MEMOIR 5 y 5 t e m 5

Algorithmic Memory – An Order of Magnitude Increase in Next Generation Embedded Memory Performance

Part I: Memory Performance Part II: Other Benefits and Applications

Sundar Iyer – Co-founder and CEO, Memoir Systems

Problem: Processor-External Memory Performance Gap*

New Problem: Processor-Embedded Memory Performance Gap

Memory At A Rate Faster Than It Can Handle. The Gap is Getting Worse ...

Why is Embedded Memory Slow?

How can we Increase MOPS (Memory Operations Per Second) Without Increasing Memory Clock Speed?

Solution: Algorithmic Memory[®] = Memory Macros + Algorithms

NOTE: First Focus on Increasing True Random Access MOPS

Solution: We Start with Physical Memory ...

Memory Operations Per Second Limited By Clock Speed

© Memoir Systems®

Solution: ... Transform To Algorithmic Memory

Algorithmic Memory = Generated from Existing Physical Memory

Increases Performance up to 10X more MOPS

Using Existing Physical Memory to Build any Multiport Functionality

Algorithmic Memory Technology: Explanation for Writes

Algorithmic Memory = Generated from Existing Physical Memory

One can Mathematically Prove that With the Correct Steps in 1, 2, 3 and 4, all Patterns of Writes Are Covered

Algorithmic Memory Technology: Explanation for Reads

Algorithmic Memory = Generated from Existing Physical Memory

When 1, 2, 3 and 4, are Correctly Implemented All Read Conflicts Can be Resolved

Who Let the Dogs Out? ...

Qualification Test ChipPower Time Performance Frequ

Extend Performance, Power, Area of Physical Memory

Built from Existing Embedded Memory

- Reduces cost, time to market,
- Reduces risk to build physical compilers

Better Performance, Power and Area

- Lowers area, power (medium, large size mem.)
- Increases clock frequency up to 30%

Integrates Seamlessly into ASIC Flows

- Exhaustively formally verified
- Supports standard SRAM interface
- Adds <u>No</u> additional clock cycle latency

Reduces SOC Memory Area

Normalized: Physical 1-Port Memory 1RW = 1 Mb/mm²

• Physical 2-port Memory, 1R1W = 0.6 Mb/mm²

Reduces SOC Memory Power

Algorithmic Memory Usage for Datacom Applications

Algorithmic Memory offers 2400 Million MOPS at 600 MHz Clock Speeds for Next Generation Aggregated 10G/100G Ethernet

© Memoir Systems®

Common Applications For Next Generation SoCs

Data Comm: Networking/SDN/Storage Mobile Infrastructure/HPC

- Ingress buffers, egress buffers
- Multicast descriptor lists
- L2 MAC lookups, HPC lookups
- Free lists for multicast buffers
- Data and tag arrays for L2/L3 caches
- Netflow, counters, state tables, linked lists
- Route lookup tables
- ACL tables

HD Video, Automotive

Frame Buffers, FIFOs

High Performance Processors

- Multiprocessor L2/L3 tags/Caches
- Mobile, Application Processor SoCs
- DSP load/store units
- Graphics SIMD Register files
- Video pixel structures

Tier-1 OEM Vendor Evaluation – PPA Benefits

Large ASIC with Physical Memory

- Area 576 mm²
 - > 800 Mb of total memory
 - > 165 Memory Instances
 - ➢ SRAM, RF, eDRAM
- Versatile memories required
 - ➢ 4R/1W, 2R1W, 1R2W memories

ASIC with Algorithmic Memory

- Area 441 mm²
 - Area Savings of 135 mm²
 - Decreased die size by 23%
 - 136 Memory Instances Accelerated
- Power Savings > 12W
- 4X MOPS for select memories

Rapid Memory Analysis and Generation

Algorithmic MultiPort (AMP) Memories on IBM

- Login to IBM
 Customer Connect
 - <u>https://www-</u> <u>03.ibm.com/services/co</u> <u>ntinuity/resilience.nsf/p</u> <u>ages/connect</u>

Accessing AMP

- Navigate to CU-32HP
- Libraries and Toolkits
- AMP Algorithmic Multiport

Services Pro	oducts Support & downloads My IBM		
	IBM Customer Connect > ASIC Connect >		
ASIC Connect	Cu-32HP - Memory Compiler Main Menu		
IBM Customer Conne			
Help and support	S Overview		
Access management	Welcome to the Memory Compiler, an on-line application for requesting views for compilable		
ASIC Connect	memories and wrappers for IBM ASIC products.		
 ASIC documentation 	This updated user interface is oriented around memory functions rather than individual memory types. Given a kind of function, say a 2048x16 one-port memory, the Memory Selection tool will		
 EDA tool documentation 	examine possibilities across all memory families within a technology. It will then present a list of potential implementations with area and performance data for selection.		
 Design services 	One additional major change is that the interface is oriented around the wrapper rather than the		
Design services	Memory Selection		
Foundry Connect	Select one of the following memory types to configure a wrapper based on type of function with		
Form Management	the ASIC Memory Selection Tool.		
System	→ 1RW-One port read/write static memory		
Material Declaration	→ 1R1W-Two port (one read, one write) static memory		
MD Mfg site status	→ 2RW-Dual port (two read/write) static memory		
My Information	→ DRAMA-Embedded DRAM		
Personalization	→ DRAMF-Embedded DRAM		
PowerPC Connect	→ DRAMT-Embedded DRAM		
Quality	→ TCAM-Ternary content addressable memory		
Quanty	\rightarrow ROM-Read only memory		
QuickChecks	\rightarrow AMP-Algorithmic Multiport		

AMP: Offering On IBM 32nm, 14nm Process

		AMP SRAM Multiports
	AMP eDRAM	2RW
	Multiports	1R1W
IBM Physical Compilers	28///	1R2W
		1R3W
Single Port SRAM		1R4W
Two Port SRAM		2R1W
Dual Port SRAM		2R2W
Four Port RF		2R3W
1 Port eDRAM		2R4W
		3R1W
		4R1W
Both SRAM and eDRAM	4R4W	
Multiport Memories are		1R1RW
	4K0/1VV	1RW1W
		2Ror1W
Process		3Ror1W
		4Ror1W

Conclusion

- 1. Summary of Benefits
 - Increases Memory Ports and Clock Performance
 - Lowers Area and Power
 - Easy Interface, Integration and Implementation
 - Creates Versatile Memory Portfolio
 - Reduces Cost, Risk and Time to Market
- 2. Algorithmic Pattern-Aware Memory
 - Not all Applications Require Random Access MOPS
 - Optimize Memory for Specific Access Patterns
 - Sequential, Read-modify-write, Counters, Allocation, Strides ...

Algorithmic Memories are not a panacea, but present a new solution to alleviate the memory performance gap

MEMOIR Systems

Questions & Answers