
An approach to alleviate link overload 
as observed on an IP backbone

Sundar Iyer1*, Supratik Bhattacharyya2, Nina Taft2, Christophe Diot2

Abstract -- Shortest path routing protocols may suffer from con-
gestion due to the use of a single shortest path between a source and
a destination. The goal of our work is to first understand how links
become overloaded in an IP backbone, and then to explore if the
routing protocol, — either in its existing form, or in some enhanced
form could be made to respond immediately to overload and reduce
the likelihood of its occurrence. Our method is to use extensive mea-
surements of Sprint’s backbone network, measuring 138 links
between September 2000 and June 2001. We find that since the
backbone is designed to be overprovisioned, link overload is rare,
and when it occurs, 80% of the time it is caused due to link failures.
Furthermore, we find that when a link is overloaded, few (if any)
other links in the network are also overloaded. This suggests that
deflecting packets to less utilized alternate paths could be an effec-
tive method for tackling overload. We analytically derive the condi-
tion that a network, which has multiple equal length shortest paths
between every pair of nodes (as is common in the highly meshed
backbone networks) can provide for loop-free deflection paths if all
the link weights are within a ratio of each other;
where  is the diameter of the network. Based on our measure-
ments, the nature of the backbone topology and the careful use of
link weights, we propose a deflection routing algorithm to tackle link
overload where each node makes local decisions. Simulations sug-
gest that this can be a simple and efficient way to overcome link
overload, without requiring any changes to the routing protocol. 

Keywords--Deflection Routing, Network Measurements, Link Over-
load, Link Failure, Traffic Engineering.

I.  INTRODUCTION

IP backbones are engineered for high availability and resil-
ience to multiple link and router failures. It is therefore com-
mon for there to be multiple disjoint links, each of which have
sufficient capacity to individually sustain the offered load,
between any two neighboring Points of Presence (PoPs).

In addition to redundancy, the presence of multiple high
capacity links has two consequences. First, it means that IP
backbones in practice are designed to guarantee a path between
any two points, even if multiple (but limited) number of links
fail simultaneously. Second, it means that even when some
links are overloaded, it is likely that other links are not, making
load-balancing across the multiple available paths appealing. 

The two widely used interior gateway routing protocols IS-
IS1 and OSPF2 perform shortest path routing. The limitations

1. Intermediate System to Intermediate System, IS-IS, http://
www.ietf.org/html.charters/isis-charter.html
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of shortest path routing are well known. They constrain the load
on the network along a small set of shortest paths even if alter-
nate paths with available capacity exist and limit the throughput
between any two nodes to well below the maximum capacity
[1]. Ideally, if multiple paths were available, the routing proto-
col would spread the traffic uniformly over the whole network,
minimizing the probability that any one link is overloaded.
Indeed, both IS-IS and OSPF have been extended to split traffic
among multiple equal cost paths. Multipath routing protocols
which can divide the load unequally amongst several alternate
paths have been suggested in literature [2][3][4]. 

Although intuition suggests that in an overprovisioned net-
work, load balancing across multiple paths will reduce the like-
lihood of link overload, we are not aware of any published
research that measures and shows this to be effective in an IP
backbone, or indicates that there is still room for improvement
in these protocols. This is in part due to the non availability of
widespread measurement infrastructure. Unfortunately, when
measurements are obtained, the data is usually of a proprietary
nature. 

The goal of our work is to first study Sprint’s IP backbone —
which uses IS-IS with load balancing across Equal Cost Multi-
paths (ECMP [5]) — and to understand how overload occurs in
the backbone. We then explore whether the routing protocol
needs to be enhanced to respond immediately and alleviate
overload.

To this end, we study data collected over a nine-month period
(September 2000 to June 2001) from 138 links on Sprint’s IP
backbone. Our measurements include the utilization of each
link, the configuration of each router, and the IS-IS link
weights. 

We find that there is a wide-disparity in the load levels of dif-
ferent links. We observe that though most links in the network
are not highly loaded, at any given time there is always some
link which is overloaded. (In the rest of the paper, we will
define overload to mean a link utilization above 50%3).
Another significant observation is the occurrence of sudden and
aperiodic “hotspots'', where the link utilization is as high as

2. Open Shortest Path Routing (OSPF), http://www.ietf.org/html.char-
ters/ospf-charter.html 
3. The backbone is engineered with the goal of keeping the load level of
every link under 50% in the absence of link failure. This is done to
ensure that when a link fails, there is enough capacity on the backup path
to absorb all the traffic that fails over to it.
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90%. We find that this is mostly caused due to link failures.
However, at any given time, there is usually only one such
“hotspot” in the network. 

These observations suggest that the current approach to
backbone design based on over-protection appears sufficient in
most cases to keep network links from being overloaded. How-
ever, the main problems of link overload arise in the case of
short term link failures (which last for not more than a few min-
utes), and which contribute to 80% of observed overload.
Hence a solution is required, which can alleviate short term
overload much faster than what network operators can do by
manually changing link weights.

Based on these measurements on link utilization, the occur-
rence of overload, and the lack of simultaneous overload in the
backbone, we believe that a simple deflection routing tech-
nique, where each router makes local decisions and allows a
router to divert traffic from the default outgoing interface
(determined by IS-IS) to an alternate interface that is less
loaded, can be quite effective in tackling overload. 

