References

[1] http://en.wikipedia.org/wiki/Naga_Jolokia. xvi
[2] http://www.qdrsram.com. 6, 184, 189, 212, 238, 280, 293, 323
[3] http://www.micron.com/products/dram. 6, 184, 188, 212, 232, 271, 280, 323
[4] Cisco Systems Inc. Cisco Catalyst 6500 Series Router. http: //www.cisco.com/en/US/products/hw/switches/ps708/\products_ data_sheet0900aecd8017376e.html. 7, 90, 137, 187, 222, 259
[5] Cisco Systems Inc. Cisco HFR. http://www.cisco.com/en/US/products/ ps5763/. 7, 90, 150, 175
[6] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison of contemporary DRAM architectures. In Proc. 26th International Symposium on Computer Architecture (ISCA'99), pages 222-233, Atlanta, Georgia, May 1999. 8
[7] http://www.rambus.com/. 8, 325
[8] http://www.rldram.com. 8, 189, 212
[9] http://www.fujitsu.com/us/services/edevices/ \backslash microelectronics/memory/fcram. 8, 189, 212
[10] R. R. Schaller. Moore's law: Past, present and future. IEEE Spectrum, 34(6):5259, June 1997. 9
[11] N. McKeown, V. Anantharam, and J. Walrand. Achieving 100\% throughput in an input queued switch. In Proc. of IEEE INFOCOM '96, volume 1, pages 296-302, March 1996. 10, 44, 113
[12] J. Dai and B. Prabhakar. The throughput of data switches with and without speedup. In Proc. of IEEE INFOCOM '00, pages 556-564, Tel Aviv, Israel, March 2000. 10, 43, 44, 102, 113, 114, 135
[13] S. Chuang, A. Goel, N. McKeown, and B. Prabhakar. Matching output queueing with a combined input/output queued switch. IEEE J.Sel. Areas in Communications, 17(6):1030-1039, June 1999. 10, 12, 19, 44, 46, 79, 104, 106, 110, 111, $112,116,117,118,126,127$
[14] N. McKeown. iSLIP: A scheduling algorithm for input queued switches. IEEE Transactions on Networking, 7(2), April 1999. 11
[15] Y. Tamir and H. C. Chi. Symmetric crossbar arbiters for VLSI communication switches. IEEE Transactions on Parallel and Distributed Systems, 4(1):13-27, January 1993. 11, 76, 332
[16] J. N. Giacopelli, J. J. Hickey, W. S. Marcus, W. D. Sincoslie, and M. Littlewood. Sunshine: A high performance self-routing broadband packet switch architecture. IEEE J. Select. Areas Commun., 9:1289-1298, 1991. 11
[17] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queuing algorithm. In ACM Computer Communication Review (SIGCOMM '89), pages 3-12, 1989. 14, 53, 229
[18] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow control in integrated services networks: The single node case. IEEE/ACM Transaction on Networking, 1(3):344-357, June 1993. 14, 53, 230
[19] L. Zhang. Virtual clock: A new traffic control algorithm for packet switching networks. ACM Transactions on Computer Systems, 9(2):101-124, 1990. 14, 230
[20] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round robin. In Proc. of ACM SIGCOMM '95, pages 231-242, September 1995. 14, 230
[21] J. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair queueing. In Proc. of IEEE INFOCOM '96, pages 120-128, San Francisco, CA, March 1996. 14, 230
[22] B. Prabhakar and N. McKeown. On the speedup required for combined input and output queued switching. Automatica, 35:1909-1920, December 1999. 19, 96
[23] P. Krishna, N. Patel, A. Charny, and R. Simcoe. On the speedup required for work-conserving crossbar switches. IEEE J.Sel. Areas in Communications, 17(6):1057-1066, June 1999. 19, 116
[24] Cisco Systems Inc. Data obtained courtesy Global Commodity Management (GCM) Group. 21, 184, 223
[25] Cisco Systems Inc. Personal communication, Power Engineering Group, DCBU. 21, 313
[26] http://en.wikipedia.org/wiki/EDRAM. 25, 127, 173, 212, 280, 303, 304, 305
[27] http://en.wikipedia.org/wiki/SerDes. 27, 212
[28] Cisco Systems Inc. Cisco Telepresence. http://www.cisco.com/en/US/ netsol/ns669/networking_solutions_solution_segment_home.html. 27, 228, 254, 371
[29] International Telecommunications Union. IPTV Focus Group. http://www. itu.int/ITU-T/IPTV/. 27, 228, 254, 371
[30] http://en.wikipedia.org/wiki/RAID. 29, 313
[31] Cisco Systems Inc. Personal communication, Central Engineering, Power Systems Group. 29, 223
[32] Cisco Systems Inc. Skimmer, Serial Network Memory ASIC, DCBU. 29, 222, 304, 313
