The Beacon OpenFlow Controller

David Erickson

Stanford University

Stanford, CA, USA
daviderickson@cs.stanford.edu

ABSTRACT

Beacon is a Java-based open source OpenFlow controller created
in 2010. It has been widely used for teaching, research, and as
the basis of Floodlight. This paper describes the architectural de-
cisions and implementation that achieves three of Beacon’s goals:
to improve developer productivity, to provide the runtime ability to
start and stop existing and new applications, and to be high perfor-
mance.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—~Network operating systems; C.2.3 [Computer-
Communication Networks]: Network Operations—Network man-
agement; C.2.3 [Computer-Communication Networks]: Network
Architecture and Design

General Terms

Design, Measurement, Performance

Keywords

Beacon, OpenFlow, controller, Java

1. INTRODUCTION

The first open source control platform available for early Open-
Flow adopters was NOX [12]. NOX allowed developers to choose
whether to build network applications with a developer-friendly
language (using Python), or high performance applications (using
C++). As along time user of NOX, this tradeoff led to the following
question:

Could an OpenFlow controller be both easy to develop
applications for and also high performance?

The programming language and development environment have
a significant impact on the productivity of developers, and can also
be a limiting factor in application performance. Many developer-
friendly languages exist, but their performance when used in an
OpenFlow controller was unknown.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotSDN’13, August 16, 2013, Hong Kong, China.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2178-5/13/08 ...$15.00.

Topology

“BEACON

.......

Figure 1: Overview of Beacon

A second question occurred while considering the role of an
OpenFlow controller:

If an OpenFlow controller is similar to a Network Op-
erating System, should it be capable of starting and
stopping applications at runtime?

This capability would make a controller more OS-like, and also
enable new use cases. This paper explores both of these questions,
and describes the Beacon OpenFlow controller. Beacon, as shown
in Figure 1, provides a framework for controlling network devices
using the OpenFlow protocol, and a set of built-in applications that
provide commonly needed control plane functionality. This paper’s
contributions include:

Developer Productivity. An exploration of design and archi-
tectural choices with the goal of enabling developers to maximize
their time spent productively developing applications.

Runtime Modularity. An implementation supporting starting
and stopping both existing and new applications from a running
Beacon instance.

Performance. Designs considered for the read and write paths
of Beacon, resulting in a a multithreaded implementation with lin-
ear performance scaling.

In what follows I first present related work in §2, then discuss
in detail the three main contributions: developer productivity in §3,
runtime modularity in §4, and performance in §5. §6 presents com-
parative performance benchmarks with other controllers, §7 dis-
cusses deployment experience, and §8 concludes.

2. RELATED WORK

The first OpenFlow controller platform, NOX, was released in
early 2008. NOX originally used cooperative threading to process
events in a single threaded manner. In 2011 a version of NOX was
released [20] with a multithreaded learning switch application.

Many other OpenFlow controllers have been released since NOX.
They broadly fall into two main categories: open source single-

Language | Managed Memory | Cross Platform | High Performance
C# v ! ?

Java v v ?

Python v v

Table 1: Candidate languages and their attributes.

instance controllers, and (so far) commercial closed-source dis-
tributed controllers.

The open source controllers are, generally speaking, used for re-
search and development; therefore they tend to be single instance,
with varying APIs presented to applications built on their plat-
forms. A major distinction amongst them is the language they are
written in.

e (: Trema [8] (also Ruby) and MUL [4].

e Haskell: Nettle [21], McNettle [22], and NetCore [16].

e Java: Maestro [18] and Floodlight [2], a fork of Beacon’s
early 2011 code using the Apache license.

o OCaml: Mirage [19] and Frenetic [13].

e Python: POX [5], Pyretic [17], and RYU [7].

Distributed controllers are able to distribute their state across
multiple running instances for fault tolerance. Some of the public
controllers in this space include Onix [15] from Nicira Networks,
Big Network Controller [1] from Big Switch Networks, and Pro-
grammableFlow [6] from NEC. Onix has the additional capability
of scaling performance by adding additional instances.

