving quite rationally given the

throughput it perceives. The problem is that because Service A observes the throughput

above TCP, it is not aware that TCP itself is having trouble reaching its fair share of the
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Figure 2.7: (Service A) The choice of video rate under di↵erent available bandwidth. The
horizontal gray lines are the available video rates provided by the service.

bandwidth. Coupled with a (natural) tendency to pick rates conservatively, the rate drops

down.

2.4.3 The Spiral: Low Playback Rate

Finally, there is one more phenomenon driving the video rate to its lowest rate. Recall that

each HTTP request is for four seconds of video. When the video rate is lower, the four-

second chunk is smaller (in bytes), as shown in Figure 2.8. With a smaller chunk, the video

flow becomes more susceptible to perceiving lower throughput, as shown in Figure 2.5(b).

With a lower throughput, the client reduces the playback rate, creating the vicious cycle

shown in Figure 2.9. The feedback loop will continue until it reaches a steady state where

the perceived available bandwidth is large enough to keep the rate selection algorithm at

the chosen rate. In the worst case, the feedback loop creates a “death spiral” and brings

the playback rate all the way down to its lowest value.

To summarize, when the playback bu↵er is full, the client enters a periodic ON-OFF

sequence. The OFF period makes the TCP connection idle for too long and reset its

congestion window. Also during the OFF period, the competing TCP flow fills the router
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Figure 2.8: (Service A) The chunk size for di↵erent video rates. Each chunk contains four
seconds of video. When the video rate is lower, the chunks are smaller in bytes.

bu↵er, so the video flow sees high packet loss when it returns to the ON period. Worse

still, the video could finish downloading its video chunk before its cwnd climbs up to its fair

share and thus re-enters the OFF period. This process repeats for every ON-OFF period;

as a consequence, the video flow underestimates the available bandwidth and switches to

a lower video rate. When switching to a lower rate, the client requests a smaller video

chunk, which makes the video flow further underestimate the available bandwidth, forming

a vicious cycle.

2.4.4 With Di↵erent Network Conditions

Our experiments so far were all for the same CDN. Figure 2.10 shows a di↵erent behavior

when using a di↵erent CDN. This is because di↵erent network path properties, such as

shorter RTTs, allows the video tra�c to get a higher throughput in the presence of a

competing flow, as shown in Figure 2.11. As a result, the Service A client picks a higher

rate (1050kb/s).

To understand how prevalent the downward spiral e↵ect is in home networks, we asked

10 volunteers to rerun this experiment with Service A in their home networks connected
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Figure 2.9: (Service A) The feedback loop.

to di↵erent ISPs, such as AT&T DSL, Comcast, Verizon, and university residences. Even

though there was su�cient available bandwidth for the highest video rate in the presence

of a competing flow, seven people reported a rate of only 235kb/s-560kb/s.

2.4.5 Service B

Service B also exhibits ON-OFF behavior, but at the TCP level and not the HTTP level,

i.e., the pause could happen while downloading a video chunk. When its video playback

bu↵er is full, the client stops taking data from the TCP socket bu↵er. Eventually, the TCP

socket bu↵er also fills and triggers TCP flow control to pause the server by sending a zero

window advertisement. In Figure 2.2(b), each zero window advertisement is marked by a

hexagon. The client starts issuing zero window advertisements at around 100s and continues

to do so until a few seconds after the competing flow starts. Figure 2.12(a) shows the CDF

of the duration of the OFF periods. Almost all the pauses are longer than 200ms, so cwnd

is reset to its initial value. Thus, Service B e↵ectively exhibits an ON-OFF behavior similar

to that of Service A.

Worse still, during an ON period, Service B does not request many bytes; Figure 2.12(b)

shows that over half of the time, it reads only 800kbytes, which is not enough for the cwnd
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Figure 2.10: (Service A) The downward spiral e↵ect under di↵erent network path properties.
When streaming from another CDN, the playback rate stabilizes at 1050kb/s.
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Figure 2.11: (Service A) The video throughput under di↵erent network path properties.
Di↵erent network path properties, such as shorter RTTs, allows the video tra�c to get a
higher throughput in the presence of a competing flow.
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Figure 2.12: (Service B) The ON-OFF behavior at the TCP level.

to climb up to its steady state before the next OFF period. Figure 2.2(b) and Figure 2.13(b)

show the result, that the TCP throughput is only around 1Mbps to 1.5Mbps, causing Service

B to pick a video rate of 1000kb/s, or even 650kb/s. As we saw earlier, when competing

with another flow, the smaller the request, the higher the likelihood of perceiving a lower

throughput. The problem would be even worse if it was coupled with a conservative rate

selection algorithm. Fortunately, Service B is not nearly as conservative as the other two

services, as shown in Figure 2.14.

Similar to Service A, the chunk size gets smaller with decreasing playback rate – from

3MByte to 1MByte, as shown in Figure 2.15. However, chunk size does not play a significant

role in the downward spiral e↵ect of Service B, as the ON-OFF behavior is at the TCP level

and the number of bytes for each ON period is not determined by chunk size.

2.4.6 Service C

Service C performs an open-ended download, instead of going chunk-by-chunk. Thus, it is

not constrained by chunk size and does not pause between HTTP requests. The download

is slowed down only when the receive window fills and the client reduces the number of bytes

in flight. However, the OFF period for Service C is less than an RTO and therefore does not

trigger TCP to reset its window size. The problem with Service C is mainly caused by its
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(a) Service B with no competing flow.
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Figure 2.13: (Service B) The TCP throughput before and after the presence of a competing
flow. The available fair share of bandwidth for the video tra�c is 2.5Mb/s in both figures.
In the presence of a competing flow, the video flow gets a much less throughput than its
fair share.
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Figure 2.14: (Service B) The choice of video rate under di↵erent available bandwidth. While
Service B is not conservative, the client is limited by its TCP throughput.
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Figure 2.15: (Service B) The chunk sizes under di↵erent video playback rates.

conservativeness and being sensitive to temporal behaviors in TCP. Figure 2.16 shows the

conservativeness of Service C; it steps down to 3Mb/s even when the available bandwidth

is more than 9Mb/s. As shown in Figure 2.2(c), Service C regulates itself at 9Mb/s after

its playback bu↵er is full. Thus, the competing flow would take over the rest of the 13Mb/s

available bandwidth when it starts and make Service C perceive less than 9Mb/s of available

bandwidth. As a consequence, the video flow steps down to the video rate of 3Mb/s. Because

Service C does an open-ended download, it has to reset the current TCP connection to stop

downloading the current video file when switching to a di↵erent video rate. The client then

starts a new connection for the file with the newly selected rate. This would make the video

flow perceive less bandwidth during the transition, as TCP needs to go through the phase

of connection establishment and slow start. As a result, whenever Service C switches to a

higher video rate, this overhead of transition makes the client perceive less bandwidth and

bounce back to a lower video rate.
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Figure 2.16: (Service C) The choice of video rate under di↵erent available bandwidth. The
client is conservative in its rate selection.

2.5 Verifying the Explanation

We can verify the cause of the downward spiral by demonstrating that a small modification

to the ABR algorithm enables a client to achieve its fair share of video bandwidth. We will

discuss the recommendations in the next section.

2.5.1 The Custom Client

For brevity, we focus on Service A. Our approach is to replay a movie, using the same

CDN and chunks as Service A, but with our own client algorithm. The three services keep

their algorithms secret, but our measurements provide a reasonable baseline. For Service A,

Figure 2.7 indicates the bandwidth below which the client picks a lower video rate. Assume

that Service A estimates bandwidth by simply dividing the download size by the download

time and passing it through a fixed-size moving-average filter. We can estimate the size of

the filter by measuring how long it takes from when the bandwidth drops until the client

picks a new rate. A number of traces from Service A suggest a filter with 10 samples,

though the true algorithm is probably more nuanced.
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Figure 2.17: Replicating the downward spiral e↵ect with our custom client. The custom
client is modeled after the client of Service A. They are equally conservative, and our client
estimates the future capacity with a 10-sample moving average filter.

To closely mimic the Service A client, our custom client requests video chunks with

the same sizes from the same locations in the CDN: we capture the chunk map given to

the client after authentication, which locates the video chunks for each supported playback

rate. Hence, our custom client will experience the same chunk-size variation over the course

of the movie, and when it shifts playback rate, the chunk size will change as well. As

our custom client uses tokens from an earlier playback, the CDN cannot tell the di↵erence

between our custom client and the real Service A client. To further match Service A, the

playback bu↵er is set to 240 seconds, the client uses a single persistent connection to the

server, and it pauses when the bu↵er is full. We first validate the client, then validate our

understanding of downward spiral by considering three changes: (1) being less conservative,

(2) changing the filtering method, and (3) aggregating chunks.

2.5.2 Validating our Custom Client

Figure 2.17 shows the custom client in action. After downloading each chunk, the custom

client selects the playback rate based on Service A’s conservative rate selection algorithm,

observed in Figure 2.7. Once the playback bu↵er is full, we introduce a competing flow.

Like the real client, the playback rate drops suddenly when the competing flow starts, then
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Figure 2.18: Breaking the spiral with a less conservative client. This custom client still
estimates the future capacity with a 10-sample moving average filter, but it is much less
conservative than the client of Service A.

fluctuates over the course of the movie. The downward spiral does not bottom out, which

we suspect is due to some subtle di↵erences between Service A’s algorithm and ours.

2.5.3 Breaking the Spiral: Less Conservative

Bandwidth estimates based on download sizes and durations tend to under-report the avail-

able bandwidth, especially in the presence of a competing flow. If the algorithm is conserva-

tive, it exacerbates the problem. We try a less conservative algorithm, with a conservatism

of 10% instead of 40%. Conservatism of 40% means the client requests a video rate of at

most 1.2Mb/s when it perceives 2.0Mb/s, while 10% means it requests at most 1.8Mb/s

when perceiving 2.0Mb/s. According to Figure 2.7, Service A requests video rate with a

conservatism of approximately 40%. Figure 2.18 shows that by being less conservative,

the video rate is higher and the playback bu↵er still stays full. Note that even though

the algorithm is less conservative, the underlying TCP ensures that the algorithm stays a

“good citizen” and only gets its fair share of available bandwidth. This result verifies that

conservatism contributes to the downward spiral e↵ect.
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Figure 2.19: Breaking the spiral with a better filtering technique. This custom client is not
only much less conservative, but also using a better filter. It estimates the future capacity
with an 80th-percentile filter, instead of a 10-sample moving average filter.

2.5.4 Breaking the Spiral: Better Filtering

Averaging filters provide a more stable estimate of bandwidth, but a single outlier can

confuse the algorithm. For example, a few seconds of low-information movie credits reduces

the chunk size and the algorithm might drop the rate. In place of averages, we consider

medians and quantiles to reduce the vulnerability to outliers. Figure 2.19 shows what

happens if we use the 80th-percentile of measured rate of the past ten chunk downloads.

Variation is greatly reduced, and the majority of the movie plays at the highest-available

rate. The playback bu↵er has small fluctuations, but it is still far from a rebu↵er event.

This result verifies that poor capacity estimation also contributes to the downward spiral

e↵ect.

2.5.5 Breaking the Spiral: Bigger Chunks

As noted earlier, bigger chunks provide better estimates of the available bandwidth, allowing

TCP to escape slow-start. Figure 2.20 shows what happens if our client aggregates five

requests into one. With the larger chunk size, the video throughput is more stable, and both

the playback rate and bu↵er size are more stable. This result verifies that the combination

of ON-OFF behavior and small chunk size also contributes to the downward spiral e↵ect.
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Figure 2.20: Breaking the spiral with bigger chunks. This custom client requests videos
with an increased chunk size (5x).

In summary, the downward spiral e↵ect happens because the video flow gets much

less throughput than its fair share. Requesting larger chunks helps TCP reach its fair

share after each OFF period and improves the video throughput. Picking higher rates

less conservatively and filtering measurements more carefully can also help improve video

quality. But more fundamentally, an ABR algorithm should ensure video flows get their

fair share. Given TCP already has mechanisms to reach the fair share, ABR algorithms do

not need to reinvent the wheel. Instead, they should focus on letting TCP do its job and

avoid interfering with TCP.