However, it is important that deflection routing not create
routing loops in the network. So we begin by analytically deriv-
ing the conditions on a network, such that a distributed deflec-
tion routing algorithm is loop-free. We show that a network
which has many equal length paths between any source and
destination (like the Sprint backbone) can provide for loop-free
deflection paths if all the link weights are within a ratio

of each other; where  is the diameter of the net-
work. Further we derive a less stringent condition on the link
weights, which also ensures that the deflection routing algo-
rithm is loop-free. We observe that this condition is almost
always satisfied in the Sprint network. These observations lead
us to suggest a practical deflection routing algorithm.

Note that deflection routing has already been proposed previ-
ously for both telephone [6] and data networks [7], as a mecha-
nism to overcome overload. Our technique differs from
previous work in judicious use of link weights to achieve a dis-
tributed loop-free deflection routing algorithm. We compare
our proposal to previous work in more detail in Section II.D.

Our paper is organized in two parts. In the first part, we per-
form measurements on the backbone and lay the case for
deflection routing. Specifically, Section II.A explains the meth-
odology of evaluation, Section II.B describes our observations
on link utilization, and Section II.C describes the occurrence of
overload. We discuss why we believe deflection routing can be
effective in tackling overload in Section II.D. 

The second part of the paper analytically derives the require-
ments on the design of a loop-free deflection routing algorithm
(Section III.A and B) and then describes the design of a practi-
cal deflection routing algorithm (Section III.D). Finally, we
describe a number of simulations based on the Sprint topology
that suggest that deflection routing can be effective in Section
IV.

II.  THE NATURE OF LINK UTILIZATION AND OVERLOAD ON 
THE BACKBONE 

We first describe the sources from where we collect data, fol-
lowed by a detailed description of our approach. 

A.  Methodology

1) Measurement Infrastructure:   We collect three distinct types
of data from the Sprint IP backbone. They are —

SNMP Link Utilization Data: We analyzed data from 138
backbone links, (these constituted most of the links in the back-
bone during our period of observation from September 2000 to
June 2001) which were pruned from a total of 3920 uni-direc-
tional links in the complete Sprint network. For each link, we
collected the SNMP link utilization values, which are obtained
from the Cisco MIB variables4 locIfInBitsSec and locIfOut-
BitsSec from the Cisco MIB interface group, and correspond to
OIDs 1.3.6.1.4.1.9.2.2.1.1.(6,8) respectively. This link utiliza-
tion is calculated as an exponential weighted moving average
(EWMA) of the link load and is calculated as follows:

(1)
where, ,  are the current and previous value of the

EWMA and  is the average link utilization sampled over
every time interval of length . Our measurements were done
on routers which sampled the link utilization once every

 seconds. As a consequence, the EWMA average on
these routers can take up to

 samples, or 14 minutes (2)

to reach within 90% of their instantaneous value (for exam-
ple a change in link utilization from 10% to 100% or vice
versa). Since we poll the EWMA value from each router only
once every 5 minutes, it may take up to three polling periods or
15 minutes to reach within 10% of the actual link utilization
value. Also note that because of the smoothing effect of the
EWMA, peaks in link utilization for extremely short periods
(say a few minutes or less) may be completely missed in our
measurement. As a consequence, our measurements on peaks
in link utilization are highly conservative. 

Router and Link Configuration Data: This data is col-
lected from individual routers, and gives a detailed breakdown
of the interfaces connected to each router, the locations of the
two end points of the link, the capacities of the links, etc. Most
of this data can be obtained using the show interfaces command
on the router command line interface of Cisco routers. We use
the configuration data to build the network topology and to cor-
relate the SNMP link utilization data to routers and PoPs. 

IS-IS Link Weights: We use an internal web-based network
reporting tool to obtain the intra and inter-PoP link weights
used in IS-IS routing on the Sprint network. These link weights
(in conjunction with the router and link configuration data) are
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4. A detailed description is available at http://www.cisco.com/univercd/cc/td/
doc/cisintwk/ito_doc/snmp.htm
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used to accurately simulate our algorithms presented in Section
IV. 

2) Data Analysis:   
Types of Link Measured: We are only interested in under-

standing the properties of IS-IS routing over the backbone and
therefore we prune links which are not relevant to our discus-
sion. We classify the links into four major types as follows — 

1) Inter-PoP Backbone Links: These are links which connect
one backbone PoP to another backbone PoP (see Figure 10).

2) Intra-PoP Backbone Links: These are links within a PoP,
which connect two different backbone routers in the same PoP. 

3) Access Aggregate Links: These are links which aggregate
customer traffic from (to) one or more metro area networks in
the proximity of a single PoP and connect to (from) a backbone
router.

4) Peering Links: These are links which connect a router in
the Sprint network with a tier-1 internet service provider. 

Error Pruning: An important concern regarding SNMP data
is the potential for errors. Some of the key errors we saw were
time periods during which data was absent, incorrect data val-
ues (e.g. link utilization is higher than capacity), the timestamp
field in the SNMP data being set to zero and other sources of
error. We prune all these instances of errors in the data and con-
sider only links and periods of time which to the best of our
knowledge are error free and for which both the SNMP data
and configuration information are known.

