
LOAD BALANCING AND PARALLELISM FOR THE INTERNET

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Sundar Iyer

July 2008

c© Copyright by Sundar Iyer 2008

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is

fully adequate in scope and quality as a dissertation for the degree of

Doctor of Philosophy.

(Prof. Nick McKeown) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is

fully adequate in scope and quality as a dissertation for the degree of

Doctor of Philosophy.

(Prof. Balaji Prabhakar)

I certify that I have read this dissertation and that, in my opinion, it is

fully adequate in scope and quality as a dissertation for the degree of

Doctor of Philosophy.

(Prof. Frank Kelly)

Approved for the University Committee on Graduate Studies.

iii

To

my late Grandpa,

my late Grandma,

and my “grand”Ma

&

To

A sub-culture that

values Academia

iv

Abstract

Problem: High-speed networks including the Internet backbone suffer from a well-

known problem: packets arrive on high-speed routers much faster than commodity

memory can support. On a 10 Gb/s link, packets can arrive every 32 ns, while memory

can only be accessed once every ∼50ns. By 1997, this was identified as a fundamental

problem on the horizon. As link rates increase (usually at the rate of Moore’s Law),

the performance gap widens and the problem only becomes worse. The problem is

hard because packets can arrive in any order and require unpredictable operations

to many data structures in memory. And so, like many other computing systems,

router performance is affected by the available memory technology. If we are unable

to bridge this performance gap, then —

1. We cannot create Internet routers that reliably support links >10 Gb/s.

2. Routers cannot support the needs of real-time applications such as voice, video

conferencing, multimedia, gaming, etc., that require guaranteed performance.

3. Hackers or viruses can easily exploit the memory performance loopholes in a

router and bring down the Internet.

Contributions: This thesis lays down a theoretical foundation for solving the memory

performance problem in high-speed routers. It brings under a common umbrella several

high-speed router architectures, and introduces a general principle called “constraint

sets” to analyze them. We derive fourteen fundamental, not ephemeral solutions to

the memory performance problem. These can be classified under two types — (1)

load balancing algorithms that distribute load over slower memories, and guarantee

that the memory is available when data needs to be accessed, with no exceptions

whatsoever, and (2) caching algorithms that guarantee that data is available in cache

100% of the time. The robust guarantees are surprising, but their validity is proven

analytically.

Results and Current Usage: Our results are practical — at the time of writing,

more than 6M instances of our techniques (on over 25 unique product instances)

v

will be made available annually. It is estimated that up to ∼80% of all high-speed

Ethernet switches and Enterprise routers in the Internet will use these techniques.

Our techniques are currently being designed into the next generation of 100 Gb/s

router line cards, and are also planned for deployment in Internet core routers.

Primary Consequences: The primary consequences of our results are that —

1. Routers are no longer dependent on memory speeds to achieve high performance.

2. Routers can better provide strict performance guarantees for critical future

applications (e.g., remote surgery, supercomputing, distributed orchestras).

3. The router data-path applications for which we provide solutions are safe from

malicious memory performance attacks, either now and provably, ever in future.

Secondary Consequences: We have modified the techniques in this thesis to solve

the memory performance problems for other router applications, including VOQ

buffering, storage, page allocation, and virtual memory management. The techniques

have also helped increase router memory reliability, simplify memory redundancy, and

enable hot-swappable recovery from memory failures. It has helped to reduce worst-

case memory power (by ∼25-50%) and automatically reduce average case memory and

I/O power (which can result in dramatic power reduction in networks that usually have

low utilization). They have enabled the use of complementary memory serialization

technologies, reduced pin counts on packet processing ASICs, approximately halved

the physical area to build a router line card, and made routers more affordable (e.g.,

by reducing memory cost by ∼50%, and significantly reducing ASIC and board costs).

In summary, they have led to considerable engineering, economic, and environmental

benefits.

Applicability and Caveats: Our techniques exploit the fundamental nature of

memory access, and so their applicability is not limited to networking. However,

our techniques are not a panacea. As routers become faster and more complex, we

will need to cater to the memory performance needs of an ever-increasing number of

router applications. This concern has resulted in a new area of research pertaining to

memory-aware algorithmic design.

vi

Preface

“Do you have a book on stable marriages?”, I asked her with a straight face1. It was

the first book I was told to read at Stanford, and I knew full well where I could find

it. But the moment of humor was there, waiting to be exploited. She looked at me

as only a nineteen-year-old girl could — simultaneously playfully, flabbergasted, and

unimpressed . . .

Why is it hard to build high-speed routers? Because high-speed routers are like

marriages: they are unpredictable, provide no guarantees, and become vulnerable in

adversity. Not that I’m asking you to allow a 31-year-old unmarried male to lecture

you about marriage — thankfully, this thesis makes no attempt to comment on human

marriage, a topic about which the author is clueless.

This thesis is about solving the memory performance bottlenecks in building high-

speed routers. More specifically, it is about managing and resolving the preferences

and contention for memory between packets from participating inputs and outputs in

a router.

“But no one really reads a thesis . . .”, is a lament2 one often hears in academia.

It’s a remark that is neither very motivating or useful for a grad student to hear. We

humans are driven by the proud notion that the work we do (e.g., writing a thesis)

has a point. I would like to challenge the notion that a thesis is not intended to be

read. To that end, I have tried to structure the chapters so that they can be read

independently.

Almost all the research pertaining to this thesis was done in the High Performance

Network Group at Stanford University. The thesis was then written over ten months

from October 2007 to July 2008, and is now being completed after four years of

development and deployment of some of the academic ideas expounded herein (initially

at Nemo Systems, and currently in the Network Memory Group at Cisco Systems).

1Mathematical and Computer Sciences Library, Stanford University. See Chapter 4 for its
application to networking.

2“: : : If the work is interesting, they can always read your papers”.

vii

My industry experience benefitted me tremendously, by giving me a sense of what

is practical. Working in industry before finishing my thesis helped me ground my

ideas in reality. It also enabled me to write from an insider’s perspective, which I hope

to convey to you, the reader. While aging four years hasn’t made me any faster, I

believe it may have improved the quality of the writing — you be the judge.

If you should find typos or errors of fact, please contact me: sundaes@cs.stanford.edu.

Oh, and if you find mistakes in the proofs — you know what to do . . . “Mum’s the

word!” I hope that you will enjoy your reading, and that you’ll take away something

of value. So long, and thanks for all the pisces . . .

— Stanford, CA

July 2008

viii

Acknowledgements

“You have to thank some people all the time,

and all people some of the time”.

— Quick Quotations Corporation

Nick — the above quote was created for you! I am deeply indebted to you for

being a great mentor, a stellar advisor, and most important, a caring and trusted

friend. I would like to thank you for giving me your collegial respect, for guiding me

in identifying important problems, bringing out my best, and giving me the latitude

to be an independent researcher. You have inspired me in many ways, and I have

learned from your attention to detail, your focus on quality of research and writing,

and your ability to tackle big problems.

Balaji — I want to thank you for our many positive interactions, and for your

guidance, support, and deep insight into problems. I cherish and am in awe of your

mathematical abilities. Sunil, Mark, Frank, and Rajeev — thank you for being on my

dissertation and reading committee, and for your quality comments and feedback over

time.

The work on buffered crossbars and statistics counters was done with two colleagues

of whom I have always been in awe — Da and Devavrat. Amr, Rui, and Ramana, it

has been a pleasure to work with you on some aspects of this thesis. I have met some

extremely versatile people at Stanford — Martin, is there anything you do not do?

Also Guido, Pankaj, Neda, Rong, Isaac, Nandita, Pablo, Youngmi, Gireesh, Greg, and

Yashar, as well as members of the Stanford HPNG and ISN groups. It may be a given

that you are smart, but you are also humble, genuine, and wonderful human beings,

and that’s what has made you interesting to me.

It takes time to churn out a thesis, and the research of course occasionally entails

inadvertent mistakes. I would like to thank the many reviewers of my work, especially

Isaac Keslassy and Bruce Hajek, for pointing out errors in a constructive manner,

thereby helping me improve my work. I would also like to acknowledge the many

readers who helped refine the thesis, in particular Morgan, Rong, Tarun, Da, Guido,

Mainak, Pankaj, Urshit, Deb, Shadab and Andrew. Special thanks to Angshuman

for painstakingly and rigorously checking the proofs; George Beinhorn for playing

ix

Strunk and White; Henrique for helping with an early LaTeX draft; and to the many

picturesque towns of northern California where I traveled to write my thesis. I am

grateful for the fellowships provided by Cisco and Siebel Systems, and grants by the

NSF, ITRI, and Sloan Foundation.

A number of people helped make this thesis relevant to industry and helped

make its deployment a success. They include the investors at Nemo Systems and

my colleagues at Nemo and the Network Memory Group at Cisco Systems. I reserve

special thanks for Tom Edsall, Ramesh Sivakolundu, Flavio Bonomi, and Charlie

Giancarlo, for taking a keen interest and helping champion this technology at Cisco.

Last but not the least, I would like to credit Da (“colleague extraordinaire”) for being

the main force behind the delivery of these ideas. I am in awe of your sharp mind,

your ability to multitask, and your untiring efforts. Without you, these ideas would

never have reached their true potential.

Special thanks to Stanford University, for giving me the opportunity to interact

with some extraordinary and talented people from all over the world. Finally, I would

like to thank close friends who overlapped my IIT and Stanford experience — Kartik,

Kamakshi, Urshit, and Manoj, and the extended network of mentors and friends (see

Facebook!) who have given me many wonderful, meaningful, creative and of course,

hilarious moments.

I would never have made it to Stanford without the efforts of my many inspiring

professors at IIT Bombay, plus the backing of Ajit Shelat and SwitchOn Networks,

and Prof. Bhopardikar, who nurtured my love of math.

This journey would not be possible without the efforts of an amazing woman, a.k.a.

Mom, and my late grandparents. I also want to cherish Ajit for his inspirational views

and deep love of academia even as a seven-year-old, and my extended family for their

unconditional love and support in hard times. I miss you a lot. Finally, important

and too easily forgotten, I would like to acknowledge the subculture that I grew up in

during my childhood in India, which inculcates and gives tremendous (if sometimes

näıve) value to academic and creative pursuits. “Look, Ma, I . . . ”

x

Contents

Abstract v

Preface vii

Acknowledgements ix

1 Introduction 1

I Load Balancing and Caching for Router Architecture 34

2 Analyzing Routers with Parallel Slower Memories 37

3 Analyzing Routers with Distributed Slower Memories 62

4 Analyzing CIOQ Routers with Localized Memories 85

5 Analyzing Bu�ered CIOQ Routers with Localized Memories 117

6 Analyzing Parallel Routers with Slower Memories 138

II Load Balancing and Caching for Router Line Cards 172

Part II: A Note to the Reader 173

7 Designing Packet Bu�ers from Slower Memories 177

8 Designing Packet Schedulers from Slower Memories 221

9 Designing Statistics Counters from Slower Memories 259

10 Maintaining State with Slower Memories 280

11 Conclusions 301

Epilogue 310

xi

III Appendices & Bibliography 312

A Memory Terminology 313

B De�nitions and Tra�c Models 317

C Proofs for Chapter 3 320

D Proofs for Chapter 5 323

E A Modi�ed Bu�ered Crossbar 332

F Proofs for Chapter 6 334

G Centralized Parallel Packet Switch Algorithm 340

H Proofs for Chapter 7 344

I Proofs for Chapter 9 356

J Parallel Packet Copies for Multicast 358

List of Figures 369

List of Tables 371

List of Theorems 372

List of Algorithms 376

List of Examples 377

References 379

End Notes 395

List of Common Symbols and Abbreviations 397

Index 401

xii

Chapter 1: Introduction
Nov 2007, Mendocino, CA

Contents

1.1 Analogy . 1

1.2 Goal . 2

1.3 Background . 3

1.3.1 The Ideal Router . 3

1.3.2 Why is it Hard to Build a High-speed Ideal Router? 5

1.3.3 Why is Memory Access Time a Hard Problem? 7

1.3.4 Historical Solutions to Alleviate the Memory Access Time Problem . . 9

1.4 Mandating Deterministic Guarantees for High-Speed Routers . . 12

1.4.1 Work Conservation to Minimize Average Packet Delay 13

1.4.2 Delay Guarantees to Bound Worst-Case Packet Delay 13

1.5 Approach . 16

1.5.1 Analyze Many Different Routers that Have Parallelism 16

1.5.2 Load-Balancing Algorithms . 17

1.5.3 Caching Algorithms . 18

1.5.4 Use Emulation to Mandate that Our Routers Behave Like Ideal Routers 19

1.5.5 Use Memory as a Basis for Comparison 20

1.6 Scope of Thesis . 21

1.7 Organization . 23

1.8 Application of Techniques . 27

1.9 Industry Impact . 28

1.9.1 Consequences . 29

1.9.2 Current Usage . 30

1.10 Primary Consequences . 30

1.11 Summary of Results . 31

A Note to the Reader

The Naga Jolokia, a chili pepper with a Scoville rating of 1 million units that grows in northeastern

India, Sri Lanka, and Bangladesh, is the hottest chili in the world, as confirmed by the Guinness World

Records [1]. To understand just how hot it is, consider that to cool its blow torch-like flame, you would

have to dilute it in sugar water over a million times!3 A milder way to put your taste buds to the test would

be to stop by an Indian, Chinese, or Thai restaurant and order a hot soup. However, your request would

be ambiguous; the context isn’t helpful, and you might confuse the waiter — that’s because the English

language, among its many nuances and oddities, doesn’t have unique terms to distinguish “temperature

hot” and “spicy-hot”.

Fortunately or unfortunately (depending on your perspective), high-speed routers offer no such

confusion. They are definitely hot (and we are not referring to the colloquial use of the term by

undergrads). They consume tremendous power — sometimes more than 5000 watts! — and dissipate

that energy as heat. This means that packet processing ASICs on these high-speed routers are routinely

built to withstand temperatures as high as 115◦C— temperatures so high that even the smallest contact

can blister your skin. And so, if you want to understand the workings of a high-speed router, I do not

recommend that you touch it. Instead, here are some guidelines that I believe will help make your study

of high-speed routers pleasant and safe.

• Introduction: The introductory chapter is written in a self-contained manner,

with terms defined inline. It defines the general background and motivation for

solving the memory access time problem for high-speed routers. Appendix A

has a short tutorial on memory technology.

• Independent Chapters: The chapters in this thesis are written so that, for

most part, they can be read independently. Section dependencies and additional

readings are listed at the beginning of each chapter.

• Organization: Examples and Observations are categorized separately. The

key idea in each chapter is specified in an idea box. Gray-shaded boxes contain

supplementary information. A summary is available at the end of each chapter,

and an index is provided at the end of the thesis.

3In comparison, a standard pepper spray (shame on you!) may register just over 2 million units
— mighty hot, yet quickly neutralized in flowing water.

“You are rewarding a teacher poorly

if you remain always a pupil”.

— Friedrich Nietzsche† 1
Introduction

1.1 Analogy

Guru: Consider a set of pigeon holes, each of which is capable of holding several

pigeons. Up to N pigeons may arrive simultaneously, and each pigeon must have

immediate access to a pigeon hole. In the same interval in which the pigeons

arrive, up to N pigeons must leave their holes. How many pigeon holes are

required to guarantee that the departing pigeons can leave their holes, and that

the arriving pigeons can enter a hole?

Shisya1: It would require just one pigeon hole with an entrance sufficiently wide to

allow N pigeons to arrive and N pigeons to depart simultaneously.

Guru: That is the ideal. But what if no pigeon hole has an entrance sufficiently wide?

Shisya: In that case, I would create N pigeon holes. Each arriving pigeon would be

directed to a separate pigeon hole. At any time, each pigeon hole must be wide

enough to receive one pigeon and allow up to N pigeons to depart.

Guru: Suppose I constrain the pigeon hole so that at any time it can either allow at

most one pigeon to arrive, or allow at most one pigeon to depart? Furthermore,

no pigeon may enter a pigeon hole while another is departing . . .

†Friedrich Nietzsche (1844-1900), German Philosopher.
1Sanskrit: “student”.

1

1.2 Goal 2

The question posed in the imaginary conversation is directly applicable to the

design of Internet routers. The analogy is that an Internet router receives N arriving

packets (pigeons) in a time slot, one packet from each of its N inputs. Each packet can

be written and stored temporarily in one of several memories (analogous to pigeons

arriving in a pigeon hole). Packets can later be read from a memory (pigeons departing

from a hole). No more than N packets (destined to each of N outputs) can depart

the router during any time slot.

In defining the problem in this manner, we make several assumptions and overlook

some potential constraints. For example, (1) the available memory may in fact be

several times slower than the rate at which packets arrive, (2) the memory may not

be able to hold many packets, (3) the interconnect used to access the memories may

not support the inputs (outputs) writing to (reading from) any arbitrary combination

of memories at the same time, (4) when a packet arrives, its time of future departure

may be unknown.

We can infer from the above dialogue that if the memory was faster, or if the

packets arrived and departed at a slower rate, or if there were fewer constraints, it

would be easier to ensure that packets can leave when they need to. We will see that

the answer to the question in the conversation is fundamental to our understanding of

the design of high-speed Internet routers.

1.2 Goal

Our goal in this thesis is to design high-speed Internet routers for which we can say

something predictable and deterministic (we will formalize this shortly) regarding

their performance. There are four primary reasons for doing this:

1. Internet end-users are concerned primarily about the performance of their

applications and their individual packets.

2. Suites of applications (such as VoIP, videoconferencing, remote login, Netmeet-

ing, and storage networking) are very sensitive to delay, jitter, and packet

1.3 Background 3

drop characteristics, and do not tolerate non-deterministic performance (e.g.,

unpredictable delays) very well.

3. Hackers or viruses can easily exploit non-deterministic and known deficiencies in

router performance and run traffic-adversarial patterns to bring down routers

and the Internet.

4. If the individual routers that form the underlying infrastructure of the Internet

can be made to deliver deterministic guarantees, we can hope to say something

deterministic about the performance of the network as a whole. The network

would then potentially be able to provision for different classes of applications,

cater to delay-sensitive traffic (e.g., voice, Netmeeting, etc.), and provide end-to-

end guarantees (e.g., bandwidth, delay, etc.) when necessary.

In addition there are various secondary reasons why we want deterministic perfor-

mance guarantees from our high-speed routers. For example, unlike computer systems,

where occasional performance loss is acceptable and even unavoidable (e.g., due to

cache or page misses) router designers do not like non-deterministic performance in

their ASICs. This is because they cause instantaneous stalls in their deep pipelines, as

well as loss of performance and eventually even unacceptable packet loss. Also, many

routers are compared in “bake-off” tests for their ability to withstand and provide

guaranteed performance under even worst-case traffic conditions.

1.3 Background

1.3.1 The Ideal Router

Which factors prevent us from building an ideal router that can give deterministic

performance guarantees? Consider a router with N input and N output ports. We

will denote R (usually denoted in Gb/s) to be the rate at which packets2 arrive at

every input and depart from every output. We normalize time to the arrival time

2Although packets arriving to the router may have variable length, for the purposes of this thesis
we will assume that they are segmented and processed internally as fixed-length “cells” of size C. This
is common practice in high-performance routers – variable-length packets are segmented into cells as
they arrive, carried across the router as cells, and reassembled back into packets before they depart.

1.3 Background 4

Line card #1

Line card #2 Line card #2

Line card #1Switch Fabric

 (N writes, N reads)

R

R

R

R

2NR

Line card #8 Line card #8

R R
2NR

.. ..

. . ..

Memory Card

 No Buffer No Buffer

Figure 1.1: The architecture of a centralized shared memory router. The total memory
bandwidth and interconnect bandwidth are 2NR.

between cells (C/R) at any input, and refer to it as a time slot.3 Assume that a single

shared memory can store all N arriving packets and service N departing packets.

This architecture is called the centralized shared memory router, and an example

with N = 8 ports and R = 10 Gb/s (these numbers are typical of mid-range routers

typically deployed by smaller local Internet Service Providers) is shown in Figure 1.1.

The shared memory router would need a memory that would meet the following

requirements:

1. Bandwidth: The memory would need to store all N packets arriving to it and

allow up to N packets to depart from it simultaneously, requiring a total memory

bandwidth of 2NR Gb/s.

2. Access Time: If we assume that arriving packets are split into fixed-size cells of

size C, then the memory would have to be accessed every At = C/2NR seconds.

3In later chapters we will re-define this term as necessary so as to normalize time for the router
architecture under consideration.

1.3 Background 5

For example, if C = 64 bytes, the memory would need to be accessed4 every

3.2 ns.5

3. Capacity: Routers with faster line rates require a large shared memory. As a

rule of thumb, the buffers in a router are sized to hold approximately RTT × R
bits of data during times of congestion (where RTT is the round-trip time for

flows passing through the router6), for those occasions when the router is the

bottleneck for TCP flows passing through it. If we assume an Internet RTT

of approximately 0.25 seconds, a 10 Gb/s interface requires 2.5 Gb of memory.

With 8 ports, we would need to buffer up to 20 Gb.

If the memory meets these three requirements, and the switching interconnect has

a bandwidth of 2NR to transport all N arriving packets and all N departing packets

from (to) the central memory, then the packets face no constraints whatever on how

and when they arrive and depart; and the router has minimum delay. Also, the memory

is shared across all ports of the router, minimizing the amount of memory required

for congestion buffering. This router behaves ideally and is capable of delivering the

predictable performance that we need.

1.3.2 Why is it Hard to Build a High-speed Ideal Router?

What happens if we design this high-speed ideal router using available memory

technology? Of course, we will need to use commodity memory technology. By a

commodity part, we mean a device that does not stress the frontiers of technology, is

widely used, is (ideally) available from a number of suppliers, and has the economic

benefits of large demand and supply.7 Two main memory technologies are available in

4This is referred to in the memory industry as the random cycle time, TRC .
5The memory bandwidth is the ratio of the width of the memory access and the random access

time. For example, a 32-bit-wide memory with 50 ns random access time has a memory bandwidth
of 640 Mb/s.

6The word router in this thesis also refers to Ethernet, ATM, and Frame Relay “switches”. We
use these words interchangeably.

7In reality there is a fifth requirement. Many high-speed routers have product cycles that last
five or more years, so router vendors require that the supply of these memories is assured for long
periods.

1.3 Background 6

the market today: SRAM and DRAM. Both offer comparable memory bandwidth;

however, SRAMs offer lower (faster) access time, but lower capacity than DRAMs.

�Example 1.1. At the time of writing, with today’s CMOS technology, the largest

available commodity SRAM [2] is approximately 72 Mbits, has a band-

width of 72 Gb/s, an access time of 2 ns, and costs $70.8

To meet the capacity requirement, our router would need more than 275 SRAMs,

and the memories alone would cost over $19K – greatly exceeding the selling price of

an Enterprise router today! Although possible, the cost would make this approach

impractical.

�Example 1.2. The largest commodity DRAM [3] available today has a capacity of

1Gb, a bandwidth of 36 Gb/s, an access time of 50 ns, and costs $5.

We cannot use DRAMs because the access rate9 is an order of magnitude above

what is required. If our router has more than N = 16 ports, the access time requirement

would make even the fastest SRAMs inapplicable.

The centralized shared memory router is an example of a class of routers called

output queued (OQ) routers. In an OQ router (as shown in Figure 1.2), arriving

packets are placed immediately in queues at the output, where they contend with

other packets destined to the same output. Since packets from different outputs do

not contend with each other, OQ routers minimize delay and behave ideally. An OQ

router can have N memories, one memory per output. Each memory must be able to

simultaneously accept (write) N new cells (one potentially from every input) and read

one cell per time slot. Thus, the memory must have an access rate proportional to

N +1 times the line rate. While this approximately halves the access time requirement

compared to the centralized shared memory router, this approach is still extremely

impractical at high speeds.

8As noted above, this does not preclude the existence of higher-speed and/or larger-capacity
SRAMs, which are not as yet commodity parts.

9The access rate of a memory is the inverse of the access time, and is the number of times that a
memory can be uniquely accessed in a time slot.

1.3 Background 7

(N+1)R

Line card #1

Line card #2 Line card #2

Line card #1

R

R

Line card #8 Line card #8

R

..

NR

Switch Fabric

R

R

R

..

(N+1)R
..

(N+1)R
..

. .

 (N writes, 1 read) (No Buffer)

Figure 1.2: The architecture of an output queued router. The memory bandwidth on any
individual memory is (N + 1)R.

In summary, although OQ routers are ideal and have attractive performance, they

are not scalable due to the memory access time limitations.

1.3.3 Why is Memory Access Time a Hard Problem?

If memory bandwidth or capacity were a problem, we could simply using more memories

in parallel! For example, many Ethernet and Enterprise line cards [4]10 use up to 8

memories in parallel to meet the bandwidth requirements. Similarly, the CRS-1 [5]

core router, one of the highest-speed Internet routers available today, uses up to 32

memories to meet its large buffer capacity requirement. While this approach has its

limits (having a large number of memories on a line card is unwieldy, and the number

of parts that can be used in parallel is limited by the die area of the chips, board size,

and cost constraints), it offers a simple way to achieve higher memory capacity and

bandwidth.

NObservation 1.1. However, memory access time is a more fundamental limitation.

While packets can easily be spread and written over multiple parallel

10For simplicity, we will use the terms line card and port interchangeably, and assume that a line
card terminates exactly one port. In reality, a line card can receive traffic from many ports.

1.3 Background 8

memories, it is difficult to predict how the data will be read out later. If

we want to read from our memory subsystem, say, every 3.2 ns, and all

the consecutive packets reside in a DRAM with a much slower access

time, then having other parallel memories won’t help.

Although the access time11 will be reduced over time, the rate of improvement

is much slower than Moore’s Law [6]. Note that even newer DRAMs with fast I/O

pins – such as DDR, DDRII, and Rambus DRAMS [7] – have very similar access

times. While the I/O pins are faster for transferring large blocks, the access time to a

random location in memory is still approximately 50 ns. This is because high-volume

DRAMs are designed for the computer industry, which favors capacity over access time.

Also, the access time of a DRAM is determined by the physical dimensions of the

memory array (and therefore line capacitance), which stays constant from generation

to generation.

Commercial DRAM manufacturers have recently developed fast DRAMs (RL-

DRAM [8] and FCRAM [9]) for the networking industry. These reduce the physical

dimensions of each array by breaking the memory into several banks. This worked

well for 10 Gb/s line rates, as it meant these fast DRAMs with 20 ns access times

could be used. But this approach has a limited future, for two reasons: (1) as the

line rate increases, the memory must split into more and more banks, which leads to

an unacceptable overhead per bank,12 and (2) even though all Ethernet switches and

Internet routers have packet buffers, the total number of memory devices needed is a

small fraction of the total DRAM market, making it unlikely that commercial DRAM

manufacturers will continue to supply them.13

NObservation 1.2. Fundamentally, the problem is that networking requires extremely

small-size data accesses, equal to the size of the smallest-size 64-byte

11The random access time should not be confused with memory latency, which is the time taken
to receive data back after it has been issued by the requester.

12For this reason, the third-generation parts are planned to have a 20 ns access time, just like the
second generation.

13At the time of writing, there is only one publicly announced source for future RLDRAM devices,
and no manufacturers for future FCRAMs.

1.3 Background 9

packet. By 1997, this was identified as a fundamental upcoming

problem.

As line rates increase (usually at the rate of Moore’s Law), the time it takes

these small packets to arrive grows linearly smaller. In contrast, the random access

time of commercial DRAMs has decreased by only 1.1 times every 18 months (slower

than Moore’s Law) [10]. And so the problem only becomes harder. If we want to

design high-speed routers whose capacity can scale, and that can give predictable

performance, then we need to alleviate the memory access time problem.

NObservation 1.3. By 2005, routers had to be built to support the next-generation

40 Gb/s line cards. By then, this had become a pressing problem in

immediate need of a solution.

1.3.4 Historical Solutions to Alleviate the Memory Access

Time Problem

Since the first routers were introduced, the capacity of commercial routers14 has

increased by about 2.2 times every 18 months (slightly faster than Moore’s Law). By

the mid-1990s, router capacity had grown to the point where the centralized shared

memory architecture (or output queuing) could no longer be used, and it became

popular to use input queueing instead.

In an input queued router, arriving packets are buffered in the arriving line cards

as shown in Figure 1.3(a). The line cards were connected to a non-blocking crossbar

switch which was configured by a centralized scheduling algorithm. From a practical

point of view, input queueing allows the memory to be distributed to each line card,

where it can be added incrementally. The switching interconnect needs to carry up

to N packets from the inputs to the respective outputs and needs a bandwidth of

14We define the capacity of a router to be the sum of the maximum data rates of its line cards, NR.
For example, we will say that a router with 16 OC192c line cards has a capacity of approximately
160 Gb/s.

1.3 Background 10

Line card #1

Line card #2 Line card #2

Line card #1

R

R

Line card #8 Line card #8

R

. . ..

2R

Switch Fabric

2R

2R

R

R

RNR

 No Buffer 1 Write, 1 Read

(a) Input Queued Router

Line card #1

Line card #2 Line card #2

Line card #1

R

R

Line card #8 Line card #8

R

. . ..

Switch Fabric

R

R

R2NR

 2 Writes, 1 Read 1 Write, 2 Reads
. .

3R

3R

3R

3R3R

3R

(b) CIOQ Router

Figure 1.3: The input-queued and CIOQ router architectures.

2NR. More important, each memory only needs to run at a rate 2R (instead of 2NR),

enabling higher-capacity routers to be built.

A router is said to give 100% throughput if it is able to fully utilize its output

links.15 Theoretical results have showed that with a queueing structure called virtual

output queues (VOQs), and a maximum weight matching scheduling algorithm, an

input queued router can achieve 100% throughput [11, 12]. However, in an input

queued router, it is known that a cell can be held at an input queue even though its

output is idle. This can happen for an indefinitely long time. So there are known

simple traffic patterns [13] that show that an input queued router cannot behave

identically to an OQ router.

Another popular router architecture is the combined input-output queued (CIOQ)

router, shown in Figure 1.3(b). A CIOQ router buffers packets twice – once at the input,

and again at the output. This router can behave identically16 to an output queued

router if the memory on each line card runs at rate 3R, the switching interconnect

runs at rate 2NR, and it implements a complex scheduling algorithm [13].

Table 1.1 summarizes some well-known results for the above router architectures.

While the results in Table 1.1 may appeal to the router architect, the algorithms

15For a formal definition, see Appendix B.
16We define this formally later and refer to it as emulate.

1.3 Background 11

required by the theoretical results are not practical at high speed because of the

complexity of the scheduling algorithms. For these reasons, the theoretical results

have not made much difference in the way routers are built. Instead, most routers

use a heuristic scheduling algorithm such as iSLIP [14] or WFA [15], and a memory

access rate between 2R and 3R.17 Performance studies are limited to simulations

that suggest most of the queueing takes place at the output, potentially allowing

it to behave similarly to an output queued router. While this may be a sensible

engineering compromise, the resulting system has unpredictable performance, cannot

give throughput guarantees, and the worst case is not known.

Other multi-stage and multi-path router architectures have been used. They

include Benes, Batcher-banyan [16], Clos, and Hypercube switch fabrics. However,

they either require large switching bandwidth, require multiple stages of buffering, or

have high communication complexity between the different stages. The implementation

complexity and hardware costs involved have restricted their popular use.

In comparison to CIOQ routers, other router architectures tend to hit their hardware

limits earlier. This affects their scalability, and so, primarily as a compromise, CIOQ

routers have emerged as a common router architecture, even though the performance

of practical CIOQ routers is difficult to predict. This is not very satisfactory, given

that CIOQ routers make up such a large fraction of the Internet infrastructure. While

the architectures described above are an improvement over OQ routers, these routers

require that the access rate of the memories is at least as fast as the line rate R. Even

an input queued router needs a memory that can be accessed at least twice (once to

read and once to write a packet) during every time slot. As line rates increase, this

may become impossible even with SRAMs.

17This refers to a “speedup” between one and two. We will avoid the use of the metric commonly
called “speedup” in our discussion of memory. The term speedup is used differently by different
authors; there is no accepted standard definition. Instead, we will compare different router memory
subsystems based on their memory access rate and memory bandwidth. We will, however, define
“speedup” and use it as appropriate for other operations related to memory, e.g., when we refer to
the speed at which switching interconnects operate, updates are done, or copies are made.

1.4 Mandating Deterministic Guarantees for High-Speed Routers 12

Table 1.1: Comparison of router architectures.

Router Type
#

mem

Mem.
Access
Rate.18

Total mem.
BW

Interconnect
BW

Comment

Centralized
Shared Memory

1 ≡ Θ(2NR) 2NR 2NR
Ideal Router

(Shared Memory)

Output Queued N ≡ Θ(N + 1)R N(N + 1)R NR
Ideal Router

(Distributed Memory)

Input Queued N ≡ Θ(2R) 2NR NR
Cannot emulate an

ideal router

CIOQ 2N ≡ Θ(3R) 6NR 2NR
Can emulate an ideal

router [13]

�Example 1.3. For example, with the advent of the new 100Gb/s line cards, even

an input queued router would need an access time of 2.56 ns to buffer

64-byte packets. This is already out of reach of most commodity

SRAMs today.

1.4 Mandating Deterministic Guarantees for High-

Speed Routers

Our goal is to build high-speed routers than can give performance guarantees. As

we saw, building a slow-speed router with performance guarantees is easy. But the

problem is hard when designing high-speed routers. In fact, today, there are no

high-speed routers with bandwidths greater than 10 Gb/s that give deterministic

guarantees. There are typically two types of performance guarantees: statistical (the

most common example being 100% throughput) and deterministic (the most common

examples being work-conservation and delay guarantees).

Even statistical guarantees are hard to achieve. In fact, no commercial high-speed

router today can guarantee 100% throughput. If we buy a router with less than 100%

throughput, we do not know what its true capacity is. This makes it particularly hard

for network operators to plan a network and predict network performance. In normal

times (when the utilization of the network is quite low), this does not matter, but

18The Θ(·) notation is used to denote an asymptotically tight bound in the analysis of algorithms.
In the context of this thesis it denotes that the actual value is within a constant multiple of the value
given.

1.4 Mandating Deterministic Guarantees for High-Speed Routers 13

during times of congestion (usually due to link failures), when network performance

really matters, this is unacceptable. We want to design routers that give 100%

throughput.

However, we will specifically demand that our high-speed routers give deterministic

performance guarantees on individual packets, since this will enable us to meet

the goals outlined in Section 1.2. Also, if routers give deterministic guarantees,

they automatically give statistical guarantees. We are interested in two classes of

deterministic guarantees, both of which have relevance for the end-user.

1.4.1 Work Conservation to Minimize Average Packet Delay

ℵDe�nition 1.1. Work-conserving: A router is said to be work-conserving if an

output will always serve a packet when a packet is destined for it in

the system.

We want our routers to be work-conserving. If a router is work-conserving, then

it has 100% throughput, because the outputs cannot carry a higher workload. It

also minimizes the expected packet delay, since, on average, packets leave earlier in a

work-conserving router than in any other router.19 To achieve work conservation, we

will use first come first served (FCFS) as the main service policy in our analysis of

routers. This means that packets to a given output depart in the order of their arrival.

However, the techniques that we use to analyze router architectures allow us to extend

our results to any work-conserving router if the departure time20 is known on arrival.

1.4.2 Delay Guarantees to Bound Worst-Case Packet Delay

A standard way that routers can provide delay guarantees is to introduce harder

constraints by shaping or streamlining the arrival traffic; for example, the leaky-bucket

19Strictly speaking, this is only true if all packets have the same size. When packets have different
sizes, a router could re-order packets based on increasing size and service the smallest packets first to
minimize average delay. This is unimportant because the order of departure of packets cannot be
arbitrarily changed by a router.

20The departure time for an arriving cell for an FCFS queuing service policy can be easily
calculated. It is the first time that the server (output) is free and able to send the newly arriving cell.

1.4 Mandating Deterministic Guarantees for High-Speed Routers 14

constraint.21 The constrained arriving streams are then serviced by a scheduler (such

as, say, a weighted fair queueing [17] scheduler) that provides service guarantees. There

are two ways to achieve this —

Maintaining separate FIFO queues: Every arrival stream is constrained and

stored in a separate queue. A scheduler works in round robin order by looking at

these queues and taking the head-of-line packets from the queues. The packets are

serviced in the order of their departure time22 and leave the output in that sorted

order. Figure 1.4(a) shows an example of the input traffic, A(t), constrained and split

into its three constituent streams, A(1), A(2), and A(3), and stored in their three

respective queues. The three queues are serviced by a scheduler in the ratio 2 : 1 : 1.

From well-known results on weighted fair queueing [18], it is then possible to define

bounds on the worst-case delay faced by a packet transiting the router.

Maintaining a single logical queue: Another way to do this is to move the

sorting operation into a “logical” queue known as the push-in first-out (PIFO) queue.

A PIFO queue has a number of key features:

1. Arriving packets are “pushed-in” to an arbitrary location in the departure queue,

based on their finishing time.

2. Packets depart from the head of line (HoL).

3. Once the packet is inserted, the relative ordering between packets in the queue

does not change.

Therefore, once a packet arrives to a PIFO queue, another packet that arrives later

may be pushed in before or after it, but they never actually switch places. This is

the characteristic that defines a PIFO queue. PIFO includes a number of queueing

policies, including weighted fair queueing [17] and its variants such as GPS [18], Virtual

Clock [19], and DRR [20]. It also includes strict priority queueing.23

21This is defined in Section 4.3.1.
22Also referred to in literature as finishing time.
23Note that some QoS scheduling algorithms such as WF2Q [21] do not use PIFO queuing.

1.4 Mandating Deterministic Guarantees for High-Speed Routers 15

A2
FIFO Q1

A(t)

A1(t)

FIFO Q2

A3(t)

A2(t)

A1

FIFO Q3

A2
Before: C2, B2, C1, B1, A1

After: C2, B2, C1, B1, A2, A1

A2

A(t)
A1C1B2C2

PIFO Queue Before: C2, B2, C1, B1, A1

After: C2, B2, C1, B1, A2, A1

A2

B1

(a) Multiple FIFO Queues

(b) PIFO Queue

Output Port
Departure Order

Output Port
Departure Order

Traffic

Constrain

Traffic

Constrain

B1B2

C1C2

Figure 1.4: Achieving delay guarantees in a router. (a) Multiple FIFO queues, (b) A
“logical” push in first out queue.

�Example 1.4. As Figure 1.4(b) shows, the PIFO queue always maintains packets in

a sorted order. When packets come in, they are inserted in the sorted

order of their departure times. In Figure 1.4(a), arriving cell A2 is

inserted at the tail of FIFO Q1 and awaits departure after cell A1 but

before cell B1. In Figure 1.4(b), it is inserted directly into the sorted

PIFO queue after cell A1 but before cell B1.

Depending on the architecture being used, we choose either the set of logical FIFO

queues, or the sorted PIFO queue to make our analysis easier.

1.5 Approach 16

1.5 Approach

1.5.1 Analyze Many Di�erent Routers that Have Parallelism

While it is difficult to predict the course of technology and the growth of the Internet,

it seems certain that in the years ahead routers will be required with: (1) increased

switching capacity, (2) support for higher line rates, and (3) support for differentiated

qualities of service. Each of these three requirements presents unique challenges. For

example, higher-capacity routers may require new architectures and new ways of

thinking about router design; higher line rates will probably exceed the capabilities of

commercially available memories (in some cases this transition has already happened),

making it impractical to buffer packets as they arrive; and the need for differentiated

qualities of service will mandate deterministic performance guarantees comparable to

the ideal router.

NObservation 1.4. There will probably be no single solution that will meet all needs.

Each router architecture will have unique tradeoffs. Very-high-speed

interconnect technologies may make certain new router architectures

possible, or possibly simplify existing ones. Memory access speeds may

continue to lag router requirements to such a degree that architectures

with memories with much slower access rates may become mandatory.

If memory capacity lags router buffer sizing requirements, architectures

with shared memory will become important.

We won’t concern ourselves with whether a particular technique is currently

implementable, nor will we prefer one router architecture over another, since the cost

and technology tradeoffs will be driven by future technology. We will also be agnostic

to trends in future technology. The only assumption we will make is that memory

access time will continue to be a bottleneck in one form or another. In order to

alleviate this bottleneck, we will consider router architectures that have parallelism.

1.5 Approach 17

Our approach is to analyze different types of parallel router architectures, work

within the technology constraints on them, and ask what it will take for these routers

to give deterministic performance guarantees. We will not attempt to analyze all

router architectures exhaustively; in fact, future technologies may lead to completely

novel architectures. Instead, we will focus on architectural and algorithmic solutions

that exploit the characteristic of memory requirements on routers, so that they can be

applied to a broad class of router architectures. We will focus on two key ideas: load

balancing and memory caching,24 that alleviate the load on memory.

1.5.2 Load-Balancing Algorithms

A load balancing algorithm is motivated by the following idea —

DIdea. “We could intelligently distribute load among parallel memories.a such

that no memory needs to be accessed faster than the rate that it can support”.

aIdeally, there will be no limit as to how slow these parallel memories can operate.

In order to realize the above idea, a load balancing algorithm usually needs to

be aware a priori of the time when a memory will be accessed. We introduce a

new mathematical technique called constraint sets which will help us analyze load

balancing algorithms for routers. We have found that memory accesses in routers are

fundamentally clashes between writers (e.g., arriving packets that need to be buffered)

and readers (e.g., packets that need to depart at a particular future time) that need

to simultaneously access a memory that cannot keep up with both requirements at

the same time. Constraint sets are a formal method to mathematically capture these

constraints. While the constraint set technique is agnostic to the specifics of the router

architecture, the actual size and definition of these sets vary from router to router.

This helps us separately analyze the load balancing algorithm constraints for each

individual router, and:

24These are standard techniques in use in the fields of distributed systems and computer architec-
ture.

1.5 Approach 18

1. identify the memory access time, memory, and switching bandwidth required for

a specific router architecture to be work-conserving,

2. define a switching algorithm for the router,

3. identify the design tradeoffs between memory access time, memory bandwidth,

switch bandwidth, and switching algorithms, and

4. perhaps surprisingly, exactly characterize the cost of supporting delay guarantees

in a router.

1.5.3 Caching Algorithms

The second approach we use is building a memory hierarchy, and is motivated by the

following idea:

DIdea. “We can use a fast on-chip cache memory that can be accessed at high

rates, and a slowa off-chip main memory that can be accessed at low rates”.

aThe slow memory can potentially be off-chip and have a large memory capacity.

The idea is similar to that used in most processors and computing systems. Packets

or data that are likely to be written or read soon are held in fast cache memory, while

the rest of the data is held in slower main memory. If we have prior knowledge about

how the memory will be accessed (based on knowledge of the data structures required

to be maintained by routers), then we can (1) write data in larger blocks at a slower

access rate, and (2) pre-fetch large blocks of data from main memory at slower access

rates and keep it ready before it needs to be read.

NObservation 1.5. But unlike a computer system, where is acceptable for a cache to

have a miss rate, such behavior is unacceptable in networking, since it

can lead to loss of throughput and packet drops.

Therefore, our cache design should be able to guarantee a 100% hit rate under

all conditions. We will see that, within bounds, such caching algorithms exist for

1.5 Approach 19

certain applications that are widely used on most routers. As an example, packets are

maintained in queues; the good thing is that we know which data will be needed soon

– it’s sitting at the head of the queue. We will borrow some existing mathematical

techniques to propose and analyze caching algorithms, such as difference equations

and Lyapunov functions, which have been used extensively in queueing analysis.

1.5.4 Use Emulation to Mandate that Our Routers Behave

Like Ideal Routers

We want to ensure that any router that we design will give us deterministic performance

guarantees. We therefore compare our router to the ideal OQ router. To do this, we

assume that there exists an OQ router, called the “shadow OQ router”, with the same

number of input and output ports as our router. The ports on the shadow OQ router

receive identical input traffic and operate at the same line rate as our router. This

is shown in Figure 1.5. Consider any cell that arrives to our router. We denote DT ,

the departure time of that cell from the shadow OQ router. We say that our router

mimics [13, 22, 23] the ideal router if under identical inputs, the cells also depart our

router at time DT . If we want work conservation, we will compare our router to a

shadow OQ router performing an FCFS policy (called an FCFS-OQ router). If we

want delay guarantees, our comparison will be with a PIFO-OQ shadow router.

Note that the router we compare may have some fixed propagation delays that

we wish to ignore (perhaps the data transits a slower interconnect, or is buffered in a

slower memory, etc.). In particular, we are only interested in knowing whether our cell

faces a relative queueing delay, i.e., an increased queueing delay (if any) relative to

the delay it receives in the shadow OQ router. We are now ready to formally compare

our router with an ideal router.

ℵDe�nition 1.2. Emulate: A router is said to emulate an ideal shadow OQ router if

departing cells have no relative queueing delay, compared to the shadow

OQ router.

1.5 Approach 20

Line card #1

Line card #2 Line card #2

Line card #1

R

R

R

R

Line card #8 Line card #8

R R

. . ..

Any Router

Shadow OQ Router

Departure Time = DT

R

R

R

R

R

R

R

E
m

ulate?

Yes?

Performance
Guarantees

Determinsitic

Line card #1

Line card #2 Line card #2

Line card #1Switch Fabric

Memory Card

R

R

R

R

2NR

Line card #8 Line card #8

R R2NR

.. ..

. . ..

Id
en

ti
ca

l
In

pu
ts

C

C

R

C

C

Switch Fabric

Figure 1.5: Emulating an ideal output queued router.

Note that the definition of emulation makes no assumptions on the packet sizes,

the bursty nature of packet arrivals, or the destination characteristics of the packets,

and requires that the cells face no relative delay irrespective of the arrival pattern. An

important consequence of this definition is as follows — the ideal output queued router

is safe from adversarial traffic patterns (such as can be created by a hacker or virus)

that exploit potential performance bottlenecks in a router. If our router can emulate

an OQ router, then our router is also safe from adversarial performance attacks!

1.5.5 Use Memory as a Basis for Comparison

Throughout this thesis, we will use memory for comparison. We will look at architec-

tures that alleviate memory access time requirements. And we will see that doing so

requires tradeoffs on other components; for example, we may need more total memory

bandwidth, more interconnect bandwidth, an on-chip cache, etc. We believe that

memory serves as a good metric, for three reasons:

1.6 Scope of Thesis 21

1. Routers are, and will continue to be, limited by the access rate and memory

bandwidth of commercially available memories in the foreseeable future. All else

being equal, a router with smaller overall access rate and memory bandwidth

requirements can have a higher capacity.

2. Memory components alone contribute approximately 20% of the cost of materials,

on average. In certain high-speed market segments, almost a third of the cost

comes from memory [24]. Cisco Systems, the leading Internet router vendor,

alone spends roughly $800M p.a. on memory components. Routers with lower

memory bandwidth will need less memory, and will be more cost-efficient.

3. A router with higher memory bandwidth will, in general, consume more power.

Routers are frequently limited by the power that they consume (because they are

backed up by batteries) and dissipate (because they must use forced-air cooling).

The total memory bandwidth indicates the total bandwidth of the high-speed

I/Os that connect the memories to control logic. As an example, high-speed

memory I/O contributes to approximately 33% of the overall power on Ethernet

switches and Enterprise routers [25].

Similar to computing systems, memories are (and in the foreseeable future will

continue to be) the main bottleneck to scaling the capacity and meeting the cost and

power budgets of high-speed routers.

1.6 Scope of Thesis

This thesis is about the router data-plane, which processes every incoming packet,

and needs to scale with increasing line rates.25 The data-plane needs to perform

many computational tasks, such as parsing arriving packets, checking their integrity,

extracting and manipulating fields in the packet, and adding or deleting protocol

headers, as shown in Figure 1.6. In addition it performs several algorithmic tasks, such

as forwarding lookups to determine the correct packet destination, packet and flow

25We do not consider problems in the router control plane, which usually runs much slower than
line rate and is involved with management, configuration, and maintenance of the router and network
connectivity.

1.6 Scope of Thesis 22

Switch Fabric

Centralized
 Switching

..

Compute/Algorithmic Memory Intensive

R

Data Plane

RParsing

Extraction

Lookups

C
lassification

M
anipulation

State

M
easurem

ents

B
uffering

Q
oS Scheduling

D
istributed Sw

itching

Router Line Cards
..

Parsing

Extraction

Lookups

C
lassification

M
anipulation

State

M
easurem

ents

B
uffering

Scheduling

Sw
itching

..

Parsing

Extraction

Lookups

C
lassification

M
anipulation

State

M
easurem

ents

B
uffering

Scheduling

Sw
itching

..

Parsing

Extraction

Lookups

C
lassification

M
anipulation

State

M
easurem

ents

B
uffering

Scheduling

Sw
itching

..

Parsing

Extraction

Lookups

C
lassification

M
anipulation

State

M
easurem

ents

B
uffering

Scheduling

Sw
itching

..

Parsing

Extraction

Lookups

C
lassification

M
anipulation

State

M
easurem

ents

B
uffering

Scheduling

Sw
itching

Switching(Arbitration)

Processor

Control Plane

Packet C
opying

Tasks Tasks

Figure 1.6: The data-plane of an Internet router.

classification (e.g., for security, billing and other applications), deep packet inspection

(e.g., for virus filtering), etc. A number of algorithms and specialized hardware (such

as CAMs, hardware assisted classifiers, complex parsers, etc.) have been proposed to

make these tasks efficient. We do not address any of these computational or algorithmic

tasks in this thesis. Instead, we focus on the tasks in the router data-path for which

memory is a bottleneck, as shown in Figure 1.6.

At a minimum, a router needs to buffer and hold packets in memory during times

of congestion. It needs to switch packets across a switching fabric and move these

1.7 Organization 23

packets to their correct output line cards (where it may again be buffered temporarily).

As shown in the figure, switching can be performed centrally, or by each line card in a

distributed manner. In addition, routers perform measurements and keep statistics

in memory, for purposes of billing, metering, and policing traffic. Statistics are also

useful for planning, operating, and managing a network. Routers perform packet

scheduling as described in Section 1.4.2 to provide various qualities of service. In

some cases, specialized application-aware routers maintain state for flows to perform

complex tasks such as application proxies, network address translation, etc., as well as

maintain policing, shaping, and metering information. In some cases, routers need

to support packet multicasting, where packets may need to be copied multiple times.

As we shall see, each of the above tasks requires high memory access rates. This

thesis studies the nature of the data structures needed by the above tasks, and takes

advantage of their associated memory accesses to alleviate their memory bottlenecks.

1.7 Organization

In Section 1.3.1, we saw that an ideal output queued router requires a memory access

rate that is proportional to the product of the number of ports N and the line rate of

each port R. In the remainder of the thesis, we will look at ways to reduce the access

rate of the memory on high-speed routers. This is done by trading off memory access

time with memory bandwidth, capacity or a cache as summarized in Table 1.2. We

divide the rest of this thesis into two parts:

Part I: Load Balancing and Caching Algorithms for Router

Architecture

In the first part of the thesis, we will consider how we can scale the performance

of the router as a whole. Thus, in Chapter 2, we first define a new class of router

architectures, called “single-buffered” routers that are of particular interest. We also

answer the question posed in the conversation in the Introduction, since it sheds light

on the analysis of all single-buffered routers. Then, in each chapter, we ask a question

about the technology and the architectural constraints that the memory on a router

1.7 Organization 24

Table 1.2: Organization of thesis.

Chpt. Analysis Memory Tradeoff

1 Output Queued Router Ideal router
2 Parallel Shared Mem. Router More Memory bandwidth

3-(a) Distributed Shared Mem. Router More Memory bandwidth
3-(b) Parallel Distributed Shared Mem. Router More Memory bandwidth

4 CIOQ Router More Memory bandwidth
5 Buffered CIOQ Router Line rate cache

6-(a) Parallel Packet Switch More Memory bandwidth
6-(b) Buffered Parallel Packet Switch Line rate cache
7-(a) Packet Buffer Cache Line rate cache
7-(b) Pipelined Packet Buffer Cache Line rate pipelined cache

8 Packet Scheduler Cache Line rate cache
9 Statistics Counter Cache Line rate cache
10 Parallel Packet State More memory bandwidth, capacity

App. J Parallel Packet Copy More memory bandwidth

might face, as it pertains to its overall architecture:

Chpt. 2: What if the memories must be shared? Memory capacity could be-

come a problem, and shared memory architectures could become mandatory. In

Chapter 2, we look at a parallel shared memory router architecture that allows

the access rate on each memory to be arbitrarily small, while allowing all of the

memories to be shared among all ports of the router.

Chpt. 3-(a): What if memories must be distributed? Memory power could

become a problem, forcing routers to distribute memories across several line

cards to achieve better cooling, etc. Also, product constraints sometimes require

that additional router bandwidth (and the extra memory it requires) be added

incrementally. This mandates the use of distributed memories. In Chapter 3, we

analyze a distributed shared memory architecture.

Chpt. 3-(b): What if the memories must be limited? If memory access time

lags router system requirements, then a large number of memories that operate

in parallel are needed. If there are too many memories, it may become infeasible

to manage, and this may become a bottleneck. In Chapter 3, we will consider

1.7 Organization 25

a parallel distributed shared memory architecture that limits the number of

memories that need to be managed, and alleviates this problem.

Chpt. 4: What if memories must be localized? Many routers have line cards

that have different port speeds and features, and support different protocols.

Because the line cards have different processing and memory capabilities, such a

system cannot use distributed processing or distributed memory. In Chapter 4,

we look at a fairly common CIOQ architecture that has localized buffering.

Chpt. 5: What if on-chip memory capacity is plentiful? New memory tech-

nologies such as embedded DRAM [26] allow the storage of large amounts

of on-chip memory. In Chapter 5, we will consider the addition of on-chip cache

memory to the commonly used crossbar switching fabric of a CIOQ router. We

will show that the resulting buffered CIOQ router can greatly simplify and make

practical the CIOQ architecture introduced in Chapter 4.

Chpt. 6-(a,b): What if memories run really slow? If line rates become much

faster than the memory access time, we will need to look at massively parallel

memory architectures. In Chapter 6, we analyze the parallel packet switch (PPS).

The PPS is a high-speed router that can be built from a network of slower-speed

routers. We consider two variants of the PPS — (1) an unbuffered version, and

(2) a buffered PPS (which has a small cache).

Part II: Load Balancing and Caching Algorithms for Router

Line Cards

In the second part of the thesis, we consider how we can scale the performance of the

memory-intensive tasks on a router line card that were described in Figure 1.6. Again,

we consider several questions pertaining to the memory usage of these data-path tasks.

Chpt. 7-(a): What if the memory departure time cannot be predicted?

The time at which a packet needs to depart from memory is decided by a

scheduler. Architectural or hardware design constraints may prevent the buffer

1.7 Organization 26

from knowing the time at which a packet will depart from memory. This

prevents us from using load balancing algorithms that require knowledge of

packet departure times. In Chapter 7, we will look at a memory caching

algorithm that can overcome this limitation to build high-speed packet buffers.

We will show how this caching algorithm can be readily extended for use in

other router data-plane tasks such as packet scheduling, page management, etc.

Chpt. 7-(b): What if we can tolerate large memory latency? Many high-

performance routers use deep pipelines to process packets in tens or even

hundreds of consecutive stages. These designs can tolerate a large (bit fixed)

pipeline latency between when the data is requested and when it is delivered.

Whether this is acceptable will depend on the system. In Chapter 7, we will

consider optimizations that reduce the size of the cache (for building high-speed

packet buffers) to exploit this.

Chpt. 8: What if we can piggyback on other memory data structures?

Routers perform packet scheduling in order to provide varied qualities of service

for different packet flows. This requires the scheduler to be aware of the location

and size of every packet in the system, and requires a scheduler database whose

memory access rate is as fast as the buffer from which it schedules packets.

In Chapter 8, we describe a mechanism to encode, piggyback, and cache the

scheduler database along with the packet buffer cache implementation described

in Chapter 7. This eliminates the need for a separate scheduler database.

Chpt. 9: What if we can exploit the memory access pattern? Many data-

path applications maintain statistics counters for measurement, billing,

metering, security, and network management. We can exploit the way counters

are maintained and build a caching hierarchy that alleviates the need for

high-access-rate memory. This is described in Chapter 9.

Chpt. 10: What if we can’t exploit the memory access pattern?

Networking applications such as Netflow, NAT, TCP offload, policing,

shaping, scheduling, state maintenance, etc., maintain flow databases. A facet of

1.8 Application of Techniques 27

these databases is that their memory accesses are completely random, and the

memory address that they access is dependent completely on the arriving packet,

whose pattern of arrival cannot be predicted. These applications need high

access rates, but have minimal storage and bandwidth requirements. In many

cases, the available memories (especially DRAMs) provide an order of magnitude

more capacity than we need, and have a large number of independently accessible

memory banks.26 High-speed serial interconnect technologies [27] have enabled

large increases in bandwidth. At the time of writing, a serial interconnect can

provide 5-10 times more bandwidth per pin compared to the commonly used

parallel interconnects used by commodity memory technology. In Chapter 10,

we will look at how we can exploit increased memory capacity and bandwidth

to achieve higher memory access rates to benefit the above applications.

App. J: What if we need large memory bandwidth? There are a number of

new real-time applications such as Telepresence [28], videoconferencing, multi-

player games, IPTV [29], etc., that benefit from multicasting. While we cannot

predict the usage and deployment of the Internet, it is likely that routers will

be called upon to switch multicast packets passing over very-high-speed lines

with a guaranteed quality of service. Should this be the case, routers will have

to support the extremely large memory bandwidths needed for multicasting.

This is because an arriving packet can be destined to multiple destinations, and

the router may have to make multiple copies of the packet. We briefly look at

methods to efficiently copy packets in Appendix J.27

1.8 Application of Techniques

We now outline how the two key architectural techniques — load balancing and caching

— are applied in this thesis.

26It is not uncommon today to have memories with 32 to 64 banks.
27Compared to the main body of work in this thesis, our results on multicast require a large

memory bandwidth and cache size. They are impractical to implement in the general case (unless
certain tradeoffs are made) for providing deterministic performance guarantees. And so, these results
are included in the Appendix.

1.9 Industry Impact 28

Table 1.3: Application of techniques.

Chpt. Analysis
Load-Balancing

Algorithm
Caching

Algorithm

1 Output Queued Router None None

2 Parallel Shared Memory Router Memories None
3-(a) Distributed Shared Memory Router Line cards None
3-(b) Parallel Distributed Shared Memory Router Line cards, Memories None

4 CIOQ Router Time None
5 Buffered CIOQ Router Time VOQ Heads

6-(a) Parallel Packet Switch Switches None

6-(b) Buffered Parallel Packet Switch Switches Arriving, Departing Packets
7-(a) Packet Buffer Cache Memories Queue Head and Tails
7-(b) Pipelined Packet Buffer Cache Memories Queue Head and Tails

8 Packet Scheduler Cache Packets Packet Lengths
9 Statistics Counter Cache None Counter Updates

10 Parallel Packet State Memory banks None
App. J Parallel Packet Copy Memory banks None

Depending on the requirement, we load-balance packets over unique memories,

memory banks, line cards, and switches. If there is only one path (or memory) that

a packet can access, then the load balancing algorithms distribute their load over

time. A special case occurs for packet scheduling, where load balancing of packet

lengths is done over packets written to memory. These are summarized in column

two of Table 1.3. The advantage with load balancing algorithms is that there is no

theoretical limit to how slow the memories can operate. The caveat is that these

algorithms usually need more memory bandwidth (than the theoretical minimum),

and the algorithms require complete knowledge of all memory accesses.

In contrast, caching algorithms appear simpler to implement, but they need a

cache that runs at the line rate (≡ Θ(R)). We demonstrate caching architectures and

algorithms for a number of data-path tasks. The cache may hold heads and tails of

queues, arriving or departing packets, packet lengths, or counters, depending on the

data-path task, as shown in column three of Table 1.3.

1.9 Industry Impact

Throughout this thesis, we present practical examples and details of the current

widespread use of these techniques in industry. The current technology constraints

1.9 Industry Impact 29

have allowed caching algorithms to find wide acceptance; however, we do not mandate

one approach over another, as the constraints may change from year to year due to

product requirements and available technology.

NObservation 1.6. A problem solved correctly is analogous to a meme.28 A good

technology meme solves a fundamental (not ephemeral) problem, lays

the foundation for solving related problems, spreads rapidly, and can

lead to the application of complementary technologies.

1.9.1 Consequences

At the time of writing, we have demonstrated, applied, and in some cases modified

the techniques presented in this thesis to scale the performance of various networking

applications, including packet buffering, measurements, scheduling, VOQ buffering,

page allocation, virtual memory management, Netflow, and state-based applications

to 40 Gb/s and beyond, using commodity DRAM-based memory technologies. Sur-

prisingly, these techniques (in particular caching), because they use memory in a

monolithic manner across all memories, have also resulted in increased router memory

reliability, simplified router memory redundancy (e.g., they have enabled N+1 memory

redundancy similar to RAID-3 and RAID-5 protection for disks [30]), and enabled

hot-swappable recovery from router memory failures.

They have helped reduce worst-case memory power (by ∼25-50% [31]), and are

currently being modified for use in automatically (without manual intervention)

reducing the average-case memory and I/O power consumption in routers. The

power reduction capabilities of caches have considerable engineering, economic, and

environmental benefits.

They have also paved the way for the use of complementary high-speed interconnect

and memory serialization technologies [32].29 Unforeseen by us, new markets (e.g.,

28“An idea that spreads” — Richard Dawkins coined the term meme in 1976, in his popular book,
The Selfish Gene.

29Caches hide memory latency (i.e., the time it takes to fetch data) of these beneficial serial
interconnect technologies, enabling them to be used for networking.

1.10 Primary Consequences 30

high-performance computing and storage networks) can also benefit from caching.

These techniques have made high-speed routers more affordable by reducing yearly

memory costs at Cisco Systems by > $149M [33] (∼50% of memory cost), reducing

ASIC and I/O pin counts, and halving the physical area required to build high-speed

routers.

1.9.2 Current Usage

We estimate that more than 6 M instances of the technology (on over 25 unique

product instances) will be made available annually, as Cisco Systems proliferates

its next generation of 40 Gb/s high-speed Ethernet switches and Enterprise routers;

and up to ∼80%30 of all high-speed Ethernet switches and Enterprise routers in the

Internet will use one or more instances of these technologies. They are currently

also being designed into the next generation of 100 Gb/s line cards (for high-volume

Ethernet, storage, and data center applications). In the next phase of deployment, we

also expect to cater to Internet core routers.

Finally, in the concluding chapter we describe some of the optimizations, imple-

mentation challenges, and potential caveats in scaling these techniques across different

segments of the router market. We will also describe the limitations of some of our

algorithms, and present some open problems that are still in need of solution.

1.10 Primary Consequences

The primary consequences of our work are —

1. Routers are no longer dependent on memory speeds to achieve high performance.

2. Routers can better provide strict performance guarantees for critical future

applications (e.g., remote surgery, supercomputing, distributed orchestras).

3. The router applications that we analyze are safe from malicious memory perfor-

mance attacks. Their memory performance can never be compromised, either

now, and provably, ever in future.

30Based on Cisco’s current proliferation in the networking industry.

1.11 Summary of Results 31

1.11 Summary of Results

This thesis lays down a foundation for solving the memory performance problem in

high-speed routers. It describes robust load balancing algorithms (which can emulate

the performance of an ideal router) and robust caching algorithms (which can achieve

100% hit rates). It brings under a common umbrella many well-known high-speed

router architectures, and introduces a general principle called “constraint sets”, which

unifies several results on router architectures. It also helps us derive a number of new

results, and more important, vastly simplifies our understanding of high-speed routers.

The following are the 14 main results of this thesis. In what follows, N and R

denote, as usual, the number of ports and the line rate of a router.

Robust Load Balancing Algorithms: We derive load balancing algorithms that

use memories in parallel, for a number of router architectures. We derive upper

bounds on the total memory bandwidth (as well as the switching bandwidth

where appropriate), which is within a constant, S = Θ(1) of the theoretical

minimum for the given architecture.31 These include: (1) S = 3 for the FCFS

parallel shared memory (PSM) router and S = 4 for a PSM router that supports

qualities of service, (2) Two variants of load balancing algorithms with S = 3, 4

for the FCFS distributed shared memory (DSM) router, and two variants with

S = 4, 6 for a DSM router which supports qualities of service, (3) S = 6, 8 for

the FCFS parallel distributed shared memory (PDSM) router and S = 12, 18

for a PDSM router which supports multiple qualities of service (both with a

number of variations), (4) S = 6+ ε for the FCFS combined input output queued

(CIOQ) router, and (5) S = 4 for the FCFS parallel packet switch (PPS), and

S = 6 for a PPS that supports qualities of service (with both centralized and

distributed implementations). We also develop load balancing algorithms for

two very generic applications that are widely used in systems including routers.

These include: (6) An algorithm that speeds up the random cycle time to perform

memory updates by a factor Θ(
√
h) (where h is the number of parallel memory

31Their total memory bandwidth is given by SNR. See Table 2.1 for details.

1.11 Summary of Results 32

banks, and used for state maintenance by routers), and (7) An algorithm that

can create m copies of data (used for supporting multicasting by routers) by

using memories that run only at access rate Θ(
√
m).

Robust Caching Algorithms: We describe several robust caching algorithms that

ensure, 100% of the time, that the cache never overflows or misses, along

with related cache replenishment and cache replacement policies. The caches

are of size (8) Θ(N2) for an FCFS buffered crossbar, (9) two variants with

cache size Θ(N2) and Θ(N3) for buffered crossbars that support qualities of

service, (10) Θ(Nk) for an FCFS parallel packet switch (where k is degree of

parallelism, i.e., the number of center stage switches), (11) Θ(Qb logQ) for

packet buffers with Q queues (where b is the width of the memory access), (12)

Θ(Q log Qb
x

) for pipelined buffers, which can tolerate a latency of x time slots,

(13) Θ(log logN) for measurement infrastructure with N counters, and (14)

Θ(Qb logQ+RL) log2 Pmax
Pmin

for packet schedulers with Q linked lists operating at

rate R, and a communication latency of L time slots (where Pmax and Pmin are

the maximum and minimum packet sizes respectively).

Summary

1. High-speed networks (e.g., the Internet backbone) suffer from a well-known problem:

packets arrive on high-speed routers at rates much faster than commodity memory can

support.

2. By 1997, this was identified as a fundamental approaching problem. As link rates increase

(usually at the rate of Moore’s Law), the performance gap widens and the problem becomes

worse. For example, on a 100Gb/s link, packets arrive ten times faster than memory rates.

3. If we are unable to bridge this performance gap, then our routers cannot give any guarantees

on performance. In this case, our routers (1) cannot reliably support links >10Gb/s, (2)

cannot support the needs of real-time applications, and (3) are susceptible to hackers or

viruses that can easily exploit the memory performance gap and bring down the Internet.

4. The goal of this thesis is to build routers that can provide deterministic performance

guarantees. We are interested in two kinds of guarantees — (1) work conservation (which

1.11 Summary of Results 33

ensures that our routers do not idle when a packet is destined for it), and (2) delay

guarantees (i.e., bounds on the time it takes for a packet to transit a router).

5. This thesis attempts to provide fundamental (not ephemeral) solutions to the memory

performance gap in routers.

6. The approach taken to alleviate the memory performance gap is to use parallelism. We

analyze many router architectures, and various data-path applications on routers. We

do not attempt to be exhaustive; rather, we assume that memory performance will be a

constraint, and we attempt to solve some of the fundamental memory constraints that

routers might face.

7. This thesis develops two classes of solutions, both of which use parallelism — (1) load

balancing algorithms that attempt to distribute the load in a “perfect” manner among

slower memories, and (2) caching algorithms that use a small, high-speed memory that

can be accessed at very high rates while most of the data resides in slower memories. The

trick is to guarantee, with no exceptions whatever, that data is available in the cache

100% of the time.

8. We analyze the performance of the above algorithms by comparing them to an ideal

(output queued) router. We call this emulation.

9. This thesis only pertains to memory-intensive data-path tasks in a router. It does not

attempt to solve the algorithmic and computationally intensive tasks on a router.

10. Each chapter in the thesis solves a different memory-related problem. Part I of the thesis

pertains to router architectures, while Part II pertains to data-path tasks and applications

on a router.

11. The thesis lays down the theoretical foundations for solving the memory performance

problem, presents various solutions, gives examples of practical implementations, and

describes the present widespread adoption of these solutions in industry.

12. As a consequence — (1) routers are no longer dependent on memory speeds to achieve

high performance, (2) routers can better provide strict performance guarantees for critical

future applications (e.g., remote surgery, supercomputing, distributed orchestras), and

(3) the router applications that we analyze are safe from malicious memory performance

attacks. Their memory performance can never be compromised either now or, provably,

ever in future.

13. It presents solutions to 14 different memory performance problems in high-speed routers.

Part I

Load Balancing and Caching for

Router Architecture

34

Chapter 2: Analyzing Routers with Parallel

Slower Memories
Dec 2007, Monterey, CA

Contents

2.1 The Pigeonhole Principle . 37

2.1.1 The Constraint Set Technique . 38

2.2 Single-buffered Routers . 39

2.3 Unification of the Theory of Router Architectures 43

2.4 The Parallel Shared Memory Router 46

2.4.1 Architecture . 46

2.4.2 Why is a PSM Router Interesting? . 48

2.4.3 Is the PSM Router Work-conserving? 48

2.5 Emulating an FCFS Shared Memory Router 49

2.6 QoS in a Parallel Shared Memory Router 51

2.6.1 Constraint Sets and PIFO queues in a Parallel Shared Memory Router 51

2.6.2 Complications When There Are N PIFO Queues 53

2.6.3 Modifying the Departure Order to Prevent Memory Conflicts 55

2.7 Related Work . 57

2.7.1 Subsequent Work . 57

2.8 Conclusions . 57

List of Dependencies

• Background: The memory access time problem for routers is described in

Chapter 1. Section 1.5.2 describes the use of load balancing techniques to

alleviate memory access time problems for routers.

Additional Readings

• Related Chapters: The load balancing technique described here is also used

to analyze routers in Chapters 3, 4, 6, and 10.

Table: List of Symbols.

c, C Cell
D(t) Departure Time
M Total Number of Memories
N Number of Ports of a Router
R Line Rate

SNR Aggregate Memory Bandwidth
T Time Slot

Table: List of Abbreviations.

CIOQ Combined Input Output Queued
DSM Distributed Shared Memory
FCFS First Come First Serve (Same as FIFO)
OQ Output Queued

PIFO Push In First Out
PPS Parallel Packet Switch
PSM Parallel Shared Memory

PDSM Parallel Distributed Shared Memory
SB Single-buffered

QoS Quality of Service
WFQ Weighted Fair Queueing

“Unlike some network technologies, communication

by pigeons is not limited to line-of-sight distance”.

— David Waitzman† 2
Analyzing Routers with Parallel Slower

Memories

2.1 The Pigeonhole Principle

Chapter 1 described the history of high-speed router architectures and introduced

the memory access time problem. In this chapter we will analyze and bring under a

common umbrella a variety of router architectures. But first we will answer the question

posed by the conversation in Chapter 1, since this will further our understanding

of the memory access time problem in routers. We want to discover the number of

pigeon holes that will allow a pigeon to enter or leave a pigeon hole within a given

time slot, so that the N departing pigeons are guaranteed to be able to leave, and the

N arriving pigeons are guaranteed a pigeon hole.

Consider a pigeon arriving at time t that will depart at some future time, D(t).

Let M be the total number of memories. We need to find a pigeon hole, H, that meets

the following three constraints: (1) No other pigeon is arriving to H at time t; (2) No

pigeon is departing from H at time t; and (3) No other pigeon in H wants to depart

at time D(t). Put another way, the pigeon is barred from no more than 3N − 2 pigeon

holes by N − 1 other arrivals, N departures, and N − 1 other future departures. In

†David Waitzman, RFC 1149: Standard for the Transmission of IP Datagrams on Avian Carriers,
1st April 1990.

37

2.1 The Pigeonhole Principle 38

keeping with the well-known pigeonhole principle (see Theorem 2.1), if M > 3N − 1,

our pigeon can find a hole.

2.1.1 The Constraint Set Technique

Algorithm 2.1: The constraint set technique for emulation of OQ routers.

input : Any Router Architecture.1

output: A bound on the number of memories, total memory, and switching2

bandwidth required to emulate an OQ router.

for each cell c do3

Determine packet’s departure time, D(t): If cells depart in FCFS4

order to a given output, and if the router is work-conserving, the
departure time is simply one more than the departure time of the previous
packet to the same output. If the cells are scheduled to depart in a more
complicated way, for example using WFQ, then it is harder to determine a
cells’s departure time. We will consider this in more detail in Section 2.6.
For now, we’ll assume that the D(t) is known for each cell.
Identify constraints: Identify all the constraints in the router5

architecture. This usually includes constraints on the memory bandwidth,
memory access time, speed of the switch fabric, etc. The constraints
themselves vary based on the router architecture being considered.
Define the memory constraint sets: Identify and set up the memory6

constraints for both the arriving and departing cells.
Apply the pigeonhole principle: Add up all the memory constraints,7

and apply the pigeonhole principle. This will identify the minimum
number of memories and minimum memory bandwidth required to write
and read all cells without any conflicts.
Solve the fabric constraints: Ensure that the switch fabric has8

sufficient bandwidth to read and write cells from memory, as derived in
the previous step. Identify a switching algorithm to transport these cells.
In some cases, if the router has a simple switching fabric (say, a broadcast
bus), this step is not necessary.

“Constraint sets” are a simple way of formalizing the pigeonhole principle so that

we can repeatedly apply it to a broad class of routers. In the routers that we will

2.2 Single-buffered Routers 39

consider, the arriving (departing) packets are written to (read from) memories that

are constrained. In some cases, they may only allow either a read or a write operation

in any one time slot. In other cases they may even operate slower than the line rate.

We can use the constraint set technique to determine how many memories are needed

(based on the speed at which the memory operates), and to design an algorithm to

decide which memory each arriving packet is written into. The technique is described

in Algorithm 2.1.

2.2 Single-bu�ered Routers

We now introduce a new class of routers called “single-buffered” routers. In contrast

to the classical CIOQ router, which has two stages of buffering that “sandwich” a

central switch fabric (with purely input queued and purely output queued routers as

special cases), a SB router has only one stage of buffering sandwiched between two

interconnects.

NObservation 2.1. Figure 2.1 illustrates both architectures. A key feature of the

SB architecture is that it has only one stage of buffering. Another

difference is in the way that the switch fabric operates. In a CIOQ

router, the switch fabric is a non-blocking crossbar switch, while in

an SB router, the two interconnects are defined more generally. For

example, the two interconnects in an SB router are not necessarily the

same, and the operation of one may constrain the operation of the

other.

We will explore one architecture in which both interconnects are built from a

single crossbar switch. In another case we will explore an architecture in which the

interconnect is a Clos network.

A number of existing router architectures fall into the SB model, such as the

input queued router (in which the first stage interconnect is a fixed permutation, and

the second stage is a non-blocking crossbar switch), the output queued router (in

2.2 Single-buffered Routers 40

(a) Single-buffered (SB) Architecture

(b) CIOQ Architecture

R

R

. .

R

R

..

R

R

. .

R

R

. .

Fabric Fabric

Fabric

Figure 2.1: A comparison of the CIOQ and SB router architectures.

which the first stage interconnect is a broadcast bus, and the second stage is a fixed

permutation), and the shared memory router (in which both stages are independent

broadcast buses).

It is our goal to include as many architectures under the umbrella of the SB model

as possible, then find tools to analyze their performance. We divide SB routers into

two classes: (1) Routers with randomized switching or load balancing, for which we

can at best determine statistical performance metrics, such as the conditions under

which they achieve 100% throughput. We call these Randomized SB routers; and (2)

Routers with deterministically scheduled switching, for which we can hope to find

conditions under which they emulate a conventional output queued router and/or can

provide delay guarantees for packets. We call these Deterministic SB routers.

In this thesis we will only study Deterministic SB routers. But for completeness, we

will describe here some examples of both Randomized and Deterministic SB routers.

For example, the well-known Washington University ATM Switch [34] – which is

2.2 Single-buffered Routers 41

essentially a buffered Clos network with buffering in the center stage – is an example

of a Randomized SB architecture. The Parallel Packet Switch (PPS) [35] (which is

further described in Chapter 6) is an example of a Deterministic SB architecture, in

which arriving packets are deterministically distributed by the first stage over buffers

in the central stage, and then recombined in the third stage.

In the SB model, we allow – where needed – the introduction of additional

coordination buffers. This buffer is much smaller (and is usually placed on chip),

compared to the large buffers used for congestion buffering. It can be used in either

randomized or deterministic SB routers. For example, in the Washington University

ATM Switch, resequencing buffers are used at the output because of the randomized

load balancing at the first stage. In one version of the PPS, fixed-size coordination

buffers are used at the input and output stages [36].

Other examples of the SB architecture include the load balancing switch proposed

by Chang [37] (which is a Randomized SB and achieves 100% throughput, but mis-

sequences packets), and the Deterministic SB variant by Keslassy [38] (which has delay

guarantees and doesn’t mis-sequence packets, but requires an additional coordination

buffer).

NObservation 2.2. Table 2.1 shows a collection of results for different deterministic

and randomized routers. The routers are organized into eight types

(shown in roman numerals) based on the architecture being used.

Within each type the deterministic routers are denoted by D, and the

randomized routers are denoted by R.

We’ve found that within each class of SB routers (Deterministic and Randomized),

performance can be analyzed in a similar way. For example, Randomized SB routers are

usually variants of the Chang load balancing switch, so they can be shown to have 100%

throughput using Lyapunov functions and the standard Loynes construction [37, 12].

In a previous paper [43] we use this technique to analyze the randomized buffered

2.2 Single-buffered Routers 42

Table 2.1: Unification of the theory of router architectures.

Name Type
of

memories

Memory
Access
Rate

Total
Memory

BW

Switch
BW

Comment

Output Queued I.D N (N + 1)R N(N + 1)R NR OQ Router.
Centralized Shared

Memory
I.D 1 2NR 2NR 2NR

OQ Router built with
shared memory.

Input Queued
[11, 12, 39]

II.D N 2R 2NR NR
100% throughput with
MWM. Can’t emulate

OQ Router.

Parallel Shared Memory
(PSM)

(Section 2.4)

III.D k 3NR/k 3NR 2NR Emulates FCFS-OQ.

III.D k 4NR/k 4NR 2NR Emulates WFQ OQ.

PSM
(SMS - Prakash) [40]

III.D 2N 2R 4NR 2NR Emulates FCFS-OQ

Distributed Shared
Memory

(Section 3.2 & 3.3)

IV.D N 3R 3NR 2NR
Emulates FCFS-OQ;

Bus Based.

IV.D N 4R 4NR 2NR
Emulates FCFS-OQ;

Bus Based.

IV.D N 3R 3NR 4NR
Emulates FCFS-OQ;

Xbar schedule complex.

IV.D N 3R 3NR 6NR
Emulates FCFS-OQ;
trivial Xbar schedule.

IV.D N 4R 4NR 5NR
Emulates WFQ OQ;

Xbar schedule complex.

IV.D N 4R 4NR 8NR
Emulates WFQ OQ ;
trivial Xbar schedule.

IV.D N 4R 4NR 4NR
Emulates FCFS-OQ;

simple Xbar schedule.

IV.D N 6R 6NR 6NR
Emulates WFQ OQ;

simple Xbar schedule.
DSM

(Two stage - Chang) [37]
IV.R N 2R 2NR 2NR

100% throughput with
mis-sequencing.

DSM
(Two stage -Keslassy) [38]

IV.D 2N 2R 4NR 2NR
100% throughput, delay

guarantees, no
mis-sequencing.

Parallel Distributed
Shared Memory (PDSM)

(Section 3.7)
V.D (2h− 1)xN R/h (2h−1)xNR

h
yNR

FCFS Crossbar-based
PDSM router with

memories slower than R,
where x and y are

variables (See
Table 3.1).

