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etwork equipment today need to perform com-
plex packet analysis as part of their packet pro-
cessing. The performance of the packet analysis
or classification module directly affects the over-

all performance of the equipment. This becomes particularly
critical for line rates starting from Gigabit Ethernet (GE) and
going up to OC192c. Classification requirements also vary
with the applications and the equipment categories for which
they are intended.

To date, to meet these needs, special-purpose classification
devices, such as CAMs/ternary CAMs (TCAMs), special route
lookup engines, and software-based classification algorithms
have been deployed. However, they target specific applica-
tions. Since, at this stage of evolution of the Internet, network
applications (and hence classification requirements) continue
to evolve, there is now a definite need for a classification
architecture that is flexible enough to support a variety of
applications at wire speeds. The ClassiPI architecture defines
a programmable, high-speed classification engine that
attempts to address this need. The first implementation of the
ClassiPI architecture achieves wire-speed classification at
OC48c rates.

ClassiPI as a co-processor is intended to be used as an accel-
erator on line cards and in systems based on application-specific
integrated circuits (ASICs), network processors, or general-pur-
pose processors. It is deliberately agnostic with respect to packet
processors and does not impose any constraints on them. It can
accept a stream of data from the processor, perform classifica-
tion operations on this stream, and return classification results
back to the processor, as shown in Fig. 1.

The rest of this article is organized as follows. We briefly
present an overview of classification. This is followed by a

summary of existing solutions. We then introduce various per-
formance metrics to help characterize classification. An
abstraction of classification is presented, and the ClassiPI
architecture is described. Examples of some applications that
can be supported on ClassiPI are described, followed by per-
formance figures.

A Classification Overview
Given a set of rules or policies defining packet attributes or con-
tent, packet classification is the process of identifying the rule or
rules within this set to which a packet conforms or matches.

Rules typically consist of operations comparing packet fields
with values, as shown in Table 1. A set of rules is formed based
on the criteria to be applied to classify packets with respect to a
given network application. Classification rule sets can be cate-
gorized based on the application as described below:
• Packet forwarding applications: Examples of these include

MAC address-based layer 2 (L2) switching, asynchronous
transfer mode (ATM) cell switching, multiprotocol label
switching (MPLS), and layer 3 (L3) IP forwarding, as shown
in Table 1. The classification operation required in these
applications is usually performed on a single field in the
packet header. For example, L3 IP forwarding implements a
longest prefix match policy on the destination IP address of
the packet.

• Packet-filter-based applications: Examples of these are fire-
wall packet filtering, virtual private network (VPN) imple-
mentations, and quality of service (QoS) applications such
as integrated services (IntServ) and differentiated services
(DiffServ). Typically, these applications use policies based
on L2/L3/L4 fields in the packet header. These applications
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have rules that require an exact match or prefix/range
match on multiple fields, as shown in Table 1.

• Content-aware applications: These are a new class of appli-
cations requiring scanning and classification based on the
packet header as well as the packet content. Examples are
server load balancing, intrusion detection, and virus scan-
ning (Table 1). Classifiers for these applications require
scanning the packet to locate specific fields.

From the above it is evident that classification requirements
vary with the application.

Existing Approaches
Several approaches and algorithms have been proposed to
solve the problem of packet classification. Some of them are
discussed in other tutorial articles in this special issue. In this
section we will provide a short summary of some of the exist-
ing approaches.

A brute force approach to classification is to precompute
the rule that matches for every possible packet header. Classi-
fiers that act on data of width w would require a table of size
2w entries. The classification result is obtained in a single
memory access; however, it requires an exponentially large
amount of memory to be practical.

The simplest classification algorithm is a linear search that
involves comparing each rule sequentially with the incoming

data until a match is found. Though the memory for rule stor-
age is used efficiently, the search time scales linearly with the
number of rules, making it impractical for use with large rule
databases.

CAMs and TCAMs [1, 2] perform classification by match-
ing the incoming data against all rules in parallel and report-
ing the highest priority match. This requires a large number of
logic elements. Hence they suffer from power dissipation
problems and are not scalable to accommodate large rule
databases. Also, in a TCAM, the classification rules can only
match a 0, 1, * (i.e., a don‚t care), for each of the bit positions
of the incoming data. This can be restrictive for certain kinds
of classification applications.