2.6 Our Recommendation

The ON-OFF behavior is the root cause of why a video client cannot get its fair share.

Thus, an algorithm should prevent the ON-OFF behavior unless the capacity is higher than

R

max

and a full bu↵er is inevitable. In other words, the playback bu↵er should only be full

(B(t) = B

max

) when there is excessive capacity (C(t) > R

max

).

It turns out that we can easily ensure this property by focusing on the bu↵er occupancy.

From the discussion in Section 1.2, we know the bu↵er increases when C(t) > R(t) and

the bu↵er decreases when C(t) < R(t). If we let R(t) = R

max

when the bu↵er is full
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Figure 2.21: Our technique to avoid the ON-OFF tra�c pattern: picking the highest video
rate (R(t) = R

max

) when the bu↵er is almost full (B(t) > B

high

). By doing so, the bu↵er
will only be full when there is more capacity than the highest video rate (C(t) > R

max

).
As the ON-OFF pattern only appears when the bu↵er is full, the ON-OFF pattern does
not appear unless C(t) > R

max

.

(B(t) = B

max

), the bu↵er only remains full (B(t) = B

max

) when C(t) � R

max

. Otherwise,

the bu↵er decreases and B(t) < B

max

when C(t) < R

max

.

This recommendation is counterintuitive and against the common wisdom. It is com-

monly believed that the bu↵er should be as full as possible, because higher bu↵er occupancy

provides better rebu↵er protection. However, by allowing the bu↵er to not reach full, and

as a result, avoid ON-OFF behavior, TCP is able to get its fair share and improve video

quality. We can still provide similar rebu↵er protection by maintaining the bu↵er occu-

pancy above a certain threshold. Figure 2.21 visualizes this recommendation in terms of

the relationship between video rate and bu↵er occupancy.

We have shown that when competing with a long-lived TCP flow, the ON-OFF pattern

can trigger the downward spiral. Other research also shows that when competing with other

video players, the overlapping ON-OFF periods can confuse capacity estimation, leading to

oscillating quality and unfair link share among players, as shown in Figure 2.22 [2, 16, 21].

In our recommendation, as the algorithm only requests R

max

when the bu↵er approaches

full, the ON-OFF tra�c pattern appears only when the available capacity is higher than

R

max

. When competing with a long-lived TCP flow, our algorithm continues to request

R

max

when the ON-OFF pattern happens, avoiding the downward spiral. When competing
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Figure 2.22: Another problem caused by the ON-OFF tra�c pattern: the overlapping ON-
OFF periods between competing video players can confuse ABR algorithms, leading to
oscillating quality and unfair link share among players.
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Figure 2.23: The real world impact of our recommendation. By avoiding the ON-OFF
behavior, we improve the average video rate of the current practice, moving it closer to the
ideal algorithm design.

with other video players, if the bu↵er is full, all players have reached R

max

and so the

algorithm is fair.

2.7 The Real World Impact and Netflix Deployment

The work described in this chapter was published in ACM Internet Measurement Conference

in 2012 and awarded the IRTF Applied Networking Research Award in 2013. The work also

drew much attention from the industry. When designing ABR algorithms, streaming service

providers incorporate designs to avoid the downward spiral e↵ect. Netflix tested a variant

of our recommendation on 700,000 sessions in June, 2012. Their experimental results show

that video rate is improved by 50 kb/s while maintaining a slightly lower rebu↵er rate. Since



2.7. THE REAL WORLD IMPACT AND NETFLIX DEPLOYMENT 37

then, Netflix has incorporated this recommendation as part of its default algorithm in its

browser-based player. This simple recommendation e↵ectively moves the current practice

towards a better algorithm design by improving the video rate, as shown in Figure 2.23.

In the next chapter, we will discuss how to further improve the current practice by

reducing unnecessary rebu↵ers.
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Chapter 3

Case Study: Unnecessary

Rebu↵ers

In Chapter 2, we showed that a conservative safety margin often causes the downward spiral

e↵ect and leads to low-quality video. In this chapter, we will show that this same safety

margin, while being conservative for some customers, can also be too aggressive for others

and lead to unnecessary rebu↵ers.

Unnecessary rebu↵ers happen when an ABR algorithm chooses a video rate that is

higher than the end-to-end system capacity can sustain. These rebu↵ers would be avoidable

if the algorithm chose a lower video rate. In this chapter, we first investigate the frequency

at which unnecessary rebu↵ers happen in a commercial service. With help from Netflix,

we find that 20-30% of rebu↵ers seen in their streaming video service are unnecessary

and can be eliminated through a better algorithm design. We further study the cause of

unnecessary rebu↵ers through controlled experiments. Based on our observations, we then

provide recommendations to avoid these rebu↵ers. Together with the recommendations

in Chapter 2, these recommendations motivate the bu↵er-based approach for video rate

adaptation.

3.1 The Prevalence of Unnecessary Rebu↵ers

To understand the prevalence of unnecessary rebu↵ers, we need to compare the rebu↵er

rate of the current practice with an algorithm that never unnecessarily rebu↵ers. Ideally,

we could compare with a hypothetical optimal algorithm that never unnecessarily rebu↵ers,

39
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Figure 3.1: R

min

Always: an alternative algorithm that never unnecessarily rebu↵ers.

yet always maximizes video rate. However, as the ideal algorithm is unknown, we need

an alternative algorithm that never unnecessarily rebu↵ers, regardless the video rate it

achieves. One option is to stream at the minimum video rate, R
min

, all the time. Although

this choice leads to low video quality, it minimizes the chances of the bu↵er running dry

and never unnecessarily rebu↵ers. This desirable property of minimal rebu↵ers occurs,

because when streaming at R
min

, a rebu↵er only happens when C(t) < R

min

. We call this

degenerate algorithm R

min

Always and represent it in the design space in Figure 3.1.

With help from Netflix, we performed an A/B test using their browser-based player.

This player has 240 seconds of playback bu↵er and downloads the ABR algorithm at the

start of the video session. Although this player enjoys a bigger bu↵er than players on

embedded devices, it does not have visibility into, or control of, the network layer. We

randomly picked two groups of users around the world to take part in the experiments

conducted between September 6th (Friday) and 9th (Monday), 2013.

Group 1 is our Control group, which uses Netflix’s (then default) ABR algorithm.1 The

Control algorithm has steadily improved over the past five years to perform well under

many conditions. The Control algorithm directly follows the design in Figure 1.6, and it is

representative of how video streaming services work; other major services, such as Hulu [14]

and YouTube [38], follow the same design. At the time of the experiment (2013), Netflix

1The ABR algorithm in commercial services keeps evolving and Netflix’s current algorithm is now di↵er-
ent.
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Figure 3.2: Number of rebu↵ers per playhour for the Control and R

min

Always. The error
bars represent the variance of rebu↵er rates from di↵erent days in the same two-hour period.

tra�c represented 35% of the US peak Internet tra�c and Netflix served 40 million users

world-wide. For these reasons, we believe that Control is a representative algorithm for our

comparison.

Group 2 uses the R

min

Always algorithm, providing an empirical lower bound on the

rebu↵er rate against which we can compare to Control. For most sessions R
min

= 560kb/s,

but in some cases it is 235kb/s.2

Both user groups are distributed similarly across ISPs, geographic locations, viewing

behaviors and devices. The only di↵erence between the two groups of clients is the ABR

algorithm; they share the same code base for other mechanisms, such as CDN selection and

error handling. We also keep the play delay the same across the groups; this is the delay

between when the play button is clicked and when the first video frame is shown on the

screen. During our experiments each group of users viewed roughly 120, 000 hours of video.

By comparing the rebu↵er rate of Control and R

min

Always, we can understand how often

unnecessary rebu↵ers happen in a real commercial system.

Figure 3.2(a) plots the number of rebu↵ers per play-hour throughout the day. To com-

pare the performance quantitatively, Figure 3.2(b) normalizes the numbers to the average

rebu↵er rate of the Control group in each two-hour period. The first thing to notice is that

2In Netflix, Rmin is normally 235kb/s. However, most customers can sustain 560kb/s, especially in
Europe. If a user historically sustained 560kb/s, we artificially set Rmin = 560kb/s to avoid degrading the
video experience too much. The mechanism to pick Rmin is the same across all test groups.
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Figure 3.3: An Example of an existing algorithm being too aggressive: A video starts
streaming at 3Mb/s over a 5Mb/s network. After 25s the available capacity drops to 350
kb/s. Instead of switching down to a lower video rate, e.g., 235kb/s, the client keeps playing
at 3Mb/s. As a result, the client rebu↵ers and does not resume playing video for 200s. Note
that the bu↵er occupancy was not updated during rebu↵erings.

R

min

Always always has a lower rebu↵er rate than the Control algorithm. The di↵erence

between the Control algorithm and the R

min

Always algorithm suggests that 20-30% of the

rebu↵ers might be caused by poor choice of video rate. In the next section, we will focus

on an individual example to understand the causes of these unnecessary rebu↵ers.

3.2 Individual Cases

We reuse the setup described in Chapter 2 to control the bandwidth and analyze the result.

Figure 3.3 shows an example from service A to illustrate the problem. The ABR algorithm

in the figure overestimates the capacity and continues to request video at a unsustainable

rate after the capacity has dropped. The client rebu↵ers and freezes playback for 200

seconds. Similar behavior is also observed in a di↵erent commercial service [9]. Notice

that this rebu↵er is entirely unnecessary because C(t) > R

min

for the entire time series.

In fact, if the network capacity is always greater than the lowest video rate R

min

, i.e.

C(t) > R

min

, 8t > 0, there never needs to be a rebu↵er—the algorithm can simply pick

R(t) = R

min

so that C(t)/R(t) > 1, 8t > 0 and the bu↵er keeps growing. The main reason
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Figure 3.4: Our recommendations based on the two case studies. To avoid unnecessary
rebu↵ers, request R

min

when the bu↵er approaches empty. To avoid downward spiral e↵ect,
request R

max

when the bu↵er approaches full. Together they motivate the bu↵er-based
approach to video rate adaptation.

the client does not switch is that it incorrectly estimates the current capacity to be su�cient

to sustain a higher video rate. As a result, despite the fact that capacity is su�cient to

sustain R

min

, the client does not find its way to that video rate in time.

3.3 Towards the Bu↵er-Based Design

Our informal discussion suggests a path forward. The easiest way to ensure that an al-

gorithm never unnecessarily rebu↵ers is to simply request rate R

min

when the bu↵er ap-

proaches empty, allowing the bu↵er to grow as long as C(t) > R

min

. As the bu↵er grows,

it is safe to increase R(t) up to the maximum video rate as the bu↵er approaches full.

Together with the recommendation in Chapter 2, we now have the following two recom-

mendations in total:

1. To avoid the downward spiral: an ABR algorithm should pick R(t) = R

max

when

B(t) ! B

max

. (Chapter 2)

2. To avoid unnecessary rebu↵ers: an ABR algorithm should pick R(t) = R

min

when

B(t) ! 0, and increase R(t) as B(t) grows. (Chapter 3)
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Figure 3.4 summarizes the two recommendations. Notice that both recommendations

pick a video rate R(t) solely based on the bu↵er occupancy B(t). This shows that the occu-

pancy of the playback bu↵er is the primary state variable we should control. To maximize

video quality, we are in fact trying to prevent unnecessary bu↵er overruns (i.e., stream-

ing below the highest possible quality level). On the other hand, to minimize unnecessary

rebu↵ers, we are in fact trying to prevent unnecessary bu↵er underruns (i.e., unnecessary

rebu↵ers).