Parallel Distributed
Shared Memory (PDSM)

(Section 3.7)
V.D (3h− 2)xN R/h (3h−2)xNR

h
yNR

PIFO Crossbar-based
DSM router with

memories slower than R,
where x and y are

variables (See
Table 3.1).

CIOQ Router
(Box 4.2, [41])

VI.D 2N 5R 10NR 4NR
Emulates WFQ OQ with
forced stable marriage.

CIOQ Router
(Section 4.9, [13])

VI.D 2N 3R 6NR 2NR
Emulates WFQ OQ with
complex preferred stable

marriage.

CIOQ Router
(Section 4.2)

VI.D 2N (3 + ε)R (6 + 2ε)NR (2 + ε)NR
Emulates constrained

FCFS-OQ; trivial Xbar
schedule.

Buffered CIOQ Router
(Box 5.2)

VII.R 2N 3R 6NR 2NR
100% throughput with

trivial input and output
policy.

Buffered CIOQ Router
[42]

VII.D 2N 3R 6NR 2NR Emulates FCFS-OQ.

Buffered CIOQ Router
(Section 5.5)

VII.D 2N 3R 6NR 3NR Emulates WFQ OQ.

VII.D 2N 3R 6NR 2NR
Emulates WFQ OQ with

modified crossbar.

Parallel Packet Switch
(PPS)

(Section 6.5 & 6.6)

VIII.D kN 2(N+1)R/k 2N(N + 1)R 4NR
Emulates FCFS-OQ;

centralized algorithm.

VIII.D kN 3(N+1)R/k 3N(N + 1)R 6NR
Emulates WFQ OQ;

centralized algorithm.
Buffered PPS
(Section 6.7)

VIII.D kN R(N + 1)/k N(N + 1)R 2NR
Emulates FCFS-OQ;
distributed algorithm

2.3 Unification of the Theory of Router Architectures 43

CIOQ router (type VII.R in Table 2.11) to prove the conditions under which it can

give 100% throughput.

Likewise, the Deterministic SB routers that we have examined can be analyzed

using constraint sets (described in Section 2.1.1) to find conditions under which they

can emulate output queued routers. By construction, constraint sets also provide

switch scheduling algorithms. We derive new results, switching algorithms, and bounds

on the memory, and switching bandwidth for routers in each type (except the input

queue router (type II) for which it is known that it cannot emulate an OQ router).

2.3 Uni�cation of the Theory of Router Architec-

tures

Constraint sets help us derive a number of new results, and more important, vastly

simplify our understanding of high-speed router analysis and architectures. And so,

we will show by the analysis of various router architectures that the “constraint set”

technique unifies several results on router architectures under a common theoretical

framework.

NObservation 2.3. Essentially, constraint sets are simply a way to capture the load

balancing constraints on memory and thus can be applied extensively

to memory sub-systems. Table 2.1 summarizes the different router

architectures that are analyzed in this thesis using the constraint set

technique.

In this thesis, we describe two versions of the constraint set technique to analyze

deterministic routers, as follows –

1. Apply the basic constraint set technique (Algorithm 2.1) on deter-

ministic SB routers: We describe four Deterministic SB architectures that

1Henceforth when mentioning the router type, we drop the reference to the table number since it
is clear from the context.

2.3 Unification of the Theory of Router Architectures 44

seem of practical interest but have been overlooked in the academic literature:

(1) the parallel shared memory (PSM) router — a router built from a large

pool of central memories (type III, analyzed in this chapter), (2) the distributed

shared memory (DSM) router — a router built from a large but distributed pool

of memories (type IV, Chapter 3), (3) the parallel distributed shared memory

(PDSM) Router — a router that combines the techniques of the PSM and DSM

router architectures (type IV, Section 3.7), and (4) the parallel packet switch

(PPS) — a router built from a large pool of parallel routers running at a lower

line rate (type VIII, Chapter 6). As we will see, we can use the basic constraint

set technique to identify the conditions under which the above single-buffered

router architectures can emulate an output queued router.

2. Apply the basic constraint set technique (Algorithm 2.1) on deter-

ministic CIOQ Routers: We also apply the basic constraint set technique to

analyze the CIOQ router (type IV, Chapter 4), which is not an SB router. In a

CIOQ router, each packet gets buffered twice, as shown in Figure 1.3(b). We

will consider two switch fabrics: (1) the classical unbuffered crossbar, and (2)

the buffered crossbar, which is a crossbar with a small number of buffers. We

will see that constraint sets can simplify our understanding of previously known

results, and help derive new bounds to emulate an FCFS-OQ router.

3. Apply the extended constraint set technique (Algorithm 4.2) on de-

terministic CIOQ routers: In [13], the authors present a counting technique

to analyze crossbar based CIOQ routers. In hindsight, the technique can be

viewed as an application of the pigeonhole principle. So we will extend the

basic constraint set technique and restate the methods in [13] in terms of the

pigeonhole principle in Section 4.2. This helps to bring under a common umbrella

the analysis techniques used to analyze deterministic routers. As we will see, the

extended constraint set technique leads to tighter bounds and broader results

for the CIOQ router as compared to the basic constraint set technique. We then

apply this technique to a buffered CIOQ router to find the conditions under

which a buffered CIOQ router can emulate an output queued router.

2.3 Unification of the Theory of Router Architectures 45

�Box 2.1: The Pigeonhole Principle�

The pigeonhole principle states the following —

Figure 2.2: The pigeon-
hole principle

Theorem 2.1. Given two natural numbers p and h

with p > h, if p items (pigeons) are put into h pigeon-

holes, then at least one pigeonhole must contain more

than one item (pigeon).

An equivalent way of stating this (used most often

in this thesis and shown in Figure 2.2) [44] is as follows

— if the number of pigeons is less than the number of

pigeonholes, then there’s at least one pigeonhole that

must be empty.

The principle was first mentioned by Dirichlet in 1834, using the name Schub-

fachprinzip (“drawer principle”). It is rumored that the term pigeonhole itself was

introduced to prevent any further discussion of Dirichlet’s drawers! The principle

itself is obvious, and humans have been aware of it historically. For example, the old

game of musical chairs is a simple application of the pigeonhole principle.

NObservation 2.4. The pigeonhole principle is powerful and has many uses in

computer science and mathematics, e.g., it can be used to prove that

any hashing algorithm (where the domain is greater than the number

of hash indices) cannot prevent collision, or that a lossless compression

algorithm cannot compress the size of all its inputs. Surprisingly, it is

also used to find good fractional approximations for irrational numbers.

In terms of set theory, pigeons and pigeonholes are simply two finite sets, say P

and H; and the pigeonhole principle can be applied if |P | > |H|. It is interesting to

note that the pigeonhole principle can also be applied to infinite sets, but only if it

can still be shown that the cardinality of P is greater than H.a

Here’s an interesting magic trick based on applying the pigeonhole principle —

A magician asks an audience member to randomly choose five cards from a card deck,

then asks her to show them to an understudy. The understudy shows four of the five

cards to the magician, one by one. The magician then guesses the fifth one.

aAnd so, the principle can’t be applied to the interesting mathematical paradox known
as Hotel Infinity [45], where new guests can always be accommodated in a hotel that is full.

2.4 The Parallel Shared Memory Router 46

As we will show later in this thesis, we also use constraint sets to analyze two

router data path tasks that use load balancing — (1) state maintenance (Chapter 10)

and multicasting (Appendix J).

In the rest of the thesis, we will repeatedly use the following lemmas in our analysis

using constraint sets. They are both direct consequences of the pigeonhole principle.

Lemma 2.1. Let A1, A2 . . .An be n sets, such that ∀i ∈ {1, 2, . . . , n}, |Ai| 6 k, where

k is the size of the universal set. If |A1| + |A2| + · · · + |An| > (n − 1)k, then there

exists at least one element which is common to all sets, i.e., ∃e, e ∈ A1 ∩ A2 ∩ . . . An.

Lemma 2.2. Let A1, A2 . . .An be n sets, such that ∀i ∈ {1, 2, . . . , n}, |Ai| 6 k, where

nk + 1 is the size of the universal set. Then there exists at least one element that does

not belong to any of the sets, i.e., ∃e, e 6∈ A1 ∪ A2 ∪ . . . An.

2.4 The Parallel Shared Memory Router

2.4.1 Architecture

A shared memory router is characterized as follows: When packets arrive at different

input ports of the router, they are written into a centralized shared buffer memory.

When the time arrives for these packets to depart, they are read from this shared buffer

memory and sent to the egress line. The shared memory architecture is the simplest

technique for building an OQ router.

�Example 2.1. Early examples of commercial implementations of shared memory

routers include the SBMS switching element from Hitachi [46], the

RACE chipset from Siemens [47], the SMBS chipset from NTT [48],

the PRELUDE switch from CNET [49, 50], and the ISE chipset by

Alcatel [51]. A recent example is the ATMS2000 chipset from MMC

Networks [52].

In general, however, there have been fewer commercially available shared memory

routers than those using other architectures. This is because (as described in Chapter 1)

2.4 The Parallel Shared Memory Router 47

R

R

2NR

Read Access Time = TWrite Access Time = T

DRAM with k memories with random access time T

Arriving Packets Departing Packets

R

R

. . . .

Figure 2.3: The parallel shared memory router.

it is difficult to scale the capacity of shared memory switches to the aggregate capacity

required today.

An obvious question to ask is: If the capacity of a shared memory router is larger

than the bandwidth of a single memory device, why don’t we simply use lots of memories

in parallel? However, this is not as simple as it first seems.

NObservation 2.5. If the width of the memory data bus equals a minimum length

packet (about 40 bytes), then each packet can be (possibly segmented

and) written into memory. But if the width of the memory is wider

than a minimum length packet,2 it is not obvious how to utilize the

increased memory bandwidth.

We cannot simply write (read) multiple packets to (from) the same memory

location, as they generally belong to different queues. The shared memory contains

multiple queues (at least one queue per output; usually more).

But we can control the memories individually, and supply each device with a

separate address. In this way, we can write (read) multiple packets in parallel to (from)

2For example, a 160 Gb/s shared memory router built from memories with a random access time
of 50 ns requires the data bus to be at least 16,000 bits wide (50 minimum length packets).

2.4 The Parallel Shared Memory Router 48

different memories. We call such a router a parallel shared memory router, as shown

in Figure 2.3. k > 2NR/B physical memories are arranged in parallel, where B is

the bandwidth of one memory device. A central bus transports arriving (departing)

packets to (from) different line cards. The bus carries all the 2N packets across it and

has a bandwidth of 2NR.

2.4.2 Why is a PSM Router Interesting?

The main appeal of the PSM router is its simplicity – the router is simply a bunch

of memories. Also, it is scalable in terms of memory access time. If we had only

one memory, as in the centralized shared memory router described in Chapter 1, a

PSM router would not be scalable. However, in a PSM router, the access rate of the

individual memories can be arbitrarily small, in which case we will simply need more

memories.

2.4.3 Is the PSM Router Work-conserving?

We are interested in the conditions under which the parallel shared memory router

can emulate an FCFS output queued router. This is equivalent to asking if we can

always find a memory that is free for writing when a packet arrives, and that will also

be free for reading when the packet needs to depart. Consider the following example.

�Example 2.2. Figure 2.4 shows a PSM router with N = 3 ports. The outputs

are numbered a, b, and c. Packets (a4), (a5), and (c3) arrive to the

router, where (a4) denotes a packet destined to output a with departure

time DT = 4. Packets (a1), (b1), and (c1) depart from the PSM

router in the current time slot, with DT = 1. Some packets that have

arrived earlier, such as (a3) and (b3), are shown buffered in some of

the memories of the PSM router. If arriving packets (a4) and (a5) are

sent to the first two memories, then packet c3 is forced to be buffered

in the memory numbered 5.

2.5 Emulating an FCFS Shared Memory Router 49

1

R

DRAMs with one memory access (read or write) per time slot

Arriving Packets Departing Packets

R

R

. . ..
a4 a5 a3 b3 b1 c1

a4

c3

a5

a1 c3

a1

c1

b1

2 3 4 5 6 7 8

Figure 2.4: An example where k = 7 memories are not enough, but k = 8 memories suffice.

Clearly, if the packets were allocated as shown, and the memory numbered 5 was

not present, the PSM router would not be work-conserving for this allocation policy.

We are interested in knowing whether the PSM router is work-conserving in the general

case, i.e., for any value of N and k, irrespective of the arriving traffic pattern.

2.5 Emulating an FCFS Shared Memory Router

Using constraint sets, it is easy to see how many memories are needed for the parallel

shared memory router to emulate an FCFS output queued router.

Theorem 2.2. (Sufficiency) A total memory bandwidth of 3NR is sufficient for a

parallel shared memory router to emulate an FCFS output queued router.

Proof. (Using constraint sets) Assume that the aggregate memory bandwidth of the

k memories is SNR, where S > 1. We can think of the access time T of a memory, as

equivalent to k/S decision slots.3 We will now find the minimum value of S needed

for the switch to emulate an FCFS output queued router. Assume that all packets are

segmented into cells of size C, and reassembled into variable-length packets before

3There are N arriving packets for which we need to make a decision in any time slot. So we shall
denote N decision slots to comprise a time slot.

2.5 Emulating an FCFS Shared Memory Router 50

they depart. As follows, we define two constraint sets: one set for when cells are

written to memory, and another for when they are read.

ℵDe�nition 2.1. Busy Write Set (BWS): When a cell is written into a memory,

the memory is busy for dk/Se decision slots. BWS(t) is the set

of memories that are busy at the time, due to cells being written,

and therefore cannot accept a new cell. Thus, BWS(t) is the set

of memories that have started a new write operation in the previous

dk/Se − 1 decision slots. Clearly |BWS(t)| 6 dk/Se − 1.

ℵDe�nition 2.2. Busy Read Set (BRS): Likewise, the BRS(t) is the set of memo-

ries busy reading cells at time t. It is the set of memories that have

started a read operation in the previous dk/Se−1 decision slots. Clearly

|BRS(t)| 6 dk/Se − 1.

Consider a cell c that arrives to the shared memory switch at time t destined

for output port j. If c’s departure time is DT (t, j) and we apply the constraint set

technique, then the memory l that c is written into must meet these constraints:

1. Memory l must not be busy writing a cell at time t. Hence l /∈ BWS(t).

2. Memory l must not be busy reading a cell at time t. Hence l /∈ BRS(t).

3. We must pick a memory that is not busy when the cell departs from the switch

at DT (t, j): Memory l must not be busy reading another cell when c is ready to

depart: i.e., l /∈ BRS(DT (t, j)).

Hence our choice of memory l must meet the following constraints:

l /∈ BWS(t) ∧ l /∈ BRS(t) ∧BRS(DT (t, j)). (2.1)

A sufficient condition to satisfy this is:

k − |BWS(t)| − |BRS(t)| − |BRS(DT (t, j))| > 0 (2.2)

2.6 QoS in a Parallel Shared Memory Router 51

From Definitions 2.1 and 2.2, we know that Equation 2.2 is true if:

k − 3(dk/Se − 1) > 0. (2.3)

This is satisfied if S > 3, and corresponds to a total memory bandwidth of 3NR.r

Note that it is possible that an arriving cell must depart before it can be written to

the memory, i.e., DT (t, j) < t+ T . In that case, the cell is immediately transferred to

the output port j, bypassing the shared memory buffer. The algorithm described here

sequentially searches the line cards to find a non-conflicting location for an arriving

packet. Hence the complexity of the algorithm is Θ(N). Also, the algorithm needs

to know the location of every packet buffered in the router. The bus connecting the

line cards to the memory must run at rate 2NR. While this appears expensive, in

Chapter 3 we will explore ways to reduce the complexity using a crossbar switch fabric.

2.6 QoS in a Parallel Shared Memory Router

We now consider routers that provide weighted fairness among flows, or delay guar-

antees using WFQ [17] or GPS [18]. We find the conditions under which a parallel

shared memory router can emulate an output queued router that implements WFQ.

We will use the generalization of WFQ known as a “Push-in First-out” (PIFO) queue

as described in Chapter 1. As follows, we will explore how a PSM router can emulate

a PIFO output queued router that maintains N separate PIFO queues, one for each

output.

2.6.1 Constraint Sets and PIFO queues in a Parallel Shared

Memory Router

We saw above that if we know a packet’s departure time when it arrives – which we do

for FCFS – we can immediately identify the memory constraints to ensure the packet

can depart at the right time. But in a router with PIFO queues, the departure time of

a packet can change as new packets arrive and push in ahead of it. This complicates

2.6 QoS in a Parallel Shared Memory Router 52

the constraints; but as we will see, we can introduce an extra constraint set so as to

choose a memory to write the arriving packet into. First, we’ll explain how this works

by way of an example; the general principle follows easily.

�Example 2.3. Consider a parallel shared memory router with three ports, and

assume that all packets are of fixed size. We will denote each packet

by its initial departure order: Packet (a3) is the third packet to depart,

packet (a4) is the fourth packet to depart, and so on. Figure 2.5(a)

shows a sequence of departures, assuming that all the packets in the

router are stored in a single PIFO queue. Since the router has three

ports, three packets leave the router from the head of the PIFO queue

in every time slot. Suppose packet (a3′) arrives and is inserted between

(a2) and (a3), as shown in Figure 2.5(b). If no new packets push in,

packet (a3′) will depart at time slot 1, along with packets (a1) and

(a2) (which arrived earlier and are already in memory). To be able

to depart at the same time, packets (a1), (a2), and (a3′) must be in

different memories. Therefore, they must be written into a different

memory.

Things get worse when we consider what happens when a packet is

pushed from one time slot to the next. Figure 2.5(c) shows (a1′)

arriving and pushing (a3′) into time slot 2. Packet (a3′) now conflicts

with packets (a3) and (a4), which were in memory (a3′) when they

arrived, and are also scheduled to depart in time slot 2. To be able

to depart at the same time, packets (a3′), (a3), and (a4) must be in

different memories.

In summary, when (a3′) arrives and is inserted into the PIFO queue, there are

only four packets already in the queue that it could conflict with: (a1) and (a2) ahead

of it, and (a3) and (a4) behind it. Therefore, we only need to make sure that (a3′) is

written into a different memory than these four packets. Of course, new packets that

arrive and are pushed in among these four packets will be constrained and must pick

different memories, but these four packets will be unaffected.

2.6 QoS in a Parallel Shared Memory Router 53

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Time Slot: 1 Time Slot: 2 Time Slot: 3 Time Slot: 4

(b) Queue order after arrival of cell a3’

a1 a2 a3’ a3 a4 a5 a6 a7 a8 a9 a10 a11

a1’ a1 a2 a3’ a3 a4 a5 a6 a7 a8 a9 a10

t

a3’

a1’

(a) Initial queue order

Figure 2.5: Maintaining a single PIFO queue in a parallel shared memory router. The
order of departures changes as new cells arrive. However, the relative order of departures
between any two packets remains unchanged.

In general, we can see that when a packet arrives to a PIFO queue, it should not

use the memories used by the N − 1 packets scheduled to depart immediately before

or after it. This constrains the packet not to use 2(N − 1) memories.

2.6.2 Complications When There Are N PIFO Queues

The example above is not quite complete. A PSM router holds N independent PIFO

queues in one large pool of shared memory (not one PIFO queue, as the previous

example suggests). When a memory contains multiple PIFO queues, the memory as

a whole does not operate as a single PIFO queue, and so the constraints are more

complicated. We’ll explain by way of another example.

�Example 2.4. Consider the same parallel shared memory router with three ports: a,

b, and c. We’ll denote each packet by its output port and its departure

order at that output: packets (b3) and (c3) are the third packets to

depart from outputs b and c, and so on. Figure 2.6(a) shows packets

waiting to depart – one packet is scheduled to depart from each output

during each time slot.

2.6 QoS in a Parallel Shared Memory Router 54

a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4

Time Slot: 1 Time Slot: 2 Time Slot: 3 Time Slot: 4

(a) Initial queue order

a1 b1 c1 a2’ b2 c2 a2 b3 c3 a3 b4 c4

t

a2’

(b) Queue order after arrival of cell a2’

Figure 2.6: Maintaining N PIFO queues in a parallel shared memory router. The relative
order of departure of cells that belong to the same output remains the same. However, the
relative order of departure of cells among different outputs can change due to the arrival of
new cells.

Assume that packet (a2′) arrives to output port a and is inserted

between (a1) and (a2) (two packets scheduled to depart consecutively

from port a). (a2′) delays the departure time of all the packets behind

it destined to output a, but leaves unchanged the departure time of

packets destined to other outputs. The new departure order is shown

in Figure 2.6(b).

Taken as a whole, the memory (which consists of N PIFO queues)

does not behave as one large PIFO queue. This is illustrated by packet

(a3), which is pushed back to time slot 4, and is now scheduled to

leave after (b3). The relative order of (a3) and (b3) has changed after

they were in memory, so by definition of a PIFO, the queue is not a

PIFO.

The main problem in the above example is that the number of potential memory

conflicts is unbounded. This could happen if a new packet for output a was inserted

between (a2) and (a3). Beforehand, (a3) conflicted with (b4) and (c4); afterward, it

conflicts with (b5) and (c5), both of which might already have been present in memory

when (a3) arrived. This argument can be continued. Thus, when packet (a3) arrives,

there is no way to bound the number of memory conflicts that it might have with

2.6 QoS in a Parallel Shared Memory Router 55

packets already present. In general, the arrivals of packets create new conflicts between

packets already in memory.

2.6.3 Modifying the Departure Order to Prevent Memory

Conicts

We can prevent packets destined to different outputs from conflicting with each other

by slightly modifying the departure order, as described in the following idea —

DIdea. “Instead of sending one packet to each output per time slot, we can

transmit several packets to one output, then cycle through each output in turn”.

More formally, consider a router with n ports and k shared memories. Let Π be

the original departure order. This is described in Equation 2.4. In each time slot,

a packet is read from memory for each output port. We will permute Π to give a

new departure order Π′, as shown in Equation 2.5. Exactly k packets are scheduled

to depart each output during the k time slots. Each output receives service for k/n

consecutive time slots, and k packets leave per output consecutively. The outputs are

serviced in a round robin manner.

Π = (a1, b1, . . . , n1),

(a2, b2, . . . , n2),

. . . , (2.4)

(ak, bk, . . . , nk).

Π′ = (a1, a2, . . . , ak),

(b1, b2, . . . , bk),

. . . , (2.5)

(n1, n2, . . . , nk).

Note that Π′ allows each output to simply read from the k shared memories without

conflicting with the other outputs. So, when an output finishes reading the k packets,

all the memories are now available for the next output to read from. This resulting

conflict-free permutation prevents memory conflicts between outputs.

2.6 QoS in a Parallel Shared Memory Router 56

The conflict-free permutation Π′ changes the departure time of a packet by at most

k − 1 time slots. To ensure that packets depart at the right time, we need a small

coordination buffer at each output to hold up to k packets. Packets may now depart

at, at most, k − 1 time slots later than planned.

We can now see how a parallel shared memory router can emulate a PIFO output

queued router. First, we modify the departure schedule using the conflict-free per-

mutation above. Next, we apply constraint sets to the modified schedule to find the

memory bandwidth needed for emulation using the new constraints. The emulation is

not quite as precise as before: the parallel shared memory router can lag the output

queued router by up to k − 1 time slots.

Theorem 2.3. (Sufficiency) With a total memory bandwidth of 4NR, a parallel

shared memory router can emulate a PIFO output queued router within k − 1 time

slots.

Proof. (Using constraint sets) Consider a cell c that arrives to the shared memory

router at time t destined for output j, with departure time DT (t, j) based on the

conflict-free permutation. The memory l that c is written into must meet the following

four constraints:

1. Memory l must not be busy writing a cell at time t. Hence l /∈ BWS(t).

2. Memory l must not be busy reading a cell at time t. Hence l /∈ BRS(t).

The above constraints are similar to the conditions derived for an FCFS PSM

router in Theorem 2.2.

3. Memory l must not have stored the dk/Se − 1 cells immediately in front of cell

c in the PIFO queue for output j, because it is possible for cell c to be read out

in the same time slot as some or all of the dk/Se − 1 cells immediately in front

of it.

4. Similarly, memory l must not have stored the dk/Se − 1 cells immediately after

cell c in the PIFO queue for output j.

2.7 Related Work 57

Hence our choice of memory l must meet four constraints. Unlike Theorem 2.2, there

is an additional memory constraint to satisfy, and so this requires a total memory

bandwidth of 4NR for the PSM router to emulate a PIFO output queued router. r

2.7 Related Work

Our results on the use of the pigeonhole principle for parallel shared memory routers

were first described in [53]. In work done independently, Prakash et al. [40] also

analyze the parallel shared memory router. They prove that 2N − 1 dual-ported

memories (i.e., where each memory can perform a read and a write operation per

time slot) is enough to emulate an FCFS-OQ router (the authors do not consider

WFQ policies). This requires a total memory bandwidth of (4N − 2)R. The bound

obtained in our work is tighter than in [40], because single-ported memories allow for

higher utilization of memory. We have not considered the implementation complexity

of our switching algorithm, which allocates packets to memories. The proof techniques

derived above implicitly assume Θ(N) time complexity. In [40], the authors take a

different approach, demonstrating a parallel switching algorithm with time complexity

O(log2N). However, the algorithm utilizes additional memory bandwidth up to

Θ(6NR) to efficiently compute the packet allocation, and requires a parallel machine

with O(N2) independent processors.

2.7.1 Subsequent Work

In subsequent work [54, 55], the authors describe a randomized algorithm with low

time complexity that can match packets to memories with high probability.

2.8 Conclusions

It is widely assumed that a shared memory router, although providing guaranteed

100% throughput and minimum delay, does not scale to very high capacities. Our

results show that this is not the case. While our results indicate that a parallel

shared memory router requires more overall memory bandwidth as compared to a

2.8 Conclusions 58

centralized shared memory router, the bandwidth of any individual memory can be

made arbitrarily small by using more physical devices. The bounds we derive for

the PSM router are upper bounds on the number of memories required to emulate

an output queued router. Clearly, 3N − 1 memories are sufficient, and at least 2N

memories are necessary. However, we have been unable to show a tighter bound in

the general case, and this remains an interesting open problem.

Summary

1. In Chapter 1, we introduced a conversation about pigeons and pigeonholes. We posed a

question and showed its analogy to the design of high-speed routers.

2. We solve the analogy by the use of the pigeonhole principle.

3. We introduce a technique called “constraint sets” to help us formalize the pigeonhole

principle, so that we can apply it to a broad class of router architectures.

4. The constraint set technique will help us determine the conditions under which a given

router architecture can provide deterministic performance guarantees — the central goal

of this thesis. Specifically, it will help us identify the conditions under which a router can

emulate an FCFS-OQ router and a router that supports qualities of service.

5. We would like to bring under one umbrella a broad class of router architectures. So we

propose an abstract model for routers, called single-buffered (SB) routers, where packets

are buffered only once.

6. Single-buffered routers include a number of router architectures, such as centralized shared

memory, parallel shared memory, and distributed shared memory, as well as input queued

and output queued routers.

7. In Chapters 2, 3, and 7, we apply the pigeonhole principle to analyze single-buffered

routers.

8. In Chapters 4, 5, we analyze combined input output queued (CIOQ) routers that have two

stages of buffering.

9. The results of our analysis are summarized in Table 2.1.

10. The first router that we analyze is the parallel shared memory (PSM) router. The PSM

router is appealing because of its simplicity; the router is built simply, from k parallel

memories, each running at the line rate R.

2.8 Conclusions 59

11. A parallel shared memory router that does not have a sufficient number of memories, or

that allocates packets to memories incorrectly, may not be work-conserving.

12. We show that a parallel shared memory router can emulate an FCFS output queue router

with a memory bandwidth of 3NR (Theorem 2.2).

13. We also show that a PSM router can emulate an OQ router that supports qualities of

service with a memory bandwidth of 4NR (Theorem 2.3).

14. It was widely believed that a shared memory router, although providing guaranteed 100%

throughput and minimum delay, does not scale to very high capacities. Our results show

that this is not the case.

Chapter 3: Analyzing Routers with Distributed

Slower Memories
Jan 2008, Half Moon Bay, CA

Contents

3.1 Introduction . 62

3.1.1 Why Are Distributed Shared Memory Routers Interesting? 63

3.1.2 Goal . 64

3.2 Bus-based Distributed Shared Memory Router 64

3.3 Crossbar-based DSM Router . 64

3.4 An XBar DSM Router Can Emulate an FCFS-OQ Router 66

3.5 Minimizing the Crossbar Bandwidth 67

3.6 A Tradeoff between XBar BW and Scheduler Complexity 69

3.6.1 Implementation Considerations for the Scheduling Algorithm 73

3.7 The Parallel Distributed Shared Memory Router 74

3.8 Practical Considerations . 75

3.9 Conclusions . 80

List of Dependencies

• Background: The memory access time problem for routers is described in

Chapter 1. Section 1.5.2 describes the use of load balancing techniques to

alleviate memory access time problems for routers.

Additional Readings

• Related Chapters: The distributed shared memory (DSM) router introduced

in this chapter is an example of a single-buffered router (See Section 2.2), and the

general load balancing technique to analyze this router is described in Section 2.3.

The load balancing technique is also used to analyze other router architectures

in Chapters 2, 4, 6, and 10.

Table: List of Symbols.

∆ Vertex Degree of a Graph
c, C Cell
DT Departure Time
N Number of Ports of a Router
R Line Rate
T Time Slot

Table: List of Abbreviations.

CIOQ Combined Input Output Queued
DRAM Dynamic Random Access Memory
DSM Distributed Shared Memory
FCFS First Come First Serve (Same as FIFO)
OQ Output Queued

PIFO Push In First Out
PDSM Parallel Distributed Shared Memory
QoS Quality of Service
RTT Round Trip Time
SB Single-buffered

TCP Transmission Control Protocol
WFQ Weighted Fair Queueing

“A distributed system is one in which the

failure of a computer you didn’t even know

existed can render your own computer unusable”.

— Leslie Lamport† 3
Analyzing Routers with Distributed Slower

Memories

3.1 Introduction

In Chapter 2, we considered the parallel shared memory router. While this router

architecture is interesting, it has the drawback that all k memories are in a central

location. In a commercial router, we would prefer to add memories only as needed,

along with each new line card. And so we now turn our attention to the distributed

shared memory router shown in Figure 3.1. We assume that the router is physically

packaged as shown in the figure, and that each line card contains some memory buffers.

At first glance, the DSM router looks like an input queued router, because each

line card contains buffers, and there is no central shared memory. But the memories

on a line card don’t necessarily hold packets that have arrived to or will depart from

that line card. In fact, the N different memories (one on each line card) can be

thought of as collectively forming one large shared memory. When a packet arrives,

it is transferred across the switch fabric (which could be a shared bus backplane, a

crossbar switch, or some other kind of switch fabric) to the memory in another line

card. This is shown in Figure 3.2. When it is time for the packet to depart, it is read

†Leslie Lamport (1941 –), Computer Scientist.

62

3.1 Introduction 63

from the memory, passed across the switch fabric again, and sent through its outgoing

line card directly to the output line. Notice that each packet is buffered in exactly

one memory, and so the router is an example of a single-buffered router.

3.1.1 Why Are Distributed Shared Memory Routers Inter-

esting?

From a practical viewpoint, the DSM router has the appealing characteristic that

buffering is added incrementally with each line card. This architecture is similar to

that employed by Juniper Networks in a commercial router [56], although analysis of

the router’s performance has not been published.1

NObservation 3.1. A DSM router has a peculiar caveat that is inherent in all dis-

tributed systems. If a line card fails, it may have packets destined for it

from multiple (if not all) line cards. Thus, a failure in one line card can

cause packet drops to flows that arrive from and are destined to line

cards that have nothing to do with the failed line card! However, this is

an ephemeral problem, and only packets that are temporarily buffered in

the failed line card are lost. The system can continue operating (albeit

at a slower rate) in the absence of the failed line card. Alternatively,

an additional line card can be provided that is automatically utilized in

case of failure, allowing the system to operate at full line rates. (This

is typically referred to as N + 1 resiliency.)

The DSM router’s resiliency to failures, its graceful degradation, and the fault-

tolerant nature of the system make it particularly appealing.

1The Juniper router appears to be a Randomized SB router. In the DSM router, the address
lookup (and hence the determination of the output port) is performed before the packet is buffered,
whereas in [56] the address lookup is performed afterward, suggesting that the Juniper router does
not use the outgoing port number, or departure order, when choosing which line card will buffer the
packet.

3.2 Bus-based Distributed Shared Memory Router 64

3.1.2 Goal

Our goal is to find the conditions under which a high-speed DSM router can give

deterministic performance guarantees, as described in Section 1.4. In particular, this

means we want to derive the conditions under which a DSM router can emulate an

FCFS-OQ router and a PIFO-OQ router. We will consider two switch fabrics in a

DSM router — (1) a bus, and (2) a crossbar.

3.2 Bus-based Distributed Shared Memory

Router

In a bus-based DSM router, the switch fabric is a bus that carries all arriving and

departing packets. This router is logically equivalent to a parallel shared memory

router as long as the shared bus has sufficient capacity, i.e., a switching bandwidth

2NR. Rather than placing all the memories centrally, they are moved to the line cards.

Therefore, the theorems for the PSM router derived in Chapter 2 also apply directly

to the distributed shared memory router. While these results may be interesting, the

bus bandwidth is too large.

�Example 3.1. Consider a bus-based DSM router with N = 32 ports and R =

40 Gb/s, i.e., a router with a capacity of 1.28 Tb/s. The switch fabric

would have to switch twice the bandwidth, and would require a shared

multidrop broadcast bus with a capacity of 2.56 Tb/s. This is not

practical with today’s serial link and connector technologies, as it would

require over 400 links!

3.3 Crossbar-based DSM Router

We can replace the shared broadcast bus with an N ×N crossbar switch, then connect

each line card to the crossbar switch using a short point-to-point link. This is similar

3.3 Crossbar-based DSM Router 65

Switching Fabric
e.g.: Bus or Crossbar

Distributed
Shared Memory N Ports on

a Backplane

Port

Figure 3.1: Physical view of the DSM router. The switch fabric can be either a backplane
or a crossbar. The memory on a single line card can be shared by packets arriving from
other line cards.

MMA

Backplane Bus

Linecards
Linecards

Packet

(a) Bus Interconnect

Packet
Path

Path

Crossbar

(b) Crossbar Interconnect

Figure 3.2: Logical view of the DSM router. An arriving packet can be buffered in the
memory of any line card, say x. It is later read by the output port from the intermediate
line card x.

3.4 An XBar DSM Router Can Emulate an FCFS-OQ Router 66

to the way input queued routers are built today, although in a distributed shared

memory router every packet traverses the crossbar switch twice.

The crossbar switch needs to be configured each time packets are transferred, and

so we need a scheduling algorithm that will pick each switch configuration. (Before,

when we used a broadcast bus, we didn’t need to pick the configuration, as there was

sufficient capacity to broadcast packets to the line cards.) We will see that there are

several ways to schedule the crossbar switch, and that each has its pros and cons. We

will find different algorithms, and for each algorithm we will find the speed at which

the memories and crossbar need to run.

We will define the bandwidth of a crossbar to be the speed of the connection from

a line card to the switch, and we will assume that the link bandwidth is the same in

both directions. So, for example, we know that each link needs a bandwidth of at

least 2R just to carry every packet across the crossbar fabric twice. In general, we

find that we need a higher bandwidth than this in order to emulate an output queued

router. The additional bandwidth serves three purposes:

1. It provides additional bandwidth to write into (read from) the memories on the

line cards to overcome the memory constraints.

2. It relaxes the requirements on the scheduling algorithm that configures the

crossbar.

3. Because the link bandwidth is the same in both directions, it allocates a band-

width for the peak transfer rate in one direction, even though we don’t usually

need the peak transfer rate in both directions at the same time.

3.4 A Crossbar-based DSM router Can Emulate

an FCFS Output Queued Router

We start by showing trivially sufficient conditions for a Crossbar-based DSM router to

emulate an FCFS output queued router. We then follow with tighter results that show

how the crossbar bandwidth can be reduced at the cost of either increased memory

bandwidth, or a more complex crossbar scheduling algorithm.

3.5 Minimizing the Crossbar Bandwidth 67

Theorem 3.1. (Sufficiency) A Crossbar-based DSM router can emulate an FCFS

output queued router with a total memory bandwidth of 3NR and a crossbar bandwidth

of

3.5 Minimizing the Crossbar Bandwidth 68

Inputs, I Outputs, J

1

2

3

4

1

2

3

4

1 0 1 0

1 1 0 1

0 0 0 2

0 0 0 1

 Matrix

(a) Request Graph, G (b) Request Matrix, G

Figure 3.3: A request graph and a request matrix for an N ×N switch.

Proof. From the above discussion, the degree of the bipartite request graph is at most

4. From [57, 58] and Theorem 2.2, a total memory bandwidth of 3NR, a crossbar link

speed of 4R, and a crossbar bandwidth of 4NR is sufficient. r

Theorem 3.4. (Sufficiency) A Crossbar-based DSM router with a total memory

bandwidth of 4NR and a crossbar bandwidth of 5NR can emulate a PIFO output

queued router within a relative delay of 2N − 1 time slots.

Proof. The proof is in two parts. First we shall prove that a conflict-free permutation

schedule Π′ over N time slots can be scheduled with a crossbar bandwidth 5R.

Unlike the crossbar-based distributed shared memory router, the modified conflict-free

permutation schedule Π′ cannot be directly scheduled on the crossbar, because the

conflict-free permutation schedules N cells to each output per time slot. However,

we know that the memory management algorithm schedules no more than 4 memory

accesses to any port per time slot. Since each input (output) port can have no more

than N arrivals (departures) in the N time slots, the total out-degree per port in

the request graph for Π′ (over N time slots), is no more than 4N +N = 5N . From

König’s method [57, 58], there exists a schedule to switch the packets in Π′, with a

crossbar link speed of 5R. This corresponds to a crossbar bandwidth of 5NR.

Now we show that a packet may incur a relative delay of no more than 2N −1 time

slots when the conflict-free permutation Π′ is scheduled on a crossbar. Assume that

3.6 A Tradeoff between XBar BW and Scheduler Complexity 69

the crossbar is configured to schedule cells departing between time slots (a1, aN) (and

these configurations are now final), and that other cells prior to that have departed.

The earliest departure time of a newly arriving packet is time slot a1. However, a

newly arriving cell cannot be granted a departure time between (a1, aN), since the

crossbar is already being configured for that time interval. Hence, Π′ will give the

cell a departure time between (aN+1, a2N), and the cell will leave the switch sometime

between time slots (aN+1, a2N). Hence the maximum relative delay that a cell can

incur is 2N − 1 time slots. From Theorem 2.3, the memory bandwidth required is no

more than 4NR. r

3.6 A Tradeo� between Crossbar Bandwidth and

Scheduler Complexity

Theorem 3.3 is the lowest bound that we have found for the crossbar bandwidth

(4NR), and we suspect that it is a necessary condition to emulate an FCFS output

queued router. Unfortunately, edge-coloring has complexity O(N log ∆) [31] (where ∆

is the vertex degree of the graph), and is too complex to implement at high speed.

We now explore a more practical algorithm which also needs a crossbar bandwidth of

4NR, but requires the memory bandwidth to be increased to 4NR. The crossbar is

scheduled in two phases:

1. Write-Phase: Arriving packets are transferred across the crossbar switch to

memory on a line card, and

2. Read-Phase: Departing packets are transferred across the crossbar from mem-

ory to the egress line card.

Theorem 3.5. (Sufficiency) A Crossbar-based DSM router can emulate an FCFS

output queued router with a total memory bandwidth of 4NR and a crossbar bandwidth

of 4NR.

Proof. (Using constraint sets). We will need the following definitions to prove the

theorem.

3.6 A Tradeoff between XBar BW and Scheduler Complexity 70

ℵDe�nition 3.1. Busy Vertex Write Set (BVWS): When a cell is written into

an intermediate port x during a crossbar schedule, port x is no longer

available during that schedule. BVWS(t) is the set of ports busy at

t due to cells being written, and therefore cannot accept a new cell.

Since, for a given input, no more than N−1 other arrivals occur during

that time slot, clearly |BVWS(t)| 6 b(N − 1)/SW c).

ℵDe�nition 3.2. Busy Vertex Read Set (BVRS): Similarly, BVWS(t) is the

set of ports busy at t due to cells being read, and that therefore

cannot accept a new cell. Since, for a given output, no more than

N − 1 other arrivals occur during that time slot, clearly |BV RS(t)| 6
b(N − 1)/SRc).

Consider cell c that arrives to the crossbar-based distributed shared memory router at

time t destined for output j, with departure time DT (t, j). Applying the constraint set

method, our choice of intermediate port x to write c into must meet these constraints:

1. Port x must be free to be written to during at least one of the sW crossbar

schedules reserved for writing cells at time t. Hence, x /∈ BVWS(t).

2. Port x must not conflict with the reads occurring at time t. However, since the

write and read schedules of the crossbar are distinct, this will never happen.

3. Port x must be free to be read from during at least one of the SR crossbar

schedules reserved for reading cells at time D(t). Hence, x /∈ BV RS(D(t)).

Hence our choice of memory must meet the following constraints:

x /∈ BVWS(t) ∧ x /∈ BV RS(DT (t, j)) (3.1)

This is true if SR, SW > 2. Hence, we need a crossbar link speed of

SCR = (SR + SW)R = 4R. Because a memory requires just two reads and two writes

per time slot, the total memory bandwidth is 4NR. r

3.6 A Tradeoff between XBar BW and Scheduler Complexity 71

Theorem 3.6. (Sufficiency) A Crossbar-based DSM router can emulate a PIFO

output queued router within a relative delay of N − 1 time slots, with a total memory

bandwidth of 6NR and a crossbar bandwidth of 6NR.

Proof. (Using constraint sets). Similar to Theorem 3.5, we consider a cell c arriving

at time t, destined for output j and with departure time DT (t, j) (which is based on

the conflict-free permutation departure order Π′). Applying the constraint set method,

our choice of x to write c into meets these constraints:

1. Port x must be free to be written to during at least one of the SW crossbar

schedules reserved for writing cells at time t.

2. Port x must not conflict with the reads occurring at time t. However, since the

write and read schedules of the crossbar are distinct, this will never happen.

3. Port x must not have stored the dN/SRe − 1 cells immediately in front of cell c

in the PIFO queue for output j, because it is possible for cell c to be read out

in the same time slot as some or all of the dN/SRe − 1 cells in front of it.

4. Port x must not have stored the dN/SRe − 1 cells immediately after cell c in

the PIFO queue for output j.

Hence our choice of port x must meet one write constraint and two read constraints,

which can be satisfied if SR, SW > 3. Hence, we need a crossbar link speed of

SCR = (SR + SW)R = 6R. A memory can have three reads and three writes per time

slot, corresponding to a total memory bandwidth of 6NR. Note that SR = 2, SW = 4

will also satisfy the above theorem. r

In summary, we have described three different results. Let’s now compare them

based on memory bandwidth, crossbar bandwidth, and the complexity of scheduling

the crossbar switch when the router is emulating an ideal FCFS shared memory

router. First, we can trivially schedule the crossbar with a memory bandwidth of 3NR

and a crossbar bandwidth of 6NR (Theorem 3.1). With a more complex scheduling

algorithm, we can schedule the crossbar with a memory bandwidth of 4NR and a

3.6 A Tradeoff between XBar BW and Scheduler Complexity 72

crossbar bandwidth of 4NR (Theorem 3.5). But our results suggest that, although

possible, it is complicated to schedule the crossbar when the memory bandwidth is

3NR and the crossbar bandwidth is 4NR. We now describe a scheduling algorithm for

this case, although we suspect there is a simpler algorithm that we have been unable

to find.

The bipartite request graph used to schedule the crossbar has several properties

that we can try to exploit:

1. The total number of edges in the graph cannot exceed 2N , i.e.,
∑

i

∑
j Rij 6 2N .

This is also true for any subset of vertices; if I and J are subsets of indices

{1, 2, . . . , N}, then
∑

i∈I
∑

j∈J Rij 6 |I|+ |J |. We complete the request graph

by adding requests so that it has exactly 2N edges.

2. In the complete graph, the degree of each vertex is at least one, and is bounded

by four, i.e., 1 6
∑

iRij 6 4 and 1 6
∑

j Rij 6 4.

3. In the complete graph,
∑

j Rij +
∑

j Rji 6 5. This is because each vertex can

have at most three operations to memory, and one new arrival (which may get

buffered on a different port), and one departure (which may be streamed out

from a memory on a different port).2

4. The maximum number of edges between an input and an output is 2, i.e.,

Rij 6 2. We call such a pair of edges a double edge.

5. Each vertex can have at most one double edge, i.e., if Rij = 2, then

Rik < 2(k 6= j) and Rkj < 2(k 6= i).

6. In a complete request graph, if an edge connects to a vertex with degree one, the

other vertex it connects to must have a degree greater than one. This means, if∑
j Rmj = Rmn = 1, then

∑
iRin > 2; if

∑
iRin = Rmn = 1, then,

∑
j Rmj > 2.

To see why this is so, suppose an edge connects input i, which has degree one,

and output j. This edge represents a packet arriving at i and stored at j. But j

has a departure that initiates another request, thus the degree of j is greater

2This constraint was missed in an earlier publication [59].

3.6 A Tradeoff between XBar BW and Scheduler Complexity 73

than one. By symmetry, the same is true for an edge connecting an output of

degree one.

3.6.1 Implementation Considerations for the Scheduling Al-

gorithm

Our goal is to exploit these properties to find a crossbar scheduling algorithm that

can be implemented on a wave-front arbiter (WFA [15]). The WFA is widely used

to find maximal size matches in a crossbar switch. It can be readily pipelined and

decomposed over multiple chips [60].

ℵDe�nition 3.3. Inequalities of vectors – v1 and v2 are vectors of the same dimen-

sion. The index of the first non-zero entry in v1 (v2) is i1 (i2). We will

say that v1 > v2 iff i1 6 i2, and v1 = v2 iff i1 = i2.

ℵDe�nition 3.4. Ordered - The row (column) vectors of a matrix are said to be

ordered if they do not increase with the row (column) index. A matrix

is ordered if both its row and column vectors are ordered.

Lemma 3.1. A request matrix can be ordered in no more than 2N − 1 alternating

row and column permutations.

Proof. See Appendix C.1. r

Theorem 3.7. If a request matrix S is ordered, then any maximal matching algorithm

that gives strict priority to entries with lower indices, such as the WFA [15], can find

a conflict-free schedule.

Proof. See Appendix C.2. r

This algorithm is arguably simpler than edge-coloring, although it depends on the

method used to perform the 2N − 1 row and column permutations.

3.7 The Parallel Distributed Shared Memory Router 74

3.7 The Parallel Distributed Shared Memory

Router

The DSM router architecture assumes that each memory allows one read or one write

access per time slot. This requires the scheduler to keep track of 3N − 1 (4N − 2)

memories in order to emulate an FCFS (WFQ) OQ router. For line rates up to

10 Gb/s, it seems reasonable today to use a single commercially available DRAM on

each line card to run at that rate. For line rates above 10 Gb/s, we need even more

memories operating in parallel. If there are too many memories for the scheduler to

keep track of, it may become a bottleneck. So we will explore ways to alleviate this

bottleneck, as motivated by the following idea —

DIdea. “Local to each line card, we could allocate packets to parallel memories

running at a slower rate (i.e., < R), even though the scheduler believes that

there is one memory which operates at rate R”.

So we have to find a way in which a memory that runs at rate R can be emulated

locally on each line card by multiple memories running at a slower rate. This is done

as follows — The scheduler allocates packets to memories assuming that they run at

rate R. It assumes that there are a total of 3N − 1 (4N − 2) memories in the router,

so that it can emulate an FCFS (WFQ) OQ router. However, in reality, when the

scheduler informs a line card to access a memory at rate R, the memory accesses

will be load-balanced locally by the line card over multiple memories operating at

a slower rate R/h. In other words, the scheduler operates identically to the DSM

router described in Section 3.3, while each line card operates like the parallel shared

memory router described in Chapter 2. We call this router the parallel distributed

shared memory (PDSM) router. We will use constraint sets to determine how many

memory devices are needed locally to perform this emulation.

Theorem 3.8. A set of 2h− 1 memories of rate R/h running in parallel can emulate

a memory of rate R in an FCFS PDSM router.

3.8 Practical Considerations 75

Proof. Consider the memory that runs at rate R that is going to be emulated by

using load balancing. Since the scheduler has already ensured that at any give time, a

packet is either written to or read from this memory (and not both), the read and

write constraints at the current time collapse into a single constraint. The rest of the

analysis is similar to Theorem 2.2. This results in requiring only 2h − 1 memories

running at rate R/h. r

Theorem 3.9. A set of 3h− 2 memories of rate R/h running in parallel can emulate

a memory of rate R in a PIFO PDSM router.

Proof. The analysis is similar to Theorem 3.8. As assumed in that proof, we will

modify the departure time of packets leaving the output (see Section 2.6.3) so that

packets from different outputs do not conflict with each other, and a PIFO order of

departures is maintained. Also, since the scheduler has already ensured that, at any

given time, a packet is either written to or read from the memory (and not both)

that will be emulated, the read and write constraints at the current time collapse into

a single constraint. This results in only three constraints, and requires only 3h− 2

memories running at rate R/h. r

We can apply the above emulation technique shown in Theorem 3.8 and Theorem 3.9

for all the results obtained for the DSM router. Table 3.1 summarizes these results.

3.8 Practical Considerations

In this section, we investigate whether we could actually build a DSM router that

emulates an output queued router. As invariably happens, we will find that the

architecture is limited in its scalability, and that the limits arise for the usual reasons

when a system is big: algorithms that take too long to complete, buses that are too

wide, connectors and devices that require too many pins, or overall system power

that is impractical to cool. Many of these constraints are imposed by technologies

available today, and may disappear in future. We will therefore, when possible, phrase

our comments to allow technology-independent comparisons, e.g., “Architecture A has

half the memory bandwidth of Architecture B”.

3.8 Practical Considerations 76

Table 3.1: Comparison between the DSM and PDSM router architectures.

Name Type Row # of mem
Mem.

Access
Rate

Total
Mem.
BW

Switch
BW

Comment

Crossbar-based
Distributed Shared

Memory Router
(Section 3.3)

IV.D 1a 3N R 3NR 4NR
Emulates FCFS-OQ,

complex crossbar
schedule.

1b 3N R 3NR 6NR
Emulates FCFS-OQ,

trivial crossbar
schedule.

1c 4N R 4NR 5NR
Emulates OQ with

WFQ, complex
crossbar schedule.

1d 4N R 4NR 8NR
Emulates OQ with

WFQ, trivial
crossbar schedule.

1e 4N R 4NR 4NR
Emulates FCFS-OQ,

simple crossbar
schedule.

1f 6N R 6NR 6NR
Emulates OQ with

WFQ, simple
crossbar schedule.

Crossbar-based
Parallel

Distributed Shared
Memory Router

(Section 3.7)

V.D 2a 3N(2h− 1) R/h ≈ 6NR 4NR
Theorem 3.8 applied

to Row 1a.

2b 3N(2h− 1) R/h ≈ 6NR 6NR
Theorem 3.8 applied

to Row 1b.

2c 4N(3h− 2) R/h ≈ 12NR 5NR
Theorem 3.9 applied

to Row 1c.

2d 4N(3h− 2) R/h ≈ 12NR 8NR
Theorem 3.9 applied

to Row 1d.

2e 4N(2h− 1) R/h ≈ 8NR 4NR
Theorem 3.8 applied

to Row 1e.

2f 6N(3h− 2) R/h ≈ 18NR 6NR
Theorem 3.9 applied

to Row 1f .

We will pose a series of questions about feasibility, and attempt to answer each in

turn.

1. A PIFO DSM router requires lots of memory devices. Is it feasible to build

a system with so many memories? We can answer this question relative to

a CIOQ router (since it’s the most common router architecture today) that

emulates an OQ router. From [13], it is known that a CIOQ router with a

crossbar bandwidth of 2NR can emulate a WFQ OQ router with 2N physical

memory devices running at rate 3R for an aggregate memory bandwidth of 6NR.

The PIFO DSM router requires N physical devices running at rate 4R for an

aggregate memory bandwidth of 4NR. So the access rates of the individual

memories are comparable, and the total memory bandwidth is less than that

3.8 Practical Considerations 77

needed for a CIOQ router. It seems clear, from a memory perspective, that

we can build a PIFO DSM router with at least the same capacity as a CIOQ

router. This suggests that, considering only the number of memories and their

bandwidth, it is possible to build a 1 Tb/s single-rack DSM router.

2. A crossbar-based PIFO DSM router requires a crossbar switch with links oper-

ating at least as fast as 5R. A CIOQ router requires links operating at only 2R.

What are the consequences of the additional bandwidth for the DSM router?

Increasing the bandwidth between the line card and the switch will more than

double the number of wires and/or their data rate, and place more requirements

on the packaging, board layout, and connectors. It will also increase the power

dissipated by the serial links on the crossbar chips in proportion to the increased

bandwidth. But it may be possible to exploit the fact that the links are used

asymmetrically.

NObservation 3.2. For example, we know that the total number of transactions

between a line card and the crossbar switch is limited to five per

time slot. If each link in the DSM router was half-duplex rather

than simplex, then the increase in serial links, power, and size of

connectors is only 25%. Even if we can’t use half-duplex links,

the power can be reduced by observing that many of the links

will be unused at any one time, and therefore need not have

transitions. But overall, in the best case it seems that the DSM

router requires at least 25% more bandwidth.

3. In order to choose which memory to write a packet into, we need to know the

packet’s departure time as soon as it arrives. This is a problem for both a

DSM router and a CIOQ router that emulates an output queued router. In

the CIOQ router, the scheduling algorithm needs to know the departure time

to ensure that the packet traverses the crossbar in time. While we can argue

that the DSM router is no worse, this is no consolation when the CIOQ router

itself is impractical! Let’s first consider the simpler case, where a DSM router

3.8 Practical Considerations 78

is emulating an FCFS shared memory router. Given that the system is work-

conserving, the departure time of a packet is simply equal to the sum of the

data in the packets ahead of it. In principle, a global counter can be kept for

each output, and updated at each time slot depending on the number of new

arrivals. All else being equal, we would prefer a distributed mechanism, since

the maintenance of a global counter will ultimately limit scalability. However,

the communication and processing requirements are probably smaller than for

the scheduling algorithm itself (which we will consider next).

4. How complex is the algorithm that decides which memory each arriving packet

is written into? There are several aspects to this question:

• Space requirements: In order to make its decision, the algorithm needs

to consider k different memory addresses, one for each packet that can

contribute to a conflict. How complex the operation is, depends on where

the information is stored. If, as currently seems necessary, the algorithm is

run centrally, then it must have global knowledge of all packets. While this

is also true in a CIOQ router that emulates an output queued router, it is

not necessary in a purely input or output queued router.

• Memory accesses: For an FCFS DSM router, we must read, update, and

write bitmaps representing which memories are busy at each future depar-

ture time. This requires two additional memory operations in the control

structure. For a PIFO DSM router, the cost is greater, as the control struc-

tures are most likely arranged as linked lists, rather than arrays. Finding

the bitmaps is harder, and we don’t currently have a good solution to this

problem.

• Time: We have not found a simple distributed algorithm that does not use

any additional memory bandwidth, and so currently we believe it to be

sequential, requiring O(N) operations to schedule at most N new arrivals.

However, it should be noted that each operation is a simple comparison of

three bitmaps to find a conflict-free memory.

3.8 Practical Considerations 79

• Communication: The algorithm needs to know the destination of each

arriving packet, which is the minimum needed by any centralized scheduling

algorithm.

5. We can reduce the complexity by aggregating packets at each input into frames

of size F , and then schedule frames instead of packets. This is called frame

scheduling (a technique in wide use in some Cisco Ethernet switches and En-

terprise routers). Essentially, this is equivalent to increasing the size of each

“cell”. The input line card maintains one frame of storage for each output, and a

frame is scheduled only when F bits have arrived for a given output, or until a

timeout expires. There are several advantages to scheduling large frames rather

than small cells. First, as the size of frame increases, the scheduler needs to keep

track of fewer entities (one entry in a bitmap per frame, rather than per cell),

and so the size of the bitmaps (and hence the storage requirement) falls linearly

with the frame size. Second, because frames are scheduled less often than cells,

the frequency of memory access to read and write bitmaps is reduced, as is the

communication complexity, and the complexity of scheduling as shown in the

following example.

�Example 3.2. Consider a DSM router with 16 OC768c line cards (i.e., a

total capacity of 640 Gb/s). If the scheduler were to run every

time we scheduled a 40-byte cell, it would have to use off-chip

DRAM to store the bitmaps, and access them every 8 ns. If,

instead, we use 48 kB frames, the bitmaps are reduced more than

1,000-fold and can be stored on-chip in fast SRAM. Furthermore,

the bitmap interaction algorithm needs to run only once every

9.6 µs, which is readily implemented in hardware.

The appropriate frame size to use will depend on the capacity of the router, the

number of line cards, and the technology used for scheduling. This technique

can be extended to support a small number of priorities in a PIFO DSM router,

by aggregating frames at an input for every priority queue for every output.

One disadvantage of this approach is that the strict FCFS order among all

3.9 Conclusions 80

inputs is no longer maintained. However, FCFS order is maintained between

any input-output pair, which is all that is usually required in practice.

6. Which requires larger buffers, a DSM router or a CIOQ router? In a CIOQ

router, packets between a given input and output pass through a fixed pair of

buffers. The buffers on the egress line cards are sized so as to allow TCP to

perform well, and the buffers on the ingress line card are sized to hold packets

while they are waiting to traverse the crossbar switch. So the total buffer size

for the router is at least NR × RTT because any one egress line card can be

a bottleneck for the flows that pass through it. On the other hand, in a DSM

router we can’t predict which buffer a packet will reside in; the buffers are shared

more or less equally among all the flows. It is interesting to note that if the link

data rates are symmetrical, not all of the egress line cards of a router can be

bottlenecked at the same time. As a consequence, statistical sharing reduces the

required size of the buffers. This reduces system cost, board area, and power.

As a consequence of the scheduling algorithm, the buffers in the DSM router

may not be equally filled. We have not yet evaluated this effect.

3.9 Conclusions

It seems that the PIFO DSM router has two main problems: (1) The departure times

of each packet must be determined centrally (or at least by each output separately)

with global knowledge of the state of the queues in the system, and (2) A sequential

scheduler must find an available memory for each packet (similar to that faced in a

PSM router).

The frame scheduling approach described in Section 3.8 can help alleviate the

former problem by reducing the rate at which departure times need to be calculated.

In subsequent work, the authors [54, 55] propose parallel or randomized bi-partite

matching algorithms to allocate packets to memories for the PSM router. These

algorithms can also be applied to alleviate the latter problem by eliminating the

need for a sequential scheduler for the DSM router. This requires us to extend the

algorithms in [54, 55], and take into account the additional link access required for

3.9 Conclusions 81

the arriving (departing) packet as described in Section 3.5. In some cases this requires

additional memory bandwidth. Also, if the memories operate slower than the line

rate, the PDSM router can be used, and can help reduce the number of memories

that the centralized scheduler needs to keep track of. This simplifies the scheduler’s

complexity, but comes at the expense of additional memory bandwidth.

Our conclusion is that a PIFO DSM router is less complex (see Table 2.1 for a

comparison) than a PIFO CIOQ router (has lower memory bandwidth, fewer memories,

a simpler scheduling algorithm, but slightly higher crossbar bandwidth).

Summary

1. In this chapter, we analyze the distributed shared memory (DSM) router and the parallel

distributed shared memory (PDSM) router.

2. When a packet arrives to a DSM router, it is transferred across the switch fabric to the

memory in another line card, where it is held until it is time for the packet to depart.

3. DSM routers have the appealing characteristic that buffering is added incrementally with

each line card.

4. Although commercially deployed, the performance of a DSM router is not widely known.

5. We use the constraint set technique (introduced in the previous chapter) to analyze the

conditions under which a DSM router can emulate an OQ router. We consider two fabrics:

(1) a bus and (2) a crossbar.

6. We show that a parallel shared memory router can emulate an FCFS output queue router

with a memory bandwidth of 3NR (Theorem 3.1), and can emulate an OQ router that

supports qualities of service with a memory bandwidth of 4NR (Theorem 3.2).

7. The results for the memory bandwidth are the same as those described for the PSM router,

since from a memory perspective the two routers are identical.

8. The interesting problem for DSM routers is: how do we schedule packets (which are

allocated to memories based on the pigeonhole principle) across a crossbar-based fabric?

9. We show that there is a tradeoff between the memory bandwidth, crossbar bandwidth,

and the complexity of the scheduling algorithm. We derive a number of results that take

advantage of these tradeoffs (Table 3.1).

10. The central scheduler for the DSM router must keep track of all the memories in the

3.9 Conclusions 82

router. If the memories operate at a very low rate, it would require more memories to

keep track of. This can limit the scalability of the scheduler.

11. So, we explore ways in which the central scheduler believes that it load-balances over a

smaller number of memories. However, when the central scheduler allocates these packets

to memories, the line card that receives these packets load-balances them locally over a

larger number of slower memories operating in parallel. These slower memories are not

visible to the scheduler.

12. We call this the parallel distributed shared memory (PDSM) router, because the router

appears as a standard DSM router from the central scheduler’s perspective, while it appears

as a PSM router from the line card’s perspective.

13. We derive bounds on the memory bandwidth required for a PDSM router to emulate an

FCFS-OQ router (Theorem 3.8) and emulate an OQ router that supports qualities of

service (Theorem 3.9).

14. Based on the results derived in this chapter, we believe that the DSM and PDSM router

architectures are promising. However, questions remain about their complexity. But we

find that the memory bandwidth, and potentially the power consumption of the router,

are lower than for a CIOQ router.

Chapter 4: Analyzing CIOQ Routers with

Localized Memories
Feb 2008, Bombay, India

Contents

4.1 Introduction . 85

4.1.1 A Note to the Reader . 88

4.1.2 Methodology . 88

4.2 Architecture of a Crossbar-based CIOQ Router 89

4.3 Background . 90

4.3.1 Charny’s Proof . 91

4.3.2 Why Is Charny’s Proof Complex? . 92

4.4 Analyzing FCFS-OQ Routers Using the Pigeonhole Principle . . . 93

4.5 A Simple Proof to Emulate an FCFS CIOQ Router 95

4.5.1 Interesting Consequences of the Time Reservation Algorithm 98

4.6 The Problem with Time Reservation Algorithms 99

4.7 A Preferred Marriage Algorithm for Emulating PIFO-OQ Routers100

4.8 A Re-statement of the Proof . 102

4.8.1 Indicating the Priority of Cells to the Scheduler 102

4.8.2 Extending the Pigeonhole Principle . 103

4.8.3 Using Induction to Enforce the Pigeonhole Principle 105

4.9 Emulating FCFS and PIFO-OQ Routers 106

4.10 Related Work . 107

4.10.1 Statistical Guarantees . 107

4.10.2 Deterministic Guarantees . 110

4.11 Conclusions . 112

List of Dependencies

• Background: The memory access time problem for routers is described in

Chapter 1. Section 1.5.2 describes the use of load balancing techniques to

alleviate memory access time problems for routers.

Additional Readings

• Related Chapters: The general load balancing technique used to analyze the

Combined Input Output Queued (CIOQ) router is described in Section 2.3. The

technique is also used to analyze other router architectures in Chapters 2, 3, 5, 6,

and 10.

Table: List of Symbols.

B Leaky Bucket Size
c, C Cell
DT Departure Time
k Maximum Transfer Delay
N Number of Ports of a Router
R Line Rate
S Speedup
T Time Slot
tf First Free Time Index

Table: List of Abbreviations.

CIOQ Combined Input Output Queued Router
FCFS First Come First Serve (Same as FIFO)
i.i.d Independently and Identically Distributed
LAN Local Area Network

MWM Maximum Weight Matching
OQ Output Queued

PIFO Push In First Out
SB Single-buffered

SOHO Small Office Home Office
QoS Quality of Service
VOQ Virtual Output Queue
WAN Wide Area Network
WFQ Weighted Fair Queueing

“Whoever does the proposing gets a better deal”.

— Social Commentary by Harry Mairson† 4
Analyzing CIOQ Routers with Localized

Memories

4.1 Introduction

In this chapter, we will analyze the combined input output queued (CIOQ) router. A

CIOQ router (unlike the single-buffered (SB) routers that we introduced in Chapter 2),

has two stages of buffering. In a CIOQ router, a packet is buffered twice - once when

it arrives and once before it leaves. The first buffer is on the local line card it arrives

on. The second buffer is on the line card that it departs from. Intuitively, the two

buffers make the job easier for a central switch scheduler based on the following idea

—

DIdea. “If the switch fabric is not ready to transfer packets as soon as they

arrive, it can hold them in the input line card. Similarly, if the scheduler has the

opportunity to send a packet to the output, it doesn’t need to wait until the

output line is free; the output line card will buffer it until the line is free”.

Our goal is to scale the performance of CIOQ routers and find the conditions under

which they can give deterministic performance guarantees, as described in Section 1.4.

†Harry Mairson, The Stable Marriage Problem, Brandeis Review, vol 12(1), ’92.

85

4.1 Introduction 86

Localized Buffering is a consequence of product requirements. Most routers today

are built with backplane chassis that allow line cards to be added independently. Each

line card may have different features, support different protocols, and process cells at

different line rates. This allows customers to purchase line cards incrementally, based

on their budget, bandwidth needs, and feature requirements. Because each line card

may process cells differently, it becomes necessary to process and store cells locally on

the arriving line card.

�Example 4.1. Figure 4.1 shows a router with multiple line cards. The line cards

perform different functions. The router in the figure has three gigabit

Ethernet line cards for local area network (LAN) switching, and two

wide area network (WAN) line cards that provide an uplink to the

Internet. The backup WAN line card, has a large congestion buffer

due to its slow uplink. A 100GE LAN card that provides for faster

connectivity is also shown. Finally, a fiber channel [61] based line

card (which implements a separate protocol), provides connectivity

to storage LANs. The five different kinds of line cards in the router

might all have different architectures — i.e., different packet processing

ASICs, features, and memory architectures.

Because of the costs involved in deploying high-speed routers, customers usually

deploy new line cards separately over time, on an as-needed basis. A CIOQ router

allows this, and so can be upgraded gradually. As a consequence, it has become the

most common architecture among high-speed routers today.1 Cisco Systems, currently

the world’s largest manufacturer of Ethernet switches and IP routers, deploys the

CIOQ architecture in Enterprise [4], Metro [62], and Internet core routers. [5].

1In contrast, low-speed Ethernet switches and routers, e.g., wireless access points, small office home
office (SOHO) routers, etc., are sold in fixed-function units (colloquially referred to as “pizza-boxes”)
which are not built for easy upgrades.

4.1 Introduction 87

1GE (Switched Ethernet)

Local Bridge

...

1GE LAN Cards

...

Storage Network

Fiber Channel
Cards

WAN Card

Backup WAN
(T1 Uplink)

 (T3 Uplink)

Gateway

New 100GE
Ethernet LAN Card

Parallel
 Switch Cards}

CIOQ Router

Route Processor
(Control Plane)

Figure 4.1: A router with different line cards.

4.1 Introduction 88

4.1.1 A Note to the Reader

This chapter pertains to analytical work done over several years of research on CIOQ

routers by multiple researchers. Many CIOQ scheduling algorithms have been proposed

to obtain statistical guarantees (such as 100% throughput), as well as deterministic

performance guarantees such as work-conservation (to minimize average delay) and

emulation of an OQ router (to minimize the worst-case delay faced by packets). In

this chapter, we only focus on the emulation of an OQ router, and we consider both

FCFS and PIFO queuing policies. If a CIOQ router emulates an OQ router, then it

automatically guarantees 100% throughput and is also work-conserving.

We make several fine points in this chapter and attempt to succinctly capture the

underlying theory behind the emulation of OQ routers. We want to do three things

— (1) present the existing theory in a very simple manner, (2) derive more intuitive

algorithms that emulate an OQ router using the pigeonhole principle, and (3) re-state

previously known results in terms of the pigeonhole principle.

In order to do this, we present the material in an order which is not chronological,

but which builds up the theory step by step. We present only the results that, in

hindsight, are insightful and clarifying to the reader.2

4.1.2 Methodology

We will use our constraint set technique (first described in Chapter 2) which is a

formal way to apply the pigeonhole principle and analyze the CIOQ router. We will

consider the crossbar-based CIOQ router, since this is the most common switch fabric

deployed today. However, as we will see, this basic application of constraint sets has

two problems when it is applied to this non-single-buffered router — (1) It requires

us to make certain assumptions about the arrival traffic, and (2) It is only useful in

analyzing an FCFS CIOQ router; we cannot analyze a PIFO-CIOQ router.

As we will see, the main reason why we cannot analyze a PIFO-CIOQ router is

that the basic constraint set technique attempts to specify the transfer time of a packet

2A chronological order of the related work is described in Section 4.10.

4.2 Architecture of a Crossbar-based CIOQ Router 89

to the output line card as soon as the packet arrives. It does not take full advantage of

the architecture of a CIOQ router — i.e., the switch fabric does not immediately need

to commit to transferring packets that are waiting in the input line card, especially if

there are more urgent packets destined to the same output.

Therefore, in the later part of this chapter, we will extend the constraint set

technique to analyze and take advantage of the architecture of the (non-single-buffered)

CIOQ router. We will show that this extended constraint set technique allows us to

analyze both FCFS and PIFO CIOQ routers without making any assumptions about

the arrival traffic. As we will see, this requires us to use a class of algorithms called

stable matching algorithms [63] to schedule the crossbar, so as to meet the conditions

mandated by the extended constraint set technique.

4.2 Architecture of a Crossbar-based CIOQ

Router

Figure 4.2 shows an example of a crossbar-based CIOQ router. We denote the CIOQ

router to have a speedup of S, for S ∈ {1, 2, 3, . . . , N} if it can remove up to S cells

from each input and transfer at most S cells to each output in a time slot. Note that

the CIOQ router can be considered to be a generalization of the IQ router and the

OQ router. At one extreme, in an IQ router (i.e., S = 1) only one cell can reach the

output from every input in a time slot. At the other extreme, in an OQ router (i.e.,

S = N), all the arriving N cells can be transferred to a specific output in a given time

slot.

The crossbar-based CIOQ router shown in the figure has a speedup of S = 2, and

has N = 8 ports. As described in Chapter 3, a crossbar fabric is restricted to perform

a matching (i.e., a permutation) between inputs and outputs in every time slot. If the

crossbar has a speedup S, then it can perform two independent matchings in every

time slot, as shown in Figure 4.2.

We will assume that cells are logically arranged on each line card as N virtual

output queues (VOQs). VOQs allow an input to group cells for each output separately,

4.3 Background 90

SNR

R

R

Line card #1

Line card #2 Line card #2

Line card #1

R

R

Line card #8 Line card #8

. .

3R

Switch Fabric

3R

3R3R

VOQs

R R

1 write, S reads S writes, 1 read

OQ

(Logical View) (Logical View)

..

1

2

8

1

2

8

Figure 4.2: The physical and logical view of a CIOQ router with crossbar speedup SNR =
2NR.

and so a total of N2 VOQs are maintained in the router. VOQs are needed to prevent

head of line blocking [64]. Head of line blocking occurs when the head-of-line cell c,

queued at some input i, destined to some output j, prevents other cells at input i

from being scheduled. This can occur if output j is receiving cells from some other

input in the same time slot. Hence cell c cannot be scheduled (because its output j is

busy), while cells queued behind c (destined to other outputs) cannot be scheduled

because they are not at the head of the input queue.

4.3 Background

In [65], Charny proved that a CIOQ router can emulate an FCFS-OQ router under

restricted arrival traffic. Her algorithm was motivated by the following nice idea, i.e.,

4.3 Background 91

DIdea. “We can use maximal matchinga scheduling algorithms to emulate an

FCFS-OQ router”.

aIn a maximal matching, by definition, if there is a packet waiting at input i destined
to output j, then either input i or output j is part of the matching.

We will first present her proof, and then derive a simpler and more intuitive proof

based on the pigeonhole principle.

4.3.1 Charny’s Proof

Charny [65] placed the following restrictions on the arrival traffic when she analyzed

the CIOQ router:

1. Outputs can only be �nitely congested: Charny constrained the arriving

traffic to be single leaky bucket constrained. The arriving traffic is said to be single

leaky bucket constrained if for every output j, the number of cells that arrive

destined to j in the time interval (t1, t2) is given by N(t1, t2) 6 λj(t2 − t1) +Bj ,

where Bj is some constant, and 0 6 λj < 1 for the traffic to be admissible.3

Note that if λj > 1, then output j receives more traffic than it can handle in

the long term – this means that we need a router that supports a faster line

rate! We can see that the above traffic constraint is equivalent to assuming that

the shadow OQ router has a finite buffer size Bj for every output, and that no

output is over-subscribed. If any output becomes congested and has more than

Bj cells destined to it temporarily, then such cells are dropped.

2. Inputs can only receive one cell per time slot: Charny restricted the

arrival traffic model such that no more than one cell can arrive at each input of

the CIOQ router, in any given time slot.

In practice, both the above restrictions are always true:

3Refer to Appendix B for an exact definition.

4.3 Background 92

1. Router buffers are finite and their size is determined during design. If we let

B = max{∀j, Bj}, then the output buffer size is bounded by B.

2. Cells arrive on physical links, and even though there may be multiple input

channels that can send cells in parallel, there is a cumulative maximum rate at

which a single cell can arrive.

We are now ready to present the main theorem in Charny’s work [65]:

Theorem 4.1. (Sufficiency, by Reference) Any maximal algorithm with a speedup

S > 2, which gives preference to cells that arrive earlier,4 ensures that any cell arriving

at time t will be delivered to its output at a time no greater than t+ [B/(S − 2)], if

the traffic is single leaky bucket B constrained.

Proof. This is proved in section 2.3, Theorem 5 of [65].5 We provide the outline of the

proof here. Charny uses a maximal matching algorithm (called oldest cell first) that

gives priority to cells that arrive earlier to the CIOQ router, and uses the fact that

for any maximal algorithm, if there is a cell waiting at input i destined to output j,

then either input i is matched or output j is matched (or both).6 The proof counts all

cells (called competing cells) that can prevent a particular cell from being transferred,

and classifies the competing cells into two types – cells at input i, or cells destined

to output j. It is shown that after a cell arrives, it cannot be prevented from being

transferred to output j for more than [B/(S − 2)] time slots. r

4.3.2 Why Is Charny’s Proof Complex?

The argument presented in Charny’s proof above is somewhat complex, for two reasons.

Consider any cell c:

1. Cell c can be repeatedly prevented – by competing cells arriving to the same

input later than it – from being transferred to its output over multiple time slots.

It would be nice if we can prevent this from happening.

4This is defined in section 2.3 in [65].
5Charny uses a dual leaky bucket traffic model. The result in [65] has been restated here for the

single leaky bucket model to facilitate comparison between Theorem 4.2 and 4.1.
6A similar analysis was used in [22].

4.4 Analyzing FCFS-OQ Routers Using the Pigeonhole Principle 93

2. Cell c can be overtaken – by competing cells arriving later at different inputs but

destined to the same output as cell c – and potentially prevented from getting

serviced by the output. It would be nice if we can somehow ensure that this does

not affect when cell c gets serviced by the output.

In what follows, we solve both the above problems [66] by fixing the time at which

a cell is transferred from the input to the output (“transfer time”), as soon as it arrives.

In this way, the time at which a cell is serviced by the output can’t be affected by

cells arriving later than it.

NObservation 4.1. Note that fixing a cell’s transfer time does not prevent the cell

from being overtaken by other cells arriving later at different inputs,

but destined to the same output. It merely ensures that these other

cells do not affect the time at which cell c gets serviced by the output.

4.4 Analyzing FCFS-OQ Routers Using the Pi-

geonhole Principle

First consider the physical structure of the crossbar CIOQ router. If a cell c arrives at

input i destined for output j, the router is constrained to transfer the cell only when

input i and output j are both free. So we can think of cells contending with cell c

(because they are from input i or destined to output j) as pigeons, contending for a

transfer time (pigeonholes). As described in Chapter 2, constraint sets are a convenient

accounting method to maintain and update this information. We are now ready to

analyze the conditions under which the CIOQ router will emulate an FCFS-OQ router.

We will use the algorithm described below, which is a direct consequence of the

pigeonhole principle. More formally, the algorithm is an example of a time reservation

algorithm [67, 68, 69, 70], since it reserves a future time for the arriving cell to be

4.4 Analyzing FCFS-OQ Routers Using the Pigeonhole Principle 94

transferred from the input to the output, immediately on arrival of a cell.

Algorithm 4.1: Constraint set-based time reservation algorithm.

input : Arrival and departure times of each cell.1

output : A transfer time for each cell.2

for each cell c do3

When a cell arrives at input i destined to output j with FCFS-OQ departure time4

DT , the cell is scheduled to depart at the first time in the future (larger than DT)

when both the input i and output j are free to participate in a matching.

We start by describing the algorithm when speedup S = 1, before generalizing to

larger speedup values:

1. Maintaining constraint sets: All inputs and outputs maintain a constraint

set. Each entry in the constraint set represents an opportunity to transmit a

cell in the future, one entry for each future time slot. For each future time slot

that an input is busy, the corresponding entry in its constraint set represents

a cell that it will transmit across the switch fabric to an output. Similarly, for

each future time slot that an output is busy, the entry represents a cell that it

will receive from one of the inputs. If, at some time in the future, there is no

cell to be transferred from an input (or to an output), then the corresponding

entry is free and may be used to schedule newly arriving cells.

2. Negotiating a constraint-free time to transfer: When a cell arrives at

input i destined to output j, input i communicates its input constraint set to

output j and requests a time in the future for it to transmit that cell. Output j

then picks the first time in the future tf in the interval (DT,DT +k) (where k is

a constant which we will determine shortly) for which both input i and output j

are free to transmit and receive a cell, i.e., time index tf is free in the constraint

sets of input i and output j. Output j grants input i the time slot tf in future

for transmitting the cell.

4.5 A Simple Proof to Emulate an FCFS CIOQ Router 95

DT -k - B
t

DTDT + k

c Spillover from previous k + B timeslots

Allocated departure time as seen by the input

 Arriving cell c

DT - k

} }

Figure 4.3: The constraint set as maintained by the input.

3. Updating constraint sets: Both input i and output j update their respec-

tive constraint sets to note the fact that time tf in the future is reserved for

transmitting the cell from input i to output j in the CIOQ router.

Note that, for any crossbar speedup S, an entry in the input constraint set is said

to be free in a particular time slot if the input is scheduled to send fewer than S

cells. Likewise, an entry in the output constraint set is said to be free if the output is

scheduled to receive fewer than S cells (from any input) in the corresponding time

slot.

4.5 A Simple Proof to Emulate an FCFS CIOQ

Router

We now use constraint sets to find the value of k for which every packet in the CIOQ

router is transferred from its input to its output within k time slots of its FCFS-OQ

departure time, i.e., tf 6 DT + k or tf ∈ (DT,DT + k) (where t is the arrival time of

a cell and k is a constant). The larger the speedup, the smaller the value of k.

Lemma 4.1. The number of time slots available in the input constraint set (ICS) for

any input i at any given time is greater than

[k − b(k +B)/Sc]. (4.1)

4.5 A Simple Proof to Emulate an FCFS CIOQ Router 96

Proof. Consider a cell that arrives to input i at time t, destined for output j with

FCFS-OQ departure time DT . The cell is scheduled to be transferred from input i to

output j in the CIOQ router in the interval (DT,DT + k), as shown in Figure 4.3.

Since the traffic is single leaky bucket (B) constrained, no cell that arrived before time

DT − B at input i has an FCFS-OQ departure time in the interval (DT,DT + k).