3. DEVELOPER PRODUCTIVITY

This section discusses design choices for Beacon intended to im-
prove developer productivity. Design choices are presented in the
following areas: programming language, libraries, and API.

3.1 Programming Language

C and C++ were the primary programming languages of Open-
Flow controllers prior to Beacon. These languages can be used to
produce very high performance applications, but they also came
with a significant developer burden. Common problems included:
long (>10 minute) full compilation times, compiler errors obfuscat-
ing the actual cause, and manual memory management program-
ming errors leading to segmentation faults, memory leaks, etc.

Approaches have sought to minimize some such problems: in-
cremental compilation of peripheral components to decrease com-
pilation time and strict use of techniques such as smart pointers to
ameliorate memory errors. These approaches are imperfect, as are
the developers applying them. Choosing C/C++ for some environ-
ments is the right decision; however, this paper explores whether
a more developer friendly language could be used to create a high
performance OpenFlow controller intended to run on commodity
hardware, where CPU and RAM are easily (and cost effectively)
scaled.

Three language attributes were identified as desirable for a can-
didate programming language: managed memory, cross platform,
and high performance.

Automatic memory management (also called garbage collection)
can eliminate most memory-related programming errors. Languages
with this ability also usually have no, or minimal compilation, elim-
inating time wasted waiting for the program to compile. Such lan-
guages also provide error reporting indicating the exact line(s) that
failed to compile/run. The candidate languages I considered when
designing Beacon are shown in Table 1 and included: C#, Java, and

'"No official support from Microsoft for platforms other than Win-
dows.

Python. There are a variety of other potential languages, but these
were the ones I was most familiar with at the time.

The expected operating system that Beacon would run on was
Linux. But, it would be convenient to also run on other platforms
such as Mac OSX and Windows without a significant porting effort.
The effort involved in porting had prevented prior controllers from
running on non-Linux platforms. All candidate languages have
some ability to be executed on all of these platforms. However, the
Common Language Runtime (CLR), the official interpreter for C#,
lacked support for operating systems other than Windows. Mean-
while the remaining languages had official support on all three op-
erating systems. Therefore, C# was ruled out.

High performance is a subjective term. In this context one com-
ponent of its definition is the ability to scale performance with pro-
cessing cores. The lack of true multi-threading in the official in-
terpreter for Python eliminated this language as a candidate. The
remaining primary candidate, Java, still had an unknown absolute
performance when used in an OpenFlow controller. Other pro-
grams written in Java such as Hadoop and Tomcat exhibited high
performance, so it seemed that Java would be a good choice. Sec-
tion 6 examines the performance of Beacon - which turned out to
be surprisingly high.

3.2 Libraries

Beacon leverages multiple off the shelf libraries in an attempt to
maximize code reuse and to ease the development burden of both
the controller itself, and applications using it. The most significant
library is Spring.

Two main components of Spring are used in Beacon: the Inver-
sion of Control (IoC) container, and the Web framework. A com-
mon task in Java is to create instances of objects and then to “wire”
them together by assigning one as a property of the other. IoC
frameworks allow developers to list in an XML file or as Java an-
notations, which objects to create, how they are wired together, and
then provide methods to retrieve the resulting objects. Using an [oC
framework can save significant developer time versus the common
alternative of building many purpose-built factory classes. Beacon
uses Spring’s IoC framework for wiring within and between appli-
cations, and is explained further in §4. Spring’s Web framework is
used to map Web and REST requests to simple method calls, and
performs auto conversion of request and response data types to and
from Java objects.

3.3 API

The Application Programming Interface (API) for Beacon is de-
signed to be simple and to impose effectively no restrictions, in
that developers are free to use any available Java constructs, such
as threads, timers, sockets, etc. The API for interacting with Open-
Flow switches is event based. Beacon uses the observer pattern
where listeners register to receive events of interest.