If it is the playback bu↵er we are controlling, then why not measure and control its

occupancy directly? The current bu↵er occupancy tells us how far we are from an underrun

or overrun, and its rate of change captures the mismatch between the system capacity and

the requested video rate. The bu↵er occupancy reflects the end-to-end system capacity,

including current load conditions of the network, the CDN, and the video client. In brief,

the bu↵er occupancy contains a considerable amount of information and is the variable we

should directly control. This observation motivates our bu↵er-based design in Chapter 4.



Chapter 4

The Bu↵er-Based Approach:

Theoretical Foundations

Inspired by the observations in Chapter 2 and 3, we propose a class of algorithms that select

the video rate solely based on the playback bu↵er level. This class of algorithms does no

capacity estimation at all; rather, they rely on bu↵er dynamics to implicitly capture the

available capacity. We call this class of ABR algorithms bu↵er-based algorithms (BBAs).

In this chapter, we first define bu↵er-based algorithms and then formally analyze their

properties. We show that bu↵er-based algorithms (1) will never unnecessarily rebu↵er and

(2) achieve an average video rate equal to the available capacity in steady state.

4.1 An HTTP Streaming Model

To set the stage, we extend the observation in the previous chapters and develop a formal

model of HTTP-based video streaming.

Video rates and video chunks. In our formal model, we assume the video client can

choose from a set of m discrete video rates, {R
1

, . . . , R

m

}, where R

1

< R

2

< · · · < R

m

. We

also refer to R

1

as R

min

(the minimum video rate) and R

m

as R

max

(the maximum video

rate). In addition, we assume that clients download video chunk by chunk. Regardless of

the encoded video rate, each chunk contains V seconds of video. A client can only change

its selected video rate on a chunk-by-chunk basis, since this is the granularity of requests.

The streaming bu↵er. In the model we consider, the streaming bu↵er in the video

client is typically measured in seconds of playback time. At any time, the bu↵er may contain

45
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chunks with many di↵erent video rates, and the output bitrate of the bu↵er will depend on

the video rate of the chunk currently being played. As a result, there is no direct mapping

between bu↵er occupancy in bytes and bu↵er occupancy in seconds. By measuring the

bu↵er in the time domain, the client keeps a record of how many video seconds of playback

video currently reside in the bu↵er without having to track the video rate associated with

each video chunk. We let B
max

denote the maximum bu↵er capacity in seconds.

Bu↵er dynamics. We index time by t � 0 and let C(t) denote the system capacity at

time t. Here, the system capacity represents the overall end-to-end capability of the system,

including the capacity of the CDN servers, the video client, and the available bandwidth of

the network in between. We let B(t) be the playback bu↵er occupancy at time t (measured

in seconds). Finally, we let R(t) denote the video rate selected at time t. Note that if the

bu↵er is full, then no chunk can be downloaded at time t; thus we adopt the convention

that if B(t) = B

max

then C(t) = 0.

Observe that the bu↵er drains at unit rate (since one second is played back every second

of real time) and fills at rate C(t)/R(t). Thus the bu↵er dynamics obey the following simple

di↵erential equation:

dB(t)

dt

=

8
>><

>>:

[C(t)/R(t)� 1]+, if B(t) = 0;

C(t)/R(t)� 1, if 0 < B(t) < B

max

;

[C(t)/R(t)� 1]�, if B(t) = B

max

.

(4.1)

(Here the notation [x]+ means the positive part of x, max{x, 0}; and [x]� means the negative

part of x, min{x, 0}.)

Given the constraint that we can only select video rates on a chunk-by-chunk basis, it

is useful to consider the bu↵er dynamics when they are observed at instants in time when

a chunk finishes. Formally, let t
k

be the completion time of the k-th chunk; by convention,

let t

0

= 0. Let r[k] be the video rate selected for the k-th chunk, so that R(t) = r[k] for

t

k�1

< t  t

k

. Similarly, let c[k] be the average download capacity for the k-th chunk, so

that:

c[k] =

R
tk

tk�1
C(t) dt

t

k

� t

k�1

.

If each chunk contains V seconds of video, the k-th chunk is V r[k] bytes long. This assumes

a constant bitrate (CBR) stream; we extend our results to a variable bitrate (VBR) stream

in Chapter 5. Since the k-th chunk takes V r[k]/c[k] seconds to download, we have t

k

=
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Figure 4.1: Two equivalent models of the streaming playback bu↵er.

t

k�1

+ V r[k]/c[k]. On the other hand, between t

k�1

and t

k

, the bu↵er fills with V seconds

of video. Therefore:

B(t
k

) =


B(t

k�1

) + V � V r[k]

c[k]

�
+

. (4.2)

Note that since C(t) = 0 whenever B(t) = B

max

, the bu↵er must be less than or equal to

B

max

when a chunk completes.

We summarize the two equivalent models of bu↵er dynamics in Figure 4.1.

Problem statement. We can now formally define the two objectives discussed in the

previous chapters.

No unnecessary rebu↵ers. An unnecessary rebu↵er occurs when the bu↵er underruns

despite the fact that su�cient capacity was available. Formally, we require the following

property: If C(t) > R

min

for all t � 0, then B(t) > 0 for all t � 0.

Average video rate optimization. The playback quality (as perceived by the viewer) is

measured by averaging the video rate over chunks; thus the long-run average video rate is

R̄ = lim
K!1

1

K

P
K

k=0

r[k]. Our goal is to maximize R̄. At the same time, this rate must be

less than or equal to the long-run average capacity, C̄  lim
T!1

1

T

R
T

0

C(t) dt. Note that

even though our goal is to maximize capacity utilization, the underlying TCP ensures the

algorithm stays a “good citizen” and only gets its fair share of available capacity.

4.2 Rate Maps and Bu↵er-Based Algorithms

In this section we define the class of bu↵er-based algorithms. Since we select a video rate

based solely on bu↵er occupancy, the design space for our algorithms can be expressed
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Figure 4.2: The design space of rate maps.

as the bu↵er-rate plane shown in Figure 4.2. The shaded region between [0, B
max

] on

the bu↵er-axis and [R
min

, R

max

] on the rate-axis defines the feasible region. Any curve

f(B) on the plane within the feasible region defines a rate map, which maps the current

bu↵er occupancy to a video rate between R

min

and R

max

. We focus on rate maps that are

continuous functions of the bu↵er occupancy B and that are strictly increasing in the region

{B : R
min

 f(B)  R

max

}.

Note that a rate map by itself does not define an algorithm. Since the rate map is

continuous, it may not directly correspond to an available discrete video rate. Plus, con-

tinuously changing the rate may cause the video rate to oscillate. Instead, we desire an

implementation where the video rate is a little “sticky”.

We therefore use the rate adaptation algorithm described in Algorithm 1. The algorithm

follows a simple principle: it stays at the current video rate as long as the rate suggested

by the rate map does not pass either the next-highest available video rate (Rate
+

) or the

next-lowest available video rate (Rate�). If either of these “barriers” are hit, the rate is

switched up or down (respectively) to a new discrete value suggested by the rate map. In

other words, if the rate suggested by the rate map (f(B)) is higher than Rate
+

, the rate

is switched up to the highest rate that is lower than f(B). Similarly, if f(B) is lower than

Rate�, the rate is switched down to the lowest rate that is higher than f(B). In this way,
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the bu↵er distance between the adjacent video rates provides a natural cushion to absorb

rate oscillations.

Algorithm 1: Video Rate Adaptation Algorithm
Input: Rate

prev

: The previously used video rate
Buf

now

: The current bu↵er occupancy
Output: Rate

next

: The next video rate

if Rate
prev

= R

max

then
Rate

+

= R

max

else
Rate

+

= min{R
i

: R
i

> Rate
prev

}

if Rate
prev

= R

min

then
Rate� = R

min

else
Rate� = max{R

i

: R
i

< Rate
prev

}

if f(Buf
now

) = Rate
max

then
Rate

next

= Rate
max

;
else if f(Buf

now

) = Rate
min

then
Rate

next

= Rate
min

;
else if f(Buf

now

) � Rate
+

then
Rate

next

= max{R
i

: R
i

< f(Buf
now

)};
else if f(Buf

now

)  Rate� then
Rate

next

= min{R
i

: R
i

> f(Buf
now

)};
else

Rate
next

= Rate
prev

;

return Rate
next

;

4.3 An Idealized Setting

Given the algorithm described in Section 4.2, our goal is to find a class of mapping functions

that can achieve our two objectives: (1) to avoid unnecessary rebu↵ers, and (2) to maximize

average video rate. In this section we use an idealized model to gain some intuition before

relaxing our assumptions in Section 4.4. To start with, we make the following simplifying

assumptions:

1. The chunk size is infinitesimal, so that we can change the video rate continuously.

2. Any video rate between R

min

and R

max

is available.
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3. Videos are encoded at a constant bitrate (CBR).

4. Videos are infinitely long.

With these assumptions, the bu↵er-based algorithm becomes quite simple: at every time

t, we instantaneously map the bu↵er level B(t) to the video rate f(B(t)). The resulting

bu↵er dynamics are:

dB(t)

dt

=

8
>><

>>:

[C(t)/f(0)� 1]+, if B(t) = 0;

C(t)/f(B(t))� 1, if 0 < B(t) < B

max

;

[C(t)/f(B
max

)� 1]�, if B(t) = B

max

.

(4.3)

In what follows, we consider rate maps f (cf. Section 4.2) that are pinned at both ends:

f(0) = R

min

and f(B
max

) = R

max

. In other words, the rate map moves from the lowest to

highest video rate as the bu↵er moves from empty to full. As we will see, any such rate

map will automatically give us the desired properties in this idealized setting.

No unnecessary rebu↵ers. Since f(B) ! R

min

as B ! 0, the derivative of B(t) will

become positive before the bu↵er hits zero. Thus we have the following result.

Theorem 1. [No unnecessary rebu↵ers] As long as C(t) � R

min

for all t and we adapt

f(B) ! R

min

as B ! 0, we will never unnecessarily rebu↵er because the bu↵er will start

to grow before it runs dry.

Average video rate maximization. Now suppose that C(t) = C for all t, where R
min

<

C < R

max

. Informally, we can expect the bu↵er level to eventually converge to a value B

⇤

where f(B⇤) = C. In other words, the video rate selected will exactly match the capacity.

This property is captured in the following theorem.

Theorem 2. [Average video rate maximization] Suppose that R

min

< C < R

max

. Then

starting from any initial bu↵er level, lim
t!1B(t) = B

⇤, where B⇤ is the unique solution to

f(B⇤) = C.

Proof.

To prove the theorem, we will show that the system (1) will converge to an equilibrium

point and (2) has a unique equilibrium point at B⇤. In other words, we will show that the

system is globally asymptotically stable at the target bu↵er level B⇤.

It is common to establish global asymptotic stability by finding a negative-definite (or

a positive-definite) function to represent the state of the system. When used in stability
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analysis, such a function is often called a Lyapunov function. Intuitively, the derivative of

the Lyapunov function represents the energy of the system. The existence of a Lyapunov

function is a su�cient condition for global asymptotic stability [25]. We can construct a

Lyapunov function for our system as follows:

First, since R
min

< C < R

max

, it is straightforward to check that at all t > 0, the bu↵er

level will satisfy 0 < B(t) < B

max

.

Now define V(B) as:

V (B) = C[

Z
B

0

(1/f(z))dz]�B.

Then since f is positive and strictly increasing, it is straightforward to show that V is

strictly concave and has a unique maximum at B

⇤. If we now calculate dV (B(t))/dt and

substitute using (4.3), we obtain:

dV (B(t))

dt

=

✓
dB(t)

dt

◆
2

.

In particular, this derivative is strictly positive as long as the system is not at the equilibrium

point B⇤. Thus V is a Lyapunov function for the system and ensures that the target bu↵er

level B⇤ is globally asymptotically stable.