Network Dynamics: We note the Sprint backbone is con-
stantly changing and there are several links which are added,
upgraded, or phased out in our period of study. Thus, not all
backbone links are active at the same time and our observations
over 9 months are over slowly changing topologies. We discuss
these observations in the next section.

B.  Utilization of the Links
We find the overprovisioning ratio (i.e. the ratio of the capac-

ity installed in the backbone to the traffic demand) to be the
same in both the intra-PoP and inter-PoP topology and that it
has remained more or less constant during a period of one year.
This however does not mean that the link utilization is uniform
throughout the Sprint backbone. We shall show this by describ-
ing in detail the distribution of link load. 

First, we study the distribution of the maximum and mini-
mum utilizations of the backbone links at any time instant. We
found as shown in Figure 1 that at any given time there is
almost always a link in the backbone, which is overloaded (the
X axis plots time in increments of 5 minutes). In fact there are
periods where the maximum utilization of a link in the back-
bone goes up to as high as 90%. 

On the other hand we have noticed that at all times there is
always some link that has almost zero load (in the figure this
overlaps the X-axis), showing the wide disparity in link utiliza-
tion. 

A better understanding of the distribution of link load (rather
than just looking at the minimum and maximum values) can be
obtained by choosing a lower utilization value5, say 30%, and

classifying links based on this utilization. In Table 1, we clas-
sify links on the basis of the fraction of time they showed a load
above 30%. (The distribution would be uninteresting if we
chose the load to be 50%, since most links would then never
see overload.) It can be seen that at one extreme, 11% of all
backbone links experience 30% load very frequently, while at
the other extreme, 69% of links never experience such load
even once during their lifetime.

Next, we want to know how the total load is divided amongst
different links at a given time. To do this, we classify the back-
bone links based on their average utilization at a given instant
of time. As shown in Figure 2, almost 95% of backbone links
show an average utilization of below 50%, while the remaining
5% of links show overload in the Sprint network.

Since link overload is a primary concern in Traffic Engineer-
ing, we now analyze the pathology of overload.

C.  Overload Characteristics of the Links.
First, we are interested in identifying those links which expe-

rience overload. We plot the number of links which exceed a
load threshold during some stage of their lifetime. This is
shown in Figure 3. We observe that the number of links which
ever cross a specific load threshold falls off rapidly. We identify
that about 11% of all backbone links get overloaded at least
once during the period of observation. On average we have
found that overload is rare and a typical link is overloaded for
less than 0.2% of its lifetime.

5. Though it would be more illustrative to show the exact link utilization
values for all links, due to the propriety nature of some of the data, we
are unable to reveal these values.

Figure 1: Maximum and minimum utilization of a backbone link at any
given time.

TABLE 1 : Classification of links based on load.

Fraction of time that links showed 30% load Percentage of 
Links

Never 69%

Less than 0.001 7%

Between 0.001 and 0.01 7%

Between 0.01 and 0.1 6%

More than 0.1 11%



Second, we are interested in knowing how many links get
overloaded at a given time instant. In Figure 4, we plot the
number of links which show simultaneous load. We observe
that the probability of seeing more than 4-5 links which are
simultaneously overloaded is negligible. This is more true
when we look at periods of severe overload where link utiliza-
tion reaches values of 80-90%. In fact we were unable to find
any instant in time over the complete 9 month period of mea-
surement where more than one link showed 80% load. That
tells us that at any time instant it might be possible for IS-IS to
deflect traffic from such severely overloaded links to other
available non-overloaded links. 

Next, we study simultaneous overload more carefully. In Fig-
ure 5, we plot all the links in the backbone which are active
over the 9 month period that experience overload during their

lifetime. For every time instant we mark a link “on” (i.e. it
appears on the plot) if it is overloaded and “off” if it is not over-
loaded. We plot “on” periods for each of these links. We
observe two phenomenon:
1. Horizontal alignment of points: From the figure, it is easy to

see that horizontal lines correspond to links which are con-
sistently overloaded. We found 6 such links (links num-
bered  in the figure).

2. Vertical alignment of points: A vertical line which intersects
many different “on” points in the figure corresponds to time
instants when many links experience simultaneous over-
load. 

We shall now give further details on the two causes of over-
load in the network. 

1) Persistent Link Overload:    The topology of the network,
the traffic matrix and the nature of IS-IS shortest path routing
may all potentially contribute to link overload. However, we
noticed that there were links between ‘popular’ PoPs that expe-
rienced persistent overload even when there were other alter-
nate paths with low utilization available. Hence, it appears that
in a complex backbone, it does not seem easy to set IS-IS link
weights which can balance the load across all parts in the net-
work. In general we found that a very small percentage of links
get persistently overloaded and the load on these links was usu-
ally not more than 50-65%. It is important to note that though
persistent overload does not occur due to link failure, it can get
aggravated during link failure.

2) Overload due to Link Failures:   We classify a link as having
failed if the EWMA value for the link utilization is zero.6 We
have found that more than 80% of overload occurs when it is
preceded by a link failure on another link. We do this by moni-
toring a link which gets overloaded and checking for link fail-
ures within the previous polling period (i.e. within the last 5
minutes) for all other backbone links before we observe the
overloaded link. We report two distinct types of link overload.
They are as follows— 

Figure 2:  The percentage of links which are overloaded in the back-
bone at a given time instant.

Figure 3:  The percentage of links which exceed a specific load level. 