[33] Cisco Systems Inc. Network Memory Group, DCBU. 30, 180, 184, 223, 280, 282, 300
[34] T. Chaney, J. A. Fingerhut, M. Flucke, and J. Turner. Design of a gigabit ATM switching system. Technical Report WUCS-96-07, Computer Science Department, Washington University, February 1996. 42
[35] S. Iyer, A. Awadallah, and N. McKeown. Analysis of a packet switch with memories running slower than the line rate. In Proc. IEEE INFOCOM '00, June 2000. 43, 148
[36] S. Iyer and N. McKeown. Making parallel packet switches practical. In Proc. IEEE INFOCOM '01, volume 3, pages 1680-1687, 2001. 43, 114, 352
[37] C. S. Chang, D. S. Lee, and Y. S. Jou. Load balanced Birkhoff-von Neumann switches, part I: one-stage buffering. In IEEE HPSR Conference, pages 556-564, Dallas, TX, May 2001. http://www.ee.nthu.edu.tw/~cschang/PartI.ps. 43, 44
[38] I. Keslassy and N. McKeown. Maintaining packet order in two-stage switches. In Proc. of the IEEE INFOCOM, June 2002. 43, 44
[39] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Control, 37(12):1936-1949, 1992. 44, 113, 338
[40] A. Prakash, S. Sharif, and A. Aziz. An $O\left(\log ^{2} n\right)$ algorithm for output queuing. In Proc. IEEE INFOCOM '02, pages 1623-1629, June 2002. 44, 59
[41] B. Prabhakar and N. McKeown. On the speedup required for combined input and output queued switching. Technical Report STAN-CSL-TR-97-738, Stanford University, November 1997. 44, 112, 114, 116
[42] R. B. Magill, C. Rohrs, and R. Stevenson. Output queued switch emulation by fabrics with limited memory. IEEE Journal on Selected Areas in Communications, 21(4):606-615, 2003. 44, 124, 130, 138
[43] S. Chuang, S. Iyer, and N. McKeown. Practical algorithms for performance guarantees in buffered crossbars. In Proc. IEEE INFOCOM '05, pages 981-991, 2005. 43, 132, 135, 136
[44] Image courtesy http://en.wikipedia.org/wiki/Pigeonhole_principle. 47
[45] http://en.wikipedia.org/wiki/Hilbert's_paradox_of_the_Grand_ Hotel. 47
[46] N. Endo, T. Kozaki, T. Ohuchi, H. Kuwahara, and S. Gohara. Shared buffer memory switch for an ATM exchange. IEEE Transactions on Communications, 41(1):237-245, January 1993. 48
[47] R. H. Hofmann and R. Muller. A multifunctional high-speed switch element for ATM applications. IEEE Journal of Solid-State Circuits, 27(7):1036-1040, July 1992. 48
[48] H. Yamada, S. I. Yamada, H. Kai, and T. Takahashi. Multi-Purpose memory switch LSI for ATM-based systems. In GLOBECOM, pages 1602-1608, 1990. 48
[49] M. Devault, J. Y. Cochennec, and M. Servel. The 'PRELUDE' ATD experiment: Assessments and future prospects. IEEE Journal on Selected Areas in Communications, 6(9):1528-1537, December 1988. 48
[50] J. P. Coudreuse and M. Servel. PRELUDE: An asynchronous time-division switched network. In ICC, pages 769-772, June 1987. 48
[51] M. A. Henrion, G. J. Eilenberger, G. H. Petit, and P. H. Parmentier. A multipath self-routing switch. IEEE Communications Magazine, pages 46-52, December 1993. 48
[52] MMC Networks. ATMS2000: $5 \mathrm{~Gb} / \mathrm{s}$ switch engine chipset, 1996. 48
[53] S. Iyer and N. McKeown. Techniques for fast shared memory switches. Technical Report TR01-HPNG-081501, Computer Science Department, Stanford University, August 2001. 59
[54] Y. Xu, B. Wu, W. Li, and B. Liu. A scalable scheduling algorithm to avoid conflicts in switch-memory-switch routers. In Proc. ICCCN 2005, pages 57-64, October 2005. 59, 83
[55] A. Prakash. Architectures and Algorithms for High Performance Switching. Ph.D. Thesis Report, Univ. of Texas at Austin, August 2004. 59, 83
[56] P. S. Sindhu, R. K. Anand, D. C. Ferguson, and B. O. Liencres. High speed switching device. United States Patent No. 5905725, May 1999. 66
[57] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Math. Ann., 77:453-465, 1916. 71
[58] D. König. Gráfok és mátrixok. Matematikai és Fizikai Lapok, 38:116-119, 1931. 71
[59] S. Iyer, R. Zhang, and N. McKeown. Routers with a single stage of buffering. In Proc. ACM SIGCOMM '02, Pittsburg, PA, September 2002. 75