IPv4 packet forwarding is a special case of packet classifica-
tion that involves single field classifiers. Various algorithms
that pre-process the rule database and organize it as a tree/trie
have been proposed in [3–6]. In [7], the authors propose a two-
level table lookup mechanism to perform packet forwarding.
The above algorithms are optimized only for IPv4 forwarding
and do not address the general packet classification problem.

Packet-filtering algorithms based on multiple fields have
been studied in [8–15]. These algorithms maintain a multidi-
mensional tree or trie data structure for the rule database.
Though efficient, they cater only to the specific filtering-based
applications and are not suitable for applications requiring
content-aware classification.

A requirement of content-aware classification is the need
to scan or parse [16] a packet and check for the occurrence
of one or more strings or patterns defined in a wide-width
rule database.

In the next section we define metrics which can be used to
compare the performance of different classification solutions.

Classification Performance Metrics
Definition 1: Space Complexity (S) — This is defined as the
asymptotic tight bound Q(f(n))1 on the space required to repre-
sent a particular rule database and its associated data structures.

For example, a linear search software algorithm has a
space complexity of Q(n). A TCAM also has a space com-
plexity of Q(n). However, the actual space required is c ≥ 1,
for some c depending on the complexity of the rule.2

■ Figure 1. ClassiPI as a co-processor.
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■ Table 1. Packet classification examples.

Two Switching, MPLS OC48c Single Exact match Send packets with DMAC == 68:10:01:ab:12:7a
directly to end hosts

Three Forwarding OC48c Single Longest prefix match Send all packets with DIP == 192.168.0.* to the
ISP‚s router

Four Flow identification, OC48c Multiple Exact match Give packet with SIP, DIP, SP, DP == (192.1.4.5,
IntServ 200.10.2.3, 21, 1030) highest priority

Four Filtering, DiffServ OC48c Multiple Prefix or range match Drop all packets with SIP == 192.1.* and SP >
1023 and DP < 5000

Seven Load balancing 1GE Multiple Scan with exact or Re-direct packets having filenames ending in “.ra”
prefix match in DATA to audio server.

Seven Intrusion detection 1GE Multiple Scan and match Create alarm when packets having “get.*vbs” in
reg. expressions DATA arrive.

Layer Application Speeds Number of fields Classification type Rule example

1 In the rest of the article, n refers to the number of rules. 

2 As an example, a rule of the form x > 1023, for some field x, requires
six TCAM rules to store. Hence c may be as large as 6.
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Definition 2: Time Complexity (T) — This is defined as the
asymptotic tight bound Q(f(n)) on the maximum number of
steps or cycles that are required to perform the classification.

This metric is used to identify the number of sequential
steps required to reach a match/no match result. Any paral-
lelism implemented helps to reduce T. Algorithms that narrow
down the number of rules to match (and hence the number of
steps) would also reduce T.

For example, a time-wise linear search algorithm has a time
complexity of T = Q(n). A standard binary tree search algo-
rithm has a time complexity of T = Q(logn) for certain single-
field classifiers. CAMs, being completely parallel
implementations, have T = Q(1).

Definition 3: Power Complexity (P)3 — This is defined as the
asymptotic tight bound Q(f(n)) on the product of the maximum
number of steps or cycles that are required to perform classification,
the number of operations that are performed in parallel per step,
and the cost, in terms of power required, of a single operation.

This metric attempts to identify the number of basic match
operations performed and, by implication, the power required.
Thus, a linear lookup, whether time-wise or space-wise, would
perform the same number of lookups and hence have the
same power complexity.

For example, a linear search algorithm has a power com-
plexity of P = Q(n). A binary tree search algorithm (for cer-
tain single field classifiers) has a power complexity of P =
Q(logn). A direct table lookup has P = Q(1). A hash table
lookup with bucket size b, has P = Q(b).

Definition 4: Update Complexity (U) — This is defined as the
asymptotic tight bound Q(f(n)) on the maximum number of
steps or cycles required to perform an atomic insert, delete or
update of a rule in the rule database.

For example, a linear search algorithm requires an update
time of U = Q(n). Also, most CAMs require U = Q(n) for
L3/L4 access control lists, however certain specialized CAM
engines [1] require U = Q(1) update time. A lower update
complexity U = Q(w) for CAMs, specifically for L3 lookups
has been shown in [17]. In [9], Buddhikot et al. report an
update complexity of U = Q(√n). Also, a complexity of
Q(ln1/l) to insert Q(n1/l) rules is derived in [10].