Figure 4: The number of links which show simultaneous load. 

6. Unfortunately this fact by itself may not be an accurate representation
of link failure. 
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Figure 5: Occurrence of link overload for different backbone links. 



Immediate Overload: An example of this phenomenon is
shown in Figure 6, where link F shows sudden overload
because traffic from alternate paths which uses links D and E
are diverted by IS-IS to it. We attribute the overload on Link F
due to a failure on links D and E. We are also able to verify that
the load on link F is not due to transients in IS-IS route conver-
gence. This is due to the fact that the overload on link F lasts
for a period of 90 minutes whereas IS-IS converges within a
few seconds [8].

Slowly Increasing Overload: An example of this is shown
in Figure 7. We notice that link 3 first shows immediate over-
load up to about 60% due to a link failure. Then its utilization
climbs up from 60% to about 95% in a gradual manner over a
period of six hours. We find that this is because traffic from dif-
ferent sources which are diverted to link 3, (due to a failure on
link 2), is constantly increasing7 due to daytime fluctuation in
traffic demand. We note that if overload occurred slowly, then

network administrators have time to change link weights. How-
ever, this is not the case since even ‘slowly increasing over-
load’ is preceded by sudden overload. We also find that when
link loads reach levels of 90% or so as shown in Figure 7, it is

usually due to multiple link failures. With the advent of
DWDM, multiple logical IP links can share a single fiber, and
such frequent ‘fiber cuts’ result in multiple link failures. Also
note that since in any backbone, links are constantly upgraded,
there usually exist links of varying capacity, and a link failure
on a high capacity link (e.g. OC48), can easily cause severe
overload on low capacity links (e.g. OC12). This implies that
severe overload due to link failures can be a recurring problem.

D.  The Case for Deflection Routing 

1) Issues with link overload:   In summary, our observations
show that very few links are persistently overloaded. However,
the main cause of link overload is link failure. This suggests
that when looking for ways to improve the performance of rout-
ing, we should concentrate on how it reacts to link failure.
There are three main reasons to tackle link overload. 
1. First, recall that our numbers on link overload are conserva-

tive and the actual link load over shorter intervals of time
can be much higher than that measured. In case of severe
overload an 80% EWMA link load could actually mean
loads above 100% of the link capacity for shorter intervals
of time, which may result in packets being dropped.8 

2. Second, network operators usually upgrade links as soon as
peaks in link utilization consistently reach some pre-defined
threshold. Thus these peaks prevent us from increasing the
average utilization of the network and result in an ineffi-
cient use of network resources.

3. Third, the advent of several interactive and real-time appli-
cations which are very sensitive to increased delay and jitter
(both consequences of link overload) make it mandatory
that the network be able to either prevent or immediately
overcome overload. 

2) The necessity of deflection routing:   A number of previous
proposals exist, which attempt to tackle link overload. Valiant
[9] suggested that packet forwarding be done in two stages. A
random intermediate node is first picked, and every packet is
forwarded on its shortest path from its source node to the ran-
dom intermediate node ; it is then forwarded along its shortest
path between  and the destination. This has the effect of dis-
tributing the load smoothly across the network. Bak et. al. [10]
also suggest some heuristics in choosing such a random inter-
mediate node. However, the above method is probably overkill
given the state of the backbone network that we operate in. Fur-
ther, it results in very large delays, which can violate the tight
end to end delay service level agreements (SLAs) on a back-
bone network. 

There have also been a number of recent techniques, which
attempt to optimize IS-IS link weights to spread the traffic over
all links in a more even manner [11] or change link weights

7. We have noticed that there is wide fluctuation in the link utilization
based on the time of day. Some highly utilized backbone links show
almost 50-100% more load during the day than during the night and
weekend hours.

Figure 6:  Immediate Overload due to Link Failure. 
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Figure 7:  Immediate overload followed by slowly increasing overload. 
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8. As a rule of thumb Internet routers are expected to store about
s worth of data for TCP congestion control to work effi-

ciently [13]. In practice, they are built to handle congestion for a much
lesser period of time increasing the possibility of packet loss during
overload.
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during failure [12]. Similarly in [14], the authors develop a heu-
ristic algorithm to set link weights such that the network can
avoid overload during single link failures. The above tech-
niques are well suited to tackling long term overload (for exam-
ple, a fiber cut which could take hours to fix). However, our
measurements reveal that most overload lasts for not more than
a few minutes, and changing link weights for such a short time
is unappealing. Also, since the network is complex, link over-
load is bound to occur inspite of careful design. Hence, there is
a need for the network to react actively to overload. 

In fact the problem of detecting instantaneous overload and
reacting to it immediately is already in practice in telephone
networks. Kelly introduced dynamic alternate routing [6] in
which a network node immediately attempts to find an alternate
path in case of congestion. This technique is being widely used
in the British Telecom telephone network. Similarly in [7], the
authors propose extending the routing protocol to calculate
alternate routing paths during congestion. Indeed, our measure-
ments point to the relevance of previous work and the necessity
of deflection routing in the backbone.

Unlike [7], we are interested in a simple solution which
involves no change to the routing protocols and which is dis-
tributed in nature. Next, we outline how it might be possible to
design a deflection routing algorithm that can be easily and
safely deployed in an operational IP backbone. 