[60] H. C. Chi and Y. Tamir. Decomposed arbiters for large crossbars with multiqueue input buffers. In IEEE International Conference on Computer Design: VLSI in Computers and Processors, pages 233-238, Cambridge, MA, 1991. 76
[61] Technical Committee T11. Fiber Channel. http://www.t11.org. 90, 212, 254
[62] Cisco Systems Inc. Cisco GSR 12000 Series Quad OC-12/STM-4 POS/SDH line card. http://www.cisco.com/en/US/products/hw/routers/ps167/ \products_data_sheet09186a00800920a7.html. 90, 187
[63] D. Gale and L. S. Shapely. College admissions and the stability of marriage. American Mathematical Monthly, 69:9-15, 1962. 93, 105, 110, 121, 122, 126
[64] M. Karol, M. Hluchyi, and S. Morgan. Input versus output queueing on a spacedivision switch. IEEE Transactions on Communications, 35(12):1347-1356, December 1987. 94, 111
[65] A. Charny. Providing QoS Guarantees in Input-buffered Crossbars with Speedup. Ph.D. Thesis Report, MIT, September 1998. 94, 95, 96, 116, 117
[66] S. Iyer and N. McKeown. Using constraint sets to achieve delay bounds in CIOQ switches. IEEE Communication Letters, 7(6):275-277, June 2003. 97
[67] M. Akata, S. Karube, T. Sakamoto, T. Saito, S. Yoshida, and T. Maeda. A $250 \mathrm{Mb} / \mathrm{s} 32 \mathrm{x} 32$ CMOS crosspoint LSI for ATM switching systems. IEEE J. Solid-State Circuits, 25(6):1433-1439, December 1990. 97, 116
[68] M. Karol, K. Eng, and H. Obara. Improving the performance of input queued ATM packet switches. In Proc. of IEEE INFOCOM '92, pages 110-115, 1992. 97, 116
[69] H. Matsunaga and H. Uematsu. A $1.5 \mathrm{~Gb} / \mathrm{s} 8 \mathrm{x} 8$ cross-connect switch using a time reservation algorithm. IEEE J. Selected Area in Communications, 9(8):13081317, October 1991. 97, 116
[70] H. Obara, S. Okamoto, and Y. Hamazumi. Input and output queueing ATM switch architecture with spatial and temporal slot reservation control. IEEE Electronics Letters, pages 22-24, January 1992. 97, 116
[71] E. Leonardi, M. Mellia, M. Marsan, and F. Neri. Stability of maximal size matching scheduling in input queued cell switches. In Proc. ICC 2000, pages 1758-1763, 2000. 102, 114
[72] http://en.wikipedia.org/wiki/Stable_marriage_problem. 105
[73] H. Mairson. The stable marriage problem. http://www1.cs.columbia.edu/ ~evs/intro/stable/writeup.html, 1992. 105
[74] Personal communication with Da Chuang. 112
[75] I. Iliadis and W. E. Denzel. Performance of packet switches with input and output queueing. In Proceedings of ICC, pages 747-753, 1990. 111
[76] A. L. Gupta and N. D. Georganas. Analysis of a packet switch with input and output buffers and speed constraints. In Proc. of INFOCOM '91, pages 694-700, 1991. 111
[77] Y. Oie, M. Murata, K. Kubota, and H. Miyahara. Effect of speedup in nonblocking packet switch. In Proceedings of ICC, pages 410-414, 1989. 111
[78] J. S. C. Chen and T. E. Stern. Throughput analysis, optimal buffer allocation, and traffic imbalance study of a generic nonblocking packet switch. IEEE Journal on Selected Areas Communication, 9(3):439-449, April 2001. 111
[79] T. Anderson, S. Owicki, J. Saxie, and C. Thacker. High speed switch scheduling for local area networks. ACM Transactions of Computing Systems, 11(4):319-352, 1993. 113
[80] C. S. Chang, W. J. Chen, and H. Y. Huang. On service guarantees for input buffered crossbar switches: A capacity decomposition approach by Birkhoff and von Neumann. In Proc. of IEEE INFOCOM '00, Tel Aviv, Israel, 2000. 113
[81] E. Altman, Z. Liu, and R. Righter. Scheduling of an input queued switch to achieve maximal throughput. Probability in the Engineering and Informational Sciences, 14:327-334, 2000. 113
[82] G. Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucum an Rev. Ser. A, 5:147-151, 1946. 113
[83] J. von Neumann. A certain zero-sum two-person game equivalent to the optimal assignment problem: Contributions to the Theory of Games, volume 2. Princeton University Press, 1953. 113
[84] T. Inukai. An efficient SS/TDMA time slot assignment algorithm. IEEE Transactions on Communications, 27:1449-1455, 1979. 113
[85] J. E. Hopcroft and R. M. Karp. An $n^{2.5}$ algorithm for maximum matching in bipartite graphs. Soc. Ind. Appl. Math. J., 2:225-231, 1973. 113