Beacon includes the OpenFlow] library for working with Open-
Flow messages. OpenFlowlJ is an object-oriented Java implementa-
tion of the OpenFlow 1.0 specification. OpenFlow] contains code
to deserialize messages coming off the wire into objects, and to
serialize and write message objects to the wire.

Interacting with OpenFlow switches occurs via the IBeaconProvider

interface. Listeners register to be notified when switches are added
or removed (IOFSwitchListener), to perform switch initialization
(IOFlnitializerListener), and to receive specific OpenFlow mes-
sage types (IOFMessageListener).

Beacon also includes reference applications that build upon the
core, adding additional API:

Device Manager. Tracks devices seen in the network including
their: addresses (Ethernet and IP), last seen date, and the switch and
port last seen on. Device Manager provides an interface (IDevice-
Manager) to search for known devices, and the ability to register to
receive events when new devices are added, updated, or removed.

Topology. Discovers links between connected OpenFlow switches.

Its interface (ITopology) enables the retrieval of a list of such links,
and event registration to be notified when links are added or re-
moved.

Routing. Provides shortest path layer two routing between de-
vices in the network. This application exports the IRoutingEngine

interface, allowing interchangeable routing engine implementations.

The included implementation uses the all-pairs shortest path [9]
computation method. Routing depends on both Topology and De-
vice Manager.

Web. Provides a Web UI for Beacon. The Web application pro-
vides the IWebManageable interface, enabling implementers of the
interface to add their own Ul elements.

4. RUNTIME MODULARITY

Most OpenFlow controllers have the ability to select which ap-
plications to build (compile time modularity) and which applica-
tions to launch when the controller starts (start time modularity).
Beacon has the additional capability to not only start and stop ap-
plications while it is running, but to also add and remove them (run-
time modularity), without shutting down the Beacon process.

This enables new ways for developers to interact with deployed
Beacon instances. Possible use cases include: creating and in-
stalling an application to temporarily improve debug information
gathering; rolling out bug fixes or enhancements to already running
applications; installing new applications at runtime from an “app
store”’; or quarantining and disabling misbehaving applications.

To enable this functionality, Beacon uses an implementation of
the OSGi specification, Equinox. OSGi defines bundles which are
JAR (archive) files containing classes and/or other file resources,
and mandatory metadata. Bundle metadata specifies the id, ver-
sion, dependencies on other bundles or code packages, and code
packages exported for other bundles to consume. Modularity is
based on the bundle unit. A list of bundles controls what is used at
start time, and at run time the bundle is the unit that can be started,
stopped, added, and removed.

Developers determine how their application is modularized. For
example, a bundle may contain multiple applications, just one ap-
plication, or a single application may be spread across multiple
bundles. These decisions will usually be made based on the de-
gree of modularity an application has. For example, if a piece of
the application could be replaced at start or runtime, such as the
routing engine being used by Beacon’s Routing application.

A component of the OSGi specification is the service registry. It
acts as a broker for services to register themselves, and consumers
to retrieve an instance of a particular service meeting their needs.
Beacon heavily uses this model, where service providers export the
service interfaces mentioned in §3.3, and consumers request and
receive implementations of such services. The service lifecycle is
dynamic: services can come and go based on what bundles are
currently installed and running.

S. PERFORMANCE

Performance of an OpenFlow controller is typically measured as
the number of Packet In events a controller can process and respond
to per second and the average time the controller takes to process

Decode

o@-¢

Figure 2: Beacon IOFMessageListener Single Thread
Pipeline

Applications

Device
Manager

Routing

each event. This section describes Beacon’s architecture for pro-
cessing OpenFlow messages.

5.1 Event Handling

Applications implementing the /IOFMessageListener interface reg-
ister with the IBeaconProvider service to receive specific Open-
Flow messages type(s) arriving from OpenFlow switches. Regis-
tered listeners form a serial processing pipeline for each OpenFlow
message type. The ordering of listeners within each pipeline is con-
figurable, and the listener can choose whether to propagate each
event or not. An example pipeline can be seen in Figure 2. This
pipeline has three applications registered to receive Packet In mes-
sages: Device Manager, Topology, and Routing.