Note that if C > R

max

, (4.3) shows that the bu↵er will fill up and remain full; thus, the

video rate will remain at R
max

, which is the best we can hope to achieve.1

Finally, note that more generally, capacity is not necessarily constant. In particular, it

may vary over time. Using basic results in stochastic control [13], we can show that as long

as the capacity is a Markov process (e.g., a deterministic mean capacity plus a Gaussian

noise term), stationary Markov control policies, which select actions only based on the

current state, are optimal. Because a bu↵er-based algorithm selects a rate only based on

the bu↵er level, it is a stationary Markov control policy, and it is optimal for video rate

maximization.

The preceding results shows that in an idealized setting, bu↵er-based algorithms can

achieve the two goals simultaneously when using a rate map that satisfies the following two

conditions: (1) f(B) ! R

min

as B ! 0, and (2) f(B) is increasing and eventually reaches

R

max

. In the next two sections, we see how our algorithms behave in a more realistic context

and show that essentially the same insights continue to hold.

1In practice, we would observe the “ON-OFF” behavior in the video stream due to finite chunk sizes, as
we observed in Chapter 2.
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4.4 A More Realistic Setting

In this section, we relax the first two assumptions in the idealized setting: infinitesimal

chunk size and continuous video rate. These relaxations allow us to develop bu↵er-based

algorithms to test in the field and get insights on further relaxing the other two assumptions

in Chapter 5.

In practice, the chunk size is finite (V seconds long), and a chunk is only added to the

bu↵er after it is downloaded. To avoid rebu↵ers, we always need to have at least one chunk

available in the bu↵er. Thus, to handle the finite chunk size, as well as some degree of

variation in the system, we shift the rate map to the right and create an extra reservoir,

noted as r. When the bu↵er is filling up the reservoir, i.e., 0  B  r, we request video rate

R

min

. Once the reservoir is reached, we then increase the video rate according to f(B). Also

because of the finite chunk size, the bu↵er does not stay at B
max

even when C(t) � R

max

;

thus, we should allow the rate map to reach R

max

before B

max

. We call the bu↵er between

the reservoir and the point where f(B) first reaches R
max

the cushion, and the bu↵er after

the cushion the upper reservoir.

Since many video clients have no control over TCP sockets and cannot cancel an ongoing

video chunk download, we can only pick a new rate when a chunk finishes arriving. If the

network suddenly slows down while we are in the middle of downloading a chunk, the bu↵er

might run dry before we get the chance to switch to a lower rate. Further, we are aiming

to maintain the bu↵er level above the reservoir r. Thus, to prevent unnecessary rebu↵ers,

f(B) should be designed to ensure that a chunk can always be downloaded before the bu↵er

shrinks into the reservoir area. Based on these observations, we say f(B) operates in the

safe area if it always picks chunks that will finish downloading before the bu↵er runs below

r, when C(t) � R

min

for all t. In other words, V f(B)/R
min

 (B � r). Otherwise, f(B) is

in the risky area.

Thus, the class of rate maps that we consider become the piecewise functions described

in Figure 4.3. We illustrate there the reservoir and the cushion. We also illustrate the

notion of safety described in the previous paragraph: we plot the boundary of the safe area

as the red dashed line in the figure. Any f(B) below the boundary will be a safe choice.

Now, we also assume the system only provides m discrete video rates {R
1

, . . . , R

m

}
instead of any video rate between R

min

and R

max

. With the discrete set of video rates,

the bu↵er level B(t) no longer directly maps to a video rate, since f(B(t)) might not be
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Figure 4.3: A rate map as a piecewise function. After taking finite chunk size into consid-
eration, the rate map becomes a piecewise function.

an available rate. Thus Algorithm 1 (cf. Section 4.2) has slightly more complex dynamics,

making the analysis more challenging.

Nevertheless, in the following we show that the revised rate maps can still achieve our

two objectives after removing the first two assumptions.

No unnecessary rebu↵ers. Let’s assume C(t) � R

min

for all t and we use a safe rate map

f(B), i.e., V f(B)/R
min

 (B� r) when B > r. When the bu↵er is above the reservoir, the

map selects a chunk that can be downloaded within (B � r) seconds, i.e., before the bu↵er

runs below r. Thus, we will not unnecessarily rebu↵er, as long as the size of the reservoir is

large enough to accommodate the bu↵er variation caused by the finite chunk size. In other

words, the reservoir needs to be big enough to prevent the bu↵er from going empty while

a chunk is still downloading. Since f(B) = R

min

for all B  r and C(t) � R

min

for all t,

the reservoir size needs to be at least V f(B)/C(t) = V seconds (i.e., one chunk) to prevent

rebu↵ers. Thus, we can generalize Theorem 1 and construct Theorem 3 as follows.

Theorem 3. [No unnecessary rebu↵ers] As long as C(t) � R

min

for all t, the rate map

satisfies V f(B)/R
min

 (B � r), and f(B) ! R

min

as B ! r where r > V , we will never

unnecessarily rebu↵er because the bu↵er will start to grow before it runs dry.
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Average video rate maximization. When available video rates are not continuous

but discrete, under Algorithm 1 the bu↵er level might not converge to B

⇤. This lack

of convergence occurs because f(B⇤) might not map to one of the available video rates.

Instead, the bu↵er will swing between two occupancies B
i

and B

j

, where f(B
i

) and f(B
j

)

map to discrete rates above and below C (R
i

and R

j

, respectively, i.e., R
i

< C < R

j

).

Suppose we again use a safe rate map such that f(B) = R

min

for all B such that

0  B  r, and f(B
max

) = R

max

. For such rate maps, informally, the rate will hover

around the capacity C in steady state. In the following, we prove that the long-run average

video rate, R̄, equals the capacity C.

Theorem 4. [Average video rate maximization] Given a constant capacity (C = C(t) for all

t, and R

min

< C < R

max

), the average video rate R̄ will be equal to C with any predefined

discrete set of video rates {R
1

, . . . , R

m

}.

Proof. Assuming the bu↵er level does not converge to B

⇤, where f(B⇤) = C, and the

bu↵er level swings between B

i

and B

j

, where f(B
i

) and f(B
j

) map to discrete rates above

and below C (R
i

and R

j

respectively, i.e., R
i

< C < R

j

). We denote the di↵erence between

B

i

and B

j

as �B

ij

.

Since R

i

< C, when R(t) = R

i

the bu↵er is increased by the rate of C

Ri
� 1. We will

switch up to R

j

once B(t) > B

j

, thus the amount of time we stay at R
i

can be calculated

as follows:

T

i

=
�B

ij

( C

Ri
� 1)

=
�B

ij

⇥R

i

C �R

i

(4.4)

During T

i

seconds, we download a total of T
i

C

Ri
seconds of video with rate R

i

.

Once we switch to R

j

, since R
j

> C, the bu↵er will start decreasing at the rate of 1� C

Rj
.

We will switch down to R

i

once B(t) < B

i

, thus the amount of time we stay at R
j

can be

similarly calculated as follows:

T

j

=
�B

(1� C

Rj
)

=
�B ⇥R

j

R

j

� C

(4.5)
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Following the same rationale, during T

j

seconds, we download a total of T
j

C

Rj
seconds of

video with rate R

j

.

The average video rate during T

i

+ T

j

would be the number of downloaded bits divided

by the length of the video we download. In other words, R̄ = C(Ti+Tj)

Ti
C
Ri

+Tj
C
Rj

. With some

replacement of variables, we will be able to derive that the average video rate R̄ equals the

constant capacity C.

So far we have shown that by adapting the rate map, the bu↵er-based design is still able

to achieve the two goals while handling finite chunk size and discrete video rates. These

relaxations allow us to put together a baseline algorithm and test the concept of bu↵er-

based approach in the field. In the next chapter, we will first test the baseline algorithm

through a real-world deployment. The observations made from the experiments then lead to

techniques for relaxing the last two assumptions: CBR encoding and infinite video length.
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Chapter 5

The Bu↵er-Based Approach:

Netflix Deployment

In Chapter 4, we proposed a class of bu↵er-based algorithms (BBAs) and formally proved

that in an idealized setting, BBAs will (1) never unnecessarily rebu↵er and (2) always

maximize the video rate. The idealized setting includes the following four assumptions: (1)

infinitesimal chunk sizes, (2) continuous available video rates, (3) constant bitrate (CBR)

encoding, and (4) infinite video length. To help apply the concept of BBAs to the real

world, we relaxed the first two simplifying assumptions, expanding the proof to consider

finite chunk sizes and discrete available video rates. We formally showed that BBAs can

still achieve the original two goals by using a piecewise mapping function. This relaxation

allows us to put together a baseline algorithm to test in the field, and the experimental

results help us to further develop techniques to relax the remaining two assumptions: CBR

encoding and infinite video length.

In this chapter, we conduct a series of experiments to help us understand how the bu↵er-

based approach interacts with real-world settings, such as VBR encoding and finite video

length. We first construct a naive baseline algorithm, BBA-0, which verifies the design

of handling finite chunk size and discrete available video rates. BBA-0 also attempts to

handle the VBR encoding with a large and fixed-size reservoir and cushion. We deploy the

algorithm to Netflix’s browser-based player and test it with real Netflix users. Through the

real-world deployments, the result shows that although BBA-0 helps reduce rebu↵ers for

some sessions, it is not su�cient for others. This result suggests that the size of reservoir

57
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needs to be dynamically adjusted, because each VBR-encoded video varies around the av-

erage video rate di↵erently and requires di↵erent amount of bu↵er to absorb the variation.

Furthermore, when picking a video rate, an ABR algorithm also needs to take the instanta-

neous video rate into consideration. Since the variation on instantaneous video rate reflects

on chunk sizes, our next algorithm, BBA-1, dynamically calculates the reservoir size from

the time series of chunk sizes and considers chunk sizes when picking a video rate. The

result shows that BBA-1 is able to handle the VBR encoding and avoids unnecessary re-

bu↵ers. However, BBA-1 has a lower average video rate compared to the Control. A closer

look reveals that when there is abundant capacity, the Control takes much less video time

to ramp up the video rate at the beginning of each new session. In contrast, the BBA keeps

requesting R

min

until the reservoir portion of the bu↵er is filled up, regardless the available

capacity. In a production streaming service, this ramp-up period is a non-negligible fraction

of the average session length. During this period, because the bu↵er itself is still growing

from empty and contains very little information, a simple capacity estimation becomes nec-

essary to ramp up the video rate faster. The further improved algorithm, BBA-2, therefore

divides each session into two phases: the startup phase and the steady-state phase. During

the startup phase, a simple capacity estimation based on the immediate past throughput is

used to help ramp up the video rate. During the steady state, BBA-2 keeps the bu↵er-based

approach and picks the video rate directly from the bu↵er occupancy without estimating

the system capacity. The result shows that BBA-2 is able to reduce the rebu↵er rate by

10–20% compared to Netflix’s then-default algorithm, without compromising the video rate;

the average video rate stays similar and the video rate is higher in the steady state. These

experiments not only demonstrate the viability of the bu↵er-based approach, but also con-

firm that the bu↵er-based approach can both reduce the rebu↵er rate and improve the

video rate in a real-world system. Finally, we also develop techniques to protect against

temporary network outage and to smooth video switching rate. By only allowing the reser-

voir to expand but never shrink, our last algorithm, BBA-Others, grows bu↵er occupancy

to protect against temporary network outage and reduces the switching rate. Table 5.1

summarizes the design goals of these series of algorithms. In the following, we will dive into

the designs of each algorithm and discuss their experimental results.
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Algorithm Design Goal

BBA-0 (1) Handling finite chunk size.
(2) Handling discrete available video rates.

BBA-1 Handling VBR encoding.
BBA-2 Handling finite video length (ramping up faster).
BBA-Others (1) Handling temporary network outage.

(2) Smoothing video switching rate.

Table 5.1: Summary of the design goals of BBA-0, BBA-1, BBA-2 and BBA-Others.

5.1 The Baseline Algorithm

To test the bu↵er-based approach developed in Chapter 4, we first construct a baseline

algorithm with a relatively simple and naive rate map. We start the design with a piecewise

function as shown in Figure 4.3. We then determine the size of reservoir, cushion, and

upper reservoir, as well as the shape of the rate map. We implement the algorithm in

Netflix’s browser-based player, which happens to have a 240 second playback bu↵er and the

convenient property that it downloads the ABR algorithm at the start of the video session.