[86] R. E. Tarjan. Data Structures and Network Algorithms. Bell laboratories, 1983. 113
[87] N. Mckeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achieving 100\% throughput in an input queued switch. IEEE Transactions on Communications, 47(8):1260-1267, August 1999. 113
[88] A. Mekkittikul and N. McKeown. A practical scheduling algorithm to achieve 100% throughput in input queued switches. In Proc. of IEEE INFOCOM '98, volume 2, pages 792-799, San Francisco, CA, April 1998. 113, 114
[89] T. Weller and B. Hajek. Scheduling nonuniform traffic in a packet switching system with small propagation delay. IEEE/ACM Transactions on Networking, 5(6):813-823, 1997. 113
[90] S. Iyer and N. McKeown. Maximum size matchings and input queued switches. In Proceedings of the 40 th Annual Allerton Conference on Communications, October 2002. 113
[91] C. S. Chang, D. S. Lee, and Y. Jou. Load balanced Birkhoff-von Neumann switches, part I: one-stage buffering. Computer Communications - special issue on Current Issues in Terabit Switching, 2001. 114, 171
[92] C. S. Chang, D. S. Lee, and C. Lien. Load balanced Birkhoff-von Neumann switches, part II: multi-stage buffering. Computer Communications - special issue on Current Issues in Terabit Switching, 2001. 114, 171
[93] I. Keslassy and N. McKeown. Analysis of scheduling algorithms that provide 100% throughput in input queued switches. In Proceedings of the 39th Annual Allerton Conference on Communications, 2001. 114
[94] L. Tassiulas. Linear complexity algorithms for maximum throughput in radio networks and input queued switches. In Proc. of IEEE INFOCOM '98, pages 533-539, New York, NY, 1998. 114
[95] P. Giaccone, B. Prabhakar, and D. Shah. Towards simple, high performance schedulers for high-aggregate bandwidth switches. In Proc. of IEEE INFOCOM '02, New York, NY, 2002. 114
[96] I. Stoica and H. Zhang. Exact emulation of an output queueing switch by a combined input output queueing switch. In Proc. of IEEE IWQoS '98, 1998. 116
[97] http://www.cs.berkeley.edu/~istoica/IWQoS98-fix.html. 116
[98] A. Firoozshahian, A. Manshadi, A. Goel, and B. Prabhakar. Efficient, fully local algorithms for CIOQ switches. In Proc. of IEEE INFOCOM '07, pages 2491-2495, Anchorage, AK, May 2007. 116
[99] Rojas-Cessa, E. Oki, Z. Jing, and H. J. Chao. CIXB-1: Combined input-one-cellcrosspoint buffered switch. In IEEE Workshop on High Performance Switching and Routing, 2001. 122
[100] Rojas-Cessa, E. Oki, Z. Jing, and H. J. Chao. CIXOB-k: Combined input-crosspoint-output buffered packet switch. In IEEE Globecom, pages 2654-2660, 2001. 122
[101] L. Mhamdi and M. Hamdi. MCBF: A high-performance scheduling algorithm for buffered crossbar switches. IEEE Communications Letters, 7(9):451-453, September 2003. 122
[102] K. Yoshigoe and K. J. Christensen. Design and evaluation of a parallel-polled virtual output queued switch. In Proceedings of the IEEE International Conference on Communications, pages 112-116, 2001. 122
[103] D. Stephens and H. Zhang. Implementing distributed packet fair queueing in a scalable switch architecture. In Proc. of INFOCOM '98, pages 282-290, 1998. 122
[104] N. Chrysos and M. Katevenis. Weighted fairness in buffered crossbar scheduling. In IEEE Workshop on High Performance Switching and Routing, 2003. 122
[105] T. Javidi, R. B. Magill, and T. Hrabik. A high throughput scheduling algorithm for a buffered crossbar switch fabric. In Proceedings of IEEE International Conference on Communications, pages 1586-1591, 2001. 124
[106] R. B. Magill, C. Rohrs, and R. Stevenson. Output queued switch emulation by fabrics with limited memory. IEEE Journal on Selected Areas in Communications, 21(4):606-615, May 2003. 124, 130, 138
[107] N. McKeown, C. Calamvokis, and S. Chuang. A 2.5Tb/s LCS switch core. In Hot Chips '01, August 2001. 126
[108] Shang-Tse Chuang. Providing Performance Guarantees in Crossbar-based routers. Ph.D. Thesis Report, Stanford University, January 2005. 127
[109] Cisco Systems Inc. Personal communication, Catalyst 4K Group, GSBU. 137, 257, 259