Although an important metric for brevity, it is not dis-
cussed further in this article.4

Definition 5: Rule Complexity (R) — This is defined as the
product of the number of operations which can be supported
per field of the rule and the total number of fields in the rule.

This metric reflects the complexity of the policy rules it
can support. It can be used to estimate the range of applica-
tions that the engine can support. Examples of such opera-
tors include comparison operators, packet parsing operators,
concatenation of fields to form variable width fields, and a
wide range of regular expression operators.

For example, a unary CAM has only a single comparison
operator (i.e., the equality match operation). Hence, its rule
complexity is 1 ¥ F, where F is the number of fields. A
TCAM, on the other hand, has R = 2 ¥ F since it can per-

form both an equality and a masking operation per field. A
solution which implements additional relational operators
such as <,> in addition to TCAM operators has a rule com-
plexity R = 4 ¥ F.

A Classification Wish List
The following is a possible wish list for an optimally architect-
ed classification engine:
• It should be efficient and scalable in the usage of memory

(i.e., have a low space complexity, S).
• It should have a high classification speed (i.e., have a low

time complexity T).
• It should consume less power (i.e., have a low power com-

plexity, P), enabling the solution to be scalable.
• The architecture should also be able to support fast incre-

mental inserts and deletes of the rules in the rule database
(i.e., have a low update complexity U).

• The architecture should have a high rule complexity R.
The classification trade-offs for the solutions described in

the previous section are illustrated in Table 2. Also, from a
flexibility and application point of view we would additionally
require the following:
• It should support multiple different classification algorithms

so that the optimal algorithm may be implemented for a
particular application. For example, a linear search algo-
rithm for a small number of rules may perform better than
a tree/trie search algorithm.

• Typically, applications require multiple classifications, and
hence the architecture should be able to perform a
sequence of classification operations on a single packet. An
example of such a sequence is explained later.
Theory suggests that packet classification has inherent

trade-offs between the various metrics defined above. Table 2
shows that existing solutions are inefficient with respect to at
least one metric.

Table 3 illustrates the theoretical complexity metrics of
ClassiPI with respect to rule sets for IPv4 route lookup.5 In
the table, w refers to the width of the field used for classifica-
tion in bits. The complexity metrics of ClassiPI have been

■ Table 2. Packet classification trade-offs.

Table High Low Low Low

Linear Low High High High

TCAM Low Low High Medium

Single-dimension trie/trees Medium Medium Low Low

Multidimension trie/trees High Partially Low Low

Ideal Low Low Low High

Algorithms/architectures S T P R

■ Table 3. Trade-offs for IPv4 route lookup.

Table 2w 1 1

Linear n n n

CAM n 1 n

Balanced binary search 4n – 1 log22n log22n

ClassiPI using B-Tree 2n + (2n – p)/(p – 1) logp2n (p – 1)logp2n

Ideal n 1 1

Algorithm/architecture S T P

3 Although power complexity can be more precisely defined, we assume
a simplistic definition for this metric.

4 However, we would like to mention here that the update complexity
for algorithms implemented on the ClassiPI architecture depends on
the application and the algorithm used for classification, and consider-
able flexibility has been provided in the architecture to fine tune this
parameter.
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obtained using an order p B-Tree algorithm
with p comparisons in parallel. The tree is
formed on a worst case number of 2n disjoint
intervals6 which are formed from n routing
prefixes. Each of these intervals is associated
with a best matching prefix. The exact algo-
rithm is explained later. The balanced binary
search algorithm is a special case of this,
where the B-Tree has an order of p = 2. The
search complexity of the balanced binary
search tree is log22n and that of a order p B-Tree is logp2n.
The power complexity of an order p B-Tree is the product of
the number of elements in the internal nodes and the depth
of the tree i.e. (p – 1)logp2n.

We see that ClassiPI, when implementing a B-Tree algo-
rithm, has a moderate S, T, P complexity for corresponding
values of p; the internal parallelism of ClassiPI. Implementa-
tions of the classification algorithm on the ClassiPI architec-
ture can be tuned to optimize a particular metric by choosing
appropriate values of p. In particular, p can be set to 1, mim-
icking a simple linear search. The next section lays the foun-
dation for describing the ClassiPI architecture.