III.  REQUIREMENTS FOR THE DESIGN OF A LOOP-FREE 
DEFLECTION ROUTING ALGORITHM

We will describe the conditions on the deflection algorithm,
the topology of the network and the setting of link weights that
satisfy the goals outlined in the previous section. We will then
explore the feasibility of such a deflection routing algorithm. 

A.  Ensuring that the deflection algorithm is loop-free.

Definition 1: Strictly decreasing cost criterion: Consider a
packet at a node , which forwards a packet destined to . If
the shortest path link is overloaded, then a node can deflect a
packet to a neighboring node  whose cost to the destination is
less than the cost of the shortest path from  to , provided the
link to  is not congested. We call this deflecting according to
the ‘the strictly decreasing cost criterion’. We can now state
the following theorem. 

Theorem 1: Any deflection algorithm which meets the
strictly decreasing cost criterion is loop-free. 

Proof: This is easy to see. Assume that a packet originates at
node  and is destined to node . Let  be
the sequence of nodes that the packet goes through. Let

 be the sequence of the costs of the
shortest path for each corresponding node to destination .
Consider an arbitrary node  and the next node on the path

. If  was on the shortest path from  to  then triv-
ially, . If not, then  deflected the packet to node

. Then the strictly decreasing cost criterion ensures that
. In both cases, the sequence 

forms a strictly decreasing sequence. Thus the deflection algo-
rithm cannot create loops because then  for some

,  wh ich  con t r ad ic t s  t h e  fac t  t ha t  t he  sequ en ce
 is strictly decreasing. 

B.  Setting link weights which meet the strictly decreasing cost 
criterion. 

We now explore the conditions such that every node can
deflect according to the strictly decreasing cost criterion. In
what follows we shall see that this mandates further conditions
on both the network topology and the assignment of link
weights. 

Definition 2: Neighbor Disjoint Paths : A path from node
 to node  is said to be neighbor disjoint with another path

from  to , iff both paths originate from , and have two dis-
tinct neighbors of  as their immediate next hop.

Definition 3: Hop Stretch:  The hop stretch of a pair of
nodes  in a network is the ratio of the number of hops
between the second shortest neighbor disjoint path and the
shortest path between node  and node . 

Note: The hop stretch is based on the length of the neighbor
disjoint paths and not the weights of the paths.

Theorem 2: (Sufficiency) In a network for which every pair
of nodes has a hop stretch of , there always exists a loop-free
alternate forwarding path, if the link weights are assigned in
the range , where ,  is
any arbitrary constant which denotes the minimum weight
assigned to a link, and  is the diameter of the network. 

Proof: Consider an arbitrary pair of non-adjacent nodes,
denoted by node  and node  in the network (We shall
consider adjacent nodes in Section III.C). Let the shortest path
between these nodes be of length . We shall denote the
nodes in this path as . Since the hop
stretch of the network is , there exists an alternate path with
th e  s a m e  l e n g th .  We  sh a l l  d e n o t e  th i s  b y

. Note that . We know
that cost of the shortest path is given by 

 (3)

where  denotes the weight of the link between
node  and node . Similarly, we have that the cost of the
shortest path between neighboring node  and the destination
is 

. (4)
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In order that the strictly decreasing cost criterion is always
satisfied and using Equation (3) and Equation (4), we get that

. (5)

The minimum value of the L.H.S is at least , while the
maximum value of the R.H.S is at most . Equa-
tion (5) is always true if  i.e. 

. (6)

A sufficient condition which satisfies this equation is 

(7)

where  is the diameter of the network. 
As an example, consider the 6-node network shown in Figure

8. The network has a diameter of . If the link weights are all
chosen to be within a ratio of each other as shown,
then there is always a loop-free deflection path between any
two nodes.

With relation to Theorem 2, we found that in the Sprint net-
work there are always multiple paths between every source and
destination PoP. Also we found that almost all PoP pairs satis-
fied Equation (6). In addition, 74% of all inter-PoP link weights
satisfied the more restrictive but not mandatory condition in
Equation (7). We find that the case when these conditions are
violated are when certain links with very low capacity (say
OC3 links on an OC48 backbone) have an IS-IS link weight
much larger than the average weight for other links. Neverthe-
less, given that Equation (6) holds for most PoP pairs, we
believe that we can exploit this approach of setting link weights
in the backbone. 

C.  Practical Considerations
There still remain now two issues which need to be resolved.

The last-hop problem: First, let us consider what happens to
packets which are on their last-hop i.e. . In Figure 8,
consider a packet at node  whose final destination is node .
The direct link from  to  is also the link with the smallest
weight arising from node . Hence there is no other node to
which traffic from  destined to  can be diverted to, which
has a lower cost to  than . Clearly there are always such
cases on every network for which no routing protocol (let alone
deflection routing) can provide an alternate loop-free path
(unless some state is maintained on the packet or router to per-
form source routing and prevent loops). 

Note that there are actually multiple equal cost links between
any two neighboring PoPs. So one would assume that with load
balancing (especially IS-IS ECMP) there would never be any
overload (and hence no need for deflecting packets) since the
traffic between the two PoPs would be equally distributed over
these multiple equal cost links from A to B preventing the sce-
nario described above. The reason this does not happen is that
multiple links between any two neighboring PoPs are usually
connected via different backbone routers.