[110] C. Clos. A study of non-blocking switching networks. The Bell System Technical Journal, 32:406-424, 1953. 148, 174, 312
[111] Nevis Networks Inc. http://www.nevisnetworks.com/. 150, 175
[112] Juniper E Series Router. http://www.juniper.net/products_and_ services/m_series_routing_portfolio/. 150, 175
[113] S. Iyer. Analysis of a packet switch with memories running slower than the line rate. M.S. Thesis Report, Stanford University, May 2000. 157
[114] V. E. Benes. Mathematical theory of connecting network and telephone traffic. Academic Press, New York, 1965. 158
[115] J. Hui. Switching and traffic theory for integrated broadband network. Kluwer Academic Publications, Boston, 1990. 158
[116] A. Jajszczyk. Nonblocking, repackable, and rearrangeable Clos networks: fifty years of the theory evolution. IEEE Communications Magazine, 41:28-33, 2003. 159
[117] H. Adiseshu, G. Parulkar, and George Varghese. A reliable and scalable striping protocol. In Proc. ACM SIGCOMM '96, 1996. 173
[118] P. Fredette. The past, present, and future of inverse multiplexing. IEEE Communications, pages 42-46, April 1994. 174
[119] J. Duncanson. Inverse multiplexing. IEEE Communications, pages 34-41, April 1994. 174
[120] J. Frimmel. Inverse multiplexing: Tailor made for ATM. Telephony, pages 28-34, July 1996. 174
[121] J. Turner. Design of a broadcast packet switching network. IEEE Trans. on Communications, pages 734-743, June 1988. 174
[122] H. Kim and A. Leon-Garcia. A self-routing multistage switching network for broadband ISDN. IEEE J. Sel. Areas in Communications, pages 459-466, April 1990. 174
[123] I. Widjaja and A. Leon-Garcia. The helical switch: A multipath ATM switch which preserves cell sequence. IEEE Trans. on Communications, 42(8):26182629, August 1994. 174
[124] F. Chiussi, D. Khotimsky, and S. Krishnan. Generalized inverse multiplexing of switched ATM connections. In Proc. IEEE Globecom '98 Conference. The Bridge to Global Integration, Sydney, Australia, 1998. 174
[125] F. Chiussi, D. Khotimsky, and S. Krishnan. Advanced frame recovery in switched connection inverse multiplexing for ATM. In Proc. ICATM '99 Conference, Colmar, France, 1999. 174
[126] Bandwidth ON Demand INteroperability Group. Interoperability requirements for nx56/64 kbit/s calls, 1995. ISO/IEC 13871. 174
[127] D. Hay and H. Attiya. The inherent queuing delay of parallel packet switches. IEEE Transactions on Parallel and Distributed Systems, 17(8), August 2006. 174
[128] H. Attiya and D. Hay. Randomization does not reduce the average delay in parallel packet switches. SIAM Journal on Computing, 37(5):1613-1636, January 2008. 174, 352
[129] S. Mneimneh, V. Sharma, and Kai-Yeung Siu. Switching using parallel in-put-output queued switches with no speedup. IEEE/ACM Transactions on Networking, 10(5):653-665, 2002. 174
[130] S. Iyer. Personal consultation with Nevis Networks Inc., 2003. 175
[131] Cisco Systems Inc. Personal communication, Low Latency Ethernet Product Group. 175, 212
[132] FocalPoint in Large-Scale Clos Switches. www.fulcrummicro.com/product_ library/applications/clos.pdf. 175
[133] http://www.cisco.com/. 180
[134] M. Sanchez, E. Biersack, and W. Dabbous. Survey and taxonomy of IP address lookup algorithms. IEEE Network, 15(2):8-23, 2001. 186, 229, 267, 289
[135] Juniper E Series Router. http://juniper.net/products/eseries. 187
[136] Force 10 E-Series Switch. http://www.force10networks.com/products/ pdf/prodoverview.pdf. 187
[137] Foundry BigIron RX-series Ethernet switches. http://www.foundrynet.com/ about/newsevents/releases/\pr5_03_05b.html. 187
[138] P. Chen and David A. Patterson. Maximizing performance in a striped disk array. In ISCA, pages 322-331, 1990. 194, 219
[139] B. R. Rau, M. S. Schlansker, and D. W. L. Yen. The Cydra 5 stride-insensitive memory system. In In Proc. Int Conf. on Parallel Processing, pages 242-246, 1989. 194, 219
[140] S. Kumar, P. Crowley, and J. Turner. Design of randomized multichannel packet storage for high performance routers. In Proceedings of Hot Interconnects, August 2005. 194, 219