A Framework for Classification
In this section we describe a framework for packet classifica-
tion in two parts:
• The primitives that form the building blocks for classifica-

tion
• The sequencing operators that combine these primitives to

provide a complete classification solution

A Formalization of Classification Primitives
Definition 6: Field — The field Fi is a contiguous set of bits that
can be either a part of the packet, or other information attached
or associated with the packet, such as timestamp or incoming
port number.

The task of packet parsing involves identification of the
fields in the packet. This operation is simple in the case of
L2/L3/L4 applications where the field offsets are either known
with respect to the start of the packet or dependent on the
contents of another field. Examples of fields involved in pack-
et classification include SIP, DIP, SP, DP, and IP Protocol.

Definition 7: Field List (Key) — A field list or key F = [F0, F1,
…, Fn] is an ordered set of fields.

For example, a key for identifying a unique connection can
comprise the ordered list F = [SIP, DIP, SP, DP, IP Protocol].

Definition 8: Rule — This is defined as a Boolean function, r : F
Æ true, false where F = {F[0], F[1], F[2]..} is the key or field
list. In case the rule matches the fields the function returns true.
It returns false otherwise.

In general, any Boolean function can constitute a rule;
however, typical operators used in defining a rule are given in
Table 4.

While the L2/L3/L4 header fields are easily parsed, content-
aware classification rules often require fields located within the
data packet payload. In this case, the offsets of fields may not be
known a priori, and the rule must encode the parsing and classi-

fication information. The last column of Table
1 shows some examples of rules and the actions
associated with them. Recall that the number
of fields in the key and the number of opera-
tors supported by the architecture define the
rule complexity metric R.

Definition 9: Rule List — A rule list ¬ is defined
as an ordered set of rules [r1, r2, …, rn].

Definition 10: Selection Operator — The selection operator is a
function s: ¬ Æ ¬, which chooses a subset of rules from a set
of rules.

For example, a highest-priority selection operator, reports only
the highest-priority rule among all the rules that matched a key. If
the rule list is arranged in increasing order of priority, the highest-
priority rule corresponds to the first rule that matched.

Definition 11: Classification Function (CF) — The classification
function p is a function on a rule list ¬ with field set F and
selection operator s, as p : (¬, F, s) Æ ¬. The classification
function selectively returns the rules which matched field set F
based on the selection operator s.

For example, the classification function p  in an IPv4 forward-
ing application is defined by a rule list ¬ of routing prefixes, a
key F = [DIP], and a selection operator s  which returns the
longest matching prefix out of all the prefixes that matched.
The various approaches, some of which have been discussed,
implement the classification function in different ways.

Definition 12: Boolean Match Operator — The Boolean match
operator: match index p(¬, F, s) Æ true, false returns true if
$i(ri (¬, F, s)) and false otherwise.

In other words, the Boolean match operator returns a value
true if there is at least one rule in the rule set that matches
the field list F.

Definition 13: Boolean Rule Match Operator — The Boolean
rule match operator: match index p(¬, F, s), i ∆ true, false
returns true if ri Œ p(¬, F, s) and false otherwise.

The Boolean rule match operator compares the return
value of a classification function with a rule index to check if
they match. Both the above Boolean operators, when invoked,
first perform the classification function p and then check for
the Boolean condition.

The above definitions are fairly generic and can be mapped
onto classification devices such as CAMs, TCAMs, and route
lookup engines. For example, each entry in a CAM corre-
sponds to a rule r. The only Boolean function supported by a
rule is the equality operator ‘==’. The rule list consists of all
the entries in a CAM. The classification function p consists of
matching the key or field list against all the entries in the
CAM. The Boolean rule match operator returns the
index/address of the highest-priority entry which matches the
key. In the case of a CAM, the various metrics are S = Q(n),
T = Q(1), P = Q(n).

A Formalization of Sequencing Operators
The following definitions lay the framework to combine the
above-defined classification primitives.

Definition 14: Classification Sequence Descriptor — A classifi-
cation sequence descriptor P is a series of classification opera-
tions that have an order of execution associated with them. This
is illustrated as follows, where, P1 • P2 and (Bool)?P1:P2 are
the sequencing and conditional sequencing primitive, which are
defined below.