Hence, no cell that arrived before time DT − (B + k) at input i is allocated to be

transferred from input i in the CIOQ router in the interval (DT,DT + k). If the

speedup is S, then the number of time slots available in the input constraint set for

the newly arriving cell is at least [k − b(k +B)/Sc]. r

�Example 4.2. Consider a CIOQ router with B = 100 and k = 150. Assume that

until now all cells have been given a transfer time within k = 150

time slots of its FCFS-OQ departure time, DT . Consider a cell c that

arrives at time t = 1000. If it came to the shadow OQ router, it can

never see more than B = 100 cells waiting at its output. Its FCFS-OQ

departure time, DT (which is allocated by the shadow OQ router

based on the number of cells already at the output) will be in the time

interval [1000, 1100]. Say, DT = 1055. We will attempt to give cell c

a transfer time within k = 150 time slots of DT , i.e., in the interval

[1055, 1205]. How many cells could have already requested a transfer

time between [1055, 1205] at the time of arrival? Definitely, no cells

that arrived before time 1055− 100− 150 = 805. For example, the

cell that arrived at time 804, must have had a departure time less than

904 and hence a transfer time lesser than 1054, and will not interfere

with our cell c. If not, it would violate the fact that until now all cells

have been given a transfer time which is within k = 150 time slots of

its FCFS-OQ departure time.

4.5 A Simple Proof to Emulate an FCFS CIOQ Router 97

DT - k

t

DTDT + k

c Spillover from previous k timeslots

Allocated departure time as seen by the output

 Arriving cell c }
Figure 4.4: The constraint set as maintained by the output.

Lemma 4.2. The number of time slots available in the output constraint set (OCS)

for any output at any given time is greater than

[k − b(k/S)c]. (4.2)

Proof. Consider a cell that arrives at input i at time t, destined for output j with

FCFS-OQ departure time DT . The cell is scheduled to be transferred from input i to

output j in the CIOQ router in the interval (DT,DT + k), as shown in Figure 4.4.

Since all cells are scheduled to be transferred in the CIOQ router within k time

slots of their FCFS-OQ departure time, no more than k cells that have FCFS-OQ

departure times in the interval (DT − k,DT − 1) can already have been allocated to

be transferred to output j in the CIOQ router in the interval (DT,DT + k). Thus, if

the speedup is S, then the number of time slots available in the output constraint set

for the newly arriving cell is at least [k − b(k/S)c.7 r

Lemma 4.3. (Sufficiency) With a speedup S > 2, the algorithm ensures that each

cell in the CIOQ router is delivered to its output within [B/(S − 2)] time slots of its

FCFS-OQ departure time, if the traffic is single leaky bucket B constrained.

7We do not consider cells that have an FCFS-OQ departure time in the interval (DT + 1; DT + k),
since the output policy is FCFS and these cells will be considered only after cell c is allocated a time
tf ∈ (DT + 1; DT + k) for it to be transferred from input to output in the CIOQ router.

4.5 A Simple Proof to Emulate an FCFS CIOQ Router 98

Proof. (Using constraint sets). Consider a cell that arrives at time t. It should

be allocated a time slot tf for departure such that tf ∈ ICS ∩ OCS. A suffi-

cient condition to satisfy this is that [k − b(k +B)/Sc] > 0, [k − bk/Sc] > 0, and

[k − b(k +B)/Sc+ k − bk/Sc] > k. This is always true if we choose k > B/(S − 2).r

Theorem 4.2. (Sufficiency) With a speedup S > 2, a crossbar can emulate an FCFS-

OQ router if the traffic is single leaky bucket B constrained.

Proof. This follows from Lemma 4.3. r

By showing that the FCFS-CIOQ router emulates an FCFS-OQ router, it immediately

follows from Theorem 4.2 that the router has bounded delay, and 100% throughput.

4.5.1 Interesting Consequences of the Time Reservation Al-

gorithm

The time reservation algorithm, which is a consequence of using constraint sets, has

three interesting consequences:

1. The application of the constraint set technique leads to an intuitive understanding

of the scheduling constraints of the crossbar, and leads to a simpler scheduling

algorithm. It simplifies Charny’s well-known result (Theorem 4.1).

2. A more general result was later proved by Dai and Prabhakar (using fluid

models) [12], and later by Leonardi et al. [71] using Lyapunov functions. However,

unlike the work in [12] and [71], constraint sets lead to a hard bound on the

worst-case delay faced by a packet in the CIOQ router. In other words, when

subject to the same leaky bucket constrained arrival patterns, cells depart from

the CIOQ router and the FCFS-OQ router at the same time, or at least within

a fixed bound of each other.

3. The algorithm does not distinguish arriving cells based on their output desti-

nation. It only requires arriving cells to be stored in an input queue sorted

based on their allocated departure time, irrespective of the outputs that they

4.6 The Problem with Time Reservation Algorithms 99

are destined to. This means that line cards do not need VOQs, and it leads to

different queuing architectures.

4.6 The Problem with Time Reservation Algo-

rithms

There are two problems with the analysis described above — (1) We had to assume

that the buffers were finite, and (2) We have no simple way to extend the analysis to a

PIFO CIOQ router. While the former is a practical assumption to make,8 it is difficult

to see how we can extend the time reservation algorithm to support a PIFO queueing

policy. This is because we fixed the time at which a cell is transferred at the time

of its arrival. If later cells that were of higher priority came to the same input, they

would not be able to use the time slots that were allocated to the lower priority cells

(which may be destined to the same or even different outputs) that arrived earlier. If

we look at Figure 4.3 and Figure 4.4, the number of cells that compete for the same

interval (DT,DT + k) can be unbounded since cells arriving later can be of higher

priority, and this can happen indefinitely. This is a problem with any time reservation

algorithm.

In summary, the main problem with time reservation algorithms is that every

arriving cell c immediately contends for a time slot to be transferred to the output,

even though it may not be scheduled for departure until some time in the future. This

can happen because there are other cells already at the output that depart before cell

c, or that it have a much lower priority than other cells that are already destined to cell

c’s output. So we need some way to delay such a cell c from immediately contending

for a time slot. More generally, we need some way to indicate to the scheduler that

cell c has a lower priority for transfer, so that the scheduler may choose to schedule

some other higher-priority cell instead of cell c.

8In what follows, we will see that we can eliminate this assumption too.

4.7 A Preferred Marriage Algorithm for Emulating PIFO-OQ Routers 100

4.7 A Preferred Marriage Algorithm for Emulat-

ing PIFO-OQ Routers

Chuang et al [13] were the first to show that if the priority of cells could be conveyed

via a preference list by each input and output to a scheduler (without scheduling cells

immediately on arrival), then it is possible for a CIOQ router to emulate a PIFO-OQ

router. Their main idea was that a central scheduler would compute a matching

(marriage) between the inputs and outputs based on their preferences for each other.

The preferred marriages that are computed have the property that they are stable.

(See Box 4.1.)

They introduce a counting technique and monitor the progress of every cell9 to

ensure that it reaches its output on time, as compared to a PIFO-OQ router.

In what follows, our goal is to show that the counting technique introduced in [13]

can be viewed as a re-statement of the pigeonhole principle. We will see that in order

to do this, we will have to:

1. Indicate the priority of cells to the scheduler (Section 4.8.1),

2. Extend the application of the pigeonhole principle to make it aware of cell

priorities (Section 4.8.2), and,

3. Find the conditions under which this extended pigeonhole principle is satisfied

(Section 4.8.3).

9The authors do this via the use of a variable called slackness.

4.7 A Preferred Marriage Algorithm for Emulating PIFO-OQ Routers 101

�Box 4.1: The Stable Marriage Problem�

Consider the following succint description of stable marriages, defined in [72] —

Inputs Outputs

1

2

3

4

1

2

3

4

Woman 1 and Man 2 get their worst preferences

(3, 2, 4, 1)

(2, 3, 4, 1)

(2, 3, 4, 1)

(2, 4, 3, 1)

(3, 1, 4, 2)

(1, 3, 4, 2)

(1, 4, 3, 2)

(4, 1, 3, 2)

(Men) (Women)

but no one wants to switch

Figure 4.5: A stable marriage

Stable Marriages: Given N men and N

women, where each person has ranked all

members of the opposite sex with a unique

number between 1 and N in order of pref-

erence, marry the men and women off such

that there are no two people of opposite sex

who would both rather have each other than

their current partners. If there are no such

people, the marriages are “stable”.

An easier way to understand this is captured in the following quote [73] which

presupposes a married woman who professes interest in marrying another man. If she

receives the reply, “Madam, I am flattered by your attention, but I am married to someone

I love more than you, so I am not interested”, and this happens to any woman who wants

to switch (or vice versa) then the set of marriages is said to be stable.

NObservation 4.2. The algorithm was first applied for pairing medical students to hospital

jobs, and an example is shown in Figure 4.5. Gale and Shapely [63] proved

that there is always a set of stable marriages, irrespective of the preference

lists. The latter fact is key to analyzing crossbar routers.

In a CIOQ router, inputs and outputs maintain a priority list as described in Sec-

tion 4.8.1. The output prefers inputs based on the position of cells in its output priority

queue, i.e., based on the departure order of cells destined to that output. Similarly, inputs

prefer outputs based on the position of the cells in the input priority queues. In the context

of routers, a set of marriages is a matching. Since there is always a stable marriage, a

stable matching ensures that for every cell c waiting at an input queue:

1. Cell c is part of the matching.

2. A cell that is ahead of c in its input priority list is part of the matching.

3. A cell that is ahead of c in its output priority list is part of the matching.

So we can say that for every cell that is not transferred to its output in a scheduling

phase, the number of contentions will decrease by one in every matching. With speedup

two, this is enough to satisfy Property 4.1, which is required to emulate an OQ router.

4.8 A Re-statement of the Proof 102

2NR

A5B7B8C7 A6C9

A1
Output Queue A

A4

B1
Output Queue B

B3

C2C4C5C6

Output Queue C

C3

B4B5

C8}

Cells ahead of C7 Cells ahead of C7

}
C7 : 4 Constraints (Pigeons) C7: 5 Opportunities (Pigeon Holes)

A7

B2A8

Input Priority Queue C

Input Priority Queue B

Input Priority Queue A

Figure 4.6: Indicating the priority of cells to the scheduler.

4.8 A Re-statement of the Proof

4.8.1 Indicating the Priority of Cells to the Scheduler

In order to convey the priority of cells to a scheduler, we will need a priority queue to

indicate the departure order of cells to the scheduler. A priority queue (as shown in

Figure 4.6), gives the scheduler flexibility in servicing higher-priority cells that are

still at their inputs, irrespective of their arrival time. The queue has the following

features:10

1. Arriving packets are “pushed-in” to an arbitrary location in the queue, based on

their departure order.

2. The position of the packets in the queue determines their priority of departure.

3. Once the packet is inserted, the relative ordering between packets in the queue

does not change.

4. A packet can depart from an arbitrary location in the queue if packets ahead of

it in the queue are unable to depart.

10Since a cell can leave from an arbitrary location in a priority queue, it has been referred to as a
push in random out (PIRO) queue in literature [13].

4.8 A Re-statement of the Proof 103

�Example 4.3. The example in the figure shows a 3x3 CIOQ router. The ports are

labelled A, B, and C. The input priority queue for ports A, B, C,

and the three output queues for ports A, B, and C are shown. In the

example shown, cells A5, A6, B7, B8, C7, and C9 are at the input

priority queue for port C. None of the cells in the input priority queue

are as yet scheduled. The input indicates to the scheduler the priority

of the cells via its input priority queue. For example, cell C7 has lower

priority than cells A5, A6, B7, and B8; however, it has higher priority

than cell C9. In a given time slot, if the scheduler matches output

ports A and B to some other inputs, then cell C7 can be scheduled to

leave before cells A5, A6, B7, and B8.

Why does cell C7 have a lower priority than, say, cell B8? We can see from the

figure that cell C7 has five cells — C2, C3, C4, C5, and C6 — that are ahead of it at

output port C. This means that cell C7 does not have to be scheduled in the next

five time slots. However, cell B8 has only four cells — B1, B3, B4 and B5 — ahead

of it in output port C. So, in a sense, cell B8 has to more urgently reach its output

than cell C7.

NObservation 4.3. Note that the introduction of a priority queue does not prevent

cells from being queued in VOQs. In fact, there are two choices for

implementation — (1) The cells may be queued in VOQs, or segregated

further into queues based on differentiated classes of service for an

output. An input priority queue is maintained separately to describe

the order of priority between these cells, or (2) We can do away with

VOQs altogether; the cells can be queued directly in an input priority

queue.

4.8.2 Extending the Pigeonhole Principle

We can state the observations from Example 4.3 in terms of pigeons and pigeonholes.

4.8 A Re-statement of the Proof 104

1. Pigeons: For every cell c, the cells that are ahead of it in the input priority

queue contend with it for a time slot, so that they can be transferred to their

respective outputs. These cells are similar to contending pigeons.

2. Pigeonholes: Every cell that is already at cell c’s output and has an earlier

departure time than cell c allows the cell more time to reach its output. These

cells represent distinct opportunities in time for cell c to be transferred to the

output. We will use pigeonholes to represent these opportunities.

In order to ensure that cells waiting in the input priority queue reach the output

on time, we will mandate the following inequality: the number of opportunities

(pigeonholes) for a cell is always equal to or greater than the number of cells that

contend with it (pigeons). This inequality must be satisfied for every cell, as long as it

resides in the input priority queue.

Let us contrast this to our analysis of SB routers. In an SB router, a cell gets

allocated to a memory on arrival. This memory is available to the output when the

cell needs to be read at its departure time. So, we can forget about the cell once it

has been allocated to a memory. In contrast, in a CIOQ router, the cell may remain

in the input priority queue for some time before it is transferred to the output. So we

have to continually monitor the cell to ensure that it can reach the output on time for

it to depart from the router. This is formalized in Algorithm 4.2.

We maintain two constraint sets to track the evolution of every cell — (1) An

opportunity set (pigeonholes) that constrains the number of time slots that are available

for a cell to be transferred, and (2) A contention set (pigeons) to track the cells that

contend with a cell and prevent it from being transferred to its output.

�Example 4.4. Table 4.1 shows an example of the opportunity and contention sets for

each cell in the input priority queue for port C of Figure 4.6. Both these

sets are easily derived from the position of the cell in its input priority

queue and the state of the output queue as shown in Figure 4.6. Note

that for every cell in Table 4.1, the number of opportunities (column

5) is currently greater than the number of contentions (column 3).

4.8 A Re-statement of the Proof 105

Algorithm 4.2: Extended constraint sets for emulation of OQ routers.

input : CIOQ Router Architecture.1

output: A bound on the number of memories, total memory, and switching2

bandwidth required to emulate an OQ router.

for each cell c which arrives at time T and departs at time DT do3

for t←∈ {T, T + 1, . . . , DT} do4

Opportunity Set (pigeonholes) ← cells ahead of c, already at its output5

Contention Set (pigeons) ← cells ahead of c at its input6

if cell c is still at the input then7

Ensure: |Pigeonholes| ≥ |Pigeons|.8

Table 4.1: An example of the extended pigeonhole principle.

Cell Cells Ahead in Input #Contentions Cells Ahead in Output #Opportunities
(Pigeonholes) (Pigeons)

A5 - 0 A1,A4 2

A6 A5 1 A1,A4 2
B7 A5,A6 2 B1,B3,B4,B5 4
B8 A5,A6,B7 3 B1,B3,B4,B5 4

C7 A5,A6,B7,B8 4 C2,C3,C4,C5,C6 5
C9 A5,A6,B7,B8,C8 5 C2,C3,C4,C5,C6,C8 6

4.8.3 Using Induction to Enforce the Pigeonhole Principle

How do we ensure that the conditions described in Algorithm 4.2 are met? To do this,

we use simple induction to track the change in size of the contention and opportunity

set in every time slot that a cell waits at the input. But we have two problems — (1)

In every time slot, for every cell, it is possible that the contention set increases in size

by one, due to newly arriving cells that may have higher priority than it. Also, the

opportunity set will decrease in size by one, because a cell will depart from the output.

The former increases the number of pigeons, while the latter decreases the number of

pigeonholes available for the cell. Both of these are detrimental from the cell’s point

of view, and (2) When a cell arrives, it is inserted into the input priority queue. At

the time of insertion, it must at least have equal or more opportunities as the number

of contenting cells. If not, it may never make it to the output on time.

4.9 Emulating FCFS and PIFO-OQ Routers 106

So, in order to meet the induction step (between consecutive time slots that the

cell waits at the input) and the induction basis case (at the time slot when a cell

arrives to the input), we mandate the following properties:

DProperty 4.1. Induction Step: In every time slot, the switch scheduler does the

following at least twice — it either decrements the size of the contention

set or increments the size of the opportunity set for every cell waiting at

the input, i.e., it either decrements the number of pigeons or increments

the number of pigeonholes for every cell.

DProperty 4.2. Induction Basis Case: On arrival, a cell is inserted into a position

in the input priority queue such that it has equal or more opportunities

to leave than the number of contentions, i.e., it has equal or more

pigeonholes than the number of pigeons.

4.9 Emulating FCFS and PIFO-OQ Routers Using

the Extended Pigeonhole Principle

We have shown that the method of proof introduced in [13] is simply a re-statement of

the pigeonhole principle, applied to every cell for every time slot that it waits at the

input. We are now ready to re-state the results for the preferred marriage algorithm

in [13] as follows — If Property 4.1 and Property 4.2 are met, the conditions for the

extended constraint set technique (Algorithm 4.2) are satisfied. It follows that all cells

reach their output on time, and a CIOQ router can emulate a PIFO-OQ router.

In order to satisfy Property 4.1, the authors [13] ensure that the preferred marriages

are stable [63], and operate the crossbar at speedup S = 2. Also, in order to satisfy

Property 4.2, the authors insert an arriving cell as far ahead in the input priority

queue as required so that it has more opportunities than the number of contending

cells at the time of insertion.11 In an extreme case, the arriving cell may have to be

11Note that there are many insertion policies that satisfy Property 4.2, since we only need to insert
an arriving cell at any position where it has more opportunities than the number of contending cells.

4.10 Related Work 107

inserted at the head of line. Note that the memories in the input line cards need

to run at rate 3R (to support one write for the arriving cell, and up to two reads

into the crossbar). The memories in the output line cards also need to run at 3R (to

support two writes for cells arriving from the crossbar, and one read to send a cell to

the output line). This requires a total memory bandwidth of 6NR. We can now state

the following theorem:

Theorem 4.3. (Sufficiency, by Citation) A crossbar CIOQ router can emulate a

PIFO-OQ router with a crossbar bandwidth of 2NR and a total memory bandwidth of

6NR.

Proof. Refer to [13] for the original proof. r

4.10 Related Work

In what follows, we present a brief chronological history of the research in CIOQ

routers. Due to the large body of previous work, this section is by no means exhaustive,

and we only present some of the key salient results.

4.10.1 Statistical Guarantees

We first consider CIOQ routers with crossbar speedup S = 1. Recall that such a CIOQ

router is simply an IQ router. IQ routers that maintain a single FIFO buffer at their

inputs are known to suffer from head-of-line blocking. Karol et al. [64] showed that the

throughput of the IQ router is limited to 58% when the input traffic is independent,

identically distributed (i.i.d)12 Bernoulli, and the output destinations are uniform.

Based on the negative results in [64], several authors [75, 76, 77, 78] did analytical

and simulation studies of a CIOQ router (which maintains a single FIFO at each

input) for various values of speedup. These studies show that with a speedup of four

to five, one can achieve about 99% throughput when arrivals are i.i.d at each input

and when the distribution of packet destinations is uniform across the outputs.

12Refer to Appendix B for an exact definition.

4.10 Related Work 108

�Box 4.2: The Stability of Forced Marriages�

The algorithm described to emulate an OQ router in Section 4.9 is an example of
preferred marriage. Inputs and outputs maintain preference lists and communicate their
choices to a central scheduler. The central scheduler computes a stable marriage and
attempts to satisfy (to the best of its abilities) the preferences of the inputs and the outputs.

Suppose we deny the inputs and outputs choice. We can ask — What happens if
the matchings (marriages) that we compute are forced marriages?a Prabhakar et al [41]
describe an algorithm called MUCFA (Most Urgent Cell First Algorithm) whose analogy
to forced marriages is as follows:

MUCFA:When a cell arrives it is given an urgency, which is the time remaining
for it to leave the OQ router. A cell progressively becomes more urgent in every time
slot. In each scheduling phase, an input is forced to prefer outputs that have more urgent
cells, and outputs are forced to prefer inputs based on which inputs have more urgent cells.
The preferences lists are created simply as a consequence of the urgency of a cell. Inputs
and outputs have no say in the matter. In each scheduling phase, a centralized scheduler
computes a forced marriage which is stable.

The stable forced marriage computed by MUCFA gives priority to more urgent cells
and has the following property. For every cell c waiting at an input queue:

1. Cell c is part of the matching.
2. A cell that is more urgent than c in its input priority list is part of the matching.
3. A cell that is more urgent than c in its output priority list is part of the matching.

Prabhakar et al. [41] show using a reductio-ad-absurdum argument that MUCFA can
emulate an OQ router with speedup four.

NObservation 4.4. It is interesting to apply the pigeonhole principle to analyze MUCFA. It
can be easily seen that MUCFA satisfies Property 4.1 with speedup two. But
there is no easy way to know whether MUCFA satisfies the induction base
case, i.e., Property 4.2 on cell arrival. This is because unlike the preferred
marriage algorithm, MUCFA does not give choice to an input to insert an
arriving cell into its preference list.

Coincidentally, similar to marriages in certain traditional societies, the algorithms for
forced marriages for CIOQ routers [41] preceded the algorithms for preferred marriages [13].
Note that both sets of marriages can be made stable, and are successful in emulating an
OQ router.

It has been shown via counterexample [74] that MUCFA with speedup two cannot
emulate an OQ router. However, it is not known whether MUCFA can emulate an OQ
router with speedup three, and this remains an interesting open problem.

aNot to be confused with arranged marriage, a much-maligned and misused term, incorrectly
used in the modern world to describe a large class of marriages!

4.10 Related Work 109

It was later shown that the low throughput of IQ routers is due to head-of-line

blocking, and it can be overcome using virtual output queues (VOQs) [79]. This led to a

renewed interest in IQ routers. Tassiulas and Ephremides [39] and McKeown et al. [11]

proved that an IQ router with VoQs can achieve 100% throughput with a maximum

weight matching (MWM) algorithm, if the input traffic is i.i.d and admissible; the

outputs are allowed to be non-uniformly loaded. Dai and Prabhakar [12] generalized

this result and showed that MWM can achieve 100% throughput provided that the

input traffic satisfies the strong law of large numbers and is admissible. However,

MWM is extremely complex to implement and has a time complexity, O(N3 logN).

A different approach was considered by Chang et al. [80] and Altman et al. [81].

They showed (using the results of Birkhoff [82] and von Neumann [83]) that the

crossbar can be scheduled by a fixed sequence of matchings (called frames)13 such

that the IQ router can achieve 100% throughput for any admissible arrival pattern.

These are similar to time division multiplexing (TDM) techniques in the switching

literature [84]. However, their usage of frame scheduling requires prior knowledge of

the arrival traffic pattern, and the router needs to maintain a potentially long sequence

of matchings, and so these techniques have not found usage in practice.

One would expect that the maximum size matching (MSM) algorithm, which

maximizes the instantaneous bandwidth of the crossbar (the most efficient algorithm

has a lower time complexity O(N2.5) [85, 86]), would also be able to achieve 100%

throughput. However, contrary to intuition, MSM is known to be unfair (if ties are

broken randomly), can lead to starvation, and hence cannot achieve 100% through-

put [87]. Not all MSM algorithms suffer from loss of throughput. In [88] it is shown

that the longest port first (LPF) algorithm (an MSM algorithm that uses weights to

break ties) achieves 100% throughput for Bernoulli arrivals.

In [89], Weller and Hajek give a detailed analysis on the stability of online matching

algorithms (including MSM) using frame scheduling with a constrained traffic model.

Our work in [90] extends some of the results in [89] by alleviating the traffic constraints

and considering stochastic (Bernoulli) arrivals. It shows that with a slight modification

13This is similar to the idea of frame scheduling described in Chapter 3.

4.10 Related Work 110

of frame scheduling (called batch scheduling), a class of MSM algorithms (called Critical

Maximum Size Matching, or CMSM), can achieve 100% throughput for (uniform or

non-uniform) Bernoulli i.i.d. traffic. Also, under the purview of batch scheduling,

the unfairness of MSM reported in [88] is eliminated, and any MSM algorithm can

achieve 100% throughput under Bernoulli i.i.d. uniform load. However, since the

batch scheduling MSM algorithms described above can suffer from large worst case

delay and have large time complexity, they are not used in practice.

There are two approaches that are more practical toward achieving 100% through-

put. They involve speeding up the crossbar or randomizing the MWM scheduler. Dai

and Prabhakar [12] in their seminal paper analyzed maximal matching algorithms

and proved that any maximal matching algorithm can achieve 100% throughput with

speedup, S = 2 for a wide class of input traffic. Subsequently, Leonardi et al. [71]

also proved a similar result. The authors in [36, 91, 92, 93] took a different approach.

They describe load balancing algorithms14 that are simple to implement and achieve

100% throughput. They come at the expense of requiring two switching stages, and

also require a higher crossbar speedup, S = 2.15

Tassiulas [94] showed that a randomized version of MWM (which is easier to

implement) can achieve 100% throughput with speedup, S = 1. Later, Giaccone et

al. [95] described other randomized algorithms that achieve 100% throughput with

S = 1 and also closely realize the delay performance of the MWM scheduler.

4.10.2 Deterministic Guarantees

The algorithms described above make no guarantees about the delay of individual

packets, and only consider average delay. The approach of mimicking (or emulating)

an OQ router was first formulated in [41]. They showed that a CIOQ router with a

speedup of four, and an algorithm called MUCFA (most urgent cell first algorithm),

14Note that the algorithms we proposed in [36] were first described for a parallel packet switch
architecture, which is described in Section 6.7. But the results are immediately applicable to the
CIOQ router.

15Note that when these algorithms have knowledge of the destination port of the incoming cell,
they can emulate an FCFS-OQ router even under adversarial inputs.

4.10 Related Work 111

�Box 4.3: Work Conservation without Emulation�

A work-conserving router gives a deterministic performance guarantee— it always
keeps its outputs busy. In Chapter 1, we mandated FCFS-OQ emulation as a condition to
achieve work-conservation. This gave us an additional deterministic performance guarantee
for each individual packet, i.e., it would leave at the same time as compared to an ideal
FCFS-OQ router. We can relax this condition. In what follows, we will show that we can
also apply the pigeonhole principle to find the conditions under which a CIOQ router is
work-conserving without mandating FCFS-OQ emulation.

For a router to be work-conserving, we only need to ensure that its outputs are
kept busy. So, in such a router, the order of departures of packets from outputs is
irrelevant. It is sufficient that some packet leave the output at all times that the
corresponding output in the shadow OQ router is also busy. So, from a cell’s perspective,
it is sufficient that either (1) some cell ahead of it in the input priority list leave the
input, or (2) some cell (irrespective of its departure time) make it to the output in
every scheduling opportunity. So we can make the following simple modification to the
extended constraint set technique in order that our CIOQ router be work-conserving:

Algorithm 4.3: Extended constraint sets for work conservation.

input : CIOQ Router Architecture.1

output : A bound on the number of memories, total memory and switching2

bandwidth required to emulate an OQ router.

for each cell c which arrives at time T and departs at time DT do3

for t←∈ {T; T + 1; : : : ; DT} do4

Opportunity Set (pigeonholes) ← any cells already at its output5

Contention Set (pigeons) ← cells ahead of c at its input6

if cell c is still at the input then7

Ensure: |Pigeonholes| ≥ |Pigeons|.8

As a consequence, the scheduler which ensures that the preferred marriages described
in Section 4.9 are stable (and which was used to ensure that a CIOQ router can emulate a
PIFO router) can be simplified. It no longer needs to be aware of the priority between cells
destined to the same output. This leads to the following theorem:

Theorem 4.4. A crossbar CIOQ router is work-conserving with a crossbar bandwidth of
2NR and a total memory bandwidth of 6NR.

4.11 Conclusions 112

can emulate an OQ router for arbitrary input traffic patterns and router sizes. Later,

in their seminal paper [13], the authors improved upon the result in [41] and were the

first to show that a CIOQ router can emulate an OQ router with speedup two.

In contrast, Charny [65] also considered emulation, but required assumptions on the

arrival traffic and only considered FIFO traffic, while Krishna et al. [23] independently

showed that a CIOQ router is work-conserving with speedup two. Note that Stoica

et al. [96] also considered the emulation of a CIOQ router with speedup two. Their

paper had an error, which was later fixed [97] in consultation with the authors in [13].

Recently, Firoozshahian et al. [98] presented a surprising algorithm that (unlike all

other previous algorithms) only uses local information to emulate a constrained OQ

router that performs “port-ordered” scheduling policies.

4.11 Conclusions

We have extended the work done on providing delay guarantees in [65] and PIFO

emulation in [13], as follows:

1. Our work on time reservation algorithms, presented in Section 4.4 for the classical

unbuffered crossbar, extends Charny’s result [65]. In [65] it was shown that

a maximal matching algorithm would lead to the main result (Theorem 4.1).

The result relied on a scheduler that examines the contents of the input queues

during each time slot to determine which cells to schedule. In contrast, the

constraint set technique leads to an almost identical result (Theorem 4.2), using

a simpler algorithm that schedules cells as soon as they arrive. While algorithms

for IQ and CIOQ routers that schedule cells immediately upon arrival have been

proposed before [67, 68, 69, 70], we are not aware of any previous work that

shows when such algorithms can achieve 100% throughput, give bounded delay,

and emulate an FCFS-OQ router.

2. The analysis of non-SB routers was a hard problem, because cells that arrive

to non-SB routers do not get queued for their outputs immediately. They may

be held at one or more intermediate points before they are transferred to their

4.11 Conclusions 113

respective outputs. We introduced the extended constraint set technique, which

follows the path of the cell and enforces constraints on the cell on every time slot

before it reaches its output. The extended constraint set technique has given us

a powerful tool to analyze non-SB routers. It has clarified our understanding of

the results in [13] and brought it under the purview of the pigeonhole principle.

Summary

1. In this chapter, we analyze the combined input output queued (CIOQ) router. In a CIOQ

router, a packet is buffered twice — once when it arrives, and once before it leaves. The

first buffer is on the line card it arrives on. The second buffer is on the line card it departs

from.

2. Intuitively, the two buffers make the job easier for a central scheduler — if the switch is

not ready to transfer packets as soon as they arrive, it can hold them in the input line

card. Similarly, if the scheduler has the opportunity to send a packet to the output, it

doesn’t need to wait until the output line is free — the output line card will buffer it in

the output until the line is free.

3. We use the constraint set technique (introduced in Chapter 2) to analyze the conditions

under which a CIOQ router can emulate an OQ router.

4. The use of the constraint set technique implies that our scheduling algorithm attempts

to reserve a time slot (either now or in the future) to transfer a cell to the output line

card as soon as it arrives. As a consequence, our switching algorithm belongs to a class of

algorithms called “time reservation algorithms”.

5. We show that a CIOQ router (using a time reservation algorithm) with a crossbar band-

width greater than 2NR and a memory bandwidth greater than 6NR is work-conserving

(Theorem 4.4) and can emulate an FCFS-OQ router (Theorem 4.2).

6. Our techniques lead to an intuitive understanding of the constraints faced in a CIOQ

router, and also simplify the algorithms presented in [65].

7. However, we have to make assumptions (e.g., that the CIOQ router has a finite size buffer)

in order to prove the above results. While these assumptions are practical, the constraint

set technique unfortunately does not allow us to find the conditions under which a CIOQ

router can emulate an OQ router that provides qualities of service.

4.11 Conclusions 114

8. This is because the basic constraint set technique does not take full advantage of the

architecture of a CIOQ router as it commits to transferring a packet immediately on arrival.

9. We therefore introduce the extended constraint set technique to analyze the CIOQ router.

The extended constraint set technique is a re-statement of the counting principle introduced

in [13], and is a method to continuously track the progress of a cell while it waits at the

input, in its attempt to be transferred to the output.

10. We re-state the previously known results in [13] in terms of the extended constraint set

technique to show that a CIOQ router with a crossbar bandwidth of 2NR and a memory

bandwidth of 6NR can emulate an OQ router that supports multiple qualities of service

(Theorem 4.3).

11. The extended constraint set technique has broadened our understanding of routers. It

brings under the purview of the pigeonhole principle other router architectures that are

not single-buffered.

Chapter 5: Analyzing Bu�ered CIOQ Routers

with Localized Memories
Feb 2008, Santa Cruz, CA

Contents

5.1 Introduction . 117

5.1.1 Goal . 118

5.1.2 Intuition . 118

5.2 Architecture of the Buffered CIOQ Router 120

5.2.1 Why Are Buffered Crossbars Practical? 121

5.3 Applying the Pigeonhole Principle to Analyze Buffered Crossbars 123

5.3.1 Satisfying the Properties for the Extended Pigeonhole Principle 123

5.4 Analyzing Buffered FCFS-CIOQ Routers 125

5.5 Crosspoint Blocking . 126

5.6 Analyzing Buffered PIFO CIOQ Routers 128

5.6.1 Emulating a PIFO-OQ Router by Recalling Cells 128

5.6.2 Emulating a PIFO-OQ Router by Bypassing Cells 128

5.6.3 Emulating a PIFO-OQ Router by Disallowing Less Urgent Cells . . . 129

5.7 Conclusions . 133

List of Dependencies

• Background: The memory access time problem for routers is described in

Chapter 1. Section 1.5.2 describes the use of load balancing techniques, and

Section 1.5.3 describes the use of caching techniques; both these techniques are

used to alleviate the memory access time problems for the buffered CIOQ router.

Additional Readings

• Related Chapters: The load balancing technique to analyze the buffered

combined input output queued (CIOQ) router, introduced in this chapter, is

described in Section 4.9. The load balancing technique is also used to analyze

the CIOQ router architecture in Chapter 4.

Table: List of Symbols.

Bij Crosspoint for Input i, Output j

c, C Cell
DT Departure Time
N Number of Ports of a Router
R Line Rate
S Speedup

SV OQ Super VOQ
T Time Slot

Table: List of Abbreviations.

ASIC Application Specific Integrated Circuit
CIOQ Combined Input Output Queued Router

eDRAM Embedded Dynamic Random Access Memory
FCFS First Come First Serve (Same as FIFO)
OQ Output Queued

PIFO Push In First Out
SB Single-buffered

QoS Quality of Service
VOQ Virtual Output Queue
WFQ Weighted Fair Queueing

“A (stable) marriage can be

ruined by a good memory”.

— Anonymous† 5
Analyzing Buffered CIOQ Routers with

Localized Memories

5.1 Introduction

In Chapter 4, we introduced the combined input output queued (CIOQ) router. CIOQ

routers are widely used, partly because they have localized buffers that enable these

routers to be easily upgraded. However they are hard to scale because the scheduler

in a crossbar-based CIOQ router implements complex stable marriage algorithms [63].

This chapter is motivated by the following question: Can we simplify the scheduler to

make CIOQ routers more scalable? The main idea is as follows —

DIdea. “By introducing a small amount of buffering (similar to a cache) in the

crossbar, we can make the scheduler’s job much simpler. The intuition is that

when a packet is switched, it can wait in the buffer; it doesn’t have to wait until

both the input and output are free at the same time”.

In other words, our scheduler doesn’t have to resolve two constraints at the same

time. As we will see, this will reduce the complexity of the scheduler from O(N2) to

†The exact version of the quote differs in literature.

117

5.1 Introduction 118

O(N) and remove the need for a centralized scheduler. In this chapter, we’ll prove

that anything we can do with a CIOQ router, we can do simpler with a buffered CIOQ

router.

�Example 5.1. Figure 5.1 shows a cross-sectional view of the crossbar ASIC in a

CIOQ router. As can be seen, the central crossbar has to interface with

all the line cards in the router. The current technology constraints are

such that the size of the crossbar ASIC is determined by the number of

interconnect pins. This leaves a large amount of on-chip area unused

in the crossbar ASIC, which can be used to store on-chip buffers.

5.1.1 Goal

Our goal is to make high-speed CIOQ routers practical to build, while still providing

deterministic performance guarantees. So, in what follows, we will not use complex

stable marriage algorithms [63]. Instead we consider a crossbar with buffers (henceforth

referred to as a “buffered crossbar”) and answer the question —What are the conditions

under which a buffered crossbar can emulate an OQ router that supports qualities of

service?

In what follows, we’ll show simple schedulers that make a buffered crossbar give

deterministic performance guarantees – and we’ll derive the conditions under which

they are work-conserving and can emulate an OQ router that supports qualities of

service.

5.1.2 Intuition

Researchers first noticed via simulation that the introduction of buffers to a crossbar

can provide good statistical guarantees. They showed that the buffered crossbar can

achieve high throughput for admissible uniform traffic with simple algorithms [99, 100,

101, 102]. Simulations also indicated that with a modest speedup, a buffered crossbar

can closely approximate fair queueing [103, 104]. This confirms our intuition that the

addition of a buffer can greatly enhance the performance of a crossbar-based fabric.

5.1 Introduction 119

Crossbar

Crossbar ASIC

Empty area on die
available for memory

Pin Limited

Switch Fabric(s)

Cross-sectional View of

Crossbar ASIC

Line

}

Front View of Crossbar-based
CIOQ Router

}
Cards

LC
LC

LC

LC
LC

LC

Crossbar-based CIOQ Router

... .

Figure 5.1: Cross-sectional view of crossbar fabric.

5.2 Architecture of the Buffered CIOQ Router 120

R

R

R

Line card #1

Line card #2

Line card #1

R

Line card #3

2NR

Crossbar with

VOQs
 Crosspoint Buffering

1 cell per
input-output pair

Line card #2

R
VOQs

Line card #3

R
VOQs

Figure 5.2: The architecture of a buffered crossbar with crosspoint buffer.

However, until recently there were no analytical results on guaranteed throughput

to explain or confirm the observations made by simulations. The first analytical results

were by Javidi et al. who proved that, with uniform traffic, a buffered crossbar can

achieve 100% throughput [105]. More recently, Magill et al. proved that a buffered

crossbar with a speedup of two can emulate an FCFS-OQ router [42, 106]. Magill et

al. also showed that a buffered crossbar with k cells per crosspoint can emulate an

FCFS-OQ router with k strict priorities.

5.2 Architecture of the Bu�ered CIOQ Router

Figure 5.2 shows a 3× 3 buffered crossbar with line rate R. Similar to the crossbar

router, arriving packets are buffered locally on the same line card on which they arrive,

and held there temporarily. Later they are switched to the corresponding output

line card, where they are again held temporarily before they finally leave the router.

Fixed-length packets or cells wait in the VOQs to be transferred across the switch.

Each crosspoint contains a buffer that can cache one cell. The buffer between input i

5.2 Architecture of the Buffered CIOQ Router 121

and output j is denoted as Bij. When the buffer caches a cell, Bij = 1, else Bij = 0.

In a sense, when the buffer is non-empty, it contains the head of a VOQ, and thus

allows the output to peek into the state of the VOQ. Similar to the crossbar-based

CIOQ router in the previous chapter, the inputs maintain an input priority queue

(refer to Figure 4.6) to maintain the priority of cells. As in the previous chapter, there

are two choices for implementation — (1) Keep arriving cells in VOQs, and a separate

input priority queue to describe the order between the cells, or (2) Keep the cells

sorted directly in an input priority queue.

The key to creating a scheduling algorithm is determining the input and output

scheduling policy that decides how input and output schedulers pick cells. We will see

that different policies lead to different scheduling algorithms.

5.2.1 Why Are Bu�ered Crossbars Practical?

Unlike a traditional crossbar, the addition of memory (which behaves like a cache)

in a buffered crossbar, obviates the need for the computation of complex stable

matching algorithms. This is because the inputs and outputs are no longer restricted

to performing a matching in every time slot, and have more more flexibility as described

below.

The scheduler for a buffered crossbar consists of 2N parts: N input schedulers

and N output schedulers. The input schedulers (independently and in parallel) pick a

cell from their inputs to be placed into an empty crosspoint. The output schedulers

(independently and in parallel) pick a cell from a non-empty crosspoint destined for

that output.

NObservation 5.1. A traditional crossbar fabric is limited to performing no more than

N ! permutations to match inputs to outputs. In contrast (depending

on the occupancy of the crosspoints), the buffered crossbar can allow

up to NN matchings between inputs and outputs.

The N input and N output schedulers can be distributed to run on each input

and output independently, eliminating the single centralized scheduler. They can be

5.2 Architecture of the Buffered CIOQ Router 122

pipelined to run at high speeds, making buffered crossbars appealing for high-speed

routers.

NObservation 5.2. It is interesting to compare this scheduler with the scheduler for

an unbuffered crossbar-based CIOQ router described in Chapter 4. The

scheduler in Chapter 4 also gave deterministic performance guarantees,

but in order to provide these guarantees, our scheduling algorithm

required the inputs and outputs to keep a list of preferences and convey

these preferences to a scheduler. This meant that the scheduler had

to be aware of the states of all inputs and outputs, and be centrally

located. The scheduler computed a matching by running a version of

the stable marriage algorithm [63]. In [13], the authors describe two

scheduling algorithms that can compute stable matching, the faster

of which still takes O(N) iterations to compute a matching. The

high communication overhead between the inputs and outputs, the

amount of state that needs to be maintained and communicated to the

centralized scheduler, and the implementation complexity, make stable

matching algorithms hard to scale when designing high-speed routers.

Of course, simplifying the scheduler requires a more complicated crossbar capable

of holding and maintaining N2 packet buffers on-chip. In the past, this would have

been prohibitively complex: the number of ports and the capacity of a crossbar switch

were formerly limited by the N2 crosspoints that dominated the chip area; hence the

development of multi-stage switch fabrics, e.g., the Clos, Banyan, and Omega switches,

based on smaller crossbar elements. Now, however, crossbar switches are limited by

the number of pins required to get data on and off the chip [107].

�Example 5.2. Improvements in process technology, and reductions in geometries,

mean that the logic required for N2 crosspoints is small compared to

the chip size required for N inputs and N outputs. The chips are

pad-limited, with an under-utilized die. A buffered crossbar can use the

5.3 Applying the Pigeonhole Principle to Analyze Buffered Crossbars 123

unused die for buffers, and further improvements in on-chip eDRAM

memory technology [26] allow for storing a large amount of memory

on-chip. With upcoming 45nm chip technology, ∼128Mb of eDRAM

can easily fit on an average chip. This can easily support a 256× 256

router (with 256-byte cells), making a buffered crossbar a practical

proposition.1

5.3 Applying the Pigeonhole Principle to Analyze

Bu�ered Crossbars

In Chapter 4, we introduced the extended pigeonhole principle (Algorithm 4.2) as a

general technique to analyze whether a router can emulate an OQ router (and as a

consequence give deterministic performance guarantees). The crossbar-based CIOQ

router in Chapter 4 was able to emulate an OQ router because the stable matching

algorithms that we described (and first mentioned in [13]) ensured that the pigeonhole

principle is satisfied for every cell in every time slot.

5.3.1 Satisfying the Properties for the Extended Pigeonhole

Principle

Since we are also interested in emulating an OQ router, we will choose a scheduling

algorithm that also attempts to satisfy the conditions of the pigeonhole principle.

Our scheduling algorithm consists of two parts, one each for the input and the

output scheduler. This is shown in Algorithm 5.1. To show that our scheduling

algorithm meets the pigeonhole principle, recall the two properties that we introduced

in Section 4.9:

DProperty 4.1. Induction Step: In every time slot, the switch scheduler does the

following at least twice — it either decrements the size of the contention

1Some detailed considerations regarding the implementation of buffered crossbars are described
in [108].

5.3 Applying the Pigeonhole Principle to Analyze Buffered Crossbars 124

Algorithm 5.1: Buffered crossbar scheduler.

for each scheduling slot t do1

Input Scheduler:2

for each input i do3

Serve the first cell (destined to any output) that it can find in the input4

priority queue, whose crosspoint is empty, i.e., Bi∗ = 0.

Output Scheduler:5

for each output j do6

Serve the first cell with the earliest departure time, from any crosspoint7

B∗j which is not empty, i.e., B∗j = 1.

set or increments the size of the opportunity set for every cell waiting at

the input, i.e., it either decrements the number of pigeons or increments

the number of pigeonholes for every cell.

Consider a cell c in the input priority queue for input i destined to output j. If the

cell is chosen by the input scheduler, then it is transferred to crosspoint Bij and is

available to the output for reading at any time. We no longer need to consider it.

If the cell is not chosen, then consider the state of the crosspoint buffer, Bij, at the

beginning of every time slot:

1. If Bij = 0: The input scheduler will select some other cell with a higher priority

than cell c. So, the input scheduler decrements the size of the contention set

(pigeons) for cell c.

2. If Bij = 1: The output scheduler will select either the cell in the crosspoint

buffer Bij (which has an earlier departure time than cell c2), or some other cell

with an even earlier departure time than the cell in crosspoint Bij. In either

case, the output scheduler increments the number of opportunities3 (pigeonholes)

2This implicitly assumes that the cell in the crosspoint buffer Bij has an earlier departure time
than all cells in V OQij . How this is ensured is explained in the later sections.

3Note that the number of opportunities for a cell is simply the number of cells in the output with
an earlier departure time.

5.4 Analyzing Buffered FCFS-CIOQ Routers 125

for cell c.

So, for every cell c that remains at the input at the end of a time slot, either the input

scheduler reduces the number of contending cells (pigeons), or the output scheduler

increases the number of opportunities (pigeonholes).4 If the speedup of the crossbar

is S = 2, then similar to Section 4.9, this is enough to offset the potential increment

of the contention set (pigeonholes) and the definite decrement of the opportunity set

(pigeons) in every time slot due to arriving and departing cells.

DProperty 4.2. Induction Basis Case: On arrival, a cell is inserted into a position

in the input priority queue such that it has equal or more opportunities

to leave than the number of contentions, i.e., it has equal or more

pigeonholes than the number of pigeons.

We will make our cell insertion policy identical to that introduced in Section 4.9, and

so it satisfies Property 4.2.

5.4 Analyzing Bu�ered FCFS-CIOQ Routers Us-

ing the Extended Pigeonhole Principle

In the previous section, in order to meet the Property 4.1 we had to assume that the

cell in the crosspoint Bij has an earlier departure time than the cells in V OQij . In the

case of an FCFS router this is trivially true – for cells that belong to the same VOQ,

the input scheduler will only transfer the cell with the earliest departure time (since it

will have a higher priority than other cells in the same VOQ). Also, cells that arrive

later for the same VOQ will have a later departure time than the cell in the crosspoint,

because of the FCFS nature of the router. It follows that all the conditions to meet

the extended pigeonhole principle (Algorithm 4.2) are satisfied. Similar to Section 4.9,

we can state that a buffered CIOQ router can emulate an FCFS-OQ router. These

observations result in the following theorem:

4This is in contrast to stable marriage algorithms, which try to resolve both the input and output
contentions at once.

5.5 Crosspoint Blocking 126

Theorem 5.1. (Sufficiency, by Citation) A buffered crossbar can emulate an FCFS-

OQ router with a crossbar bandwidth of 2NR and a memory bandwidth of 6NR.

Proof. This was first proved by Magill et al. in [42, 106]. r

�Box 5.1: Work Conservation without Emulation�

We can ask an identical question to the one posed in the previous chapter: What are
the conditions under which a buffered CIOQ router is work-conserving without mandating
FCFS-OQ emulation?

Recall that for a work-conserving router, we only need to ensure that its outputs are
kept busy. So, the output scheduler for a work-conserving buffered crossbar can choose to
serve any non-empty crosspoint, thus ignoring the order of cells destined to an output. This
simplified scheduling policy would still meet the requirements of the modified pigeonhole
principle for work-conserving routers (as described in Algorithm 4.3). This leads to the
following theorem:

Theorem 5.2. A buffered crossbar (with a simplified output scheduler) is work-conserving
with a crossbar bandwidth of 2NR and a memory bandwidth of 6NR.

5.5 Crosspoint Blocking

In the previous section, we simplified Magill’s work on the FCFS buffered crossbar

using the pigeonhole principle. We now extend this work and consider WFQ routers.

When a cell arrives in a WFQ router, the scheduler picks its departure order relative

to other cells already in the router. If the cell has a very high priority, it could, for

example, be scheduled to depart immediately, ahead of all currently queued cells.

This will cause problems for the buffered crossbar. Imagine the situation where the

crosspoint buffer is non-empty and a new cell arrives that needs to leave before the

cell in the crosspoint buffer. Because there is no way for the new cell to overtake the

cell in the crosspoint buffer, we say there is “crosspoint blocking”.

Crosspoint blocking is bad, because the cell in the crosspoint Bij may not have an

earlier departure time than the cells in V OQij. So we cannot satisfy Property 4.1 or

5.5 Crosspoint Blocking 127

meet the requirements of the extended pigeonhole principle. This is a problem unique

to supporting WFQ policies on a buffered crossbar, and did not occur for the FCFS

policy that we considered in the previous section.5

How can we overcome crosspoint blocking? There are three ways to alleviate this

problem — (1) fix it, (2) work around it, or (3) prevent it from occurring. We will

consider each of them below.

�Method 1. What if we can recall less-urgent cells from the crosspoint? We

can fix the crosspoint blocking problem by allowing the input to replace

the cell in the crosspoint buffer with a more urgent cell, if we swap

out the old one and exchange it for the new one. The new cell is put

into position in the crosspoint buffer, ready to be read by the output

scheduler in time to leave the switch before its deadline. Logically, the

cell that was previously in the crosspoint buffer is recalled to the input,

where it is treated like a newly arriving cell.

�Method 2. What if we can bypass less-urgent cells in the crosspoint? We

can work around crosspoint blocking by allowing the more urgent

arriving cell to bypass the cell in the crosspoint buffer. The inputs

could continuously inform the outputs when more urgent cells than

those in the crosspoint buffer have arrived. In a sense, the output

can choose to ignore the crosspoint buffer and directly read the more

urgent cells from the input. This means that the outputs treat the

buffered crossbar similar to a traditional crossbar.

�Method 3. What if we can disallow less-urgent cells from entering the cross-

point? We can prevent the crosspoint blocking problem if the cells

that cause crosspoint blocking are never put there in the first place! A

way to do this is to ensure that a cell is sent to the crosspoint only if

we know that the output will read it immediately.

5In contrast, the analysis of FCFS and PIFO crossbar CIOQ routers in Theorem 4.3 was identical,
because crosspoint blocking does not happen in unbuffered crossbars.

5.6 Analyzing Buffered PIFO CIOQ Routers 128

5.6 Analyzing Bu�ered PIFO CIOQ Routers Us-

ing the Extended Pigeonhole Principle

We will now derive three results to support WFQ-like policies on the buffered crossbar,

based on the three unique methods described above.

5.6.1 Emulating a PIFO-OQ Router by Recalling Cells

We will need extra speedup in the crossbar, to allow time for the old (less-urgent) cell

in the crosspoint to be replaced in the crosspoint buffer by the new cell. To perform

this swapping operation, the switch now has a speedup of three. We don’t need extra

crossbar speedup to retrieve the old (less-urgent) cell from the crossbar and send it

back to the input — in practice, the input would keep a copy of cells currently in the

crosspoint buffer, and would simply overwrite the old one. The memory bandwidth

on the input also does not need to change, since the old cell that is retrieved from

the crossbar does not need to be re-written to the input VOQ. This leads us to the

following theorem:

Theorem 5.3. (Sufficiency, by Reference) A buffered crossbar can emulate a PIFO-

OQ router with a crossbar bandwidth of 3NR and a memory bandwidth of 6NR.

Proof. This follows from the arguments above and 5.1. The original proof (which

does not use the pigeonhole principle) appears in our paper [43]. r

5.6.2 Emulating a PIFO-OQ Router by Bypassing Cells

In order to bypass cells in the crosspoint, we needed to continually inform the outputs

about newly arriving cells. But this creates a scheduling problem: it means we no

longer split the scheduling into independent input and output stages, since the outputs

must wait for the inputs to communicate if there are more urgent arriving cells. So

the scheduler will become similar to (and just as complex as) the scheduler in the

5.6 Analyzing Buffered PIFO CIOQ Routers 129

unbuffered crossbar in Chapter 4. Of course, since the buffered crossbar can perform

any matching that a traditional crossbar can, we have the following obvious corollary:

Corollary 5.1. (Sufficiency, by Citation) A crossbar CIOQ router can emulate a

PIFO-OQ router with a crossbar bandwidth of 2NR and a total memory bandwidth of

6NR.

Proof. This follows from Theorem 4.3. r

5.6.3 Emulating a PIFO-OQ Router by Disallowing Less Ur-

gent Cells

We are interested in a mechanism for knowing when an output will read a cell, so

that the inputs can send only these cells into the crosspoint. How can the input know

when an output will read a cell? One way of doing this is based on the following idea:

DIdea. “Instead of storing the cell in the crosspoint buffer, we can store a “cell

header or identifier” that contains the departure time. The output can still pick a

cell according to the time it needs to leave. The actual cell can be transferred

later, once the output has made its decision”.

This means we only send cells through the switch when they really need to be

transferred. We don’t need the extra speedup to overwrite cells in the crosspoints. We

call this approach header scheduling.

The process of scheduling and transferring cells would now take place in two

distinct phases, just as in an unbuffered crossbar. First, scheduling would be done

by inputs and outputs: the inputs would send cell identifiers to their corresponding

crosspoints, and the outputs would pick, or grant to, a cell identifier in the crosspoint.

In the second phase, the actual cells would be transferred according to the grants

made by the outputs. But we are not quite done:

5.6 Analyzing Buffered PIFO CIOQ Routers 130

NObservation 5.3. Since the N output schedulers all operate independently, they

could temporarily choose cell identifiers that are destined to them, from

the same input. Since the actual cells are not as yet in the crosspoint

buffer, they have to be provided by the inputs. Since the cell identifier

grants come to the inputs in a bursty manner, the actual cells also

reach the crosspoints in a bursty manner. It can be shown that the

outputs need no more than N cells of buffering to accommodate this

burst (see Appendix E).

There are two ways to accommodate this burst, both of which come at an expense.

1. Expand the size of crosspoints: We could modify the crosspoint buffer Bij,

to store up to N cells. This results in a cache size of N3 cells in the crossbar as a

whole. While this will require much more storage, it might make sense for small

values of N . Our buffered crossbar will be similar to that shown in Figure 5.2,

except that each crosspoint can store N cells.

2. Share the crosspoints destined to an output: We could take advantage of

the fact that the burst size per output (irrespective of the inputs) is bounded

by N cells, and share the crosspoint buffer for a specific output. Instead of one

buffer per crosspoint buffer, there will now be N buffers per output as shown in

Figure 5.4. The total cache size is still N2 cells in the crossbar, but the buffers

are dedicated to outputs, rather than input/output pairs. This requires us to

modify the design of the buffered crossbar. Also note that in such a design, the

per-output buffer must have the memory access rate to allow up to N cells to

arrive simultaneously.

The above modifications to the crossbar allow us to emulate a PIFO-OQ router

and provide delay guarantees without requiring any additional crossbar speedup or

memory bandwidth.

5.6 Analyzing Buffered PIFO CIOQ Routers 131

�Box 5.2: A Digression to Randomized Algorithms�

Algorithm 5.2: A ran-

domized scheduler.

for each scheduling slot1

t do

for each input i do2

Serve any3

non-empty VOQ

for which

Bi,∗ = 0.

for each output j4

do

Serve any5

crosspoint buffer

for which

B∗,j = 1.

While randomized algorithms are not a focus of this

thesis, the buffered crossbar is a good example to show their

power. Consider the scheduler in Algorithm 5.2. The input

and output schedulers pick a cell to serve independently

and at random. We can prove the following:

Theorem 5.4. A buffered crossbar with randomized

scheduling, can achieve 100% throughput with a crossbar

bandwidth of 2NR and a memory bandwidth of 6NR.

What follows is an intuition of the proof.a We define a

super queue, SV OQij to track the evolution of each V OQij .

Let SV OQij denote the sum of the cells waiting at input

i, and the cells destined to output j (including cells in the

crosspoint for output j), as shown in Figure 5.3:

SV OQij =
∑

k

V OQik +
∑

k

(V OQkj + Bkj): (5.1)

First we show that the expected value of every super

queue is bounded. It is easy to see, when VOQij is non-empty, that SV OQij decreases in

every scheduling opportunity. There are two cases:

Case 1: Bij = 1. Output j will receive some cell;
∑

k(V OQkj + Bkj) decreases by one.

Case 2: Bij = 0. Input i will send some cell;
∑

k V OQik decreases by one.

R

R

R

Line card #1

Line card #2 Line card #2

Line card #1

R

R

Line card #3 Line card #3

R

VOQs

VOQs

VOQs

2NR

Figure 5.3: SuperVOQ1,2

With S = 2, SV OQij will decrease by two per time slot.

When the inputs and outputs are not oversubscribed, the

expected increase in SV OQij is strictly less than two per

time slot. So the expected change in SVOQij is negative

over the time slot; this means that the expected value of

SV OQij is bounded. This in turn implies that the expected

value of V OQij is bounded and the buffered crossbar has

100% throughput.

aThe proof uses fluid models [12], and appears in Appendix D, and in our paper [43].

5.6 Analyzing Buffered PIFO CIOQ Routers 132

R

R

R

Line card #1

Line card #2 Line card #2

Line card #1

R

R

Line card #3 Line card #3

R

2NR

VOQs

VOQs

VOQs

Crossbar with
 Output Buffering

N cells
per output

3

3

3

Figure 5.4: The architecture of a buffered crossbar with output buffers.

NObservation 5.4. We note that due to the bursty nature of the arrival of cells into

the crossbar, the cells can get delayed in reaching their outputs. The

bursts of N cells take up to N/2 time slots (because the speedup is

two) to reach their outputs. So the emulation is within a bound of

N/2 time slots.

Based on the above observations, we are now ready to prove the following theorem:

Theorem 5.5. (Sufficiency, by Reference) A modified buffered crossbar can emulate

a PIFO-OQ router with a crossbar bandwidth of 2NR and a memory bandwidth of

6NR.

Proof. A detailed proof is available in Section 6.C in our paper [43] and also in

Appendix E. r

5.7 Conclusions 133

Table 5.1: Comparison of emulation options for buffered crossbars.

Buffered Xbar
Architecture

Cache
Size

Type
of

memories

Memory
Access
Rate

Total
Memory

BW

Switch
BW

Comment

Crosspoints
(Box 5.2)

N2 VII.R 2N 3R 6NR 2NR
100% throughput with

trivial input and output
scheduler.

Crosspoints
(Theorem 5.1)

N2 VII.D 2N 3R 6NR 2NR
Emulates FCFS-OQ with
simple input and output

scheduler.

Crosspoints
(Theorem 5.3)

N2 VII.D 2N 3R 6NR 3NR
Emulates WFQ OQ with
simple input and output

scheduler.

Crosspoints
(Corollary 5.1)

N2 VII.D 2N 3R 6NR 2NR
Emulates WFQ OQ with
complex stable marriage

algorithm.

Crosspoints
(Theorem 5.5)

N3 VII.D 2N 3R 6NR 2NR

Emulates WFQ OQ with
N buffers per

input-output pair, simple
header scheduler.

Output Buffers
(Theorem 5.5)

N2 VII.D 2N 3R 6NR 2NR
Emulates WFQ OQ with
N buffers per output,

simpler header scheduler.

5.7 Conclusions

We set out to answer a fundamental question about the nature of crossbar fabrics:

Can the addition of buffers make the crossbar-based CIOQ router practical to build,

yet give deterministic performance guarantees?

Our results show that this is possible. Although the buffered crossbar is more

complex than the traditional crossbar, the crossbar speedup is still two, the memory

bandwidth and pin count is the same as in a crossbar-based CIOQ router, and no

memory needs to run faster than twice the line rate. The scheduling algorithm is

simple, and has the nice property of two separate, independent phases to schedule

inputs and outputs, allowing high-speed, pipelined designs. Also, the use of the

extended pigeonhole principle has allowed us a better understanding of the operation

of the buffered crossbar, and we were able to develop a number of practical solutions

(summarized in Table 5.1) that achieve our goal.

The use of buffered crossbars in some of Cisco’s high-speed Ethernet switches

and Enterprise routers [4] (though not with the exact architecture and algorithms

suggested here) attests to the practicality of the overall architecture. We also currently

plan to deploy buffered crossbars in the aggregated campus router [109] market,

where the crossbar speeds exceed 400 Gb/s. Until crossbar switches and schedulers

5.7 Conclusions 134

improve in speed, we believe that the buffered crossbar provides a quick and easy

evolutionary path to alleviate the problems inherent in a crossbar, and give statistical

and deterministic performance guarantees.

Summary

1. CIOQ routers are widely used. However, they are hard to scale (while simultaneously

providing deterministic guarantees) because of the complexity and centralized nature of

the scheduler. In this chapter, we explore how to simplify the scheduler.

2. We show that by introducing a small amount of buffering in the crossbar (similar to a

cache), we can make the scheduler’s job much simpler. We call these “buffered crossbar”

routers.

3. In a buffered crossbar, each input i and output j has a dedicated buffer in the crossbar.

We call these “crosspoint buffers” (denoted Bij), and a buffered crossbar has a total of

N2 crosspoint buffers.

4. The intuition is that when a packet is switched, it doesn’t have to wait until both the

input and output are both free at the same time. In other words, the scheduler doesn’t

have to resolve two constraints simultaneously. This can reduce the complexity of the

scheduler from Θ(N2) for crossbar-based CIOQ routers (see Chapter 4) to Θ(N) for

buffered crossbars.

5. In this chapter, we prove that anything we can do with a CIOQ crossbar-based router, we

can do more simply with a buffered crossbar.

6. The scheduler for a buffered crossbar consists of 2N parts: N input schedulers and N

output schedulers. The schedulers can be distributed to run on each input and output

independently, eliminating the need for a single centralized scheduler. They can be pipelined

to run at high speeds, making buffered crossbars appealing for high-speed routers.

7. We prove that a buffered crossbar router with a simple scheduler that is distributed and

runs in parallel can achieve 100% throughput (Theorem 5.4) and is work-conserving

(Theorem 5.2), with a crossbar bandwidth of 2NR and a memory bandwidth of 6NR.

8. In [42, 106] Magill et al. proved that a buffered crossbar can emulate an FCFS-OQ router

with a crossbar bandwidth of 2NR and a memory bandwidth of 6NR (Theorem 5.1).

9. Unfortunately, we cannot extend the results in [42, 106] for a router that supports qualities

of service. This is because buffered crossbars suffer from a type of blocking called

5.7 Conclusions 135

“crosspoint blocking”.

10. Crosspoint blocking occurs when a lower-priority cell from some input i destined to some

output j resides in the crosspoint Bij . This cell prevents a higher-priority cell from the

same input-output pair from being transferred to the crossbar.

11. We introduce three methods to eliminate crosspoint blocking. These methods trade off

complexity of implementation for additional crossbar bandwidth. In some cases, we have

to increase the amount of buffering (or the organization of the buffers) in the crossbar to

overcome crosspoint blocking.

12. We show that a buffered crossbar can emulate an OQ router that supports qualities of

service with a crossbar bandwidth of 3NR and a memory bandwidth of 6NR (Theorem 5.3).

13. We also show that a modified buffered crossbar can emulate an OQ router that supports

qualities of service with a crossbar bandwidth of 2NR and a memory bandwidth of 6NR

(Theorem 5.5).

14. There are two options to build a modified buffer crossbar. In one option, we can have N

buffers per crosspoint (where each crosspoint is dedicated, as before, to an input-output

pair), for a total of N3 buffers.

15. Another option is to have N buffers dedicated to each output, for a total of N2 buffers in

the crossbar.

16. Our results are practical, and we believe that the buffered crossbar provides a quick and

easy evolutionary path to alleviate the problems inherent in a crossbar and give statistical

and deterministic performance guarantees.

Chapter 6: Analyzing Parallel Routers with

Slower Memories
Mar 2008, Berkeley, CA

Contents

6.1 Introduction . 138

6.1.1 Why Do We Need a New Technique to Build High-Speed Routers that

Give Deterministic Performance Guarantees? 139

6.1.2 Why Can’t We Use Existing Load Balancing Techniques? 141

6.1.3 Can We Leverage the Existing Load-Balancing Techniques? 142

6.1.4 Goal . 143

6.2 Background . 143

6.2.1 Organization . 145

6.3 The Parallel Packet Switch Architecture 146

6.3.1 The Need for Speedup . 147

6.4 Applying the Pigeonhole Principle to the PPS 148

6.4.1 Defining Constraint Sets . 149

6.4.2 Lower Bounds on the Size of the Constraint Sets 150

6.5 Emulating an FCFS-OQ Router . 151

6.5.1 Conditions for a PPS to Emulate an FCFS-OQ Router 152

6.6 Providing QoS Guarantees . 153

6.7 Analyzing the Buffered PPS Router 159

6.7.1 Limitations of Centralized Approach 159

6.8 A Distributed Algorithm to Emulate an FCFS-OQ Router 162

6.8.1 Introduction of Caches to the PPS . 163

6.8.2 The Modified PPS Dispatch Algorithm 164

6.9 Emulating an FCFS-OQ Switch with a Distributed Algorithm . . 166

6.10 Implementation Issues . 167

6.11 Related Work . 169

6.11.1 Subsequent Work . 169

6.12 Conclusions . 169

List of Dependencies

• Background: The memory access time problem for routers is described in

Chapter 1. Section 1.5.2 describes the use of load balancing techniques, and

Section 1.5.3 describes the use of caching techniques; both of which are used in

this chapter.

Additional Readings

• Related Chapters: The router described in this chapter is an example of a

single-buffered router (See Section 2.2), and the general technique to analyze

this router is introduced in Section 2.3. The load balancing technique is also

used to analyze other router architectures in Chapters 2, 3, 4, and 10.

Table: List of Symbols.

c, C Cell
N Number of Ports of a Router
k Number of Center Stage Switches (“Layers”)
R Line Rate
S Speedup
T Time slot

Table: List of Abbreviations.

FCFS First Come First Serve (Same as FIFO)
OQ Output Queued

PIFO Push In First Out
PPS Parallel Packet Switch
CPA Centralized Parallel Packet Switch Algorithm
DPA Distributed Parallel Packet Switch Algorithm

DWDM Dense Wavelength Division Multiplexing
WDM Wavelength Division Multiplexing

“But Parallel Packet Switches are not very practical?”

— The Art of the Airport Security Questionnaire† 6
Analyzing Parallel Routers with Slower

Memories

6.1 Introduction

Our goal in this thesis was to build high-speed routers that give deterministic perfor-

mance guarantees as described in Section 1.4. In Chapter 1 we introduced the OQ

router. An OQ router gives theoretically ideal performance, is easy to build, and gives

deterministic performance guarantees. As we saw, it is, unfortunately, not easy to

scale the performance of an OQ router, because the access rate on the memories of an

OQ router cannot keep up with increasing line rates. This chapter is motivated by the

following question — Wouldn’t it be nice if we could put together many slower-speed

OQ routers (which individually give deterministic performance guarantees) and build

a high-speed router that can give deterministic performance guarantees?

�Example 6.1. Figure 6.1 shows an example of a high-speed router (operating at

rate R) which is built from k slower-speed routers. The arriving traffic

is load-balanced and distributed over k slower speed OQ routers that

operate at rate R/k.

†En route to Infocom 2000, at the Ben Gurion Airport in Tel Aviv, Israel.

138

6.1 Introduction 139

(R/k)

(R/k)

Slower Speed

1

2

k

3

k-1

(R/k)

(R/k)

R

A high-speed router built from k slower speed routers

Load
Balance

OQ Routers
...

R

Figure 6.1: Using system-wide massive parallelism to build high-speed routers.

6.1.1 Why Do We Need a New Technique to Build High-

Speed Routers that Give Deterministic Performance

Guarantees?

In the previous chapters, we analyzed various router architectures and described a

number of load balancing techniques to alleviate the memory access time problem.

The routers that we described were single chassis monolithic routers. They can support

very high line rates, and provide deterministic performance guarantees. This begs the

question — why do we need a new technique to build another high-speed router that

can give deterministic guarantees?

6.1 Introduction 140

There are three key reasons why we may want to build high-speed routers as

described in Figure 6.1:

1. Rapidly increasing line rates mandate massive parallelism: We cannot

predict the speeds at which line rates will increase. For example, the advent

of optical technology such as dense wavelength division multiplexing (DWDM)

will provide the capability to rapidly increase line rates. This is because it

allows long-haul fiber-optic links to carry very high capacity by enabling a

single fiber to contain multiple, separate high-speed channels. Today, channels

operate at OC48c (2.5 Gb/s), OC192c (10 Gb/s), and in some systems, OC768c

(40 Gb/s). As channel speeds increase beyond OC192 to OC768, and even

OC3072 (160 Gb/s), and the number of channels increases, the access rate of

the prevailing memory technology may become orders of magnitude slower than

the arriving line rate.

It is not our purpose to argue that line rates will continue to increase – on the

contrary, it could be argued that optical DWDM technology will lead to a larger

number of logical channels, each operating no faster than, say, 10 Gb/s. We

simply make the following observation: if line rates do increase rapidly, then the

memories1 may be so slow in comparison to the line rate that we will be forced

to consider architectures where the memory access rate is much slower than the

line rate.

2. Cost: Instead of building a monolithic router, it may in fact be cheaper to take

the most widely used commodity routers, connect many of them in parallel,

and build a higher-speed router. At any given time, given the technological

constraints and capabilities, there is always a router capacity beyond which it

becomes prohibitively expensive (but still technologically feasible) to build a

single-chassis monolithic router; such a router is expected to be cheaper when

built in the manner suggested above.

1It would be desirable also to process packets in the optical domain, without conversion to
electronic form; however, it is not economically feasible today to store packets optically, so for some
time to come routers will continue to use electronic memories, which are much slower than current
high-speed line rates.

6.1 Introduction 141

3. Time to Market: The development-to-deployment cycle for a typical high-

speed router is long: First, new hardware technologies (e.g., fabrication technol-

ogy, interconnects, memories, boards etc.) that a router must use are evaluated

and tested. Then the packet processing and other control and data-path ASICs

are designed, and they undergo verification. These steps typically take anywhere

between 9 and 18 months. Then the ASICs are sent for fabrication, testing,

and packaging, and when they are ready (usually another 4-6 months), they are

assembled on system boards or line cards. These boards and line cards are then

tested individually. The router is then assembled by putting multiple such line

cards into a system chassis. Then the router is tested in a “network testbed”

among other routers. Finally, after undergoing customer field trials, it is ready

to be deployed. For most high-speed routers, the above steps typically take ∼3-4

years.

In contrast, if we can take a number of slower-speed routers (which are already

tested and in deployment), and connect them together in parallel, we may be

able to drastically shorten the time to build and deploy such high-speed routers.

Of course, in order to do this, the architecture used to connect the slower-speed

routers, and the load balancing algorithms used to distribute packets among

them, must be made fairly simple to implement.

6.1.2 Why Can’t We Use Existing Load Balancing Tech-

niques to Build a Monolithic High-speed Router?

We are in search of router architectures, where the memory runs significantly slower

than the line rate. In the previous chapters, we introduced a number of monolithic

router architectures and described techniques that can achieve this goal. These

techniques load-balanced packets across a number of parallel memories, such that

each memory was slower than the line rate. But there are implementation limits to

the number of parallel memories that can be interfaced to and load-balanced in a

monolithic router.

6.1 Introduction 142

�Example 6.2. For example, hardware chips today are already limited by interconnect

pins. Using current 65nm ASIC fabrication technology, any chip with

over 1500 interconnect pins becomes prohibitively expensive. If each

memory has approximately 50 pins (fairly typical of most commodity

memory today), it is hard for a single ASIC to interface to (and load-

balance over) >30 memories.

However, it is possible that line rates will increase so rapidly that we may need to

load-balance over hundreds of memories. And so, even the load balancing techniques

(that use parallel memories) that we described to alleviate the memory access time

problem on the PSM (Section 2.4), DSM (Section 3.2 & 3.3), and PDSM (Section 3.7)

router architectures may become impossible to scale to hundreds of memories, and

will not give us the massive parallelism we require.

NObservation 6.1. What about other router architectures? We considered CIOQ

routers in Chapters 4 and 5. We showed that these routers give

performance guarantees, but their memories run at 3X the line rate.

Obviously, this doesn’t meet our goal that the memories in our router

must run at a rate much slower than the line rate R. Even an IQ switch

(for which it is known that it cannot give deterministic performance

guarantees) requires memories that operate at rate 2R, which of course

does not meet our requirements.

6.1.3 Can We Leverage the Existing Load-Balancing Tech-

niques?

In Figure 6.1, the slower-speed routers (over which we load-balance) were OQ routers.

However, we don’t really need OQ routers, since when we load-balance across a large

number of routers, we treat these routers as“black-boxes”. This motivates the following

idea —

6.2 Background 143

DIdea. “Since we are not concerned with the internal architectures of the

routers that we load-balance over, it will suffice that packets leave these routers

at predictable times, ideally at the same time as an OQ router”.

This means that routers that emulate an OQ router are sufficient for our purpose!

This means that we can use the more practical router architectures and leverage the

load balancing techniques described in Chapters 2-5 such that they can emulate OQ

routers.

6.1.4 Goal

So in order to meet our goals, we will explore an architecture that — (1) is practical to

build, (2) allows for massive system-level parallelism that enables us to use memories

that can run significantly slower than the line rate, and (3) can leverage the techniques

we have described in the previous chapters to emulate OQ routers.

6.2 Background

The parallel packet router or switch (PPS)2 is comprised of multiple, identical lower-

speed packet switches operating independently and in parallel. An incoming stream

of packets is spread, packet-by-packet, by a demultiplexor across the slower packet

switches, then recombined by a multiplexor at the output. The PPS architecture

resembles that of a Clos network [110] as shown in Figure 6.2. The demultiplexor, the

center stage packet switches, and the multiplexor can be compared to the three stages

of an unbuffered Clos network.

If the center stage switches are OQ, then each packet that passes through the

system encounters only a single stage of buffering, making the PPS a single-buffered

switch, and it fits our model of SB switches introduced in Chapter 2. As seen by an

2We used the terminology “switch” instead of router when we first analyzed this architecture
in [35]. So we will continue to use this terminology and refer to this router as the parallel packet
switch (PPS).

6.2 Background 144

R

R

R

R

R
(R/k) (R/k)

MultiplexorDemultiplexor

1

R

Demultiplexor

2

R

Demultiplexor

3

Demultiplexor
R

1

2

3

Multiplexor

Multiplexor

Multiplexor

4 4

1

2

3

NxN OQ Switch

NxN OQ Switch

NxN OQ Switch

(R/k) (R/k)

Figure 6.2: The architecture of a Parallel Packet Switch based on output queued switches.
The architecture resembles a Clos network. The demultiplexors, slower-speed packet switches,
and multiplexors can be compared to be the three stages of a Clos network.

arriving packet, all of the buffering is contained in the slower packet switches, and so

our first goal is met because no buffers3 in a PPS need run as fast as the external line

rate. The demultiplexor selects an internal lower-speed packet switch (or “layer”) and

sends the arriving packet to that layer, where it is queued until its departure time.

When the packet’s departure time arrives, it is sent to the multiplexor that places

the packet on the outgoing line. However, the demultiplexor and multiplexor must

make intelligent decisions; and as we shall see, the precise nature of the demultiplexing

3There will, of course, be small staging buffers in the demultiplexors and multiplexors for rate
conversion between an external link operating at rate R and internal links operating at rate R=k.
Because these buffers are small (approximately k packets) we will ignore them in the rest of this
chapter.

6.2 Background 145

(“spreading”) and multiplexing functions are key to the operation of the PPS.

As speed requirements rise, we suspect the PPS architecture is finding wider use in

industry. Recent examples that we are aware of include Cisco’s highest-speed Internet

core router, the CRS-1 [5], and Nevis Networks’ enterprise router [111]. We also

suspect that some of Juniper’s M series core routers (M160 and M320) use a similar

architecture [112].

We are interested in the question: Can we select the demultiplexing and multiplex-

ing functions so that a PPS can emulate4 (Definition 1.2) the behavior of an output

queued switch and provide deterministic performance guarantees?

6.2.1 Organization

The rest of the chapter is organized as follows. In Section 6.3 we describe the PPS

architecture. In Section 6.4 we introduce some terminology, definitions, and define

constraint sets that will help us apply the pigeonhole principle. In Section 6.5, we find

the conditions under which the PPS can emulate an FCFS-OQ switch. In Section 6.6,

we show how a PPS can emulate an OQ switch with different qualities of service.

However, our initial algorithms require a large communication complexity, which makes

them impractical. So in Section 6.7 we modify the PPS and allow for a small cache

(that must run at the line rate) in the multiplexor and demultiplexor. In Section 6.8

we describe a different distributed algorithm that eliminates the communication

complexity and appears to be more practical. In Section 6.9, we show how the

modified PPS can emulate an FCFS-OQ switch within a delay bound without speedup.

We briefly describe some implementation issues in Section 6.10 and cover related work

in 6.11.

4Note that in a PPS, cells are sent over slower-speed internal links of rate SR=k, and so incur a
larger (but constant) propagation delay relative to an OQ switch. So cells in a PPS can never leave
at exactly the same time as an OQ switch. Thus a PPS cannot mimic (See Section 1.5.4) an OQ
router; but as we will see, it can emulate an OQ router.

6.3 The Parallel Packet Switch Architecture 146

6.3 The Parallel Packet Switch Architecture

We now focus on the specific type of PPS illustrated in Figure 6.2, in which the center

stage switches are OQ. The figure shows a 4 × 4 PPS, with each port operating at

rate R. Each port is connected to all three output queued switches (we will refer

to the center stage switches as “layers”). When a cell arrives at an input port, the

demultiplexor selects a layer to send the cell to, and the demultiplexor makes its choice

of layer using a policy that we will describe later. Since the cells from each external

input of line rate R are spread (“demultiplexed”) over k links, each input link must

run at a speed of at least R/k.

Each layer of the PPS may consist of a single OQ or CIOQ router with memories

operating slower than the rate of the external line. Each of the layers receives cells

from the N input ports, then switches each cell to its output port. During times of

congestion, cells are stored in the output queues of the center stage, waiting for the

line to the multiplexor to become available. When the line is available, the multiplexor

selects a cell among the corresponding k output queues in each layer. Since each

multiplexor receives cells from output queues, the queues must operate at a speed of

at least R/k to keep the external line busy.

Externally, the switch appears as an N×N switch with each port operating at rate

R. Note that neither the muliplexor or the demultiplexor contains any memory, and

that they are the only components running at rate R. We can compare the memory

bandwidth requirements of an N × N parallel packet switch with those of an OQ

switch with the same aggregate bandwidth. In an OQ switch (refer to Table 2.1), the

memory bandwidth on each port must be at least (N + 1)R, and in a PPS at least

(N + 1)R/k. But we can further reduce the memory bandwidth by leveraging any of

the load balancing and scheduling algorithms that we introduced for the PSM, DSM,

PDSM, CIOQ, or buffered CIOQ router architectures described in previous chapters.

�Example 6.3. As an example, we can use a CIOQ router in the center stage. From

Chapter 4, we know that an OQ switch can be emulated precisely by a

CIOQ switch operating at a speedup of two. So we can replace each of

6.3 The Parallel Packet Switch Architecture 147

the OQ switches in the PPS with a CIOQ switch, without any change

in operation. The memory bandwidth in the PPS is reduced to 3R/k

(one read operation and two write operations per cell time), which is

independent of N and may be reduced arbitrarily by increasing k, the

number of layers.

Choosing the value of k. Our goal is to design switches in which all the memories

run slower than the line rate. If the center stage switches are CIOQ routers, this

means that 3R/k < R⇒ k > 3. Similarly, for center stage OQ switches, we require

that (N + 1)R/k < R ⇒ k > N + 1 . This gives a lower bound on k. Further, one

can increase the value of k beyond the lower bound, allowing us to use an arbitrarily

slow memory device. The following example makes this clear.