[141] Distributed Denial-of-Service (DDoS) Attack. http://en.wikipedia.org/ wiki/Denial-of-service_attack\#Incidents. 206
[142] K. Houle and G. Weaver. Trends in Denial of Service Attack Technology. http://www.cert.org/archive/pdf/DoS_trends.pdf, 2001. 206
[143] M. Handley and E. Rescorla. RFC 4732: Internet denial-of-service considerations. http://tools.ietf.org/html/rfc4732, 2006. 206
[144] http://www.spirentcom.com. 206
[145] http://www.agilent.com. 206
[146] R. Bhagwan and B. Lin. Fast and scalable priority queue architecture for high-speed network switches. In Proc. of IEEE INFOCOM '00, 2000. 217
[147] Y. Joo and N. McKeown. Doubling memory bandwidth for network buffers. In Proc. IEEE INFOCOM '98, pages 808-815, San Francisco, CA, 1998. 217, 219
[148] J. Corbal, R. Espasa, and M. Valero. Command vector memory systems: High performance at low cost. In Proceedings of the 1998 International Conference on Parallel Architectures and Compilation Techniques, pages 68-77, October 1998. 219
[149] B. K. Mathew, S. A. McKee, J. B. Carter, and A. Davis. Design of a parallel vector access unit for SDRAM memory systems. In Proceedings of the Sixth International Symposium on High-Performance Computer Architecture, January 2000. 219
[150] S. A. McKee and W. A. Wulf. Access ordering and memory-conscious cache utilization. In Proceedings of the First International Symposium on HighPerformance Computer Architecture, pages 253-262, January 1995. 219
[151] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory access scheduling. In Proceedings of the 27th Annual International Symposium on Computer Architecture, pages 128-138, June 2000. 219
[152] T. Alexander and G. Kedem. Distributed prefetch-buffer/cache design for high performance memory systems. In Proceedings of the 2nd International Symposium on High-Performance Computer Architecture, pages 254-263, February 1996. 219
[153] W. Lin, S. Reinhardt, and D. Burger. Reducing DRAM latencies with an integrated memory hierarchy design. In Proc. 7th Int symposium on HighPerformance Computer Architecture, January 2001. 219
[154] S. I. Hong, S. A. McKee, M. H. Salinas, R. H. Klenke, J. H. Aylor, and W. A. Wulf. Access order and effective bandwidth for streams on a direct rambus memory. In Proceedings of the Fifth International Symposium on High- Performance Computer Architecture, pages 80-89, January 1999. 219
[155] D. Patterson and J. Hennessy. Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers, San Francisco, CA, 2nd edition, 1996. 219, 313
[156] L. Carter and W. Wegman. Universal hash functions. J. of Computer and System Sciences, 18:143-154, 1979. 219
[157] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proc. of the Thirtieth Annual Symposium on the Foundations of IEEE, 1989. 219
[158] G. Shrimali and N. McKeown. Building packet buffers with interleaved memories. Proceedings of IEEE Workship on High Performance Switching and Routing, pages 1-5, May 2005. 219
[159] A. Birman, H. R. Gail, S. L. Hantler, and Z. Rosberg. An optimal service policy for buffer systems. Journal of the Association for Computing Machinery, 42(3):641-657, May 1995. 220
[160] H. Gail, G. Grover, R. Guerin, S. Hantler, Z. Rosberg, and M. Sidi. Buffer size requirements under longest queue first. In Proceedings IFIP '92, volume C-5, pages 413-424, 1992. 220
[161] G. Sasaki. Input buffer requirements for round robin polling systems. In Proceedings of 27th Annual Conference on Communication Control and Computing, pages 397-406, 1989. 220
[162] I. Cidon, I. Gopal, G. Grover, and M. Sidi. Real-time packet switching: A performance analysis. IEEE Journal on Selected Areas in Communications, SAC-6:1576-1586, December 1988. 220
[163] A. Birman, P. C. Chang, J. Chen, and R. Guerin. Buffer sizing in an ISDN frame relay switch. Technical Report RC14286, IBM Research Report, Aug 1989. 220
[164] S. Iyer, R. R. Kompella, and N. McKeown. Analysis of a memory architecture for fast packet buffers. In Proc. IEEE HPSR, Dallas, TX, 2001. 220
[165] S. Iyer, R. R. Kompella, and N. McKeown. Techniques for fast packet buffers. In Proceedings. of GBN 2001, Anchorage, AK, April 2001. 220