5.2 Reading OpenFlow Messages

To achieve high performance, Beacon and all of its applications
are fully multithreaded. Two of the multithreaded designs consid-
ered for reading and processing OpenFlow messages are presented
next.

5.2.1 Shared Queue

Figure 3a shows the Shared Queue design which contains two
sets of threads. The first set of threads, I/0O threads, read and deseri-
alize OpenFlow messages from switches, then queue read messages
into a shared queue. Each switch is assigned to a single I/O thread,
and multiple switches may be assigned to the same thread. The I/0
thread also writes outgoing OpenFlow messages to its switches.

The second set of threads, pipeline threads, dequeue OpenFlow
messages from the shared queue, running each through the IOFMes-
sageListener pipeline corresponding to the type of message. This
is efficient for pipeline threads; whenever there are queued mes-
sages, all pipeline threads can be busy processing them. However,
this design also necessitates a lock on the shared queue, and the
corresponding lock contention between both sets of threads.

Variants of this design could have multiple queues, perhaps one
per switch, or even more than one per switch, each with different
priorities. This could improve fairness of message processing be-
tween switches, via round-robin servicing of the queues.

5.2.2 Run-to-completion

Figure 3b shows the run-to-completion design, a simplified ver-
sion of the shared queue, having just a single pool of I/O threads.
Each thread is similar to the I/O threads in the shared queue de-
sign, however, instead of queueing the message to be processed by
a pipeline thread, it directly runs each read message through the
IOFMessageListener pipeline.

This design does not require locks anywhere on the read path
(excluding locks within applications), because the thread that dese-
rializes the message also runs it through the pipeline. It further pro-
vides the following guarantee to /OF MessageListeners: for each
switch, only one thread will ever be processing messages from that
switch at a time. This enables lock-free switch-local data struc-
tures, such as those in Beacon’s Learning Switch application.

This design does have the limitation that busy switches may be
statically assigned to a subset of threads, leaving other threads idle.

I/0 Threads

Pipeline Threads

1/0 Threads

1 N
%’m-
P
1 N
%’m-
'—

Shared
Queue

App 1 =App2=App3

1 N

%’
14 N

%’

N

Appl%AppZ%AppS

(a) Shared Queue

(b) Run-to-completion

Figure 3: I/0 Designs

Algorithm 1 Initial Switch Methods

Algorithm 3 Revised I/O Loop

: function WRITE(OFMessage msg)
buf.append(msg)
flush()

end function

: function FLUSH
socket.write(buf)

end function

AR Rl el

Algorithm 2 Revised Switch Flush Method

1: function FLUSH

2 if !written && !needSelect then
3 socket.write(buf)

4: written <— true

5: if buf.remaining() > 0 then
6: needSelect < true
7 end if
8 end if
9: end function

Periodic rebalancing of switches to threads could help prevent this
situation.

Beacon uses the run-to-completion design with a configurable
number of I/O threads. OpenFlow switches upon connection are
assigned in a round-robin fashion to I/O threads, and remain stati-
cally assigned to the thread until they disconnect. Each I/O thread
takes the simple approach of processing all available data from each
switch in turn.

5.3 Writing OpenFlow Messages

The way that messages are written to switches also affects per-
formance. Beacon is multithreaded; therefore writes can occur
from multiple threads simultaneously and methods must be syn-
chronized to prevent race conditions. 2

Algorithm 1 contains the immediate write design for sending
messages to OpenFlow switches. Applications call the write method,
which serializes and appends the message to a switch-specific buffer,
then immediately writes it to the socket.

Performance with this design was slow. Tracing showed that the
Java JVM was issuing a system kernel write for each socket write,
with no intermediate batching. In a busy system, the time spent in
user-kernel transitions was significant.