�Example 6.4. Consider a router with N = 1024 ports, R = 40 Gb/s, and cells 64

bytes long. Then a PPS with k = 100 center stage CIOQ routers can

be built such that the fastest memories run at a speed no greater than

3R/k = 1.2 Gb/s. For a 64-byte cell this corresponds to an access time

of 426 ns, which is well within the random access time of commercial

DRAMs.

6.3.1 The Need for Speedup

It is tempting to assume that because each layer is output queued, it is possible for a

PPS to emulate an OQ switch. This is actually not the case unless we use speedup.

As can be seen from the following counter-example, without speedup a PPS is not

work-conserving, and hence cannot emulate an OQ switch.

Theorem 6.1. A PPS without speedup is not work-conserving.

Proof. (By counter-example). See Appendix F.1. r

ℵDe�nition 6.1. Concentration: Concentration occurs when a disproportionately

large number of cells destined to the same output are concentrated on

a small number of the internal layers.

6.4 Applying the Pigeonhole Principle to the PPS 148

Concentration is undesirable, as it leads to unnecessary idling because of the

limited line rate between each layer and the multiplexor. Unfortunately, the counter-

example in Appendix F.1 shows that concentration is unavoidable in our current PPS

architecture. One way to alleviate the effect of concentration is to use faster internal

links. In general, we will use internal links that operate at a rate S(R/k), where S is

the speedup of the internal link. Note that the N memories in any OQ switch in the

center stage run at an aggregate rate of N(N + 1)R′, where R′ = SR/k. So the total

memory bandwidth in the PPS when it is sped up is k×N(N + 1)R′ = SN(N + 1)R.

NObservation 6.2. Concentration can be eliminated by running the internal links at a

rate R instead of R/2 (i.e., a speedup of two). This solves the problem,

because the external output port can now read the cells back-to-back

from layer two. But this appears to defeat the purpose of operating

the internal layers slower than the external line rate! Fortunately, we

will see in the next section that the speedup required to eliminate the

problem of concentration is independent of the arriving traffic, as well

as R and N , and is almost independent of k. In particular, we find

that with a speedup of 2, the PPS is work-conserving and can emulate

an FCFS-OQ switch.

6.4 Applying the Pigeonhole Principle to the PPS

We will now apply the pigeonhole principle introduced in Chapter 2 to analyze the PPS.

First, however, we need to carefully distinguish the operations in time of the external

demultiplexor and multiplexor (which run faster), and the internal OQ switches (which

run slower). So we will define two separate units of time to distinguish between them:

ℵDe�nition 6.2. Time slot: This refers to the time taken to transmit or receive a

fixed-length cell at a link rate of R.

ℵDe�nition 6.3. Internal time slot: This is the time taken to transmit or receive a

fixed-length cell at a link rate of R/k, where k is the number of center

stage switches in the PPS.

6.4 Applying the Pigeonhole Principle to the PPS 149

6.4.1 De�ning Constraint Sets

We are now ready to define constraint sets for the PPS as described in Algorithm 2.1.

The operation of a PPS is limited by two constraints. We call these the Input Link

Constraint and the Output Link Constraint, as defined below.

ℵDe�nition 6.4. Input Link Constraint – An external input port is constrained to

send a cell to a specific layer at most once every dk/Se time slots. This

is because the internal input links operate S/k times slower than the

external input links. We call this constraint the input link constraint,

or ILC.

ℵDe�nition 6.5. Allowable Input Link Set – The ILC gives rise to the allowable

input link set, AIL(i, n), which is the set of layers to which external

input port i can start sending a cell in time slot n. This is the set of

layers to which external input i has not started sending any cells within

the last dk/Se − 1 time slots. Note that |AIL(i, n)| 6 k,∀(i, n).

AIL(i, n) evolves over time, with at most one new layer being added to, and at most

one layer being deleted from the set in each time slot. If external input i starts sending

a cell to layer l at time slot n, then layer l is removed from AIL(i, n). The layer is

added back to the set when it becomes free at time n+ dk/Se.

ℵDe�nition 6.6. Output Link Constraint – In a similar manner to the ILC, a

layer is constrained to send a cell to an external output port at most

once every dk/Se time slots. This is because the internal output links

operate S/k times slower than the external output links. Hence, in

every time slot an external output port may not be able to receive cells

from certain layers. This constraint is called the output link constraint,

or OLC.

ℵDe�nition 6.7. Departure Time – When a cell arrives, the demultiplexor selects a

departure time for the cell. A cell arriving to input i at time slot n and

6.4 Applying the Pigeonhole Principle to the PPS 150

destined to output j is assigned the departure time DT (n, i, j). The

departure time for a FIFO queuing policy could, for example, be the

first time that output j is free (in the shadow OQ switch) and able to

send the cell. As we shall see later in Section 6.6, other definitions are

possible in the case of WFQ policies.

ℵDe�nition 6.8. Available Output Link Set – The OLC gives rise to the available

output link set AOL(j,DT (n, i, j)), which is the set of layers that can

send a cell to external output j at time slot DT (n, i, j) in the future.

AOL(j,DT (n, i, j)) is the set of layers that have not started sending

any cells to external output j in the last dk/Se − 1 time slots before

time slot DT (n, i, j). Note that, since there are a total of k layers,

|AOL(j,DT (n, i, j))| 6 k,∀(j,DT (n, i, j)).

Like AIL(i, n), AOL(j,DT (n, i, j)) can increase or decrease by at most one layer per

departure time slot; i.e., if a layer l starts to send a cell to output j at time slot

DT (n, i, j), the layer is deleted from AOL(j,DT (n, i, j)) and then will be added to

the set again when the layer becomes free at time DT (n, i, j) + dk/Se. However,

whenever a layer is deleted from the set, the index DT (n, i, j) is incremented. Because

in a single time slot up to N cells may arrive at the PPS for the same external output,

the value of DT (n, i, j) may change up to N times per time slot. This is because

AOL(j,DT (n, i, j)) represents the layers available for use at some time DT (n, i, j) in

the future. As each arriving cell is sent to a layer, a link to its external output is reserved

for some time in the future. So, effectively, AOL(j,DT (n, i, j)) indicates the schedule

of future departures for output j, and at any instant, max(DT (n, i, j) + 1, ∀(n, i))
indicates the first time in the future that output j will be free.

6.4.2 Lower Bounds on the Size of the Constraint Sets

The following two lemmas will be used shortly to demonstrate the conditions under

which a PPS can emulate an FCFS-OQ switch.

6.5 Emulating an FCFS-OQ Router 151

Lemma 6.1. The size of the available input link set, for all i, n > 0; where is S the

speedup on the internal input links is given by,

|AIL(i, n)| > k − dk/Se+ 1. (6.1)

Proof. Consider external input port i. The only layers that i cannot send a cell to are

those which were used in the last dk/Se − 1 time slots. (The layer which was used

dk/Se time slots ago is now free to be used again). |AIL(i, n)| is minimized when a

cell arrives to the external input port in each of the previous dk/Se − 1 time slots,

hence |AIL(i, n)| > k − (dk/Se − 1) = k − dk/Se+ 1). r

Lemma 6.2. The size of the available output link set, for all i, j, n > 0; where is S

the speedup on the internal input links is given by,

|AOL(j,DT (n, i, j))| > k − (dk/Se+ 1). (6.2)

Proof. The proof is similar to Lemma 6.1. We consider an external output port that

reads cells from the internal switches instead of an external input port that writes

cells to the internal switches. r

6.5 Emulating an FCFS-OQ Router

In this section we shall explore how a PPS can emulate an FCFS-OQ switch. Note

that in this section, in lieu of the FCFS policy, the departure time of a cell arriving at

input i and destined to output j at time n, DT (n, i, j), is simply the first time that

output j is free (in the shadow FCFS-OQ switch) and able to send a cell. We will now

introduce an algorithm, Centralized Parallel Packet Switch Algorithm (CPA). CPA is

directly motivated by the pigeonhole principle, and attempts to route cells to center

stage switches as described below.

6.5 Emulating an FCFS-OQ Router 152

Algorithm 6.1: CPA for FCFS-OQ emulation.

input : Arrival and departure times of each cell.1

output : A central stage switch for each cell to emulate an FCFS policy.2

for each cell C do3

Demultiplexor:4

When a cell arrives at time n at input i destined to output j, the cell is5

sent to any center stage switch, l, that belongs to the intersection of

AIL(i; n) and AOL(j; DT (n; i; j)).

Multiplexor:6

Read cell C from center stage switch l at departure time DT (n; i; j).7

�Example 6.5. A detailed example of the CPA algorithm appears in Appendix A

of [113].

6.5.1 Conditions for a PPS to Emulate an FCFS-OQ Router

We will now derive the conditions under which CPA can always find a layer l to

route arriving cells to, and then analyze the conditions under which it can emulate an

FCFS-OQ router.

Lemma 6.3. (Sufficiency) A speedup of 2 is sufficient for a PPS to meet both the

input and output link constraints for every cell.

Proof. For the ILC and OLC to be met, it suffices to show that there will always exist

a layer l such that l ∈ {AIL(i, n) ∩ AOL(j,DT (n, i, j))}, i.e., that,

AIL(i, n) ∩ AOL(j,DT (n, i, j)) 6= ∅. (6.3)

We know that Equation 6.3 is satisfied if,

|AIL(i, n)|+ |AOL(j,DT (n, i, j))| > k. (6.4)

6.6 Providing QoS Guarantees 153

From Lemma 6.1 and Lemma 6.2 we know that, |AIL(i, n)| +

|AOL(j,DT (n, i, j))| > k if S > 2 r

Theorem 6.2. (Sufficiency) A PPS can emulate an FCFS-OQ switch with a speedup

of S > 2.5

Proof. Consider a PPS with a speedup of S > 2. From Lemma 6.3 we know that

for each arriving cell, the demultiplexor can select a layer that meets both the ILC

and the OLC in accordance with the CPA algorithm. A cell destined to output j

and arriving at time slot n is scheduled to depart at time slot DT (n, i, j), which is

the index of AOL(j,DT (n, i, j)). By definition, DT (n, i, j) is the first time in the

future that output j is idle in the shadow FCFS-OQ switch. Since the center stage

switches are OQ switches, the cell is queued in the output queues of the center stage

switches and encounters zero relative delay. After subtracting for the propagation

delays of sending the cell over lower-speed links of rate 2R/k, DT (n, i, j) is equal to

the time that the cell would depart in an FCFS-OQ switch. Hence a PPS can emulate

an FCFS-OQ switch. r

NObservation 6.3. It is interesting to compare the above proof with the requirements

for a 3-stage symmetrical Clos network to be strictly non-blocking [114,

115]. On the face of it, these two properties are quite different. A PPS

is a buffered packet switch, whereas a Clos network is an unbuffered

fabric. But because each theorem relies on links to and from the central

stage being free at specific times, the method of proof is similar, and

relies on the pigeonhole principle.

6.6 Providing QoS Guarantees

We now extend our results to find the speedup requirement for a PPS to provide QoS

guarantees. To do this, we define constraint sets, and find the speedup required for a

5A tighter bound, S > k=dk=2e, can easily be derived, which is of theoretical interest for small k.

6.6 Providing QoS Guarantees 154

�Box 6.1: A Work-conserving PPS Router�

We can ask an identical question to the one posed in the previous chapters: What are
the conditions under which a buffered CIOQ router is work-conserving with and without
mandating FCFS-OQ emulation? Because we need to keep the outputs of a work-conserving
router busy, we start by ensuring that any cell that arrives at time n, leaves at the first
future time the shadow OQ switch is free, at time slot n. We denote this time as DT (n; i; j).

Lemma 6.4. (Sufficiency) If a PPS guarantees that each arriving cell is allocated to a layer
l, such that l ∈ AIL(i; n) and l ∈ AOL(j; DT (n; i; j)), then the switch is work-conserving.

Proof. Consider a cell C that arrives to external input port i at time slot n and destined
for output port j. The demultiplexor chooses a layer l that meets both the ILC and the
OLC; i.e., l ∈ {AIL(i; n) ∩ AOL(j; DT (n; i; j))}. Since, the ILC is met, cell C can be
immediately written to layer l in the PPS. Cell C is immediately queued in the output
queues of the center stage switch l, where it awaits its turn to depart. Since the departure
time of the cell DT (n; i; j) has already been picked when it arrived at time n, C is removed
from its queue at time DT (n; i; j) and sent to external output port j. Cell C can depart at
DT (n; i; j) because the link from multiplexor j to layer l satisfies, l ∈ AOL(j; DT (n; i; j)).
Thus, if for cell C the chosen layer l meets both the ILC and OLC, then the cell can reach
switch l, and can leave the PPS at time DT (n; i; j).

By definition, each cell can be made to leave the PPS at the first time that output j
would be idle in the shadow FCFS-OQ switch. The output is continuously kept busy if
there are cells destined for it, similar to the output of the shadow OQ switch. And so, the
PPS is work-conserving. r

As a consequence of Lemma 6.4 and Lemma 6.3, we have the following theorem:

Theorem 6.3. (Digression) A PPS can be work-conserving if S > 2.

To achieve work conservation in Theorem 6.3, we required that cell C leave at time
DT (n; i; j). While this is enough for work conservation, this requirement actually results
in FCFS-OQ emulation! If we did not want FCFS-OQ emulation, the PPS is still work-
conserving as long as any cell leaves the multiplexor for output j at time DT (n; i; j).

It is possible to permute the order in which cells are read by the multiplexor. Each
permutation by the multiplexor could give greater choice to the demultiplexor to choose
a center stage OQ switch (depending on the last few cells that the multiplexor reads in
the permutation) when it routes newly arriving cells. So there may be different algorithms
which can permute the packet order, and the PPS may be work-conserving with a lower
speedup than what is derived in Theorem 6.3.a

aA direct analogy to this result is the work on re-arrangeably non-blocking Clos net-
works [116].

6.6 Providing QoS Guarantees 155

PPS to implement any PIFO scheduling discipline. As we will see, we will need to

modify our CPA algorithm.

In Section 1.4.2, we saw that a PIFO queuing policy can insert a cell anywhere

in its queue, but it cannot change the relative ordering of cells once they are in the

queue. Consider a cell C that arrives to external input port i at time slot n and

destined to output port j. The demultiplexor determines the time that each arriving

cell must depart, DT (n, i, j), to meet its delay guarantee. The decision made by the

demultiplexor at input i amounts to selecting a layer so that the cell may depart on

time. Notice that this is very similar to the previous section, in which cells departed in

FCFS order, requiring only that a cell depart the first time that its output is free after

the cell arrives. The difference here is that DT (n, i, j) may be selected to be ahead

of cells already scheduled to depart from output j. So, the demultiplexor’s choice of

sending an arriving cell C to layer l must now meet three constraints:

1. The link connecting the demultiplexor at input i to layer l must be free at time

slot n. Hence, l ∈ {AIL(i, n)}.

2. The link connecting layer l to output j must be free at DT (n, i, j). Hence,

l ∈ {AOL(j,DT (n, i, j))}.

3. All the other cells destined to output j after C must also find a link available. In

other words, if the demultiplexor picks layer l for cell C, it needs to ensure that

no other cell requires the link from l to output j within the next (dk/Se − 1)

time slots. The cells that are queued in the PPS for output port j (and have a

departure time between (DT (n, i, j), DT (n, i, j) + dk/Se − 1), may have already

been sent to specific layers (since they could have arrived earlier than time t). It

is therefore necessary that the layer l be distinct from the layers that the next

(dk/Se − 1) cells use to reach the same output. We can write this constraint as

l ∈ {AOL < (j,DT (n, i, j) + dk/Se − 1)}.

The following natural questions arise:

6.6 Providing QoS Guarantees 156

1. What if some of the cells that depart after cell C have not yet arrived? This

is possible, since cell C may have been pushed in toward the tail of the PIFO

queue. In such a case, the cell C has more choice in choosing layers, and the

constraint set AOL(j,DT (n, i, j) + dk/Se − 1) will allow more layers.6 Note

that cell C need not bother about the cells that have not as yet arrived at the

PPS, because the future arrivals, which can potentially conflict with cell C, will

take into account the layer l to which cell C was sent. The CPA algorithm will

send these future arrivals to a layer distinct from l.

2. Are these constraints sufficient? The definitions of the OLC and AOL mandate

that when a multiplexor reads the cells in a given order from the layers, the

layers should always be available. When a cell C is inserted in a PIFO queue,

the only effect it has is that it can conflict with the dk/Se − 1 cells that are

scheduled to leave before and after it in the PIFO queue. For these 2(dk/Se− 1)

cells, the arriving cell C can only increase the time interval between when these

cells depart. Hence these 2(dk/Se − 1) cells will not conflict with each other,

even after insertion of cell C. Also, if conditions 1 and 2 are satisfied, then these

2(dk/Se − 1) cells will also not conflict with cell C. Note that cell C does not

affect the order of departure of any other cells in the PIFO queue. Hence, if the

PIFO queue satisfied the OLC constraint before the insertion of cell C, then it

will continue to satisfy the OLC constraint after it is inserted.

We are now ready to summarize our modified CPA algorithm to emulate a PIFO-OQ

router as shown in Algorithm 6.2.

Theorem 6.4. (Sufficiency) A PPS can emulate any OQ switch with a PIFO queuing

discipline, with a speedup of S > 3.7

6FCFS is a special limiting case of PIFO. Newly arriving cells are pushed-in at the tail of
an output queue, and there are no cells scheduled to depart after a newly arriving cell. Hence,
AOL(j; DT (n; i; j) + dk=Se − 1) defined at time t, will include all the k layers, and so the constraint
disappears, leaving us with just two of the three conditions above, as for FCFS-OQ in Section 6.5.

7Again, a tighter bound, S > k=dk=3e, can easily be derived, which is of theoretical interest for
small k.

6.6 Providing QoS Guarantees 157

Algorithm 6.2: Modified CPA for PIFO emulation on a PPS.

input : Arrival and departure times of each cell.1

output: A central stage switch for each cell to emulate a PIFO policy.2

for each cell C do3

Demultiplexor:4

When a cell arrives at time n at input i destined to output j, the cell is5

sent to any center stage switch that belongs to the intersection of
AIL(i, n), AOL(j,DT (n, i, j)), and AOL(j,DT (n, i, j) + dk/Se − 1)

. Multiplexor:6

Read cell C from center stage switch l whenever it reaches head of line.7

Proof. In order for our modified CPA algorithm to support a PIFO queuing discipline,

we require layer l to satisfy

l ∈ {AIL(i, n) ∩ AOL(j,DT (n, i, j)) ∩ AOL(j,DT (n, i, j) + dk/Se − 1)}.

For a layer l to exist we require

AIL(i, n) ∩ AOL(j,DT (n, i, j)) ∩ AOL(j,DT (n, i, j) + dk/Se − 1) 6= ∅,

which is satisfied when

|AIL(i, n)|+ |AOL(j,DT (n, i, j))|+ |AOL(j,DT (n, i, j) + dk/Se − 1)| > 2k.

From Lemma 6.1 and 6.2 we know that

|AIL(i, n)|+ |AOL(j,DT (n, i, j))|+ |AOL(j,DT (n, i, j) + dk/Se − 1)| > 2k,

if S > 3. r

6.6 Providing QoS Guarantees 158

Q1,1

Q3,1

Q4,1

Q5,1

Q6,1

Q7,1

Q8,1

Q9,1

Q10,1

Q2,1

2

1611

412

510

9

14

7

38

(a) Step 1

13

I

O

2

1611

412

510

9

14

7

38

(b) Step 2

13

2

1611

412

510

9

14

7

38

(c) Step 3

13

2

1612

413

511

10

15

39

(d) Step 4

14

7

8

7

7

Q1,1

Q3,1

Q4,1

Q5,1

Q6,1

Q7,1

Q8,1

Q9,1

Q10,1

Q2,1

Q1,1

Q3,1

Q4,1

Q5,1

Q6,1

Q7,1

Q8,1

Q9,1

Q10,1

Q2,1

Q1,1

Q3,1

Q4,1

Q5,1

Q6,1

Q7,1

Q8,1

Q9,1

Q10,1

Q2,1

Figure 6.3: Insertion of cells in a PIFO order in a PPS with ten layers. Qk,1 refers to
output queue number one in the internal switch k. The shaded layers describe the sets
specified for each figure. (a) The AIL constrains the use of layers {1; 2; 4; 5; 7; 8; 10}. (b)
The cell is to be inserted before cell number 7. The two AOLs constrain the use of layers
{1; 6; 7; 10}. (c) The intersection constrains the use of layers {1; 7; 10}. (d) Layer 10 is
chosen. The cell number 7 is inserted.

6.7 Analyzing the Buffered PPS Router 159

�Example 6.6. Figure 6.3 shows an example of a PPS with k = 10 layers and

S = 3. A new cell C arrives at time t, destined to output 1 and has

to be inserted in the priority queue for output 1 which is maintained

in a PIFO manner. Assume that the AIL at time t constrains the

use of layers {1, 2, 4, 5, 7, 8, 10}. These layers are shown shaded in

Figure 6.3(a). It is decided that cell C must be inserted between

C6 and C7. That means that cell C cannot use any layers to which

the previous dk/Se − 1 = 3 cells before C7 (i.e., C4, C5, and C6)

were sent. Similarly, cell C cannot use any layers to which the 3

cells after C7 including C7 (i.e., C7, C8, C9) were sent. The above

two constraints are derived from the AOL sets for output 1. They

require that only layers in {1, 5, 6, 7, 8, 9, 10} be used, and only layers

in {1, 2, 3, 4, 6, 7, 10} be used respectively. Figure 6.3(b) shows the

intersection of the two AOL sets for this insertion. Cell C is constrained

by the AOL to use layers {1, 6, 7, 10}, which satisfies both the above

AOL sets. Finally, a layer is chosen such that the AIL constraint is

also satisfied. Figure 6.3(c) shows the candidate layers for insertion

i.e., layers 1, 7, and 10. Cell C is then inserted in layer 10 as shown in

Figure 6.3(d).

6.7 Analyzing the Bu�ered PPS Router

Unfortunately, the load balancing algorithms that we have described up until now are

complex to implement. In Chapter 4 we faced a similar problem with the CIOQ router.

We showed in Chapter 6 that we could simplify these algorithms with the introduction

of a cache. In the rest of the chapter we answer the following question:Can a cache

(preferably small in size!) simplify the centralized load balancing algorithms for a

PPS?

6.7.1 Limitations of Centralized Approach

The centralized approach described above suffers from two main problems:

6.7 Analyzing the Buffered PPS Router 160

�Box 6.2: A Discussion on Work Conservation�

We introduced different router architectures in the previous chapters, i.e., the PSM,
DSM, PDSM, and the time reservation-based CIOQ router. We can ask a general question:
What are the conditions under which these routers achieve work-conservation (without
mandating FCFS-OQ emulation)? Before we answer this, note that these routers share
a common trait — i.e., they were all analyzed using the basic constraint set technique,
because they all attempt to assign a packet to memory immediately on arrival.

NObservation 6.4. The basic constraint set technique and the extended constraint set
technique fundamentally differ in the way they schedule packets. In the
latter case, packets are held back and transferred to the output memory
based on their priority. In the former case, the scheduler attempts to
assign packets to a memory immediately on arrival.a As we will see, this
has repercussions to work-conservation as described below.

A scheduler which uses the extended constraint set technique can pick any cell
(which is still awaiting service at the input) to transfer to an output in future, since in a
work-conserving router, all cells destined to an output have equal priority. In Chapters 4
and 5 we showed that for routers that do not assign a packet to memory immediately (and
which are analyzed using the extended pigeon hole principle), requiring work-conservation
without FCFS-OQ emulation results in a simplified switch scheduler. Since this was a
useful goal, we modified the extended constraint set technique (Algorithm 4.2) to create
a simplified technique (Algorithm 4.3) to analyze work-conservation.

Unfortunately, for a scheduler that uses the basic constraint set technique, all
previously arrived packets have already been allocated to memories. The only way that
the scheduler can take advantage of the relaxed requirements of work-conservation is
to permute the existing order of these cells which are already buffered (as described in
Box 6.1). This has two problems — (1) it is impractical to compute permutations for
existing packets (there can be a very large number of possible permutations) destined
to an output, and (2) computing such a permutation only makes the scheduler more
complex, not simpler!

So work-conservation is only of theoretical interest for routers that attempt to assign
packets to memories immediately on arrival, i.e., the routers that are analyzed using the
basic constraint set technique. This, of course, includes the PPS, as well as the PSM,
DSM, PDSM, and the time reservation-based CIOQ router, which were described in
previous chapters. And so, in contrast to the extended constraint set technique, we do
not modify the basic constraint set technique (Algorithm 2.1) to analyze work-conserving
SB routers.

aIn the case of a time reservation-based CIOQ router, the assignment is done immediately,
though the packet is actually transferred at a later time.

6.7 Analyzing the Buffered PPS Router 161

1. Communication complexity: The centralized approach requires each input

to contact a centralized scheduler at every arbitration cycle. With N ports, N

requests must be communicated to and processed by the arbiter during each

cycle. This requires a high-speed control path running at the line rate between

every input and the central scheduler. Furthermore, the centralized approach

requires that the departure order (i.e., the order in which packets are sent from

each layer to a multiplexor) be conveyed to each multiplexor and stored.

2. Speedup: The centralized approach requires a speedup of two (for an FCFS

PPS) in the center stage switches. The PPS therefore over-provisions the required

capacity by a factor of two, and the links are on average only 50% utilized. This

gets worse for a PPS that supports qualities of service, where a speedup of three

implies that the links, on average, are only 33% utilized.

NObservation 6.5. In addition to the difficulty of implementation, the centralized

approach does not distribute traffic equally among the center stage

switches, making it possible for buffers in a center stage switch to

overflow even though buffers in other switches are not full. This leads

to inefficient memory usage.8

Another problem with the centralized approach is that it requires each

multiplexor to explicitly read, or fetch, each packet from the correct

layer in the correct sequence. This feedback mechanism makes it

impossible to construct each layer from a pre-existing unaltered switch

or router.

Thus, a centralized approach leads to large communication complexity, high speedup

requirement, inefficient utilization of buffer memory, and special-purpose hardware

for each layer. In this section, we overcome these problems via the introduction of

small memories (presumably on-chip) in the multiplexors and demultiplexors, and a

distributed algorithm, that:

8It is possible to create a traffic pattern that does not utilize up to 50% of the buffer memory for
a given output port.

6.8 A Distributed Algorithm to Emulate an FCFS-OQ Router 162

1. Enables the demultiplexors and multiplexors to operate independently, eliminat-

ing the communication complexity,

2. Removes the speedup requirement for the internal layers,

3. Allows the buffers in the center stage switches to be utilized equally, and

4. Allows a feed-forward data-path in which each layer may be constructed from

pre-existing, “standard” output queued switches.

6.8 A Distributed Algorithm to Emulate an FCFS-

OQ Router

The goals outlined in the previous subsection naturally lead to the following modifica-

tions:

1. Distributed decisions. A demultiplexor decides which center stage switch to

send a cell to, based only on the knowledge of cells that have arrived at its input.

The demultiplexors do not know the AOL(.) sets, and so have no knowledge of

the distribution of cells in the center stage switches for a given output. Hence a

demultiplexor cannot choose a center stage switch such that the load is globally

distributed over the given output. However, it is possible to distribute the cells

that arrive at the demultiplexor for every output equally among all center stage

switches. Given that we also wish to spread traffic uniformly across the center

stage switches, each demultiplexor will maintain a separate round robin pointer

for each output, and dispatch cells destined for each output to center stage

switches in a round robin manner.

2. Small coordination bu�ers (\Cache") operating at the line rate. If the

demultiplexors operate independently and implement a round robin to select a

center stage, they may violate the input link constraint. The input link constraint

can be met by the addition of a coordination buffer in the demultiplexor that

can cache the cells temporarily before sending them to the center stage switches.

Similarly, it is possible for multiple independent demultiplexors to choose the

6.8 A Distributed Algorithm to Emulate an FCFS-OQ Router 163

same center stage switch for cells destined to the same output. This causes

concentration, and cells can become mis-sequenced. The order of packets can be

restored by the addition of a similar coordination buffer in each multiplexor to

re-sequence the cells (and cache earlier-arriving cells) before transmitting them

on the external line.

We will see that the coordination buffer caches are quite small, and are the same size

for both the multiplexor and demultiplexor. More important, they help to eliminate

the need for speedup. The co-ordination buffer operates at the line rate, R, and thus

compromises our original goal of having no memories running at the line rate. However,

we will show that the buffer size is proportional to the product of the number of ports,

N , and the number of layers, k.

Depending on these values, it may be small enough to be placed on-chip, and so

may be acceptable. Because there is concentration in the PPS, and the order of cells

has to be restored, we will have to give up the initial goal of emulating an OQ switch

with no relative queuing delay. However, we will show that the PPS can emulate an

FCFS-OQ switch within a small relative queuing delay bound.

6.8.1 Introduction of Caches to the PPS

Figure 6.4 shows the introduction of small caches to the PPS. It describes how

coordination buffers are arranged in each demultiplexor as multiple equal-sized FIFOs,

one per layer. FIFO Q(i, l) holds cells at demultiplexor i destined for layer l. When

a cell arrives, the demultiplexor makes a local decision (described below) to choose

which layer the cell will be sent to. If the cell is to be sent to layer l, the cell is queued

first in Q(i, l) until the link becomes free. When the link from input i to layer l is free,

the head-of-line cell (if any) is removed from Q(i, l) and sent to layer l.

The caches in each multiplexor are arranged the same way, and so FIFO Q′(j, l)

holds cells at multiplexor j from layer l. We will refer to the maximum length of a

FIFO (Q(i, l) or Q′(j, l)) as the FIFO length.9 Note that if each FIFO is of length d,

9It will be convenient for the FIFO length to include any cells in transmission.

6.8 A Distributed Algorithm to Emulate an FCFS-OQ Router 164

R

N

1

2

k=3

Separate FIFOs for each layer Q i 1,()

Q i k,()

1111

2

3

211311

R/k

R/k

R/k

Arriving Cells

Figure 6.4: The demultiplexor, showing k FIFOs, one for each layer, and each FIFO of
length d cells. The example PPS has k = 3 layers.

then the coordination buffer cache can hold a total of kd cells.

6.8.2 The Modi�ed PPS Dispatch Algorithm

The modified PPS algorithm proceeds in three distinct parts.

1. Split every ow in a round-robin manner in the demultiplexor: Demul-

tiplexor i maintains N separate round-robin pointers P1, . . . , PN ; one for each

output. The pointers contain a value in the range {1, . . . , k}. If pointer Pj = l,

it indicates that the next arriving cell destined to output j will be sent to layer

l. Before being sent, the cell is written temporarily into the coordination FIFO

Q(i, l), where it waits until its turn to be delivered to layer l. When the link

from demultiplexor i to layer l is free, the head-of-line cell (if any) of Q(i, l) is

sent.

2. Schedule cells for departure in the center stage switches: When schedul-

ing cells in the center stage, our goal is to deliver cells to the output link at

6.8 A Distributed Algorithm to Emulate an FCFS-OQ Router 165

their corresponding departure time in the shadow OQ switch (except for a small

relative delay).

Step (1) above introduced a complication that we must deal with: cells reaching

the center stage have already encountered a variable queuing delay in the

demultiplexor while they waited for the link to be free. This variable delay

complicates our ability to ensure that cells depart at the correct time and in the

correct order.

Shortly, we will see that although this queuing delay is variable, it is bounded,

and so we can eliminate the variability by deliberately delaying all cells as if

they had waited for the maximum time in the demultiplexor, and hence equalize

the delays. Though not strictly required, we do this at the input of the center

stage switch. Each cell records how long it was queued in the demultiplexor,

and then the center stage delays it further until it equals the maximum. We

refer to this step as delay equalization. We will see later that delay equalization

helps us simplify the proofs for the delay bounds in Section 6.9.

After the delay equalization, cells are sent to the output queues of the center

stage switches and are scheduled to depart in the usual way, based on the arrival

time of the cell to the demultiplexor. When the cell reaches the head of the

output queues of the center stage switch, it is sent to the output multiplexor

when the link is next free.

3. Re-ordering the cells in the multiplexor: The co-ordination buffer in the

multiplexor stores cells, where they are re-sequenced and then transmitted in

the correct order.

The load balancing algorithm on the de-multiplexor that results as a consequence

of this modification is summarized in Algorithm 6.3.

6.9 Emulating an FCFS-OQ Switch with a Distributed Algorithm 166

Algorithm 6.3: DPA for FCFS-OQ emulation on a PPS.

input : Arrival and departure times of each cell.1

output : A central stage switch for each cell to emulate an FCFS-OQ policy.2

for each cell C do3

Demultiplexor:4

When a cell arrives at time n at input i destined to output j, the cell is5

sent to the center stage switch that is next in the round robin sequence

maintained for the input-output pair (i; j).

Multiplexor:6

Read cell C from center stage switch l at departure time DT (n; i; j) after7

delay equalization.

NObservation 6.6. It is interesting to compare this technique with the load-balanced

switch proposed by Chang et al. in [91]. In their scheme, load balancing

is performed by maintaining a single round robin list at the inputs (i.e.,

demultiplexors) for a 2-stage switch. The authors show that this leads

to guaranteed throughput and low average delays, although packets

can be mis-sequenced. In [92], the authors extend their earlier work

by using the same technique proposed here: Send packets from each

input to each output in a round robin manner. As we shall see, this

technique helps us bound the mis-sequencing in the PPS and also gives

a delay guarantee for each packet.

6.9 Emulating an FCFS-OQ Switch with a Dis-

tributed Algorithm

Theorem 6.5. (Sufficiency) A PPS with independent demultiplexors and multiplexors

and no speedup, with each multiplexor and demultiplexor containing a co-ordination

6.10 Implementation Issues 167

buffer cache of size Nk cells, can emulate an FCFS-OQ switch with a relative queuing

delay bound of 2N internal time slots.

Proof. The complete proof is in Appendix F.2. We describe the outline of the proof

here. Consider the path of a cell in the PPS where it may potentially face a queuing

delay:

1. The cell may be queued at the FIFO of the demultiplexor before it is sent to its

center stage switch. From Theorem F.1 in Appendix F, this delay is bounded by

N internal time slots.

2. The cell first undergoes delay equalization in the center stage switches and is

sent to the output queues of the center stage switches. It then awaits service in

the output queue of a center stage switch.

3. The cell may then face a variable delay when it is read from the center stage

switches. From Theorem F.2 in Appendix F, this is bounded by N internal time

slots.

Thus the additional queuing delay, i.e., the relative queuing delay faced by a cell in

the PPS, is no more than N +N = 2N internal time slots. r

6.10 Implementation Issues

Given that our main goal is to find ways to make an FCFS PPS (more) practical, we

now re-examine its complexity in light of the techniques described:

1. Demultiplexor: Each demultiplexor maintains a buffer cache of size Nk cells

running at the line rate R, arranged as k FIFOs. Given our original goal of having

no buffers run at the line rate, it is worth determining how large the cache needs

to be, and whether the cache can be placed on-chip. The demultiplexor must

add a tag to each cell indicating the arrival time of the cell to the demultiplexor.

Apart from that, no sequence numbers need to be maintained at the inputs or

added to cells.

6.10 Implementation Issues 168

�Example 6.7. If N = 1024 ports, cells are 64-bytes long, k = 100, and

the center stage switches are CIOQ routers, then the cache size

for the coordination buffer is about 50 Mbits per multiplexor

and demultiplexor. This can be (just) placed on-chip using

today’s SRAM technology, and so can be made both fast and

wide. Embedded DRAM memory technology, which offers double

density as compared to SRAM (but roughly half the access rate),

could also potentially be used [26]. However, for much larger N

or k this approach may not be practicable.

2. center stage OQ Switches: The input delay, Di (the number of internal time

slots for which a cell had to wait in the demultiplexor’s buffer) can be calculated

by the center stage switch using the arrival timestamp. If a cell arrives to a layer

at internal time slot t, it is first delayed until internal time slot t̂ = t+N −Di,

where 1 6 Di 6 N , to compensate for its variable delay in the demultiplexor.

After the cell has been delayed, it can be placed directly into the center stage

switch’s output queue.

3. Multiplexors: Each multiplexor maintains a coordination buffer of size Nk

running at the line rate R. The multiplexor re-orders cells based upon the arrival

timestamp. Note that if the FCFS order only needs to be maintained between

an input and an output, then the timestamps can be eliminated. A layer simply

tags a cell with the input port number on which it arrived. This would then be

a generalization of the methods described in [117].

NObservation 6.7. We note that if a cell is dropped by a center stage switch, then

the multiplexors cannot detect the lost cell in the absence of sequence

numbers. This would cause the multiplexors to re-sequence cells

incorrectly. A solution to this is to mandate the center stage switches

to make the multiplexors aware of dropped cells by transmitting the

headers of all dropped cells.

6.11 Related Work 169

6.11 Related Work

Although the specific PPS architecture seems novel, “load balancing” and “inverse-

multiplexing” systems [118, 119, 120] have been around for some time, and the PPS

architecture is a simple extension of these ideas. Related work studied inverse ATM

multiplexing and how to use sequence numbers to re-synchronize cells sent through

parallel switches or links [121, 122, 123, 124, 125, 126]. However, we are not aware of

any analytical studies of the PPS architecture prior to this work. As we saw, there is

an interesting and simple analogy between the (buffered) PPS architecture and Clos’s

seminal work on the (unbuffered) Clos network [110].

6.11.1 Subsequent Work

In subsequent work, Attiya and Hay [127, 128] perform a detailed analysis of the

distributed PPS and prove lower bounds on the relative delay faced by cells in the PPS

for various demultiplexor algorithms. Saad et al. [129] consider a PPS with a large

link speed of KNR in the center stage switches, and show that a PPS can emulate an

OQ switch with low communication complexity. Attiya and Hay [128] also study a

randomized version of the PPS.

6.12 Conclusions

In this chapter, we set out to answer a simple but fundamental question about

high-speed routers: Is it possible to build a high-speed switch (router) from multiple

slower-speed switches and yet give deterministic performance guarantees?

The PPS achieves this goal by exploiting system-level parallelism, and placing

multiple packet switches in parallel, rather than in series as is common in multistage

switch designs. More interestingly, the memories in the center stage switches can

operate much slower than the line rate. Further, the techniques that we used to build

high-speed switches that emulate OQ switches (Chapters 2- 5) can be leveraged to

build the center stage switches.

6.12 Conclusions 170

Our results are as follows: A PPS with a centralized scheduler can emulate an

PIFO-OQ switch — i.e., it can provide different qualities of service; although the

implementation of such a PPS does not yet seem practical. So we adopted a distributed

approach, and showed that it is possible to build in a practical way a PPS that can

emulate an FCFS-OQ packet switch (regardless of the nature of the arriving traffic).

We are aware of the use of distributed algorithms on a buffered PPS fabric in

current commercial Enterprise routers [130, 111]. We suspect that Cisco’s CRS-1 [5]

and Juniper’s M series [112] Internet routers also deploy some variant of distributed

algorithms to switch packets across their PPS-like fabrics. These implementations

show that high-speed PPS fabrics are practical to build. At the time of writing,

switch fabrics similar to the PPS are also being considered for deployment in the

next generation of the low-latency Ethernet market [131] as well as high-bandwidth

Ethernet “fat tree” [132] networks.

In summary, we think of this work as a practical step toward building extremely

high-capacity FIFO switches, where the memory access rates can be orders of magnitude

slower than the line rate.

Summary

1. This chapter is motivated by the desire to build routers with extremely large aggregate

capacity and fast line rates.

2. We consider building a high-speed router using system-level parallelism — i.e., from

multiple, lower-speed packet switches operating independently and in parallel. In particular,

we consider a (perhaps obvious) parallel packet switch (PPS) architecture in which arriving

traffic is demultiplexed over k identical lower-speed packet switches, switched to the

correct output port, then recombined (multiplexed) before departing from the system.

3. Essentially, the packet switch performs packet-by-packet load balancing, or “inverse-

multiplexing” over multiple independent packet switches. Each lower-speed packet switch

operates at a fraction of the line rate R. For example, each packet switch can operate at

rate R=k.

4. Why do we need a new technique to build high-performance routers? There are three

6.12 Conclusions 171

reasons why we may need system-level parallelism — (1) the memories may be so slow

in comparison to the line rate that we may need the massive system parallelism that the

PPS architecture provides, as there are limits to the degree of parallelism that can be

implemented in the monolithic router architectures seen in the previous chapters; (2) it

may in fact be cheaper to build a router from multiple slower-speed commodity routers;

and (3) it can reduce the time to market to build such a router.

5. It is a goal of our work that all memory buffers in the PPS run slower than the line rate. Of

course, we are interested in the conditions under which a PPS can emulate an FCFS-OQ

router and an OQ router that supports qualities of service.

6. In this chapter, we ask the question: Is it possible for a PPS to precisely emulate the

behavior of an output queued router with the same capacity and with the same number of

ports?

7. We show that it is theoretically possible for a PPS to emulate an FCFS output queued

(OQ) packet switch if each lower-speed packet switch operates at a rate of approximately

2R=k (Theorem 6.2).

8. We further show that it is theoretically possible for a PPS to emulate an OQ router

that supports qualities of service if each lower-speed packet switch operates at a rate of

approximately 3R=k (Theorem 6.4).

9. It turns out that these results are impractical because of high communication complexity.

But a practical high-performance PPS can be designed if we slightly relax our original

goal and allow a small fixed-size “co-ordination buffer” running at the line rate in both the

demultiplexor and the multiplexor.

10. We determine the size of this buffer to be Nk bytes (where N is the number of ports in

the PPS, and k is the number of center stage OQ switches), and show that it can eliminate

the need for a centralized scheduling algorithm, allowing a full distributed implementation

with low computational and communication complexity.

11. Furthermore, we show that if the lower-speed packet switch operates at a rate of R=k (i.e.,

without speedup), the resulting PPS can emulate an FCFS-OQ switch (Theorem 6.5).

Part II

Load Balancing and Caching for

Router Line Cards

172

“So, why is your thesis my homework problem?”

— Grumblings of a Tired Graduate Student†

Part II: A Note to the Reader

In Part I of the thesis, we considered the overall router architecture. The switch

fabric in any router architecture receives data from all N ports of a router. The total

memory access rate and bandwidth handled by the switch fabric are proportional

to NR. We analyzed various switch fabrics and router architectures, and described

several load balancing and caching algorithms in Chapters 2-6 to alleviate this memory

performance bottleneck.

In the second part of the thesis, we will consider the design of router line cards.

A line card may terminate one or more ports in a router; thus the rate at which

packets arrive on a line card is the aggregate of the line rates of all the ports that

are terminated by it. We will denote R to be this aggregated line rate. Indeed, there

are routers where the data from all ports in the router is aggregated onto one line

card, making the memory access rate and bandwidth requirements as stringent as the

switch fabric designs we encountered in Part I.

Unlike switch fabrics, whose main job is to transfer packets, the tasks on a router

line card are of many different types, as described in Figure 1.6. We will only consider

those tasks on the line card for which memory is a significant bottleneck, as described

in Chapter 1. These tasks include packet buffering (Chapter 7), scheduling (Chapter 8),

measurement counters (Chapter 9), state maintenance (Chapter 10), and multicasting

(Appendix J).

In the rest of this thesis, we will separately consider each of these memory-intensive

tasks. Since the aggregated data rate on a line card is R, and since R is a variable, the

†EE384Y, Stanford University, May 2002.

173

designs that we derive can be scaled to any line rate, and for line cards that terminate

one or more ports. For example, a line card design with R = 100 Gb/s can be used to

built a system with one 100 Gb/s port, ten 10 Gb/s ports, or a hundred 1 Gb/s ports.

We have implemented [33] the approaches described in Part II extensively in

industry. In the rest of the chapters, we will give real-life examples of their use.10

Indeed, as noted above, the packet processing ASICs and memories on line cards built

in industry can support any combination of ports and line rates demanded by the

customer.

In the course of implementation, some of the techniques and algorithms that we

present in this thesis have been modified. Changes were also made where necessary

to adapt them for specific market requirements and applications, in addition to the

ones described here. Chapter 11 summarizes these observations and describes some

remaining open questions.

10Our examples are from Cisco Systems [133].

Chapter 7: Designing Packet Bu�ers from Slower

Memories
Apr 2008, Petaluma, CA

Contents

7.1 Introduction . 177

7.1.1 Where Are Packet Buffers Used? . 178

7.2 Problem Statement . 181

7.2.1 Common Techniques to Build Fast Packet Buffers 183

7.3 A Caching Hierarchy for Designing High-Speed Packet Buffers . . 184

7.3.1 Our Goal . 188

7.3.2 Choices . 188

7.3.3 Organization . 189

7.3.4 What Makes the Problem Hard? . 190

7.4 A Tail Cache that Never Over-runs 191

7.5 A Head Cache that Never Under-runs, Without Pipelining 191

7.5.1 Most Deficited Queue First (MDQF) Algorithm 192

7.5.2 Near-Optimality of the MDQF algorithm 198

7.6 A Head Cache that Never Under-runs, with Pipelining 198

7.6.1 Most Deficited Queue First (MDQFP) Algorithm with Pipelining . . . 201

7.6.2 Tradeoff between Head SRAM Size and Pipeline Delay 204

7.7 A Dynamically Allocated Head Cache that Never Under-runs . . 205

7.7.1 The Smallest Possible Head Cache . 207

7.7.2 The Earliest Critical Queue First (ECQF) Algorithm 208

7.8 Implementation Considerations . 211

7.9 Summary of Results . 212

7.10 Related Work . 213

7.10.1 Comparison of Related Work . 214

7.10.2 Subsequent Work . 215

7.11 Conclusion . 215

List of Dependencies

• Background: The memory access time problem for routers is described in

Chapter 1. Section 1.5.3 describes the use of caching techniques to alleviate

memory access time problems for routers in general.

Additional Readings

• Related Chapters: The caching hierarchy described here is also used to

implement high-speed packet schedulers in Chapter 8, and high-speed statistics

counters in Chapter 9.

Table: List of Symbols.

b Memory Block Size
c, C Cell

D(i; t) Deficit of Queue i at Time t

F (i) Maximum Deficit of a Queue Over All Time
N Number of Ports of a Router
Q Number of Queues
R Line Rate

RT T Round Trip Time
T Time Slot

TRC Random Cycle Time of Memory
x Pipeline Look-ahead

Table: List of Abbreviations.

DRAM Dynamic Random Access Memory
ECQF Earliest Criticial Queue First
FIFO First in First Out (Same as FCFS)

MDQF Most Deficited Queue First
MDQFP Most Deficited Queue First with Pipelining

MMA Memory Management Algorithm
SRAM Static Random Access Memory

“It’s critical, but it’s not something you can

easily brag to your girlfriend about”.

— Tom Edsall† 7
Designing Packet Buffers from Slower

Memories

7.1 Introduction

The Internet today is a packet switched network. This means that end hosts commu-

nicate by sending a stream of packets, and join and leave the network without explicit

permission from the network. Packets between communicating hosts are statistically

multiplexed across the network and share network and router resources (links, routers,

memory etc.). Nothing prevents multiple hosts from simultaneously contending for the

same resource (at least temporarily). Thus, Internet routers and Ethernet switches

need buffers to hold packets during such times of contention.

Packets can contend for many different router resources, and so a router may need

to buffer packets multiple times, once for each point of contention. As we will see, since

a router can have many points of contention, a router itself can have many instances

of buffering. Packet buffers are used universally across the networking industry, and

every switch or router has at least some buffering. The amount of memory required to

buffer packets can be large — as a rule of thumb, the buffers in a router are sized to

hold approximately RTT × R bits of data during times of congestion (where RTT is

†Tom Edsall, CTO, SVP, DCBU, Cisco Systems, introducing caching techniques to new recruits.

177

7.1 Introduction 178

the round-trip time for flows passing through the router, for those occasions when the

router is the bottleneck for TCP flows passing through it. If we assume an Internet

RTT of approximately 0.25 seconds, a 10 Gb/s interface requires 2.5 Gb of memory,

larger than the size of any commodity DRAM [3], and an order of magnitude larger

than the size of high-speed SRAMs [2] available today. Buffers are also typically larger

in size than the memory required for other data-path applications. This means that

packet buffering has become the single largest consumer of memory in networking;

and at the time of writing, our estimates [24, 33] show that it is responsible for almost

40% of all memory consumed by high-speed switches and routers today.

As we will see, the rate at which the memory needs to be accessed, the bandwidth

required to build a typical packet buffer, and the capacity of the buffer make the buffer

a significant bottleneck. The goal of this chapter is motivated by the following question

— How can we build high-speed packet buffers for routers and switches, particularly

when packets arrive faster than they can be written to memory? We also mandate

that the packet buffer give deterministic guarantees on its performance — the central

goal of this thesis.

7.1.1 Where Are Packet Bu�ers Used?

Figure 7.1 shows an example of a router line card with six instances of packet buffers:

1. On the ingress line card, there is an over-subscription buffer in the MAC ASIC,

because packets from multiple customer ports are terminated and serviced at

a rate which is lower than their aggregate rate, i.e.,
∑
R′ > R.1 If packets on

the different ingress ports arrived simultaneously, say in a bursty manner, then

packets belonging to this temporary burst simultaneously contend for service.

This requires the MAC ASIC to maintain buffers to temporarily hold these

packets.

1Over-subscription is fairly common within Enterprise and Branch Office networks to reduce cost,
and take advantage of the fact that such networks are on average lightly utilized.

7.1 Introduction 179

Multi-path

Egress Line Card

..

R’

R’
R’
R’

..

M
AC

(1) Ingress

Buffer

Remote
 Lookup Unit

(2) Small Latency

Buffer

(3) Fabric
Contention

VOQ
 M

anager

Backplane Link Latency

Convertor

..

M
AC

Replication

(5) Multicast

Ou
tp

ut
 M

ul
tic

as
t

M
an

ag
er

Re-order
(4) Small

Buffer

Re
pl

ica
to

r

Buffer

Ingress Line Card

Slow

Gateway

Congestion Buffer
(6) Huge Egress

..

R’

r << R

R’
R’

R R

sR

sR sRWAN

Switch Fabric

2 1 4

Mis-ordered
Cells

Oversubscription
Deep VOQ Buffer

r

(~1-2 ms)

Lookup Latency
(~0.5 ms)

sR

Speedup
s 1≥

Figure 7.1: Packet buffering in Internet routers.

7.1 Introduction 180

2. Packets are then forwarded to a “Protocol Convertor ASIC”, which may be

responsible for performing lookups [134] on the packet to determine the desti-

nation port. Based on these results, it may (if necessary) modify the packets

and convert it to the appropriate protocol supported by the destination port. If

the lookups are offloaded to a central, possibly remote lookup unit (as shown

in Figure 7.1), then the packets may be forced to wait until the results of the

lookup are available. This requires a small latency buffer.

3. Packets are then sent to a “VOQ Manager ASIC”, which enqueues packets

separately based on their output ports. However, these packets will contend with

each other to enter the switch fabric as they await transfer to their respective

output line cards. Depending on the architecture, the switch fabric may not be

able to resolve fabric contention immediately. So the ASIC requires a buffer in

the ingress to hold these packets temporarily, before they are switched to the

outputs.

4. On the egress line card, packets may arrive from an ingress line card, out of

sequence to an “Output Manager ASIC”. This can happen if the switch fabric is

multi-pathed (such as the PPS fabric described in Chapter 6). And so, in order

to restore packet order, it may have a small re-ordering buffer.

5. Packets may then be forwarded to a “Multicast Replication ASIC” whose job is

to replicate multicast packets. A multicast packet is a packet that is destined

to many output ports. This is typically referred to as the fanout of a multicast

packet2. If there is a burst of multicast packets, or the fanout of the multicast

packet is large, the ASIC may either not be able to replicate packets fast enough,

or not be able to send packets to the egress MAC ASIC fast enough. So the

ASIC may need to store these packets temporarily.

6. Finally, when packets are ready to be sent out, a buffer may be required on the

egress MAC ASIC because of output congestion, since many packets may be

destined to the same output port simultaneously.

2Packet multicasting is discussed briefly in Appendix J and in the conclusion (Chapter 11).

7.2 Problem Statement 181

7.2 Problem Statement

The problem of building fast packet buffers is unique to – and prevalent in – switches

and routers; to our knowledge, there is no other application that requires a large

number of fast queues. As we will see, the problem becomes most interesting at data

rates of 10 Gb/s and above. Packet buffers are always arranged as a set of one or

more FIFO queues. The following examples describe typical scenarios.

�Example 7.1. For example, a router typically keeps a separate FIFO queue for

each service class at its output; routers that are built for service

providers, such as the Cisco GSR 12000 router [62], maintain about

2,000 queues per line card. Some edge routers, such as the Juniper E-

series routers [135], maintain as many as 64,000 queues for fine-grained

IP QoS. Ethernet switches, on the other hand, typically maintain fewer

queues (less than a thousand). For example, the Force 10 E-Series

switch [136] has 128–720 queues, while Cisco Catalyst 6500 series

line cards [4] maintain 288–384 output queues per line card. Some

Ethernet switches such as the Foundry BigIron RX-series [137] switches

are designed to operate in a wide range of environments, including

enterprise backbones and service provider networks, and therefore

maintain as many as 8,000 queues per line card. Also, in order to

prevent head-of-line blocking (see Section 4.2) at the input, switches

and routers commonly maintain virtual output queues (VOQs), often

broken into several priority levels. It is fairly common today for a switch

or router to maintain several hundred VOQs.

It is much easier to build a router if the memories behave deterministically. For

example, while it is appealing to use hashing for address lookups in Ethernet switches,

the completion time is non-deterministic, and so it is common (though not universal) to

use deterministic tree, trie, and CAM structures instead. There are two main problems

with non-deterministic memory access times. First, they make it much harder to build

pipelines. Switches and routers often use pipelines that are several hundred packets

7.2 Problem Statement 182

long – if some pipeline stages are non-deterministic, the whole pipeline can stall,

complicating the design. Second, the system can lose throughput in unpredictable

ways. This poses a problem when designing a link to operate at, say, 100 Mb/s or

1 Gb/s – if the pipeline stalls, some throughput can be lost. This is particularly bad

news when products are compared in “bake-offs” that test for line rate performance. It

also presents a challenge when making delay and bandwidth guarantees; for example,

when guaranteeing bandwidth for VoIP and other real-time traffic, or minimizing

latency in a storage or data-center network. Similarly, if the memory access is non-

deterministic, it is harder to support newer protocols such as fiber channel and data

center Ethernet, which are designed to support a network that never drops packets.

Until recently, packet buffers were easy to build: The line card would typically

use commercial DRAM (Dynamic RAM) and divide it into either statically allocated

circular buffers (one circular buffer per FIFO queue), or dynamically allocated linked

lists. Arriving packets would be written to the tail of the appropriate queue, and

departing packets read from the head. For example, in a line card processing packets

at 1 Gb/s, a minimum-length IP packet (40bytes) arrives in 320 ns, which is plenty of

time to write it to the tail of a FIFO queue in a DRAM. Things changed when line

cards started processing streams of packets at 10 Gb/s and faster, as illustrated in the

following example.3

�Example 7.2. At 10 Gb/s – for the first time – packets can arrive or depart in

less than the random access time of a DRAM. For example, a 40-byte

packet arrives in 32 ns, which means that every 16 ns a packet needs

to be written to or read from memory. This is more than three times

faster than the 50-ns access time of typical commercial DRAMs [3].4

3This can happen when a line card is connected to, say, 10 1-Gigabit Ethernet interfaces, four
OC48 line interfaces, or a single POS-OC192 or 10GE line interface.

4Note that even DRAMs with fast I/O pins, such as DDR, DDRII, and Rambus DRAMS, have
very similar access times. While the I/O pins are faster for transferring large blocks to and from a
CPU cache, the access time to a random location is still approximately 50 ns. This is because, as
described in Chapter 1, high-volume DRAMs are designed for the computer industry, which favors
capacity over access time; the access time of a DRAM is determined by the physical dimensions of
the array (and therefore line capacitance), which stays constant from generation to generation.

7.2 Problem Statement 183

7.2.1 Common Techniques to Build Fast Packet Bu�ers

There are four common ways to design a fast packet buffer that overcomes the slow

access time of a DRAM:

• Use SRAM (Static RAM): SRAM is much faster than DRAM and tracks the

speed of ASIC logic. Today, commercial SRAMs are available with access times

below 4 ns [2], which is fast enough for a 40-Gb/s packet buffer. Unfortunately,

SRAMs are expensive, power-hungry, and commodity SRAMs do not offer high

capacities. To buffer packets for 100 ms in a 40-Gb/s router would require

500 Mbytes of buffer, which means more than 60 commodity SRAM devices,

consuming almost a hundred watts in power! SRAM is therefore used only in

switches with very small buffers.

• Use special-purpose DRAMs with faster access times: Commercial

DRAM manufacturers have recently developed fast DRAMs (RLDRAM [8]

and FCRAM [9]) for the networking industry. These reduce the physical dimen-

sions of each array by breaking the memory into several banks. This worked

well for 10 Gb/s, as it meant fast DRAMs could be built with 20-ns access times.

But the approach has a limited future for two reasons: (1) As the line rate

increases, the memory must be split into more and more banks, leading to an

unacceptable overhead per bank,5 and (2) Even though all Ethernet switches

and Internet routers have packet buffers, the total number of memory devices

needed is a small fraction of the total DRAM market, making it unlikely that

commercial DRAM manufacturers will continue to supply them.6

• Use multiple regular DRAMs in parallel: Multiple DRAMs are connected

to the packet processor to increase the memory bandwidth. When packets arrive,

they are written into any DRAM not currently being written to. When a packet

leaves, it is read from DRAM, if and only if its DRAM is free. The trick is to

5For this reason, the third-generation parts are planned to have a 20-ns access time, just like the
second generation.

6At the time of writing, there is only one publicly announced source for future RLDRAM devices,
and no manufacturers for future FCRAMs.

7.3 A Caching Hierarchy for Designing High-Speed Packet Buffers 184

have enough memory devices (or banks of memory), and enough speedup to

make it unlikely that a DRAM is busy when we read from it. Of course, this

approach is statistical, and sometimes a packet is not available when needed.

• Create a hierarchy of SRAM and DRAM: This is the approach we take,

and it is the only way we know of to create a packet buffer with the speed of

SRAM and the cost of DRAM. The approach is based on the memory hierarchy

used in computer systems: data that is likely to be needed soon is held in fast

SRAM, while the rest of the data is held in slower bulk DRAM. The good thing

about FIFO packet buffers is that we know what data will be needed soon –

it’s sitting at the head of the queue. But, unlike a computer system, where it

is acceptable for a cache to have a miss-rate, we describe an approach that is

specific to networking switches and routers, in which a packet is guaranteed to

be available in SRAM when needed. This is equivalent to designing a cache with

a 0% miss-rate under all conditions. This is possible because we can exploit the

FIFO data structure used in packet buffers.

7.3 A Caching Hierarchy for Designing High-

Speed Packet Bu�ers

The high-speed packet buffers described in this chapter all use the memory hierarchy

shown in Figure 7.2. The memory hierarchy consists of two SRAM caches: one to

hold packets at the tail of each FIFO queue, and one to hold packets at the head. The

majority of packets in each queue – that are neither close to the tail or to the head –

are held in slow bulk DRAM. When packets arrive, they are written to the tail cache.

When enough data has arrived for a queue (from multiple small packets or a single

large packet), but before the tail cache overflows, the packets are gathered together in

a large block and written to the DRAM. Similarly, in preparation for when they need

to depart, blocks of packets are read from the DRAM into the head cache. The trick

is to make sure that when a packet is read, it is guaranteed to be in the head cache,

i.e., the head cache must never underflow under any conditions.

7.3 A Caching Hierarchy for Designing High-Speed Packet Buffers 185

Packet Processor/ASIC

R R

R R
M

em
or

y
H

ie
ra

rc
hy

b bytes

Tail Cache
(SRAM)

Head Cache
(SRAM)

Departing stream of
 variable length packets

Arriving stream of
 variable length packets

Bulk Storage (DRAM)

Figure 7.2: Memory hierarchy of packet buffer, showing large DRAM memory with heads
and tails of each FIFO maintained in a smaller SRAM cache.

The hierarchical packet buffer in Figure 7.2 has the following characteristics:

Packets arrive and depart at rate R – and so the memory hierarchy has a total

bandwidth of 2R to accommodate continuous reads and writes. The DRAM bulk

storage has a random access time of T . This is the maximum time to write to or read

from any memory location. (In memory-parlance, T is called TRC .) In practice, the

random access time of DRAMs is much higher than that required by the memory

hierarchy, i.e., T � 1/(2R). Therefore, packets are written to bulk DRAM in blocks

of size b = 2RT every T seconds, in order to achieve a bandwidth of 2R. For example,

in a 50-ns DRAM buffering packets at 10 Gb/s, b = 1000 bits. For the purposes of

this chapter, we will assume that the SRAM is fast enough to always respond to reads

and writes at the line rate, i.e., packets can be written to the head and tail caches as

fast as they depart or arrive. We will also assume that time is slotted, and the time it

takes for a byte to arrive at rate R to the buffer is called a time slot.

Internally, the packet buffer is arranged as Q logical FIFO queues, as shown

in Figure 7.3. These could be statically allocated circular buffers, or dynamically

7.3 A Caching Hierarchy for Designing High-Speed Packet Buffers 186

Arriving Packets Departing Packets

Bulk Storage (DRAM)
1

Q

1

Q

R R

b bytes

cut

path
through

static head cachedynamic tail cache

direct-write path

b bytes

Figure 7.3: Detailed memory hierarchy of packet buffer, showing large DRAM memory
with heads and tails of each FIFO maintained in cache. The above implementation shows a
dynamically allocated tail cache and a statically allocated head cache.

allocated linked lists. It is a characteristic of our approach that a block always contains

packets from a single FIFO queue, which allows the whole block to be written to a

single memory location. Blocks are never broken – only full blocks are written to and

read from DRAM memory. Partially filled blocks in SRAM are held on chip, are never

written to DRAM, and are sent to the head cache directly if requested by the head

cache via a “cut-through” path. This allows us to define the worst-case bandwidth

between SRAM and DRAM: it is simply 2R. In other words, there is no internal

speedup.

To understand how the caches work, assume the packet buffer is empty to start

with. As we start to write into the packet buffer, packets are written to the head

cache first – so they are available immediately if a queue is read.7 This continues until

the head cache is full. Additional data is written into the tail cache until it begins to

fill. The tail cache assembles blocks to be written to DRAM.

We can think of the SRAM head and tail buffers as assembling and disassembling

7To accomplish this, the architecture in Figure 7.3 has a direct-write path for packets from the
writer, to be written directly into the head cache.

7.3 A Caching Hierarchy for Designing High-Speed Packet Buffers 187

blocks of packets. Packets arrive to the tail buffer in random sequence, and the tail

buffer is used to assemble them into blocks and write them to DRAM. Similarly, blocks

are fetched from DRAM into SRAM, and the packet processor can read packets from

the head of any queue in random order. We will make no assumptions on the arrival

sequence of packets – we will assume that they can arrive in any order. The only

assumption we make about the departure order is that packets are maintained in FIFO

queues. The packet processor can read the queues in any order. For the purposes of

our proofs, we will assume that the sequence is picked by an adversary deliberately

trying to overflow the tail buffer, or underflow the head buffer.

In practice, the packet buffer is attached to a packet processor, which is either

an ASIC or a network processor that processes packets (parses headers, looks up

addresses, etc.) and manages the FIFO queues. If the SRAM is small enough, it

can be integrated into the packet processor (as shown in Figure 7.2); or it can be

implemented as a separate ASIC along with the algorithms to control the memory

hierarchy.

We note that the components of the caching hierarchy shown in Figure 7.3 (to

manage data streams) are widely used in computer architecture and are obvious.

�Example 7.3. For example, there are well known instances of the use of the

tail cache. A tail cache is similar to the write-back caches used to

aggregate and write large blocks of data simultaneously to conserve

write bandwidth, and is used in disk drives, database logs, and other

systems. Similarly the head cache is simply a pre-fetch buffer; it is used

in caching systems that exploit spatial locality, e.g., instruction caches

in computer architecture.

We do not lay any claim to the originality of the cache design described in this

section, and it is well known that similar queueing systems are already in use in the

networking industry. The specific hard problem that we set to solve is to build a queue

caching hierarchy that can give a 100% hit rate, as described below.

7.3 A Caching Hierarchy for Designing High-Speed Packet Buffers 188

7.3.1 Our Goal

Our goal is to design the memory hierarchy that precisely emulates a set of FIFO

queues operating at rate 2R. In other words, the buffer should always accept a packet

if there is room, and should always be able to read a packet when requested. We

will not rely on arrival or departure sequences, or packet sizes. The buffer must work

correctly under worst-case conditions.

We need three things to meet our goal. First, we need to decide when to write

blocks of packets from the tail cache to DRAM, so that the tail cache never overflows.

Second, we need to decide when to fetch blocks of packets from the DRAM into the

head buffer so that the head cache never underflows. And third, we need to know how

much SRAM we need for the head and tail caches. Our goal is to minimize the size of

the SRAM head and tail caches so they can be cheap, fast, and low-power. Ideally,

they will be located on-chip inside the packet processor (as shown in Figure 7.2).

7.3.2 Choices

When designing a memory hierarchy like the one shown in Figure 7.2, we have three

main choices:

1. Guaranteed versus Statistical: Should the packet buffer behave like an

SRAM buffer under all conditions, or should it allow the occasional miss? In

our approach, we assume that the packet buffer must always behave precisely

like an SRAM, and there must be no overruns at the tail buffer or underruns at

the head buffer. Other authors have considered designs that allow an occasional

error, which might be acceptable in some systems [138, 139, 140]. Our results

show that it is practical, though inevitably more expensive, to design for the

worst case.

2. Pipelined versus Immediate: When we read a packet, should it be returned

immediately, or can the design tolerate a pipeline delay? We will consider both

design choices: where a design is either a pipelined design or not. In both cases,

the packet buffer will return the packets at the rate they were requested, and in

7.3 A Caching Hierarchy for Designing High-Speed Packet Buffers 189

the correct order. The only difference is that in a pipelined packet buffer, there

is a fixed pipeline delay between all read requests and packets being delivered.

Whether this is acceptable will depend on the system, so we provide solutions

to both, and leave it to the designer to choose.

3. Dynamical versus Static Allocation: We assume that the whole packet

buffer emulates a packet buffer with multiple FIFO queues, where each queue

can be statically or dynamically defined. Regardless of the external behavior,

internally the head and tail buffers in the cache can be managed statically or

dynamically. In all our designs, we assume that the tail buffer is dynamically

allocated. As we’ll see, this is simple, and leads to a very small buffer. On

the other hand, the head buffer can be statically or dynamically allocated. A

dynamic head buffer is smaller, but slightly more complicated to implement, and

requires a pipeline delay – allowing the designer to make a tradeoff.

7.3.3 Organization

We will first show, in Section 7.4, that the tail cache can be dynamically allocated

and can contain slightly fewer than Qb bytes. The rest of the chapter is concerned

with the various design choices for the head cache.

The head cache can be statically allocated; in which case (as shown in Section 7.5)

it needs just over Qb lnQ bytes to deliver packets immediately, or Qb bytes if we can

tolerate a large pipeline delay. We will see in Section 7.6 that there is a well-defined

continuous tradeoff between cache size and pipeline delay – the head cache size varies

proportionally to Q ln(Q/x). If the head cache is dynamically allocated, its size can be

reduced to Qb bytes as derived in Section 7.7. However, this requires a large pipeline

delay.

In what follows, we prove each of these results in turn, and demonstrate algorithms

to achieve the lower bound (or close to it). Toward the end of the chapter, based on

our experience building high-performance packet buffers, we consider in Section 7.8

how hard it is to implement the algorithms in custom hardware. We summarize all

7.3 A Caching Hierarchy for Designing High-Speed Packet Buffers 190

of our results in Section 7.9. Finally, in Section 7.10, we compare and contrast our

approach to previous work in this area.

7.3.4 What Makes the Problem Hard?

If the packet buffer consisted of just one FIFO queue, life would be simple: We could

de-serialize the arriving data into blocks of size b bytes, and when a block is full, write

it to DRAM. Similarly, full blocks would be read from DRAM, and then de-serialized

and sent as a serial stream. Essentially, we have a very simple SRAM-DRAM hierarchy.

The block is caching both the tail and head of the FIFO in SRAM. How much SRAM

cache would be needed?

Each time b bytes arrived at the tail SRAM, a block would be written to DRAM.

If fewer than b bytes arrive for a queue, they are held on-chip, requiring b− 1 bytes of

storage in the tail cache.

The head cache would work in the same way – we simply need to ensure that the

first b− 1 bytes of data are always available in the cache. Any request of fewer than

b − 1 bytes can be returned directly from the head cache, and for any request of b

bytes there is sufficient time to fetch the next block from DRAM. To implement such

a head cache, a total of 2b bytes in the head buffer is sufficient.8

Things get more complicated when there are more FIFOs (Q > 1). For example,

let’s see how a FIFO in the head cache can under-run (i.e., the packet-processor makes

a request that the head cache can’t fulfill), even though the FIFO still has packets in

DRAM.

When a packet is read from a FIFO, the head cache might need to go off and refill

itself from DRAM so it doesn’t under-run in future. Every refill means a read-request

is sent to DRAM, and in the worst case a string of reads from different FIFOs might

generate many read requests. For example, if consecutively departing packets cause

different FIFOs to need replenishing, then a queue of read requests will form, waiting

8When exactly b− 1 bytes are read from a queue, we need an additional b bytes of space to be
able to store the next b-byte block that has been pre-fetched for that queue. This needs no more
than b + (b− 1) = 2b− 1 bytes.

7.4 A Tail Cache that Never Over-runs 191

for packets to be retrieved from DRAM. The request queue builds because in the time

it takes to replenish one FIFO (with a block of b bytes), b new requests can arrive (in

the worst case). It is easy to imagine a case in which a replenishment is needed, but

every other FIFO is also waiting to be replenished, so there might be Q− 1 requests

ahead in the request queue. If there are too many requests, the FIFO will under-run

before it is replenished from DRAM.

Thus, all of the theorems and proofs in this chapter are concerned with identifying

the worst-case pattern of arrivals and departures, which will enable us to determine

how large the SRAM must be to prevent over-runs and under-runs.

7.4 A Tail Cache that Never Over-runs

Theorem 7.1. (Necessity & Sufficiency) The number of bytes that a dynamically

allocated tail cache must contain must be at least

Q(b− 1) + 1. (7.1)

Proof. If there are Q(b− 1) + 1 bytes in the tail cache, then at least one queue must

have b or more bytes in it, and so a block of b bytes can be written to DRAM. If

blocks are written whenever there is a queue with b or more bytes in it, then the tail

cache can never have more than Q(b− 1) + 1 bytes in it. r

7.5 A Head Cache that Never Under-runs, With-

out Pipelining

If we assume the head cache is statically divided into Q different memories of size

w, the following theorem tells us how big the head cache must be (i.e., Qw) so that

packets are always in the head cache when the packet processor needs them.

7.5 A Head Cache that Never Under-runs, Without Pipelining 192

Theorem 7.2. (Necessity - Traffic Pattern) To guarantee that a byte is always avail-

able in head cache when requested, the number of bytes that a head cache must contain

must be at least

Qw > Q(b− 1)(2 + lnQ). (7.2)

Proof. See Appendix H. r

It’s one thing to know the theoretical bound; but quite another to design the cache

so as to achieve the bound. We need to find an algorithm that will decide when to

refill the head cache from the DRAM – which queue should it replenish next? The

most obvious algorithm would be shortest queue first ; i.e., refill the queue in the head

cache with the least data in it. It turns out that a slight variant does the job.

7.5.1 Most De�cited Queue First (MDQF) Algorithm

The algorithm is based on a queue’s deficit, which is defined as follows. When we read

from the head cache, we eventually need to read from DRAM (or from the tail cache,

because the rest of the queue might still be in the tail cache) to refill the cache (if, of

course, there are more bytes in the FIFO to refill it with). We say that when we read

from a queue in the head cache, it is in deficit until a read request has been sent to

the DRAM or tail cache as appropriate to refill it.

ℵDe�nition 7.1. De�cit: The number of unsatisfied read requests for FIFO i in the

head SRAM at time t. Unsatisfied read requests are arbiter requests

for FIFO i for which no byte has been read from the DRAM or the tail

cache (even though there are outstanding cells for it).

As an example, suppose d bytes have been read from queue i in the head cache,

and the queue has at least d more bytes in it (either in the DRAM or in the tail cache

taken together), and if no read request has been sent to the DRAM to refill the d

7.5 A Head Cache that Never Under-runs, Without Pipelining 193

bytes in the queue, then the queue’s deficit at time t, D(i, t) = d bytes. If the queue

has y < d bytes in the DRAM or tail cache, its deficit is y bytes.

Algorithm 7.1: The most deficited queue first algorithm.

input : Queue occupancy.1

output: The queue to be replenished.2

/* Calculate queue to replenish */3

repeat every b time slots4

CurrentQueues ← (1, 2, . . . , Q)5

/* Find queues with pending data in tail cache, DRAM */6

CurrentQueues ← FindPendingQueues(CurrentQueues)7

/* Find queues that can accept data in head cache */8

CurrentQueues ← FindAvailableQueues(CurrentQueues)9

/* Calculate most deficited queue */10

QMaxDef ← FindMostDeficitedQueue(CurrentQueues)11

if ∃ QMaxDef then12

Replenish(QMaxDef)13

UpdateDeficit(QMaxDef)14

/* Service request for a queue */15

repeat every time slot16

if ∃ request for q then17

UpdateDeficit(q)18

ReadData(q)19

MDQF Algorithm: MDQF tries to replenish a queue in the head cache every b

time slots. It chooses the queue with the largest deficit, if and only if some of the

queue resides in the DRAM or in the tail cache, and only if there is room in the head

cache. If several queues have the same deficit, a queue is picked arbitrarily. This is

described in detail in Algorithm 7.1. We will now calculate how big the head cache

needs to be. Before we do that, we need two more definitions.

7.5 A Head Cache that Never Under-runs, Without Pipelining 194

ℵDe�nition 7.2. Total De�cit F (i, t): The sum of the deficits of the i queues with

the most deficit in the head cache, at time t.

More formally, suppose v = (v1, v2, . . . , vQ), are the values of the deficits D(i, t), for

each of the i = {1, 2, . . . , Q} queues at any time t. Let π be an ordering of the queues

(1, 2, . . . , Q) such that they are in descending order, i.e., vπ(1) > vπ(2) > vπ(3) > · · · >
vπ(Q). Then,

F (i, t) ≡
i∑

k=1

vπ(k). (7.3)

ℵDe�nition 7.3. Maximum Total De�cit, F (i): The maximum value of F (i, t)

seen over all timeslots and over all request patterns.

Note that the algorithm samples the deficits at most once every b time slots to choose

the queue with the maximum deficit. Thus, if τ = (t1, t2, . . .) denotes the sequence of

times at which MDQF samples the deficits, then

F (i) ≡ max{∀t ∈ τ, F (i, t)}. (7.4)

Lemma 7.1. For MDQF, the maximum deficit of a queue, F (1), is bounded by

b[2 + lnQ]. (7.5)

Proof. The proof is based on deriving a series of recurrence relations as follows.

Step 1: Assume that t is the first time slot at which F (1) reaches its maximum value,

for some queue i; i.e., D(i, t) = F (1). Trivially, we have D(i, t− b) > F (1)− b. Since

7.5 A Head Cache that Never Under-runs, Without Pipelining 195

queue i reaches its maximum deficit at time t, it could not have been served by MDQF

at time t− b, because if so, then either, D(i, t) < F (1), or it is not the first time at

which it reached a value of F (1), both of which are contradictions. Hence there was

some other queue that was served at time t− b, which must have had a larger deficit

than queue i at time t− b, so

D(j, t− b) > D(i, t− b) > F (1)− b.

Hence, we have:

F (2) > F (2, t− b) > D(i, t− b) +D(j, t− b).

This gives,

F (2) > F (1)− b+ F (1)− b. (7.6)

Step 2: Now, consider the first time slot t when F (2) reaches its maximum value.

Assume that at time slot t, some queues m and n contribute to F (2), i.e., they have

the most and second-most deficit among all queues. As argued before, neither of the

two queues could have been serviced at time t− b. Note that if one of the queues m

or n was serviced at time t− b then the sum of their deficits at time t− b would be

equal to or greater than the sum of their deficits at time t, contradicting the fact that

F (2) reaches its maximum value at time t. Hence, there is some other queue p, which

was serviced at time t− b, which had the most deficit at time t− b. We know that

D(p, t− b) > D(m, t− b) and D(p, t− b) > D(n, t− b). Hence,

D(p, t− b) >
D(m, t− b) +D(n, t− b)

2
>
F (2)− b

2
.

By definition,

F (3) > F (3, t− b).

7.5 A Head Cache that Never Under-runs, Without Pipelining 196

Substituting the deficits of the three queues m, n and p, we get,

F (3) > D(m, t− b) +D(n, t− b) +D(p, t− b).

Hence,

F (3) > F (2)− b+
F (2)− b

2
. (7.7)

General Step: Likewise, we can derive relations similar to Equations 7.6 and 7.7 for

∀i ∈ {1, 2, . . . , Q− 1}.

F (i+ 1) > F (i)− b+
F (i)− b

i
(7.8)

A queue can only be in deficit if another queue is serviced instead. When a queue is

served, b bytes are requested from DRAM, even if we only need 1 byte to replenish the

queue in SRAM. So every queue can contribute up to b− 1 bytes of deficit to other

queues. So the sum of the deficits over all queues, F (Q) 6 (Q− 1)(b− 1). We replace

it with the following weaker inequality,

F (Q) < Qb. (7.9)

Rearranging Equation 7.8,

F (i) > F (i+ 1)

(
i

i+ 1

)
+ b.

Expanding this inequality starting from F (1), we have,

F (1) >
F (2)

2
+ b >

(
F (3)

2

3
+ b

)
1

2
+ b =

F (3)

3
+ b

(
1 +

1

2

)
.

By expanding F (1) all the way till F (Q), we obtain,

F (1) >
F (Q)

Q
+ b

Q−1∑
i=1

1

i
<
Qb

Q
+ b

Q−1∑
i=1

1

i
.

7.5 A Head Cache that Never Under-runs, Without Pipelining 197

Since, ∀N ,
N−1∑
i=1

1

i
<

N∑
i=1

1

i
< 1 + lnN.

Therefore,

F (1) < b[2 + lnQ]. r

Lemma 7.2. For MDQF, the maximum deficit that any i queues can reach is given

by,

F (i) < bi[2 + ln(Q/i)], ∀i ∈ {1, 2, . . . , Q− 1). (7.10)

Proof. See Appendix H.9 r

Theorem 7.3. (Sufficiency) For MDQF to guarantee that a requested byte is in the

head cache (and therefore available immediately), the number of bytes that are sufficient

in the head cache is

Qw = Qb(3 + lnQ). (7.11)

Proof. From Lemma 7.1, we need space for F (1) 6 b[2 + lnQ] bytes per queue in the

head cache. Even though the deficit of a queue with MDQF is at most F (1) (which is

reached at some time t), the queue can lose up to b−1 more bytes in the next b−1 time

slots, before it gets refreshed at time t + b. Hence, to prevent under-flows, each queue

in the head cache must be able to hold w = b[2 + lnQ] + (b− 1) < b[3 + lnQ] bytes.

Note that, in order that the head cache not underflow, it is necessary to pre-load the

head cache to up to w = b[3 + lnQ] bytes for every queue. This requires a ‘direct-write’

path from the writer to the head cache as described in Figure 7.3. r

9Note that the above is a weak inequality. However, we use the closed form loose bound later on
to study the rate of decrease of the function F (i) and hence the decrease in the size of the head cache.

7.6 A Head Cache that Never Under-runs, with Pipelining 198

7.5.2 Near-Optimality of the MDQF algorithm

Theorem 7.2 tells us that the head cache needs to be at least Q(b− 1)(2 + lnQ) bytes

for any algorithm, whereas MDQF needs Qb(3 + lnQ) bytes, which is slightly larger.