[166] S. Iyer, R. R. Kompella, and N. McKeown. Designing packet buffers for router line cards. IEEE Transactions on Networking, 16(3):705-717, June 2008. 220, 361
[167] S. Iyer, R. R. Kompella, and N. McKeown. Designing packet buffers for router line cards. Technical Report TR02-HPNG-031001, Computer Science Department, Stanford University, March 2002. 220
[168] A. Bar-Noy, A. Freund, S. Landa, and J. Naor. Competitive on-line switching policies. Algorithmica, 36:225-247, 2003. 220, 221
[169] R. Fleischer and H. Koga. Balanced scheduling toward loss-free packet queueing and delay fairness. Algorithmica, 38:363-376, 2004. 220, 221
[170] P. Damaschek and Z. Zhou. On queuing lengths in on-line switching. Theoretical Computer Science, 339:333-343, 2005. 220, 221
[171] J. Garcia, J. Corbal, L. Cerda, and M. Valero. Design and implementation of high-performance memory systems for future packet buffers. Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, pages 372-384, 2003. 221
[172] G. Shrimali, I. Keslassy, and N. McKeown. Designing packet buffers with statistical guarantees. In HOTI '04: Proceedings of the High Performance Interconnects, pages 54-60. IEEE Computer Society, 2004. 221
[173] M. Arpaci and J. Copeland. Buffer management for shared-memory ATM switches. IEEE Comm. Surveys and Tutorials, 3(1):2-10, 2000. 221, 267
[174] M. L. Irland. Buffer management in a packet switch. IEEE Trans. Communication, COM-26(3):328-337, March 1978. 221, 267
[175] Cisco Systems Inc. http://www.cisco.com/en/US/products/hw/ switches/ps708/\products_data_sheet0900aecd801459a7.htm. 222
[176] Cisco Systems Inc. Cisco nexus 5000 series switch. http://www.cisco.com/ en/US/products/ps 9670 /index.html. 222, 259
[177] Cisco Systems Inc. Cisco nexus 7000 series switch. http://www.cisco.com/ en/US/products/ps4902/index.html. 222, 259
[178] Cisco Systems Inc. Data Center Ethernet. http://www.cisco.com/en/US/ netsol/ns783/networking_solutions_package.html. 222, 259
[179] Cisco Systems Inc. Personal communication, Mid Range Routers Business Unit. 222
[180] Cisco Systems Inc. Personal communication, Core Router Project. 222
[181] Cisco Systems Inc. Personal communication, DC3 VOQ Buffering ASIC Group. 222, 313
[182] Cisco Systems Inc. Personal communication, DC3 Storage ASIC Group. 222, 313
[183] Pablo Molinero. Circuit Switching in the Internet. Ph.D. Thesis Report, Stanford University, June 2003. 228
[184] P. Gupta and N. McKeown. Algorithms for packet classification. IEEE Network, 15(2):24-32, 2001. 229, 267, 289
[185] S. Fide and S. Jenks. A survey of string matching approaches in hardware. http://spds.ece.uci.edu/~sfide/String_Matching.pdf. 229
[186] R. Geurin and V. Peris. Quality-of-Service in packet networks: Basic mechanisms and directions. Computer Networks, 31(3):169-189, February 1999. 230, 267
[187] S. Iyer and Da Chuang. Designing packet schedulers for router line cards. In preparation for IEEE INFOCOM '09. 234
[188] http://en.wikipedia.org/wiki/Freenet. 254
[189] J. Oikarinen and D. Reed. RFC 1459: Internet relay chat protocol. http: //tools.ietf.org/html/rfc1459, 1993. 254
[190] J. Rosenburg and H. Schulzrinne. RFC 2871: A framework for telephony routing over IP. http://tools.ietf.org/html/rfc2871, 2000. 254
[191] http://en.wikipedia.org/wiki/Multiplayer. 254
[192] http://en.wikipedia.org/wiki/Doom_(video_game). 254
[193] Cisco Systems Inc. Personal communication, DC3 and Catalyst 6K Group, ISBU, DCBU. 257
[194] D. Newman. RFC 2647: Benchmarking terminology for firewall performance. http://tools.ietf.org/html/rfc2647, 1999. 265, 287
[195] S. Waldbusser. RFC 2819: Remote network monitoring management information base. http://tools.ietf.org/html/rfc2819, 2000. 265
[196] Cisco Systems Inc. http://www.cisco.com/warp/public/732/Tech/ netflow. 265, 268
[197] Juniper Networks. www. juniper.net/techcenter/appnote/350003.html. 265, 268
[198] Huawei Inc. Technical Whitepaper for Netstream. http://www.huawei.com/ products/datacomm/pdf/view.do?f=65. 265