For example, consider the topologies of the backbone PoPs
 and  as shown in Figure 9. These PoPs have three equal

cost links between them, i.e. links ,  and
. Consider the traffic which originates from router 

and destined to router . This traffic cannot be diverted via
any of the other equal cost links  and . This is
because the path via these links has a higher cost, as it traverses
two extra intra-PoP links. Using Sprint’s real-time tool we were
able to verify that this indeed occurs on the network. Amongst
multiple equal cost links between two PoPs, some of them are
under utilized despite having the same weight. For example, in
case of overload on link , we will need some mecha-
nism to move traffic to links  and . We refer to
this as the ‘last-hop’ problem.

Issues with Intra-PoP link weights: In our discussion until
now, we have not yet considered how intra-PoP links are used
in routing. Let  denote the maximum weight assigned to
an intra-PoP link and  denote the minimum weight on an
inter-PoP link. In the Sprint backbone, the intra-PoP weights
are much smaller than the inter-PoP weights, i.e. .
Hence the intra-PoP weights do not meet the conditions in
Equation (6) and also Equation (7), and as a consequence there
are pairs of routers in the backbone for which we cannot guar-
antee loop-free alternate paths. 

This leads us to the following idea — When there is over-
load, is there some way in which we can consider each individ-
ual PoP as one node (allowing the use of all the equal cost
inter-PoP links connected to neighboring PoPs, and solving the
last-hop problem), and perform loop-free deflection routing on
the inter-PoP network (where the topology and inter-PoP link
weights support the conditions for loop-free deflection)?

This motivates the following deflection algorithm.

W ai ai 1+,( )
i 1=

g

∑ W bi bi 1+,( )
i 2=

g

∑≥

gWmin
g 1–( )Wminx

gWmin g 1–( )Wminx≥
x 1 1 g 1–( )⁄+≤

x 1 1 d 1–( )⁄+≤

d

3
x 1.5=

100

100

105

149

145

105

110

100

Figure 8: An example network with loop-free deflection paths. 

130

1
4
0

A

B

g 1=
A B

A B
B

A B
B A

A B

Figure 9: Topology of a Backbone Network. 

W = large 
inter-PoP 

w = small 
intra-PoP weight

W

intra-pop mesh of routers

weight

w

a5a1

a2

a3

a4

b2

b1 b4

b3
Link 3

Link 4Link 1

Link 5

L
in

k 
2A

B

a3 b2– a4 b1–
a5 b4– a5

b4
a3 b2– a4 b1–

a5 b4–
a3 b2– a4 b1–

wmax
Wmin

wmax Wmin«



D.  Designing a Practical Loop-Free Deflection Routing 
Algorithm 

Consider some node , which forwards a packet destined to
node . Let  be the cost of the shortest path and let the node
on the next hop of the shortest path be  and the correspond-
ing link be . If link  is overloaded, then node  tries to
choose some node distinct from  to deflect a packet to. This
is done according to the following criteria, where ,
the maximum weight of the intra-PoP links.

The deflection routing algorithm distributes the load equally
across all links to nodes  which satisfy criterion 1. In case
there are no such nodes, it distributes the load across all links9

to nodes  which satisfy criterion 2. If there are no such nodes
 available for deflection, then the packet is forwarded

along its shortest path. 
Now consider criterion 2 in the deflection routing algorithm.

Criterion 2a allows the packet to be deflected only amongst the
routers within the same PoP. Criterion 2b enforces that amongst
the routers which meet criterion 2a, none of them are too far
away from the destination10, and criterion 2c prevents a packet
from being deflected back on the interface from which it came. 

In summary, criterion 2 is in keeping with the way a single
PoP is designed on the Sprint network i.e. it is a full mesh and
packets get to use whatever interfaces are available on any of
the routers in the PoP to get to their destination. Criterion 2 is
also meant to solve the ‘last-hop problem’ described in the pre-
vious section. Now we are ready to state the following theorem:

Theorem 3: The deflection algorithm has no inter-PoP
loops.

Proof: Suppose that a packet enters a PoP on some router and
the cost of that packet to that destination is . Since the PoP is
a full mesh, all the routers in the PoP have a cost to the destina-
tion which is no more than . Hence once a packet
enters a PoP the cost of the packet to the destination can
increase by no more than .

If a packet leaves a PoP and goes to another PoP, then it can
do so only by being deflected according to criterion 1 or by fol-
lowing the shortest path. In the former case, the cost of the
packet to the destination decreases by at least

, while in the latter case it decreases by
exactly . Since , in both cases the cost of the
packet to the destination decreases by at least .when it
goes from one PoP to another. It is easy to see that if

 denotes the sequence of shortest path
costs to the destination for the packet when it traverses PoPs

, then the sequence satisfies the strictly
decreasing cost criterion. From Theorem 1, we know that there
can be no inter-PoP loops. 

We note that it is possible for a packet to loop inside a PoP if
there are multiple routers in the PoP which are overloaded.
However, based on our measurements on overload, we find that
this would be extremely rare.

A possible solution to completely prevent routing loops is, if
a router can set the hippity bit in the IS-IS header whenever it
detects overload. The hippity bit (presently set manually by
network operators) is used to convey to other IS-IS routers not
to send any traffic to it. In this case the deflection routing algo-
rithm can be modified so as to never deflect to routers which
are overloaded. This would completely eliminate any possibil-
ity of routing loops in the network. 