It’s possible that MDQF achieves the lower bound, but we have not been able to prove

it. For typical values of Q (Q > 100) and b (b > 64 bytes), MDQF needs a head cache

within 16% of the lower bound.

�Example 7.4. Consider a packet buffer cache built for a 10Gb/s enterprise router,

with a commodity DRAM memory that has a random cycle time of

TRC = 50ns. The value of b = 2RTRC must be at least 1000 bits. So

the cache that supports Q = 128 queues and b = 128 bytes would

require 1.04 Mb, which can easily be integrated into current-generation

ASICs.

7.6 A Head Cache that Never Under-runs, with

Pipelining

High-performance routers use deep pipelines to process packets in tens or even hundreds

of consecutive stages. So it is worth asking if we can reduce the size of the head cache

by pipelining the reads to the packet buffer in a lookahead buffer. The read rate is the

same as before, but the algorithm can spend more time processing each read, and is

motivated by the following idea:

DIdea. “We can use the extra time to get a ‘heads-up’ of which queues need

refilling, and start fetching data from the appropriate queues in DRAM sooner!”

We will now describe an algorithm that puts this idea into practice; and we will

see that it needs a much smaller head cache.

When the packet processor issues a read, we will put it into the lookahead buffer

shown in Figure 7.6. While the requests make their way through the lookahead buffer,

7.6 A Head Cache that Never Under-runs, with Pipelining 199

Lookahead Requests

B3A1 C1 B1 D1 A2 B2 A3 A4

Scheduler

Departing
A1

Bulk Storage (DRAM)
1

Q

1

Q

R

b bytes

cut

path
through

static head cachedynamic tail cache

direct-write path

b bytes

 T

 T

+
1

 T

+
2

 T

+
x

Time

Arriving
Packets Packets

R

(Shift Register)

Figure 7.4: MDQFP with a lookahead shift register with 8 requests.

the algorithm can take a “peek” at which queues are receiving requests. Instead of

waiting for a queue to run low (i.e., for a deficit to build), it can anticipate the need

for data and fetch it in advance.

As an example, Figure 7.4 shows how the requests in the lookahead buffer are

handled. The lookahead buffer is implemented as a shift register, and it advances

every time slot. The first request in the lookahead buffer (request A1 in Figure 7.4)

came at time slot t = T and is processed when it reaches the head of the lookahead

buffer at time slot t = T + x . A new request can arrive to the tail of the lookahead

buffer at every time slot.10

10Clearly the depth of the pipeline (and therefore the delay from when a read request is issued
until the data is returned) is dictated by the size of the lookahead buffer.

7.6 A Head Cache that Never Under-runs, with Pipelining 200

�Box 7.1: Why do we focus on Adversarial Analysis?�

On February 7, 2000, the Internet experienced its first serious case of a fast, intense,
distributed denial of service (DDoS) attack. Within a week, access to major E-commerce
and media sites such as Amazon, Buy.com, eBay, E-Trade, CNN, and ZDNet had slowed,
and in some cases had been completely denied.

A DDoS attack typically involves a coordinated attack originating from hundreds or
thousands of collaborating machines (which are usually compromised so that attackers can
control their behavior) spread over the Internet. Since the above incident, there have been
new attacks [141] with evolving characteristics and increasing complexity [142]. These
attacks share one trait — they are all adversarial in nature and exploit known loopholes
in network, router, and server design [143].

It is well known that packet buffers in high-speed routers have a number of loopholes
that an adversary can easily exploit. For example, there are known traffic patterns that
can cause data to be concentrated on a few memory banks, seriously compromising router
performance. Also, the “65-byte” problem (which occurs because memories can only handle
fixed-size payloads), can be easily exploited by sending and measuring the performance of
the router for packets of all sizes. Indeed, tester companies [144, 145] that specialize in
“bake-off” tests purposely examine competing products for these loopholes.

NObservation 7.1. The caching algorithms and cache sizes proposed in this chapter are
built to meet stringent performance requirements, and to be safe against
the malicious attacks described above. The cache always guarantees a
100% hit rate for any type of packet writes (any arrival policy, bursty
nature of packets, or arrival load characteristics), any type of packet reads
(e.g., any pattern of packet departures, scheduler policy, or reads from a
switching arbiter), any packet statistics (e.g., packets destined to particular
queues, packet size distributionsa, any minimum packet size, etc.). The
caches are robust, and their performance cannot be compromised by an
adversary (either now or ever in the future), even with internal knowledge
of the design.

Note that there are many potential adversarial attacks possible on a host, server, or
the network. Building a robust solution against these varied kind of attacks is beyond
the scope of this thesis. We are solely concerned with those attacks that can target the
memory performance bottlenecks on a router.

aThe caches are agnostic to differences in packet sizes, because consecutive packets
destined to the same queue are packed into fixed-sized blocks of size “b”. The width of
memory access is always “b” bytes, irrespective of the packet size.

7.6 A Head Cache that Never Under-runs, with Pipelining 201

7.6.1 Most De�cited Queue First (MDQFP) Algorithm with

Pipelining

With the lookahead buffer, we need a new algorithm to decide which queue in the

cache to refill next. Once again, the algorithm is intuitive: We first identify any queues

that have more requests in the lookahead buffer than they have bytes in the cache.

Unless we do something, these queues are in trouble, and we call them critical. If

more than one queue is critical, we refill the one that went critical first.

MDQFP Algorithm Description: Every b time slots, if there are critical queues

in the cache, refill the first one to go critical. If none of the queues are critical right

now, refill the queue that – based on current information – looks most likely to become

critical in the future. In particular, pick the queue that will have the largest deficit at

time t+ x (where x is the depth of the lookahead buffer11) assuming that no queues

are replenished between now and t+ x. If multiple queues will have the same deficit

at time t+ x, pick an arbitrary one.

We can analyze the new algorithm (described in detail in Algorithm 7.2) in almost

the same way as we did without pipelining. To do so, it helps to define the deficit

more generally.

ℵDe�nition 7.4. Maximum Total De�cit with Pipeline Delay, Fx(i): the max-

imum value of F (i, t) for a pipeline delay of x, over all time slots and

over all request patterns. Note that in the previous section (no pipeline

delay) we dropped the subscript, i.e., F0(i) ≡ F (i).

In what follows, we will refer to time t as the current time, while time t + x is

the time at which a request made from the head cache at time t actually leaves the

cache. We could imagine that every request sent to the head cache at time t goes

11In what follows, for ease of understanding, assume that x > b is a multiple of b.

7.6 A Head Cache that Never Under-runs, with Pipelining 202

Algorithm 7.2: Most deficited queue first algorithm with pipelining.

input : Queue occupancy and requests in pipeline (shift register) lookahead.1

output: The queue to be replenished.2

/* Calculate queue to replenish*/3

repeat every b time slots4

CurrentQueues ← (1, 2, . . . , Q)5

/* Find queues with pending data in tail cache, DRAM */6

CurrentQueues ← FindPendingQueues(CurrentQueues)7

/* Find queues that can accept data in head cache */8

CurrentQueues ← FindAvailableQueues(CurrentQueues)9

/* Calculate most deficited queue */10

QMaxDef ← FindMostDeficitedQueue(CurrentQueues)11

/* Calculate earliest critical queue if it exists */12

QECritical ← FindEarliestCriticalQueue(CurrentQueues)13

/* Give priority to earliest critical queue */14

if ∃ QECritical then15

Replenish(QECritical)16

UpdateDeficit(QECritical)17

else18

if ∃ QMaxDef then19

Replenish(QMaxDef)20

UpdateDeficit(QMaxDef)21

/* Register request for a queue */22

repeat every time slot23

if ∃ request for q then24

UpdateDeficit(q)25

PushShiftRegister(q)26

/* Service request for a queue, x time slots later */27

repeat every time slot28

q ← PopShiftRegister()29

if ∃ q then30

ReadData(q)31

7.6 A Head Cache that Never Under-runs, with Pipelining 203

into the tail of a shift register of size x. This means that the actual request only

reads the data from the head cache when it reaches the head of the shift register,

i.e., at time t+ x. At any time t, the request at the head of the shift register leaves

the shift register. Note that the remaining x− 1 requests in the shift register have

already been taken into account in the deficit calculation at time t− 1. The memory

management algorithm (MMA) only needs to update its deficit count and its critical

queue calculation based on the newly arriving request at time t which goes into the

tail of the shift register.

Implementation Details: Since a request made at time t leaves the head cache

at time t+ x, this means that even before the first byte leaves the head cache, up to x

bytes have been requested from DRAM. So we will require x bytes of storage on chip

to hold the bytes requested from DRAM in addition to the head cache. Also, when

the system is started at time t = 0, the very first request comes to the tail of the shift

register and all the deficit counters are loaded to zero. There are no departures from

the head cache until time t = x, though DRAM requests are made immediately from

time t = 0.

Note that MDQFP-MMA is looking at all requests in the lookahead register, calcu-

lating the deficits of the queues at time t by taking the lookahead into consideration,

and making scheduling decisions at time t. The maximum deficit of a queue (as

perceived by MDQFP-MMA) may reach a certain value at time t, but that calculation

assumes that the requests in the lookahead have already left the system, which is not

the case. For any queue i, we define:

ℵDe�nition 7.5. Real De�cit Rx(i, t+ x), the real deficit of the queue at any time

t+ x, (which determines the actual size of the cache) is governed by

the following equation,

Rx(i, t+ x) = Dx(i, t)− Si(t, t+ x), (7.12)

7.6 A Head Cache that Never Under-runs, with Pipelining 204

where, Si(t, t+x) denotes the number of DRAM services that queue i receives between

time t and t+x, and Dx(i, t) denotes the deficit as perceived by MDQF at time t, after

taking the lookahead requests into account. Note, however, that since Si(t, t+ x) > 0,

if a queue causes a cache miss at time t+ x, that queue would have been critical at

time t. We will use this fact later on in proving the bound on the real size of the head

cache.

Lemma 7.3. (Sufficiency) Under the MDQFP-MMA policy, and a pipeline delay of

x > b time slots, the real deficit of any queue i is bounded for all time t+ x by

Rx(i, t+ x) 6 C = b (2 + ln[Qb/(x− 2b)]) . (7.13)

Proof. See Appendix H. r

This leads to the main result that tells us a cache size that will be sufficient with the

new algorithm.

Theorem 7.4. (Sufficiency) With MDQFP and a pipeline delay of x (where x > b),

the number of bytes that are sufficient to be held in the head cache is

Qw = Q(C + b). (7.14)

Proof. The proof is similar to Theorem 7.3. r

7.6.2 Tradeo� between Head SRAM Size and Pipeline Delay

Intuition tells us that if we can tolerate a larger pipeline delay, we should be able to

make the head cache smaller; and that is indeed the case. Note that from Theorem 7.4

7.7 A Dynamically Allocated Head Cache that Never Under-runs 205

the rate of decrease of size of the head cache (and hence the size of the SRAM) is,

∂C

∂x
= − 1

x− 2b
, (7.15)

which tells us that even a small pipeline will give a big decrease in the size of the

SRAM cache.

�Example 7.5. As an example, Figure 7.5 shows the size of the head cache as a

function of the pipeline delay x when Q = 1000 and b = 10 bytes.

With no pipelining, we need 90 kbytes of SRAM, but with a pipeline

of Qb = 10000 time slots, the size drops to 10 kbytes. Even with a

pipeline of 300 time slots (this corresponds to a 60 ns pipeline in a

40 Gb/s line card) we only need approximately 55 kbytes of SRAM: A

small pipeline gives us a much smaller SRAM.12

7.7 A Dynamically Allocated Head Cache that

Never Under-runs, with Large Pipeline Delay

Until now we have assumed that the head cache is statically allocated. Although a

static allocation is easier to maintain than a dynamic allocation (static allocation uses

circular buffers, rather than linked lists), we can expect a dynamic allocation to be

more efficient because it’s unlikely that all the FIFOs will fill up at the same time

in the cache. A dynamic allocation can exploit this to devote all the cache to the

occupied FIFOs.

Let’s see how much smaller we can make the head cache as we dynamically allocate

FIFOs. The basic idea is as follows:

12The “SRAM size vs. pipeline delay” curve is not plotted when the pipeline delay is between
1000 and 10,000 time slots since the curve is almost flat in this interval.

7.7 A Dynamically Allocated Head Cache that Never Under-runs 206

�Box 7.2: Bene�ts of Bu�er Caching�

The buffer caching algorithms described in this chapter have been developed for a
number of Cisco’s next-generation high-speed Enterprise routers. In addition to scaling
router performance and making their memory performance robust against adversaries (as
was described in Box 7.1), a number of other advantages have come to light.

1. Reduces Memory Cost: Caches reduce memory cost, as they allow the use
of commodity memories such as DRAMs [3] or newly available eDRAM [26], in
comparison to specialized memories such as FCRAM [9], RLDRAMs [8], and QDR-
SRAMs [2]. In most systems, memory cost (approximately 25%-33% of system cost)
is reduced by 50%.

2. Increases Memory Capacity Utilization: The “b-byte” memory blocks ensure
that the cache accesses are always fully utilized. As a consequence, this eliminates
the “65-byte” problem and leads to better utilization of memory capacity and memory
bandwidth. In some cases, the savings can be up to 50% of the memory capacity.

3. Reduces Memory Bandwidth and Lowers Worst-Case Power: A conse-
quence of solving the “65-byte” problem is that the memory bandwidth to and from
cache is minimized and is exactly 2R. Statistical packet buffer designs require a
larger bandwidth (above 2NR as described in Section 7.8) to alleviate potential bank
conflicts. Overall, this has helped reduce memory bandwidth (and worst-case I/O
power) by up to 75% in some cases, due to better bandwidth utilization.

4. Reduces Packet Latency: The packets in a robust cache are always found on-
chip. So these caches reduce the latency of packet memory access in a router. Thus,
caches have found applications in the low-latency Ethernet [131] and inter-processor
communication (IPC) markets, which require very low network latency.

5. Enables the Use of Complementary Technologies: The packet-processing
ASICs on high-speed routers are limited by the number of pins they can interface to.
High-speed serialization and I/O technologies [27] can help reduce the number of
memory interconnect pins,a but they suffer from extremely high latency. The caches
can be increased in size (from the theoretical bounds derived in this chapter) to
absorb additional memory latency, thus enabling these complementary technologies.

6. Enable Zero Packet Drops: A robust cache is sized for adversarial conditions
(Box 7.1) and never drops a packet. This feature has found uses in the storage
market [61], where the protocol mandates zero packet drops on the network.

7. ASIC and Board Cost Savings: As a consequence of the above benefits, the
packet-processing ASICs require less pins, and there are fewer memory devices on
the board, resulting in smaller ASICs and less-complex boards.

At the time of writing, we have implemented the cache in the next generation of Cisco
high-speed enterprise router products, which span the Ethernet, storage, and inter-processor
communication markets. The above benefits have collectively made routers more affordable,
robust, and practical to build.

aWith today’s technology, a 10Gb/s differential pair serdes gives five times more bandwidth
per pin than standard memory interfaces.

7.7 A Dynamically Allocated Head Cache that Never Under-runs 207

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900 1000

S
iz

e
of

 S
R

A
M

 (
K

B
yt

es
)

Pipeline Delay (Time Slots)

Approximate closed-form bound

Pipeline Delay (Time Slots)

Si
ze

 o
f S

R
A

M
 (

K
by

te
s)

Approximate Closed Form Bound

0 100 200 300 400 500 600 700 800 900 1000
0

20

60

40

80

100

Figure 7.5: The SRAM size (in bold) as a function of pipeline delay (x). The example is
for 1000 queues (Q = 1000), and a block size of b = 10 bytes.

DIdea. At any time, some queues are closer to becoming critical than others.

The more critical queues need more buffer space, while the less critical queues

need less. When we use a lookahead buffer, we know which queues are close to

becoming critical and which are not. We can therefore dynamically allocate more

space in the cache for the more critical queues, borrowing space from the less

critical queues that don’t need it.

7.7.1 The Smallest Possible Head Cache

Theorem 7.5. (Necessity) For a finite pipeline, the head cache must contain at least

Q(b− 1) bytes for any algorithm.

Proof. Consider the case when the FIFOs in DRAM are all non-empty. If the packet

processor requests one byte from each queue in turn (and makes no more requests),

we might need to retrieve b new bytes from the DRAM for every queue in turn. The

head cache returns one byte to the packet processor and must store the remaining

b− 1 bytes for every queue. Hence the head cache must be at least Q(b− 1) bytes.r

7.7 A Dynamically Allocated Head Cache that Never Under-runs 208

7.7.2 The Earliest Critical Queue First (ECQF) Algorithm

As we will see, ECQF achieves the size of the smallest possible head cache; i.e., no

algorithm can do better than ECQF.

ECQF Algorithm Description: Every time there are b requests to the head

cache, if there are critical queues in the cache, refill the first one to go critical.

Otherwise, do nothing. This is described in detail in Algorithm 7.3.

Note that ECQF (in contrast to MDQFP) never needs to schedule most-deficited

queues. It only needs to wait until a queue becomes critical, and schedule these queues

in order. Also, with ECQF we can delay making requests to replenish a queue from

DRAM until b requests are made to the buffer, instead of making a request every b

time slots. If requests arrive every time slot, the two schemes are the same. However,

if there are empty time slots, this allows ECQF to delay requests, so that the moment

b bytes arrive from DRAM, b bytes also leave the cache, preventing the shared head

cache from ever growing in size beyond Q(b− 1) bytes.

This subtle difference is only of theoretical concern, as it does not affect the

semantics of the algorithm. In the examples that follow, we will assume that requests

arrive every time slot.

�Example 7.6. Figure 7.6 shows an example of the ECQF algorithm for Q = 4

and b = 3. Figure 7.6(a) shows that the algorithm (at time t = 0)

determines that queues A,B will become critical at time t = 6 and

t = 8, respectively. Since A goes critical sooner, it is refilled. Bytes

from queues A,B,C are read from the head cache at times t = 0, 1, 2.

In Figure 7.6(b), B goes critical first and is refilled. Bytes from queues

D,A,B leave the head cache at times t = 3, 4, 5. The occupancy of

the head cache at time t = 6 is shown in Figure 7.6(c). Queue A is

the earliest critical queue (again) and is refilled.

7.7 A Dynamically Allocated Head Cache that Never Under-runs 209

 A1 C1
A2 C2
B1 D1
B2 D2

Head Cache

Requests in Lookahead

(a) State at t=0

Q(A,0) = 2; Q(A,6) critical.
Q(B,0) = 2; Q(B,8) critical.
Queue A is requested

 A3 A4
A2 C2
A5 D1
B2 D2

 A3 A4
B4 C2
A5 B3
B5 D2

Requests in Lookahead

From DRAM

Head Cache

Head Cache

Requests in Lookahead

Returned Data

Returned Data

From DRAM

(b) State at t=3

Q(A,3) = 4; Q(A,11) critical.
Q(B,3) = 1; Q(B,9) critical.
Bytes A3,A4,A5 arrive

(c) State at t=6

Q(A,6) = 3; Q(A, 11) critical.
Q(C,6) = 2; Q(C,13) critical.
Bytes B3,B4,B5 arrive.
Queue A is requested.

B23A2 D1 B1 C1 A1

B3A1 C1 B1 D1 A2 B2 A3 A4

C2D1 A2 B2 A3 A4 B3 A5 A6

B1 C1 A1

A8A3 A4 B3 A5 A6 C2 C3 A7

Queue B requested

Figure 7.6: ECQF with Q = 4 and b = 3 bytes. The dynamically allocated head cache is 8
bytes and the lookahead buffer is Q(b− 1) + 1 = 9 bytes.

7.7 A Dynamically Allocated Head Cache that Never Under-runs 210

Algorithm 7.3: The earliest critical queue first algorithm.

input : Queue occupancy and requests in pipeline (shift register) lookahead.1

output: The queue to be replenished.2

/* Wait for b requests, rather than b time slots */3

/* Ensure critical queues are not fetched “too early" ˜4

/* Hence, delay replenishment if empty request time slots5

*/

/* Calculate queue to replenish */6

repeat every b time slots for every b requests encountered7

CurrentQueues ← (1, 2, . . . , Q)8

/* Calculate earliest critical queue if it exists */9

/* By design it will have space to accept data in cache10

*/

QECritical ← FindEarliestCriticalQueue(CurrentQueues)11

if ∃ QECritical then12

Replenish(QECritical)13

UpdateDeficit(QECritical)14

/* Register request for a queue */15

repeat every time slot16

if ∃ request for q then17

UpdateDeficit(q)18

PushShiftRegister(q)19

/* Service request for a queue, Qb time slots later */20

repeat every time slot21

q ← PopShiftRegister()22

if ∃ q then23

ReadData(q)24

To figure out how big the head cache needs to be, we will make three simplifying

assumptions (described in Appendix H) that help prove a lower bound on the size of

the head cache. We will then relax the assumptions to prove the head cache need

never be larger than Q(b− 1) bytes.

7.8 Implementation Considerations 211

Theorem 7.6. (Sufficiency) If the head cache has Q(b − 1) bytes and a lookahead

buffer of Q(b− 1) + 1 bytes (and hence a pipeline of Q(b− 1) + 1 slots), then ECQF

will make sure that no queue ever under-runs.

Proof. See Appendix H. r

7.8 Implementation Considerations

1. Complexity of the algorithms: All of the algorithms require deficit counters;

MDQF and MDQFP must identify the queue with the maximum deficit every

b time slots. While this is possible to implement for a small number of queues

using dedicated hardware, or perhaps using a heap data structure [146], it may

not scale when the number of queues is very large. The other possibility is to use

calendar queues, with buckets to store queues with the same deficit. In contrast,

ECQF is simpler to implement. It only needs to identify when a deficit counter

becomes critical, and replenish the corresponding queue.

2. Reducing b: The cache scales linearly with b, which scales with line rates.

It is possible to use ping-pong buffering [147] to reduce b by a factor of two

(from b = 2RT to b = RT). Memory is divided into two equal groups, and a

block is written to just one group. Each time slot, blocks are read as before.

This constrains us to write new blocks into the other group. Since each group

individually caters a read request or a write request per time slot, the memory

bandwidth of each group needs to be no more than the read (or write) rate R.

Hence block size, b = RT . However, as soon as either one of the groups becomes

full, the buffer cannot be used. So in the worst case, only half of the memory

capacity is usable.

3. Saving External Memory Capacity and Bandwidth: One consequence of

integrating the SRAM into the packet processor is that it solves the so-called

“65 byte problem”. It is common for packet processors to segment packets into

fixed-size chunks, to make them easier to manage, and to simply the switch

fabric; 64 bytes is a common choice because it is the first power of two larger

7.9 Summary of Results 212

Table 7.1: Tradeoffs for the size of the head cache.

Head SRAM
Pipeline Delay

(time slot)

Head SRAM
(bytes, type, algorithm)

Source

0 Qb(3 + ln Q), Static, MDQF Theorem 7.3
x Qb(3 + ln[Qb=(x− 2b)]), Static, MDQFP Theorem 7.4

Q(b− 1) + 1 Q(b− 1), Dynamic, ECQF Theorem 7.6

Table 7.2: Tradeoffs for the size of the tail cache.

Tail SRAM
(bytes, type, algorithm)

Source

Qb(3 + ln Q), Static, MDQF By a symmetry argument to Theorem 7.3
Qb, Dynamic Refer to Theorem 7.1

than the size of a minimum-length IP datagram. But although the memory

interface is optimized for 64-byte chunks, in the worst case it must be able to

handle a sustained stream of 65-byte packets – which will fill one chunk, while

leaving the next one almost empty. To overcome this problem, the memory

hierarchy is almost always run at twice the line rate: i.e., 4R , which adds to the

area, cost, and power of the solution. Our solution doesn’t require this speedup

of two. This is because data is always written to DRAM in blocks of size b,

regardless of the packet size. Partially filled blocks in SRAM are held on chip,

are never written to DRAM, and are sent to the head cache directly if requested

by the head cache. We have demonstrated implementations of packet buffers

that run at 2R and have no fragmentation problems in external memory.

7.9 Summary of Results

Table 7.1 compares various cache sizes with and without pipelining, for static and

dynamic allocation. Table 7.2 compares the various tail cache sizes when implemented

using a static or dynamic tail cache.

7.10 Related Work 213

7.10 Related Work

Packet buffers based on a SRAM-DRAM hierarchy are not new, and although not

published before, have been deployed in commercial switches and routers. However,

there is no literature that describes or analyzes the technique. We have found that

existing designs are based on ad-hoc statistical assumptions without hard guarantees.

We divide the previously published work into two categories:

Systems that give statistical performance: In these systems, the memory

hierarchy only gives statistical guarantees for the time to access a packet, similar

to interleaving or pre-fetching used in computer systems [148, 149, 150, 151, 152].

Examples of implementations that use commercially available DRAM controllers

are [153, 154]. A simple technique to obtain high throughputs using DRAMs (using

only random accesses) is to stripe a packet13 across multiple DRAMs [138]. In this

approach, each incoming packet is split into smaller segments, and each segment is

written into different DRAM banks; the banks reside in a number of parallel DRAMs.

With this approach, the random access time is still the bottleneck. To decrease the

access rate to each DRAM, packet interleaving can be used [147, 155]; consecutive

arriving packets are written into different DRAM banks. However, when we write

the packets into the buffer, we don’t know the order they will depart; and so it can

happen that consecutive departing packets reside in the same DRAM row or bank,

causing row or bank conflicts and momentary loss in throughput. There are other

techniques that give statistical guarantees, where a memory management algorithm

(MMA) is designed so that the probability of DRAM row or bank conflicts is reduced.

These include designs that randomly select memory locations [156, 157, 139, 140], so

that the probability of row or bank conflicts in DRAMs is considerably reduced. Using

a similar interleaved memory architectures, the authors in [158] analyze the packet

drop probability, but make assumptions about packet arrival patterns.

Under certain conditions, statistical bounds (such as average delay) can be found.

While statistical guarantees might be acceptable for a computer system (in which we

13This is sometimes referred to as bit striping.

7.10 Related Work 214

are used to cache misses, TLB misses, and memory refresh), they are not generally

acceptable in a router, where pipelines are deep and throughput is paramount.

Systems that give deterministic worst-case performance guarantees:

There is a body of work in [159, 160, 161, 162, 163] that analyzes the performance

of a queueing system under a model in which variable-size packet data arrives from

N input channels and is buffered temporarily in an input buffer. A server reads

from the input buffer, with the constraint that it must serve complete packets from a

channel. In [161, 162] the authors consider round robin service policies, while in [163]

the authors analyze an FCFS server. In [159] an optimal service policy is described,

but this assumes knowledge of the arrival process. The most relevant previous work

is in [160], where the authors in their seminal work analyze a server that serves the

channel with the largest buffer occupancy, and prove that under the above model the

buffer occupancy for any channel is no more than L(2 + ln(N − 1)), where L is the

size of the maximum-sized packet.

7.10.1 Comparison of Related Work

Our work on packet buffer design was first described in [164, 165], and a complete

version of the paper appears in [166, 167]. Subsequent to our work, a similar problem

with an identical service policy has also been analyzed in [168, 169, 170], where the

authors show that servicing the longest queue results in a competitive ratio of ln(N)

compared to the ideal service policy, which is offline and has knowledge of all inputs.

Our work has some similarities with the papers above. However, our work differs in

the following ways. First, we are concerned with the size of two different buffer caches,

the tail cache and a head cache, and the interaction between them. We show that the

size of the tail cache does not have a logarithmic dependency, unlike [160, 168, 169, 170],

since this cache can be dynamically shared among all arriving packets at the tails of

the queues. Second, the size of our caches is independent of L, the maximum packet

size, because unlike the systems in [159, 160, 161], our buffer cache architecture can

store data in external memory. Third, we obtain a more general bound by analyzing

the effect of pipeline latency x on the cache size. Fourth, unlike the work done

7.11 Conclusion 215

in [168, 169, 170] which derives a bound on the competitive ratio with an ideal server,

we are concerned with the actual size of the buffer cache at any given time (since this

is constrained by hardware limitations).

7.10.2 Subsequent Work

In subsequent work, the authors in [171], use the techniques presented here to build

high-speed packet buffers. Also, subsequent to our work, the authors in [172] analyze

the performance of our caching algorithm when it is sized smaller than the bounds

that are derived in this chapter. Similar to the goal in [172], we have considered

cache size optimizations in the absence of adversarial patterns.14 Unsurprisingly, when

adversarial patterns are eliminated, the cache sizes can be reduced significantly, in

some cases up to 50%.

The techniques that we have described in this chapter pertain to the packet-by-

packet operations that need to be performed for building high-speed packet buffers,

on router line cards. We do not address the buffer management policies, which control

how the buffers are allocated and shared between the different queues. The reader is

refereed to [173, 174] for a survey of a number of existing techniques.

7.11 Conclusion

Packet switches, regardless of their architecture, require packet buffers. The general

architecture presented here can be used to build high-bandwidth packet buffers for any

traffic arrival pattern or packet scheduling algorithm. The scheme uses a number of

DRAMs in parallel, all controlled from a single address bus. The costs of the technique

are: (1) a (presumably on-chip) SRAM cache that grows in size linearly with line rate

and the number of queues, and decreases with an increase in the pipeline delay, (2) a

lookahead buffer (if any) to hold requests, and (3) a choice of memory management

algorithms that must be implemented in hardware.

14We have encountered designs where the arbiter is benign, reads in constant-size blocks, or requests
packets in a fixed round robin (or weighted round robin) pattern, for which such optimizations can
be made.

7.11 Conclusion 216

�Example 7.7. As an example of how these results are used, consider a typical 48-

port commercial gigabit Ethernet switching line card that uses SRAM

for packet buffering.15 There are four 12G MAC chips on board, each

handling 12 ports. Each Ethernet MAC chip stores 8 transmit and

3 receive ports per 1G port, for a total of 132 queues per MAC chip.

Each MAC chip uses 128 Mbits of SRAM. With today’s memory prices,

the SRAM costs approximately $128 (list price). With four Ethernet

MACs per card, the total memory cost on the line card is $512 per

line card. If the buffer uses DRAMs instead (assume 16-bit wide data

bus, 400 MHz DDR, and a random access time of T = 51.2 ns), up

to 64 bytes16 can be written to each memory per 51.2-ns time slot.

Conservatively, it would require 6 DRAMs (for memory bandwidth),

which cost (today) about $144 for the line card. With b = 384 bytes,

the total cache size would be ∼3.65 Mb, which is less than 5% of the

die area of most packet processing ASICs today. Our example serves

to illustrate that significant cost savings are possible.

While there are systems for which this technique is inapplicable (e.g., systems for

which the number of queues is too large, or where the line rate requires too large

a value for b, so that the SRAM cannot be placed on chip), our experience with

enabling this technology at Cisco Systems shows that caching is practical, and we have

implemented it in fast silicon. It has been broadly applied for the next generation

of many segments of the enterprise market [4, 176, 177, 178]. It is also applicable to

some segments of the edge router market [179] and some segments of the core router

market [180], where the numbers of queues are in the low hundreds.

We have also modified this technique for use in VOQ buffering [181] and stor-

age [182] applications. Our techniques have also paved the way for the use of comple-

mentary high-speed interconnect and memory serialization technologies [32], since the

caches hide the memory latency of these beneficial serial interconnect technologies,

15Our example is from Cisco Systems [175].
16It is common in practice to write data in sizes of 64 bytes internally, as this is the first power of

2 above the sizes of ATM cells and minimum-length TCP segments (40 bytes).

7.11 Conclusion 217

enabling them to be used for networking. We estimate that a combination of caching

and complementary serial link technologies has resulted in reducing memory power by

a factor of ∼25-50% [31]). It has also made routers more affordable (by reducing yearly

memory costs at Cisco Systems by > $100M [33] for packet buffering applications

alone), and has helped reduce the physical area to build high-speed routers by ∼50%.

We estimate that more than 1.5 M instances of packet buffering-related (on over seven

unique product instances) caching technologies will be made available annually, as

Cisco Systems proliferates its next generation of high-speed Ethernet switches and

Enterprise routers.

In summary, the above techniques can be used to build extremely cost-efficient

and robust packet buffers that: (1) give the performance of SRAM with the capacity

characteristics of a DRAM, (2) are faster than any that are commercially available

today, and, (3) enable packet buffers to be built for several generations of technology to

come. As a result, we believe that we have fundamentally changed the way high-speed

switches and routers use external memory.

Summary

1. Internet routers and Ethernet switches contain packet buffers to hold packets during times

of congestion. Packet buffers are at the heart of all packet switches and routers, which

have a combined annual market of tens of billions of dollars, with equipment vendors

spending hundreds of millions of dollars yearly on memory.

2. We estimate [24, 33] that packet buffers are alone responsible for almost 40% of all

memory consumed by high-speed switches and routers today.

3. Designing packet buffers was formerly easy: DRAM was cheap, low-power, and widely

used. But something happened at 10 Gb/s, when packets began to arrive and depart

faster than the access time of a DRAM. Alternative memories were needed; but SRAM is

too expensive and power-hungry.

4. A caching solution is appealing, with a hierarchy of SRAM and DRAM, as used by the

computer industry. However, in switches and routers, it is not acceptable to have a

“miss-rate”, as it reduces throughput and breaks pipelines.

5. In this chapter, we describe how to build caches with 100% hit-rate under all conditions,

7.11 Conclusion 218

by exploiting the fact that switches and routers always store data in FIFO queues. We

describe a number of different ways to do this, with and without pipelining, with static or

dynamic allocation of memory.

6. In each case, we prove a lower bound on how big the cache needs to be, and propose an

algorithm that meets, or comes close to, the lower bound.

7. The main result of this chapter is that a packet buffer cache with Θ(Qb ln Q) bytes is

sufficient to ensure that the cache has a 100% hit rate — where Q is the number of FIFO

queues, and b is the memory block size (Theorem 7.3).

8. We then describe techniques to reduce the cache size. We exploit the fact that ASICs

have deep pipelines, and so allow for packets to be streamed out of the buffer with a

pipeline delay of x time slots.

9. We show that there is a well-defined continuous tradeoff between (statically allocated)

cache size and pipeline delay, and that the cache size is proportional to Θ(Qb ln[Qb=x])

(Theorem 7.4).

10. If the head cache is dynamically allocated, its size can be further reduced to Qb bytes if

an ASIC can tolerate a large pipeline delay (Theorem 7.6).

11. These techniques are practical, and have been implemented in fast silicon in multiple

high-speed Ethernet switches and Enterprise routers.

12. Our techniques are resistant to adversarial patterns that can be created by hackers or

viruses. We show that the memory performance of the buffer can never be compromised,

either now or, provably, ever in future.

13. As a result, the performance of a packet buffer is no longer dependent on the speed of a

memory, and these techniques have fundamentally changed the way switches and routers

use external memory.

Chapter 8: Designing Packet Schedulers from

Slower Memories
May 2008, Stateline, NV

Contents

8.1 Introduction . 221

8.1.1 Background . 222

8.1.2 Where Are Schedulers Used Today? 224

8.1.3 Problem Statement . 226

8.1.4 Goal . 227

8.1.5 Organization . 228

8.2 Architecture of a Typical Packet Scheduler 229

8.3 A Scheduler Hierarchy for a Typical Packet Scheduler 232

8.4 A Scheduler that Operates With a Buffer Hierarchy 236

8.5 A Scheduler Hierarchy that Operates With a Buffer Hierarchy . . 238

8.6 A Scheduler that Piggybacks on the Buffer Hierarchy 240

8.6.1 Architecture of a Piggybacked Scheduler 241

8.6.2 Interaction between the Packet Buffer and Scheduler Cache 243

8.6.3 A Work-conserving Packet Scheduler 249

8.7 Design Options and Considerations 250

8.8 Conclusion . 252

List of Dependencies

• Background: The memory access time problem for routers is described in

Chapter 1. Section 1.5.3 describes the use of caching techniques to alleviate

memory access time problems for routers in general.

Additional Readings

• Related Chapters: The caching hierarchy described in this chapter was first

examined in Chapter 7 with respect to implementing high-speed packet buffers.

The present discussion uses results from Sections 7.5 and 7.6. A similar technique

is used in Chapter 9 to implement high-speed statistics counters.

Table: List of Symbols.

b Memory Block Size
c, C Cell
D Descriptor Size
L Latency between Scheduler Request and Buffer Response

Pmin Minimum Packet Size
Pmax Maximum Packet Size

Q Number of Linked Lists, Queues
R Line Rate
T Time Slot

TRC Random Cycle Time of Memory

Table: List of Abbreviations.

DRAM Dynamic Random Access Memory
MMA Memory Management Algorithm
MDQF Most Deficited Queue First
MDLLF Most Deficited Linked List First
DRAM Dynamic Random Access Memory
SRAM Static Random Access Memory

“You say shed-ule, I say sked-ule,

You like shed-ule, I like best effort!”

— The Great QoS Debate† 8
Designing Packet Schedulers from Slower

Memories

8.1 Introduction

Historically, communication networks (e.g., telephone and ATM networks) were pre-

dominantly circuit-switched. When end hosts wanted to communicate, they would

request the network to create a fixed-bandwidth channel (“circuit”) between the source

and destination. The connection could request assurances on bandwidth, as well as

bounded delay and jitter. If the network had the resources to accept the request, it

would reserve the circuit for the connection, and allow the end hosts to communicate

in an isolated environment.

In contrast, as described in Chapter 7, the Internet today is packet switched. Hosts

communicate by sending a stream of packets, and may join or leave without explicit

permission from the network. Packets between communicating hosts are statistically

multiplexed across the network, and share network and router resources (e.g., links,

routers, buffers, etc.). If the packet switched network infrastructure operated in such

a rudimentary manner, then no guarantees could be provided, and only best-effort

service could be supported.

†A riff on the immortal line, “You like tomayto, I like tomahto”, from the Ira and George Gershwin
song “Let’s Call the Whole Thing Off”.

221

8.1 Introduction 222

The purpose of this chapter is not to debate the merits of circuit vs. packet

switched networks.1 Rather, we are motivated by the following question: How can

a router in today’s predominantly packet switched environment differentiate between,

provide network resources for, and satisfy the demands of varied connections? More

specifically, how can a high-speed router perform this task at wire-speeds?

8.1.1 Background

The Internet today can support a wide variety of applications and their unique

performance requirements, because network and router infrastructures identify and

differentiate between packets and provide them appropriate qualities of service. The

different tiers of service are overlaid on top of a (usually over-provisioned) best-effort

IP network.

�Example 8.1. For example, IPTV [29] places strict demands on the bandwidth

provided; VoIP, telnet, remote login, and inter-processor communica-

tion require very low latency; videoconferencing and Telepresence [28]

require assurances on bandwidth, worst-case delay, and worst-case jitter

characteristics from the network; and storage protocols mandate no

packet drops. Box 8.2 provides a historical perspective, with further

examples of the many applications currently supported on the Internet.

In order to provide different qualities of service, routers perform four tasks:

1. Identify ows via packet classi�cation: First, packets belonging to different

applications or protocols that need different tiers of service are identified via

packet classification. Packet classification involves comparing packet headers

against a set of known rules (“classifiers”) so that the characteristics of the

communication, i.e., the application type, source, destination characteristics,

and transport protocol, etc., can be identified. Classification is an algorithmically

intensive task. Many algorithms for packet classification have been proposed: for

1The reader is referred to [183] for a detailed discussion and comparison of the two kinds of
networks.

8.1 Introduction 223

example, route lookup algorithms [134] classify packets based on their source or

destination characteristics; and flow classification algorithms [184] are protocol

and application aware, and are used to more finely identify individual connections

(commonly referred to as flows). Some routers can also perform deep packet

classification [185].

2. Isolate and bu�er ows into separate queues: Once these flows are classi-

fied, they need to be isolated from each other, so that their access to network

and router resources can be controlled. This is done by buffering them into

separate queues. Depending on the granularity of the classifier, and the number

of queues maintained by the packet buffer, one or more flows may share a queue

in the buffer. Packet buffering is a memory-intensive task, and we described a

caching hierarchy in Chapter 7 to scale the performance of packet buffering.

3. Maintain scheduling information for each queue: Once the packets for a

particular flow are buffered to separate queues, a scheduler or memory manager

maintains “descriptors” for all the packets in the queues. The descriptors keep

information such as the length and location of all packets in the queue. In

addition, the scheduler maintains the order of packets by linking the descriptors

for the consecutive packets that are destined to a particular queue.2 The scheduler

makes all of this information available to an arbiter, and is also responsible for

responding to the arbiter’s requests, as described below.

4. Arbitrate ows based on network policy:Arbitration is the task of imple-

menting network policy, i.e., allocating resources (such as share of bandwidth,

order in which the queues are serviced, distinguishing queues into different

priority levels, etc.) among the different queues. The arbiter has access to the

scheduler linked lists (and so is made aware of the state of all packets in the

queues) and other queue statistics maintained by the scheduler. Based on a

programmed network policy, it requests packets in a specific order from the

different queues. A number of arbitration algorithms have been proposed to

implement the network policy. These include weighted fair queueing [17] and its

2The scheduler may also keep some overall statistics, e.g., the total occupancy of the queue, the
total occupancy for a group of queues (which may be destined to the same output port), etc.

8.1 Introduction 224

variants, such as GPS [18], Virtual Clock [19], and DRR [20]. Other examples

include strict priority queueing and WF2Q [21]. A survey of existing arbitration

policies and algorithms is available in [186].3

8.1.2 Where Are Schedulers Used Today?

Broadly speaking, a scheduler is required wherever packets are stored in a buffer and

those packets need to be differentiated when they access network resources.

NObservation 8.1. A buffer (which stores packet data), a scheduler (which keeps

descriptors to packet data so that it can be retrieved), and an arbiter

(which decides when to read packets and the order in which they are

read) always go together.

Figure 8.1 shows an example of a router line card where scheduling information is

needed by the arbiter (to implement network policy) in four instances:

1. On the ingress line card, an arbiter serves the ports in the ingress MAC in

different ratios, based on their line rates and customer policy.

2. Later, packets are buffered in separate virtual output queues (VOQs), and a

central switch arbiter requests packets from these VOQs (based on the switch

fabric architecture and the matching algorithms that it implements).

3. On the egress line card, the output manager ASIC re-orders packets that arrive

from a switch fabric (that may potentially mis-order packets).

4. Finally, when packets are ready to be sent out, an arbiter in the egress MAC serves

the output ports based on their line rates and quality of service requirements.

It is interesting to compare Figure 7.1 with Figure 8.1. The two diagrams are

almost identical, and a scheduler is required in every instance where there is a buffer.

3In previous literature, the arbitration algorithms have also been referred to as “QoS scheduling”
algorithms. In what follows, we deliberately distinguish the two terms: arbitration is used to specify
and implement network policy, and scheduling is used to provide the memory management information
needed to facilitate the actions of an arbiter.

8.1 Introduction 225

Multi-path

Egress Line Card

M
AC

(1) Scheduling for

VOQ
 M

anager
M

AC
 O

ut
pu

t
 M
ul

tic
as

t

M
an

ag
er

R
ep

lic
at

or

Ingress Line Card

Slow

Gateway

 for QoS and
(4) Egress Scheduling for

..

R’

r << R/10

R’
R’

sR

sR sRWAN

Switch Fabric

1 4 2

Mis-ordered
Cells

customer policy

r

sR

Speedup

A1

..

R’

R’
R’
R’

A2

Z1

Z2

Z3

B1

..

A1AN A2
B1BN B2

Z1ZN Z2

..
..

..

A4 A3 Z1 B1 A2 A1

A3
A4

Z2 B2

.. A3
B3

Z3

..

A1B1
A2Z2

A3A4

..

..

.. Z1

B2

Arbitration Ratio:
2:1:3: ... 1

Arbitration based
on fabric

Arbiter
 Central

Z2 A3 A2 B1 A1

(2) Scheduling for
fabric contention

Remote
 Lookup Unit

..

A1 B1
H1 J2

P3 Q4

..

..

..X1

R2

Arbitration Ratio:
10:5:2 ... :1

P3 Q4 R2

(3) Scheduling

port speed mismatch

after re-ordering

3
64... 969016

60101

40

70

1194001101

...40

...

Descriptors

1... 2 4

79

11

11

121415

...12

...

3

s 1≥

Figure 8.1: Scheduling in Internet routers.

8.1 Introduction 226

The only exception is the case where the buffer is a single first in first out (FIFO)

queue, as in the lookup latency buffer and the multicast replication buffer in Figure 7.1.

If there is only a single queue, it is trivial for a scheduler to maintain descriptors. Also,

the FIFO policy is trivial to implement, and no arbiter is required.

8.1.3 Problem Statement

As far as we know, contrary to the other tasks described above, the task of maintaining

the scheduler database, which involves maintaining and managing descriptor linked

lists in memory, has not been studied before. We are particularly interested in this

task, as it is a bottleneck in building high-speed router line cards, since:

1. It places huge demands on the memory access rate, and

2. It requires a large memory capacity (similar to packet buffers), and so cannot

always be placed on-chip.

As we saw earlier, the scheduler and arbiter operate in unison with a packet buffer.

Thus, the scheduler must enqueue and dequeue descriptors for packets at the rate at

which they arrive and leave the buffer, i.e., R. In the worst case, this needs to be

done in the time that it takes for the smallest-size packet to arrive.

In some cases, the scheduler may also have to operate faster than the line rate.

This happens because packets themselves may arrive to the buffer faster than the line

rate (e.g., due to speedup in the fabric). Another reason is that the buffer may need

to support multicast packets at high line rates, for which multiple descriptors (one

per queue to which the multicast packet is destined) need to be created per packet.

�Example 8.2. At 10 Gb/s, a 40-byte packet arrives in 32 ns, which means that the

scheduler needs to enqueue and dequeue a descriptor at least once every

32 ns, which is faster than the access rate of commercial DRAM [3].

If a sustained burst of multicast packets (each destined to, say, four

ports) arrives, the scheduler will need to enqueue descriptors every 8 ns

and dequeue descriptors every 32 ns, making the problem much harder.

8.1 Introduction 227

Indeed, as the above example shows, the performance of the scheduler is a significant

bottleneck to scaling the performance of high-speed routers. The memory access rate

problem is at least as hard as the packet buffering problem that we encountered in

Chapter 7 (and sometimes harder, when a large number of multicast packets must be

supported at line rates).

NObservation 8.2. The smallest-size packet on most networks today is ∼40 bytes.4

Note that if the minimum packet size was larger, the scheduler would

have more time to enqueue and dequeue these descriptors. However, the

size of the smallest packet will not change anytime soon — applications

keep their packet sizes small to minimize network latency. For example,

telnet, remote login, and NetMeeting are known to send information

about a keystroke or a mouse click immediately, i.e., no more than one

or two bytes of information at a time.5

8.1.4 Goal

Our goal in this thesis is to enable high-speed routers to provide deterministic per-

formance guarantees, as described in Chapter 1. If the scheduler (which maintains

information about each packet in the router) cannot provide the location of a packet

in a deterministic manner, then obviously the router itself would be unable to give

deterministic guarantees on packet performance! So we will mandate that the sched-

uler give deterministic performance; and similar to our discussion on building robust

routers (see Box 7.1), we will mandate that the scheduler’s performance cannot be

compromised by an adversary.

4Packets smaller than 40 bytes are sometimes created within routers for control purposes. These
are usually created for facilitating communication within the router itself. They are produced and
consumed at a very low rate. We ignore such packets in the rest of this chapter.

5After encapsulating this information into various physical, link layer, and transport protocol
formats to facilitate transfer of the packet over the network, this is approximately ∼40 bytes.

8.1 Introduction 228

8.1.5 Organization

The rest of this chapter is organized as follows: We will describe five different imple-

mentations for a packet scheduler [187] in sections 8.2-8.6:

�Method 1. A Typical Packet Scheduler: In Section 8.2, we will describe the

architecture of a typical packet scheduler. We will see that the size

of the descriptor that needs to be maintained by a typical scheduler

can be large, and even comparable in size to the packet buffer that

it manages. And so, the memory for the scheduler will have a large

capacity and require a high access rate.

�Method 2. A Scheduler Hierarchy for a Typical Packet Scheduler: In Sec-

tion 8.3, we will show how we can re-use the techniques described in

Chapter 7 to build a caching hierarchy for a packet scheduler. This will

allow us to build schedulers with slower commodity memory, and also

reduce the size of the scheduler memory.

�Method 3. A Scheduler that Operates with a Buffer Hierarchy: In Section 8.4,

we show that the amount of information that a scheduler needs to

maintain can be further reduced, if the packet buffer that it operates

with is implemented using the buffer caching hierarchy described in the

previous chapter.

�Method 4. A Scheduler Hierarchy that Operates with a Buffer Hierarchy:

As a consequence of using a buffer cache hierarchy, we will show in

Section 8.5 that the size of the scheduler cache also decreases in size

compared to the cache size in Section 8.3.

�Method 5. A Scheduler that Piggybacks on the Buffer Hierarchy: Finally, in

Section 8.6 we will present the main idea of this chapter, i.e., a unified

technique where the scheduler piggybacks on the operations of the

8.2 Architecture of a Typical Packet Scheduler 229

packet buffer. With this piggybacking technique, we will completely

eliminate the need to maintain a separate data structure for packet

schedulers.

In Section 8.7, we summarize the five different techniques to build a high-speed

packet scheduler, and discuss where they are applicable, and their different tradeoffs.

Why do we not use just one common technique to build schedulers? We will see in

Section 8.7 that there is no one optimal solution for all scheduler implementations.

Each of the five different techniques that we describe here is optimal based on the

system constraints and product requirements faced when designing a router. Besides,

we will see that in some cases one or more of the above techniques may be inapplicable

for a specific instance of a router.

8.2 Architecture of a Typical Packet Scheduler

A typical scheduler maintains a data structure to link packets destined to separate

queues. If there are Q queues in the system, the scheduler maintains Q separate

linked lists. Each entry in the linked list has a “descriptor” that stores the length of a

particular packet, the memory location for that packet, and a link or pointer to the

next descriptor in that queue; hence the data structure is referred to as descriptor

linked lists. This is shown in Figure 8.2.

When a packet arrives, first it is classified, and the queue that it is destined to is

identified. The packet is then sent to the packet buffer. A descriptor is created which

stores the length of the packet and a pointer to its memory location in the buffer.

This descriptor is then linked to the tail of the descriptor linked list for that queue.

�Example 8.3. As shown in Figure 8.2, the descriptor for packet a1 stores the

length of the packet and points to the memory address for packet a1.

Similarly, the descriptor for an arriving packet is written to the tail of

the descriptor queue numbered two.

8.2 Architecture of a Typical Packet Scheduler 230

..
..

a1

..

a5

..
a3

..

a4

z2

z1

b1

Mem 1 Mem 2 Mem 3 Mem k

b3

Packet Data

1

Q

...

2 Arbiter

R 40

Arriving Cell

(1) Write

Packet Descriptors

(4) Read
R64

Departing Cell

(3) Request
(2) Descriptor

64, a196, a2

60, b1101, b2

... 40, z1119, z2

90, a3

40, b3

50, z3

(Pointer and Length)

W R

Memory Controller

...

Figure 8.2: The architecture of a typical packet scheduler.

8.2 Architecture of a Typical Packet Scheduler 231

The scheduler makes the descriptor linked lists available to the arbiter. The arbiter

may request head-of-line packets from these descriptor linked lists, in any order based

on its network policy. When this request arrives, the scheduler must dequeue the

descriptor corresponding to the packet, retrieve the packet’s length and memory

location, and request the corresponding number of bytes from the corresponding

address in the packet buffer.

How much memory capacity does a scheduler need? The scheduler maintains

the length and address of a packet in the descriptor. In addition, every descriptor

must keep a pointer to the next descriptor. We can calculate the size of the descriptors

as follows:

1. The maximum packet size in most networks today is 9016 bytes (colloquially

referred to as a jumbo packet). So packet lengths can be encoded in dlog29016e =

13 bits. If the memory data is byte aligned (as is the case with most memories),

this would require 2 bytes.6

2. The size of the packet memory address depends on the total size of the packet

buffer. We will assume that they are 4 bytes each. This is sufficient to store 232

addresses, which is sufficient for a 4 GB packet buffer, and is plenty for most

networks today.

3. Since there is one descriptor per packet, the size of the pointer to the next

descriptor is also 4 bytes long.

So we need approximately 10 bytes per packet descriptor. In the worst case, if

all packets were 40 bytes long, the scheduler would maintain 10 bytes of descriptor

information for every 40-byte packet in the buffer, and so the scheduler database

would be roughly ∼ 1
4

th
the size of the buffer.

�Example 8.4. For example, on a 100 Gb/s link with a 10 ms packet buffer, a

scheduler database that stores a 10-byte descriptor for each 40-byte

6This is also sufficient to encode the lengths of so-called super jumbo packets (64 Kb long) which
some networks can support. Note that IPv6 also supports an option to create jumbograms whose
length can be up to 4 GB long. If such packets become common, then the length field will need to be
4 bytes long.

8.3 A Scheduler Hierarchy for a Typical Packet Scheduler 232

packet would need 250 Mb of memory, and this memory would need to

be accessed every 2.5 ns. The capacity required is beyond the practical

capability of embedded SRAM. Using currently available 36 Mb QDR-

SRAMs,7 this would require 8 external QDR-SRAMs, and over $200 in

memory cost alone!

Because of the large memory capacity and high access rates required by the

scheduler, high-speed routers today keep the descriptors in expensive high-speed

SRAM [2]. It is easy to see how the memory requirements of the scheduler are a

bottleneck as routers scale to even higher speeds. In what follows, we describe various

techniques to alleviate this problem. We begin by describing a caching hierarchy

similar to the one described in Chapter 7.

8.3 A Scheduler Hierarchy for a Typical Packet

Scheduler

NObservation 8.3. An arbiter can dequeue the descriptors for packets in any order

among the different linked lists maintained by the scheduler. However,

within a linked list, the arbiter can only request descriptors for packets

from the head of line. Similarly, when a packet arrives to a queue in

the buffer, the descriptor for the packet is added to the tail of the

descriptor linked list. So the descriptor linked lists maintained by the

scheduler behave similarly to a FIFO queue.

In Chapter 7, we described a caching hierarchy that could be used to implement

high-speed FIFO queues. Based on the observation above, we can implement the

scheduler linked lists with an identical caching hierarchy. Figure 8.3 describes an

example of such an implementation. In what follows, we give a short description of the

scheduler memory hierarchy. For additional details, the reader is referred to Chapter 7.

7At the time of writing, 72 Mb QDR-SRAMs are available; however, their cost per Mb of capacity
is higher than their 36 Mb counterparts

8.3 A Scheduler Hierarchy for a Typical Packet Scheduler 233

..
..

a1

..

a5

..
a3

..

a4

z2

z1

b1

Mem 1 Mem 2 Mem 3 Mem k

b3

Packet Data

Arbiter

R 40

Arriving Cell

(1) Write

Packet Descriptor Cache (SRAM)

(4) Read
R64

Departing Cell

(3) Request(2) Descriptor

(Pointer and Length)

W R

Memory Controller

cut

path
through

static head cachedynamic tail cache

direct-write path

1

Q
2

64, a196, a2

60, b1101, b2

40, z1119, z2

1

Q

...

2

90, a791, a8

260, b6101, b7

... 40, z5119, z6

90, a9

140, b8

50, z7

...

...

...

...

Packet Descriptors (DRAM)

Figure 8.3: A caching hierarchy for a typical packet scheduler.

8.3 A Scheduler Hierarchy for a Typical Packet Scheduler 234

The scheduler memory hierarchy consists of two SRAM caches: one to hold

descriptors at the tail of each descriptor linked list, and one to hold descriptors at the

head. The majority of descriptors in each linked list – that are neither close to the tail

or to the head – are held in slow bulk DRAM. Arriving packet descriptors are written

to the tail cache. When enough descriptors have arrived for a queue, but before the

tail cache overflows, the descriptors are gathered together in a large block and written

to the DRAM. Similarly, in preparation for when the arbiter might access the linked

lists, blocks of descriptors are read from the DRAM into the head cache. The trick is

to make sure that when a descriptor is read, it is guaranteed to be in the head cache,

i.e., the head cache must never underflow under any conditions.

The packets for which descriptors are created arrive and depart at rate R. Let

Pmin denote the size of the smallest packet, and D denote the size of the descriptor.

This implies that the descriptors arrive and depart the scheduler at rate R |D|
Pmin

. Note

that the external memory bandwidth is reduced by a factor of |D|
Pmin

(as compared to

the bandwidth needed for a packet buffer), because a scheduler only needs to store a

descriptor of size |D| bytes for every Pmin bytes stored by the corresponding packet

buffer. Hence the external memory only needs to run at rate 2R |D|
Pmin

.

We will assume that the DRAM bulk storage has a random access time of T .

This is the maximum time to write to, or read from, any memory location. (In

memory-parlance, T is called TRC .) In practice, the random access time of DRAMs

is much higher than that required by the memory hierarchy. Therefore, descriptors

are written to bulk DRAM in blocks of size b = 2R |D|
Pmin

T every T seconds, in order to

achieve a bandwidth of 2R |D|
Pmin

. For the purposes of this chapter, we will assume that

the SRAM is fast enough to always respond to descriptor reads and writes at the line

rate, i.e., descriptors can be written to the head and tail caches as fast as they depart

or arrive.

We will also assume that time is slotted, and the time it takes for a byte (belonging

to a descriptor) to arrive at rate R |D|
Pmin

to the scheduler is called a time slot.

Note that descriptors are enqueued and dequeued as before when a packet arrives

or departs. The only difference (as compared to Figure 8.2) is that the descriptor

8.3 A Scheduler Hierarchy for a Typical Packet Scheduler 235

linked lists are cached. Our algorithm will be exactly similar to Algorithm 7.1, and is

described for a linked list-based implementation in Algorithm 8.1.

Algorithm 8.1: The most deficited linked list first algorithm.

input : Linked List Occupancy.1

output: The linked list to be replenished.2

/* Calculate linked list to replenish */3

repeat every b time slots4

CurrentLLists ← (1, 2, . . . , Q)5

/* Find linked lists with pending data */6

/* Data can be pending in tail cache or DRAM */7

CurrentLLists ← FindPendingLLists(CurrentLLists)8

/* Find linked lists that can accept data in head cache9

*/

CurrentLLists ← FindAvailableLLists(CurrentLLists)10

/* Calculate most deficited linked list */11

LLMaxDef ← FindMostDeficitedLList(CurrentLLists)12

if ∃ LLMaxDef then13

Replenish(LLMaxDef)14

UpdateDeficit(LLMaxDef)15

/* Service request for a linked list */16

repeat every time slot17

if ∃ request for q then18

UpdateDeficit(q)19

ReadData(q)20

MDLLF Algorithm: MDLLF tries to replenish a linked list in the head cache every

b time slots. It chooses the linked list with the largest deficit, if and only if some of

the linked list resides in the DRAM or in the tail cache, and only if there is room

in the head cache. If several linked lists have the same deficit, a linked list is picked

arbitrarily.

8.4 A Scheduler that Operates With a Buffer Hierarchy 236

So we can re-use the bounds that we derived on the size for the head cache from

Theorem 7.3, and the size of the tail cache from Theorem 7.1. This leads us to the

following result:

Corollary 8.1. (Sufficiency) A packet scheduler requires no more than Qb(4 +

lnQ) |D|
Pmin

bytes in its cache, where Pmin is the minimum packet size supported by the

scheduler, and |D| is the descriptor size.

Proof. This is a consequence of adding up the cache sizes derived from Theorems 7.1

and 7.3 and adjusting the cache size by a factor of |D|
Pmin

bytes, because the scheduler

only needs to store a descriptor of size |D| bytes for every Pmin bytes stored by the

corresponding packet buffer. r

What is the size of the descriptor? Note that with the caching hierarchy, the

scheduler only needs to maintain the length and address of a packet. It no longer needs

to keep a pointer to the next descriptor, since descriptors are packed back-to-back. So

the size of the packet descriptor can be reduced to D = 6 bytes.

The following example shows how these results can be used for the same 100 Gb/s

line card.

�Example 8.5. For example, on a 100 Gb/s link with a 10 ms packet buffer, the

scheduler database can be stored using an on-chip cache and an off-chip

external DRAM. Our results indicate that with a DRAM with a capacity

of 150 Mb and TRC = 51.2ns, b = 640 bytes, and Q = 96 scheduler

queues, the scheduler cache size would be less than 700 Kb, which can

easily fit in on-chip SRAM.

8.4 A Scheduler that Operates With a Bu�er Hi-

erarchy

We will now consider a scheduler that operates a packet buffer that has been im-

plemented with the caching hierarchy described in Chapter 7. This is shown in

Figure 8.4.

8.4 A Scheduler that Operates With a Buffer Hierarchy 237

1

Q

64... 9690

260101

40

70

1194001101

...40 Arbiter

R 40

Arriving Cell

(1) Write

Packet Descriptors

(4) Read
R64

Departing Cell

(3) Request(2) Descriptor

...

(Length)

Packet Data (DRAM)

1

Q

1

Q

b bytes

cut

path
through

static head cachedynamic tail cache

direct-write path

Packet Data Cache (SRAM)

W R b bytes

Figure 8.4: A scheduler that operates with a buffer cache hierarchy.

8.5 A Scheduler Hierarchy that Operates With a Buffer Hierarchy 238

NObservation 8.4. Recall that the packet buffer cache allocates memory to the

queues in blocks of b-bytes each. Consecutive packets destined for a

queue are packed back to back, occupying consecutive locations in

memory.8 From the scheduler’s perspective, this means that it no

longer needs to store the address of every packet. The buffer cache

simply streams out the required number of bytes from the location

where the last packet for that queue was read.

Based on the observation above, the scheduler can eliminate storing per-packet

addresses, and only needs to store packet addresses and a pointer to the next descriptor.

This would reduce the size of the packet descriptor to 6 bytes.

�Example 8.6. For example, on a 100 Gb/s link with a 10 ms packet buffer, a

scheduler database that stores a 6-byte descriptor for each smallest-size

40-byte packet would need approximately 150 Mb of SRAM. This is

smaller in size than the scheduler implementation shown in Example 8.4.

8.5 A Scheduler Hierarchy that Operates With a

Bu�er Hierarchy

Of course, we can now build a cache-based implementation for our scheduler, identical

to the approach we took in Section 8.3. As a consequence, the implementation of the

scheduler that operates with the buffer cache is the same as shown in Figure 8.4. The

only difference is that the implementation of the scheduler is itself cached as shown in

Figure 8.5. We can derive the following results:

8Note that the buffer cache manages how these b-byte blocks are allocated and linked. The
buffer cache does not need to maintain per-packet descriptors to store these packets; it only needs
to maintain and link b-byte blocks. If these b-byte blocks are themselves allocated for a queue
contiguously in large blocks of memory, i.e., “pages”, then only these pages need to be linked. Since
the number of pages is much smaller than the total number of cells or minimum-size packets, this is
easy for the buffer cache to manage.

8.5 A Scheduler Hierarchy that Operates With a Buffer Hierarchy 239

Arbiter

R 40

Arriving Cell

(1) Write (4) Read
R64

Departing Cell

(3) Request(2) Descriptor

1

Q

cut

path
through

static head cachedynamic tail cache

direct-write path

Packet Descriptor Cache (SRAM)
(Length)

cut

path
through

static head cachedynamic tail cache

direct-write path

1

Q
2

6496

60101

40119

1

Q

...

2

9091

260101

... 40119

90

140

50

...

...

...

...

Packet Descriptors (DRAM)

Packet Data Cache (SRAM)

Packet Data (DRAM)

1

Q

b bytes W R b bytes

Figure 8.5: A scheduler cache hierarchy that operates with a buffer cache hierarchy.

8.6 A Scheduler that Piggybacks on the Buffer Hierarchy 240

Corollary 8.2. (Sufficiency) A scheduler (which only stores packet lengths) requires

no more than Qb(4 + lnQ) log2 Pmax
Pmin

bytes in its cache, where Pmin, Pmax are the

minimum and maximum packet sizes supported by the scheduler.

Proof. This is a direct consequence of adding up the cache sizes derived from Theo-

rems 7.1 and 7.3. From Theorem 7.1, we know that the tail cache must be at least Qb

bytes if packet data is being stored in a buffer. However, the scheduler only needs

to store a descriptor of size log2 Pmax bytes (to encode the packet length) for every

Pmin bytes stored by the corresponding packet buffer. So, the size of the cache is

reduced by a factor of log2 Pmax
Pmin

bytes. This implies that the size of the tail cache is no

more than Qb log2 Pmax
Pmin

bytes. Similarly, the size of the head cache can be inferred from

Theorem 7.3 to be Qb(3 + lnQ) log2 Pmax
Pmin

bytes. Summing the sizes of the two caches

gives us the result. r

�Example 8.7. For example, on a 100 Gb/s link with a 10 ms packet buffer, the

scheduler database can be stored using an on-chip cache and an off-chip

external DRAM. Our results indicate that with a DRAM with a capacity

of 50 Mb and TRC = 51.2ns; b = 640 bytes, and Q = 96 scheduler

queues, the scheduler cache size would be less than 250 Kb, which can

easily fit in on-chip SRAM. Both the capacity of the external memory

and the cache size are smaller in this implementation, compared to the

results shown in Example 8.5.

8.6 A Scheduler that Piggybacks on the Bu�er Hi-

erarchy

In the previous section, we eliminated the need for maintaining per-packet addresses

in the scheduler. This was possible because consecutive packets were packed back

to back in consecutive addresses, and these addresses were maintained by the buffer

cache hierarchy. However, the method described above requires the scheduler to keep

a linked list of packet lengths. In this section we show how the scheduler can eliminate

8.6 A Scheduler that Piggybacks on the Buffer Hierarchy 241

the need for maintaining packet lengths, and so eliminate maintaining descriptors

altogether!

In the technique that we describe, our scheduler will piggyback on the packet buffer

cache hierarchy. Observe that packets already carry the length information that a

scheduler maintains.9 This motivates the following idea:

DIdea. “The buffer cache could retrieve the lengths of the packets, which are

pre-fetched in the head cache, and pass on these lengths to the scheduler a priori,

just in time for the arbiter to make decisions on which packets to schedule.a”

aThe crux of the method can be captured in the mythical conversation between the
scheduler and buffer (involving the arbiter) in Box 8.1.

8.6.1 Architecture of a Piggybacked Scheduler

Figure 8.6 describes the architecture of a piggybacked scheduler. The following

describes how the scheduler and the buffer interact.

1. Arriving packets are written to the tail of the packet buffer cache.

2. Descriptors for the packet are not created. Note that this implies that the

scheduler does not need to be involved when a packet arrives.

3. The length of the packet is encoded along with the packet data. In most cases

this is not necessary, since packet length information is already part of the packet

header — if not, then the length information is tagged along with the packet.

In what follows, we assume that the packet length is available at (or tagged in

front of) the most significant byte of the packet header.10

9The length of a packet is usually part of a protocol header that is carried along with the packet
payload. In case of protocols where the length of a packet is not available, the packet length can be
encoded by, for example, preceding the packet data with length information at the time of buffering.

10Note that the packet length field can always be temporarily moved to the very front of the
packet when it is buffered. The length field can be moved back to its correct location after it is read
from the buffer, depending on the protocol to which the packet belongs.

8.6 A Scheduler that Piggybacks on the Buffer Hierarchy 242

1

Q

Write

cut-through

static head cachedynamic tail cache

direct-write path

length
parser

Length

1

Q

Descriptor Cache

Request

Arbiter

Read

(1, 3)

(5)

(6)

(7)

(Packet Lengths)

R40

Departing Cell

R 40

Arriving Cell

Fetch(4)

Descriptor

(2)

Packets and Encoded Lengths (Cache)

Packet and Encoded Lengths (DRAM)

1

Q

b bytes W R b bytes

& Parse
L1

L2 + L3

L4

L4 is the latency for length parsing and the length interface
L1 + L2 + L3 + L4 is the total latency between the buffer and scheduler/arbiter

L1 is the latency on the request interface
L2 + L3 is the total round-trip memory latency

Figure 8.6: A combined packet buffer and scheduler architecture.

8.6 A Scheduler that Piggybacks on the Buffer Hierarchy 243

4. The buffer memory management algorithm periodically fetches b-bytes blocks of

data for a queue and replenishes the cache. When the packets are fetched into

the head cache, their lengths are parsed and sent to the scheduler. The queue to

which the corresponding packet belongs is also conveyed to the scheduler.

5. The scheduler caches the length information for these packets, and arranges

them based on the queues that the packets are destined to.

6. Based on the network policy, the arbiter chooses a queue to service, dequeues a

descriptor, and issues a read for a packet from the buffer.

7. On receiving this request, the buffer cache streams the packet from its head

cache.

Note that there is no need to maintain a separate descriptor linked list for the

scheduler. The linked list information is created on the fly! — and is made available

just in time so that an arbiter can read packets in any order that it chooses.

8.6.2 Interaction between the Packet Bu�er and Scheduler

Cache

We are not quite done. We need to ensure that the arbiter is work-conserving — i.e.,

if there is a packet at the head of any queue in the system, the descriptor (or packet

length in this case) for that packet is available for the arbiter to read, so that it can

maintain line rate. However, the system architecture shown in Figure 8.6 is an example

of a closed-loop system where the buffer cache, scheduler, and arbiter are dependent

on each other. We need to ensure that there are no deadlocks, loss of throughput, or

starvation.

Let us consider the series of steps involved in ensuring that the packet scheduler

always has enough descriptors for the arbiter to schedule at line rate. First note that,

by design, the arbiter will always have the length descriptors (delayed by at most

L4 time slots) for any data already residing in the head cache. Our bigger concern

is: How can we ensure that the arbiter does not have to wait to issue a read for a

packet that is waiting to be transferred to the head cache? We consider the system

8.6 A Scheduler that Piggybacks on the Buffer Hierarchy 244

�Box 8.1: A Bu�er and Scheduler Converse�

The scheduler and buffer (played by Fräulein S. Duler and B. Uffer) are discussing
how to maintain packet lengths as needed by the Arbiter (played by Herr Biter).a

B. Uffer: Why do you maintain lengths of all packets in your linked lists?

S. Duler: So that I can know the exact size of the packets from each of your queues. Herr
Biter is very particular about packet sizes.

B. Uffer: Why does he need the exact size? He could read one MTU’s (maximum
transmission unit) worth from the head of each queue. He could parse the lengths
by reading the packet headers, and send the exact number of bytes down the wire.

S. Duler: But the packet could be less than one MTU long.

B. Uffer: In that case, he could buffer the residual data.

S. Duler: Oh — I am not so sure he can do that : : :

B. Uffer: Why? Surely, Herr Biter can read?

S. Duler: Of course! The problem is that he would need to store almost one MTU for
each queue in the worst case.

B. Uffer: What’s the big deal?

S. Duler: He doesn’t have that much space!

B. Uffer: That’s his problem!

S. Duler: Oh, come on. We all reside on the same ASIC.

B. Uffer: Well, can’t he buffer the residual data for every queue?

S. Duler: Look who’s talking!; I thought it was your job to buffer packets!

B. Uffer: I was trying to save you from keeping the lengths of all packets : : :

S. Duler: Then come up with something better : : :

B. Uffer: Wait, I have an idea! I can send you the length of the head-of-line packet from
every queue.

S. Duler: How will you do that?

B. Uffer: Well, I have pre-fetched bytes from every queue in my head cache. When data
is pre-fetched, I can parse the length, and send it to you before Herr Biter needs it.

S. Duler: Yes — then I won’t need to keep a linked list of lengths for all packets!

B. Uffer: But what about Herr Biter? Would he have the packet length on time, when
he arbitrates for a packet?

S. Duler: Trust me, he’s such a dolly! He will never know the difference! : : :

aFräulein (Young lady), Herr (Mister) in German.

8.6 A Scheduler that Piggybacks on the Buffer Hierarchy 245

Arbiter dequeues descriptor and

Packet is read from head cache
creating deficit for queue N

 Parser retrieves and sends length of

Queue N is selected for replinishment

requests packet for queue N

to head cache

L1 L3

L2

L4

ReplinishRead

Request Retrieve

L2 + L3 is the total round-trip memory latency
L1 + L2 + L3 + L4 is the total latency between the buffer and scheduler/arbiter

new packet to scheduler for queue N

Figure 8.7: The closed-loop feedback between the buffer and scheduler.

from an arbiter’s perspective and focus on a particular queue, say queue N , as shown

in Figure 8.7.

1. Request: The arbiter dequeues a descriptor for queue N and requests a packet

from queue N .

2. Read: The buffer cache receives this read request after a fixed time L1 (this

corresponds to the delay in step 6 in Figure 8.6), and streams the requested

packet on the read interface.

3. Replenish: This creates a deficit for queue N in the head cache. If at this time

queue N had no more data in the head cache,11 then the descriptors for the next

packet of queue N will not be available. However, we are assured that at this

time queue N will be the most-deficited queue or earliest critical queue (based

on the algorithms described in Chapter 7). The buffer cache sends a request to

11If queue N had additional data in the head cache, then by definition the scheduler has the
length information for the additional data in head cache.

8.6 A Scheduler that Piggybacks on the Buffer Hierarchy 246

replenish queue N . We will denote L2 to be the time that it takes the buffer

cache to react and send a request to replenish queue N . This corresponds to

part of the latency in step 4 in Figure 8.6.

4. Retrieve: The packet data for queue N is received from either the tail cache

or the external memory after L312 time slots. The length of the next packet

for queue N is retrieved and sent to the scheduler. This corresponds to the

other part of the latency in step 4 in Figure 8.6. Note that L2 and L3 together

constitute the round-trip latency of fetching data from memory.

5. Request: The scheduler receives the new length descriptor for queue N after

L4 time slots. This is the latency incurred in transferring data on the length

interface in step 5 in Figure 8.6.

So, if the arbiter has no other descriptor available for queue N , then it will have

to wait until the next descriptor comes back, after L = L1 + L2 + L3 + L4 time slots,

before it can make a new request and fetch more packets for queue N from the buffer.

This can result in loss of throughput, as shown in the following counter-example:

�Example 8.8. The adversary runs the worst-case adversarial traffic pattern as

described in Theorem 7.2, from time slot T = 0 to T = E, where E is

the total time it takes to run the worst-case adversarial pattern. This

pattern results in creating the maximum deficit for a particular queue

(in this case, queue N). Since queue N is the most-deficited queue,

the buffer will issue a request to replenish the head cache for that

queue. However, the adversary could simultaneously request data from

queue N at line rate. Notice that it would take another L time slots

for the length of the next packet to be retrieved and made available

to the scheduler. Thus the arbiter cannot request any packets from

queue N between time E and time E + L. This pattern can be

12L3 denotes the worst-case latency to fetch data from either external memory or tail cache.
However, in practice it is always the latency to fetch data from external memory, because it usually
takes much longer to fetch data from external memory than from on-chip tail cache.

8.6 A Scheduler that Piggybacks on the Buffer Hierarchy 247

t

E0

Adversarial

E + L

} }
1 2

Lost Next Packets

(a) Head cache empty

Q1

Q2

Q3

Q4

Q5

Q6

Q7

QN-1

QN

QN-2

Descriptor Cache

Arbiter

(Packet Lengths)
1

Q

W R

Q1

Q2

Q3

Q4

Q5

Q6

Q7

QN-1

QN

QN-2

(c) Cache replinish issued
(b) Scheduler cache empty

For Queue N (Time E): (a) Arbiter dequeues length
(b) Arbiter issues packet read

For Queue N (Time E+L):

(a) No packets read by arbiter
For Queue N (E < Time < E+L):

Packets and Encoded Lengths
(Head Cache)

Packets and Encoded Lengths
(DRAM)

Pattern Throughput Streamed

(b) No packets streamed by buffer
(c) Cache replinish data received by buffer
(d) Next packet length parsed and sent to scheduler

}From Tail
Cache

... Packets ... Packets ...

Packets Lengths ...

Figure 8.8: The worst-case pattern for a piggybacked packet scheduler.

repeated continuously over time over different queues, causing a loss

of throughput as shown in Figure 8.8.

8.6 A Scheduler that Piggybacks on the Buffer Hierarchy 248

�Box 8.2: Applications that Need Scheduling�

In the last decade, a near-continuous series of new Internet-based applications (“killer
apps”) have entered widespread use. Each new application has introduced support challenges
for its implementation over the current “best-effort” network infrastructures, and for
restricting the amount of network resources that it consumes.

In the earliest days of the Internet, the most common application, email, required
only best-effort service, but by 1995 the advent of the browser introduced widespread
adoption of Web protocols. The Internet was now used primarily for content sharing and
distribution and required semi-real-time support. At the same time, applications for remote
computer sharing became common, including telnet, ssh, and remote login. Although these
applications didn’t require high bandwidth, they ideally called for low latency.

By the late 1990s, the Internet had begun to be used to support E-commerce appli-
cations, and new routers were designed to identify these applications and provide broad
quality-of-service guarantees. Load balancers and other specialized router equipment were
built to provide optimally reliable service with zero packet drop for these financially sensitive
applications.

In 1999, the first large-scale P2P protocol, freenet [188] was released. Freenet initiated
a wave of popular file sharing tools, such as Napster, Kazaa, etc., to transfer large files,
including digital content. P2P protocols have continued to evolve over the last eight years,
and now place heavy bandwidth demands on the network. It has been estimated that over
70% of all Internet traffic consists of P2P traffic, and many businesses, universities, and
Internet service providers (ISPs) now schedule, police, and limit this traffic.

By 2000, the Internet had begun to see widespread adoption of real-time communication
applications such as Internet chat [189], instant messaging, etc. These applications were
extremely sensitive to latency and jitter — for example, conversation quality is known to
degrade when latency of communication exceeds ∼150ms. Thus, it would be another 5-6
years before business- and consumer-quality Internet telephony [190] became widespread.

The past few years have seen the advent of real-time, multi-point applications requiring
assured bandwidth, delay, and jitter characteristics. These applications include multiplayer
games [191],a videoconferencing applications such as Telepresence [28], and IPTV [29].

Additionally, storage protocols [61] mandate high-quality communications with no
packet drops, and inter-processor communications networks for supercomputing applications
mandate extremely low latency. There is even an ongoing interest in using the Internet
for sensitive and mission-critical applications, e.g., distributed orchestras and tele-surgery.
All of these applications require a scheduler to differentiate them and provide the requisite
quality of service.

With the ever-increasing range of applications, and their ever-changing demands, the
need for scheduling has become correspondingly important. Thus, today nearly all switches
and routers, including home office and small office units, support scheduling.

aThe earliest example was Doom [192], released in 1993.

8.6 A Scheduler that Piggybacks on the Buffer Hierarchy 249

8.6.3 A Work-conserving Packet Scheduler

To ensure that the scheduler is work-conserving, we will need to size both the packet

buffer and the scheduler cache carefully. We are now ready to derive their sizes.

Theorem 8.1. (Sufficiency) The MDQF packet buffer requires no more than

Q [b(4 + lnQ) +RL] bytes in its cache in order for the scheduler to piggyback on

it, where L is the total closed-loop latency between the scheduler and the MDQF buffer

cache.

Proof. We know that if the buffer does not have a scheduler that piggybacks on it,

then the size of the head cache is Q[b(3 + lnQ)] (from Theorem 7.3), and the size of

the tail cache is Qb bytes (from Theorem 7.1). In order to prevent the adversarial

traffic pattern described in Example 8.8, we will increase the size of the head cache

by RL bytes for every queue. This additional cache completely hides the round-trip

latency L between the buffer and the scheduler. Summing up the above numbers, we

have our result. r

Theorem 8.2. (Sufficiency) A length-based packet scheduler that piggybacks on the

MDQF packet buffer cache requires no more than Q [b(3 + lnQ) +RL] log2 Pmax
Pmin

bytes

in its head cache, where L is the total closed-loop latency between the scheduler and

the MDQF buffer cache.