A revised batching design fixed this problem. The first part of
this design is shown in Algorithm 2, a modified flush method con-
taining two boolean flags: written and needSelect. The written flag
is set to true when a socket write occurs, preventing subsequent
writes until the flag is set back to false. The needSelect flag is set
when there are unwritten data after a socket write, indicating the
outgoing TCP buffer was full, and the remaining data needs to be
written in the future when buffer space becomes available.

2Synchronization constructs are omitted from the pseudocode.

1: function 10LOOP

2 while true do

3 for all Switch sw : switches do

4. sw.written <— false

5: sw.flush()

6: if sw.needSelect then

7 sw.selectKey.addOp(WRITE)
8

: end if

9: end for
10: readySwitches = select(switches)
11: for all Switch sw : readySwitches do
12: if sw.selectKey.readable then
13: read AndProcessMessages(sw)
14: end if
15: if sw.selectKey.writeable then
16: sw.needSelect < false
17: sw.flush()
18: end if
19: end for

20: end while
21: end function

The second part of the design are modifications to the I/O loop
shown in Algorithm 3. Lines 3-9, and 15-18 have been added
to support this design. Lines 3-9 ensure that each switch will write
any outgoing data once per I/O loop when the outgoing TCP buffers
are not full. Lines 15-18 ensure that writes only occur when there
is available outgoing buffer space detected using the system select
function call.

The result is that messages are either written immediately or
once per I/0 loop. For systems under heavy load a natural batch-
ing effect occurs between I/O loops, decreasing the write calls, and
user-kernel overhead.

6. EVALUATION

The current standard for evaluating OpenFlow controller per-
formance is Cbench. Cbench simulates OpenFlow switches, each
sending Packet In messages to the controller under test. In the fol-
lowing benchmarks Cbench is configured to run 13 tests per con-
troller/thread combination, each lasting 10 seconds. Each test’s
total responses received are averaged to produce a responses-per-
second result, then the last 10 tests’ results® are averaged to produce
the final result.

Tests were run on Amazon’s Elastic Computer Cloud using a
Cluster Compute Eight Extra Large instance, containing 16 phys-
ical cores from 2 x Intel Xeon E5-2670 processors, 60.5GB of
RAM, using a 64-bit Ubuntu 11.10 VM image (ami-4583572c).
Cbench connected to each controller over loopback, and was given
dedicated CPU core(s). Running locally was chosen because the

3The first three tests are considered warmups to provide time for
the VM-based languages to perform any adaptive optimization and
caches to warm up, and their results are not counted.

1.4M T T T T T T ME T — 1000 F—r——T—T1 7T 71 71 1
1OM [- e - ‘ ER g
2 C
g M 1% 2o |
2 800K (- - 4 2 ; : . g3
=} =
§6OOK I U R R - % M “-:'-'-l-r,;l-,-f- LR AL IR R %8 100 I
z @ o' " ’l-||||||u,----_ s r
A 400K - g | - o gm = v o r
200K i g | . 2= : : z i
0 100K ' | ' . 10
D @ o O B o 2 g 6 8 0 12 D 0 O b o o
%@QOQ\@\)‘\\@&“O &\%\N&%\K $O O Threads ?)daco Q\)@)o&\%:l\ 2&%\($Q O
O oac® 9\° mmmm Beacon '11 Beacon Queue ® 1 Floodlight SR
AP S
NOX == BeaconImm. =ss=Maestro ©
(a) Throughput: Single thread (b) Throughput: Multithreaded (c) Latency: Single thread
Figure 4: Cbench Tests
Read Design with four or fewer threads, and a second instance of Cbench is

Queue Run-to-completion
. . Immediate Beacon Immediate
Write Design
Batched Beacon Queue Beacon

Table 2: Beacon variations differing by chosen read and write de-
sign.

Cbench to controller traffic exceeded the capacity of the instance’s
10Gb NIC.