As discussed in Chapter 4, the size of reservoir needs to be at least one chunk (4 seconds

in this testing environment) to absorb the bu↵er variation caused by the finite chunk size.

However, since the algorithm is tested in a production environment that streams VBR-

encoded video, the size of reservoir also needs to be big enough to absorb the bu↵er variation

caused by the VBR encoding. As the first baseline algorithm, we set the size of reservoir

to be a large and fixed-size value, 90 seconds. We thought a 90s reservoir is big enough to

absorb the variation from VBR, allowing us to focus on testing the approach developed in

Chapter 4.

The size of cushion is defined as the bu↵er distance between B

1

and B

m

, as shown in

Figure 4.3. As discussed in the proof of Theorem 4, the bu↵er distance between neighboring

rates a↵ects the frequency of rate switches. To maximize the size of cushion while leaving

some room for the upper reservoir, we let the rate map reaches R
max

when the bu↵er is 90%

full (216 seconds). In other words, we set the cushion to be 126 seconds (between 90 to 216

seconds) and the upper reservoir to be 24 seconds (between 216 to 240 seconds). To further

maximize the distance between each pair of neighboring rates, we use a linear function to

increase the rate between R

min

and R

max

.
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Figure 5.1: The rate map used in the BBA-0 algorithm.

The resulting f(B) is a piecewise linear function, which stays in the safe area defined

in Section 4.4. This rate-mapping function, together with Algorithm 1, constructs our

first bu↵er-based algorithm. We call this algorithm BBA-0 since it is the simplest of our

bu↵er-based algorithms.

We evaluate the algorithm using the same A/B test setup as in Section 3.1. We con-

ducted this experiment along with the experiment in Section 3.1 between September 6th

(Friday) and 9th (Monday), 2013. We selected the same number of users as in each group to

use our BBA-0 algorithm. To compare their performances, we measure the overall number

of rebu↵ers per playhour and the average delivered video rate in each group.

5.1.1 Experimental Results

Rebu↵er Rate. Figure 5.2(a) plots the number of rebu↵ers per playhour throughout the

day. Figure 5.2(b) simplifies a visual comparison between algorithms by normalizing the

average rebu↵er rate to the Control group in each two-hour period. Peak viewing hours

for the USA are highlighted in yellow. Error bars represent the variance of rebu↵er rates

from di↵erent days in the same two-hour period. The R

min

Always algorithm provides
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an empirical lower bound on the rebu↵er rate. Note that because the users in the three

groups are di↵erent and their environments are not exactly the same, R
min

Always only

approximates the lower bound for the other groups.

During the middle-of-night period in the USA just after peak viewing (6am–12pm

GMT), BBA-0 matches the R

min

Always lower bound very closely. At 10am GMT, even

though BBA-0 has a lower average rebu↵er rate than R

min

Always, the di↵erence is not

statistically significant.1 These two algorithms perform equally during this o↵-peak period,

because the viewing rate is relatively low, overall Internet usage is low, and the network

capacity for individual sessions does not change much. The rebu↵er rate during these

hours is dominated by random local events, such as WiFi interference, instead of congested

networks.

During peak hours, the performance with BBA-0 is significantly worse than with the

R

min

Always algorithm. Nevertheless, the BBA-0 algorithm consistently has a 10–30%

lower rebu↵er rate than the Control algorithm. This performance di↵erence is encouraging

given the extremely simple nature of the BBA-0 algorithm. Still, we hope to do better. In

Section 5.2 and 5.3, we will develop techniques to improve the rebu↵er rate of bu↵er-based

algorithms.

Video Rate. Figure 5.3(a) shows the average video rate throughout the day. Figure 5.3(b)

shows the di↵erence in the delivered video rate between Control and BBA-0. The daily

average bitrate for the Control algorithm for each ISP can be found in the Netflix ISP

Speed Index [30]. Since R

min

Always always streams at R
min

(except when rebu↵ering), its

delivered video rate is a flat line and is excluded from the figure. The BBA-0 algorithm is

roughly 100kb/s worse than the Control algorithm during peak hours, and 175kb/s worse

during o↵-peak hours. There are two main reasons for the degradation in video quality.

First, our BBA-0 algorithm uses a large and fixed-size reservoir to handle VBR, while the

size of reservoir should be adjusted to be just big enough to absorb the variation introduced

by VBR. Second, and more significantly, while the reservoir is filling up during the startup

period, our BBA-0 algorithm always requests video at rate R

min

. Given that we picked a

90s reservoir, it downloads 90 seconds worth of video at rate R
min

, which is a non-negligible

fraction of the average session length. We will address both issues in Section 5.2 and 5.3.

1The hypothesis of BBA-0 and Rmin Always share the same distribution is not rejected at the 95%
confidence level (p-value = 0.25).
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(a) Number of rebu↵ers per playhour during the day.
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(b) Normalized number of rebu↵ers per playhour, normalized to the average rebu↵er
rate of Control in each two hour period.

Figure 5.2: Number of rebu↵ers per playhour for the Control, R
min

Always, and BBA-0
algorithms. The error bars represent the variance of rebu↵er rates from di↵erent days in
the same two-hour period.
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(a) Average video rate during the day.
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(b) The di↵erence on video rate per two-hour window between Control and BBA-0.
The Y-axis shows the di↵erence in the delivered video rate between Control and BBA-0.

Figure 5.3: Comparison of video rate between Control and BBA-0. The error bars represent
the variance of video rates from di↵erent days in the same two-hour period.
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Figure 5.4: Average video switching rate per two-hour window for the Control and BBA-
0 algorithms. The numbers are normalized to the average switching rate of the Control
group for each window. The error bars represent the variance of video switching rates from
di↵erent days in the same two-hour period.

Video Switching Rate. Since our BBA-0 algorithm picks the video rate based on the

bu↵er level, we can expect the rate to fluctuate as the bu↵er occupancy changes. However,

Algorithm 1 uses the distance between adjacent video rates to naturally cushion and absorb

rate oscillations. Figure 5.4 compares BBA-0 with the Control algorithm. Note the numbers

are normalized to the average switching rate of the Control group for each two-hour period.

The BBA-0 algorithm reduces the switching rate by roughly 60% during peak hours and

by roughly 50% during o↵-peak hours.

In summary, BBA-0 confirms that we can reduce the rebu↵er rate by focusing on bu↵er

occupancy. The results also show that the bu↵er-based approach is able to reduce the video

switching rate. However, BBA-0 performs worse on video rate compared to the Control

algorithm. In the next section, we will develop techniques to improve both rebu↵er rate

and video rate by considering the VBR encoding scheme.
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Figure 5.5: The size of 4-second chunks of a video encoded at an average rate of 3Mb/s.
Note the average chunk size is 1.5MB (4s times 3Mb/s).

5.2 Handling Variable Bitrate (VBR)

In Section 5.1, the BBA-0 algorithm attempts to handle VBR by setting the reservoir size

to a large and somewhat arbitrary value. Although we are able to get a significant reduction

in rebu↵ering compared to the Control, there is still room to improve when comparing to

the empirical lower bound. In addition, the average video rate achieved by the BBA-0

algorithm is significantly lower than the Control algorithm. In this section, we will discuss

techniques to improve both rebu↵er rate and video rate by taking the encoding scheme into

consideration. A key advance is to design the reservoir based on the instantaneous encoding

bitrate of the stream being delivered.

In practice, most of the video streaming services encode their videos in variable bitrate

(VBR). VBR encodes static scenes with fewer bits and active scenes with more bits, while

maintaining a consistent quality throughout the video. VBR encodings allow more flexibility

and can use bits more e�ciently. When a video is encoded in VBR at a nominal video rate,

the nominal rate represents the average video rate, and the instantaneous video rate varies

around the average value. As a result, the chunk size will not be uniformly identical in

a stream of a given rate. Figure 5.5 shows the size of 4-second chunks over time from a



66 CHAPTER 5. THE BUFFER-BASED APPROACH: NETFLIX DEPLOYMENT

€ 

C[k]
R[k]

B[k]&

Input&
Rate&

Buffer&Size&
(seconds)&

Output&
Rate&

Buffer&
Occupancy&
(seconds)&

1&

€ 

V r[k]
c[k]

B(t)&

Input&
Rate&

Buffer&&
Size&
(seconds)&

Output&
Rate&

Buffer&
Occupancy&
(seconds)&

V&

€ 

C(t)
R(t)

B(t)&

Input&
Rate&

Per&Chunk&

Output&
Rate&

Per&Chunk&
1&

€ 

Chunk[r][k]
c[k]

V&

B(t)&

Output&
Per&Chunk&

Input&
Per&Chunk&

€ 

ChunkSize
c[k]

V&

B(t)&

Output&
Per&Chunk&

Input&
Per&Chunk&

Figure 5.6: The revised bu↵er model for handling VBR. Since each chunk has a di↵erent
size in bytes, the revised model takes individual chunk size into consideration, instead of
the nominal video rate.

production video (Black Hawk Down) encoded at 3 Mb/s. The black line represents the

average chunk size. As we can see from the figure, the variation on chunk size can be

significant within a single video rate.

Given the variation on chunk size, we need to take the size of each chunk into consider-

ation and extend the bu↵er model defined in Section 4.1. Let r[k] be the video rate selected

for the k-th chunk and c[k] be the average system capacity during the download of the k-th

chunk. For the k-th chunk from the stream of nominal video rate r, we denote the chunk

size as Chunk[r][k]. Since each chunk still contains V seconds of video, the bu↵er now

drains Chunk[r][k]/c[k] seconds while it fills with V seconds of video. The revised model is

shown in Figure 5.6.

5.2.1 Reservoir Calculation

Since the instantaneous video rate can be much higher than the nominal rate in VBR, we

could still encounter a rebu↵er event even when the capacity c[k] is exactly equal to R

min

.

However, we can avoid these rebu↵er events if we reserve enough bu↵er to absorb the bu↵er

oscillation caused by the variable chunk size.

Assuming c[k] = R

min

, when the chunk size is larger than the average, V R

min

, the video

client will consume more video in the bu↵er than the input. On the other hand, when the

chunk size is lower than the average, the bu↵er is consumed more slowly than the video is
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Figure 5.7: Reservoir calculation: We calculate the size of the reservoir from the chunk size
variation.

inputted into the bu↵er and the bu↵er occupancy will increase. Thus, by taking the amount

of bu↵er the client will consume and subtracting the amount of the bu↵er the client can

resupply during the next X seconds, we can determine the amount of reservoir needed. We

dynamically adjust the reservoir based on this prospective calculation over the lifetime of

the stream. X should be set to at least as large as the size of the playback bu↵er, since

users expect the service to continue for that period, even when bandwidth drops. Figure 5.7

visually summarizes this calculation. In the implementation of the updated algorithm, we

set X to be twice the bu↵er size, to 480 seconds. The calculated reservoir size depends

highly on the specific video and the playing segment. For example, when playing static

scenes such as opening credits, since they are encoded with very few bits, the calculated

reservoir size is negative; when playing active scenes that are encoded with much more bits,

the calculated reservoir size can be even larger than half the bu↵er size (120 seconds).

As we discussed in Section 4.4, we always need to have at least one chunk available in

the bu↵er to handle the finite chunk size. On the other hand, the reservoir cannot be too

big, otherwise we do not have enough bu↵er space left for the cushion area. As a result, we

bound the reservoir size to be between 8 and 140 seconds.2
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Figure 5.8: Handling VBR with chunk maps. To consider variable chunk size, we generalize
the concept of rate maps to chunk maps by transforming the Y-axis from video rates to
chunk sizes.