■ Table 4. Operators in a rule.

Arithmetic MASK

Logical AND, OR, NOT

Relational <, >, ==

Repetition *

Operators Examples

5 We do not mention the rule complexity in the table because it is a proper-
ty of the architecture and is not traded off with the other parameters.

6 Strictly speaking, the worst case number of disjoint intervals is 2n + 1.
We use 2n to keep the calculations simple.
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Definition 15: Sequencing Operator — The sequencing operator
P1 • P2 implies the execution of P2 is after the execution of P1.

When two classification sequence descriptors P1 and P2 are
executed in sequence, the metrics are calculated as follows:

Definition 16: Conditional Sequencing Operator — This opera-
tor is denoted by (Bool)? P1: P2. It implies that if Bool is true,
then P1 is executed, else P2 is executed. It can also be denoted
as if (Bool) then P1 else P2.

When two classification sequence descriptors P1 and P2 are
conditionally executed, the metric values are calculated as
given below.

Here, the metric associated with the Bool is the cost of the
p operation associated with Bool.

Definition 17: Switch-Case Operator — The switch-case operator
is used conditionally to select the next operation to be performed.
It is represented as switch(p(¬, F, P)): (P1, P2, P3, … Pn), and
implies that Pi is executed if matchIndex(p(¬, F, P), i) is true.

The switch-case operator can be derived using multiple
conditional sequencing operators and is hence not a primitive
operator. When a switch-case operator is executed, the metric
values are calculated as follows:

Using these primitives and operators, the classification
engine can be used to implement lookup algorithms that opti-
mize the metrics S, T, P for a particular application.

Later, we shall illustrate the implementation of two applica-
tions with the help of primitives defined above.

ClassiPI Architecture
This section briefly describes the ClassiPI architecture and
how its various functional units relate to the above definitions.
Figure 2 shows a block diagram indicating the main functional
blocks of the device.

The classification engine (CE) block, assisted by the con-
trol/sequencer block, implements the core classification capa-
bilities of ClassiPI. The other blocks provide the functionality
required to interface ClassiPI to other devices in the system,
extract the payload, and present the desired commands and
parameters to the CE. More information about important
blocks is provided in the following sections.

ClassiPI is efficiently pipelined, enabling a continuous stream

of packets to be fed into the device, while it continues to per-
form packet parsing, key formation, and lookup operations.

System Interface
The ClassiPI co-processor presents a general-purpose syn-
chronous random access memory (SRAM) (SyncBurst or ZBT
mode) bit interface for connecting to a processor, packet
source, or DMA device. The system interface (SI) is used to
send packets or pre-extracted payload for classification. The
interface supports up to independent channels, each of which
appears to be an independent classification engine having a
separate area in the packet buffer in which associated packet
data can be stored. This interface is also used to access the
control registers with the help of which classification opera-
tions, key selections, and a rule database can be configured.
The results of a classification operation are also returned to
the processor via this interface.

Field Extraction Engine
The main function of the field extraction engine (FEE) is to
form the key or field list F required for a classification operation
p. The FEE can parse and extract Ethernet II, 802.3, and
802.1p/q headers, then determine where in the packet the L3
payload starts. It can extract key IP, TCP, and UDP header fields
as well as payload data at any offset. The FEE can also extract
some amount of TCP state information. The FEE is aware of
and can handle the various idiosyncrasies of the IP and TCP
headers. In addition to performing fixed header extraction, the
FEE can also be programmed to extract data between a start and
an end offset in the input data stream. These offsets can be
either preprogrammed using the control registers, or dynamically
obtained from the results of the previous classification operation.
It is also possible to bypass the FEE on a per-packet basis and
send a pre-extracted key directly to ClassiPI.

Classification Engine
The classification engine (CE), implements a set of classifica-
tion functions (CFs). Each CF implements a p operation and
can be programmed to be associated with a rule set ¬, a key
F, and a selection operator s. The rule set ¬ is allocated
space from a common pool of 16K rules. This rule space can
be extended to 128K rules using a cascade interface, as
explained later.