Proof. This is a consequence of Theorem 8.1 and Corollary 8.2. Note that the scheduler

cache only needs to keep the lengths of all packets that are in the head cache of the

packet buffer. From Theorem 8.1, the size of the head cache of the packet buffer is

Q[b(3 + lnQ)] bytes. Corollary 8.2 tells us that we need to scale the size of a length-

based scheduler cache by log2 Pmax
Pmin

bytes. So the size of the cache for the scheduler is

Q[b(3 + lnQ)] log2 Pmax
Pmin

bytes. Note that the scheduler does not need a tail cache, hence

its scaled size does not include the Qb log2 Pmax
Pmin

bytes that would be required if it had a

tail cache. r

8.7 Design Options and Considerations 250

Table 8.1: Packet buffer and scheduler implementation options.

Buf-
fer14

Sche-
duler

Desc-
riptor

Pros Cons
Sec-
tion

U U
Length,
Address,
NextPtr

Simple
Hard to scale buffer,

scheduler performance
8.2

U C
Length,
Address

Reduces scheduler size, scales
scheduler performance

Hard to scale buffer
performance

8.3

C U
Length,
NextPtr

Reduces scheduler size, scales
buffer performance

Hard to scale scheduler
performance

8.4

C C Length
Minimizes scheduler size,

scales buffer and scheduler
performance

Requires two caches 8.5

Piggybacked None
Eliminates need for scheduler

memory, scales buffer and
scheduler performance

Sensitive to latency L,
requires modification to

caching hierarchy
8.6

�Example 8.9. For example, on a 100 Gb/s link with a 10 ms packet buffer, the

scheduler database can be stored using an on-chip cache. It does not

require an off-chip external DRAM, since the lengths are piggybacked

on the packets in the packet buffer. Our results indicate that with a

DRAM with TRC = 51.2 ns used for the packet buffer, b = 640 bytes,

and Q = 96 scheduler queues, and latency L = 100 ns, the buffer cache

size would be less than 5.4 Mb, and the scheduler cache size would be

less than 270 Kb, which can easily fit in on-chip SRAM. The size of

the scheduler database is almost identical13 to the results derived in

Example 8.7, except that no separate DRAM needs to be maintained

to implement the packet scheduler!

8.7 Design Options and Considerations

We have described various techniques to scale the performance of a packet scheduler.

Table 8.1 summarizes the pros and cons of the different approaches. Note that we do

not mandate any one technique over the other, and that each technique has its own

tradeoffs, as discussed below.

13This can change if the latency L becomes very large.
14Note that U in Table 8.1 and Table 8.2 refers to an un-cached implementation, and C refers to

an implementation that uses a caching hierarchy.

8.7 Design Options and Considerations 251

1. If the total size of the scheduler and buffer is small, or if the line rates supported

are not very high, the scheduler can be implemented in a typical manner as

suggested in Section 8.2. It may be small enough that both the scheduler and

buffer can fit on-chip — this is typically the case for the low-end Ethernet switch

and router markets.

2. The solution in Section 8.3 is used when the buffer cache cannot fit on-chip, but

a scheduler cache (which is typically smaller than the buffer cache) can. This

can happen when the number of queues is very large, or the available memory

is very slow compared to the line rate, both of which mandate a large buffer

cache size. We have targeted the above implementation for campus backbone

routers [109] where the above requirements hold true.

3. The solution in Section 8.4 is used when the number of packets that are to

be supported by a scheduler is not very large, even though the buffer itself is

large. This happens in applications that pack multiple packets into super frames.

Since the scheduler only needs to track a smaller number of super frames, the

size of the scheduler database is small and no caching hierarchy is needed for

the scheduler. We have targeted the above implementations for schedulers that

manage VOQs in the Ethernet switch and Enterprise router markets [193].

4. The solution in Section 8.5 allows scaling the performance of both the buffer

and the scheduler to very high line rates, since both the buffer and scheduler

are cached; however, it comes at the cost of implementing two separate caching

hierarchies. We currently do not implement this technique, because the method

described below is a better tradeoff for current-generation 10− 100 Gb/s line

cards. However, we believe that if the memory latency L becomes large, this

technique will find favor compared to the technique below, where cache size

depends on the memory latency.

5. Finally, the solution in Section 8.6 is the most space-efficient, and completely

eliminates the need for a scheduler database. However, it requires a modified

caching hierarchy where the buffer and scheduler interact closely with each

other. Also, if the round trip latency L is large (perhaps due to a large external

memory latency), the cache size required may be larger than the sum of the

8.8 Conclusion 252

Table 8.2: Packet buffer and scheduler implementation sizes.

Buffer
Sche-
duler

Buffer Cache
Size

Scheduler Cache Size
Buffer
Main
Mem.

Sche-
duler
Main
Mem.

Section

U U - - SRAM SRAM 8.2

U C - Qb(4 + lnQ)
|D|
Pmin

SRAM DRAM 8.3

C U Qb(4 + lnQ) - DRAM SRAM 8.4

C C Qb(4 + lnQ) Qb(4 + lnQ)
log2 Pmax

Pmin
DRAM DRAM 8.5

Piggy Backed Q [b(4 + lnQ) +RL] Q [b(3 + lnQ) +RL]
log2 Pmax

Pmin
DRAM - 8.6

cache sizes if both the buffer cache and the scheduler cache are implemented

separately (as suggested in Section 8.5). This technique is by far the most

common implementation, and we have used it widely, across multiple instances

of data-path ASICs for 10− 100 Gb/s line cards in the high-speed Enterprise

market.

NObservation 8.5. Some schedulers keep additional information about a packet in

their descriptors. For example, some Enterprise routers keep packet

timestamps, so that they can drop packets that have spent a long time

in the buffer (perhaps due to network congestion). The techniques

that we describe here are not limited to storing only addresses and

packet lengths; they can also be used to store any additional descriptor

information.

Table 8.2 summarizes the sizes of the buffer and scheduler for the various implemen-

tation options described in this chapter. Table 8.3 provides example implementations

for the various techniques for a 100Gb/s line card. All the examples described in

Table 8.3 are for Q = 96 queues and an external DRAM with a TRC of 51.2 ns and a

latency of L = 100 ns.

8.8 Conclusion

High-speed routers need packet schedulers to maintain descriptors to every packet

in the buffer, so that the router can arbitrate among these packets and control their

8.8 Conclusion 253

Table 8.3: Packet buffer and scheduler implementation examples.

Buffer
Sche-
duler

Buffer Cache
Size

Scheduler
Cache Size

Buffer Main
Mem.

Scheduler
Main Mem.

Exam-
ple

U U - - 1Gb SRAM 250Mb SRAM 8.4

U C - 700Kb SRAM 1Gb SRAM 150Mb DRAM 8.5

C U 4.4Mb SRAM - 1Gb DRAM 150Mb SRAM 8.6
C C 4.4Mb SRAM 250kb SRAM 1Gb DRAM 50Mb DRAM 8.7

Piggy Backed 5.3Mb SRAM 270kb SRAM 1Gb DRAM - 8.9

access to network resources. The scheduler needs to support a line rate equal to or

higher than (in case of multicast packets) its corresponding packet buffer, and this is

a bottleneck in building high-speed routers.

We have presented four techniques that use the caching hierarchy described in

Chapter 7 to scale the performance of the scheduler. The general techniques presented

here are agnostic to the specifics of the QoS arbitration algorithm.

We have found in all instances of the networking market that we have encountered,

that one of the above caching techniques can be used to scale the performance of the

scheduler. We have also found that it is always practical to place the scheduler cache

on-chip (primarily because it is so much smaller than a packet buffer cache).

We have demonstrated practical implementations of the different types of schedulers

described in this chapter for the next generation of various segments of the Ethernet

Switch and Enterprise Router market [4, 176, 177, 178], and their applicability in the

campus router market [109].

The scheduler caching techniques mentioned here have been used in unison with

the packet buffer caching hierarchy described in Chapter 7. Our scheduler caching

techniques have helped further increase the memory cost, area, and power savings

reported in Chapter 7. In instances where the piggybacking technique is used, packet

processing ASICs have also been made significantly smaller in size, mainly because the

on- or off-chip scheduler database has been eliminated. We estimate that more than

1.6 M instances of packet scheduler caches (on over seven unique product instances)

will be made available annually, as Cisco Systems proliferates its next generation of

high-speed Ethernet switches and Enterprise routers.

8.8 Conclusion 254

In summary, the techniques we have described can be used to build schedulers that

are (1) extremely cost-efficient, (2) robust against adversaries, (3) give the performance

of SRAM with the capacity characteristics of a DRAM, (4) are faster than any that

are commercially available today, and (5) can be scaled for several generations of

technology.

Summary

1. The current Internet is a packet switched network. This means that hosts can join and

leave the network without explicit permission. Packets between communicating hosts are

statistically multiplexed across the network and share network and router resources (e.g.,

links, routers, buffers, etc.).

2. In order for the Internet to support a wide variety of applications (each of which places

different demands on bandwidth, delay, jitter, latency, etc.), routers must first differentiate

these packets and buffer them in separate queues during times of congestion. Then an

arbiter provides these packets their required quality of service and access to network

resources.

3. Packet schedulers facilitate the arbiter’s task by maintaining information (“descriptors”)

about every packet that enters a router. These descriptors are linked together to form

descriptor linked lists, and are maintained for each queue in the buffer. The descriptor

linked lists are also responsible for specifying the order of packets in a queue.

4. A typical descriptor in the packet scheduler contains the packet length, an address to the

location of the packet in the buffer, and a pointer to the next descriptor that corresponds

to the next packet in the queue.

5. A packet buffer, a scheduler, and an arbiter always operate in unison, so a scheduler needs

to operate at least as fast as a packet buffer, and in some cases faster, due to the presence

of multicast packets.

6. Maintaining scheduling information was easy at low speeds. However, above 10 Gb/s

(similar to packet buffering), descriptors begin arriving and departing faster than the

access time of a DRAM, so packet scheduling is now a significant bottleneck in scaling

the performance of a high-speed router.

7. Similar to packet buffering (see Chapter 7), a caching hierarchy is an appealing way to

build packet schedulers. We present four different techniques to build schedulers (in unison

8.8 Conclusion 255

with packet buffers) that use the caching hierarchy.

8. In the first three techniques that we present, either the buffer or the scheduler (or both)

are cached (Sections 8.3-8.5). The buffer and scheduler caching hierarchies (if present)

operate independent of each other. A fourth caching technique allows a scheduler to

piggyback on a packet buffer caching hierarchy.

9. The caching techniques allow us to eliminate the need to keep (1) addresses for every

packet, and (2) a pointer to the next descriptor, thus significantly reducing the size of the

scheduler database.

10. Why four different techniques? Because each of these techniques may be needed given

the system constraints and product requirements for a specific router (Section 8.7).

11. The piggybacking technique even eliminates the need to keep any per-packet lengths

in the descriptors, and is based on the following idea: packets already have the length

information. The buffer caching hierarchy can parse these lengths (when it pre-fetches

data into its head cache), and send them to the scheduler just in time, before the arbiter

needs this information. Thus it completely eliminates the need to maintain a scheduler

database.

12. However, this requires us to modify the buffer caching hierarchy introduced in Chapter 7.

Also, the size of the buffer cache is now dependent on the total latency between the buffer

and the scheduler.

13. Our main result is that a scheduler cache (which piggybacks on a packet buffer cache)

requires no more than Q [b(3 + ln Q) + RL] log2 Pmax
Pmin

bytes in its head cache; where L is

the total closed loop latency between the scheduler and the buffer cache, and Q is the

number of queues — and b is the memory block size, Pmax is the maximum packet size,

and Pmin is the minimum packet size supported by the router (Theorem 8.2).

14. A consequence of this result is that it completely eliminates the need to maintain a

scheduler database.

15. The four different caching options to implement a packet scheduler (along with a typical

8.8 Conclusion 256

compromised either now or, provably, ever in future.

17. These techniques are practical and have been implemented in fast silicon in multiple

high-speed Ethernet switches and Enterprise routers.

Chapter 9: Designing Statistics Counters from

Slower Memories
Apr 2008, Sonoma, CA

Contents

9.1 Introduction . 259

9.1.1 Characteristics of Measurement Applications 261

9.1.2 Problem Statement . 263

9.1.3 Approach . 263

9.2 Caching Memory Hierarchy . 265

9.3 Necessity Conditions on any CMA 267

9.4 A CMA that Minimizes SRAM Size 268

9.4.1 LCF-CMA . 268

9.4.2 Optimality . 269

9.4.3 Sufficiency Conditions on LCF-CMA Service Policy 270

9.5 Practical Considerations . 273

9.5.1 An Example of a Counter Design for a 100 Gb/s Line Card 273

9.6 Subsequent Work . 275

9.7 Conclusions . 275

List of Dependencies

• Background: The memory access time problem for routers is described in

Chapter 1. Section 1.5.3 describes the use of caching techniques to alleviate

memory access time problems for routers in general.

Additional Readings

• Related Chapters: The caching hierarchy described in this chapter was first

described to implement high-speed packet buffers in Chapter 7. A similar

technique is also used in Chapter 8 to implement high-speed packet schedulers.

Table: List of Symbols.

T Time Slot
TRC Random Cycle Time of Memory
M Total Counter Width
m Counter Width in Cache
P Minimum Packet Size
R Line Rate
N Number of Counters

C(i; t) Value of Counter i at Time t

b Number of Time Slots between Updates to DRAM

Table: List of Abbreviations.

LCF Longest Counter First
CMA Counter Management Algorithm

SRAM Static Random Access Memory
DRAM Dynamic Random Access Memory

“There are three types of lies - lies, damn lies, and

statistics”.

— Benjamin Disraeli† 9
Designing Statistics Counters from Slower

Memories

9.1 Introduction

Many applications on routers maintain statistics. These include firewalling [194]

(especially stateful firewalling), intrusion detection, performance monitoring (e.g.,

RMON [195]), network tracing, Netflow [196, 197, 198], server load balancing, and

traffic engineering [199] (e.g., policing and shaping). In addition, most routers maintain

statistics to facilitate network management.

�Example 9.1. Figure 9.1 shows four examples of measurement counters in a network

— (a) a storage gateway keeps counters to measure disk usage statistics,

(b) the central campus router maintains measurements of users who

attempt to maliciously set up connections or access forbidden data, (c)

a local bridge keeps usage statistics and performs load balancing and

directs connections to the least-loaded web-server, and (d) a gateway

router that provides connectivity to the Internet measures customer

traffic usage for billing purposes.

†Also variously attributed to Alfred Marshall and Mark Twain.

259

9.1 Introduction 260

(d) Bandwidth

Campus

(2) Malicious
ISP

Gateway

(3) H o s t A c c e s s i n g(4) Host Accessing
Server FarmLocal BridgeStorage Network

Network

Figure 9.1: Measurement infrastructure.

9.1 Introduction 261

The general problem of statistics maintenance can be characterized as follows:

When a packet arrives, it is first classified to determine which actions will be performed

on the packet — for example, whether the packet should be accepted or dropped,

whether it should receive expedited service or not, which port it should be forwarded

to, and so on. Depending on the chosen action, some statistics counters are updated.

We are not concerned with how the action to be performed is identified. The

task of identification of these actions is usually algorithmic in nature. Depending on

the application, many different techniques have been proposed to solve this problem

(e.g., address lookup [134], packet classification [184], packet buffering [173, 174], QoS

scheduling [186], etc.).

We are concerned with the statistics that these applications measure, once the

action is performed and the counter to be updated (corresponding to that action) is

identified. The statistics we are interested in here are those that count events: for

example, the number of fragmented packets, the number of dropped packets, the

total number of packets arrived, the total number of bytes forwarded to a specific

destination, etc. In the rest of this chapter we will refer to these as counters.

As we will see, almost all Ethernet switches and Internet routers maintain statistics

counters. At high speeds, the rate at which these counters are updated causes a

memory bottleneck. It is our goal to study and quantitatively analyze the problem of

maintaining these counters,1 and we are motivated by the following question — How

can we build high-speed measurement counters for routers and switches, particularly

when statistics need to be updated faster than the rate at which memory can be accessed?

9.1.1 Characteristics of Measurement Applications

Note that if we only want to keep measurements for a particular application, we could

exploit the characteristics of that application to build a tailored solution. For example,

in [201], Estan and Varghese exploit the heavy-tailed nature of traffic to quickly

1Our results were first published in [200], and we were not aware of any previous work that
describes the problem of maintaining a large number of statistics counters.

9.1 Introduction 262

identify the largest flows and count them (instead of counting all packets and flows

that arrive) for the Netflow application [196, 197].

NObservation 9.1. Most high-speed routers offer limited capability to count packets

at extremely high speeds. Cisco Systems’ Netflow [196] can sample

flows, but the sampling only captures a fraction of the traffic arriving

at line rate. Similarly, Juniper Networks [197] can filter a limited set of

flows and maintain statistics on them.

But we would like a general solution that caters to a broad class of applications

that have the following characteristics:

1. Our applications maintain a large number of counters. For example, a routing

table that keeps a count of how many times each prefix is used, or a router that

keeps a count of packets belonging to each TCP connection. Both examples

would require several hundreds of thousands or even millions of counters to be

maintained simultaneously, making it infeasible (or at least very costly) to store

them in SRAM. Instead, it becomes necessary to store the counters in off-chip,

relatively slow DRAM.

2. Our applications update their counters frequently. For example, a 100 Gb/s

link in which multiple counters are updated upon each packet arrival. These

read-modify-write operations must be conducted at the same rate as packets

arrive.

3. Our applications mandate that the counter(s) be correctly updated every time a

packet arrives; no packet must be left unaccounted for in our applications.

4. Our applications require measurement at line rates without making any assump-

tions about the characteristics of the traffic that contribute to the statistics.

Indeed, similar to the assumptions made in Chapter 7, we will require hard perfor-

mance guarantees to ensure that we can maintain counters for these applications

at line rates, even in the presence of an adversary.

9.1 Introduction 263

The only assumption we make is that these applications do not need to read the

value of counters in every time slot.2 They are only interested in updating their

values. From the viewpoint of the application, the counter update operation can be

performed in the background. Over time, a control path processor reads the values of

these counters (typically once in a few minutes on most high-speed routers) for post

processing and statistics collection.

9.1.2 Problem Statement

If each counter is M bits wide, then a counter update operation is as follows: 1) read

the M bit value stored in the counter, 2) increment the M bit value, and 3) write the

updated M bit value back. If packets arrive at a rate R Gb/s, the minimum packet

size is P bits, and if we update C counters each time a packet arrives, the memory

may need to be accessed (read or written) every P/2CR nanoseconds.

�Example 9.2. Let’s consider the example of 40- byte TCP packets arriving on

a 40 Gb/s link, each leading to the updating of two counters. The

memory needs to be accessed every 2 ns, about 25 times faster than

the random-access speed of commercial DRAMs today.

If we do an update operation every time a packet arrives, and update C counters

per packet, then the minimum bandwidth RD required on the memory interface

where the counters are stored would be at least 2RMC/P . Again, this can become

unmanageable as the size of the counters and the line rates increase.

9.1.3 Approach

In this chapter, we propose an approach similar to the caching hierarchy introduced

in Chapter 7, which uses DRAMs to maintain statistics counters and a small, fixed

amount of (possibly on-chip) SRAM. We assume that N counters of width M bits are

to be stored in the DRAM, and that N counters of width m�M bits are stored in

2There are applications for which the value of the counter is required to make data-path decisions.
We describe memory load balancing techniques to support these applications in Chapter 10.

9.1 Introduction 264

Arriving Packet

Large DRAM memory with N counters of width M bits

Read M bits Write M bits

Counter Management Algorithm

Small SRAM memory with N counters of width m < M bits

Large Counter

Small Counter

..

..
(Counter Update) (Low Order Bits)

(Full Counter)

Figure 9.2: Memory hierarchy for the statistics counters. A fixed-sized ingress SRAM
stores the small counters, which are periodically transferred to the large counters in DRAM.
The counters are updated only once every b time slots in DRAM.

SRAM. The counters in SRAM keep track of the number of updates not yet reflected

in the DRAM counters. Periodically, under the control of a counter management

algorithm (CMA), the DRAM counters are updated by adding to them the values in

the SRAM counters, as shown in Figure 9.2. The basic idea is as follows:

DIdea. “If we can aggregate and update the DRAM counters relatively

infrequently (while allowing for frequent on-chip SRAM updates), the memory

bandwidth requirements can be significantly reduced”.

We are interested in deriving strict bounds on the size of the SRAM such that –

irrespective of the arriving traffic pattern – none of the counters in the SRAM overflow,

or the access rate and bandwidth requirements on the DRAM are decreased, while

still ensuring correct operation of the counters.

We will see that the size of the SRAM, and the access rate of the DRAM, both

depend on the CMA used. The main result of this chapter is that there exists a CMA

9.2 Caching Memory Hierarchy 265

(which we call largest counter first, LCF) that minimizes the size of the SRAM. We

derive necessary and sufficient conditions on the sizes of the counters (and hence of

the SRAM that stores all these counters), and we prove that LCF is optimal. An

example of how this technique can be used is illustrated below.

�Example 9.3. Consider a 100 Gb/s line card on a router that maintains a million

counters. Assume that the maximum size of a counter is 64 bits and

that each arriving packet updates one counter. Our results indicate

that a statistics counter can be built with a commodity DRAM [3] with

access time 51.2 ns, a DRAM memory bandwidth of 1.25 Gb/s, and

9 Mb of SRAM.

9.2 Caching Memory Hierarchy

We will now describe the memory hierarchy used to hold the statistics counters, and

in the sections that follow we will describe the LCF-CMA (Largest Counter First

Counter Management Algorithm).

ℵDe�nition 9.1. Minimum Packet Size, P : Packets arriving at a switch have

variable lengths. We will denote by P the minimum length that a

packet can have.

As mentioned in Chapter 1, we will choose to re-define the unit of time as necessary

to make our analysis simpler to understand. In what follows, we will denote a time

slot as the time taken to receive a minimum-sized packet at a link rate R. The SRAM

is organized as a statically allocated memory, consisting of separate storage space

for each of the N counters. We will assume from this point forward that an arriving

packet increments only one counter. If instead we wish to consider the case where C

counters are updated per packet, we can consider the line rate on the interface to be

CR.

Each counter is represented by a large counter of size M bits in the DRAM, and

a small counter of size m < M bits in SRAM. The small counter counts the most

9.2 Caching Memory Hierarchy 266

recent events, while the large counter counts events since the large counter was last

updated. At any time instant, the correct counter value is the sum of the small and

large counters.

Updating a DRAM counter requires a read-modify-write operation: 1) Read an M

bit value from the large counter, 2) Add the m bit value of the corresponding small

counter to the large counter, 3) Write the new M bit value of the large counter to

DRAM, and 4) Reset the small counter value.

In this chapter, we will assume that the DRAM access rate is slower than the

rate at which counters are updated in SRAM. And so, we will update the DRAM

only once every b time slots, where b > 1 is a variable whose value will be derived

later. So the I/O bandwidth required from the DRAM is RD = 2RM/Pb, and the

DRAM is accessed only once every At = Pb/2R time slots to perform a read or a

write operation. Thus, the CMA will update a large counter only once every b time

slots. We will determine the minimum size of the SRAM as a function g(.) and show

that it is dependent on N , M , and b. Thus, the system designer is given a choice of

trading off the SRAM size g(N,M, b) with the DRAM bandwidth RD and access time

At.
3

ℵDe�nition 9.2. Count C(i, t): At time t, the number of times that the ith small

counter has been incremented since the ith large counter was last

updated.

ℵDe�nition 9.3. Empty Counter: A counter i is said to be empty at time t if

C(i, t) = 0.

We note that the correct value of a large counter may be lost if the small counter is

not added to the large counter in time, i.e., before an overflow of the small counter.

Our goal is to find the smallest-sized counters in the SRAM, and a suitable CMA,

3The variable b (b > 1) is chosen by the system designer. If b = 1, no SRAM is required, but the
DRAM must be fast enough for all counters to be updated in DRAM.

9.3 Necessity Conditions on any CMA 267

such that a small counter cannot overflow before its corresponding large counter is

updated.4

9.3 Necessity Conditions on any CMA

Theorem 9.1. (Necessity) Under any CMA, a counter can reach a count C(i, t) of

ln
[
(b/(b− 1))(b−1)(N − 1)

]
ln(b/(b− 1))

. (9.1)

Proof. We will argue that we can create an arrival pattern for which, after some time,

there exists k such that there will be (N − 1)/((b− 1)/b)k counters with count k + 1

irrespective of the CMA.

Consider the following arrival pattern. In time slot t = 1, 2, 3, . . . , N , small counter

t is incremented. Every bth time slot one of the large counters is updated, and

the corresponding small counter is reset to 0. So at the end of time slot N , there

are N(b − 1)/b counters with count 1, and N/b empty counters. During the next

N/b time slots, the N/b empty counters are incremented once more, and N/b2 of

these counters are now used to update the large counter and reset. So we now have

[N(b − 1)/b] + [N(b − 1)/b2] counters that have count 1. In a similar way, we can

continue this process to make N − 1 counters have a count of 1.

During the next time N − 1 slots, all N − 1 counters are incremented once, and

1/b of them are served and reset to zero. Now, assume that all of the remaining

approximately N/b empty counters are incremented twice in the next 2N/b time slots,5

while 2N/b2 counters become empty due to service. Note that the empty counters

decreased to 2N/b2 from N/b (if b = 2, there is no change). In this way, after some

time, we can have N − 1 counters of count 2.

4It is interesting to note that there is an analogy between the cache sizes for statistics counters
and the buffer cache sizes that we introduced in Chapter 7. (See Box 9.1.)

5In reality, this is (N − 1)=b empty counters and 2(N − 1)=b time slots.

9.4 A CMA that Minimizes SRAM Size 268

By continuing this argument, we can arrange for all N − 1 counters to have a count

b− 1. Let us denote by T the time slot at which this first happens.

During the interval from time slot 2(N − 1) to 3(N − 1), all of the counters are

again incremented, and 1/b of them are served and reset to 0, while the rest have

a count of two. In the next N − 1 time slots, each of the counters with size 2 is

incremented and again 1/b are served and reset to 0, while the rest have a count of

three. Thus there are (N − 1)((b− 1)/b)2 counters with a count of three. In a similar

fashion, if only non-empty counters keep being incremented, after a while there will

be (N − 1)((b − 1)/b)k counters with count k + 1. Hence there will be one counter

with count:

ln(N − 1)

ln(b/(b− 1))
=

ln(N − 1) + (b− 1) ln(b/(b− 1))

ln(b/(b− 1))

=
ln
[
(b/(b− 1))(b−1)(N − 1)

]
ln(b/(b− 1))

.

Thus, there exists an arrival pattern for which a counter can reach a count C(i, t)

of
ln
[
(b/(b− 1))(b−1)(N − 1)

]
ln(b/(b− 1))

. r

9.4 A CMA that Minimizes SRAM Size

9.4.1 LCF-CMA

We are now ready to describe a counter management algorithm (CMA) that will

minimize the counter cache size. We call this, longest counter first (LCF-CMA).

9.4 A CMA that Minimizes SRAM Size 269

Algorithm 9.1: The longest counter first counter management algorithm.

input : Counter Values in SRAM and DRAM.1

output: The counter to be replenished.2

/* Calculate counter to replenish */3

repeat every b time slots4

CurrentCounters ← SRAM [(1, 2, . . . , N)]5

/* Calculate longest counter */6

CMax ← FindLongestCounter(CurrentCounters)7

/* Break ties at random */8

if CMax > 0 then9

DRAM [CMax] = DRAM [CMax] + SRAM [CMax]10

/* Set replenished counter to zero */11

SRAM [CMax] = 012

/* Service update for a counter */13

repeat every time slot14

if ∃ update for c then15

SRAM [c] = SRAM [c] + UpdateCounter(c)16

Algorithm Description: Every b time slots, LCF-CMA selects the counter i

that has the largest count. If multiple counters have the same count, LCF-CMA picks

one arbitrarily. LCF-CMA updates the value of the corresponding counter i in the

DRAM and sets C(i, t) = 0 in the SRAM. This is described in Algorithm 9.1.

9.4.2 Optimality

Theorem 9.2. (Optimality of LCF-CMA) Under all arriving traffic patterns, LCF-

CMA is optimal, in the sense that it minimizes the count of the counter required.

Proof. We give a brief intuition of this proof here. Consider a traffic pattern from time

t, which causes some counter Ci (which is smaller than the longest counter at time t)

to reach a maximum threshold M∗. It is easy to see that a similar traffic pattern can

9.4 A CMA that Minimizes SRAM Size 270

cause the longest counter at this time t to exceed M∗. This implies that not serving

the longest counter is sub-optimal. A detailed proof appears in Appendix I. r

9.4.3 Su�ciency Conditions on LCF-CMA Service Policy

Theorem 9.3. (Sufficiency) Under the LCF-CMA policy, the count C(i, t) of every

counter is no more than

S ≡ ln bN

ln(b/(b− 1))
. (9.2)

Proof. (By Induction) Let d = b/(b − 1). Let Ni(t) denote the number of counters

with count i at time t. We define the following Lyapunov function:

F (t) =
∑
i>1

diNi(t). (9.3)

We claim that under LCF policy, F (t) 6 bN for every time t. We shall prove this by

induction. At time t = 0, F (t) = 0 6 bN . Assume that at time t = bk for some k,

F (t) 6 bN . For the next b time slots, some b counters with count i1 > i2 > · · · > ib

are incremented. Even though not required for the proof, we assume that the counter

values are distinct for simplicity. After the counters are incremented, they have counts

i1 + 1, i2 + 1, . . . , ib + 1 respectively, and the largest counter among all the N counters

is serviced. The largest counter has at least a value C(.) > i1 + 1.

• Case 1 : If all the counter values at time t were nonzero, then the contribution

of these b counters in F (t) was: α = di1 + di2 + · · ·+ dib . After considering the

values of these counters after they are incremented, their contribution to F (t+ b)

becomes dα. But a counter with a count C(.) > i1 + 1 is served at time t+ b and

its count becomes zero. Hence, the decrease to F (t+ b) is at least dα/b. This is

because the largest counter among the b counters is served, and the contribution

of the largest of the b counters to the Lyapunov function must be at least greater

9.4 A CMA that Minimizes SRAM Size 271

than the average value of the contribution, dα/b. Thus, the net increase is at

most dα[1− (1/b)]− α. But d[1− (1/b)] = 1. Hence, the net increase is at most

zero; i.e., if arrivals occur to non-zero queues, F (t) can not increase.

• Case 2 : Now we deal with the case when one or more counters at time t were

zero. For simplicity, assume all b counters that are incremented are initially

empty. For these empty counters, their contribution to F (t) was zero, and their

contribution to F (t+ b) is db. Again, the counter with the largest count among

all N counters is served at time t + b. If F (t) 6 bN − db, then the inductive

claim holds trivially. If not, that is, F (t) > bN − db, then at least one of the

N − b counters that did not get incremented has count i∗ + 1, such that, di
∗

> b;

otherwise, it contradicts the assumption F (t) > bN − db. Hence, a counter with

count at least i∗ + 1 is served, which decreases F (t + b) by di
∗+1 = db. Hence

the net increase is zero. One can similarly argue the case when arrivals occur to

fewer than b empty counters.

Thus we have shown that, for all time t when the counters are served, F (t) 6 bN .

This means that the counter value cannot be larger than im, where, dim = Nb, i.e.,

C(.) 6
ln bN

ln d
. (9.4)

Substituting for d, we get that the counter value is bounded by S. r

Theorem 9.4. (Sufficiency) Under the LCF policy, the number of bits that are

sufficient per counter to ensure that no counter overflows, is given by

log2

ln bN

ln d
. (9.5)

Proof. We know that in order to store a value x we need at most log2 x bits. Hence

the proof follows from Theorem 9.3.6 r

6It is interesting to note that the cache size is independent of the width of the counters being
maintained.

9.4 A CMA that Minimizes SRAM Size 272

�Box 9.1: Comparing Bu�ers and Counters�

9

1001

Unary :

Cluster 5 :

Decimal :

Binary :

IXRoman :

0100000000One-hot :

10111111111One-cold :

100Ternary :

Figure 9.3: Nu-
meric Notations

A number can be represented in many notations, e.g., the number

9 is shown in five different notations in Figure 9.3. Most computing

systems (servers, routers, etc.) store numbers in binary or hexadecimal

format. In contrast, humans represent and manipulate numbers in

decimal (base-10) format. Each notation has its advantages and is

generally used for a specific purpose or from deference to tradition.

For example, the cluster-5 notation (a variant of the unary notation)

is in vogue for casual counting and tallying, because there is never a

need to modify an existing value — increments are simply registered

by concatenating symbols to the existing count.

�Example 9.4. Routers sometimes maintain counts in one-hot (or

its inverse, one-cold) representation, where each con-

secutive bit position denotes the next number, as shown in Figure 9.3. With

this representation, incrementing a counter is easy and can be done at high

speeds in hardware — addition involves unsetting a bit and setting the next

bit position, i.e., there are never more than two operations per increment.

Why are we concerned with counter notations? For a moment, assume that counts are

maintained in unary — the number two would be denoted with two bits, the number three

would have three bits, and so on. This means that each successive counter update simply

adds or concatenates a bit to the tail of the bits currently representing the counter. Thus,

in this unary representation, updates to the counter cache are “1-bit packets” that join the

tail of a cached counter (which is simply a queue of “1-bit packets”).

Viewed in this notation, we can re-use the bounds that we derived on the queue size

for the head cache in Chapter 7, Theorem 7.3! We can bound the maximum value of the

counters in cache to S ≡ [Nb(3 + ln N)]. Of course, when applying these results, instead

of servicing the most deficited queue (as in Theorem 7.3), we would service the longest

counter. If we represent these counters in base two, we can derive the following trivially:a

Corollary 9.1. (Sufficiency) A counter of size S ≡ log2[Nb(3 + ln N)] bits is sufficient

for LCF to guarantee that no counter overflows in the head cache.

aOf course this bound is weaker than Theorem 9.4, because it does not take advantage of
the fact that when a counter is flushed it is cleared completely and reset to zero.

9.5 Practical Considerations 273

9.5 Practical Considerations

There are three constraints to consider while choosing b:

1. Lower bound derived from DRAM access time. The access time of the DRAM

is At = Pb/2R. Hence, if the DRAM supports a random access time TRC , we

require Pb/2R > TRC . Hence b > 2RTRC/P , which gives a lower bound on b.

2. Lower bound derived from memory I/O bandwidth. Let the I/O bandwidth

of the DRAM be D. Every counter update operation is a read-modify-write,

which takes 2M bits of bandwidth per update. Hence, 2RM/Pb 6 D, or

b > 2RM/PD. This gives a second lower bound on b.

3. Upper bound derived from counter size for LCF policy. From Theorem 9.4, the

size of the counters in SRAM is bounded by log2 S. However, since our goal is

to keep only a small-sized counter in the SRAM we need that log2 S < M . This

gives us an upper bound on b.

The system designer can choose any value of b that satisfies these three bounds.

Note that for very large values of N and small values of M , there may be no suitable

value of b. In such a case, the system designer is forced to store all the counters in

SRAM.

9.5.1 An Example of a Counter Design for a 100 Gb/s Line

Card

We consider an R = 100 Gb/s line card that maintains a million counters. Assume

that the maximum size of a counter update is P = 64 bytes and that each arriving

packet updates one counter.7 Suppose that the fastest available DRAM has an access

time of TRC = 51.2 ns. Since we require Pb/2R > TRC , this means that b > 20. Given

present DRAM technology, this is sufficient to meet the lower bound obtained on b

using the memory I/O bandwidth constraint. Hence the lower bound on b is simply

b > 20. We will now consider the upper bound on b.

7This could also be an OC192 card with, say, C = 10 updates per packet.

9.5 Practical Considerations 274

�Box 9.2: Application and Bene�ts of Caching�

We have applied the counter caching hierarchy described in this chapter to a number
of applications that required measurements on high-speed Enterprise routers at Cisco
Systems [33]. At the time of writing, we have developed statistics counter caches for
security, logical interface statistics for route tables, and forwarding adjacency statistics.
Our implementations range from 167M to 1B updates/s [202] and support both incremental
updates (“packet counters”) and variable-size updates (“byte counters”). Where required,
we have modified the main caching algorithm presented in this chapter to make it more
implementable. Also, in applications, where it was acceptable we have traded off reductions
in cache size for a small cache overflow probability.

In addition to scaling router line card performance and making line card counter
memory performance robust against adversaries (similar to the discussion in Box 7.1), in
the course of deployment a number of advantages of counter caching have become apparent:

1. Reduces Memory Cost: In our implementations we use either embedded [26] or
external DRAM [3] instead of costly QDR-SRAMs [2] to store counters. In most
systems, memory cost (which is roughly 25% to 33% of system cost) is reduced by
50%.

2. Wider Counters: DRAM has much greater capacity than SRAM; so it is feasible
to store wider counters, even counters that never overflow for the life of a product.a

3. Decreases Bandwidth Requirements: The counter caching hierarchy only makes
an external memory access once in b time slots, rather than every time slot. In the
applications that we cater to, b is typically between 4 and 10. This means that the
external memory bandwidth is reduced by 4 to 10 times, and also aids in I/O pin
reductions for packet processing ASICs.

4. Decreases Worst-Case Power: As a consequence of bandwidth reduction, the
worst-case I/O power is also decreased by 4− 10 times.

aIn fact, with ample DRAM capacity, counters can be made 144 bits wide. These counters
would never overflow for the known lifetime of the universe for the update rates seen on typical
Enterprise routers!

�Example 9.5. We use two different examples for the counter size M required in

the system.

1. If M = 64, then log2 S < M and we design the counter architec-

ture with b = 20. We get that the minimum size of the counters

in SRAM required for the LCF policy is 9 bits, and this results in

9.6 Subsequent Work 275

an SRAM of size 9 Mb. The required access rate can be supported

by keeping the SRAM memory on-chip.

2. If we require M = 8, then we can see that ∀b, b > 20, log2 S > M .

Thus there is no optimal value of b and all the counters are always

stored in SRAM without any DRAM.

9.6 Subsequent Work

The LCF algorithm presented in this chapter is optimal, but is hard to implement in

hardware when the total number of counters is large. Subsequent to our work, there

have been a number of different approaches that use the same caching hierarchy, but

attempt to reduce the cache size and make the counter management algorithm easier to

implement. Ramabhadran [203] et al. described a simpler, and almost optimal CMA

algorithm that is much easier to implement in hardware, and is independent of the

total number of counters, but keeps 1 bit of cache state per counter. Zhao et al. [204]

describe a randomized approach (which has a small counter overflow probability) that

further significantly reduces the number of cache bits required. Their CMA also keeps

no additional state about the counters in the cache. Lu [205] et al. present a novel

approach that compresses the values of all counters (in a data structure called “counter

braids”) and minimizes the total size of the cache (close to its entropy); however, this

is achieved at the cost of trading off counter retrieval time, i.e., the time it takes to

read the value of a counter once it is updated. The technique also trades off cache size

with a small probability of error in the value of the counter measured. Independent of

the above work, we are also aware of other approaches in industry that reduce cache

size or decrease the complexity of implementation [206, 207, 202].

9.7 Conclusions

Routers maintain counters for gathering statistics on various events. The general

caching hierarchy presented in this chapter can be used to build a high-bandwidth

statistics counter for any arrival traffic pattern. An algorithm, called largest counter

first (LCF), was introduced for doing this, and was shown to be optimal in the

9.7 Conclusions 276

sense that it only requires a small, optimally sized SRAM, running at line rate, that

temporarily stores the counters, and a DRAM running at slower than the line rate

to store complete counters. For example, a statistics update arrival rate of 100 Gb/s

on 1 million counters can be supported with currently available DRAMs (having a

random access time of 51.2 ns) and 9 Mb of SRAM.

Since our work (as described in Section 9.6), there have been a number of approaches,

all using the same counter hierarchy, that have attempted to both reduce cache size and

decrease the complexity of LCF. Unlike LCF, the key to scalability of all subsequent

techniques is to make the counter management algorithm independent of the total

number of counters. While there are systems for which the caching hierarchy cannot

be applied (e.g., systems that cannot fit the cache on chip), we have shown via

implementation in fast silicon (in multiple products from Cisco Systems [202]) that the

caching hierarchy is practical to build. At the time of writing, we have demonstrated

one of the industry’s fastest implementations [33] of measurement infrastructure, which

can support upwards of 1 billion updates/sec. We estimate that more than 0.9 M

instances of measurement counter caches (on over three unique product instances8)

will be made available annually, as Cisco Systems proliferates its next generation of

high-speed Ethernet switches and Enterprise routers.

Summary

1. Packet switches (e.g., IP routers, ATM switches, and Ethernet switches) maintain statistics

for a variety of reasons: performance monitoring, network management, security, network

tracing, and traffic engineering.

2. The statistics are usually collected by counters that might, for example, count the number

of arrivals of a specific type of packet, or count particular events, such as when a packet

is dropped.

3. The arrival of a packet may lead to several different statistics counters being updated.

The number of statistics counters and the rate at which they are updated is often limited

by memory technology. A small number of counters may be held in on-chip registers or in

8The counter measurement products are made available as separate “daughter cards” and are
made to be plugged into a family of Cisco Ethernet switches and Enterprise routers.

9.7 Conclusions 277

(on- or off-chip) SRAM. Often, the number of counters is very large, and hence they need

to be stored in off-chip DRAM.

4. However, the large random access times of DRAMs make it difficult to support high-speed

measurements. The time taken to read, update, and write a single counter would be too

large, and worse still, multiple counters may need to be updated for each arriving packet.

5. We consider a caching hierarchy for storing and updating statistics counters. Smaller-sized

counters are maintained in fast (potentially on-chip) SRAM, while a large, slower DRAM

maintains the full-sized counters. The problem is to ensure that the counter values are

always correctly maintained at line rate.

6. We describe and analyze an optimal counter management algorithm (LCF-CMA) that

minimizes the size of the SRAM required, while ensuring correct line rate operation of a

large number of counters.

7. The main result of this chapter is that under the LCF counter management algorithm, the

counter cache size (to ensure that no counter ever overflows) is given by log2

ln bN

ln d
bits,

where N is the number of counters, b is the ratio of DRAM to SRAM access time, and

d = b=(b− 1) (Theorem 9.4).

8. The counter caching techniques are resistant to adversarial measurement patterns that

can be created by hackers or viruses; and performance can never be compromised, either

now or, provably, ever in future.

9. We have modified the above counter caching technique as necessary (i.e., when the number

of counters is large) in order to make it more practical.

10. At the time of writing, we have implemented the caching hierarchy in fast silicon, and

support upwards of 1 billion counter updates/sec in Ethernet switches and Enterprise

routers.

Chapter 10: Maintaining State with Slower

Memories
May 2008, Santa Rosa, CA

Contents

10.1 Introduction . 280

10.1.1 Characteristics of Applications that Maintain State 284

10.1.2 Goal . 285

10.1.3 Problem Statement . 285

10.2 Architecture . 286

10.2.1 The Ping-Pong Algorithm . 287

10.3 State Management Algorithm . 288

10.3.1 Consequences . 294

10.4 Implementation Considerations . 295

10.5 Conclusions . 297

List of Dependencies

• Background: The memory access time problem for routers is described in

Chapter 1. Section 1.5.2 describes the use of load balancing techniques to

alleviate memory access time problems for routers.

Additional Readings

• Related Chapters: The general load balancing technique called constraint sets,

used for analysis in this chapter, was first described in Section 2.3. Constraint sets

are also used to analyze the memory requirements of other router architectures

in Chapters 2, 3, 4 and 6.

Table: List of Symbols.

C Number of Updates per Time Slot
E Number of State Entries
h Number of Banks
M Total Memory Bandwidth
R Line Rate
S Speedup of Memory
T Time slot

TRC Random Cycle Time of Memory

Table: List of Abbreviations.

ISP Internet Service Provider
I/O Input-Output (Interconnect)
GPP Generalized Ping-Pong
SMA State Management Algorithm

SRAM Static Random Access Memory
DRAM Dynamic Random Access Memory

“To ping, pong, or ping-pong?”

— The Art of Protocol Nomenclature† 10
Maintaining State with Slower Memories

10.1 Introduction

Many routers maintain information about the state of the connections that they

encounter in the network. For example, applications such as Network Policing,

Network Address Translation [208], Stateful Firewalling [194], TCP Intercept, Network

Based Application Recognition [209], Server Load balancing, URL Switching, etc.,

maintain state. Indeed, the very nature of the application may mandate that the

router keep state.

The general problem of state maintenance can be characterized as follows: When a

packet arrives, it is first classified to identify the connection or flow (we will describe

this term shortly) to which it belongs. If the router encounters a new flow, it creates

an entry for that flow in a flow table and keeps a state entry in memory corresponding

to that flow. If packets match an existing flow, the current state of the flow is retrieved

from memory. Depending on the current state, various actions may be performed on

the packet — for example, the packet may be accepted or dropped, it may receive

expedited service, its header may be re-written, the packet payload may be encrypted,

or it may be forwarded to a special port or a special-purpose processor for further

†Ping is an application to troubleshoot networks. Pong is an internal Cisco proposal for
synchronizing router clocks (currently subsumed by IEEE 1588). Ping-pong is a technique that is
generalized in this chapter to maintain state entries on slower memories.

280

10.1 Introduction 281

Host

Network Address

WAN

Translator

Local ISP

25.0.0.0/22

Local ISP

200.11.0.0/22

Router

R1

R4
R5

R3R2

Host

Host

..

192.2.2.1

55.1.2.7

192.2.2.2

192.2.2.63

IP, Port, FIN, SYN, Public Port,...
State Table

192.2.2.1, 1024, YES, YES, 2010, ...
192.2.2.2, 1026, NO, NO, 2011, ...

192.2.2.63, 1029, NO, YES, 2012, ...

..

Z1

Z2

Z3

A1
A2

A3
A4

Gateway Local ISP, Max Bandwidth, Used...
State Table

25.0.0.0/22, 25 Gb/s, 22 Gb/s, ...

200.11.0.0/22, 15 Gb/s, 11 Gb/s, ...

..

15.0.0.0/16, 10 Gb/s, 2 Gb/s, ..

(a) State Maintainence for Network Address Translation

(b) State Maintainence for Policing and Bandwidth Shaping

25 Gb/s
15 Gb/s

A2

Z1

Z2

Z3

A3
A4

Policer/Shaper

A7 A6 A1..

Figure 10.1: Maintaining state in Internet routers.

10.1 Introduction 282

processing, etc. Once the action is performed, the state entry is modified and written

back to memory.

�Example 10.1. Figure 10.1 shows two examples of routers maintaining state — (a)

A network address translator [208] keeps state for connections, so that

it can convert private IP addresses to its own public IP address when

sending packets to the Internet, (b) A gateway router belonging to a

backbone Internet service provider (ISP) maintains state for packets

arriving and departing from local ISPs, so that it can police data and

provide the appropriate bandwidth based on customer agreements and

policy.

We are not concerned with how the various flows are classified and identified, or the

actions that are performed on the packet once the state entry is retrieved. The task

of flow classification is algorithmic in nature, and a number of techniques have been

proposed to solve this problem [134, 184]. Similarly, the actions that are performed

on the packet (after the state entry is retrieved) are compute-intensive and are not

a focus of this chapter. We are only concerned with how the actual state entry is

updated because the operation is memory-intensive.

NObservation 10.1. A flow is defined by the specific application that maintains

state. The granularity of a flow can be a single connection or a set of

aggregated connections. For example, a network address translator, a

stateful firewall, and an application proxy maintain flow state entries

for each individual TCP/UDP connection they encounter. A policer,

on the other hand, may keep state entries at a coarser level — for

example, it may only maintain state entries for all packets that match

a certain set of pre-defined policies or an access control list.

In summary, a state entry needs to be read, modified, and written back to memory

in order to update its state. This operation is usually referred to as a “read-modify-

write” operation. The set of tasks required to perform state maintenance is shown

10.1 Introduction 283

Read

..

..

..

..

CAM
 (Classification)

TIME, SYN, FIN, ACK, MIN, MAX, MARK

...

 State Memory

1

2

N

3

250001, YES, NO, YES, 0640, 10016, NONE

220105, YES, NO, NO, 0064, 09016, NONE

000105, YES, YES, YES, 0040, 01024, NONE

..

State Memory

Identify
Flows Flow

..

R’

R’
R’
R’ Extract

Headers

Switch Fabric

Write
Flow

Packet
Make Decision

R

Flow
Address

250001, YES, NO, YES, 0640, ...

25
08

90
, Y

E
S,

 Y
E
S,

 Y
E
S,

 0
12

0,
 ..

.

Figure 10.2: Maintaining state on a line card.

10.1 Introduction 284

in Figure 10.2. As we will see, the rate at which state entries can be updated is

bottlenecked by memory access time. It is our goal to study and quantitatively analyze

the problem of maintaining state entries [210]. We were not aware of any previous

work that describes the problem of maintaining state entries at high speeds. And so

we are motivated by the following question — How can we build high-speed memory

infrastructure for high-speed routers, particularly when the updates need to occur faster

than the memory access rate?

10.1.1 Characteristics of Applications that Maintain State

We are interested in a general solution (which does depend on the characteristics of

any one particular application) that can maintain state entries at high speeds. The

applications that our solution must cater to share the following characteristics:

1. Our applications maintain a large number of state entries, one for each flow. For

example, a firewall keeps track of millions of flows, while an application proxy

usually tracks the state of several hundreds of thousands of connections. These

applications require a large memory capacity, making it unfeasible (or at least

very costly) to store them on-chip in SRAM. Instead, it becomes necessary to

store the state entries in off-chip memory.

2. Our applications update their state entries frequently, usually once for each

packet arrival. In the worst case, they must keep up with the rate at which the

smallest-sized packets can arrive.

3. Our applications are sensitive to latency. This is because the packets in our

applications must wait until the state entry is retrieved before any action

can be performed. So our solution should not have a large memory latency.

More important, the latency to retrieve a state entry must be predictable and

bounded. This is because packet processing ASICs often use pipelines that are

several hundred packets long – if some pipeline stages are non-deterministic, the

whole pipeline can stall, complicating the design. Second, the system can lose

throughput in unpredictable ways.

10.1 Introduction 285

4. Our applications mandate that state entries be updated at line rate. There must

be no loss of performance, and no state entry must be left unaccounted for.

10.1.2 Goal

Our goal is to build a memory subsystem that can update state entries at high speeds

that make no assumptions about the characteristics of the applications or the traffic.

Indeed, similar to the assumptions made in Chapter 7, we will mandate that our

memory subsystem give deterministic performance guarantees and ensure that we

can update entries at line rates, even in the presence of an adversary. Of course, it is

also our goal that the solution that caters to the above applications can update state

entries at high speeds with minimum requirements on the memory.

NObservation 10.2. Routers that keep measurement counters (as described in Chap-

ter 9) also maintain state. Thus, the storage gateway, the central

campus router, the local bridge, and the gateway router in Figure 9.1

may all maintain state. Conceptually there are two key differences

between applications that keep state and applications that maintain

statistics counters — (1) Applications do not need the value of the

measurement counter (and hence do not need to retrieve the counter)

for each packet, and (2) Counting is a special transformation of the data

(i.e., depending on the way counters are stored and their value, only a

few bits are modified at a time), whereas a state-based application can

transform the read value in a more general manner.

10.1.3 Problem Statement

The task of state maintenance must be done at the rate at which a smallest-size packet

can arrive and depart the router line card. For example, with a line rate of 10 Gb/s,

a “read-modify-write” operation needs to be done (assuming 40-byte minimum-sized

packets) once every 32 ns. Since there are two memory operations per packet, the

memory needs to be accessed every 16 ns. This is already faster than the speed of the

10.2 Architecture 286

most widely used commodity SDRAM memories, which currently have an access time

of ∼50 ns. It is extremely challenging to meet this requirement because, unlike the

applications that we described in the previous chapters (packet buffering, scheduling,

measurement counters, etc.), there is no structure that can be exploited when updating

a state entry. Indeed, any state entry can be updated (depending on the packet that

arrived). The memory subsystem must cater to completely random accesses. Further,

as line rates increase, the problem only becomes worse.

�Example 10.2. At 100 Gb/s, a 40-byte packet arrives in 3.2 ns, which means

that the memory needs to be accessed (for a read or a write) every

1.6ns. This is faster than the speed of the highest-speed commercial

QDR-SRAM [2] available today.

10.2 Architecture

In what follows, we will first describe the main constraint in speeding up the memory

update rate in a standard memory, and then describe techniques to alleviate this

constraint. We note that read-modify-write operations involve two memory accesses —

(1) the state entry is read from a memory location, and (2) then later modified and

written back. Since the state entry for a particular flow resides in a fixed memory

location, both the read and write operations are constrained, i.e., they must access

the same location in memory.

In order to understand how memory locations are organized, we will consider a

typical commodity SDRAM memory. An SDRAM’s internal memory is arranged

internally as a set of banks. The access time of the SDRAM (i.e., the time taken

between consecutive accesses to any location in the memory) is dependent on the

sequence of memory accesses. While there are a number of constraints on how the

SDRAM can be accessed (see Appendix A for a discussion), the main constraint is

that two consecutive accesses to memory that address the same bank must be spaced

apart by time TRC (which is called the random cycle time of the SDRAM). However,

if the two consecutive memory accesses belong to different banks, then they need to

10.2 Architecture 287

be spaced apart by only around TRR time (called the cycle time of DRAM when there

is no bank conflict).

Unfortunately, the bank that should be accessed on an SDRAM depends on where

the state entry for the corresponding flow to which an arriving packet belongs is stored.

Since we do not know the pattern of packet arrivals, the bank that is accessed cannot

be predicted a priori. In fact, for any particular state entry, the read and the write

operations must access the same bank (because they access the same entry), preventing

consecutive memory operations from being accessed any faster than TRC time. Since

designers have to account for the worst-case memory access pattern, the state entries

can be updated only once in every two random cycle times in any commodity DRAM

memory.

NObservation 10.3. In general for any SDRAM, TRR < TRC , and so if one could

ensure that consecutive accesses to DRAM are always made to different

banks, then one can speed up the number of accesses that an SDRAM

can support by accessing it once every TRR time. On the other hand,

if these memory banks were completely independent (for example, by

using multiple physical DRAMs, or if the memory banks were on-chip),

and we could ensure that consecutive memory accesses are always to

different banks, then depending on the number of banks available, we

could potentially perform multiple updates per TRC time.

10.2.1 The Ping-Pong Algorithm

How can we ensure that consecutive memory accesses do not access the same bank?

Consider the following idea:

DIdea. We can read the state from a bank that contains an entry, and write it

back to an alternate bank that is currently not being accessed.

10.3 State Management Algorithm 288

Indeed, the above idea is well known and is referred to in colloquia as the “ping-

pong” or “double buffering” algorithm [211, 212]. The technique is simple — a read

access to an entry, and a write access to some other entry, are processed simultaneously.

The read access always gets priority and is retrieved from the bank that contains the

updated state entry. If the write accesses the same bank as the read, then it is written

to an alternate bank. Thus every entry can potentially be maintained in one of two

banks. A pointer is maintained for every entry, to specify the bank that contains the

latest updated version of the state entry.

NObservation 10.4. Note that instead of a pointer, a bitmap could be maintained to

specify which of the two banks contains the latest updated version of

the entry. Only one bit per entry is needed to disambiguate the bank.

In contrast, a pointer-based implementation that allocates a state entry

to an arbitrary new location (when it updates the state entry) requires

log 2E bits per entry, where E is the total number of state entries. Of

course, in order to maintain bitmaps, when a state entry is written to

a bank, it must be written to a memory address that is the same as

its previous address, except that it is different in the most significant

bits that represent the bank to which it is written. Note that with

the above technique, the memory update rate can be speeded up by a

factor of two, at the consequence of losing half the memory capacity.

10.3 State Management Algorithm

The ping-pong technique can speed up state updates by a factor of two. However, it

is not clear how we can extend the above algorithm to achieve higher speedup. The

problem is that the read accesses to memory are still constrained. We are looking for

a general technique that can be used to speed up the performance of a memory for

any value of the speedup S. This motivates the following idea:

10.3 State Management Algorithm 289

DIdea. We can remove the constraints on the read by maintaining multiple

copies of the state entry on separate banks, and alleviate the write constraints by

load balancing the writes over a number of available banks.

The above idea is realized in two parts.

1. Maintaining multiple copies to remove bank constraints on read ac-

cesses: In order to remove the read constraints on a bank, multiple copies of

the state entry are maintained on different banks. Depending on the banks that

are free at the time of access, any one of the copies of the state entry is read

from a free bank.

2. Changing the address and maintaining pointers to remove bank con-

strains on write accesses: When writing back the modified state entry, again

depending on the banks that are free, multiple copies of the modified state entry

are written to different banks, one to each distinct bank. Since the memory

location to the modified state entry changes, a set of pointers (or a bitmap as

described in Observation 10.4) to the multiple copies of the state entry for that

flow is maintained. Note that we need to maintain multiple copies of the updated

state entry, so that when the corresponding state entry is read (in future), the

read access has a choice of the banks to read the updated state entry from.

We will now formally describe a State Management Algorithm called “Generalized

Ping-Pong” (GPP-SMA) that realizes the above idea. Assume that GPP-SMA,

performs C read-modify-write operations every random cycle time, TRC . In what

follows, C is a variable, and we can design our memory subsystem for any value of C.

For GPP-SMA, C is also the number of copies of a state entry that must be maintained

for each flow. Clearly this is the case, since the C read accesses in a random cycle

time must all be retrieved from C distinct memory banks. GPP-SMA maintains the

following two sets.

10.3 State Management Algorithm 290

External Memory with Parallel Banks

Packet Processor/ASIC

0100100

0000011

0010001

1100000

...

Old location(s) for data

Old Bitmap State

Potential new location(s) for data

0100100

0000011

0010001

0000011
...

New Bitmap State

One bit per } bank for

1

2

N

each entry
3

Figure 10.3: The read-modify-write architecture.

ℵDe�nition 10.1. Bank Read Constraint Set (BRCS): This is the set of banks

that cannot be used in the present random cycle time because a state

entry needs to be read from these banks. Note that at any given time

|BRCS| 6 C, because no more than C read accesses (one for each

of the C state entries that are updated) need to be retrieved in every

time period.

ℵDe�nition 10.2. Bank Write Constraint Set (BWCS): This is the set of banks

that cannot be used in the present random cycle time because data

needs to be written to these banks. During any time period, the

state entry for up to “C” entries needs to be modified and written

back to memory. Since C copies are maintained for each state entry,

this requires C × C = C2 write accesses to memory. All these C2

write accesses should occur to C2 distinct banks (as each bank can be

accessed only once in a time period). Hence |BWCS| 6 C2.

Figure 10.3 describes the general architecture, and how state entries are moved

from one bank to another after they are updated. We are now ready to prove the

10.3 State Management Algorithm 291

Algorithm 10.1: The Generalized Ping-Pong SMA.

input : Requests for Memory Updates.1

output: A bound on the number of memories and total memory bandwidth2

required to accelerate memory access time.

C ← Number of updates per random cycle time3

U ← (1, 2, . . . , h) /* Univeral set of all banks */4

for each time period T do5

BRCS ← ∅6

BWCS ← ∅7

for each read update request to entry e do8

/* Retrieve set of all banks for entry e */9

AvailableBanks ← RetrieveBanks(e) \ BRCS10

/* Choose bank and read entry */11

b ← AnyBank(AvailableBanks)12

Read entry e from bank b13

/* Update Bank Read Constraint Set */14

BRCS ← BRCS ∪ b15

for each write update request to entry e do16

/* Choose C banks for every entry */17

B1, B2, . . . BC ←PickBanksForWrite(U \BRCS \BWCS)18

Write entry e to chosen C banks B1, B2, . . . BC19

/* Update Bank Write Constraint Set */20

BWCS ← BWCS ∪ B1, B2, . . . BC21

/* Update bitmap for entry e */22

UpdateBankBitmap(e, B1, B2, . . . BC)23

main theorem of this chapter:

Theorem 10.1. (Sufficiency) Using GPP-SMA, a memory subsystem with h inde-

pendent banks running at the line rate can emulate a memory that can be updated at

C times the line rate (C reads and C writes), if C 6 b
√

4h+1−1c
2

.

Proof. In order that all the C reads and C2 writes are able to access a free bank, we

need to ensure that GPP-SMA has access to at least C + C2 = C(C + 1) banks. In

10.3 State Management Algorithm 292

Fraction of Memory Capacity Available

U
pd

at
e

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f h() 4h 1+ 1–=

(h=6, S=4)

(h=12, S=6). .
.
(h=2, S=2)

(h=20, S=8)
.

Figure 10.4: Tradeoff between update speedup and capacity using GPP-SMA.

any given time period, GPP-SMA first satisfies all the read accesses to memory. If

we have at least C banks, then clearly it is possible to satisfy this and read from C

unique banks, because each state entry is kept on C unique banks. However, we need

more banks. The remaining C2 writes must be written to C2 distinct banks (which

are distinct from the banks that were used to read C entries in the same random cycle

time). Hence, there need to be at least h > C +C2 independent banks. Solving for C,

we get,

C 6
b
√

4h+ 1 − 1c
2

. (10.1)

Note that our analysis assumes that up to C banks are independently addressable

in the random cycle time of the memory.1 This completes the proof. r

1Commercial DRAM memories limit the maximum number of banks that can be addressed by
any single chip in a given random cycle time, due to memory bandwidth limitations. This limit can
be increased by using multiple DRAM devices. Of course, if the memory banks are on-chip this is
not an issue.

10.3 State Management Algorithm 293

�Box 10.1: Adversary Obfuscation�

A large portion of the cost (in terms of memory bandwidth, cache size, etc.) of
deploying the memory management algorithms described in this thesis comes from having
to defend against worst-case attacks by an adversary. In certain instances, the cost of
implementing these algorithms may be impractical, e.g., they may require too many logic
gates, or use a cache size too large to fit on packet processing ASICs. We could reduce this
cost (e.g., our algorithms could be simplified, or the caches can be sized sub-optimally),
if we could somehow prevent worst-case adversarial attacks or bound the probability of
worst-case adversarial attacks.

In order to achieve this, we have deployed and re-used in multiple instances [33] (and
this has also been proposed by other research [204] and development groups [213]) an idea
called adversary obfuscation. The basic technique is simple —

DIdea. “If the first access or value (e.g., addresses, block offsets, initialization values) in
a sequence of operations that manipulate the data structures of the memory management
algorithms can be obfuscated, then the relation between an adversarial pattern and the

state of the memory management algorithm cannot be deterministically ascertained”.

For example, the above idea can be implemented by randomizing the firsta access
(or value) used by certain data structures, by the use of a programmable seed that is
not available to the adversary at run-time. Adversary obfuscation can be overlaid on
many of our deterministic memory management techniques to reduce the probability of an
adversarial attack to a pre-determined low probability that is acceptable in practice (for
example, reducing the chance that an adversary is successful to less than 1 in 1030 tries).

NObservation 10.5. Note that adversary obfuscation is a natural consequence of the
GPP-SMA algorithm. Every time a new entry is added, or an existing entry
updated, there is a natural choice of (a subset of h) banks that the new
entry must be written to, C times. Since this choice is made at run-time,
an adversary cannot predict the banks on which an updated entry is located.
Over time, GPP-SMA exercises choice in every time slot, and the probability
of an adversarial pattern becomes statistically insignificant.b

aThis can also be done periodically rather than just at the first access.
bOf course, the function that exercises this choice can itself be seeded by a programmable

value created at run-time, and hence not available to the adversary.

10.3 State Management Algorithm 294

Figure 10.4 shows how GPP-SMA trades off update speedup with capacity. Note

that by definition the update speedup S = 2C, because with a standard memory

only one state entry can be updated every 2 random cycle times, whereas GPP-SMA

performs C updates per random cycle time.

From the above analysis, only the even Diophantine2 solutions for h and Diophantine

solutions for C that satisfy Equation 10.1 are true solutions.3 For example, only the

following values of (h,C) = (2, 1), (6, 2), (12, 3) . . . are valid. This is because the above

analysis assumes that C updates are performed in a time period TRC , where C is

assumed to be an integer. But if we are interested in non-integer values of C (for

example, C = 2.5 updates per random cycle time), we could do the above analysis

over a different time period which is a multiple of TRC , say yTRC , such that yC is

an integer. Then it is possible to find non-integer values of C. This will result in a

tighter bound for the number of banks required to support non-integer values of C.

In practice, non-integer values of C are almost always required.

�Example 10.3. Consider a 10 Gb/s line card with a state table of size 1 million

entries, which are 256 bits in width. Suppose that a minimum-sized

packet is 40 bytes, and so it arrives once every 32 ns. The state entries

need to be updated once every 32 ns. Suppose we used a 1 Gb DRAM

that has a random access time TRC = 50 ns (i.e., and so can be

updated once every 100 ns, i.e., over three times slower than the rate

that is required). Then GPP-SMA, with a DRAM having 4 independent

banks, can speed up the memory subsystem to update an entry every

25 ns (such that the DRAM has a capacity of 256 Mb), which is good

enough for our purposes.

10.3.1 Consequences

We consider a number of consequences of the GPP-SMA algorithm.

2The term Diophantine refers to integer solutions.
3This is because for any value of C, we need h = C(C + 1) banks, which is always an even

number.

10.4 Implementation Considerations 295

1. Special case for Read Accesses: If state entries are only read (but not

modified), then only the first part of GPP-SMA (i.e., maintaining multiple

copies of the state entries) needs to be performed when a state entry is created.

In such a case, GPP-SMA degenerates to an obvious and trivial algorithm where

state entries are replicated across multiple banks to increase the read access rate

supported by the memory subsystem.

2. Special case for the Ping-Pong Algorithm: Note that a special case for

GPP-SMA (Algorithm 10.1), with h = 2 and C = 1, leads to the ping-pong

algorithm described in Section 10.2.1. Since C = 1, no copies need to be

maintained. In such a case, only the second part of the GPP-SMA algorithm

(i.e., load balancing the write accesses) needs to be performed.

3. Applicability to Other Applications: GPP-SMA makes no assumptions

about the memory access pattern. It is orthogonal to the other load balancing

and caching algorithms described throughout this thesis. And so, it can be used

in combination with these techniques.

�Example 10.4. For example, GPP-SMA with h banks can be applied in combination

with the buffer and scheduler caching algorithms described in Chapters 7

and 9 respectively to reduce their cache size by a factor of
√
h .

10.4 Implementation Considerations

We consider a number of implementation-specific considerations and optimizations for

GPP-SMA.

1. Optimizing the Data Structure: It is easy to implement GPP-SMA in

hardware. For every memory access, the bank that contains the latest updated

version of the state entry needs to be accessed. This can be done by maintaining

C pointers to the C location(s) where the most updated version of the state

entry is maintained. But if the memory addresses used for the “C” copies of a

flow’s state entry, which are on “C” different banks, are kept identical (except

10.4 Implementation Considerations 296

for the bank number, which is different), then C separate pointers need not be

maintained. We only require a bitmap of size C(C+ 1) bits per entry to describe

which C of the possible C(C + 1) banks have the latest updated version of the

state entry for that particular entry. This reduces the size required to implement

GPP-SMA.

2. Using DRAM Bandwidth E�ciently: GPP-SMA can be analyzed for a

time period of yTRC . In such a case, each bank can be accessed up to y times in

a time period of yTRC . When data is written back to a bank, multiple writes

to that bank can be aggregated together and written to contiguous memory

locations in an efficient manner.4 This allows GPP-SMA to utilize the DRAM

I/O bandwidth efficiently.

3. Saving I/O Write Bandwidth: GPP-SMA performs C updates per random

cycle time and creates C copies for each update, for a total of C2 writes per

random cycle time. If the copy function was done in memory, or if the memory

was on-chip, there would be no need to carry each of the C2 writes on the memory

interconnect. With a copy function in memory, the number of distinct write

entries that are carried over the interconnect would reduce to C per random

cycle time. This would save memory I/O bandwidth, reduce the number of

ASIC-to-memory interface pins, and reduce worst-case I/O power consumption.

Indeed, with the advent of eDRAM [26]-based memory technology (which is

based on a standard ASIC process), it is relatively easy to create memory logic

circuitry that is capable of copying data over multiple banks.

4. Scalability and Applicability: GPP-SMA requires h banks (and hence only

gives 1
h

of the memory capacity) in order to be able to speed up the updates by

a factor of Θ(
√
h). Clearly, this is not very scalable for large values of speedup

unless the memory capacity is very large. Based on current technology constraints

and system requirements, we have noticed that GPP-SMA is practical for small

values of speedup (S 6 4). As the capacity of memory improves (roughly at the

4DRAM memories are particularly efficient in transferring large blocks of data to consecutive
locations. This is referred to as burst mode in DRAM. Refer to Appendix A for a discussion.

10.5 Conclusions 297

Table 10.1: Tradeoffs for memory access rate and memory capacity.

Banks
per Entry

#Updates per
TimeSlot

Memory Access
Rate Speedup

Total
Memory

Bandwidth
Comment

h C S M ≡ C + C2 -

1 0.5 1 1
1 update in 2

TRC ’s

2 1 2 2
1 update per

TRC

4 1.33 2.67 4
4 updates in 3

TRC ’s

5 1.5 3 4.5
3 updates in 2

TRC ’s

6 2 4 6
2 updates per

TRC

12 3 6 12
3 updates per

TRC

h C 6 b
√

4h+1−1c
2

S 6 b
√

4h+ 1 − 1c M 6 h
C updates per

TRC

speed of Moore’s law), higher values of update speedup may become practical,

as more memory banks per area can be fitted on-chip.

NObservation 10.6. The advent of on-chip memory technology such as eDRAM [26]

has allowed ASIC designers the flexibility to structure memory banks

based on their application requirements. Today, it is not uncommon to

have h > 32 banks with eDRAM-based memory.5

Table 10.1 summarizes the performance of GPP-SMA, and describes the tradeoff

between the number of banks used, and the update speedup.

10.5 Conclusions

A number of data-path applications on routers maintain state. We used the “constraint

set” technique (first described in Chapter 2) to build a memory subsystem that can

be used to accelerate the perceived random access time of memory. An algorithm

called GPP-SMA was described which can speed up memory by a factor Θ(
√
h),

where h is the number of banks that a state entry can be load balanced over. Our

5As an example, Cisco Systems builds its own eDRAM-based memories [32] that have densities,
capacities, and number of banks that cater to networking-specific requirements.

10.5 Conclusions 298

algorithm makes no assumptions on the memory access pattern. The technique is easy

to implement in hardware, and only requires a bitmap of size h bits for each entry, to

be maintained in high-speed on-chip memory. The entries themselves can be stored

in main memory (for example, commodity DRAM) running Θ(
√
h) slower than the

line rate. For example, a state table of size ∼ 160 Mb, and capable of updating 40 M

updates/sec, can be built from DRAM that allows up to 6 banks to be independently

addressed in a random cycle time, with capacity 1 Gb and a TRC of 50 ns (which

could have supported no more than 10 M updates/s on its own).

Our technique has two caveats — (1) The DRAM capacity lost in order to speed

up the random cycle time grows quadratically as a function of the speedup, limiting

its scalability, and (2) The technique requires larger memory bandwidth.

While there are systems for which the above technique cannot be applied (e.g.,

systems that require extremely large speedup), we have seen that these techniques are

practical for small values of speedup (S 6 4). While we have not used these techniques

for current-generation 40 Gb/s line cards (mainly due to the use of eDRAMs [26] which

were able to meet the random cycle time requirements at 40 Gb/s), we are currently

negotiating deployment of the above technique for the next-generation 100 Gb/s

Ethernet switch and Enterprise router line cards, where even eDRAM can be too slow

to meet the random cycle time requirements.

Summary

1. A number of data-path applications on routers maintain state. These include: stateful

firewalling, policing, network address translation, etc.

2. The state maintained is usually to track the status of a “flow”. The granularity of a

flow can be coarse (e.g., all packets destined to a particular server) or fine (e.g., a TCP

connection), depending on the application.

3. When a packet arrives, it is first classified, and the flow to which it belongs is identified.

An entry in the memory (to which the flow belongs) is identified. Based on the packet,

some action is performed, and later the entry is modified and written back. This is referred

to as a “read-modify-write” operation.

10.5 Conclusions 299

4. However, the large random access times of DRAMs make it difficult to support high-speed

read-modify-write operations to memory.

5. We consider a load balancing algorithm that maintains copies of the flow state in multiple

locations (banks) in memory. The problem is to ensure that irrespective of the memory

access pattern, flow state entries can be read and updated faster than the memory access

rate of any single memory bank.

6. We describe and analyze a state management algorithm called “generalized ping-pong”

(GPP-SMA) that achieves this goal.

7. The main result of this chapter is that the generalized ping-pong algorithm, with h indepen-

dent memory banks running at the line rate, can emulate a memory that can be updated

at C times the line rate (C reads and C writes), if C 6 b
√

4h+1−1c
2 (Theorem 10.1).

8. GPP-SMA is resistant to adversarial memory accesses that can be created by hackers or

viruses; and its performance can never be compromised, either now, or provably, ever in

future.

9. GPP-SMA requires a small bitmap to be maintained on-chip to track the entries maintained

in DRAM, and is extremely practical to implement.

10. GPP-SMA can speed up the memory access time of any memory subsystem. Hence the

technique is orthogonal to the various load balancing and caching techniques that are

described in the rest of this thesis. Thus it can be applied in combination with any of the

other memory management techniques. For example, it can reduce the cache sizes of the

packet buffering and scheduler caches described in Chapters 7 and 8.

11. The main caveat of the technique is that it trades off memory capacity for random cycle

time speedup, and requires additional memory bandwidth, and so its applicability is usually

limited to low values of speedup (S 6 4).

12. At the time of writing, we are considering deployment of these techniques for the next

generation of 100 Gb/s Ethernet switch and Enterprise router line cards.

Chapter 11: Conclusions
June 2008, San Francisco, CA

Contents

11.1 Thesis of Thesis . 301

11.2 Summary of Contributions . 301

11.3 Remarks Pertaining to Industry . 302

11.4 Remarks Pertaining to Academia . 304

11.4.1 Spawning New Research . 305

11.5 Closing Remarks . 306

11.5.1 Limitations and Open Problems . 306

11.5.2 Applications Beyond Networking . 307

11.5.3 Ending Remarks . 308

You cannot simply cross the Bay Area on a whim. San Francisco Bay, more than 1600 square miles

in size, neatly bisects the area in two separate halves. A series of freeways with toll booths connect the

Peninsula and East Bay. For a picturesque crossing, you can take the Golden Gate Bridge at the mouth of

the Bay, one of the world’s largest suspension bridges, considered a marvel of engineering when it was

built in 1937.

However, if you want to avoid the toll ($5 if you are well-behaved) and are in a mood to inspect more

recent engineering wonders, take the turnoff to Highway 237 at the Bay’s opposite end. The freeway

begins in Mountain View, home of Google, a small company specializing in niche search engine technology

(we suggest you look them up). If you’re not in a rush, take the last exit. You’ll soon find yourself in a

large campus with buildings that all look alike, the home of a networking systems vendor. Bear right on

Cisco Way, and you’ll see an inconspicuous sign — “Datacenter Networked Applications (DNA) lab, Cisco

Systems”.

Unlike its large, frugal setting, the DNA lab is small and holds an expensive assemblage of the

highest-speed Ethernet switches and Enterprise routers, including storage equipment, high-performance

computing systems, disk arrays, and high-density server farms. These products are placed neatly side by

side to showcase the next-generation, high-speed data center networking technologies. Glance around and

you’ll see a large array of overhead projectors, and walls adorned with ∼20+ onscreen displays. Go ahead,

look around and experience the tremendous speed and capabilities of these modern engineering marvels.

Be sure to ask a network expert for a demo. Legend has it that if you look carefully, you’ll find (tell us if

you do) a nondescript sticker on each router: “High-speed router — fragile, handle with care. . . ”

“If you are afraid of change, leave it here”.

— Notice on a Tip Box†

“Make everything as simple as possible, but not simpler”.

— Albert Einstein‡ 11
Conclusions

11.1 Thesis of Thesis

The thesis of this thesis is two-pronged, with one prong pertaining to industry and

the other to academia —

1. We have changed the way high-speed routers are built in industry, and we have

showed that (a) their performance can be scaled (even with slow memories), (b)

their memory subsystems need not be fragile (even in presence of an adversary,

either now or, provably, ever in future) and (c) they can give better deterministic

memory performance guarantees.

2. We have contributed to, unified, and, more important, simplified our understand-

ing of the theory of router architectures, by introducing (and later extending) a

powerful technique, extremely simple in hindsight, called “constraint sets”, based

on the well-known pigeonhole principle.

11.2 Summary of Contributions

�Note 11.1. A summary of the 14 key results of this thesis is available in Section 1.11.

For more details on (1) the specific problems solved in this thesis, refer

to Section 1.7; and for (2) the industry impact and consequences of

these ideas, see Section 1.9; and (3) for a list of academic contributions

†Unknown Cafe, Mountain View, CA, Oct 2004.
‡An obscure scientist of the early twentieth century.

301

11.3 Remarks Pertaining to Industry 302

that unify our understanding of the theory of router architectures, refer

to Table 2.1 and Section 2.3.

The next two sections discuss the impact of this thesis on industry and academia

respectively.

11.3 Remarks Pertaining to Industry

NObservation 11.1. Networking both reaps the boons and suffers the curses of

massive current deployment. This means that new ideas can make

a large impact, but that they have an extremely hard time gaining

acceptance. Deploying a new idea in existing networks can be technically

challenging, require cooperation among hosts in the network, and can

sometimes be economically infeasible to put in practice. Consequently,

we face the unfortunate reality that a large percentage of really good

ideas, in academia and industry, are never deployed in networking.

In that sense, we were fortunate, because our ideas pertain to the

networking infrastructure layer, i.e., routers, so their acceptance does

not need cooperation among existing routers.

Writing a thesis several years after finishing the main body of the research1 has

at least the benefit that we don’t need to predict the potential of our academic

work. At the time of writing, we have managed to add to the repertoire several new

research ideas relevant to this area, and most important we have brought these ideas

to fruition. However, their deployment has been by no means easy. It has been a

learning, challenging, and humbling experience.

Routers are complex devices — they must accommodate numerous features and

system assumptions, require backward compatibility, and have ever-changing require-

ments due to the advent of new applications and network protocols. This has meant

1I wouldn’t recommend this to new students — “all but dissertation” is not a pleasurable state of
mind.

11.3 Remarks Pertaining to Industry 303

that, in order to realize our techniques in practice, we have had to modify them, devise

and introduce new techniques, and fine-tune existing ones. Achieving these goals has

taken nearly four years and significant resources. In hindsight, it was important to

spend time in industry, understand the real problems, and solve them from an insider’s

framework. In the course of implementation, we have learned that designs are complex

to implement, and their verification is challenging.

�Example 11.1. For example, the packet buffer cache (see Figure 7.3) has six

independent data paths, each of which can access the same data

structure within four clocks on 40 Gb/s line cards. This leads to data

structure conflicts, and requires several micro-architectural solutions to

implement the techniques correctly. Similarly, almost all our designs

have had to be parameterized to cater to the widely varying router

requirements of Ethernet, Enterprise, and Internet routers. The state

space explosion, to deal with massive feature requirements from different

routers, meant that these solutions take years and large collaborative

efforts to build and deliver correctly.

It is a good time to ask — Have we achieved the goals we set for ourselves at

the onset of this thesis? At the current phase of deployment, I believe that it is an

ongoing but incomplete success. At the time of this writing, we have largely met

our primary goals — to scale the memory performance of high-speed routers, enable

them to give deterministic guarantees, and alleviate their susceptibility to adversaries.

We have designed, evangelized, and helped deploy these techniques on a widespread

scale, and it is expected that up to 80% of all high-speed Ethernet switches and

Enterprise routers2 will use one or more instances of these technologies. We are also

currently deploying these techniques on the next generation of 100 Gb/s line cards

(for high-volume Ethernet, storage, and data center applications). However, our work

is still incomplete, because we have yet to cater to high-speed Internet core routers.

At this time, we are in discussions for deploying these ideas in those market segments

as well.
2Based on Cisco’s current proliferation in the networking industry.