5.2.2 Chunk Map

Since the bu↵er dynamics now depend on the chunk size of the upcoming video segments

instead of the video rate, it makes more sense to map the bu↵er occupancy to the chunk size

directly. In other words, we can generalize the design space and change it from the bu↵er-

rate plane to the bu↵er-chunk plane as shown in Figure 5.8. Each curve in the figure now

defines a chunk map, which represents the maximally allowable chunk size according to the

bu↵er occupancy. In the figure, the feasible region is now defined between [0, B
max

] on the

bu↵er-axis and [Chunk

min

, Chunk

max

] on the chunk-axis, where Chunk

min

and Chunk

max

represent the average chunk size in R

min

and R

max

, respectively.

We can now generalize Algorithm 1 to use the chunk map: the algorithm stays at the

current video rate as long as the chunk size suggested by the map does not pass the size of

the next upcoming chunk at the next highest available video rate (Rate
+

) or the next lowest

available video rate (Rate�). If either of these “barriers” are passed, the rate is switched

up or down, respectively. Note that by using the chunk map, we no longer have a fixed

mapping between bu↵er levels and video rates. This could result in a higher frequency of

video rate switches. We will explore techniques to address this issue in Section 5.4.

2We can also bound the reservoir size at the encoding stage by limiting the variation introduced by the
encoder.



5.2. HANDLING VARIABLE BITRATE (VBR) 69

0 2 4 6 8 10 12 14 16 18 20 22
Hours in GMT

N
um

be
r o

f R
eb

uf
fe

rs
 p

er
 H

ou
r

Peak Hours

Control
BBA-1
BBA-0

(a) Number of rebu↵ers per playhour throughout the day.
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(b) Normalized number of rebu↵ers per playhour. Each percentage is nor-
malized to the average rebu↵er rate of the Control algorithm in a two-hour
period.

Figure 5.9: Number of rebu↵ers per playhour for the Control, R
min

Always, BBA-0, and
BBA-1 algorithms. The error bars represent the variance of rebu↵er rates from di↵erent
days in the same two-hour period. The BBA-1 algorithm achieves close-to-optimal rebu↵er
rate, especially during the peak hours.
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(a) Average video rate during the day.
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(b) The di↵erence on video rate per two-hour window between the Control,
BBA-0, and BBA-1 algorithms. The Y-axis shows the di↵erence in the
delivered video rate between Control and BBAs.

Figure 5.10: Comparison of video rate between the Control, BBA-0, and BBA-1 algorithms.
The error bars represent the variance of video rates from di↵erent days in the same two-hour
period. The BBA-1 algorithm improved video rate by 40-70kb/s compared to BBA-0 but
still remains 50-120kb/s away from the Control.
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5.2.3 Experimental Results

We use the same setup as in Section 5.1. We select the same number of users in each group

to use our VBR-enabled bu↵er-based algorithm, which dynamically calculates the reservoir

size and uses a chunk map. We will refer to the algorithm as BBA-1 in the following, as it

is our second iteration of the bu↵er-based algorithm. This experiment was conducted along

with the experiment in Section 5.1 between September 6th (Friday) and 9th (Monday),

2013.

Figure 5.9(a) shows the rebu↵er rate in terms of number of rebu↵ers per playhour, while

Figure 5.9(b) normalizes to the average rebu↵er rate of the Control in each two-hour period.

We can see from the figure that the BBA-1 algorithm comes close to the optimal line and

performs better than the BBA-0 algorithm. BBA-1 has a lower average rebu↵er rate than

R

min

Always during 4–6am GMT, but the di↵erence is not statistically significant.3 The

improvement over the Control algorithm is especially clear during peak hours, where the

BBA-1 algorithm provides a 20–28% improvement in the rebu↵er rate.

Figure 5.10(a) shows the average video rate throughout the day, while Figure 5.10(b)

shows the di↵erence in the average video rate between the Control, BBA-0, and BBA-1

algorithms. As shown in Figure 5.10(b), the BBA-1 algorithm also improves the video rate

compared to BBA-0 by 40–70kb/s on average, although it is still 50-120kb/s away from the

Control algorithm. This discrepancy in video rate comes from the startup period, when the

bu↵er is still filling up. If we compare the average video rate of the first 60 seconds between

the BBA-1 algorithm and the Control algorithm, the BBA-1 algorithm achieves 700kb/s

less than the Control. Before the client builds up its bu↵er to the size of the reservoir, the

BBA-1 algorithm will always request for R

min

, as it is the only safe rate given the bu↵er

occupancy. In the next section, we will further improve the video rate by entering into the

risky area and develop techniques to minimize the risk.

5.3 Ramping Up Faster During the Startup Phase

As discussed in the previous section, most of the di↵erences in video rate between BBA-1

and the Control algorithm can be accounted for by the startup phase, i.e., after starting a

new video or seeking to a new point. During the startup phase, the playback bu↵er starts

3The hypothesis of BBA-1 and Rmin Always share the same distribution is not rejected at the 95%
confidence level (p-value = 0.74).
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Figure 5.11: Typical time series of video rates for BBA-1 (red) and BBA-2 (blue). BBA-1
follows the chunk map and ramps slowly. BBA-2 ramps faster and reaches the steady-state
rate sooner.

out empty and carries no useful information to help us choose a video rate. BBA-1 follows

the usual chunk map, starting out with a low video rate since the bu↵er level is low. It

gradually increases the rate as the bu↵er fills, as shown by the red line in Figure 5.11.

BBA-1 is too conservative during startup. The network can sustain a much higher video

rate, but the algorithm is just not aware of it yet.

In this section, we test the following hypothesis. During the startup, we can improve

the video rate by entering into the risky area; in the steady state, we can improve both

video rate and rebu↵er rate by using a chunk map. Our next algorithm, BBA-2, tries to

be more aggressive during the startup phase. When possible, BBA-2 ramps up quickly and

fills the bu↵er with a much higher rate than what the map suggests.

From Figure 5.6, we know that the change of the bu↵er, �B = V � (ChunkSize/c[k]),

captures the di↵erence between the instantaneous video rate and system capacity. Now,

assuming the current video rate is R

i

, to safely step up a rate, c[k] needs to be at least

R

i+1

to avoid rebu↵ers. In other words, we require �B � V �(ChunkSize/R

i+1

). Further,

since videos are encoded in VBR, the instantaneous video rate can be much higher than the

nominal rate. Let the max-to-average ratio in a VBR stream be e, so that eR
i+1

represents
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the maximum instantaneous video rate in R

i+1

. When the player first starts up, since there

is no bu↵er to absorb the variation, c[k] needs to be at least larger than eR

i+1

in order to

safely step up a rate. In other words, when considering VBR and the bu↵er is empty, �B

needs to be larger than V � (ChunkSize/(eR
i+1

)) for the algorithm to safely step up from

R

i

to R

i+1

. According to Figure 5.5, the max-to-average ratio e is around 2 in our system.

Since e = 2, R
i

/R

i+1

⇠ 2, and a chunk size can be smaller than half the average chunk size

(ChunkSize  0.5V R

i

), �B needs to be larger than 0.875V s to safely step up a rate when

the bu↵er is empty in our system.

Based on the preceding observation, BBA-2 works as follows. At time t = 0, since

the bu↵er is empty, BBA-2 only picks the next highest video rate, if the �B increases by

more than 0.875V s. Since �B = V � ChunkSize/c[k], �B > 0.875V also means that

the chunk is downloaded eight times faster than it is played. As the bu↵er grows, we use

the accumulated bu↵er to absorb the chunk size variation and we let BBA-2 increase the

video rate faster. Whereas at the start, BBA-2 only increases the video rate if the chunk

downloads eight times faster than it is played, by the time it fills the cushion, BBA-2 is

prepared to step up the video rate if the chunk downloads twice as fast as it is played. The

threshold decreases linearly, from the first chunk until the cushion is full. The blue line in

Figure 5.11 shows BBA-2 ramping up faster. BBA-2 continues to use this startup algorithm

until (1) the bu↵er is decreasing, or (2) the chunk map suggests a higher rate. Afterwards,

we use the f(B) defined in the BBA-1 algorithm to pick a rate.

Note that BBA-2 is using �B during startup, which encodes a simple capacity estimate:

the throughput of the last chunk. This design helps make the algorithm more aggressive at a

point when the bu↵er has not yet accumulated enough information to accurately determine

the video rate to use. Nevertheless, note that our use of capacity estimation is restrained.

We only look at the throughput of the last chunk, and crucially, once the bu↵er is built up

and the chunk map starts to suggest a higher rate, BBA-2 becomes bu↵er-based—it picks a

rate from the chunk map, instead of using �B. In this way, BBA-2 enables us to enjoy the

improved steady-state performance of the bu↵er-based approach, without sacrificing overall

bitrate due to a slow startup ramp.

5.3.1 Experimental Results

We ran our experiments during the same time period and with the same pool of users

as the previously described experiments, which all occurred on September 6th (Friday)
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(a) Average video rate during the day.
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(b) The di↵erence on video rate per two-hour window between the Control,
BBA-1, and BBA-2 algorithms.

Figure 5.12: Comparison of video rate between the Control, BBA-1, and BBA-2 algorithms.
The error bars represent the variance of video rates from di↵erent days in the same two-hour
period. BBA-2 achieved a similar video rates to the Control algorithm overall.
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Figure 5.13: Comparison of average video rate during the steady state between Control and
BBA-2. The steady state is approximated as the period after the first two minutes in each
session. BBA-2 achieved better video rate at the steady state.

and 9th (Monday), 2013. Figure 5.12(a) shows the video rates from this experiment, and

Figure 5.12(b) shows the di↵erence in the average video rate between Control, BBA-1, and

BBA-2. From the figures, we see that BBA-2 does indeed increase the video rate. With a

faster startup-phase ramp, the video rate with BBA-2 is almost indistinguishable from the

Control algorithm. This supports our hypothesis that the lower video rates seen by BBA-0

and BBA-1 were due to their conservative rate selection during startup. Furthermore, if we

exclude the first two minutes as an approximation of the steady state, the average video

rate of BBA-2 is mostly higher than Control, as shown in Figure 5.13. This observation

also verifies our discussion in Chapter 4: The bu↵er-based approach is able to better utilize

network capacity and achieve higher average video rate in the steady state.

Figure 5.14 shows absolute and normalized rebu↵ers. BBA-2 slightly increases the re-

bu↵er rate. BBA-2 operates in the risky zone of Figure 5.8 and therefore will inevitably

rebu↵er more often than BBA-1, which only operates in the safe area. Nevertheless, the

improvements are significant relative to Control: BBA-2 maintains a 10–20% improvement

in rebu↵er rate compared to the Control algorithm during peak hours.

So far, we have successfully relaxed the four idealized assumptions made in Chapter 4.

In BBA-0, we handle the finite chunk size and discrete available video rates through a

piecewise mapping function. In BBA-1, we handle the VBR encoding through a variable
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(a) Number of rebu↵ers per playhour throughout the day.
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(b) Normalized number of rebu↵ers per playhour. The number is normalized
to the average rebu↵er rate of the Control algorithm in each two-hour period.

Figure 5.14: Number of rebu↵ers per playhour for the Control, R
min

Always, BBA-1, and
BBA-2 algorithms. The error bars represent the variance of rebu↵er rates from di↵erent
days in the same two-hour period. BBA-2 has a slightly higher rebu↵er rate compared to
BBA-1, but still achieved 10–20% improvement compared to the Control algorithm during
peak hours.
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reservoir size and a chunk map. In BBA-2, we further handle the finite video length by

dividing each session into two phases. BBA-2 still follows the bu↵er-based approach in the

steady state, and it uses a simple capacity estimation to ramp up the video rate during the

startup. The results demonstrate that by focusing on the bu↵er, we can reduce the rebu↵er

rate without compromising the video rate. In fact, the bu↵er-based approach improves the

video rate in the steady state.

In the following section, we will further discuss how to extend the bu↵er-based approach

to tackle other practical concerns.

5.4 Handling Other Practical Concerns

In the previous sections, we have shown that the bu↵er-based approach is able to both

reduce rebu↵er rate and improve video rate. In this section, we will extend the bu↵er-

based approach and develop techniques to address two other practical concerns: temporary

network outage and frequent video switches.