As many open source controllers are included in these tests as
possible, except where the controller did not work correctly with
Cbench, and communication with the author did not result in a so-
lution. Where available, the controllers were launched using the au-
thor’s recommended settings. The following controllers are evalu-
ated: Beacon, Floodlight, Maestro, NOX, POX, and Ryu. Three to-
tal versions of Beacon are evaluated: “Beacon”, “Beacon Queue”,
and “Beacon Immediate”. Each version differs based on the choice
of read and write design. These choices are summarized in Table 2.
Beacon uses the run-to-completion reading design and the batched
message writing design, Beacon Queue uses the shared queue read-
ing design and the batched writing design, and Beacon Immediate
uses the run-to-completion reading design and the immediate writ-
ing design.

Cbench operates in either throughput or latency mode. In through-
put mode, each of 64 emulated switches constantly sends as many
Packet In messages as possible to the controller, ensuring that the
controller always has messages to process. Figure 4a shows Cbench
throughput mode results using controllers with a single thread. In
this test Cbench and the controller are each bound to a distinct
physical core on the same processor. Beacon shows the highest
throughput at 1.35 million responses per second, followed by NOX
with 828,000, Maestro with 420,000, Beacon Queue with 206,000,
Floodlight with 135,000, and Beacon Immediate with 118,000. Bea-
con Queue performs much slower than Beacon on one CPU core
because the OS must schedule both the I/0O and pipeline threads
using just one CPU core. Beacon Immediate attempts to write ev-
ery outgoing message immediately to the TCP socket, requiring a
kernel call for each, reducing performance below Beacon Queue.
Both Python-based controllers run significantly slower, POX serv-
ing 35,000 responses per second and Ryu with 20,000.

Beacon’s performance differs from Floodlight because Flood-
light is based on older Beacon code that had not had its custom
I/0 design optimized for performance. Floodlight subsequently
switched to using the Netty framework to handle its I/O. Also, Bea-
con’s Learning Switch application uses a custom Hopscotch Hash-
ing [14] hash map, which is slightly slower, but significantly more
memory efficient than Java’s built-in HashMap.

Figure 4b evaluates the scaling properties of the multi-threaded
controllers. In this test, one instance of Cbench is used for tests

launched for tests with six or more threads because a single instance
is unable to saturate Beacon when running six or more threads.
Beacon scales linearly from two to 12 threads, processing 12.8 mil-
lion Packet In messages per second with 12 threads. NOX scales
linearly from two to eight threads, handling 5.3 million Packet In
messages per second at eight threads. However, after eight threads,
performance decreases, because the process now spans two CPU
sockets, and cache coherency protocols (and their associated over-
head) are needed to maintain synchronization primitives used by
NOX. In this benchmark, threads one through seven are on the first
physical socket, and eight through 12 are on the second socket.
Maestro scales linearly to its maximum of 8 threads at 3.5M Packet
In messages/s. Beacon Queue has slower absolute performance
than Beacon, scaling well to four cores, then decreases due to the
same overheads that NOX experiences. Beacon Queue introduces
lock contention both at the queue between the I/O and pipeline
threads, and in the per-switch MAC table. Floodlight scales at
the same rate from two through six threads, then slows down from
eight through 12; however, it still slowly gains performance. Bea-
con Immediate shows the slowest initial absolute performance, but
manages to scale linearly, beating Beacon Queue in performance
when using 10 and 12 threads because it does not have the locking
overhead that Beacon Queue does.

The latency test uses Cbench to emulate one switch which sends
a single packet to the controller, waits for a reply, then repeats this
process as quickly as possible. The total number of responses re-
ceived at the end of the time period can be used to compute the
average time it took the controller to process each. Results are
shown in figure 4c. Beacon has the lowest average latency at 24.7
s, Beacon Queue at 38.7 us, followed by Floodlight, Maestro,
NOX, and Ryu, each between 40 and 60 us. POX is the outlier
in this test taking 145 us on average. The extra scheduling time
needed when shuffling messages between the I/O thread, queue,
and pipeline thread is apparent in the latency difference between
Beacon and Beacon Queue. Beacon Immediate is omitted because
Beacon’s write behavior and performance is equivalent to Beacon
Immediate when there is at most a single outstanding message per
switch.