Rule Capabilities — The architecture supports a wide range of
rule formats. The format allows specification of ranges using
the >,<, and MASK operators. It also supports the scan
operator, *, and other operators listed in Table 4. This degree
of flexibility built into the rule format ensures a high value of
rule complexity R for ClassiPI. The architecture allows the CE
to be configured to create multiple CFs each with varying
number of rules, rules of varying complexity and keys of vary-
ing widths. The rules are configurable in a variety of ways,
from 108-bit L4 classifiers to wide-width classifiers of up to
192 bytes for L7 applications.

Search Operation — The fundamental operation on the CE is
the search operation p. The search operation selects a particu-
lar and proceeds by performing a match operation for each
rule in the CF. The results depend on the selection operator
specified in the search operation. The ClassiPI architecture
supports two kinds of selection operators, Highest Priority
Match and Multiple Match. The Highest Priority Match opera-
tor returns the rule which has the smallest index out of all the
rules that match the packet data. In the case of a Multiple
Match, all the rules that match the packet data are reported.
The results of a Multiple Match search operation are queued
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up in the Results FIFO (Fig. 2). The processor can access these
results and abort this operation at any stage. Thus, any of the
top m out of n rules that matched can be reported (m £ n).

The Highest Priority Match operation is used in applica-
tions such as L4 filtering and DiffServ. The Multiple Match
search operation could be used to implement applications
such as RMON, which maintain statistics such as number of
IP packets, TCP packets, and IP fragments, and where more
than one rule can match a packet.

External RAM Interface
The co-processor has an interface to an external RAM
(ERAM) which is used to store: 
• The classification program P, in the command RAM (C-

RAM) section.
• The user programmable data associated with every rule in

the user section.
• Certain statistics which are maintained by the device on a

per rule basis in the “Stats” section. These include packet
count, byte count, and timestamp.

ClassiPI Control and Sequencer Block
The ClassiPI control and sequencer block orchestrates the opera-
tion of the various blocks to perform packet classification. The
ClassiPI control block can be directly fed a classification program
P by the processor or programmed to select P from the ERAM.
The sequencer understands and creates the multiple sequences
of classification operations p, as well as the conditional and
unconditional search operations in P. It is responsible for feed-
ing the field list F from the FEE to the CE and the selecting the
matching rule(s) based on the selection operator s.

Cascade Interface
The cascade interface can be used to connect up to a maxi-
mum of eight ClassiPI devices. The cascade mechanism can
be used to increase the number of rules in the common pool
to a maximum of 128K. In the cascade configuration, each of
the chips receives the same key and operates on different
rules in parallel. A large filter database can be distributed
among multiple chips and searched in parallel.

ClassiPI Implementation
ClassiPI is available in a 352 pin BGA package and has an
estimated power consumption of 2.25 W. It is implemented

using 0.18 m technology. The classification
core runs off a 200 MHz clock while the
interfaces of the device can be configured
to run at 66 or 100 MHz.

Application Examples
Having described the ClassiPI architecture,
examples of illustrative applications based
on ClassiPI can now be given. The examples
selected here are a simple linear lookup, an
L3 IP forwarding application, and an L7
server load balancing application. A brief
description of the algorithm and implemen-
tation strategy is followed by pseudo-code
describing the algorithm. The pseudo-code
is realized in ClassiPI as follows:
• The classification function p, the key F, and

the selection operator s are configured by
programming the control registers.

• The corresponding rule set ¬ is pro-
grammed into the CE.

• Both the conditional and unconditional classification
sequence descriptors are specified in the C-RAM.

Linear Search
The linear search mechanism is the simplest method to per-
form L2, L3, and L4 lookups. One way to do this is by creat-
ing a prioritized rule set ¬ such that if ri, rj Œ ¬ and ri has a
higher priority than rj, then i < j. A field list F is then defined
and a selection operator s, selects the highest priority match
is chosen. The pseudo-code for the linear search is then sim-
ply p(¬, F, s).

Tree Based IPv4 Routing
This subsection describes the IPv4 forwarding algorithm using
one specific algorithm called Interval Search.

Construction Step — The interval search algorithm for IPv4 for-
warding first breaks up the IP prefixes (which may overlap) into
lower and upper endpoints. Then it sorts all of these endpoints,
in increasing order, into one single list of numbers. Each of the
two adjacent numbers now form an interval. There can be at
most 2n + 1 such intervals, where n is the number of prefixes.
These intervals are all disjoint and form an equivalence class
[14] since all the points in this interval have the same longest
matching prefix. In Fig. 3 there are prefixes represented by
ranges, and 13 equivalence classes are formed (0–12 denoted in
the figure). To search for a given destination IP address for the
longest matching prefix, it is sufficient to now match the IP
address in these equivalence classes.