5.4.1 Handling Temporary Network Outage

We have shown that bu↵er-based algorithms never need to rebu↵er if the network capacity

is always higher than R

min

. In this section we explore what happens if the network capacity

falls below R

min

, such as during a complete network outage. Temporary network outages

of 20–30s are not uncommon, e.g., when a DSL modem retrains or a WiFi network su↵ers

interference. To make bu↵er-based algorithms resilient to brief network outages, we can

reserve part of the bu↵er by shifting the chunk map curve further to the right.

Figure 5.15 shows the chunk map with outage protection. The bu↵er will now converge

to a higher occupancy than before, providing some protection against temporary network

outages. We call this extra portion of bu↵er the outage protection.

How should we allocate bu↵ers to outage protection? One way is to gradually increase

the size of outage protection after each chunk is downloaded. In the implementation of

BBA-1, we accumulate outage protection by 400ms for each chunk downloaded when the

bu↵er is increasing and still less than 75% full. In the implementation of BBA-2, we only

accumulate outage protection after the algorithm exits the startup phase and is using the

chunk map algorithm. A typical amount of outage protection is 20–40 seconds at steady
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Figure 5.15: To protect against temporary network outage, we allocate part of the bu↵er
as outage protection.

state and is bounded at 80 seconds. The downside of this approach is that the chunk map

keeps moving and can cause video rates to oscillate.

In the following, we describe an alternative way to protect against temporary network

outage, while reducing changes to the chunk map, by combining it with the dynamic reser-

voir calculation.

5.4.2 Smoothing Video Switch Rate

In Section 5.2, we showed that we can improve the video rate by using a chunk map and

dynamic reservoir calculation. However, this choice makes the video rate change frequently,

as shown in Figure 5.16. Note that it is debatable as to whether video switching rate really

matters to the viewer’s quality of experience. For example, if a service o↵ers closely spaced

video rates, the viewer might not notice a switch. Nevertheless, in the following we will

explore mechanisms to reduce the switching rate and introduce a modified algorithm, BBA-

Others, to address this issue. We will see that by smoothing the changes, we can at least

match the switching rate of the Control algorithm.

There are two main reasons our bu↵er-based algorithms increase the frequency of video-

rate switches. First, when we use the chunk map, there is no longer a fixed mapping function

between bu↵er levels and video rates. Instead, bu↵er levels are mapped to chunk sizes, and
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Figure 5.16: Comparison of the average video switching rate for the Control, BBA-1, and
BBA-2 algorithms. The error bars represent the variance of video switching rates from
di↵erent days in the same two-hour period. After switching from using a rate map to using
a chunk map, the video switching rate of BBA-1 and BBA-2 is much higher than the Control
algorithm.

the nominal rate might change every time we request a new chunk. Even if the bu↵er level

remains constant, the chunk map will cause BBA-1 to frequently switch rates, since the

chunk size in VBR encoding varies over time, as illustrated in Figure 5.17. We can reduce

the chance of switching to a new rate—and then switching quickly back again—by looking

ahead to future chunks. When encountering a small chunk followed by some big chunks,

even if the chunk map tells us to step up a rate, our new algorithm BBA-Others will not

do so to avoid a likely step down in the near future. The further this modified algorithm

looks ahead, the more it can smooth out rate changes. If, in the extreme, we look ahead

to the end of the movie, it is the same as using a rate map instead of a chunk map. In the

implementation of BBA-Others, we look ahead the same number of chunks as what we have

in the bu↵er. When the bu↵er is empty, we pick a rate by only looking at the next chunk;

when the bu↵er is full, we look ahead for the next 60 chunks.4 Note that BBA-Others only

smooths out increases in video rate. It does not smooth decreases so as to avoid increasing

the likelihood of rebu↵ering.

4Our bu↵er size is 240 seconds and each chunk is 4 seconds.
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Figure 5.17: A reason using chunk map increases video switching rate. When using a chunk
map, even if the bu↵er level and the mapping function remains constant, the variation of
chunk sizes in VBR streams can make a bu↵er-based algorithm switch between rates. The
lines in the figure represent the chunk size over time from three video rates, R
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.
The crosses represent the points where the mapping function will suggest a rate change.

To explain the second reason, we look at Figure 5.7. The size of the reservoir is calculated

from the chunk size variation in the next 480 seconds. As a result, the reservoir will shrink

and expand depending on the size of upcoming chunks. If large chunks are coming up, the

chunk map will be right-shifted, and if small chunks are coming up, the chunk map will

be left-shifted. Even if the bu↵er level remains constant, a shifted chunk map might cause

the algorithm to pick a new video rate. On top of this, as described in Section 5.4.1, a

gradual increase in outage protection will also gradually right-shift the chunk map. Hence,

we reduce the number of changes by only allowing the chunk map to shift to the right,

never to the left, i.e., the reservoir expands but never shrinks. Since the reservoir cannot

be shrinked, the reservoir grows faster than it needs to, letting us use the excess for outage

protection.

5.4.3 Experimental Results

As before, we randomly pick three groups of real users for our experiment. One third are

in the Control group, one third always stream at R
min

, giving us an approximation of the

lower bound on rebu↵er rate, and one third run the BBA-Others algorithm, which smooths
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Figure 5.18: Comparison of average video switching rate between Control and BBA-Others.
The error bars represent the variance of video switching rates from di↵erent days in the
same two-hour period. BBA-Others smoothes the frequency of changes to the video rate,
making it similar to the Control algorithm.

the switching rate by looking ahead and by only allowing the chunk map to be right-shifted.

The experiment was conducted between September 20th (Friday) and 22nd (Sunday), 2013.

Figure 5.18 shows that the video rate changes much less often with BBA-Others than

with BBA-1 or BBA-2 (Figure 5.16). In fact, BBA-Others is almost indistinguishable from

Control—sometimes higher, sometimes lower.5 Figure 5.19 shows the video rate for BBA-

Others. Since we does not allow the chunk map to be left-shifted, BBA-Others switches up

more conservatively than BBA-2. Although the video rate is almost the same as Control, we

trade about 20kb/s of video rate compared to BBA-2 in Figure 5.12.6 As other bu↵er-based

algorithms, BBA-Others improves the rebu↵er rate, since we do not change the frequency

of switches to a lower rate. As shown in Figure 5.20, BBA-Others improves the rebu↵er

rate by 20–30% compares to the Control algorithm.

5The numbers are normalized to the average switching rate in Control for each two-hour window.
6This is only an approximation, since the experiments in Figure 5.19 and 5.12 ran in two di↵erent

weekends in September, 2013.
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(b) The di↵erence on video rate per two-hour window between Control,
BBA-Others.

Figure 5.19: Comparison of video rate between Control and BBA-Others. The error bars
represent the variance of video rates from di↵erent days in the same two-hour period. BBA-
Others achieves a similar video rate during the peak hours but reduces the video rate by
20–30kb/s during the o↵-peak.
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(a) Number of rebu↵ers per playhour throughout the day.

0 2 4 6 8 10 12 14 16 18 20 22
Hours in GMT

40

50

60

70

80

90

100

110

120

No
rm

al
ize

d 
Nu

m
be

r o
f R

eb
uf

fe
rs

 p
er

 H
ou

r (
%

)

Peak Hours

Control BBA-Others

(b) Normalized number of rebu↵ers per playhour. The number is normalized
to the average rebu↵er rate of the Control algorithm in each two-hour period.

Figure 5.20: Number of rebu↵ers per playhour for Control and BBA-Others. The error bars
represent the variance of rebu↵er rates from di↵erent days in the same two-hour period.
BBA-Others reduces rebu↵er rate by 20–30% compared to the Control algorithm. Values
are normalized to the average rebu↵er rate in the Control algorithm for each two-hour
window.
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Figure 5.21: Summary of the performance of bu↵er-based algorithms.

5.5 Summary

In this chapter, we tested the viability of the bu↵er-based approach through a series of

experiments spanning tens of thousands of real users on Netflix. We started with a simple

design that directly chooses the video rate based on the current bu↵er occupancy. The ex-

perimental results revealed that capacity estimation is indeed unnecessary in steady state;

however, using simple capacity estimation based on immediate past throughput is impor-

tant during the startup phase, when the bu↵er itself is growing from empty. This simpler

approach allows us to reduce the rebu↵er rate by 10–20% compared to a production ABR

algorithm while delivering a similar average video rate and a higher video rate in steady

state. We also developed techniques to protect against temporary network outage and

to smooth video switching rate. By accumulating more video in the bu↵er and trading

20kb/s video rate, we are able to achieve similar video switching rate and reduce 20–30%

rebu↵er rate compared to the Control. Figure 5.21 summarizes the performance of the se-

ries of bu↵er-based algorithms developed in this Chapter. Table 5.2 extends Table 5.1 and

summarizes the key advances between the algorithms. In summary, when closely-spaced

video rates are o↵ered and video switching rate is not a concern, BBA-2 works the best.

Otherwise, BBA-Others provides an alternative to balance between video rates and video

switching rate.
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Algorithm Design Goal Key Advances

BBA-0 (1) Handling finite chunk size.
(2) Handling discrete video rates.

Use a piecewise linear function
as the rate map.

BBA-1 Handling VBR encoding. Dynamically calculate the reser-
voir size.
Generalize rate map to chunk map.

BBA-2 Handling finite video length. Divide sessions into two phases:
startup phase and steady state.

BBA-Others (1) Handling temporary outage.
(2) Smoothing switching rate.

Minimize the changes on
the mapping function.

Table 5.2: Summary of the key advances between BBA-0, BBA-1, BBA-2, and BBA-Others.
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Chapter 6

Related Work

As Internet video becomes popular, considerable e↵ort goes into understanding and improv-

ing users’ experience of streaming video. While many works focus on the design of ABR

algorithms, many others focus on other aspects of the video streaming system. These e↵orts

include understanding users’ viewing experience, developing video encoding schemes, and

architecting the streaming system. Figure 6.1 summarizes all these e↵orts. In this chapter,

we will first discuss related works on ABR algorithms before going into other related works.

6.1 ABR Algorithm Designs

The earlier studies on ABR algorithms focus on measuring and understanding the discrep-

ancies of the current practice. These discrepancies mainly come from inaccurate estimates

of network capacity, and many algorithms have been proposed to mitigate the impact of in-

accurate estimates. Among these algorithms, the most closely related work is to use bu↵er

occupancy to adjust the capacity estimates. We will call these algorithms bu↵er-aware

ABR algorithms to di↵erentiate them from our bu↵er-based approach. The main di↵erence

is that bu↵er-aware ABR algorithms still pick video rate based on capacity estimates and

use bu↵er occupancy only to adjust the estimates. In contrast, our bu↵er-based approach

picks video rate directly from the bu↵er occupancy and uses simple capacity estimation only

during the startup. In the following, we will discuss both the earlier measurement studies

and the bu↵er-aware ABR algorithms.

87
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Figure 6.1: Overview of the related works on better streaming video over the Internet.

Understanding the Impact of Inaccurate Estimates. Commercial ABR algo-

rithms estimate the future capacity using a moving average of recent throughput measure-

ments [36]. Prior works have shown that sudden changes in available network capacity

confuse these ABR algorithms, causing the algorithms to either overestimate or underesti-

mate the available network capacity [2, 3, 9, 16, 21].

The overestimation leads to unnecessary rebu↵ers [3, 9]. In this thesis, we quantify

how often unnecessary rebu↵ers happen in a production system and show that 20–30% of

rebu↵ers are unnecessary. Based on this observation, we then propose the bu↵er-based

approach to reduce unnecessary rebu↵ers.