Extending the algorithm to handle multiple link failures:
Since link failures are the primary cause of overload, our
deflection algorithm must also be loop-free when one or more
failures occur. Note that when failures occur it is possible that
in the worst case in a PoP with  routers, two routers in a PoP
may have a cost of  between them. So if a packet is
deflected multiple times within a PoP, its cost to the destination
may increase by . In this case the deflection algo-
r i t hm ca n  be  l oop - f r ee  a c ro s s  P o P s  by  s e t t i ng

. 11

Generalizing the algorithm to any network: Note that the
deflection algorithm does not mandate that the PoPs require a
fully meshed topology (though it will have a wider choice of
routes when PoPs are fully meshed). Also note that criterion 2,
can be completely eliminated in any network that has sufficient
connectivity to always guarantee paths that meet criterion 1. 

IV.  PERFORMANCE ANALYSIS

A.  Simulation Parameters 
We describe the results of our simulations for the deflection

routing algorithm proposed in the previous section. Simulations
were performed using the Mars [15] routing simulator, on the
Sprint US backbone network as shown in Figure 10. The net-
work consists of 17 major PoPs12. There were a total of 70

9. This equal distribution of load across links can be done on a flow by
flow basis so as to minimize packet re-ordering.
10. If link weights were set symmetrically on both directions of a link,
then criterion 2b is made redundant by criterion 2a.
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ticular this condition was always satisfied in the Sprint network.
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backbone routers in our simulations, and the routers within
each PoP were connected in a fully meshed topology. The
backbone link speeds were set to 2.5Gb/s. The  average propa-
gation delay for inter-PoP links was set to 10ms and 1ms for
intra-PoP links in accordance with measurements done in [16].
Also the processing delay on each router was set to 1ms as
reported in [17]. The buffer size on each interface was to set to
32Mb (which is the default size on the Cisco IP backbone rout-
ers) and the average packet size used in our simulations was
500 bytes. 

Generating a sound traffic matrix: Unfortunately due to the
lack of measurement infrastructure we do not have an accurate
model of the traffic matrix i.e. the amount of traffic which orig-
inates in one PoP and sinks at another PoP. One option to esti-
mate the traffic matrix is to use techniques suggested in
previous work [18][19][20]. These methods rely on SNMP link
counts as the only concrete information about the network.
However, we chose to use gravity models in estimating the traf-
fic matrix as suggested in [21]. In its simplest form (as speci-
fied in Equation 10 in [21]) the amount of traffic sent from PoP

 to PoP , denoted by , can be specified as: 

, (8)

where  is amount of traffic generated by PoP  (we obtained
 by measurements on the access aggregate links for each

PoP), and  is a fraction based on the relative capacities 
(sum of the capacities of all incoming access aggregate links to
a PoP) of the PoPs  and . Note that in our simulations we
would like to study how the network would perform under
varying link utilization. For us to proportionately scale the traf-
fic matrix, we define a parameter called ‘normalized load’ 
on the network. The normalized load for the Sprint network 
is defined as 13:

, (9)

where  is the number of PoPs. In order to generate a traffic
matrix with normalized load , we re-write Equation (8) as 

(10)

In the following simulations we consider the performance of
the network when overload occurs both in the presence and
absence of deflection routing. Our simulations are for 20 mil-
lion timeslots. In all these experiments we measure network
statistics every 1000 timeslots, giving us 19,900 periods of
observation (we ignore the first 100,000 time slots to eliminate
any transients in the network). As we have seen, link failures
contribute to more than 80% of all overload in the network. So
we will focus on studying the performance of the network dur-
ing link overload caused by both single and multiple link fail-
ures. We generate link failures (both single link and fiber cuts)
with a uniform distribution with a mean failure time of 100,000
timeslots. Note that since we observe the network during a sin-
gle failure or a single fiber cut, and measure the relative perfor-
mance of the network with and without deflection routing, the
actual duration of the failures or fiber cuts are unimportant in
these simulations. In all our simulations, the routers maintain
an EWMA of the utilization on each link, similar to that in
Equation (1). We shall refer to this as the SNMP-EWMA.

Reacting to Overload: Note that in our simulations if a link
reacts to overload by measuring the SNMP-EWMA, then it
would be too late to prevent short term overload. This is
because the SNMP-EWMA value can take up to 15 minutes to
reach within 10% of the link utilization value, and most over-
loads last for a few minutes. Thus the router would completely
miss seeing this overload! Hence, a correct choice of a moving
average of link utilization is critical to identifying and alleviat-
ing transient overload. As a consequence in our simulation we
maintain another EWMA (called FAST-EWMA) which gives
higher weight to the instantaneous link utilization value than
that in Equation (1) and converges to 90% of the observed link
load within 10 samples (10000 timeslots) of the simulation.14 A
link in the simulations would begin deflecting packets if the
FAST-EWMA crosses a threshold value. Since we want the
routers to prevent overload (i.e. 50% link utilization), the
threshold value for deflection is set slightly below that to 45%.