11.4 Remarks Pertaining to Academia 304

The secondary consequences of our work have resulted in routers becoming more

affordable – by reducing memory cost, decreasing pins on ASICs, and reducing the

physical board space. They have also enabled worst-case and average-case power

savings. In summary, our work has brought tremendous engineering, economic, and

environmental benefits.

�Note 11.2. From a user’s perspective, a network is only good if every switch or router

(potentially from several different router vendors) in a packet’s path

can perform equally well, give deterministic guarantees, and be safe

from adversarial attacks. To that end, most of the ideas described

in this thesis were done at Stanford University, are open source, and

available for use by the networking community at large.

11.4 Remarks Pertaining to Academia

I will now touch on the academic relevance of this work, and comment separately on

load balancing and caching techniques. It is clear that the constraint set technique

introduced in this thesis (to analyze load-balanced router memory subsystems) sim-

plifies and unifies our understanding of router architectures. However, it also has an

interesting parallel with the theory of circuit switching.

NObservation 11.2. Note that router architecture theory deals with packets that can

arrive and be destined to any output (there are a total of NN combina-

tions), while circuit switches deal with a circuit-switched, connection-

based network that only routes one among N ! permutations between

inputs and outputs. In that sense, router architecture theory is a su-

perset of circuit switching theory [110]. However, circuit switch theory

and constraint sets both borrow from the same pigeonhole principle.

This points to an underlying similarity between these two fields of

networking. From an academic perspective, it is pleasing that the

technique of analysis is accessible and understandable even by a high

school student!

11.4 Remarks Pertaining to Academia 305

11.4.1 Spawning New Research

Our initial work has led to new research in both algorithms and architectural techniques

pertaining to a broader area of memory-aware algorithmic design. Some significant

contributions include — simplified caches using frame scheduling, VOQ buffering

caches [181], packet caching [182], lightweight caching algorithms for counters [202,

203, 204, 205], caching techniques to manage page allocation, and increased memory

reliability and redundancy [32].

NObservation 11.3. Our caches have had some interesting and unforeseen benefits.

L2 caches3 (which are built on top of the current algorithmic L1 caches)

have been proposed and are currently being designed to decrease average

case power [25]. Also, larger L1 caches have been implemented to

hide memory latencies and allow the use of complementary high-speed

interconnect and memory serialization technology [32]. The structured

format in which our L1 caches access memory also allows for the

creation of efficient memory protocols [214] that are devoid of the

problems of variable-size memory accesses, and avoid the traditional

“65-byte” problem and memory bank conflicts.

In the process of development, we have sometimes re-used well-known existing

architectural techniques, and have in some cases invented new ones to deal with complex

high-speed designs. For example, the architectural concepts of cache coherency, the use

of semaphores, maintaining the ACID [215] properties of data structures (which are

updated at extremely high rates), deep pipelining, and RAID [30] are all concepts that

we have re-used (and tailored) for high-speed routers. Similarly, we have re-applied

the ideas pertaining to adversary obfuscation (see Chapter 10) to many different

applications. While these concepts are borrowed from well-known systems ideas

in computer architecture [155], databases, and the like, they also have significant

differences and peculiarities specific to networking.

3These terms are borrowed from well known-computer architecture terminology [155].

11.5 Closing Remarks 306

NObservation 11.4. From an academic perspective, it is heartening that there is a

common framework of load balancing and caching techniques that are

re-used for different purposes. Also, router data path applications, for

the most part, have well-defined data structures, and so lend themselves

to simple techniques and elegant results. I believe that routers have

reached a semi-mature stage, and I hope that this thesis will convince

the reader that we are converging toward an end goal of having a

coherent theory and unified framework for router architectures.

11.5 Closing Remarks

11.5.1 Limitations and Open Problems

Based on my experience in the networking industry, I would like to divide the limitations

of the techniques presented in this thesis into three broad categories. I hope that this

will stimulate further research in these three areas.

1. Unusual Demands From Current Applications: There are additional

features that data path applications are required to support on routers, outside

their primary domain. In general, any features that break the assumptions

made by the standard data structures of these applications can place unexpected

demands on our memory management techniques, and make their implementation

harder, and sometimes impractical. For example, unicast flooding requires packet

order to be maintained among packets belonging to different unicast and unicast

flood queues. This usually doubles the size of data structures for the queue

caching algorithms. Similarly, dropping large numbers of packets back to back4

requires over-design of the buffer and scheduler cache; buffering packets received

in temporary non-FIFO order makes the implementation of the tail cache more

complex, and handling extremely small packets at line rates can cause resource

4Packets can easily be dropped faster than the line rate, because in order to drop a packet of any
size, only a constant-size descriptor needs to be dropped.

11.5 Closing Remarks 307

problems when accessing data structures. All of the above require special

handling or more memory resources to support them at line rates.

2. Scalability of Current Applications: The complexity of implementation of

our results (in terms of number of memories required, cache sizes, etc.) usually

depends on the performance of the memory available. While our techniques

are meant to alleviate the memory performance problem, and in theory, have

no inherent limitations, there are practical limits in applying these approaches,

especially when memories become extremely slow. Also, there are instances

where the feature requirements are so large that our techniques are impractical

to implement. As an example, some core routers require tens of thousands of

queues. Multicast routers require Θ(2f) queues, where f 6 q is the maximum

multicast fanout, and q is the number of unicast queues. The cache size needed

to support this feature is Θ(f ∗ 2f), which can be very large. Similarly, load

balancing solutions require a large (≡ Θ(
√
f)) speedup (refer to Appendix J) to

achieve deterministic performance guarantees for multicast traffic. This is an

area of ongoing concern that needs further improvement.

3. Unpredictability of Future Applications: Our caching and load balancing

solutions are not a panacea. The router today is viewed as a platform, and is

expected to support an ever-increasing number of applications in its data path.

These new applications may access memories in completely different ways and

place unforeseen demands on memory. We cannot predict these applications,

and new techniques and continued innovation will be necessary to cater to and

scale their performance.

11.5.2 Applications Beyond Networking

Our techniques exploit the fundamental nature of memory access. While the most

useful applications that we have found are for high-speed routers, their applicability

is not necessarily limited to networking. In particular, the constraint set technique

could be used wherever there are two (or more) points of contention in any load

balancing application, for example, in job scheduling applications. They can also

11.5 Closing Remarks 308

be used in applications that keep FIFO and PIFO5 queues. Similarly, our caching

techniques can be used in any application that uses queues, manipulates streams of

data, walks linked lists (e.g., data structures that traverse graphs or state tables, as

used in deterministic finite automata (DFA)), aggregates or pre-fetches blocks of data,

copies data, or measures events.

NObservation 11.5. Of course, the memory acceleration technique introduced in

this thesis can be used to speed up (by trading off memory capacity)

the random cycle time performance of any memory. The speedup is

by a factor, Θ(
√
h), where h is the number of memory banks. This

points to an interesting and fundamental tradeoff. As memory capacity

increases at the rate of Moore’s law, we expect this to become a very

useful and broadly applicable technique. In addition, this technique is

orthogonal to the rest of the load balancing and caching techniques

described in this thesis, and so can be used in combination with these

various techniques to increase memory performance.

11.5.3 Ending Remarks

“Sufficiency is the child of all discovery”.

— Quick Quotations Corporation

As system requirements increase, the capabilities of hardware may continue to

lag. The underlying hardware can be slow, inefficient, unreliable, and perhaps even

variable and probabilistic in its performance. Of course, some of the above are already

true with regard to memory. And so, it will become necessary to find architectural

and algorithmic techniques to solve these problems. If we can discover techniques

that are sufficient to emulate the large performance requirements of the system, then

it is possible to build solutions that can use such imperfect underlying hardware. I

believe that such techniques will become more common in future, and are therefore a

continuing area of interest for systems research.

5This is defined in Section 1.4.2.

11.5 Closing Remarks 309

High-speed routers are complex devices. They function at the heart of the tremen-

dous growth and complexity of the Internet. While their inner workings can in some

instances be complex (and, like musical notation, the underlying mathematics can at

times be intimidating and can hide their inherent beauty), for the most part I hope

to have conveyed in this thesis that they are, in fact, quite simple, have a common

underlying framework, and lend themselves to elegant analysis. If a high school student

can appreciate this fact, I would consider the thesis successful.

Epilogue

Penning an epilogue is a pleasure. It’s not every day you can finish your thesis, polish

the last words, attend your advisor’s wedding in faraway Turkey, and sit back, relax,

and feel just a little bit satisfied. Yet I can’t help considering the irony! Academia

teaches us to think outside the box, but this thesis ponders ideas inside the box.

In the preface, I alluded to a need to refrain from social commentary. I lied. I was

attempting to put a finger on why I loved the Ph.D. process and the academic world.

Indulge me while I share my perspective.

In contrast to the world at large, which is inherently unfair and holds us responsible

for our moments of indecisiveness, irrationality, subjectivity, and prejudice, academic

thought is (in principle) rational, objective, and idealistic. There’s a certain utopian

aura, a purity and fairness connected with the scholarly life. It can give joys that

are (mostly) under your control, and even better, cannot be denied you. In many

cases, and this is definitely true of most mathematical and analytical research, the

only extremely portable tools you need are paper and pencil.6 Academic thought gives

you avenues to be creative, feel challenged, and keep your mind active and engaged.

Of course, one does experience frustration (e.g., nine-tenths of a proof is worth not

very much), but the genuine happiness of a handful of “Aha!” moments beats all the

hedonistic joys of the wider society.

I’m not trying to raise academia above society, but merely making some interesting

comparisons. This thesis, for example, tries to devise solutions for the Internet and

solve pressing problems of building high-speed networks. But, it pales in comparison to

the complexities of human networks.† What humans could learn from networked routers

is that routers communicate easily, are seldom offended, don’t mandate arbitrary

mores, and aren’t shy about sparking instant conversations.

While writing my thesis, I tried to be uncharacteristically asocial (because it helped

me concentrate). Yet over these ten months of writing, I’ve had many opportunities

6Of course, not a pen. They tend to leak when you are traveling to Mars : : :
†. . . Sorry, Cisco, there really is only one human network!

310

to meet wonderful strangers, and collect their interesting anecdotes and amazing

experiences. These networking opportunities brought surprise benefits — complimen-

tary drinks, a lunch, several free dinners, a historical photo tour of Tiburon, a small

town just north of San Francisco, complementary museum tickets, a private showing

by a local artist, an invitation to go flying, a standing invitation to visit Malibu,

an invite from a Hollywood producer to visit the location for an advertising shoot,

introductions to interesting people and folksy advice in the kitschy small towns of

northern California. There were also some hilarious moments, aptly captured by an

old Turkish saying (perhaps you have heard it?), “What happens in Istanbul, stays in

Constantinople”.

And on that note, as I pen a roast on your wedding day, Asena and Nick, thank

you for a wonderful wedding, and here’s wishing you a long, happy, fulfilling, and —

what is that phrase? (see preface) — a stable marriage . . .

— Istanbul, Turkey,

July 11th 2008

Part III

Appendices & Bibliography

312

“Good, Fast, Cheap: Pick any two

(you can’t have all three)”.

— RFC 1925, The Twelve Networking Truths† A
Memory Terminology

In this appendix, we will define some common terms related to memory. The two

most widespread memories available today are SRAM [2] and DRAM [3]. In what

follows, we will define the DRAM memory terminology, of which SRAM terms are a

subset.

A.1 Terminology

A DRAM’s memory array is arranged internally in rows, where a set of contiguous

rows form a bank. For example, Figure A.1 shows a DRAM with K banks, where

each bank has R rows. The four key memory terms of concern to us are:

1. Bandwidth: This refers to the total amount of data that can be transferred

from a single memory per unit time.

2. Capacity: This refers to the total number of bits that can be stored in the

memory.

3. Latency: This refers to the time it takes to receive data from memory, after a

request to access it has been issued by the requester.

†A more apt version for networking memories – “Dense, Fast, Cheap: Pick any two”.

313

A.1 Terminology 314

..
..

Sense Amp

A

..

Sense Amp

D

..

Sense Amp

E

..

Sense Amp

G

B

C

F

W R

Bank 1 Bank 2 Bank 3 Bank K

36

250 MHz, Dual Data Rate (DDR)

R
ow

s

Row 1

Row R

Figure A.1: Internal architecture of a typical memory.

4. Access Time: This refers to the minimum amount of time that needs to elapse

between any two consecutive requests to the memory. The memory access time

can depend on a number of factors, and this will be explained in the next section.

NObservation A.1. Note that the memory bandwidth is a function of three quantities

— (1) the data width of the memory, (2) the clock speed, and (3)

the number of edges used per clock to transfer data. For example, a

DRAM with a 36-bit data bus, running a 250 Mhz clock, which can

support dual-data rate (DDR) transfer (i.e., it can transfer data on

both edges of the clock) has a bandwidth of 36× 250× 2 = 18 Gb/s.

A.2 Access Time of a DRAM 315

A.2 Access Time of a DRAM

The access time T of the DRAM (i.e., the time taken between consecutive accesses to

any location in the memory array) is dependent on the sequence of memory accesses

made to the DRAM. These can be categorized as follows:

1. Consecutive cells in the same row and bank: The access time between

two consecutive references to adjacent memory locations in the same row of the

same bank is denoted by TC . This is sometimes referred to as the burst mode in

a DRAM. In Figure 2, consecutive references to cells A and B can be done in

burst mode. TC is usually about 5-10 ns today. Although this is fast, it is not

common in a router to be able to use burst mode, because successive cells do

not usually reside in the same row and bank.

2. Consecutive cells in di�erent rows, but in the same bank: The access

time between two consecutive references to different rows but belonging to the

same bank is denoted by TRC . As an example, consider the consecutive references

to cells B and C in Figure A.1. We say that there is a bank conflict1 because

the rows being accessed belong to the same bank. TRC represents the worst-case

access time for random accesses to a DRAM, and it is of the order of 70-80ns

for commodity DRAMs available today.

3. Consecutive cells in adjacent banks: Some DRAMs such as RDRAM [7]

incur a penalty when two consecutive references are made to adjacent banks,

i.e., if a cell accesses bank x, then the next cell cannot access banks x− 1, x,

or x+ 1. This is called an adjacent bank conflict, and we will denote it by TAC .

This can occur if adjacent DRAM banks share circuitry, such as sense-amps.

As an example, consecutive references to cells D and E in Figure A.1 cause an

adjacent bank conflict. Most modern DRAMs do not share circuitry between

adjacent banks, and hence do not exhibit adjacent bank conflicts.

1This is also commonly called a row conflict, however this terminology is misleading, since it is
the banks that conflict, not the rows!

A.2 Access Time of a DRAM 316

4. Consecutive cells in di�erent rows: The access time for two consecutive

references to rows in different banks is denoted by TRR and is called the row to

row access time. An example in Figure A.1 would be a reference to cell A, B, or

C followed by a reference to cell D. This number is of the order of 20ns and

usually represents the best-case random access time for a DRAM.

In a DRAM, there is usually a heavy penalty in the access time for a bank

conflict.2 Thus TRC � TRR, TAC . In this thesis, when we mention random access

time, we will refer to the worst-case random access time of the DRAM, i.e., T =

max{TRC , TRR, TAC}.

2Note that there can be other penalties such as the read-write turnaround and refresh penalties
associated with accesses to a DRAM.

“100% throughput? And the queue size

can still be any large value?”.

— The Art of Deceptive Definition† B
Definitions and Traffic Models

B.1 De�nitions

In this thesis, we are interested in deterministic performance guarantees. However,

in some instances we refer to terms that are concerned with statistical performance

guarantees informally. We define these terms rigorously in this section.

We assume that time is slotted into cell times. Let Ai,j(n) denote the cumulative

number of arrivals to input i of cells destined to output j at time n. Let Ai(n) denote

the cumulative number of arrivals to input i. During each cell time, at most one cell

can arrive at each input. λi,j is the arrival rate of Ai,j(n). Di,j(n) is the cumulative

number of departures from output j of cells that arrived from input i, while Dj(n) is

the aggregate number of departures from output j. Similarly, during each cell time, at

most one cell can depart from each output. Xi,j(n) is the total number of cells from

input i to output j still in the system at time n. The evolution of cells from input i

to output j can be represented as:

Xi,j(n+ 1) = Xi,j(n) + Ai,j(n)−Di,j(n). (B.1)

Let A(n) denote the vector of all arrivals {Ai,j(n)}, D(n) denote the vector of all

departures {Di,j(n)}, and X(n) denote the vector of the number of cells still in the

†Stanford University, CA, 1999.

317

B.1 Definitions 318

A7A8

Switch Fabric

Z5Z9 Z6

...AN(n)

XN,N(n)

XN,1(n)

A4A5

Z4Z8 Z7

A1(n)

X1,N(n)

X1,1(n)

A1A2
D1(n)

Z2Z3
DN(n)

...

...
.

...
.

Inputs Outputs

Virtual Output Queues

Output Queues

Figure B.1: Network traffic models.

system. With this notation, the evolution of the system can be described as

X(n+ 1) = X(n) + A(n)−D(n). (B.2)

ℵDe�nition B.1. Admissible: An arrival process is said to be admissible when no

input or output is oversubscribed, i.e., when
∑

i λi,j < 1,
∑

j λi,j < 1,

λi,j ≥ 0.

ℵDe�nition B.2. IID: Traffic is called independent and identically distributed (iid) if

and only if:

1. Every arrival is independent of all other arrivals both at the same

input and at different inputs.

2. All arrivals at each input are identically distributed.

B.1 Definitions 319

ℵDe�nition B.3. 100% throughput: A router is said to achieve 100% throughput

if under any admissible iid traffic, for every ε > 0, there exists B > 0

such that

lim
n→∞

Pr{
∑
i,j

Xi,j(n) > B} < ε.

“It only takes a memory bandwidth of 3NR?

We had a bit more speedup than that : : : ”.

— Pradeep Sindhu† C
Proofs for Chapter 3

C.1 Proof of Lemma 3.1

Lemma 3.1. A request matrix can be ordered in no more than 2N − 1 alternating

row and column permutations.

Proof. We will perform the ordering in a iterative way. The first iteration consists of

one ordering permutation of rows or columns, and the subsequent iterations consist

of two permutations, one of rows and one of columns. We will prove the theorem by

induction.

1. After the first permutation, either by row or by column, the entry at (1, 1) is

non-zero, and this entry will not be moved again. We can define sub-matrices of

S as follows:

An = {Sij|1 6 i, j 6 n},

Bn = {Sij|1 6 i 6 n, n 6 j 6 N}, (C.1)

Cn = {Sij|n 6 i 6 N, 1 6 j 6 n}.

2. If a sub-matrix of S is ordered and will not change in future permutations, we

call it optimal. Suppose An is optimal after the nth iteration. We want to prove

†Pradeep Sindhu, CTO, Juniper Networks.

320

C.2 Proof of Theorem 3.7 321

that after another iteration, the sub-matrix An+1 is optimal. Without loss of

generality, suppose a row permutation was last performed, then in this iteration,

we will do a column permutation followed by a row permutation. There are four

cases:

(a) The entries of Bn and Cn are all zeros. Then Sn+1,n+1 > 0 after just one

permutation, so the sub-matrix An+1 is optimal.

(b) The entries of Bn are all zeros, but those of Cn are not. After the column

permutation, suppose Sm,n+1(m > n) is the first positive entry in column

n + 1, then the first m rows of S are ordered and will remain so. Thus,

column n+ 1 will remain the biggest column in Bn, and An+1 is optimal.

(c) The entries of Cn are all zeros, but those of Bn are not. This case is similar

to case (b).

(d) The sub-matrices Bn and Cn both have positive entries. The column

permutation will not change row n+ 1 such that it becomes smaller than

the rows below it. Similarly, the row permutation following will not change

column n+ 1 such that it becomes smaller than the columns on its right.

So An+1 is optimal.

After at most N iterations, or a total of 2N − 1 permutations, the request matrix

is ordered. r

C.2 Proof of Theorem 3.7

Theorem 3.7. If a request matrix S is ordered, then any maximal matching algorithm

that gives strict priority to entries with lower indices, such as the WFA [15], can find

a conflict-free schedule.

Proof. By contradiction. Suppose the scheduling algorithm cannot find a conflict-free

time slot for request (m,n). This means

n−1∑
j=1

Smj +
m−1∑
i=1

Sin > 4. (C.2)

C.2 Proof of Theorem 3.7 322

Now consider the sub-matrix S ′, consisting of the first m rows and the first n columns

of S. Let’s look at the set of the first non-zero entries of each row, Lr, and the set of

the first non-zero entries of each column, Lc. Without loss of generality, suppose S ′11

is the only entry belonging to both sets. (If this is not true, and S ′kl, where k 6= 1 or

l 6= 1, also belongs to both Lr and Lc, then we can remove the first k − 1 rows and

the first l − 1 columns of S ′ of to obtain a new matrix. Repeat until Lr and Lc only

have one common entry.) Then |Lr ∪ Lc| = m+ n− 1. At most two of the entries in

the mth row and those in the nth column are in Lr ∪ Lc, so the sum of all the entries

satisfies

∑
i

∑
j

Sij > (|Lr ∪ Lc| − 2) + Smn +
n−1∑
j=1

Smj +
m−1∑
i=1

Sin > 4. (C.3)

Hence we get, ∑
i

∑
j

Sij > m+ n+ 2, (C.4)

which conflicts with property 1 in Section 3.6. r

“You were proving this on a friday evening?

You need to go get a life!”.

— Da Chuang, Colleague Extraordinaire† D
Proofs for Chapter 5

In this appendix, we will prove that a buffered crossbar with a speedup of two

using arbitrary input and output scheduling algorithms achieves 100% throughput.

We will use the traffic models and definitions that were defined in Appendix B.

D.1 Achieving 100% Throughput in a Bu�ered

Crossbar - An Outline

Figure D.1 shows the scheduling phases in a buffered crossbar with a speedup of two.

The two scheduling phases each consist of two parts: input scheduling and output

scheduling. In the input scheduling phase, each input (independently and in parallel)

picks a cell to place into an empty crosspoint buffer. In the output scheduling phase,

each output (independently and in parallel) picks a cell from a non-empty crosspoint

buffer to take from.

We know that the scheduling algorithm in a buffered crossbar is determined by

the input and output scheduling policy that decides how inputs and outputs pick cells

in the scheduling phases. The randomized algorithm that we considered in Chapter 5

to achieve 100% throughput was as follows:

†Da Chuang, Humorous Moments in Proof, Stanford, 2002.

323

D.1 Achieving 100% Throughput in a Buffered Crossbar - An Outline 324

Arrival Depart
Input Output Input Output

Schedule-1 Schedule-1 Schedule-2 Schedule-2

Scheduling Phase I Scheduling Phase IIFigure D.1: The scheduling phases for the buffered crossbar. The exact order of the phases
does not matter, but we will use this order to simplify proofs.

Randomized Algorithm: In each scheduling phase, the input picks any non-

empty VOQ, and the output picks any non-empty crosspoint.

We will adopt the following notation and definitions. The router has N ports,

and V OQij holds cells at input i destined for output j. Xij is the occupancy of

V OQij,
1 and Zij = Xij +Bij is the sum of the number of cells in the VOQ and the

corresponding crosspoint. We will assume that all arrivals to input i ∈ 1, 2, 3, ..., N

are Bernoulli i.i.d. with rate λi, and are destined to each output j ∈ 1, 2, 3, ...N with

probability λij. We will denote the arrival matrix as A ≡ [λij], where for all i, j,

λi =
N∑
j=1

λij, λj =
N∑
i=1

λij, 0 6 λij < 1. (D.1)

We will also assume that the traffic is admissible (see Definition B.1), i.e.,
∑

i λi,j <

1,
∑

j λi,j < 1. In what follows, we will show that the buffered crossbar can give 100%

throughput. The result is quite strong in the sense that it holds for any arbitrary

work-conserving input and output scheduling policy with a speedup of two. In other

words, each input i can choose to serve any non-empty VOQ for which Bij = 0, and

each output j can choose to serve any crosspoint for which Bij = 1.

First we describe an intuition and outline of the proof. Then, in the next section,

we will give a rigorous proof.

1We will see later that other queueing structures are useful and that it is not necessary to place
cells in VOQs.

D.1 Achieving 100% Throughput in a Buffered Crossbar - An Outline 325

Theorem D.1. (Sufficiency) A buffered crossbar can achieve 100% throughput with

speedup two for any Bernoulli i.i.d. admissible traffic.

Proof. Intuition and Outline: For each V OQij , let Cij denote the sum of the cells

waiting at input i and the cells waiting at all inputs destined to output j (including

cells in the crosspoint for output j),

Cij =
∑
k

Xik +
∑
k

(Xkj +Bkj). (D.2)

It is easy to see that when V OQij is non-empty (i.e., Xij > 0), then Cij decreases

in every scheduling phase. There are two cases:

• Case 1: Bij = 1. Output j will receive one cell from the buffers destined to it,

and
∑

k(Xkj +Bkj) will decrease by one.

• Case 2: Bij = 0. Input i will send one cell from its VOQs to a crosspoint, and∑
kXik will decrease by one.2

With S = 2, Cij will decrease by two per time slot. When the inputs and outputs

are not oversubscribed, the expected increase in Cij is strictly less than two per time

slot. So the expected change in Cij is negative over the time slot, and this means that

the expected value of Cij is bounded. This in turn implies that the expected value of

Xij is bounded and the buffered crossbar has 100% throughput. r

2If a cell from V OQij is sent to crosspoint Bij , then
∑

k(Xkj + Bkj) stays the same at the end
of the input scheduling phase, since Xij decreases by one and Bij increases by one. In the output
schedule, Case 1 applies and Cij will further decrease by one. As a result, if a cell from V OQij is
sent to crosspoint Bij , then Cij decreases by two in that scheduling phase.

D.2 Achieving 100% Throughput in a Buffered Crossbar - A Rigorous Proof 326

D.2 Achieving 100% Throughput in a Bu�ered

Crossbar - A Rigorous Proof

Lemma D.1. Consider a system of queues whose evolution is described by a discrete

time Markov chain (DTMC) that is aperiodic and irreducible with state vector Yn ∈ NM .

Suppose that a lower bounded, non-negative function F (Yn), called Lyapunov function,

F : NM → R exists such that ∀Yn, E[F (Yn+1)|Yn] <∞. Suppose also that there exist

γ ∈ R+ and C ∈ R+, such that ∀||Yn|| > C,

E[F (Yn+1)− F (Yn)|Yn] < −γ, (D.3)

then all states of the DTMC are positive recurrent and for every ε > 0, there exists

B > 0 such that limn→∞ Pr{
∑

i,j Xi,j(n) > B} < ε.

Proof. This is a straightforward extension of Foster’s criteria and follows from [39,

216, 217, 218]. r

We will use the above lemma in proving Theorem D.1. We are now ready to prove

the main theorem, which we repeat here for convenience.

Theorem D.2. (Sufficiency) Under an arbitrary scheduling algorithm, the buffered

crossbar gives 100% throughput with speedup of two.

Proof. In the rest of the proof we will assume that all indices i, j, k vary from 1, 2, ..N .

Denote the occupancy of V OQij at time n by Xij(n). Also, let Zij denote the

combined occupancy of the V OQij and the crosspoint Bij at time n. By definition,

Zij(n) = Xij(n) +Bij(n).

D.2 Achieving 100% Throughput in a Buffered Crossbar - A Rigorous Proof 327

Define,

f1(n) =
∑
i,j

Xij(n)
(∑

k

Xik(n)
)
, (D.4)

f2(n) =
∑
i,j

Zij(n)
(∑

k

Zkj(n)
)
, (D.5)

F (n) = f1(n) + f2(n). (D.6)

Observe that from Equation D.4

f1(n) =
∑
i,j

Xij(n)
(∑

k

Xik(n)
)

=
∑
i,j,k

Xij(n)Xik(n).

Denote Dij(n) = 1 if a cell departs from V OQij at time n and zero otherwise.

Also, let Aij(n) = 1 if a cell arrives to V OQij and zero otherwise. Then, Xij(n+ 1) =

Xij(n) + Aij(n)−Dij(n). Henceforth, we will drop the time n from the symbol for

Dij(n) and Aij(n), and refer to them as Dij and Aij respectively, since in the rest of

the proof, we will only be concerned with the arrivals and departures of cells at time

n.

Therefore, [f1(n+ 1)− f1(n)]

=
∑
i,j,k

[Xij(n+ 1)Xik(n+ 1)−Xij(n)Xik(n)]

D.2 Achieving 100% Throughput in a Buffered Crossbar - A Rigorous Proof 328

Then we get [f1(n+ 1)− f1(n)]

=
∑
i,j,k

(Xij(n) + Aij −Dij)(Xik(n) + Aik −Dik)−

Xij(n)Xik(n)

=
∑
i,j,k

(Aij −Dij)Xik(n) + (Aik −Dik)Xij(n)+

(Aij −Dij)(Aik −Dik)

=
∑
i,j,k

2(Aik −Dik)Xij(n) + (Aij −Dij)(Aik −Dik)

Since |Aij −Dij| ≤ 1 and similarly |Aik −Dik| ≤ 1, we get3

E[f1(n+ 1)− f1(n)] ≤ N3 +
∑
i,j,k

2E[Aik −Dik]Xij(n). (D.7)

Denote Eij(n) = 1 if a cell departs from the combined queue of V OQij and the

crosspoint Bij, and zero otherwise. Note that Eij(n) = 1 only when a cell departs

from the crosspoint Bij to the output at time n, since all departures to the output

must occur from the crosspoint. Also recall that the arrival rate to the combined

queue, V OQij and Bij, is the same as the arrival rate to V OQij. So we can write

Zij(n+ 1) = Zij(n) +Aij(n)−Eij(n). Again we will drop the time n from the symbol

for Eij(n) and Aij(n), and refer to them as Eij and Aij respectively.

Then, similar to the derivation in Equation D.7, we can derive using Equation D.5,

E[f2(n+ 1)− f2(n)] ≤ N3 +
∑
i,j,k

2E[Akj −Dkj]Zij(n). (D.8)

3This is in fact the conditional expectation given knowledge of the state of all queues and
crosspoints at time n. For simplicity in the rest of the proof (since we only use the conditional
expectation), we will drop the conditional expectation sign and simply use the symbol for expectation
as its meaning is clear.

D.2 Achieving 100% Throughput in a Buffered Crossbar - A Rigorous Proof 329

So from Equation D.7 and Equation D.8, E[F (n+ 1)− F (n)]

≤ 2N3 + 2
∑
i,j,k

(
E[Aik −Dik]Xij(n)

+ E[Akj − Ekj]Zij(n)
)

= 2N3 + 2
∑
i,j

(
Xij(n)

∑
k

E[Aik −Dik]

+ Zij(n)
∑
k

E[Akj − Ekj]
)

Re-substituting Zij = Xij +Bij, we get E[f(n+ 1)− f(n)],

≤ 2N3 + 2
∑
i,j

(
Xij(n)

∑
k

E[Aik −Dik]

+
(
Xij(n) +Bij(n)

)∑
k

E[Akj − Ekj]
)

= 2N3 + 2
∑
i,j

(
Xij(n)

∑
k

E[Aik −Dik + Akj − Ekj]

+Bij(n)
∑
k

E[Akj − Ekj]
)

We can substitute Rij =
∑

k E[Aik −Dik + Akj − Ekj] and Sj =
∑

k E[Akj − Ekj]
and re-write this as,

E[F (n+ 1)− F (n)] ≤ 2N3 + 2
∑
i,j

(
Xij(n)Rij +Bij(n)Sj

)
(D.9)

But, we also have from Equation D.2,

E[Cij(n+ 1)− Cij(n)] ≡ Rij (D.10)

E[
∑
k

(
Zkj(n+ 1)− Zkj(n)

)
] ≡ Sj. (D.11)

In Section D.1, it was shown that for a buffered crossbar with speedup of two, Rij

D.2 Achieving 100% Throughput in a Buffered Crossbar - A Rigorous Proof 330

is strictly negative when Xij(n) > 0 and the traffic is admissible. So the first product

term inside the summation sign in Equation D.9

Xij(n)Rij ≤ 0. (D.12)

Similarly, if the traffic is admissible, then
∑

k E[Akj] < 1. Also, when Bij(n) = 1,

then from Equation D.2 and case 1 of Theorem D.1 in Section D.1, we know that the

output j will receive at least one cell, and so at least one cell must have departed one

of the crosspoints destined to output j at time n. And so when the traffic is admissible

and Bij(n) = 1, then Sj < 0. This implies that the second product term inside the

summation sign in Equation D.9,

Bij(n)Sj ≤ 0. (D.13)

In both cases, Xij(n)Rij and Bij(n)Sj are equal to zero only if Xij = 0 and Bij = 0

respectively. Now we want to use Lemma D.1 and show that the whole right hand side

of Equation D.9 is strictly negative. All that needs to be done is to ensure that one of

the V OQs Xij in the summation in Equation D.9 is large enough so that 2Xij(n)Rij

can negate the positive constant 2N3.

In order to show this, let λmax = max(
∑

k λik,
∑

k λkj), i, j ∈ (1, 2, ..N). Choose

any γ′ > 0, and let

F ≡
∑
ijk

XijXik + ZijZkj >

N3

[(
(1 + γ′)N3

1− λmax

)2

+

(
1 +

(1 + γ′)N3

1− λmax

)2
]
≡ C

where, C corresponds to the constant in Lemma D.1. Recall that Zij ≤ Xij + 1.

Then the above inequality can only be satisfied if there exists Xij such that:

Xij >
(1 + γ′)N3

1− λmax

D.2 Achieving 100% Throughput in a Buffered Crossbar - A Rigorous Proof 331

As shown in Section D.1, when Xij > 0,

Rij ≤ −(2− 2λmax) < −(1− λmax)

Therefore, we have

XijRij < −(1 + γ′)N3

If we substitute this in Equation D.9, then for all n such that F (n) > B,

E[F (n+ 1)− F (n)] < −2γ′N3

Let γ correspond to the variable in Lemma D.1 and set γ = 2γ′N3. Also it is easy to

see that,

E[F (n+ 1)|F (n)] <∞

From Lemma D.1, for every ε > 0, there exists B > 0 such that

limn→∞ Pr{
∑

i,j Xi,j(n) > B} < ε. From Definition B.3, the scheduling algorithm

gives 100% throughput. r

“We have a lot of empty space on our crossbar”.

— Buffered Crossbars Vindicated† E
A Modified Buffered Crossbar

In this appendix, we will prove Theorem 5.5 which states that a modified buffered

crossbar can mimic a PIFO-OQ router with a fixed delay of N/2 time slots. In what

follows, we will first show that the crux of the proof depends on showing that the

size of the burst over any time period, to every output, is bounded by N cells. Then

we prove the theorem for a buffered crossbar with N cells per output as shown in

Figure 5.4, and we show that the theorem is trivially true for a buffered crossbar with

N cells per crosspoint.

Bounding the size of the burst to any input: When header scheduling is

performed, an input could receive up to N grants (one from each output) in a single

output scheduling phase. Fortunately, over p consecutive phases the number of grants

received by an input is bounded by p+N−1. This is because an input can communicate

at most one header per input scheduling phase, and there are at most N outstanding

headers (one for each crosspoint) per input. On the other hand, each output grants at

most one header per scheduling phase. So there are at most p grants for an output

over any p consecutive scheduling phases.

We are now ready to prove the following theorem:

Theorem 5.5. (Sufficiency, by Reference) A modified buffered crossbar can emulate

a PIFO-OQ router with a crossbar bandwidth of 2NR and a memory bandwidth of

†Architectural Discussion, Campus Switching Group, Cisco Systems, California, May 2008.

332

333

6NR.

Proof. An input can receive at most p+N−1 grants over any p consecutive scheduling

phases. If the input adds new grants to the tail of a grant FIFO, and reads one grant

from the head of the grant FIFO in each scheduling phase, then the grant FIFO will

never contain more than N − 1 grants. Each time the input takes a grant from the

grant FIFO, it sends the corresponding cell to the set of N crosspoints for its output.

Because the grant FIFO is served once per phase, a cell that is granted at scheduling

phase p will reach the output crosspoint by phase p+N − 1.

We need to verify that the per-output buffers in the crossbar never overflow. If the

crosspoint scheduler issues a grant at phase p, then the corresponding cell will reach

the output crosspoint between phases p and p+N − 1. Therefore, during scheduling

phase p, the only cells that can be in the output crosspoint are cells that were granted

between phases p−N to p− 1.

In a modified crossbar with N buffers per output, the buffers will never overflow,

and each cell faces a delay of at most N scheduling phases, i.e., N/2 time slots (because

S = 2). r

Note that in a modified crossbar with N cells per crosspoint, the buffers will also

never overflow and the above theorem will also hold.

“Oh, well. It still works,

It’s just not work-conserving!”.

— The Art of Chutzpah† F
Proofs for Chapter 6

F.1 Proof of Theorem 6.1

Theorem 6.1. A PPS without speedup is not work-conserving.

Proof. (By counter-example). Consider the PPS in Figure F.1 with three ports and

two layers (N = 3 and k = 2). The external lines operate at rate R, and the internal

lines at rate R/2.

Assume that the switch is empty at time t = 1, and that three cells arrive, one to

each input port, and all destined to output port A. If all the input ports choose the

same layer, then the PPS is non-work-conserving. If not, then at least two of these

inputs will choose the same layer and the other input will choose a different layer.

Without loss of generality, let inputs 1 and 3 both choose layer 1 and send cells C1

and C3 to layer 1 in the first time slot. This is shown in Figure F.1(a). Also, let

input port 2 send cell C2 to layer 2. These cells are shown in the output queues of the

internal switches and await departure. Now we create an adversarial traffic pattern.

In the second time slot, the adversary picks the input ports that sent cells to the

same layer in the first time slot. These two ports are made to receive cells destined to

output port B. As shown in the figure, cells C4 and C5 arrive at input ports 1 and 3,

and they both must be sent to layer 2; this is because the internal line rate between

†HPNG Group Meeting, Stanford University, California, Jan 1999.

334

F.1 Proof of Theorem 6.1 335

R

R

R

Mux

A

B

C

Mux

Mux

NxN OQ Switch

R
Demux

1

R
Demux

2

R
Demux

3

NxN OQ Switch

C1

C2

C3

R

R

R

Mux

A

B

C

Mux

Mux

NxN OQ Switch

R
Demux

1

R
Demux

2

R
Demux

3

NxN OQ Switch

C4

C5

(a) Time Slot 1 (C1, C2, C3 arrive for output A)

(b) Time Slot 2 (C4, C5 arrive for output B)

C4C5

C3

C1

C2

C3

R/2R/2

R/2 R/2

R/2R/2

R/2R/2

Figure F.1: A 3× 3 PPS with an arrival pattern that makes it non-work-conserving. The
notation Ci : A; m denotes a cell numbered i, destined to output port A, and sent to layer m.

F.2 Proof of Theorem 6.5 336

the demultiplexor and each layer is only R/2, limiting a cell to be sent over this link

only once every other time slot. Now the problem becomes apparent: cells C4 and C5

are in the same layer, and they are the only cells in the system destined for output

port B at time slot 2. These two cells cannot be sent back-to-back in consecutive time

slots, because the link between the layer and the multiplexor operates only at rate

R/2. So, cell C4 will be sent, followed by an idle time slot at output port B, and the

system is no longer work-conserving. And so, trivially, a PPS without speedup cannot

emulate an FCFS-OQ switch. r

F.2 Proof of Theorem 6.5

In what follows, we will use T to denote time in units of time slots. We will also use t

to denote time, and use it only when necessary. Recall that if the external line rate is

R and cells are of fixed size P , then each cell takes P/R units of time to arrive, and

t = TP/R. Before we prove the main theorem, we will need the following results.

Lemma F.1. The number of cells D(i, l, t) that demultiplexor i queues to FIFO Q(i, l)

in time T slots, is bounded by

D(i, l, T) 6 T if T 6 N

D(i, l, T) <
T

k
+ n if T > N.

Proof. Since the demultiplexor dispatches cells in a round robin manner for every

output, for every k cells received by a demultiplexor for a specific output, exactly one

cell is sent to each layer. We can write S(i, T) =
∑N

j=1 S(i, j, T), where S(i, j, T) is

the sum of the number of cells sent by the demultiplexor i to output j in any time

interval of T time slots, and S(i, T) is the sum of the number of cells sent by the

F.2 Proof of Theorem 6.5 337

demultiplexor to all outputs in that time interval T . Let T > N . Then we have,

D(i, l, T) 6
N∑
j=1

⌈
S(i, j, T)

k

⌉
6

⌈
N∑
j=1

S(i, j, T)

k

⌉
+N + 1 =⌈

S ′(i, T)

k

⌉
+N − 1 6

⌈
T

k

⌉
+N − 1 <

T

k
+N (F.1)

since S(i, T) is bounded by T . The proof for T 6 N is obvious. r

We are now ready to determine the size of the co-ordination buffer in the demultiplexor.

Theorem F.1. (Sufficiency) A PPS with independent demultiplexors and no speedup

can send cells from each input to each output in a round robin order with a co-ordination

buffer at the demultiplexor of size Nk cells.

Proof. A cell of size P corresponds to P/R units of time, allowing us to re-write

Lemma F.1 as D(i, l, t) 6 Rt/Pk +N (where t is in units of time). Thus the number

of cells written into each demultiplexor FIFO is bounded by Rt/Pk + N cells over

all time intervals of length t. This can be represented as a leaky bucket source with

an average rate ρ = R/Pk cells per unit time and a bucket size σ = N cells for each

FIFO. Each FIFO is serviced deterministically at rate µ = R/Pk cells per unit time.

Hence, by the definition of a leaky bucket source [219], a FIFO buffer of length N will

not overflow. r

It now remains for us to determine the size of the co-ordination buffers in the multi-

plexor. This proceeds in an identical fashion.

Lemma F.2. The number of cells D′(j, l, T) that multiplexor j delivers to the external

line from FIFO Q′(j, l)1 in a time interval of T time slots, is bounded by

D′(i, l, T) 6 T if T 6 N

D′(i, l, T) <
T

k
+ n if T > N.

1FIFO Q′(j; l) holds cells at multiplexor j arriving from layer l.

F.2 Proof of Theorem 6.5 338

Proof. Cells destined to multiplexor j from a demultiplexor i are arranged in a round

robin manner, which means that for every k cells received by a multiplexor from a

specific input, exactly one cell is read from each layer. Define,

S ′(j, T) =
N∑
j=1

S ′(i, j, T), (F.2)

where S ′(i, j, T) is the sum of the number of cells from demultiplexor i that were

delivered to the external line by multiplexor j in time interval T , and S ′(i, T) is the

sum of the number of cells from all the demultiplexors that were delivered to the

external line by the multiplexor in time interval T . Let T > N . Then we have,

D′(i, l, T) 6
N∑
j=1

⌈
S ′(i, j, T)

k

⌉
6

⌈
N∑
j=1

S ′(i, j, T)

k

⌉
+N + 1 =⌈

S(i, T)

k

⌉
+N − 1 6

⌈
T

k

⌉
+N − 1 <

T

k
+N (F.3)

since S ′(i, T) is bounded by T . The proof for T 6 N is obvious. r

Finally, we can determine the size of the co-ordination buffers at the multiplexor.

Theorem F.2. (Sufficiency) A PPS with independent multiplexors and no speedup

can receive cells for each output in a round robin order with a co-ordination buffer of

size Nk cells.

Proof. The proof is almost identical to Theorem F.1. From Lemma F.2, we can bound

the rate at which cells in a multiplexor FIFO need to be delivered to the external

line by Rt/Pk +N cells over all time intervals of length t. Cells are sent from each

layer to the multiplexor FIFO at fixed rate µ = R/Pk cells per unit time. We can see

as a result of the delay equalization step in Section 6.8.2 that the demultiplexor and

multiplexor systems are exactly symmetrical. Hence, if each FIFO is of length N cells,

the FIFO will not overflow. r

F.2 Proof of Theorem 6.5 339

Now that we know the size of the buffers at the input demultiplexor and the output

multiplexor – both of which are serviced at a deterministic rate – we can bound the

relative queueing delay with respect to an FCFS-OQ switch.

Theorem 6.5. (Sufficiency) A PPS with independent demultiplexors and multiplexors

and no speedup, with each multiplexor and demultiplexor containing a co-ordination

buffer of size Nk cells, can emulate an FCFS-OQ switch with a relative queuing delay

bound of 2N internal time slots.

Proof. We consider the path of a cell in the PPS. The cell may potentially face a

queuing delay as follows:

1. The cell may be queued at the FIFO of the demultiplexor before it is sent to its

center stage switch. From Theorem F.1, we know that this delay is bounded by

N internal time slots.

2. The cell first undergoes delay equalization in the center stage switches and is

sent to the output queues of the center stage switches. It then awaits service in

the output queue of a center stage switch.

3. The cell may then face a variable delay when it is read from the center stage

switches. From Theorem F.2, this is bounded by N internal time slots.

Thus the additional queuing delay, i.e., the relative queueing delay faced by a cell

in the PPS, is no more than N +N = 2N internal time slots.

Note that in the proof described above, it is assumed that the multiplexor is aware

of the cells that have arrived to the center stage switches. It issues the reads in the

correct FIFO order from the center stage switches, after they have undergone delay

equalization. This critical detail was left out in the original version of the paper [36],

leading to some confusion with subsequent work done by the authors in [128]. On

discussion with the authors [220], we concurred that our results are in agreement.

Their detailed proof appears in [128]. r

“It’s a nice result, but think of yourself

as an observer who happened to stumble upon it”.

— Nick McKeown, Lessons in Humility† G
Centralized Parallel Packet Switch

Algorithm

In this appendix, we present an example of the CPA algorithm that was described

in Chapter 6. The example in Figure G.1 and Figure G.2 shows a 4× 4 PPS, with

k = 3 center stage OQ switches.

The CPA algorithm functions like an insert and dispatch scheme, where arriving

cells are “inserted” into the correct center stage OQ switches, so that they can be

dispatched to the multiplexor at their correct departure time. Our example is for

FCFS-OQ emulation, and so the PPS operates with speedup S = 2, in accordance

with Theorem 6.2.

Our example shows the following sequence of steps, as cells arrive in two consecutive

external time slots.

1. Time Slot 1: In external time slot 1, cells C1, C2, and C3 arrive to inputs

1, 2, and 3 respectively. They are destined to outputs 1, 2, and 1 respectively.

Note that the notation Ci : (j, k), refers to a cell numbered i, destined to output

j, which is sent to center stage OQ switch k. Cell C1 is sent to center stage

OQ switch 1, and cells C2 and C3 are both sent to center stage OQ switch 2

as shown in Figure G.1. The manipulations done on the AIL(.) and AOL(.)

†Nick McKeown, Stanford University, California, Dec 1998.

340

341

R

R

R

R

R
(2R/k) (2R/k)

MultiplexorDemultiplexor

1

R

Demultiplexor

2

R

Demultiplexor

3

Demultiplexor
R

1

2

3

Multiplexor

Multiplexor

Multiplexor

4 4

1

3

NxN OQ Switch

NxN OQ Switch

NxN OQ Switch

(2R/k) (2R/k)

C1: 1,1

C2: 2,2

C3: 1,2

(a1) Cell C1 chooses layer 1 arbitrarily from {1,2,3} ^ {1,2,3}
(a2) AOL(1,1) is updated to {1,2,3} - {1} = {2,3}
(a3) AIL(1,1) is updated to {1,2,3} - {1} = {2,3}
(a4) Cell C2 chooses layer 2 arbitrarily from {1,2,3} ^ {1,2,3}

R

R

R

R

R
(2R/k) (2R/k)

MultiplexorDemultiplexor

1

R

Demultiplexor

2

R

Demultiplexor

3

Demultiplexor
R

1

2

3

Multiplexor

Multiplexor

Multiplexor

4 4

1

3

NxN OQ Switch

NxN OQ Switch

NxN OQ Switch

(2R/k) (2R/k)

C1: 1,1

C2: 2,2

C3: 1,2

(b1) Cell C3 has a departure time DT(0,3,1)=1
(b2) Cell C3 has to choose from AIL(3,0) ^ AOL(1,1)
(b3) Cell C3 chooses layer 2 from {1,2,3} ^ {2,3}
(b4) AOL(1,2) is updated to {2,3} - {2} + {1} = {1,3}

C1: T1

C2: T1
C3: T2

Figure G.1: An example of the CPA algorithm.

342

R

R

R

R

R
(2R/k) (2R/k)

MultiplexorDemultiplexor

1

R

Demultiplexor

2

R

Demultiplexor

3

Demultiplexor
R

1

2

3

Multiplexor

Multiplexor

Multiplexor

4 4

1

3

NxN OQ Switch

NxN OQ Switch

NxN OQ Switch

(2R/k) (2R/k)

(c1) Cell C4 has an expected departure time DT(1,1,1) = 2

R

R

R

R

R
(2R/k) (2R/k)

MultiplexorDemultiplexor

1

R

Demultiplexor

2

R

Demultiplexor

3

Demultiplexor
R

1

2

3

Multiplexor

Multiplexor

Multiplexor

4 4

1

3

NxN OQ Switch

NxN OQ Switch

NxN OQ Switch

(2R/k) (2R/k)

C4: 1,3

C5: 1,1

(d1) Cell C5 has an expected departure time DT(4,1,1) = 3

C3: T2

(c2) Cell C4 has to choose from AIL(1,1) ^ AOL(1,2)
(c3) Cell C4 chooses layer 3 from {2,3} ^ {1,3}
(c4) AOL(1,3) is updated to{1,3} - {3} + {2} = {1,2}

(d2) Cell C5 has to choose from AIL(4,1) ^ AOL(1,3)
(d3) Cell C5 chooses layer 1 from {1,2,3} ^ {1,2}
(d4) AOL(1,4) is updated to {1,2} - {1} + {3} = {2,3}

C5: T4

C4: T3

C3: T2

Figure G.2: An example of the CPA algorithm (continued).

343

sets for these cells are also shown in Figure G.1. Note that in the bottom of

the figure, the cells are shown to be conceptually “buffered in the center stage

switches”. Of course, depending on the internal delays, this event may not have

occurred.

2. Time Slot 2: In external time slot 2, cells C4 and C5 arrive to inputs 1 and 3

respectively. They are both destined to output 1. Note that cells C1 and C2 are

shown as conceptually “already having left” the center stage switches. However,

depending on the internal delays on the links, this event may not have occurred.

Cell C4 is sent to center stage OQ switch 3, and cell C5 is sent to center stage

OQ switch 1 as shown in Figure G.2. Again, the manipulations done on the

AIL(.) and AOL(.) sets for these cells are also shown in Figure G.2.

“You mean you want to drop a packet? Why?”.

— The Customer is Always Right!† H
Proofs for Chapter 7

H.1 Proof of Theorem 7.2

Theorem 7.2. (Necessity) To guarantee that a byte is always available in head cache

when requested for any memory management algorithm, the head cache must contain

at least Qw > Q(b− 1)(2 + lnQ) bytes.

Proof. In what follows we will consider a model where data can be written/read

from the packet buffer in a continuous manner, i.e., 1 byte at a time. In reality,

this assumption results in a more conservative bound on the cache size than what

occurs when discrete packets (which have minimum size limitations) are taken into

consideration.

Consider the particular traffic pattern with the pattern of requests shown in

Figure H.1. We will show that regardless of the memory management algorithm the

following pattern is applicable. The pattern progresses in a number of iterations, where

iteration number x = 1, 2, 3, . . . consists of Q(1− 1/b)x time slots. Each successive

iteration lasts fewer time slots than the previous one. In each successive iteration the

pattern focuses on the queues that have not yet been replenished by the MMA in

consideration.

†There are cases in which packets delayed due to congestion may be dropped from the buffer.
Cisco Systems, San Jose, California, Mar 2006.

344

H.1 Proof of Theorem 7.2 345

(c) Iteration x=2 (d) Iteration x

Read 1 byte from Q(1-1/b) queues Read 1 byte from Q(1-1/b)x = 1 queue
...

D
D
D
D

D
D

t0 = 0

D-1+b

D-1+b
D-1

D-1
D-1

t1 = t0 + Q

} Serve

D-1+b

D-1+b
D-2+b

D-2
D-2

t2 = t1 + Q(1-1/b)

} Previously

Read 1 byte from Q queues

D-2+b
D-2

} Serve

Q(1-1/b)(1/b)

tx+1 = tx + Q(1-1/b)x

D-1+b

D-1+b
D-2+b

D-(x-1)+b
D-x

} Previously

D-2+b
D-3+b

}Previously

}Unserved

}

...
...

...
...

...

...
...

...

(a) Start (b) Iteration x=1

Unserved

Q(1-1/b)

} Unserved

Q(1-1/b)2

Served

...

Q(1-1/b)x

Served Q/b Served Q/b

Q(1-1/b)(1/b)

Q/b

Figure H.1: Traffic pattern that shows the worst-case queue size of the head SRAM. Starting
with completely filled queues with occupancy of D, in every iteration the arbiter requests one
byte from the lowest occupancy queues. At the end of iteration x, the last queue has a deficit
of x = logb/(b−1) Q.

H.1 Proof of Theorem 7.2 346

Initially at t0 = 0, each queue has D bytes, where D is the minimum number of

bytes required so that every byte request can be satisfied by the SRAM cache.

First iteration (Q time slots): In time slots t = 1, 2, 3, . . . , Q, a request arrives

for FIFO t. It takes b timeslots to read b bytes from the DRAM and replenish the

SRAM cache of a specific FIFO. At the end of time slot Q, at most Q/b FIFOs will

have received b bytes from the DRAM, and so at least Q(1− 1/b) FIFOs will have

D(i, Q) = 1. Correspondingly, in the figure we can observe that the number of bytes

in the first Q/b queues is D − 1 + b, while the remaining queues have a deficit of 1.

Second iteration (Q(1 − 1/b) time slots): In the 2nd iteration, consider the

Q(1 − 1/b) FIFOs for which D(i, Q) = 1. In the next Q(1 − 1/b) time slots, we

will assume that a request arrives for each of these FIFOs. At the end of the 2nd

iteration, as shown in the Figure, Q(1 − 1/b)/b of these FIFOs will be replenished,

and Q(1− 1/b)2 will have D(i, t) = 2.

xth iteration (Q(1 − 1/b)x time slots):1 By continuing this argument, we can

see that at the end of x iterations there will be Q(1− 1/b)x FIFOs with D(i, t) = x.

Solving for Q(1− 1/b)x = 1, we get that

x = logb/(b−1) Q =
lnQ

ln c
,

where c = b/(b− 1). Since, ln(1 + x) < x, we get

ln c = ln

[
1 +

1

b− 1

]
<

1

b− 1

and it follows that x > (b− 1) lnQ.

So far, we have proved that if each FIFO can hold (b − 1) lnQ bytes, then in

(b− 1) lnQ iterations at least one FIFO can have a deficit of at least (b− 1) lnQ bytes.

Imagine that this FIFO is left with an occupancy of b− 1 bytes (i.e., it initially held

(b− 1)(1 + lnQ) bytes, and 1 byte was read in each of (b− 1) lnQ iterations). If in

1For example, when discrete packets that have constraints on the minimum size are read, there
might be fewer queues that reach their maximum deficit simultaneously, and fewer iterations than
the worst case mentioned in this continuous model, where one byte can be read at a time.

H.2 Proof of Lemma 7.2 347

successive times slots we proceed to read b more bytes from the most depleted FIFO,

i.e., the one with occupancy b− 1 bytes, it will certainly under-run (because it has

never been replenished). Since we do not know a priori the queue for which this traffic

pattern may occur, we require that w > (b− 1)(1 + lnQ) bytes to prevent under-run.

But we are not quite done. Imagine that we initially had a head cache large enough

to hold precisely w = (b − 1)(1 + lnQ) bytes for every FIFO, and assume that the

arbiter reads 1 byte from one FIFO then stops indefinitely. After the 1-byte read, the

FIFO now contains (b− 1)(1 + lnQ) bytes, but is replenished b time slots later with

b bytes from DRAM. Now the FIFO needs to have space to hold these additional b

bytes. However, since only 1 byte has been read out of the FIFO, it needs to have

space for an additional b− 1 bytes. Therefore, the SRAM needs to be able to hold

w > (b− 1)(2 + lnQ) bytes per FIFO, and so Qw > Q(b− 1)(2 + lnQ) bytes overall.r

H.2 Proof of Lemma 7.2

Lemma 7.2. Under the MDQF-MMA, which services requests without any pipeline

delay,

F (i) < bi[2 + ln(Q/i)],∀i ∈ {1, 2, . . . , Q− 1}.

Proof. The case when i = 1 is already proved in Lemma 7.1, and when i = Q it is

obvious as mentioned in Equation 7.9. For ∀i ∈ {2, . . . , Q − 1}, we again solve the

recurrence relation obtained in Equation 7.8 to obtain,

F (i) ≤ i

[
b+ b

Q−1∑
j=i

1

j

]
, ∀i ∈ {2, . . . , Q− 1}. (H.1)

We can write the summation term in the above equation as,

Q−1∑
j=i

1

j
=

Q−1∑
j=1

1

j
−

i−1∑
j=1

1

j
,∀i ∈ {2, . . . , Q− 1}. (H.2)

H.3 Proof of Lemma 7.3 348

Since,

∀N, lnN <

N∑
i=1

1

i
< 1 + lnN, (H.3)

we can use Equation H.2 and Equation H.3 to re-write Equation H.1 as a weak

inequality,

F (i) < bi[2 + ln(Q− 1)/(i− 1))],∀i ∈ {2, . . . , Q− 1}.

Thus we can write ∀i ∈ {2, . . . , Q− 1}, F (i) < bi[2 + ln(Q/(i− 1))].2 r

H.3 Proof of Lemma 7.3

Lemma 7.3. (Sufficiency) Under the MDQFP-MMA policy, and a pipeline delay of

x > b time slots, the real deficit of any queue i is bounded for all time t+ x by

Rx(i, t+ x) 6 C = b

(
2 + ln

(
Q

b

x− 2b

))
. (H.4)

Proof. We shall derive a bound on the deficit of a queue in the MDQFP-MMA system

in two steps using the properties of both MDQF and ECQF MMA. First, we limit (and

derive) the maximum number of queues that can cross a certain deficit bound using

the property of MDQF. For example, in MDQF, for any k, since the maximum value

of the sum of the most deficited k queues is F (k), there are no more than k queues

that have a deficit strictly larger than F (k)/k at any given time. We will derive a

similar bound for the MDQFP-MMA with a lookahead of x timeslots, Fx(j)/j, where

Fx(j) is the maximum deficit that j queues can reach under the MDQPF-MMA, and

we choose j = (x− b)/b. With this bound we will have no more than j queues whose

deficit exceeds Fx(j)/j at any given time.

Then we will set the size of the head cache to b bytes more than Fx(j)/j. By

definition, a queue that has become critical has a deficit greater than the size of the

head cache, so the number of unique queues that can become critical is bounded by

2Please note that in a previous version of the paper [166], this inequality was incorrectly simplified
to F (i) < bi[2 + ln(Q=i)].

H.3 Proof of Lemma 7.3 349

j. This will also lead us to a bound on the maximum number of outstanding critical

queue requests, which we will show is no more than j. Since x > jb+ b, this gives us

sufficient time available to service the queue before it actually misses the head cache.

In what follows we will formalize this argument.

Step 1: We are interested in deriving the values of Fx(i) for the MDQFP-MMA.

But we cannot derive any useful bounds on Fx(i) for i < {1, 2, . . . , (x− b)/b}. This

is because MDQFP-MMA at some time t (after taking the lookahead in the next x

time slots into consideration) may pick a queue with a smaller deficit if it became

critical before the other queue, in the time (t, t + x), ignoring temporarily a queue

with a somewhat larger deficit. So we will look to find bounds on Fx(i), for values of

i > (x− b)/b. In particular we will look at Fx(j), where j = (x− b)/b. First, we will

derive a limit on the number of queues whose deficits can cross Fx(j)/j at any given

time.

We begin by setting the size of the head cache under this policy to be Fx(j)/j + b.

This means that a critical queue has reached a deficit of C > Fx(j)/j + b, where

j = (x − b)/b. The reason for this will become clear later. We will first derive the

value of Fx(j) using difference equations similar to Lemma 7.1.

Assume that t is the first time slot at which Fx(i) reaches its maximum value, for

some i queues. Hence none of these queues were served in the previous time slot, and

either (1) some other queue with deficit greater than or equal to (Fx(i) − b)/i was

served, or (2) a critical queue was served. In the former case, we have i+ 1 queues for

the previous timeslot, for which we can say that,

Fx(i+ 1) > Fx(i)− b+ (Fx(i)− b)/i. (H.5)

In the latter case, we have,

Fx(i+ 1) > Fx(i)− b+ C. (H.6)

Since C = Fx(j)/j + b and ∀i ∈ {j, j + 1, j + 2, . . . , Q− 1}, Fx(j) > Fx(i)/i , we will

use Equation H.5, since it is the weaker inequality.

H.3 Proof of Lemma 7.3 350

General Step: Likewise, we can derive relations similar to Equation H.5, i.e.,

∀i ∈ {j, j + 1, . . . , Q− 1}.

Fx(i+ 1) > Fx(i)− b+ (Fx(i)− b)/i (H.7)

We also trivially have Fx(Q) < Qb. Solving these recurrence equations similarly to

Lemma 7.2 gives us for MDQFP-MMA,

Fx(i) < bi[2 + ln(Q/(i− 1))],∀i ∈ {j, j + 1, . . . , Q− 1}, (H.8)

and j = (x− b)/b

Step 2: Now we are ready to show the bound on the cache size. First we give

the intuition, and then we will formalize the argument. We know that no more than

j = (x− b)/b queues can have a deficit strictly more than Fx(j)/j. In particular, since

we have set the head cache size to C, no more than j queues have deficit more than

C = Fx(j)/j + b, i.e., no more than j queues can be simultaneously critical at any

given time t. In fact, we will show that there can be no more than j outstanding

critical queues at any given time t. Since we have a latency of x > jb timeslots, this

gives enough time to service any queue that becomes critical at time t before time

t + x. The above argument is similar to what ECQF does. In what follows we will

formalize this argument.

(Reductio-Ad-Absurdum): Let T + x be the first time at which the real deficit of

some queue i, rx(i, T + x) becomes greater than C. From Equation 7.12, we have that

queue i was critical at time T , i.e., there was a request that arrived at time T to the

tail of the shift register that made queue t critical. We will use the following definition

to derive a contradiction if the real deficit becomes greater than C.

ℵDe�nition H.1. r(t): The number of outstanding critical queue requests at the end

of any time slot t.

Consider the evolution of r(t) till time t = T . Let time T − y be the closest time

in the past for which r(T − y − 1) was zero, and is always positive after that. Clearly

H.3 Proof of Lemma 7.3 351

there is such a time, since r(t = 0) = 0.

Then r(t) has increased (not necessarily monotonically) from r(T − y − 1) = 0 at

time slot T − y − 1 to r(T) at the end of time slot T . Since r(t) > 0,∀t ∈ {T − y, T},
there is always a critical queue in this time interval and MDQFP-MMA will select

the earliest critical queue. So r(t) decreases by one in every b time slots in this time

interval and the total number of critical queues served in this time interval is by/bc.
What causes r(t) to increase in this time interval?

In this time interval a queue can become critical one or more times and will

contribute to increasing the value of r(t) one or more times. We will consider separately

for every queue, the first instance it sent a critical queue request in this time interval,

and the successive critical queue requests. We consider the following cases:

Case 1a: The first instance of a critical queue request for a queue in this time interval,

and the deficit of such queue was less than or equal to Fx(j)/j = C − b at time

T − y. Such a queue needs to request more than b bytes in this time interval to

create its first critical queue request.

Case 1b: The first instance of a critical queue request for a queue in this time interval,

and the deficit of such queue was strictly greater than Fx(j)/j = C − b but less

than C at time T − y. Such queues can request less than b bytes in this time

interval and become critical. There can be at most j such queues at time T − y.3

Case 2 Instances of critical queue requests from queues that have previously become

critical in this time interval. After the first time that a queue has become critical

in this time interval (this can happen from either case 1a or case 1b), in order

to make it critical again we require b more requests for that queue in the above

time interval.

So the maximum number of critical queue requests created from case 1a and case 2

in the time interval [T − y, T] is by/bc, which is the same as the number of critical

3Note that no queues can have deficit greater than C at the beginning of timeslot T − y because
r(T − y − 1) = 0.

H.4 Proof of Theorem 7.6 352

queues served by MDQFP-MMA. The additional requests come from case 1b, and

there can be only j such requests in this time interval. Thus r(T) 6 j.

Since we know that queue i became critical at time T , and r(T) 6 j, it gets

serviced before time T + jb < T +x, contradicting our assumption that the real deficit

of the queue at time T + x is more than C. So the size of the head cache is bounded

by C. Substituting from Equation H.8,

C = Fx(j)/j + b 6 b[2 + lnQb/(x− 2b)]. (H.9)

This completes the proof. r

H.4 Proof of Theorem 7.6

H.4.1 Proof of Theorem 7.6 with Three Assumptions

We will first prove Theorem 7.6 with three simplifying assumptions and derive the

following lemma.

Assumption 1. (Queues Initially Full) At time t = 0, the head cache is full with

b− 1 bytes in each queue; the cache has Q(b− 1) bytes of data in it.

Assumption 2. (Queues Never Empty) Whenever we decide to refill a queue, it

always has b bytes available to be replenished.

Assumption 3. The packet processor issues a new read request every time slot.

Lemma H.1. If the lookahead buffer has Lt = Q(b− 1) + 1 time slots, then there is

always at least one critical queue.

Proof. The proof is by the pigeonhole principle. We will look at the evolution of the

head cache. At the beginning, the head cache contains Q(b− 1) bytes (Assumption 1).

Because there are always Q(b− 1) + 1 read requests (Assumption 2) in the lookahead

buffer, at least one queue has more requests than the number of bytes in head cache, and

H.4 Proof of Theorem 7.6 353

so must be critical. Every b time slots, b bytes depart from the cache (Assumption 3)

and are always refilled by b new bytes (Assumption 2). This means that every b time

slots the number of requests is always one more than the number of bytes in head

cache, ensuring that there is always one critical queue. r

Now we are ready to prove the main theorem with the three assumptions.

Theorem 7.6. (Sufficiency) If the head cache has Q(b − 1) bytes and a lookahead

buffer of Q(b− 1) + 1 bytes (and hence a pipeline of Q(b− 1) + 1 slots), then ECQF

will make sure that no queue ever under-runs.

Proof. The proof proceeds in two steps. First, we will prove the theorem with the

three assumptions listed above. Then we relax the assumptions to show that the proof

holds more generally. The proof for the first step (with the three assumptions) is in

two parts. First we show that the head cache never overflows. Second, we show that

packets are delivered within Q(b− 1) + 1 time slots from when they are requested.

Part 1 We know from Lemma H.1 that ECQF reads b bytes from the earliest critical

queue every b time slots, which means the total occupancy of the head cache

does not change, and so never grows larger than Q(b− 1).

Part 2 For every request in the lookahead buffer, the requested byte is either present

or not present in the head cache. If it is in the head cache, it can be delivered

immediately. If it is not in the cache, the queue is critical. Suppose that q′

queues have ever become critical before this queue i became critical for byte bi.

Then, the request for byte bi that makes queue i critical could not have arrived

earlier than (q′+ 1)b time slots from the start. The DRAM would have taken no

more than q′b time slots to service all these earlier critical queues, leaving it with

just enough time to service queue i, thereby ensuring that the corresponding

byte bi is present in the head cache.

Hence, by the time a request reaches the head of the lookahead buffer, the byte is in

the cache, and so the pipeline delay is bounded by the depth of the lookahead buffer:

Q(b− 1) + 1 time slots. r

H.4 Proof of Theorem 7.6 354

H.4.2 Removing the Assumptions from the Proof of Theo-

rem 7.6

We need to make the proofs for Theorem 7.6 and Lemma H.1 hold, without the need

for the assumptions made in the previous section. To do this, we make two changes to

the proofs – (1) Count “placeholder” bytes (as described below) in our proof, and (2)

Analyze the evolution of the head cache every time ECQF makes a decision, rather

than once every b time slots.

Removing Assumption 1: To do this, we will assume that at t = 0 we fill the head

cache with “placeholder” bytes for all queues. We will count all placeholder bytes

in our queue occupancy and critical queue calculations. Note that placeholder

bytes will be later replaced by real bytes when actual data is received by

the writer through the direct-write path as described in Figure 7.3. But this

happens independently (oblivious to the head cache) and does not increase queue

occupancy or affect the critical queue calculations, since no new bytes are added

or deleted when placeholder bytes get replaced.

Removing Assumption 2: To do this, we assume that when ECQF makes a request,

if we don’t have b bytes available to be replenished (because the replenishment

might occur from tail cache from a partially filled queue that has less than b

bytes), the remaining bytes are replenished by placeholder bytes, so that we

always receive b bytes in the head cache. As noted above, when placeholder

bytes get replaced later, it does not increase queue occupancy or affect critical

queue calculations.

Removing Assumption 3: In Lemma H.1, we tracked the evolution of the head

cache every b time slots. Instead, we now track the evolution of the head cache

every time a decision is made by ECQF, i.e., every time bytes are requested in

the lookahead buffer. This removes the need for assumption 3 in Lemma H.1.

In Theorem 7.6, we replace our argument for byte bi and queue i as follows: Let

queue i become critical when a request for byte bi occurs. Suppose q′ queues

H.4 Proof of Theorem 7.6 355

have become critical before that. This means that queue i became critical for

byte bi, no earlier than the time it took for q′ ECQF requests and an additional

b time slots. The DRAM would take exactly the same time that it took ECQF

to issue those replenishment requests (to service all the earlier critical queues),

leaving it with at least b time slots to service queue i, thereby ensuring that the

corresponding byte bi is present in the head cache.

So the proofs for Lemma H.1 and Theorem 7.6 hold independent of the need to make

any simplifying assumptions.

“What, you’ve been working

on the same problem too?”.

— Conversation with Devavrat Shah† I
Proofs for Chapter 9

ℵDe�nition I.1. Domination: Let v = (v1, v2, . . . , vN), and u = (u1, u2, . . . , uN)

denote the values of C(i, t) for two different systems of N counters

at any time t. Let π, σ be an ordering of the counters (1, 2, 3, . . . N)

such that they are in descending order, i.e., for v we have, vπ(1) >

vπ(2) > vπ(3) > · · · > vπ(N) and for u we have uσ(1) > uσ(2) > uσ(3) >

· · · > uσ(N).

We say that v dominates u denoted v ≫ u, if vπ(i) > uσ(i),∀i. Every arrival can

possibly increment any of N different counters. The set of all possible arrival patterns

at time t can be defined as: Ωt = {(w1, w2, w3, . . . , wt), 1 > wi > N, ∀i}.

Theorem I.1. (Optimality of LCF-CMA). Under arrival sequence a(t) =

(a1, a2, a3, . . . , at), let q (a(t), Pc) = (q1, q2, q3, . . . , qN) denote the count C(i, t)

of N counters at time t under service policy Pc. For any service policy P ,

there exists a 1 − 1 function f tP,LCF : (Ωt → Ωt), for any t such that

q(f tP,LCF (w),P) ≫ q(w,LCF),∀(w ∈ Ωt),∀t.

Proof. We prove the existence of such a function f tP,LCF inductively over time t. Let

us denote the counters of the LCF system by (l1, l2, l3, . . . , lN) and the counters of the

P system by (p1, p2, p3, . . . , pN). It is trivial to check that there exists such a function

†“Might as well submit a joint paper then!”, Stanford University, 2001.

356

357

for t = 1. Inductively assume that f tP,LCF exists with the desired property until time

t, and we want to extend it to time t+ 1. This means that there exists ordering πt, σt

such that, lπt(i) 6 pσt(i),∀i. Now, at the time t+ 1, a counter may be incremented and

a counter may be completely served. We consider both these parts separately below:

• Part 1 : (Arrival) Let a counter be incremented at time t+ 1 in both systems.

Suppose that counter πt(k) is incremented in the LCF system. Then extend

f tP,LCF for t + 1 by letting an arrival occur in counter σt(k) for the P system.

By induction, we have lπt(i) 6 pσt(i),∀i. Let πt+1, σt+1 be the new ordering of

the counters of the LCF and P systems respectively. Since one arrival occurred

to both the systems in a queue with the same relative order, the domination

relation does not change.

• Part 2 : (Service) Let one of the counters be served at time t+ 1. Under the

LCF policy, the counter πt(1) with count lπt(1) will be served and its count is set

to zero, i.e., C(πt(1), t + 1) = 0, while under P any queue can be served out,

depending on the CMA prescribed by P . Let P serve the counter with rank k,

i.e., counter σt(k). Then we can create a new ordering πt+1, σt+1 as follows:

πt+1(i) = πt(i+ 1), 1 6 i 6 N − 1, πt+1(N) = πt(1). (I.1)

σt+1(i) = σt(i), 1 6 i 6 k − 1,

σt+1(i) = σt(i+ 1), k 6 i 6 N − 1, σt+1(N) = σt(k).
(I.2)

Under this definition, it is easy to check that, lπt+1(i) 6 pσt+1(i),∀i given lπt(i) 6 pσt(i),∀i.
Thus we have shown explicitly how we can extend to f tP,LCF to f t+1

P,LCF with the desired

property. Hence it follows inductively that LCF is dominated by any other policy P .r

“Do you really need multicast? At line rates?”

— Less is More† J
Parallel Packet Copies for Multicast

J.1 Introduction

Multicasting is the process of simultaneously sending the same data to multiple

destinations on the network in the most efficient manner. The Internet supports a

number of protocols to enable multicasting. For example, it supports the creation of

multicast groups [221], reserves a separate addressing space for multicast addresses [222,

223], supports the ability to inter-operate between multicast routing protocols [224],

and specifies the support needed by end hosts [225] in order to provide an efficient

multicast infrastructure.

Among the applications that require multicasting are real-time applications such

as Telepresence [28], videoconferencing, P2P services, multi-player games, IPTV [29],

etc. Multicasting is also used as a background service to update large distributed

databases and enable coherency among Web caches.

While we cannot predict the future uses and deployments of the Internet, it

is likely that routers will be called upon to switch multicast packets passing over

very-high-speed lines with guaranteed quality of service. Specific enterprise networks

already exist on which multicasting (primarily video multicasting) is expected to

exceed 15-20% [226] of all traffic. In such cases, routers will have to support the

†Cisco Systems, Bangalore, India, Oct 2007.

358

J.2 Techniques for Multicasting 359

extremely high memory bandwidth requirements of multicasting. This is because an

arriving multicast packet can be destined to multiple destinations, and the router may

have to make multiple copies of the packet.

J.1.1 Goal

In this appendix, we briefly look at how high-speed routers can support multicast

traffic. Our goal is to find the speedup required to precisely emulate a multicast OQ

router so that we can provide deterministic performance guarantees. We will consider

both FCFS and PIFO queueing policies.

J.1.2 Organization

In what follows, we will describe a load balancing algorithm for multicasting, and briefly

discuss a solution based on caching. The rest of this appendix is organized as follows:

In Section J.2, we describe two orthogonal techniques, copy and fanout multicasting,

to support multicast traffic. In Section J.3, we describe a hybrid strategy to implement

multicast, which we will later show is more efficient than either copy or fanout

multicasting. We then use the constraint set technique in Section J.4 (first described in

Chapter 2) to derive a load balancing algorithm to support multicast traffic on single-

buffered routers. We use the parallel packet switch (PPS) architecture (introduced in

Chapter 6) as an illustrative example of single-buffered routers, and use constraint

sets to bound the speedup1 required to support multicast traffic. Later, we show that

a similar load balancing algorithm can be used to find the conditions under which any

single-buffered multicast router can give deterministic performance guarantees. In

Section J.5 we briefly consider caching algorithms to support multicasting.

J.2 Techniques for Multicasting

A multicast packet (by definition) is destined to multiple different outputs. Thus, any

router that supports multicast must (at some point) create copies of the packet. A

1Recall that in a PPS, we use internal links that operate at a rate S(R=k), where S is the speedup
of the internal link.

J.2 Techniques for Multicasting 360

number of router architectures have been studied, and many techniques have been

proposed to enable these architectures to support multicast. A survey of some of

these techniques and the issues involved in supporting multicast traffic can be found

in [227, 228, 229].

NObservation J.1. Note that a memory only supports two kinds of operations —

a write and a read. The only way to create copies is to use either

of these two operations. Therefore, in what follows we will define

two orthogonal techniques to create copies of packets, called “copy

multicasting” (where a packet is written multiple times) and “fanout

multicasting” (where multicasting is done by reading a packet multiple

times). Since a memory supports only two operations, all of the

multicasting techniques described in [227, 228, 229] use a combination

of the above two orthogonal techniques to implement multicasting.

J.2.1 Copy Multicasting

ℵDe�nition J.1. Copy Multicast: In “copy multicast”, multiple unicast copies (one

destined to each output of the multicast cell) are created immediately

on arrival of the cell. Each copy is stored in a separate unicast queue.

Once the unicast copies of a multicast cell are created, these unicast cells can be

read by their respective outputs and released from the buffer independent of each

other. Note that in a PPS, the unicast copies must be immediately sent from the

demultiplexor to the center stage OQ switches. Similarly, in an SB router, the unicast

copies must be immediately written to memories.

NObservation J.2. Note that copy multicasting places a tremendous burden on the

bandwidth of a router. A multicast packet arriving on a line card

at rate R, with multicast fanout m, requires an instantaneous write

bandwidth of mR. It is a surprising fact that in spite of this, copy

multicasting is commonly used in high-speed Enterprise routers. This

J.2 Techniques for Multicasting 361

is because buffer resources such as queue sizes, free lists, etc., can

be better controlled using copy multicasting. As we shall see shortly,

it also does not suffer from what is colloquially called the “slow port”

problem. Most high-speed Enterprise routers today are built to support

no more than a fanout of two to three at line rates. If a sustained

burst of multicast packets with larger fanouts arrives, these multicast

packets will initially get buffered on-chip, and then if the on-chip buffer

capacity is exceeded, they will eventually be dropped.2

J.2.2 Fanout Multicasting

ℵDe�nition J.2. Fanout Multicast: In “fanout multicast”, a multicast cell is stored

just once. The cell is read multiple times, as many times as the number

of outputs to which it is destined.

In a PPS using fanout multicast, for example, the cell is sent just once to one

of the center stage OQ switches. The layer to which the multicast cell is sent must

therefore adhere to the output link constraints of all its outputs simultaneously. In a

PPS using fanout multicast, the single center stage switch that is chosen to receive

the multicast cell is responsible for delivering the cell to every output.3 Similarly, in

an SB router, an arriving multicast cell is written to a memory that simultaneously

satisfies the output link constraints of all outputs.

A standard way in which fanout multicasting is implemented on a router is to

write the packet once to memory, and create multiple descriptors (one for each of the

queues to which the multicast packet is destined) that point to the same packet. As

2Routers are usually built to give priority to unicast packets over multicast; so arriving unicast
packets are never dropped, as far as possible.

3Note that the center stage OQ switch may in fact take the multicast cell and store it in a
common shared buffer memory that is accessible to all its outputs, or it may actually make multiple
copies of the multicast cell, if the memories for each of its outputs are not shared. How the multicast
cell is handled by the center stage OQ switch is of no consequence to our discussion on fanout
multicast. The fact that it may itself make local copies should not be confused with PPS copy
multicasting. From the demultiplexor’s perspective, if the PPS sends the multicast cell just once,
then it is performing fanout multicasting.

J.2 Techniques for Multicasting 362

an example, refer to the descriptor and buffer hierarchy shown in Figure 8.2. Fanout

multicasting is easily implemented by making the multiple descriptors point to the

same multicast packet.

NObservation J.3. Fanout multicasting suffers from what is colloquially called the

“slow port” problem. Since a multicast cell is stored only once in the

buffer, it can only be released when all the ports that participate in

the multicast have completed reading the cell. If one of the ports is

congested, that port may not read the multicast cell for a very long

time. Such multicast cells will hog buffer resources, and if there are

many such cells, they can prevent new cells from being buffered.