7. DEPLOYMENT EXPERIENCE

Use of Beacon by developers has provided valuable feedback for
Beacon’s design decisions.

As part of other research [10, 11], Beacon has run the network
for the last two and a half years of an 80 server, 320 virtual ma-
chine cluster containing 80 virtual switches (one per server), and
20 physical switches wired as a k=4 fat tree. Beacon’s modu-
larity enabled a custom routing engine to extend the default, and

the creation of a custom Web Ul for tracking experiments. Ap-
plications were inserted into the front of the Packet In pipeline to
convert broadcast traffic to unicast (ARP and DHCP) to prevent
flooding. Runtime modularity was primarily used locally during
development to reload modified bundles without restarting a run-
ning Beacon instance.

Another user reported using Beacon for a distributed OpenFlow
controller [23], a multicast media network, and an access controlled
Wi-Fi network. He commented, “the simple yet effective design
and self-explanatory codebase are the major drives for our pref-
erence of Beacon,” and, “...(although the) OSGi bundling scheme
has its own learning curve, it greatly simplifies the modularization
of the whole framework. Further, in the context of our distributed
controller implementation, OSGi was the main enabler for us to
restart the necessary components of the controller to provide fault-
tolerance.”

The author of FlowScale [3] liked that Beacon’s modular ap-
proach enabled him to remove unneeded parts of Beacon, while
easily extending the code to add his own REST interface and statis-
tic gathering applications. He liked OSGi for updating code and
restarting buggy bundles, but did not like OSGi’s steep and time
consuming learning curve.

In retrospect, most of Beacon’s original design decisions have
been validated, with the exception of OSGi and runtime modularity
which has had mixed results. It provided utility and enabled new
use cases, but at the expense of some ease of use.

8. CONCLUSION

Beacon explored new areas of the OpenFlow controller design
space, with a focus on being developer friendly, high performance,
and having the ability to start and stop existing and new applica-
tions at runtime. Beacon showed surprisingly high performance,
and was able to scale linearly with processing cores, handling 12.8
million Packet In messages per second with 12 cores, while being
built using Java.

9. ACKNOWLEDGEMENTS

This work was supported by a Microsoft PhD Fellowship. Thanks
to Ali Khalfan and Volkan Yazici for details of their experiences us-
ing Beacon. Thanks also to my advisor Professor Nick McKeown
and the members of the McKeown Group for their feedback and
reviews of this work.

10. REFERENCES

[1] Big network controller.
http://www.bigswitch.com/products/SDN-Controller.

[2] Floodlight. http:/floodlight.openflowhub.org/.

[3] FlowScale. http://www.openflowhub.org/display/FlowScale/
FlowScale+Home.

[4] Mul. http://sourceforge.net/projects/mul/.

[5] POX. http://www.noxrepo.org/pox/about-pox/.

[6] Programmableflow controller.
http://www.necam.com/SDN/doc.cfm?t=PFlowController.

[7] Ryu. http://osrg.github.com/ryu/.

[8] Trema. http://trema.github.com/trema/.

[9] Camil Demetrescu et al. A new approach to dynamic all
pairs shortest paths. JACM, 51(6), 2004.

[10] David Erickson. Using Network Knowledge to Improve
Workload Performance in Virtualized Data Centers. PhD
thesis, Stanford University, May 2013.

[11] David Erickson et al. Optimizing a virtualized data center. In
SIGCOMM, 2011.

[12] Natasha Gude et al. NOX: towards an operating system for
networks. SIGCOMM CCR, 38(3), 2008.

[13] Arjun Guha, Mark Reitblatt, and Nate Foster.
Machine-verified network controllers. In PLDI, 2013.