B.  Overload due to a single link failure
In related work, we have ascertained that single link failures

contribute to more than 45% of all failures [8] and hence we
begin by studying single link failures. We conduct a number of
experiments where a link is sent into overload because shortest
path routing diverts traffic from a path with a failed link to a
new path, sending some link on the new path into overload. We
will illustrate this with a typical example of a single link fail-
ure. Figure 11a illustrates a link failure with shortest path rout-
ing. The Y-axis plots the SNMP-EWMA of the link utilization.
Link F is an example of a failed link (which carried a load of
28% before failure). When link F fails, shortest path routing

12. For proprietary reasons the exact topology is not shown.
13. Again, due to due to proprietary reasons we cannot reveal .

Figure 10: Topology of the Sprint IP Backbone network.
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diverts traffic via an alternate path, causing some link M on the
alternate path to become overloaded. Note that there is another
link D (attached to the same router that has link M), which is
lowly utilized. With deflection routing as shown in Figure 11b,
part of that traffic is deflected to link D. Link D experiences a
load of around 18% during failure. One can see that the link M,
which reached a utilization of around 51% during failure with
shortest path routing, does not experience more than 40% load
with deflection routing. Note that because the links react to the

FAST-EWMA, the routers react to overload quickly. 
We are interested in understanding how the network per-

forms as the normalized load increases. In order to study over-
load which occurs only due to link failures, we first simulate
the network in the absence of link failures. We find that when
the normalized load  is less than 0.3, there is no overload in
the absence of link failures. Hence in these experiments we
only consider the case when . The results from
our simulations are shown in Figure 12. On the X-axis, we plot
the normalized load  of the network. On the Y-axis, we plot
the average number of instants of overload (where each over-
loaded link individually contributes to an overload instant at a
given time) observed in the network. With shortest path rout-
ing, link failures lead to overload as soon as  on an
average. However, with deflection routing there is almost no
overload. We found that for 94% of cases of single link failures,

the deflection routing algorithm was able to compute a loop-
free alternate path. This is not surprising given the rich number
of alternate paths of equal length (which are candidates for
loop-free deflection) in the Sprint backbone as shown in Figure
10. When such a path was not available, the router was able to

find another router within the same PoP which met criterion 2
in the algorithm. 

We would like to know how the maximum load on the net-
work varies as a result of deflection routing during link failure.
In Figure 13, we plot the maximum load experienced for differ-
ent values of . Note that though the deflection threshold is set
to 45%, the SNMP-EWMA link utilization is capped to as low
as 38-40% because the routers react to load as reported by the
FAST-EWMA.

C.  Overload due to fiber cuts 
A second important cause of link failure is due to a fiber cut.

We note that this can lead to the simultaneous failure of two or
three links (which share the same fiber) from a single PoP.
Recall that fiber cuts usually cause severe overload (where the
link utilization can reach as high as 80%) and hence this is of
particular interest to us. 

We shall again begin by explaining a typical example of a
fiber cut scenario. Consider Figure 14a where are three links

F1, F2, F3, which originate from the same PoP and share the
same fiber. During a fiber cut, these three links fail simulta-
neously. With shortest path routing, traffic from links F1, F2
and F3 is diverted to links D and M. In this process, the utiliza-
tion of link D increases from 5% to 21%, whereas link M gets
overloaded and shows 55% utilization. Now compare this to
Figure 14b with deflection routing. In this case, part of the traf-
fic from link M is deflected to link D. The utilization of link D
rises to 30%, whereas link M utilization is capped at 43%. Note
that link D’s utilization increased from both traffic diverted due
to the recomputation of the shortest path during failure as well
as traffic which is deflected to it. 

Figure 11: A controlled experiment with a single link failure.
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We also plot the occurrence of link overload in the presence
of fiber cuts for varying normalized load in Figure 15. 

It is interesting to compare this to Figure 11. As expected the
network begins to experience overload at lower values of  as
compared to the case of a single link failure. Note that in the
Sprint network, fiber cuts still leave the network connected to
one (sometimes two) PoP(s) with multiple equal cost links to
these PoPs. In 53% of all fiber cuts, the network was able to
calculate a loop-free alternate path, whereas the remaining 47%
of the time packets were diverted to routers within the same
PoP. However, the fully meshed nature of the PoPs allows the
network to be quite resilient to single instances of a fiber cut.
We plot the ‘peak dampening’ effect of deflection routing dur-
ing fiber cuts, for varying normalized load in Figure 16.

D.  Costs associated with deflection routing.
The main cost associated with deflection routing is the

increased propagation delay. In our simulations we found that
the maximum additional delay faced by packets as a conse-
quence of deflection routing was 12ms. 

V.  CONCLUSIONS

We have studied the pathology of link overload in the net-
work and have proposed a deflection routing algorithm to alle-
viate overload by exploiting the highly meshed nature of the
the backbone and a judicious use of link weights. Our proposal
is based on the Sprint network which is built using a pure IP
philosophy, though it can be applied to other networks, say
those enabled with MPLS. The algorithm is distributed and is
loop-free across the PoPs. However, we note that this technique
cannot be used if the backbone is not sufficiently meshed to
allow at least two equal length paths between PoPs. Also a

loop-free deflection algorithm does not ensure stability, since
deflection itself can cause instability if there are too many
instances of overload — something which can be quite com-
mon if the backbone shows high average utilization. However,
based on our current observations on backbone topology and
link utilization, we believe that our current assumptions are
practical, and that our technique can be effective in tackling
link overload.
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