J.2.3 Comparison of Copy and Fanout Multicasting

A simple way to understand copy and fanout multicasting is that copy multicasting

creates copies immediately when a packet arrives, while fanout multicasting creates

copies just in time when a packet needs to be sent to the output (or transferred

across the switch fabric). It is clear from the definition that a router requires more

write bandwidth in order to support copy multicasting, because the copies have to

be made immediately. Since packets are still read at the line rate, no read speedup

is required. For fanout multicasting, packets are written (and read) at the line rate

(because no copies need to be made), and so it would appear that no additional

memory bandwidth is required to support fanout multicasting. However, since we are

interested in providing deterministic performance guarantees, we will see that this is

not the case.

We can make the following observations about multicasting:

NObservation J.4. A multicast PPS router at rate R that copy multicasts with

maximum fanout m appears to the demultiplexor as a unicast router

running at rate mR. And so, for copy multicasting, it is obvious that

the speedup required increases in proportion to the number of copies

J.3 A Hybrid Strategy for Multicasting 363

made per cell, i.e., its multicast fanout, m. For fanout multicasting,

a single cell is sent to the center stage switches in case of a PPS

(or memory buffers in the case of a single-buffered router), and no

additional speedup is required to physically transmit the cell to the

center stage switches (or write the cell to memory in case of an SB

router). However, a higher speedup is required to ensure the existence

of a layer in the PPS (or memory in case of an SB router) that satisfies

the output constraints of all outputs to which the multicast cell is

destined. Since there are m output link constraints, the speedup

required is also proportional to m.4

Note that the two techniques are fundamentally orthogonal. Copy multicast does

not use the fact that multiple output constraints could be satisfied simultaneously by

transmitting a multicast cell to a common central stage OQ switch in the PPS (or a

common memory in a single-buffered router). On the contrary, fanout multicast does

not utilize the potential link/memory bandwidth available to make copies of multicast

packets when they arrive.

J.3 A Hybrid Strategy for Multicasting

In any router, it is possible to implement either of the above methods. We will shortly

show that the optimal strategy for multicast is to take advantage of both of the above

methods. So we will introduce a technique called “hybrid multicasting”.

Hybrid multicasting bounds the number of copies5 that can be made from a

multicast cell. We define a variable q as the maximum number of copies that are

made from a given multicast cell. Note that since the maximum fanout of any given

multicast cell is m, at most dm/qe outputs will receive a copied multicast cell.

4A more detailed discussion on these observations, and the exact speedup required for fanout
and copy multicasting, is available in our paper [230].

5In an earlier paper we referred to this as “bounded copy” multicasting.

J.4 A Load Balancing Algorithm for Multicasting 364

In order to analyze a hybrid multicast strategy, we will need to find a lower bound

on the size of the available input link set as a function of q. Before we proceed, recall

that we defined a time slot for an SB router as follows:

ℵDe�nition J.3. Time slot: This refers to the time taken to transmit or receive a

fixed-length cell at a link rate of R.

Lemma J.1. For a PPS that uses the hybrid multicast strategy,

|AIL(i, n)| > k − (dk/Se − 1)q,∀i, n > 0. (J.1)

Proof. Consider demultiplexor i. The only layers that i cannot send a cell to are those

which were used in the last dk/Se−1 time slots.6 (The layer that was used dk/Se time

slots ago is now free to be used again.) |AIL(i, n)| is minimized when a cell arrives to

the external input port in each of the previous dk/Se− 1 time slots. Since a maximum

of q links are used in every time slot, |AIL(i, n)| > k − (dk/Se − 1)q,∀i, n > 0. r

J.4 A Load Balancing Algorithm for Multicasting

We are now ready to prove the main theorem, which first appeared in our paper [230].

Theorem J.1. (Sufficiency) A PPS, which has a maximum fanout of m, can mimic

an FCFS-OQ switch with a speedup of S > 2
√
m + 1.

Proof. Consider a cell C that arrives at demultiplexor i at time slot n and is destined for

output ports <Pj>, where j ∈ {1, 2, . . . ,m}. A maximum of q copies are created from

this cell. We will denote each copy by Cy where y ∈ {1, 2, . . . , q}. Each copy <Cy> is

destined to a maximum of <Pj> distinct output ports, where j ∈ {1, 2, . . . , dm/qe}.
For the ILC and OLC to be met, it suffices to show that there will always exist a layer

l such that the layer l meets all the following constraints for each copy Cy, i.e.,

6Recall that in a PPS the time slot refers to the normalized time for a cell to arrive to the
demultiplexor at rate R.

J.4 A Load Balancing Algorithm for Multicasting 365

l ∈ {AIL(i, n) ∩ AOL(P1, DT (n, i, P1)) ∩ AOL(P2, DT (n, i, P2)) . . .

AOL(Pdm/qe, DT (n, i, Pdm/qe))},

which is satisfied when,

|AIL(i, n)|+ |AOL(P1, DT (n, i, P1))|+ |AOL(P2, DT (n, i, P2)) + . . .

|AOL(Pdm/qe, DT (n, i, Pdm/qe))| > (dm/qe)k.

Since there are q copies, it is as if the AIL sees traffic at q times the line rate.

Since each cell caters to dm/qe AOL sets, the above equation is true if —

k − (dk/Se − 1)q + (dm/qe)(k − (dk/Se − 1)) > (dm/qe)k.

This will be satisfied if,

k − (dk/Se − 1)q − (dm/qe)(dk/Se − 1) > 0.

i.e., if,

(dk/Se − 1)(q + dm/qe) < k.

Note that the above analysis applies to each copy Cy that is made in parallel.

Thus each copy Cy of the multicast packet has the same input link constraint, and

by definition the same AIL. In the case that two or more distinct copies Cy, where

y ∈ {1, 2, . . . , q}, choose the same layer l, the copies are merged and a single cell

destined to the distinct outputs of each of the copies Cy is sent. The speedup is

minimized when q + dm/qe is minimized. But q + dm/qe < q +m/q + 1 and so the

minimum value is obtained when q =
√
m ; i.e., S > 2

√
m + 1. r

J.4 A Load Balancing Algorithm for Multicasting 366

Theorem J.2. (Sufficiency) A PPS that has a maximum fanout of m can mimic a

PIFO-OQ switch with a speedup of S > 2
√

2m + 2.

Proof. The proof is almost identical to the one above, but uses a PIFO-based analysis

to compute the relevant AIL and AOL sets, similar to that described in Section 6.6.r

The following theorem represents the worst-case speedup required to support

multicasting in a PPS. It is a consequence of the fact that the maximum multicast

fanout m 6 N .7

Theorem J.3. (Sufficiency, by Reference) A PPS can emulate a multicast FCFS-OQ

router with a speedup of S > 2
√
N +1 and a multicast PIFO-OQ router with a speedup

of S > 2
√

2N + 2.

Theorem J.4. (Sufficiency) A single-buffered router can emulate a multicast FCFS-

OQ router with a speedup of S ≡ Θ(
√
N) and a multicast PIFO-OQ router with a

speedup of S ≡ Θ(
√

2N).

Proof. This is a direct consequence of Theorem J.3. In a single-buffered router

(e.g., the PSM, DSM, and PDSM), a packet is written to a memory that meets the

AOL constraints of <Pj> outputs, where, j ∈ {1, 2, . . . , dm/qe}. Each copy Cy is

automatically available to all the <Pj> distinct output ports, when the copy Cy needs

to be read by output j. There is no need for dm/qe physical copies to be created

in a center stage layer (as would need to be done by the OQ routers in the PPS if

they maintained separate queues for each output), once a memory is chosen, since

all outputs are assumed to have access to all memories. So the multicast speedup

requirements are exactly the same as for the PPS router. Of course, N can be replaced

by the maximum multicast fanout m < N in the statement of the theorem. r

7Of course, in the above theorem, the variable N in the formulae for the speedup can be replaced
by the maximum fanout of the multicast packets, m, if m < N . This is true in some routers.

J.5 A Caching Algorithm for Multicasting 367

J.5 A Caching Algorithm for Multicasting

In Chapter 7, we described a caching hierarchy to buffer and manage packets for

high-speed routers. The caching technique can be trivially applied to copy multicasting,

and this leads to the following theorem:

Theorem J.5. (Sufficiency) For MDQF to guarantee that a requested byte is in the

head cache (for a copy multicast router with maximum fanout m), the number of bytes

that are sufficient in the head cache is

Qw = Q(m+ 1)
b

2
(3 + lnQ). (J.2)

Proof. This a direct consequence of Theorem 7.3. In a unicast router, there is one

write and one read for every cell, and the memory access time is split equally between

the writes and reads, leading to a memory block size of b bytes. In a copy multicast

router, there are m writes for every one read, and so the block size b is scaled as shown

above. r

We now consider fanout multicasting. Unfortunately, we do not currently know of

any simple technique to support fanout multicast using caching. The main problem is

that there is no way to associate a multicast packet with a specific queue, because

fanout multicast packets are destined to multiple queues, all of which need access to

it.

Another requirement in some routers is that they support in-order delivery of

unicast and multicast traffic.8 In such a case, the number of multicast queues that

must be maintained in the buffer is Θ(2m), where m 6 q is the maximum multicast

fanout [231], and q is the number of unicast queues. The cache size needed to support

this feature is Θ(f ∗ 2f), and can be very large.

8Thankfully, this is not a common and mandatory requirement on most routers.

J.6 Conclusions 368

J.6 Conclusions

While we cannot predict the usage and deployment of multicast, it is likely that

Internet routers will be called upon to switch multicast packets passing over very-

high-speed lines with a guaranteed quality of service. A conclusion that can be drawn

from the results presented here is that the speedup required to support multicast

traffic grows with the size of the allowable multicast fanouts. With small fanouts

at each switch, moderate speedup (or cache size) suffices and delay guarantees are

theoretically possible. For large fanouts, the speedup (or cache size) may become

impracticably large. As a practical compromise, we have implemented multicast

buffering solutions [231], using techniques similar to frame scheduling (see Section 3.8).

While we have made these compromises to enable high-speed multicasting, supporting

in-order multicast with deterministic performance guarantees remains an interesting

open problem.

List of Figures

1.1 The architecture of a centralized shared memory router. 4

1.2 The architecture of an output queued router. 7

1.3 The input-queued and CIOQ router architectures. 10

1.4 Achieving delay guarantees in a router. 15

1.5 Emulating an ideal output queued router. 20

1.6 The data-plane of an Internet router. 22

2.1 A comparison of the CIOQ and SB router architectures. 40

2.2 The pigeonhole principle . 45

2.3 The parallel shared memory router. 47

2.4 A bad traffic pattern for the parallel shared memory router. 49

2.5 Maintaining a single PIFO queue in a parallel shared memory router. 53

2.6 Maintaining N PIFO queues in a parallel shared memory router. . . . 54

3.1 Physical view of the distributed shared memory router. 65

3.2 Logical view of the distributed shared memory router. 65

3.3 A request graph and a request matrix for an N ×N switch. 68

4.1 A router with different line cards. 87

4.2 The physical and logical view of a CIOQ router. 90

4.3 The constraint set as maintained by the input. 95

4.4 The constraint set as maintained by the output. 97

4.5 A stable marriage . 101

4.6 Indicating the priority of cells to the scheduler. 102

5.1 Cross-sectional view of crossbar fabric. 119

5.2 The architecture of a buffered crossbar with crosspoint buffer. 120

5.3 SuperVOQ for a buffered crossbar . 131

5.4 The architecture of a buffered crossbar with output buffers. 132

6.1 Using system-wide massive parallelism to build high-speed routers. . . 139

6.2 The architecture of a parallel packet switch. 144

6.3 Insertion of cells in a PIFO order in a parallel packet switch. 158

6.4 A parallel packet switch demultiplexor. 164

369

List of Figures 370

7.1 Packet buffering in Internet routers. 179

7.2 Memory hierarchy of packet buffer. 185

7.3 Detailed memory hierarchy of packet buffer. 186

7.4 The MDQFP buffer caching algorithm. 199

7.5 Buffer cache size as a function of pipeline delay. 207

7.6 The ECQF buffer caching algorithm. 209

8.1 Scheduling in Internet routers. 225

8.2 The architecture of a typical packet scheduler. 230

8.3 A caching hierarchy for a typical packet scheduler. 233

8.4 A scheduler that operates with a buffer cache hierarchy. 237

8.5 A scheduler hierarchy that operates with a buffer hierarchy. 239

8.6 A combined packet buffer and scheduler architecture. 242

8.7 The closed-loop feedback between the buffer and scheduler. 245

8.8 The worst-case pattern for a piggybacked packet scheduler. 247

9.1 Measurement infrastructure. 260

9.2 Memory hierarchy for the statistics counters. 264

9.3 Numeric notations . 272

10.1 Maintaining state in Internet routers. 281

10.2 Maintaining state on a line card. 283

10.3 The read-modify-write architecture. 290

10.4 Tradeoff between update speedup and capacity using GPP-SMA. . . . 292

A.1 Internal architecture of a typical memory. 314

B.1 Network traffic models. 318

D.1 The scheduling phases for the buffered crossbar. 324

F.1 An non-work-conserving traffic pattern for a PPS. 335

G.1 An example of the CPA algorithm. 341

G.2 An example of the CPA algorithm (continued). 342

H.1 A worst-case traffic pattern for the buffer cache. 345

List of Tables

1.1 Comparison of router architectures. 12

1.2 Organization of thesis. 24

1.3 Application of techniques. 28

2.1 Unification of the theory of router architectures. 42

3.1 Comparison between the DSM and PDSM router architectures. . . . 76

4.1 An example of the extended pigeonhole principle. 105

5.1 Comparison of emulation options for buffered crossbars. 133

7.1 Tradeoffs for the size of the head cache. 212

7.2 Tradeoffs for the size of the tail cache. 212

8.1 Packet buffer and scheduler implementation options. 250

8.2 Packet buffer and scheduler implementation sizes. 252

8.3 Packet buffer and scheduler implementation examples. 253

10.1 Tradeoffs for memory access rate and memory capacity. 297

371

List of Theorems

Theorem 2.1 (Pigeonhole Principle) Given two natural numbers p and h with
p > h, if p items (pigeons) are put into h pigeonholes, then at least one
pigeonhole must contain more than one item (pigeon). 45

Theorem 2.2 (Sufficiency) A total memory bandwidth of 3NR is sufficient for
a parallel shared memory router to emulate an FCFS output queued router. 49

Theorem 2.3 (Sufficiency) With a total memory bandwidth of 4NR, a parallel
shared memory router can emulate a PIFO output queued router within
k − 1 time slots. 56

Theorem 3.1 (Sufficiency) A Crossbar-based DSM router can emulate an FCFS
output queued router with a total memory bandwidth of 3NR and a
crossbar bandwidth of 6NR. 67

Theorem 3.2 (Sufficiency) A Crossbar-based DSM router can emulate a PIFO
output queued router with a total memory bandwidth of 4NR and a
crossbar bandwidth of 8NR within a relative delay of 2N − 1 time slots. 67

Theorem 3.3 (Sufficiency) A Crossbar-based DSM router can emulate an FCFS
output queued router with a total memory bandwidth of 3NR and a
crossbar bandwidth of 4NR. 68

Theorem 3.4 (Sufficiency) A Crossbar-based DSM router with a total memory
bandwidth of 4NR and a crossbar bandwidth of 5NR can emulate a PIFO
output queued router within a relative delay of 2N − 1 time slots. 68

Theorem 3.5 (Sufficiency) A Crossbar-based DSM router can emulate an FCFS
output queued router with a total memory bandwidth of 4NR and a
crossbar bandwidth of 4NR. 69

Theorem 3.6 (Sufficiency) A Crossbar-based DSM router can emulate a PIFO
output queued router within a relative delay of N − 1 time slots, with a
total memory bandwidth of 6NR and a crossbar bandwidth of 6NR. . . . 71

Theorem 3.7 If a request matrix S is ordered, then any maximal matching
algorithm that gives strict priority to entries with lower indices, such as
the WFA, can find a conflict-free schedule. 73

Theorem 4.1 (Sufficiency, by Reference) Any maximal algorithm with a speedup
S > 2, which gives preference to cells that arrive earlier, ensures that any
cell arriving at time t will be delivered to its output at a time no greater
than t+ [B/(S − 2)], if the traffic is single leaky bucket B constrained. . 92

Theorem 4.2 (Sufficiency) With a speedup S > 2, a crossbar can emulate an
FCFS-OQ router if the traffic is single leaky bucket B constrained. . . . 98

372

List of Theorems 373

Theorem 4.3 (Sufficiency, by Citation) A crossbar CIOQ router can emulate a
PIFO-OQ router with a crossbar bandwidth of 2NR and a total memory
bandwidth of 6NR. 107

Theorem 4.4 A crossbar CIOQ router is work-conserving with a crossbar
bandwidth of 2NR and a total memory bandwidth of 6NR. 111

Theorem 5.1 (Sufficiency, by Citation) A buffered crossbar can emulate an
FCFS-OQ router with a crossbar bandwidth of 2NR and a memory band-
width of 6NR. 126

Theorem 5.2 A buffered crossbar (with a simplified output scheduler) is work-
conserving with a crossbar bandwidth of 2NR and a memory bandwidth
of 6NR. 126

Theorem 5.3 (Sufficiency, by Reference) A buffered crossbar can emulate
a PIFO-OQ router with a crossbar bandwidth of 3NR and a memory
bandwidth of 6NR. 128

Corollary 5.1 (Sufficiency) A crossbar CIOQ router can emulate a PIFO-OQ
router with a crossbar bandwidth of 2NR and a total memory bandwidth
of 6NR. 129

Theorem 5.4 A buffered crossbar with randomized scheduling, can achieve
100% throughput for any admissible traffic with a crossbar bandwidth of
2NR and a memory bandwidth of 6NR. 131

Theorem 5.5 (Sufficiency, by Reference) A modified buffered crossbar can
emulate a PIFO-OQ router with a crossbar bandwidth of 2NR and a
memory bandwidth of 6NR. 132

Theorem 6.1 A PPS without speedup is not work-conserving. 147

Theorem 6.2 (Sufficiency) A PPS can emulate an FCFS-OQ switch with a
speedup of S > 2. 153

Theorem 6.3 (Digression) A PPS can be work-conserving if S > 2. 154

Theorem 6.4 (Sufficiency) A PPS can emulate any OQ switch with a PIFO
queuing discipline, with a speedup of S > 3. 156

Theorem 6.5 (Sufficiency) A PPS with independent demultiplexors and multi-
plexors and no speedup, with each multiplexor and demultiplexor containing
a co-ordination buffer cache of size Nk cells, can emulate an FCFS-OQ
switch with a relative queuing delay bound of 2N internal time slots. . . 167

Theorem 7.1 (Necessity & Sufficiency) The number of bytes that a dynamically
allocated tail cache must contain must be at least Q(b− 1) + 1 bytes. . . . 191

Theorem 7.2 (Necessity - Traffic Pattern) To guarantee that a byte is always
available in head cache when requested, the number of bytes that a head
cache must contain must be at least Qw > Q(b− 1)(2 + lnQ). 192

List of Theorems 374

Theorem 7.3 (Sufficiency) For MDQF to guarantee that a requested byte is in
the head cache (and therefore available immediately), the number of bytes
that are sufficient in the head cache is Qw = Qb(3 + lnQ). 197

Theorem 7.4 (Sufficiency) With MDQFP and a pipeline delay of x (where
x > b), the number of bytes that are sufficient to be held in the head cache
is Qw = Q(C + b). 204

Theorem 7.5 (Necessity) For a finite pipeline, the head cache must contain at
least Q(b− 1) bytes for any algorithm. 207

Theorem 7.6 (Sufficiency) If the head cache has Q(b−1) bytes and a lookahead
buffer of Q(b− 1) + 1 bytes (and hence a pipeline of Q(b− 1) + 1 slots),
then ECQF will make sure that no queue ever under-runs. 211

Corollary 8.1 (Sufficiency) A packet scheduler requires no more than Qb(4 +

lnQ) |D|
Pmin

bytes in its cache, where Pmin is the minimum packet size sup-

ported by the scheduler, and |D| is the descriptor size. 236

Corollary 8.2 (Sufficiency) A scheduler (which only stores packet lengths)

requires no more than Qb(4 + lnQ) log2 Pmax
Pmin

bytes in its cache, where
Pmin, Pmax are the minimum and maximum packet sizes supported by
the scheduler. 240

Theorem 8.1 (Sufficiency) The MDQF packet buffer requires no more than
Q [b(4 + lnQ) +RL] bytes in its cache in order for the scheduler to piggy-
back on it, where L is the total closed-loop latency between the scheduler
and the MDQF buffer cache. 249

Theorem 8.2 (Sufficiency) A length-based packet scheduler that piggy-
backs on the MDQF packet buffer cache requires no more than
Q [b(3 + lnQ) +RL] log2 Pmax

Pmin
bytes in its head cache, where L is the total

closed-loop latency between the scheduler and the MDQF buffer cache. . 249

Theorem 9.1 (Necessity) Under any CMA, a counter can reach a count C(i, t)

of
ln
[
(N − 1)(b/(b− 1))b−1

]
ln(b/(b− 1))

. 267

Theorem 9.2 (Optimality) Under all arriving traffic patterns, LCF-CMA is
optimal, in the sense that it minimizes the count of the counter required. 269

Theorem 9.3 (Sufficiency) Under the LCF-CMA policy, the count C(i, t) of

every counter is no more than S ≡ ln bN

ln(b/(b− 1))
. 270

Theorem 9.4 (Sufficiency) Under the LCF policy, the number of bits that
are sufficient per counter, to ensure that no counter overflows, is given by

log2

ln bN

ln d
. 271

List of Theorems 375

Corollary 9.1 (Sufficiency) A counter of size S ≡ log2[Nb(3 + lnN)] bits is
sufficient for LCF to guarantee that no counter overflows in the head cache. 272

Theorem 10.1 (Sufficiency) Using GPP-SMA, a memory subsystem with h
independent banks running at the line rate can emulate a memory that can

be updated at C times the line rate (C reads and C writes), if C 6 b
√

4h+1−1c
2

.291

Theorem J.1 (Sufficiency) A PPS, which has a maximum fanout of m, can
mimic an FCFS-OQ switch with a speedup of S > 2

√
m + 1. 364

Theorem J.2 (Sufficiency) A PPS that has a maximum fanout of m can mimic
a PIFO-OQ switch with a speedup of S > 2

√
2m + 2. 366

Theorem J.3 (Sufficiency, by Reference) A PPS can emulate a multicast FCFS-

OQ router with a speedup of S > 2
√
N + 1 and a multicast PIFO-OQ

router with a speedup of S > 2
√

2N + 2. 366

Theorem J.4 (Sufficiency) A single-buffered router can emulate a multicast

FCFS-OQ router with a speedup of S ≡ Θ(
√
N) and a multicast PIFO-OQ

router with a speedup of S ≡ Θ(
√

2N). 366

Theorem J.5 (Sufficiency) For MDQF to guarantee that a requested byte is
in the head cache (for a copy multicast router with maximum fanout
m), the number of bytes that are sufficient in the head cache is Qw =
Q(m+ 1) b

2
(3 + lnQ). 367

List of Algorithms

2.1 The constraint set technique for emulation of OQ routers. 38

4.1 Constraint set-based time reservation algorithm. 94

4.2 Extended constraint sets for emulation of OQ routers. 105

4.3 Extended constraint sets for work conservation. 111

5.1 A deterministic buffered crossbar scheduling algorithm. 124

5.2 A randomized buffered crossbar scheduling algorithm. 131

6.1 Centralized parallel packet switch algorithm for FCFS-OQ emulation. . 152

6.2 Modified CPA for PIFO emulation on a PPS. 157

6.3 Distributed parallel packet switch algorithm for FCFS-OQ emulation. . 166

7.1 The most deficited queue first algorithm. 193

7.2 Most deficited queue first algorithm with pipelining. 202

7.3 The earliest critical queue first algorithm. 210

8.1 The most deficited linked list first algorithm. 235

9.1 The longest counter first counter management algorithm. 269

10.1 The generalized ping-pong state management algorithm. 291

376

List of Examples

1.1 The largest available commodity SRAM. 6

1.2 The largest available commodity DRAM. 6

1.3 A 100 Gb/s input queued router. 12

1.4 A push in first out queue. 15

2.1 Examples of shared memory routers. 46

2.2 Traffic pattern for a PSM router. 48

2.3 Maintaining PIFO order in a PSM router. 52

2.4 Violation of PIFO order in a PSM router. 53

3.1 Bus-based distributed shared memory router. 64

3.2 A frame-based DSM router . 79

4.1 A router with different line cards. 86

4.2 Calculating the size of the input link constraint for a CIOQ router. . . . 96

4.3 Maintaining input priority queues for a CIOQ router. 103

4.4 Opportunity and contentions sets for cells in a CIOQ router. 104

5.1 Cross section of a crossbar ASIC. 118

5.2 Implementation considerations for a buffered crossbar. 122

6.1 Using system-wide massive parallelism to build high-speed routers. . . . 138

6.2 Limits of parallelism in a monolithic system. 142

6.3 Designing a parallel packet switch. 147

6.4 The centralized PPS scheduling algorithm 152

6.5 QoS guarantees for a PPS router. 159

6.6 Designing a parallel packet switch. 168

7.1 Numbers of queues in typical Internet routers. 181

7.2 The random cycle time of a DRAM. 182

7.3 Uses of a queue caching hierarchy. 187

7.4 Size of head cache using MDQF. 198

7.5 Size of head cache with and without pipeline delay. 205

7.6 Example of earliest critical queue first algorithm. 208

7.7 Size of packet buffer cache on a typical Ethernet switch. 216

377

List of Examples 378

8.1 Application and protocols on the Internet. 222

8.2 Packet scheduler operation rate. 226

8.3 Architecture of a typical packet scheduler. 229

8.4 Implementation of a typical packet scheduler. 231

8.5 A caching hierarchy for a packet scheduler. 236

8.6 A scheduler that operates with a buffer cache hierarchy. 238

8.7 A scheduler hierarchy that operates with a buffer hierarchy. 240

8.8 Counter-example pattern for a scheduler. 246

8.9 A scheduler that piggybacks on the buffer cache hierarchy. 250

9.1 Examples of measurement counters. 259

9.2 Memory access rate for statistics counters. 263

9.3 Counter design for an 100 Gb/s line card. 265

9.4 Implementation considerations for counter cache design. 274

10.1 Examples of state maintenance. 282

10.2 Maintaining state for a 100 Gb/s line card. 286

10.3 State design for an OC192 line card. 294

10.4 GPP-SMA with other caching and load balancing techniques. 295

11.1 Design and verification complexity of our techniques. 303

References

[1] http://en.wikipedia.org/wiki/Naga_Jolokia. xiv

[2] http://www.qdrsram.com. 6, 178, 183, 206, 232, 274, 286, 313

[3] http://www.micron.com/products/dram. 6, 178, 182, 206, 226, 265, 274,
313

[4] Cisco Systems Inc. Cisco Catalyst 6500 Series Router. http:
//www.cisco.com/en/US/products/hw/switches/ps708/\products_
data_sheet0900aecd8017376e.html. 7, 86, 133, 181, 216, 253

[5] Cisco Systems Inc. Cisco HFR. http://www.cisco.com/en/US/products/
ps5763/. 7, 86, 145, 170

[6] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison of
contemporary DRAM architectures. In Proc. 26th International Symposium on
Computer Architecture (ISCA’99), pages 222–233, Atlanta, Georgia, May 1999.
8

[7] http://www.rambus.com/. 8, 315

[8] http://www.rldram.com. 8, 183, 206

[9] http://www.fujitsu.com/us/services/edevices/
\microelectronics/memory/fcram. 8, 183, 206

[10] R. R. Schaller. Moore’s law: Past, present and future. IEEE Spectrum, 34(6):52–
59, June 1997. 9

[11] N. McKeown, V. Anantharam, and J. Walrand. Achieving 100% throughput
in an input queued switch. In Proc. of IEEE INFOCOM ’96, volume 1, pages
296–302, March 1996. 10, 42, 109

[12] J. Dai and B. Prabhakar. The throughput of data switches with and without
speedup. In Proc. of IEEE INFOCOM ’00, pages 556–564, Tel Aviv, Israel,
March 2000. 10, 41, 42, 98, 109, 110, 131

[13] S. Chuang, A. Goel, N. McKeown, and B. Prabhakar. Matching output queueing
with a combined input/output queued switch. IEEE J.Sel. Areas in Communi-
cations, 17(6):1030–1039, June 1999. 10, 12, 19, 42, 44, 76, 100, 102, 106, 107,
108, 112, 113, 114, 122, 123

[14] N. McKeown. iSLIP: A scheduling algorithm for input queued switches. IEEE
Transactions on Networking, 7(2), April 1999. 11

379

http://en.wikipedia.org/wiki/Naga_Jolokia
http://www.qdrsram.com
http://www.micron.com/products/dram
http://www.cisco.com/en/US/products/hw/switches/ps708/ \ products_data_sheet0900aecd8017376e.html
http://www.cisco.com/en/US/products/hw/switches/ps708/ \ products_data_sheet0900aecd8017376e.html
http://www.cisco.com/en/US/products/hw/switches/ps708/ \ products_data_sheet0900aecd8017376e.html
http://www.cisco.com/en/US/products/ps5763/
http://www.cisco.com/en/US/products/ps5763/
http://www.rambus.com/
http://www.rldram.com
http://www.fujitsu.com/us/services/edevices/ \ microelectronics/memory/fcram
http://www.fujitsu.com/us/services/edevices/ \ microelectronics/memory/fcram

References 380

[15] Y. Tamir and H. C. Chi. Symmetric crossbar arbiters for VLSI communication
switches. IEEE Transactions on Parallel and Distributed Systems, 4(1):13–27,
January 1993. 11, 73, 321

[16] J. N. Giacopelli, J. J. Hickey, W. S. Marcus, W. D. Sincoslie, and M. Littlewood.
Sunshine: A high performance self-routing broadband packet switch architecture.
IEEE J. Select. Areas Commun., 9:1289–1298, 1991. 11

[17] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queuing
algorithm. In ACM Computer Communication Review (SIGCOMM ’89), pages
3–12, 1989. 14, 51, 223

[18] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to
flow control in integrated services networks: The single node case. IEEE/ACM
Transaction on Networking, 1(3):344–357, June 1993. 14, 51, 224

[19] L. Zhang. Virtual clock: A new traffic control algorithm for packet switching
networks. ACM Transactions on Computer Systems, 9(2):101–124, 1990. 14, 224

[20] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round robin.
In Proc. of ACM SIGCOMM ’95, pages 231–242, September 1995. 14, 224

[21] J. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair queueing. In
Proc. of IEEE INFOCOM ’96, pages 120–128, San Francisco, CA, March 1996.
14, 224

[22] B. Prabhakar and N. McKeown. On the speedup required for combined input
and output queued switching. Automatica, 35:1909–1920, December 1999. 19, 92

[23] P. Krishna, N. Patel, A. Charny, and R. Simcoe. On the speedup required
for work-conserving crossbar switches. IEEE J.Sel. Areas in Communications,
17(6):1057–1066, June 1999. 19, 112

[24] Cisco Systems Inc. Data obtained courtesy Global Commodity Management
(GCM) Group. 21, 178, 217

[25] Cisco Systems Inc. Personal communication, Power Engineering Group, DCBU.
21, 305

[26] http://en.wikipedia.org/wiki/EDRAM. 25, 123, 168, 206, 274, 296, 297,
298

[27] http://en.wikipedia.org/wiki/SerDes. 27, 206

[28] Cisco Systems Inc. Cisco Telepresence. http://www.cisco.com/en/US/
netsol/ns669/networking_solutions_solution_segment_home.html.
27, 222, 248, 358

http://en.wikipedia.org/wiki/EDRAM
http://en.wikipedia.org/wiki/SerDes
http://www.cisco.com/en/US/netsol/ns669/networking_solutions_solution_segment_home.html
http://www.cisco.com/en/US/netsol/ns669/networking_solutions_solution_segment_home.html

References 381

[29] International Telecommunications Union. IPTV Focus Group. http://www.
itu.int/ITU-T/IPTV/. 27, 222, 248, 358

[30] http://en.wikipedia.org/wiki/RAID. 29, 305

[31] Cisco Systems Inc. Personal communication, Central Engineering, Power Systems
Group. 29, 217

[32] Cisco Systems Inc. Skimmer, Serial Network Memory ASIC, DCBU. 29, 216,
297, 305

[33] Cisco Systems Inc. Network Memory Group, DCBU. 30, 174, 178, 217, 274, 276,
293

[34] T. Chaney, J. A. Fingerhut, M. Flucke, and J. Turner. Design of a gigabit
ATM switching system. Technical Report WUCS-96-07, Computer Science
Department, Washington University, February 1996. 40

[35] S. Iyer, A. Awadallah, and N. McKeown. Analysis of a packet switch with
memories running slower than the line rate. In Proc. IEEE INFOCOM ’00, June
2000. 41, 143

[36] S. Iyer and N. McKeown. Making parallel packet switches practical. In Proc.
IEEE INFOCOM ’01, volume 3, pages 1680–1687, 2001. 41, 110, 339

[37] C. S. Chang, D. S. Lee, and Y. S. Jou. Load balanced Birkhoff-von Neumann
switches, part I: one-stage buffering. In IEEE HPSR Conference, pages 556–564,
Dallas, TX, May 2001. http://www.ee.nthu.edu.tw/~cschang/PartI.ps.
41, 42

[38] I. Keslassy and N. McKeown. Maintaining packet order in two-stage switches.
In Proc. of the IEEE INFOCOM, June 2002. 41, 42

[39] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio
networks. IEEE Transactions on Automatic Control, 37(12):1936–1949, 1992.
42, 109, 326

[40] A. Prakash, S. Sharif, and A. Aziz. An O(log2n) algorithm for output queuing.
In Proc. IEEE INFOCOM ’02, pages 1623–1629, June 2002. 42, 57

[41] B. Prabhakar and N. McKeown. On the speedup required for combined input
and output queued switching. Technical Report STAN-CSL-TR-97-738, Stanford
University, November 1997. 42, 108, 110, 112

[42] R. B. Magill, C. Rohrs, and R. Stevenson. Output queued switch emulation by
fabrics with limited memory. IEEE Journal on Selected Areas in Communica-
tions, 21(4):606–615, 2003. 42, 120, 126, 134

http://www.itu.int/ITU-T/IPTV/
http://www.itu.int/ITU-T/IPTV/
http://en.wikipedia.org/wiki/RAID
http://www.ee.nthu.edu.tw/~cschang/PartI.ps

References 382

[43] S. Chuang, S. Iyer, and N. McKeown. Practical algorithms for performance
guarantees in buffered crossbars. In Proc. IEEE INFOCOM ’05, pages 981–991,
2005. 41, 128, 131, 132

[44] Image courtesy http://en.wikipedia.org/wiki/Pigeonhole_principle.
45

[45] http://en.wikipedia.org/wiki/Hilbert’s_paradox_of_the_Grand_
Hotel. 45

[46] N. Endo, T. Kozaki, T. Ohuchi, H. Kuwahara, and S. Gohara. Shared buffer
memory switch for an ATM exchange. IEEE Transactions on Communications,
41(1):237–245, January 1993. 46

[47] R. H. Hofmann and R. Muller. A multifunctional high-speed switch element for
ATM applications. IEEE Journal of Solid-State Circuits, 27(7):1036–1040, July
1992. 46

[48] H. Yamada, S. I. Yamada, H. Kai, and T. Takahashi. Multi-Purpose memory
switch LSI for ATM-based systems. In GLOBECOM, pages 1602–1608, 1990. 46

[49] M. Devault, J. Y. Cochennec, and M. Servel. The ‘PRELUDE’ ATD experi-
ment: Assessments and future prospects. IEEE Journal on Selected Areas in
Communications, 6(9):1528–1537, December 1988. 46

[50] J. P. Coudreuse and M. Servel. PRELUDE: An asynchronous time-division
switched network. In ICC, pages 769–772, June 1987. 46

[51] M. A. Henrion, G. J. Eilenberger, G. H. Petit, and P. H. Parmentier. A multipath
self-routing switch. IEEE Communications Magazine, pages 46–52, December
1993. 46

[52] MMC Networks. ATMS2000: 5 Gb/s switch engine chipset, 1996. 46

[53] S. Iyer and N. McKeown. Techniques for fast shared memory switches. Tech-
nical Report TR01-HPNG-081501, Computer Science Department, Stanford
University, August 2001. 57

[54] Y. Xu, B. Wu, W. Li, and B. Liu. A scalable scheduling algorithm to avoid
conflicts in switch-memory-switch routers. In Proc. ICCCN 2005, pages 57–64,
October 2005. 57, 80

[55] A. Prakash. Architectures and Algorithms for High Performance Switching.
Ph.D. Thesis Report, Univ. of Texas at Austin, August 2004. 57, 80

[56] P. S. Sindhu, R. K. Anand, D. C. Ferguson, and B. O. Liencres. High speed
switching device. United States Patent No. 5905725, May 1999. 63

http://en.wikipedia.org/wiki/Pigeonhole_principle
http://en.wikipedia.org/wiki/Hilbert's_paradox_of_the_Grand_Hotel
http://en.wikipedia.org/wiki/Hilbert's_paradox_of_the_Grand_Hotel

References 383

[57] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und
Mengenlehre. Math. Ann., 77:453–465, 1916. 68

[58] D. König. Gráfok és mátrixok. Matematikai és Fizikai Lapok, 38:116–119, 1931.
68

[59] S. Iyer, R. Zhang, and N. McKeown. Routers with a single stage of buffering.
In Proc. ACM SIGCOMM ’02, Pittsburg, PA, September 2002. 72

[60] H. C. Chi and Y. Tamir. Decomposed arbiters for large crossbars with multiqueue
input buffers. In IEEE International Conference on Computer Design: VLSI in
Computers and Processors, pages 233–238, Cambridge, MA, 1991. 73

[61] Technical Committee T11. Fiber Channel. http://www.t11.org. 86, 206, 248

[62] Cisco Systems Inc. Cisco GSR 12000 Series Quad OC-12/STM-4 POS/SDH
line card. http://www.cisco.com/en/US/products/hw/routers/ps167/
\products_data_sheet09186a00800920a7.html. 86, 181

[63] D. Gale and L. S. Shapely. College admissions and the stability of marriage.
American Mathematical Monthly, 69:9–15, 1962. 89, 101, 106, 117, 118, 122

[64] M. Karol, M. Hluchyi, and S. Morgan. Input versus output queueing on a space-
division switch. IEEE Transactions on Communications, 35(12):1347–1356,
December 1987. 90, 107

[65] A. Charny. Providing QoS Guarantees in Input-buffered Crossbars with Speedup.
Ph.D. Thesis Report, MIT, September 1998. 90, 91, 92, 112, 113

[66] S. Iyer and N. McKeown. Using constraint sets to achieve delay bounds in CIOQ
switches. IEEE Communication Letters, 7(6):275–277, June 2003. 93

[67] M. Akata, S. Karube, T. Sakamoto, T. Saito, S. Yoshida, and T. Maeda. A
250 Mb/s 32x32 CMOS crosspoint LSI for ATM switching systems. IEEE J.
Solid-State Circuits, 25(6):1433–1439, December 1990. 93, 112

[68] M. Karol, K. Eng, and H. Obara. Improving the performance of input queued
ATM packet switches. In Proc. of IEEE INFOCOM ’92, pages 110–115, 1992.
93, 112

[69] H. Matsunaga and H. Uematsu. A 1.5 Gb/s 8x8 cross-connect switch using a
time reservation algorithm. IEEE J. Selected Area in Communications, 9(8):1308–
1317, October 1991. 93, 112

[70] H. Obara, S. Okamoto, and Y. Hamazumi. Input and output queueing ATM
switch architecture with spatial and temporal slot reservation control. IEEE
Electronics Letters, pages 22–24, January 1992. 93, 112

http://www.t11.org
http://www.cisco.com/en/US/products/hw/routers/ps167/ \ products_data_sheet09186a00800920a7.html
http://www.cisco.com/en/US/products/hw/routers/ps167/ \ products_data_sheet09186a00800920a7.html

References 384

[71] E. Leonardi, M. Mellia, M. Marsan, and F. Neri. Stability of maximal size
matching scheduling in input queued cell switches. In Proc. ICC 2000, pages
1758–1763, 2000. 98, 110

[72] http://en.wikipedia.org/wiki/Stable_marriage_problem. 101

[73] H. Mairson. The stable marriage problem. http://www1.cs.columbia.edu/
~evs/intro/stable/writeup.html, 1992. 101

[74] Personal communication with Da Chuang. 108

[75] I. Iliadis and W. E. Denzel. Performance of packet switches with input and
output queueing. In Proceedings of ICC, pages 747–753, 1990. 107

[76] A. L. Gupta and N. D. Georganas. Analysis of a packet switch with input and
output buffers and speed constraints. In Proc. of INFOCOM ’91, pages 694–700,
1991. 107

[77] Y. Oie, M. Murata, K. Kubota, and H. Miyahara. Effect of speedup in nonblock-
ing packet switch. In Proceedings of ICC, pages 410–414, 1989. 107

[78] J. S. C. Chen and T. E. Stern. Throughput analysis, optimal buffer allocation,
and traffic imbalance study of a generic nonblocking packet switch. IEEE Journal
on Selected Areas Communication, 9(3):439–449, April 2001. 107

[79] T. Anderson, S. Owicki, J. Saxie, and C. Thacker. High speed switch scheduling
for local area networks. ACM Transactions of Computing Systems, 11(4):319–352,
1993. 109

[80] C. S. Chang, W. J. Chen, and H. Y. Huang. On service guarantees for input
buffered crossbar switches: A capacity decomposition approach by Birkhoff and
von Neumann. In Proc. of IEEE INFOCOM ’00, Tel Aviv, Israel, 2000. 109

[81] E. Altman, Z. Liu, and R. Righter. Scheduling of an input queued switch to
achieve maximal throughput. Probability in the Engineering and Informational
Sciences, 14:327–334, 2000. 109

[82] G. Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucum an
Rev. Ser. A, 5:147–151, 1946. 109

[83] J. von Neumann. A certain zero-sum two-person game equivalent to the optimal
assignment problem: Contributions to the Theory of Games, volume 2. Princeton
University Press, 1953. 109

[84] T. Inukai. An efficient SS/TDMA time slot assignment algorithm. IEEE
Transactions on Communications, 27:1449–1455, 1979. 109

[85] J. E. Hopcroft and R. M. Karp. An n2.5 algorithm for maximum matching in
bipartite graphs. Soc. Ind. Appl. Math. J., 2:225–231, 1973. 109

http://en.wikipedia.org/wiki/Stable_marriage_problem
http://www1.cs.columbia.edu/~evs/intro/stable/writeup.html
http://www1.cs.columbia.edu/~evs/intro/stable/writeup.html

References 385

[86] R. E. Tarjan. Data Structures and Network Algorithms. Bell laboratories, 1983.
109

[87] N. Mckeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achieving 100%
throughput in an input queued switch. IEEE Transactions on Communications,
47(8):1260–1267, August 1999. 109

[88] A. Mekkittikul and N. McKeown. A practical scheduling algorithm to achieve
100% throughput in input queued switches. In Proc. of IEEE INFOCOM ’98,
volume 2, pages 792–799, San Francisco, CA, April 1998. 109, 110

[89] T. Weller and B. Hajek. Scheduling nonuniform traffic in a packet switching
system with small propagation delay. IEEE/ACM Transactions on Networking,
5(6):813–823, 1997. 109

[90] S. Iyer and N. McKeown. Maximum size matchings and input queued switches.
In Proceedings of the 40th Annual Allerton Conference on Communications,
October 2002. 109

[91] C. S. Chang, D. S. Lee, and Y. Jou. Load balanced Birkhoff-von Neumann
switches, part I: one-stage buffering. Computer Communications - special issue
on Current Issues in Terabit Switching, 2001. 110, 166

[92] C. S. Chang, D. S. Lee, and C. Lien. Load balanced Birkhoff-von Neumann
switches, part II: multi-stage buffering. Computer Communications - special
issue on Current Issues in Terabit Switching, 2001. 110, 166

[93] I. Keslassy and N. McKeown. Analysis of scheduling algorithms that provide
100% throughput in input queued switches. In Proceedings of the 39th Annual
Allerton Conference on Communications, 2001. 110

[94] L. Tassiulas. Linear complexity algorithms for maximum throughput in radio
networks and input queued switches. In Proc. of IEEE INFOCOM ’98, pages
533–539, New York, NY, 1998. 110

[95] P. Giaccone, B. Prabhakar, and D. Shah. Towards simple, high performance
schedulers for high-aggregate bandwidth switches. In Proc. of IEEE INFOCOM
’02, New York, NY, 2002. 110

[96] I. Stoica and H. Zhang. Exact emulation of an output queueing switch by a
combined input output queueing switch. In Proc. of IEEE IWQoS ’98, 1998.
112

[97] http://www.cs.berkeley.edu/~istoica/IWQoS98-fix.html. 112

[98] A. Firoozshahian, A. Manshadi, A. Goel, and B. Prabhakar. Efficient, fully
local algorithms for CIOQ switches. In Proc. of IEEE INFOCOM ’07, pages
2491–2495, Anchorage, AK, May 2007. 112

http://www.cs.berkeley.edu/~istoica/IWQoS98-fix.html

References 386

[99] Rojas-Cessa, E. Oki, Z. Jing, and H. J. Chao. CIXB-1: Combined input-one-cell-
crosspoint buffered switch. In IEEE Workshop on High Performance Switching
and Routing, 2001. 118

[100] Rojas-Cessa, E. Oki, Z. Jing, and H. J. Chao. CIXOB-k: Combined input-
crosspoint-output buffered packet switch. In IEEE Globecom, pages 2654–2660,
2001. 118

[101] L. Mhamdi and M. Hamdi. MCBF: A high-performance scheduling algorithm
for buffered crossbar switches. IEEE Communications Letters, 7(9):451–453,
September 2003. 118

[102] K. Yoshigoe and K. J. Christensen. Design and evaluation of a parallel-polled vir-
tual output queued switch. In Proceedings of the IEEE International Conference
on Communications, pages 112–116, 2001. 118

[103] D. Stephens and H. Zhang. Implementing distributed packet fair queueing in a
scalable switch architecture. In Proc. of INFOCOM ’98, pages 282–290, 1998.
118

[104] N. Chrysos and M. Katevenis. Weighted fairness in buffered crossbar scheduling.
In IEEE Workshop on High Performance Switching and Routing, 2003. 118

[105] T. Javidi, R. B. Magill, and T. Hrabik. A high throughput scheduling algorithm
for a buffered crossbar switch fabric. In Proceedings of IEEE International
Conference on Communications, pages 1586–1591, 2001. 120

[106] R. B. Magill, C. Rohrs, and R. Stevenson. Output queued switch emulation by
fabrics with limited memory. IEEE Journal on Selected Areas in Communica-
tions, 21(4):606–615, May 2003. 120, 126, 134

[107] N. McKeown, C. Calamvokis, and S. Chuang. A 2.5Tb/s LCS switch core. In
Hot Chips ’01, August 2001. 122

[108] Shang-Tse Chuang. Providing Performance Guarantees in Crossbar-based routers.
Ph.D. Thesis Report, Stanford University, January 2005. 123

[109] Cisco Systems Inc. Personal communication, Catalyst 4K Group, GSBU. 133,
251, 253

[110] C. Clos. A study of non-blocking switching networks. The Bell System Technical
Journal, 32:406–424, 1953. 143, 169, 304

[111] Nevis Networks Inc. http://www.nevisnetworks.com/. 145, 170

[112] Juniper E Series Router. http://www.juniper.net/products_and_
services/m_series_routing_portfolio/. 145, 170

http://www.nevisnetworks.com/
http://www.juniper.net/products_and_services/m_series_routing_portfolio/
http://www.juniper.net/products_and_services/m_series_routing_portfolio/

References 387

[113] S. Iyer. Analysis of a packet switch with memories running slower than the line
rate. M.S. Thesis Report, Stanford University, May 2000. 152

[114] V. E. Benes. Mathematical theory of connecting network and telephone traffic.
Academic Press, New York, 1965. 153

[115] J. Hui. Switching and traffic theory for integrated broadband network. Kluwer
Academic Publications, Boston, 1990. 153

[116] A. Jajszczyk. Nonblocking, repackable, and rearrangeable Clos networks: fifty
years of the theory evolution. IEEE Communications Magazine, 41:28–33, 2003.
154

[117] H. Adiseshu, G. Parulkar, and George Varghese. A reliable and scalable striping
protocol. In Proc. ACM SIGCOMM ’96, 1996. 168

[118] P. Fredette. The past, present, and future of inverse multiplexing. IEEE
Communications, pages 42–46, April 1994. 169

[119] J. Duncanson. Inverse multiplexing. IEEE Communications, pages 34–41, April
1994. 169

[120] J. Frimmel. Inverse multiplexing: Tailor made for ATM. Telephony, pages 28–34,
July 1996. 169

[121] J. Turner. Design of a broadcast packet switching network. IEEE Trans. on
Communications, pages 734–743, June 1988. 169

[122] H. Kim and A. Leon-Garcia. A self-routing multistage switching network for
broadband ISDN. IEEE J. Sel. Areas in Communications, pages 459–466, April
1990. 169

[123] I. Widjaja and A. Leon-Garcia. The helical switch: A multipath ATM switch
which preserves cell sequence. IEEE Trans. on Communications, 42(8):2618–
2629, August 1994. 169

[124] F. Chiussi, D. Khotimsky, and S. Krishnan. Generalized inverse multiplexing
of switched ATM connections. In Proc. IEEE Globecom ’98 Conference. The
Bridge to Global Integration, Sydney, Australia, 1998. 169

[125] F. Chiussi, D. Khotimsky, and S. Krishnan. Advanced frame recovery in switched
connection inverse multiplexing for ATM. In Proc. ICATM ’99 Conference,
Colmar, France, 1999. 169

[126] Bandwidth ON Demand INteroperability Group. Interoperability requirements
for nx56/64 kbit/s calls, 1995. ISO/IEC 13871. 169

References 388

[127] D. Hay and H. Attiya. The inherent queuing delay of parallel packet switches.
IEEE Transactions on Parallel and Distributed Systems, 17(8), August 2006.
169

[128] H. Attiya and D. Hay. Randomization does not reduce the average delay in
parallel packet switches. SIAM Journal on Computing, 37(5):1613–1636, January
2008. 169, 339

[129] S. Mneimneh, V. Sharma, and Kai-Yeung Siu. Switching using parallel in-
put–output queued switches with no speedup. IEEE/ACM Transactions on
Networking, 10(5):653–665, 2002. 169

[130] S. Iyer. Personal consultation with Nevis Networks Inc., 2003. 170

[131] Cisco Systems Inc. Personal communication, Low Latency Ethernet Product
Group. 170, 206

[132] FocalPoint in Large-Scale Clos Switches. www.fulcrummicro.com/product_
library/applications/clos.pdf. 170

[133] http://www.cisco.com/. 174

[134] M. Sanchez, E. Biersack, and W. Dabbous. Survey and taxonomy of IP address
lookup algorithms. IEEE Network, 15(2):8–23, 2001. 180, 223, 261, 282

[135] Juniper E Series Router. http://juniper.net/products/eseries. 181

[136] Force 10 E-Series Switch. http://www.force10networks.com/products/
pdf/prodoverview.pdf. 181

[137] Foundry BigIron RX-series Ethernet switches. http://www.foundrynet.com/
about/newsevents/releases/\pr5_03_05b.html. 181

[138] P. Chen and David A. Patterson. Maximizing performance in a striped disk
array. In ISCA, pages 322–331, 1990. 188, 213

[139] B. R. Rau, M. S. Schlansker, and D. W. L. Yen. The Cydra 5 stride-insensitive
memory system. In In Proc. Int Conf. on Parallel Processing, pages 242–246,
1989. 188, 213

[140] S. Kumar, P. Crowley, and J. Turner. Design of randomized multichannel
packet storage for high performance routers. In Proceedings of Hot Interconnects,
August 2005. 188, 213

[141] Distributed Denial-of-Service (DDoS) Attack. http://en.wikipedia.org/
wiki/Denial-of-service_attack#Incidents. 200

[142] K. Houle and G. Weaver. Trends in Denial of Service Attack Technology.
http://www.cert.org/archive/pdf/DoS_trends.pdf, 2001. 200

www.fulcrummicro.com/product_library/applications/clos.pdf
www.fulcrummicro.com/product_library/applications/clos.pdf
http://www.cisco.com/
http://juniper.net/products/eseries
http://www.force10networks.com/products/pdf/prodoverview.pdf
http://www.force10networks.com/products/pdf/prodoverview.pdf
http://www.foundrynet.com/about/newsevents/releases/ \ pr5_03_05b.html
http://www.foundrynet.com/about/newsevents/releases/ \ pr5_03_05b.html
http://en.wikipedia.org/wiki/Denial-of-service_attack#Incidents
http://en.wikipedia.org/wiki/Denial-of-service_attack#Incidents
http://www.cert.org/archive/pdf/DoS_trends.pdf

References 389

[143] M. Handley and E. Rescorla. RFC 4732: Internet denial-of-service considerations.
http://tools.ietf.org/html/rfc4732, 2006. 200

[144] http://www.spirentcom.com. 200

[145] http://www.agilent.com. 200

[146] R. Bhagwan and B. Lin. Fast and scalable priority queue architecture for
high-speed network switches. In Proc. of IEEE INFOCOM ’00, 2000. 211

[147] Y. Joo and N. McKeown. Doubling memory bandwidth for network buffers. In
Proc. IEEE INFOCOM ’98, pages 808–815, San Francisco, CA, 1998. 211, 213

[148] J. Corbal, R. Espasa, and M. Valero. Command vector memory systems: High
performance at low cost. In Proceedings of the 1998 International Conference
on Parallel Architectures and Compilation Techniques, pages 68–77, October
1998. 213

[149] B. K. Mathew, S. A. McKee, J. B. Carter, and A. Davis. Design of a parallel
vector access unit for SDRAM memory systems. In Proceedings of the Sixth
International Symposium on High-Performance Computer Architecture, January
2000. 213

[150] S. A. McKee and W. A. Wulf. Access ordering and memory-conscious cache
utilization. In Proceedings of the First International Symposium on High-
Performance Computer Architecture, pages 253–262, January 1995. 213

[151] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
access scheduling. In Proceedings of the 27th Annual International Symposium
on Computer Architecture, pages 128–138, June 2000. 213

[152] T. Alexander and G. Kedem. Distributed prefetch-buffer/cache design for high
performance memory systems. In Proceedings of the 2nd International Symposium
on High-Performance Computer Architecture, pages 254–263, February 1996.
213

[153] W. Lin, S. Reinhardt, and D. Burger. Reducing DRAM latencies with an
integrated memory hierarchy design. In Proc. 7th Int symposium on High-
Performance Computer Architecture, January 2001. 213

[154] S. I. Hong, S. A. McKee, M. H. Salinas, R. H. Klenke, J. H. Aylor, and W. A. Wulf.
Access order and effective bandwidth for streams on a direct rambus memory.
In Proceedings of the Fifth International Symposium on High- Performance
Computer Architecture, pages 80–89, January 1999. 213

[155] D. Patterson and J. Hennessy. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, San Francisco, CA, 2nd edition, 1996. 213, 305

http://tools.ietf.org/html/rfc4732
http://www.spirentcom.com
http://www.agilent.com

References 390

[156] L. Carter and W. Wegman. Universal hash functions. J. of Computer and
System Sciences, 18:143–154, 1979. 213

[157] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proc. of the
Thirtieth Annual Symposium on the Foundations of IEEE, 1989. 213

[158] G. Shrimali and N. McKeown. Building packet buffers with interleaved memories.
Proceedings of IEEE Workship on High Performance Switching and Routing,
pages 1–5, May 2005. 213

[159] A. Birman, H. R. Gail, S. L. Hantler, and Z. Rosberg. An optimal service
policy for buffer systems. Journal of the Association for Computing Machinery,
42(3):641–657, May 1995. 214

[160] H. Gail, G. Grover, R. Guerin, S. Hantler, Z. Rosberg, and M. Sidi. Buffer size
requirements under longest queue first. In Proceedings IFIP ’92, volume C-5,
pages 413–424, 1992. 214

[161] G. Sasaki. Input buffer requirements for round robin polling systems. In Pro-
ceedings of 27th Annual Conference on Communication Control and Computing,
pages 397–406, 1989. 214

[162] I. Cidon, I. Gopal, G. Grover, and M. Sidi. Real-time packet switching: A
performance analysis. IEEE Journal on Selected Areas in Communications,
SAC-6:1576–1586, December 1988. 214

[163] A. Birman, P. C. Chang, J. Chen, and R. Guerin. Buffer sizing in an ISDN
frame relay switch. Technical Report RC14286, IBM Research Report, Aug
1989. 214

[164] S. Iyer, R. R. Kompella, and N. McKeown. Analysis of a memory architecture
for fast packet buffers. In Proc. IEEE HPSR, Dallas, TX, 2001. 214

[165] S. Iyer, R. R. Kompella, and N. McKeown. Techniques for fast packet buffers.
In Proceedings. of GBN 2001, Anchorage, AK, April 2001. 214

[166] S. Iyer, R. R. Kompella, and N. McKeown. Designing packet buffers for router
line cards. IEEE Transactions on Networking, 16(3):705–717, June 2008. 214,
348

[167] S. Iyer, R. R. Kompella, and N. McKeown. Designing packet buffers for router line
cards. Technical Report TR02-HPNG-031001, Computer Science Department,
Stanford University, March 2002. 214

[168] A. Bar-Noy, A. Freund, S. Landa, and J. Naor. Competitive on-line switching
policies. Algorithmica, 36:225–247, 2003. 214, 215

References 391

[169] R. Fleischer and H. Koga. Balanced scheduling toward loss-free packet queueing
and delay fairness. Algorithmica, 38:363–376, 2004. 214, 215

[170] P. Damaschek and Z. Zhou. On queuing lengths in on-line switching. Theoretical
Computer Science, 339:333–343, 2005. 214, 215

[171] J. Garcia, J. Corbal, L. Cerda, and M. Valero. Design and implementation of
high-performance memory systems for future packet buffers. Proceedings of the
36th Annual IEEE/ACM International Symposium on Microarchitecture, pages
372–384, 2003. 215

[172] G. Shrimali, I. Keslassy, and N. McKeown. Designing packet buffers with
statistical guarantees. In HOTI ’04: Proceedings of the High Performance
Interconnects, pages 54–60. IEEE Computer Society, 2004. 215

[173] M. Arpaci and J. Copeland. Buffer management for shared-memory ATM
switches. IEEE Comm. Surveys and Tutorials, 3(1):2–10, 2000. 215, 261

[174] M. L. Irland. Buffer management in a packet switch. IEEE Trans. Communica-
tion, COM-26(3):328–337, March 1978. 215, 261

[175] Cisco Systems Inc. http://www.cisco.com/en/US/products/hw/
switches/ps708/\products_data_sheet0900aecd801459a7.htm. 216

[176] Cisco Systems Inc. Cisco nexus 5000 series switch. http://www.cisco.com/
en/US/products/ps9670/index.html. 216, 253

[177] Cisco Systems Inc. Cisco nexus 7000 series switch. http://www.cisco.com/
en/US/products/ps4902/index.html. 216, 253

[178] Cisco Systems Inc. Data Center Ethernet. http://www.cisco.com/en/US/
netsol/ns783/networking_solutions_package.html. 216, 253

[179] Cisco Systems Inc. Personal communication, Mid Range Routers Business Unit.
216

[180] Cisco Systems Inc. Personal communication, Core Router Project. 216

[181] Cisco Systems Inc. Personal communication, DC3 VOQ Buffering ASIC Group.
216, 305

[182] Cisco Systems Inc. Personal communication, DC3 Storage ASIC Group. 216,
305

[183] Pablo Molinero. Circuit Switching in the Internet. Ph.D. Thesis Report, Stanford
University, June 2003. 222

[184] P. Gupta and N. McKeown. Algorithms for packet classification. IEEE Network,
15(2):24–32, 2001. 223, 261, 282

http://www.cisco.com/en/US/products/hw/switches/ps708/ \ products_data_sheet0900aecd801459a7.htm
http://www.cisco.com/en/US/products/hw/switches/ps708/ \ products_data_sheet0900aecd801459a7.htm
http://www.cisco.com/en/US/products/ps9670/index.html
http://www.cisco.com/en/US/products/ps9670/index.html
http://www.cisco.com/en/US/products/ps4902/index.html
http://www.cisco.com/en/US/products/ps4902/index.html
http://www.cisco.com/en/US/netsol/ns783/networking_solutions_package.html
http://www.cisco.com/en/US/netsol/ns783/networking_solutions_package.html

References 392

[185] S. Fide and S. Jenks. A survey of string matching approaches in hardware.
http://spds.ece.uci.edu/~sfide/String_Matching.pdf. 223

[186] R. Geurin and V. Peris. Quality-of-Service in packet networks: Basic mechanisms
and directions. Computer Networks, 31(3):169–189, February 1999. 224, 261

[187] S. Iyer and Da Chuang. Designing packet schedulers for router line cards. In
preparation for IEEE INFOCOM ’09. 228

[188] http://en.wikipedia.org/wiki/Freenet. 248

[189] J. Oikarinen and D. Reed. RFC 1459: Internet relay chat protocol. http:
//tools.ietf.org/html/rfc1459, 1993. 248

[190] J. Rosenburg and H. Schulzrinne. RFC 2871: A framework for telephony routing
over IP. http://tools.ietf.org/html/rfc2871, 2000. 248

[191] http://en.wikipedia.org/wiki/Multiplayer. 248

[192] http://en.wikipedia.org/wiki/Doom_(video_game). 248

[193] Cisco Systems Inc. Personal communication, DC3 and Catalyst 6K Group,
ISBU, DCBU. 251

[194] D. Newman. RFC 2647: Benchmarking terminology for firewall performance.
http://tools.ietf.org/html/rfc2647, 1999. 259, 280

[195] S. Waldbusser. RFC 2819: Remote network monitoring management information
base. http://tools.ietf.org/html/rfc2819, 2000. 259

[196] Cisco Systems Inc. http://www.cisco.com/warp/public/732/Tech/
netflow. 259, 262

[197] Juniper Networks. www.juniper.net/techcenter/appnote/350003.html.
259, 262

[198] Huawei Inc. Technical Whitepaper for Netstream. http://www.huawei.com/
products/datacomm/pdf/view.do?f=65. 259

[199] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. RFC 3272: Overview
and principles of Internet traffic engineering. http://tools.ietf.org/html/
rfc3272, 2002. 259

[200] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown. Analysis of a statistics counter
architecture. IEEE Hot Interconnects 9, August 2001. 261

[201] C. Estan and G. Varghese. New directions in traffic measurement and accounting.
In Proc. ACM SIGCOMM ’01, pages 75–80, 2001. 261

http://spds.ece.uci.edu/~sfide/String_Matching.pdf
http://en.wikipedia.org/wiki/Freenet
http://tools.ietf.org/html/rfc1459
http://tools.ietf.org/html/rfc1459
http://tools.ietf.org/html/rfc2871
http://en.wikipedia.org/wiki/Multiplayer
http://en.wikipedia.org/wiki/Doom_(video_game)
http://tools.ietf.org/html/rfc2647
http://tools.ietf.org/html/rfc2819
http://www.cisco.com/warp/public/732/Tech/netflow
http://www.cisco.com/warp/public/732/Tech/netflow
www.juniper.net/techcenter/appnote/350003.html
http://www.huawei.com/products/datacomm/pdf/view.do?f=65
http://www.huawei.com/products/datacomm/pdf/view.do?f=65
http://tools.ietf.org/html/rfc3272
http://tools.ietf.org/html/rfc3272

References 393

[202] Cisco Systems Inc. Personal communication, Ethernet Address and Route
Lookup Group, DC3. 274, 275, 276, 305

[203] S. Ramabhadran and G. Varghese. Efficient implementation of a statistics
counter architecture. In Proc. ACM SIGMETRICS, pages 261–271, 2003. 275,
305

[204] Q. G. Zhao, J. J. Xu, and Z. Liu. Design of a novel statistics counter architecture
with optimal space and time efficiency. In Proc. SIGMetrics/Performance, pages
261–271, 2006. 275, 293, 305

[205] Y. Lu, A. Montanari, B. Prabkahar, S. Dharmapurikar, and A. Kabbani. Counter
Braids: A novel counter architecture for per flow measurment. In Proc. ACM
Sigmetrics, 2008. 275, 305

[206] P. Gupta and D. Shah. Personal communication. 275

[207] S. Iyer and N. McKeown. High speed packet-buffering system. Patent Application
No. 20060031565, 2006. 275, 395

[208] K. Egevang and P. Francis. RFC 1631: The IP network address translator
(NAT). http://tools.ietf.org/html/rfc1631, 1994. 280, 282

[209] http://www.cisco.com/en/US/docs/ios/12_4t/qos/configuration/
guide/qsnbar1.html. 280

[210] S. Iyer. Maintaining state for router line cards. In preparation for IEEE
Communication Letters. 284

[211] Y. Joo and N. McKeown. Doubling memory bandwidths for network buffers. In
Proc. IEEE INFOCOM ’98, pages 808–815, 1998. 288

[212] http://en.wikipedia.org/wiki/Double_buffering. 288

[213] Cisco Systems Inc. Personal communication, ISBU and DCBU ASIC Engineering
Groups. 293

[214] Cisco Systems Inc., Network Memory Group. Skimmer Serial Network Memory
Protocol. 305

[215] http://en.wikipedia.org/wiki/ACID. 305

[216] H.J. Kushner. Stochastic Stability and Control. Academic Press, 1967. 326

[217] G. Fayolle. On random walks arising in queuing systems: ergodicity and
transience via quadratic forms as Lyapunov functions - Part I. Queueing Systems,
5:167–184, 1989. 326

http://tools.ietf.org/html/rfc1631
http://www.cisco.com/en/US/docs/ios/12_4t/qos/configuration/guide/qsnbar1.html
http://www.cisco.com/en/US/docs/ios/12_4t/qos/configuration/guide/qsnbar1.html
http://en.wikipedia.org/wiki/Double_buffering
http://en.wikipedia.org/wiki/ACID

References 394

[218] E. Leonardi, M. Mellia, F. Neri, and M.A. Marsan. On the stability of input
queued switches with speed-up. IEEE Transactions on Networking, 9(1):104–118,
2001. 326

[219] R. L. Cruz. A Calculus for Network Delay: Part I. IEEE Transactions on
Information Theory, 37:114–131, January 1991. 337

[220] Personal communication with David Hay. 339

[221] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan. RFC 3376:
Internet group management protocol, v3. http://tools.ietf.org/html/
rfc3376, 2002. 358

[222] Z. Albanna, K. Almeroth, D. Meyer, and M. Schipper. RFC 3171: IANA
guidelines for IPv4 multicast address assignments. http://tools.ietf.org/
html/rfc3171, 2001. 358

[223] R. Hinden and S. Deering. RFC 2375: IPv6 multicast address assignments.
http://tools.ietf.org/html/rfc2375, 1998. 358

[224] D. Thaler. RFC 2715: Interoperability rules for multicast routing protocols.
http://tools.ietf.org/html/rfc2715, 1999. 358

[225] S. Deering. RFC 1112: Host extensions for IP multicasting. http://tools.
ietf.org/html/rfc1112, 1998. 358

[226] Cisco Systems Inc. Personal communication, DC3 100G MAC ASIC Group. 358

[227] Gua, Ming-Huang, and R.S. Chang. Multicast ATM switches: survey and
performance evaluation. Computer Communication Review, 28(2), 1998. 360

[228] J. Turner and N. Yamanaka. Architectural choices in large scale ATM switches.
IEICE Trans. Communications, E81-B(2):120–137, February 1998. 360

[229] N. F. Mir. A survey of data multicast techniques, architectures, and algorithms.
IEEE Communications Magazine, 39:164–170, 2001. 360

[230] S. Iyer and N. McKeown. On the speedup required for a multicast parallel
packet switch. IEEE Comm. Letters, 2001. 363, 364

[231] Cisco Systems Inc. Personal communication, DCBU. 367, 368

[232] S. Iyer and N. McKeown. High speed memory control and I/O processor system.
Patent Application No. 20050240745, 2005. 395

http://tools.ietf.org/html/rfc3376
http://tools.ietf.org/html/rfc3376
http://tools.ietf.org/html/rfc3171
http://tools.ietf.org/html/rfc3171
http://tools.ietf.org/html/rfc2375
http://tools.ietf.org/html/rfc2715
http://tools.ietf.org/html/rfc1112
http://tools.ietf.org/html/rfc1112

End Notes

Preamble

[Preface] A riff on, “So long and thanks for all the fish!”, from Douglas Adams book,
“The Hitchhiker’s Guide to the Galaxy”.

Part I

[Thesis] All the techniques presented in this thesis (with the exception of the work
done in Section 8.6) and Section 10.3 are open source, and are available for use to the
networking community at large.

Chapter 4

[Extended Constraint Set Technique] (page 89) The work on the extended constraint
set technique for CIOQ routers was chronologically done before the application of the
basic constraint set technique.

Chapter 5

[Buffered Crossbars] (page 126) This work was done jointly with Da Chuang.

Chapter 6

[Parallel Packet Switches] (page 138) The pigeonhole principle for routers was chrono-
logically first applied to the Parallel Packet Switch (PPS). However the chapter on
the PPS is presented after the analysis of the PSM, DSM and PDSM routers, since
the latter routers are architecturally simpler monolithic routers.

Part II

[Thesis] The approaches described in Part II, were originally conceived at Stanford
University to demonstrate that specialized memories are not needed for Ethernet
switches and routers. The ideas were further developed and made implementable [232,
207] by Nemo Systems, Inc. as one of a number of network memory technologies for
Ethernet switches and Internet routers. Nemo Systems is now part of Cisco Systems.

Chapter 8

[Packet Scheduling] (page 221) The techniques described in Section 8.6 were conceived
when the author was at Nemo Systems and later refined with Da Chuang in the

395

End Notes 396

Network Memory Group, Data Center Business Unit, Cisco Systems. We would like
to thank Cisco Systems for permission to publish this technique.

Chapter 9

[Statistics Counters] (page 259) This work was done independently, and later jointly
with Devavrat Shah.

Chapter 10

[State Maintenance] (page 280) The techniques described in Section 10.3 were conceived
when the author was at Nemo Systems, which is currently part of Cisco Systems. We
would like to thank Cisco Systems for permission to publish this technique.

Chapter C

[Request Matrix] (page 320) The work done in Section C.1 was done by Rui Zhang in
collaboration.

List of Common Symbols and
Abbreviations

Only the symbols and abbreviations which are used commonly throughout this thesis
are defined here. A more detailed list of symbols and abbreviations are defined
separately at the beginning of each chapter.

∆ Maximum Vertex Degree of a Bi-partite Graph

B Leaky Bucket Size

b Memory Block Size

c, C Cell, Number of Copies

DT Departure Time

E Number of State Entries

k Number of memories, PPS layers

L Latency between Scheduler Request and Buffer Response

M Total Number of Memories

m Multicast Fanout

N Number of Ports of a Router, Counters

Q Number of Queues

q Number of Multicast Copies

R Line Rate

RTT Round Trip Time

S Speedup

T Time Slot

TRC Random Cycle Time of Memory

x Pipeline Look-ahead

ASIC Application Specific Integrated Circuit

ATM Asynchronous Transfer Mode

397

List of Common Symbols and Abbreviations 398

CAM Content Addressable Memory

CIOQ Combined Input Output Queued

CMA Counter Management Algorithm

CMOS Complementary Metal–Oxide–Semiconductor

CPA Centralized Parallel Packet Switch Algorithm

CSM Centralized Shared Memory Router

DDoS Distributed Denial of Service

DDR Double Data Rate

DPA Distributed Parallel Packet Switch Algorithm

DRAM Dynamic Random Access Memory

DRR Deficit Round Robin

DSM Distributed Shared Memory Router

DWDM Dense Wavelength Division Multiplexing

ECC Error Correcting Codes

ECQF Earliest Criticial Queue First

eDRAM Embedded Dynamic Random Access Memory

FCFS First Come First Serve (same as FIFO)

FCRAM Fast Cycle Random Access Memory

FIFO First In First Out Queue

GPS Generalized Processor Sharing

HoL Head of Line

IP Internet Protocol

IQ Input Queued Router

ISP Internet Service Provider

LAN Local Area Network

LCF Longest Counter First

List of Common Symbols and Abbreviations 399

MAC Media Access Controller

MDQF Most Deficited Queue First

MDQFP Most Deficited Queue First with Pipelining

MMA Memory Management Algorithm

MWM Maximum Weight Matching

NAT Network Address Translation

OQ Output Queued Router

PDSM Parallel Distributed Shared Memory Router

PIFO Push In First Out Queue

PIRO Push In Random Out Queue

PPS Parallel Packet Switch

PSM Parallel Shared Memory Router

QDR Quad Data Rate

QoS Quality of Service

RAID Redundant Array of Independent Disks

RDRAM Rambus Dynamic Random Access Memory

RLDRAM Reduced Latency Random Access Memory

SB Single-buffered Router

SDRAM Synchronous Dynamic Random Access Memory

SOHO Small Office Home Office

SRAM Static Random Access Memory

SVOQ Super Virtual Output Queue

TCP Transmission Control Protocol

TLB Translation Lookaside Buffer

VoIP Voice over Internet Protocol

VOQ Virtual Output Queue

List of Common Symbols and Abbreviations 400

W2FQ Worst-Case Weighted Fair Queueing

WAN Wide Area Network

WFA Weighted Fair Arbiter

WFQ Weighted Fair Queueing

Index

Numbers corresponding to an entry refer to the page numbers where the particular
entry is defined. Only the salient entries for a particular item are listed.

Symbols
65-byte

problem 200, 206, 212, 305
solution 206

A
admissible 91, 318

IID . 318
adversary . 200
adversary obfuscation 293, 305
algorithm

caching . 28
load balancing 17, 28
randomized 131
time reservation 93

arbitration see scheduling
ASIC . 3
ATM . 5

B
batch scheduling 110
buffer . 5, 177

packet . 177
buffered crossbar 25, 120, 323, 332
buffering

double . 288
localized 25, 85

C
cache . 18

benefits . 206
buffered crossbar 25, 120
buffered pps 25, 159
L1 . 305
L2 . 305
memory . 17
packet buffer 26, 184
packet buffer pipelined 26, 198
scheduler 26, 232, 238

piggyback 240
statistics counter 26, 263

CAM . 22
CIOQ 10, 39, 89, 120

CMA . 264
CMOS . 6
combined input-output queued 10
constraint set 17, 38

extended 44, 111
cost

savings
memory 206

counter
count . 266
empty . 266

CPA . 151
critical queue 201
crosspoint . 120

D
DDoS . 200
DDR . 8
deficit . 192

maximum total 194, 201
real . 203
total . 194

demultiplexor 144, 154
departure time 13, 14, 149
difference equation 19, 349
Diophantine 294

even . 294
distributed shared memory 24
domination . 356
double buffering 288
DPA . 166
DRR . 14, 224
DSM . 24, 44
DWDM . 140

E
ECQF . 208
emulate . 19
Ethernet . 5

F
FIFO . 15
frame scheduling 79, 109, 368

401

Index 402

G
generalized ping-pong 289
GPP-SMA . 289
GPS . 14, 224
graph . 67

bipartite . 67
request . 68

H
HoL . 90

I
induction

simple . 105
input queued 9
inter-processor communication 206
Internet service provider 282
IQ . 9
ISP . 282

L
LAN . 86
LCF . 265
Lyapunov function 19, 41, 270

M
MAC . 216
marriage

arranged 108
forced . 108
preferred 100, 108
stable 101, 106

matching
critical maximum size 110
maximal 110
maximum size 109
maximum weight 109

MDQF . 192
MDQFP . 199
memory

access pattern 26
access time 4, 314
bandwidth 4, 27, 313
capacity 5, 313
commodity 5
data structures 26, 293
departure time 25
distributed 24, 64

distributed shared 24, 44
DRAM . 6
eDRAM . 25
FCRAM . 8
latency 8, 26, 206, 313
limited . 24
localized 25, 89, 120
parallel distributed 25, 44, 74
RDRAM . 8
RLDRAM 8
SDRAM 286
shared 24, 46
slow . 25
SRAM . 6

mimic . 19
MMA . 203
multicast . 359

copy . 360
fanout . 361

multiplexor . 144

N
network

Batcher-banyan 11
Benes . 11
Clos . 11, 143

buffered 41
re-arrangeable 154
strictly non-blocking 153

Hypercube 11

O
OQ . 6
output queued 6

P
parallel distributed shared memory 25, 44
parallel packet switch 25
parallel shared memory 24, 44, 46
PDSM 25, 44, 74
permutation 89, 160

conflict-free 56
matrix . 320

PIFO . 14, 51
pigeonhole principle 37, 45

extending 103
ping-pong . 288

generalized 289, 291

402

Index 403

pipeline 26, 188, 198
PIRO . 102
policing 23, 26, 259, 280
power . 21, 75

worst-case 206
PPS 25, 44, 146
PSM 24, 44, 46

Q
QDR-SRAM 206, 232, 274, 286
QoS . 14
queue

FIFO . 15
PIFO . 14, 51
PIRO . 102
strict priority 14, 224
super . 131
virtual output 10, 109, 131

R
router

buffered crossbar . . . 25, 120, 323, 332
buffered pps 25, 159
centralized shared memory 4
combined input-output queued 10, 39, 89

buffered 120
crossbar 89

distributed shared 64
bus-based 64
crossbar-based 64

distributed shared memory 24, 44
DSM . 64
input queued 9
output queued 6
parallel distributed shared 74

crossbar-based 74
parallel distributed shared memory 25, 44
parallel packet switch 25, 44, 146
parallel shared memory 24, 44, 46
single-buffered 23

deterministic 40

randomized 40
SOHO . 86

RTT . 5, 177

S
SB . 23, 40
scheduler . 223
scheduling

batch . 110
frame 79, 109, 368

serdes . 206
shaping 13, 23, 259
single-buffered 23, 40
SOHO . 86
speedup . 11

crossbar . 89
link 148, 359

state management 26, 289

T
TCP . 5, 178
test

bake-off . 200
throughput

100% 10, 41, 88, 109, 120, 131, 319, 323
time slot 4, 148, 185, 234, 265, 364

internal . 148
traffic

admissible 91, 318
concentration 147
leaky bucket constrained 13
single leaky bucket constrained 91

V
VOQ 10, 109, 131

W
WAN . 86
WDM . 140
WF2Q . 14, 224
work-conserving 13, 111, 126, 154

403

	Abstract
	Preface
	Acknowledgements
	1 Introduction
	I Load Balancing and Caching for Router Architecture
	2 Analyzing Routers with Parallel Slower Memories
	3 Analyzing Routers with Distributed Slower Memories
	4 Analyzing CIOQ Routers with Localized Memories
	5 Analyzing Buffered CIOQ Routers with Localized Memories
	6 Analyzing Parallel Routers with Slower Memories

	II Load Balancing and Caching for Router Line Cards
	Part II: A Note to the Reader
	7 Designing Packet Buffers from Slower Memories
	8 Designing Packet Schedulers from Slower Memories
	9 Designing Statistics Counters from Slower Memories
	10 Maintaining State with Slower Memories
	11 Conclusions
	Epilogue

	III Appendices & Bibliography
	A Memory Terminology
	B Definitions and Traffic Models
	C Proofs for Chapter 3
	D Proofs for Chapter 5
	E A Modified Buffered Crossbar
	F Proofs for Chapter 6
	G Centralized Parallel Packet Switch Algorithm
	H Proofs for Chapter 7
	I Proofs for Chapter 9
	J Parallel Packet Copies for Multicast
	List of Figures
	List of Tables
	List of Theorems
	List of Algorithms
	List of Examples
	References
	End Notes
	List of Common Symbols and Abbreviations
	Index