A small number of contiguous equivalence classes are
merged to form an encapsulating range. For example, in the
figure shown above, the intervals 0, 1, 2, 3 are combined to
form encapsulating range a, with the lower limit of this
range as the lower limit of equivalence class 0 and the
upper limit as the upper limit of equivalence class 3. If the
destination address of the packet matches encapsulating
range a, it will match one of the equivalence classes in it.
Similarly, encapsulating range b has equivalence classes 4, 5,
6, 7, and encapsulating range c has equivalence classes 8, 9,
10, 11, 12.

The algorithm builds a multilevel tree on the set of equivalence
classes. We shall only describe the construction of such a two-
level tree. Rules which consist of encapsulating ranges constitute
the root of the tree. This is defined by the root rule list ¬0 Each
of the child nodes of this root corresponds to a set of equiva-

■ Figure 2. A ClassiPI block diagram.
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lence classes. These are represented by rule lists ¬1, ¬2, etc. The
field set F consists of the destination IP address. There is a single
selection operator which is the identity function (i.e., it returns all
the rules that matched). Note, the rule database is constructed so
that at any given time, only one interval will match.

Classification Steps — The search takes place in two steps. In
the first phase, the root partition ¬0 is searched for a match.
Depending on which entry matched in the root, a different set
of equivalence classes ¬1, ¬2, and so on would
be searched for a match. For example, if there
are exactly 10,000 intervals, they could be split up
into two levels with 100 encapsulating range
entries in the first level and 100 entries in each of
the rule lists ¬1, ¬2 … ¬100, in the second level.

Based on the theoretical framework laid in
previous sections, the pseudocode for implement-
ing the search is as follows:

The S, T, P values can be derived directly from
the metrics of the switch-case statement defined
in the previous section.

Server Load Balancing
We now look at an L7 load balancing application
where it is necessary to parse and classify the URL
string contained in a packet. Figure 4 shows the vari-
ous classification operations required; they involve
the following stages:
• Check that the destination port number field is 80.
• Search for the host name field in the packet.
• Do an exact match on the host name field.
• Search for the URL field in the packet.
• Do a longest prefix match on the URL field.

Construction of the Solution — These five steps are
further described below:
1 A rule space ¬1 is defined with a single rule r1,

which matches the destination port number 80.
2 Another rule space ¬2 is setup to scan for the

delimiter in the packet which precedes the host
name field. The delimiter field can occur in many
ways, and rule space ¬2 = r1, r2 … is set up with
multiple rules. For example, r1 =
“*[Hh][Oo][Ss][Tt][:][\t\r].” This searches for
the string “host:” insensitive of letter case, fol-
lowed by any white space.

3 A third rule space ¬3 which contains rules that
match the host names is set up. An example of
rules in this rule space is = “www.cnn.com” and =
”www.yahoo.com.”

4 Similar to rule space ¬2 a rule space R4 is setup to
search for the delimiter to the “URL field.” Exam-
ples of rules which search for this delimiter are
r1= “*GET:” and r2 = “*[Pp][Oo][Ss][Tt][:]

[\t\r]” and so on.
5 Finally, there are multiple rule spaces ¬5, ¬6, ¬7 … ¬n

which contain rules such as r1 = “/documents/,” r2 = “/doc-
uments/sports/,” and r3 = “/music/stream.” A longest prefix
match is done to identify the rule that matched.
There are two selection operators, sa, the identity function

which returns all the rules that matched, used for the first four
classifications, and sb which defines a longest prefix match
operation, used for the final longest prefix on the URL field.
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■ Table 5. Examples of applications and algorithms.

