"What, you've been working on the same problem too?".

- Conversation with Devavrat Shah[†]

Proofs for Chapter 9

***Definition I.1. Domination:** Let $v = (v_1, v_2, ..., v_N)$, and $u = (u_1, u_2, ..., u_N)$ denote the values of C(i, t) for two different systems of N counters at any time t. Let π , σ be an ordering of the counters (1, 2, 3, ..., N)such that they are in descending order, *i.e.*, for v we have, $v_{\pi(1)} \ge$ $v_{\pi(2)} \ge v_{\pi(3)} \ge \cdots \ge v_{\pi(N)}$ and for u we have $u_{\sigma(1)} \ge u_{\sigma(2)} \ge u_{\sigma(3)} \ge$ $\cdots \ge u_{\sigma(N)}$.

We say that v dominates u denoted $v \gg u$, if $v_{\pi(i)} \ge u_{\sigma(i)}, \forall i$. Every arrival can possibly increment any of N different counters. The set of all possible arrival patterns at time t can be defined as: $\Omega_t = \{(w_1, w_2, w_3, \dots, w_t), 1 \ge w_i \ge N, \forall i\}.$

Theorem I.1. (Optimality of LCF-CMA). Under arrival sequence $a(t) = (a_1, a_2, a_3, \ldots, a_t)$, let $q(a(t), P_c) = (q_1, q_2, q_3, \ldots, q_N)$ denote the count C(i, t) of N counters at time t under service policy P_c . For any service policy P, there exists a 1 - 1 function $f_{P,LCF}^t$: $(\Omega_t \rightarrow \Omega_t)$, for any t such that $q(f_{P,LCF(w),P}^t) \gg q(w, LCF), \forall (w \in \Omega_t), \forall t.$

Proof. We prove the existence of such a function $f_{P,LCF}^t$ inductively over time t. Let us denote the counters of the LCF system by $(l_1, l_2, l_3, \ldots, l_N)$ and the counters of the P system by $(p_1, p_2, p_3, \ldots, p_N)$. It is trivial to check that there exists such a function

[†]"Might as well submit a joint paper then!", Stanford University, 2001.

for t = 1. Inductively assume that $f_{P,LCF}^t$ exists with the desired property until time t, and we want to extend it to time t + 1. This means that there exists ordering π^t , σ^t such that, $l_{\pi^t(i)} \leq p_{\sigma^t(i)}, \forall i$. Now, at the time t + 1, a counter may be incremented and a counter may be completely served. We consider both these parts separately below:

- **Part 1:** (Arrival) Let a counter be incremented at time t + 1 in both systems. Suppose that counter $\pi^t(k)$ is incremented in the LCF system. Then extend $f_{P,LCF}^t$ for t + 1 by letting an arrival occur in counter $\sigma^t(k)$ for the P system. By induction, we have $l_{\pi^t(i)} \leq p_{\sigma^t(i)}, \forall i$. Let π^{t+1}, σ^{t+1} be the new ordering of the counters of the LCF and P systems respectively. Since one arrival occurred to both the systems in a queue with the same relative order, the domination relation does not change.
- Part 2: (Service) Let one of the counters be served at time t + 1. Under the LCF policy, the counter π^t(1) with count l_{π^t(1)} will be served and its count is set to zero, *i.e.*, C(π^t(1), t + 1) = 0, while under P any queue can be served out, depending on the CMA prescribed by P. Let P serve the counter with rank k, *i.e.*, counter σ^t(k). Then we can create a new ordering π^{t+1}, σ^{t+1} as follows:

$$\pi^{t+1}(i) = \pi^t(i+1), \quad 1 \le i \le N-1, \quad \pi^{t+1}(N) = \pi^t(1).$$
 (I.1)

$$\sigma^{t+1}(i) = \sigma^t(i), \quad 1 \le i \le k-1,$$

$$\sigma^{t+1}(i) = \sigma^t(i+1), \quad k \le i \le N-1, \quad \sigma^{t+1}(N) = \sigma^t(k).$$
 (I.2)

Under this definition, it is easy to check that, $l_{\pi^{t+1}(i)} \leq p_{\sigma^{t+1}(i)}, \forall i \text{ given } l_{\pi^t(i)} \leq p_{\sigma^t(i)}, \forall i$. Thus we have shown explicitly how we can extend to $f_{P,LCF}^t$ to $f_{P,LCF}^{t+1}$ with the desired property. Hence it follows inductively that LCF is dominated by any other policy $P.\Box$