The underestimation not only fills the bu↵er with video chunks of lower quality, but

also leads to the ON-OFF tra�c pattern in video tra�c: when the playback bu↵er is full,

the client pauses the download until there is space. As we have shown in Chapter 2, in

the presence of competing TCP flows, the ON-OFF pattern can trigger a bad interaction

between TCP and the ABR algorithm, causing a further underestimate of capacity and a

downward spiral in video quality. When competing with other video players, overlapping

ON-OFF periods can confuse capacity estimation, leading to oscillating quality and unfair

link share among players [2, 16, 21]. In our work, since we request only R

max

when the

bu↵er approaches full, the ON-OFF tra�c pattern appears only when the available capacity

is higher than R

max

. When competing with a long-lived TCP flow, our algorithm continues

to request R

max

when the ON-OFF pattern occurs, avoiding the downward spiral. When

competing with other video players, if the bu↵er is full, all players have reached R

max

, and

so the algorithm is fair.
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Bu↵er-aware ABR Algorithms. Many algorithms have been proposed to use bu↵er

occupancy, in addition to capacity estimation, to pick a video rate [8, 10, 26, 35]

QDash [26] upgrades the video quality based on capacity estimation and smoothes the

downgrade of video quality with the bu↵er. Other algorithms leverage control theory and

use bu↵er occupancy as one of the feedback signals to select a video rate [8, 10, 35]. Tian

et al. [35] first predict future TCP throughput with a machine-learning algorithm. An

adjustment function is then computed based on bu↵er occupancy through a controller, and

a video rate is selected based on the adjusted throughput prediction. The results show that

bu↵er occupancy is useful to balance the trade-o↵ between responsiveness and smoothness

for the video rate. Elastic [8] first measures the network capacity through a harmonic filter.

Elastic then drives the bu↵er to a set-point through a controller, which considers bu↵er

occupancy as the feedback signal and models capacity measurement as a disturbance. By

keeping the bu↵er occupancy at the set-point and keeping the bu↵er from being full, Elastic

is able to utilize the capacity fully and avoid the ON-OFF tra�c pattern.

These prior works reveal that bu↵er occupancy provides important information for se-

lecting a video rate. In this thesis, we take another step forward and show that bu↵er

occupancy is in fact the primary state variable that an ABR algorithm should control. We

begin with a simple design that directly chooses the video rate according to the current

bu↵er occupancy and uses simple capacity estimation only when the bu↵er itself is growing

from empty.

6.2 Quality Metrics and User Engagement

One ongoing research e↵ort asks which streaming quality metrics (such as rebu↵ers and

video rate) a↵ect user engagement (such as play time and retention), and how these metrics

a↵ect engagement. The answers to these questions help guide ABR algorithm designs.

For example, it is easier to handle the trade-o↵ between video rate and join delay if the

algorithm designer knows which quality metric weights more for user engagement.

Large-scale video streaming services approach the problem by analyzing traces from real

users [7, 11, 19]. Correlations were first established between streaming quality metrics and

user engagement [11, 19]. The analyses have shown a negative correlation between rebu↵ers

and play time, a positive correlation between join delay and session abandonment, and a

positive correlation between video rate and play time. However, correlational observations
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are not enough to understand the relation between quality metrics and user engagement.

There are two main reasons for the insu�ciency [7, 19]. First, quality metrics are interde-

pendent. For example, while streaming video at a higher video rate leads to better quality,

it may also lead to a longer join delay and higher rebu↵er rate. Second, many external

factors confound the relation between quality metrics and user engagement. For example,

in addition to video quality, the content of a video also a↵ects the play time.

Quasi-Experimental Design (QED) is proposed to tackle these issues [19]. Instead of

conducting controlled experiments, QED uses existing traces and matches sessions that

share the values of all variables except the treating variable. In consequence, the di↵erences

of the outcome can be attributed to the treatment and establish the causality. The analyses

strengthen the correlational observations and have shown that an increase on rebu↵er causes

shorter play time and an increase on join delay causes more viewing abandonment. More

quantitatively, the results show that a user who experiences a rebu↵er delay equal to 1%

of the video duration watches 5% less of the video than a similar user who experiences no

rebu↵er at all. The results also show that when join delay is more than 2 seconds, each

incremental delay of 1 second increases abandonment rate by 5.8%.

A QoE model is further proposed to unify the impact of quality metrics on user engage-

ment [7]. Three main confounding factors—type of video (live vs. VOD), device (PC vs.

mobile devices), and users’ connectivity (wired vs. wireless)—are first identified through

information gain analysis. The traces are then split on the basis of the confounding factors.

The impact of quality metrics is modeled for each split through decision trees and unified

through a logical union. The results show that the proposed QoE model provides 70%

accuracy in predicting engagement, and using the QoE model to guide the choice of CDN

and video rate improves user engagement by 20%.

These prior works are complementary to this thesis. This thesis focuses on both reducing

rebu↵ers and improving video rate, and both quality metrics are shown to be important

to user engagement. The results from this thesis can serve as a foundation for considering

other metrics and algorithmic designs assisted by QoE models.
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6.3 Video Encoding Schemes

The concept of adaptive quality for Internet video streaming was introduced in the 1990s,

long before the recent development of HTTP-based adaptive streaming. These early algo-

rithms adapt quality by using layered encoding schemes [20, 31].

In block-oriented encoding schemes, which are commonly used in streaming services to-

day, each video is encoded into a number of video rates and each video rate is saved as an

independent and separate file. One adapts the video quality by requesting a di↵erent file.

Layered encoding schemes, on the other hand, encode a video into a hierarchy of cumulative

layers. The base layer encodes the lowest video rate, and each additional layer contains only

the additional information for the next highest video rate. As more layers are received by

the decoder, the video is reconstructed with a higher video rate. Layered encoding schemes

allow progressive video reconstruction—video players always first download the base layer

and request extra layers when extra capacity is available. Thus, layered encoding schemes

provide more resilience toward rebu↵er than block-oriented encoding schemes. Neverthe-

less, video streaming today uses block-oriented codecs instead of layered codecs, because

layered encoding requires 20–30% more bits to achieve the same quality as block-oriented

encoding [17]. Since the cost of video streaming today is dominated by the bandwidth cost,

block-oriented codecs are currently more favored in the industry [17].

In this thesis, we focus only on ABR algorithms for block-oriented codecs, but our

results reveal that many aspects of encoding profoundly a↵ect the performance of an ABR

algorithm. For example, the max-to-average ratio determines the amount of bu↵er the

algorithm needs to preserve to absorb the variation caused by the encoding, and the distance

between neighboring video rates determines the e↵ect of video rate switches. We believe all

ABR algorithms need to take the codec designs into consideration, and codec design is an

indispensable part of improving users’ streaming experience.

6.4 Other Designs in Streaming Systems

As shown in Figure 6.1, there are also e↵orts on other parts of the video streaming system

to improve users’ streaming experience. These e↵orts include optimizing congestion control

algorithms for video tra�c and designing a centralized control plane to optimize global

performance. Below, we will overview these e↵orts.
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Global Control Plane. Client-side ABR algorithms try to make the best decision

based on local observations. Their distributed nature yields system scalability, and ar-

guably each client has the best position to observe local events. However, the decisions of

these algorithms are reactive and optimize only the performance of a single client. Thus,

a centralized control plane is proposed to optimize the global performance through aggre-

gating measurements [22]. For example, a global control plane can proactively shift clients

to a better performing CDN before clients experience congestion. The simulation results

show that optimal CDN selection can potentially halve the bu↵ering ratio, i.e., the amount

of time spent on rebu↵ering over the overall video play time. The potential benefits from

CDN augmentation mechanisms, such as CDN federation and peer-assisted CDN-P2P hy-

brid model, are also investigated [6]. Our work is complementary to these e↵orts and will

benefit from the global optimization.

Congestion Control Algorithms. TCP was designed as a general-purpose transport

protocol and has served general Internet tra�c fairly well. Most variants of TCP today,

however, are not optimized for video tra�c, and many streaming services are exploring

di↵erent congestion control algorithms for video tra�c. YouTube proposes to pace the

tra�c-sending rate according to the requested video rate to smooth bursty TCP tra�c [12,

18]. The result shows that pacing video tra�c can reduce both RTT and packet loss rate.

Akamai adopts FastTCP for video tra�c, instead of mainstream TCP variants, such as

TCP Cubic or TCP New Reno. FastTCP uses queueing delay, instead of packet losses, as

a congestion signal [37]. The result shows that FastTCP can sustain a higher video rate

on average and reduce rebu↵ers [1]. When adopting a new congestion control algorithm,

it is important to avoid creating interactions between congestion control and video rate

adaptation, as Chapter 2 have shown that the interactions can result in a downward spiral

in video quality. Our work is complementary to this e↵ort and will benefit from a better

congestion control algorithm.

In summary, besides ABR algorithm designs, there are also many other e↵orts to improve

various parts of video streaming systems, including quantifying user experience, developing

video encoding schemes, designing new system architecture, and congestion control algo-

rithms. Our work is complementary to these e↵orts and will benefit from a better system

design.



Chapter 7

Conclusion

ABR algorithms are balancing between two overarching goals. They try to maximize video

rate while minimizing rebu↵ers. Existing ABR algorithms approach the problem by esti-

mating future capacity from past observations. In this thesis, we showed the surprising

result that inaccurate estimation can confuse the algorithms: underestimation can mislead

the algorithm to further underestimate the capacity and unnecessarily drop to the lowest

video rate; overestimation can mislead the algorithm to pick an unsustainable video rate

and cause rebu↵ers. However, in an environment with highly variable throughput, which is

commonly observed in commercial services, accurate estimation is a significant challenge. In

this thesis, we proposed a di↵erent approach to design ABR algorithms: we consider using

only the bu↵er to choose a video rate, and then ask when capacity estimation is needed.

Following this design approach, we observed two phases of operation. In steady-state

phase, when the bu↵er has been built up and encodes useful information on available capac-

ity, we rely only on the current bu↵er occupancy to pick a video rate and dispense entirely

with capacity estimation. We formally proved that this pure bu↵er-based approach helps

reduce unnecessary rebu↵ers and improve video rate at the steady state. In startup phase,

i.e., the first few minutes of a session, because the bu↵er is still growing from empty and

carries little information, crude capacity estimation is useful to quickly ramp up the video

rate and drive the algorithm into the steady state. This is very similar to the way slow-start

works in TCP—when a connection starts, the congestion control algorithm knows nothing

about network conditions and opens the window quickly to approach the available capacity

until packet losses is induced. In our case, while ABR algorithms also ramp up the video

rate quickly, they need to do it in a controlled manner to prevent unnecessary rebu↵ers.
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We further develop algorithms to carefully navigate the startup phase by considering both

the current bu↵er occupancy and the immediate past throughput.

We tested our algorithms in a Netflix browser-based video player in September, 2013

and demonstrated that this approach works well with over half a million users from three

continents. We find that this design approach can reduce the rebu↵er rate by 10–20% com-

pared to Netflix’s then-default ABR algorithm, while improving the steady-state video rate.

With hindsight, it is perhaps not surprising that bu↵er occupancy is the right control sig-

nal to use at the steady state, because it is the very value we are trying to prevent from

over-running or under-running at the client. While crude estimation is proved to be useful

during the startup state, this thesis observed the following design principle: rather than

presuming that capacity estimation is required, one should begin by using only the bu↵er

and add capacity estimation when it is needed. Building on this simple principle, we be-

lieve there are many more algorithms yet to be invented, such as a better algorithm for the

startup phase.

The demand for Internet video streaming services is rising, and user expectations for

the viewing experience are also soaring. At the time of this writing (2014), major streaming

services, such as Netflix and YouTube, can stream videos in 4K quality (15–22Mb/s). Given

that the current Internet capacity in an average US household is only 4–8Mb/s, video rate

adaptation will continue to be a challenge for many years to come. There are still many open

questions in this field. For example, the coordination between encoding schemes and ABR

algorithms, the division of labor between the global and the local control, and the impact of

quality metrics on user engagement. This thesis focuses on designing ABR algorithms, and

our results show that the bu↵er-based design approach provides a promising roadmap to

address this challenge. We believe the design principle derived from this thesis will continue

helping ABR algorithm designers to deal with the increasingly challenging environment in

the future.
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