2 Linear search O(n) Switching
Range search O(logn)

3 Linear search O(n) Forwarding
Patricia trie O(w)
Interval search O(logn)

4 Linear search O(n) Filtering, NAT, QoS
Tree/Trie search O(logn)d–1 Flow ID

7 - Scan, Linear scan/linear search O(m+n) Load balancing,
known Linear scan/tree search O(m+logn) Web caching
delimiter Linear scan/trie search O(m+w) URL swithcing

7 - Scan, Linear scan/linear search O(mn) Virus filtering,
without Linear scan/tree search O(mlogn) Intrusion
delimiter Linear scan/trie search O(mw) Detection

n is number of rules
d is number of dimensions of search
m is size of the data part of the packet
w is maximum width of the strings

Layer Algorithm Time Application examples

■ Figure 3. a) IP prefixes as disjoint intervals; b) interval tree.
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There are two different keys set up for the rule spaces.
The first key is Fa = {“Destination Port Number”}. The sec-
ond key is Fb, which points to the whole packet. The start
offset of this field is set up dynamically, and the endpoint of
the key points to the end of the packet.

Classification Steps — Formally, the pseudocode can be writ-
ten as follows, and the metrics can be calculated from the
definitions in the previous section:

Other Examples
Table 5 presents some applications along with information
regarding the layer at which they perform classification, the
algorithms which can be used to implement them on ClassiPI,
and the corresponding time complexity metric. In the table,
the L7 applications require a linear scan on the packet data of
width m for a small number of delimiters (similar to that
defined earlier), followed by a search on the rule database.
The L7 applications shown in Table 5 are listed separately for
both the cases when the delimiter to be searched is known
and when there exists no delimiter.

ClassiPI Performance
The performance characteristics of the ClassiPI co-processor
for a set of typical classification problems are shown in Fig. 5.
These figures are obtained by a simulation on a cycle accurate
RTL model of ClassiPI.

The graphs in Fig. 5 show the classification performance of
ClassiPI (in million packets per second) for different applica-
tions. Since packet arrival rates vary with packet size, the
number of packets that arrive per second at Gigabit Ethernet
(GE) and OC48c line rates have been overlaid on the graphs.
This is convenient for identifying whether the lookup opera-
tion performance meets wire-speed requirements. The worst-
case performance of the current implementation of ClassiPI is
summarized below:
• In Fig. 5a, the performance of ClassiPI for a 2-depth B-tree

lookup mechanism is shown. Such a mechanism can be
used to implement L2, L3, and L4 searches for a maximum
of 16K rules in a single chip. Since only the header fields of
the packet need be sent to the device, the performance of
the ClassiPI remains constant across all packet sizes. It can
be seen that ClassiPI can sustain OC48c requirements
across most packet sizes. The two curves converge only for
the smallest packet sizes.

• Figure 5b shows the performance of the architecture for

ACL-based packet filtering. A maximum of 2K ACL rules
per packet are searched in a linear fashion. In this case too,
only the packet header needs to be presented to ClassiPI.
Hence, packet processing performance is constant across all
packet sizes. Again, ClassiPI meets OC48c requirements.

• Figure 5c shows the classification performance for a server
load balancing application. A maximum of 256 delimiters, a
maximum of 256 distinct server names, and a database of
about 750 URLs, as described in an earlier section is
assumed.7 The minimum packet size is specified to be 128
bytes, since packets of smaller sizes are usually combined at
the server and aggregated. Note that the application
requires the entire packet payload to be scanned, and
hence the performance is a function of the packet size. For
this operation, ClassiPI maintains a performance curve
which closely follows the packet arrival curve for Gigabit
Ethernet.

• In Fig. 5d, the performance of ClassiPI is compared for an
intrusion detection application. This involves searching for
regular expression patterns within the packet payload. For
this example, it was assumed that a total of 125 regular
expressions had to be parsed for. The performance is again
a function of the packet size, and it can be seen that the
ClassiPI performance closely matches the Gigabit Ethernet
curve.
From the figures it can be seen that the architecture is

capable of sustained OC48c line rate performance for L2, L3,
and L4 applications and is capable of sustaining 1GE through-
puts for L7 applications.

Conclusions
The ClassiPI architecture attempts to take advantage of the
high speed of CAMs, and the flexibility and scalability of soft-
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ware algorithms. It presents a programmable platform on
which appropriate algorithms can be chosen to suit the
requirements of specific applications. The current ClassiPI is
the first-generation implementation of this architecture, capa-
ble of processing packets up to OC48c line rates.

In order to address the needs of emerging network applica-
tions, packet classification devices that are flexible and scalable
will be required and will continue to evolve. ClassiPI is intended
to be one such solution for future network equipment.
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■ Figure 5. ClassiPI performance figures.
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