[199] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. RFC 3272: Overview and principles of Internet traffic engineering. http://tools.ietf.org/html/ rfc3272, 2002. 265
[200] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown. Analysis of a statistics counter architecture. IEEE Hot Interconnects 9, August 2001. 267
[201] C. Estan and G. Varghese. New directions in traffic measurement and accounting. In Proc. ACM SIGCOMM '01, pages 75-80, 2001. 267
[202] Cisco Systems Inc. Personal communication, Ethernet Address and Route Lookup Group, DC3. 280, 281, 282, 313
[203] S. Ramabhadran and G. Varghese. Efficient implementation of a statistics counter architecture. In Proc. ACM SIGMETRICS, pages 261-271, 2003. 281, 313
[204] Q. G. Zhao, J. J. Xu, and Z. Liu. Design of a novel statistics counter architecture with optimal space and time efficiency. In Proc. SIGMetrics/Performance, pages 261-271, 2006. 281, 300, 313
[205] Y. Lu, A. Montanari, B. Prabkahar, S. Dharmapurikar, and A. Kabbani. Counter Braids: A novel counter architecture for per flow measurment. In Proc. ACM Sigmetrics, 2008. 281, 313
[206] P. Gupta and D. Shah. Personal communication. 281
[207] S. Iyer and N. McKeown. High speed packet-buffering system. Patent Application No. 20060031565, 2006. 281, 411
[208] K. Egevang and P. Francis. RFC 1631: The IP network address translator (NAT). http://tools.ietf.org/html/rfc1631, 1994. 287, 289
[209] http://www.cisco.com/en/US/docs/ios/12_4t/qos/configuration/ guide/qsnbar1.html. 287
[210] S. Iyer. Maintaining state for router line cards. In preparation for IEEE Communication Letters. 291
[211] Y. Joo and N. McKeown. Doubling memory bandwidths for network buffers. In Proc. IEEE INFOCOM '98, pages 808-815, 1998. 295
[212] http://en.wikipedia.org/wiki/Double_buffering. 295
[213] Cisco Systems Inc. Personal communication, ISBU and DCBU ASIC Engineering Groups. 300
[214] Cisco Systems Inc., Network Memory Group. Skimmer Serial Network Memory Protocol. 313
[215] http://en.wikipedia.org/wiki/ACID. 313
[216] H.J. Kushner. Stochastic Stability and Control. Academic Press, 1967. 338
[217] G. Fayolle. On random walks arising in queuing systems: ergodicity and transience via quadratic forms as Lyapunov functions - Part I. Queueing Systems, 5:167-184, 1989. 338
[218] E. Leonardi, M. Mellia, F. Neri, and M.A. Marsan. On the stability of input queued switches with speed-up. IEEE Transactions on Networking, 9(1):104-118, 2001. 338
[219] R. L. Cruz. A Calculus for Network Delay: Part I. IEEE Transactions on Information Theory, 37:114-131, January 1991. 350
[220] Personal communication with David Hay. 352
[221] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan. RFC 3376: Internet group management protocol, v3. http://tools.ietf.org/html/ rfc3376, 2002. 371
[222] Z. Albanna, K. Almeroth, D. Meyer, and M. Schipper. RFC 3171: IANA guidelines for IPv4 multicast address assignments. http://tools.ietf.org/ html/rfc3171, 2001. 371
[223] R. Hinden and S. Deering. RFC 2375: IPv6 multicast address assignments. http://tools.ietf.org/html/rfc2375, 1998. 371
[224] D. Thaler. RFC 2715: Interoperability rules for multicast routing protocols. http://tools.ietf.org/html/rfc2715, 1999. 371
[225] S. Deering. RFC 1112: Host extensions for IP multicasting. http://tools. ietf.org/html/rfcil12, 1998. 371
[226] Cisco Systems Inc. Personal communication, DC3 100G MAC ASIC Group. 371
[227] Gua, Ming-Huang, and R.S. Chang. Multicast ATM switches: survey and performance evaluation. Computer Communication Review, 28(2), 1998. 373
[228] J. Turner and N. Yamanaka. Architectural choices in large scale ATM switches. IEICE Trans. Communications, E81-B(2):120-137, February 1998. 373
[229] N. F. Mir. A survey of data multicast techniques, architectures, and algorithms. IEEE Communications Magazine, 39:164-170, 2001. 373
[230] S. Iyer and N. McKeown. On the speedup required for a multicast parallel packet switch. IEEE Comm. Letters, 2001. 376, 377
[231] Cisco Systems Inc. Personal communication, DCBU. 380, 381
[232] S. Iyer and N. McKeown. High speed memory control and I/O processor system. Patent Application No. 20050240745, 2005. 411