[14] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch
hashing. Distributed Computing, 2008.

[15] Teemu Koponen et al. Onix: A distributed control platform
for large-scale production networks. OSDI, 2010.

[16] Christopher Monsanto, Nate Foster, Rob Harrison, and
David Walker. A compiler and run-time system for network
programming languages. In POPL, 2012.

[17] Christopher Monsanto, Joshua Reich, Nate Foster, Jen
Rexford, and David Walker. Composing software defined
networks. In NSDI, 2013.

[18] Eugene Ng. Maestro: A system for scalable openflow
control.

[19] Charalampos Rotsos, Richard Mortier, Anil Madhavapeddy,
Balraj Singh, and Andrew W Moore. Cost, performance &
flexibility in openflow: Pick three. In /CC, 2012.

[20] Amin Tootoonchian ez al. On controller performance in
software-defined networks. In HotICE, 2012.

[21] Andreas Voellmy et al. Nettle: Taking the sting out of
programming network routers. PADL, 2011.

[22] Andreas Voellmy et al. Scalable software defined network
controllers. In SIGCOMM, 2012.

[23] Volkan Yazici et al. Controlling a Software-Defined Network
via Distributed Controllers. In NEM Summit, 2012.

APPENDIX

The evaluation used the following language runtimes: Oracle x64
Java 1.6 Update 37, Python 2.7.2, and PyPy 1.9.0. Controller specifics
are listed below:

Beacon. Version 1.0.2.

Floodlight. Version 0.90.

Maestro. Version 0.2.1.

NOX. Verity branch, commit

£75d2£31d934185fe0ce7c2482d0f8ae950b3419 (9/6/12).

e POX. Betta branch, commit
52712bcaf0c230ba6d3915f56ab32b281a0d8de3 (12/2/12).

e Ryu. Version 1.5.

Cbench was used as the test harness for controller evaluations,
the Git commit used was
£848965336¢1275¢7847149c0089¢c16645ad8d32. Cbench’s through-
put mode tests were launched either with one or two instances of
Cbench, based on the number of threads the controller under test
was running. The following command launched a single Cbench
throughput test:

taskset -c 0 cbench -c localhost -p 6633 -m 10000 \\
-1 13 -w 3 -M 100000 -t -1 50 -I 5 -s 64

The following two commands launched two Cbench instances
for throughput tests:

taskset —c 0 cbench -c localhost -p 6633 -m 10000 \\
-1 13 -w 3 -M 100000 -t -1 50 -I 5 -s 32

taskset —-c 8 cbench -c localhost -p 6633 -m 10000 \\
-1 13 -w 3 -M 100000 -t -1 50 -I 5 -s 32 -o 33

And latency mode tests were launched with the following com-
mand:

taskset -c 0 cbench -c localhost -p 6633 -m 10000 \\
-1 13 -w 3 -M 100000 -i 50 -I 5

http://www.bigswitch.com/products/SDN-Controller
http://floodlight.openflowhub.org/
http://www.openflowhub.org/display/FlowScale/FlowScale+Home
http://www.openflowhub.org/display/FlowScale/FlowScale+Home
http://sourceforge.net/projects/mul/
http://www.noxrepo.org/pox/about-pox/
http://www.necam.com/SDN/doc.cfm?t=PFlowController
http://osrg.github.com/ryu/
http://trema.github.com/trema/

	1 INTRODUCTION
	2 RELATED WORK
	3 DEVELOPER PRODUCTIVITY
	3.1 Programming Language
	3.2 Libraries
	3.3 API

	4 RUNTIME MODULARITY
	5 PERFORMANCE
	5.1 Event Handling
	5.2 Reading OpenFlow Messages
	5.2.1 Shared Queue
	5.2.2 Run-to-completion

	5.3 Writing OpenFlow Messages

	6 EVALUATION
	7 DEPLOYMENT EXPERIENCE
	8 CONCLUSION
	9 ACKNOWLEDGEMENTS
	10 References

