Teaching Networking Hardware

Martin Casado
Department of Computer
Science
Stanford University
Stanford, CA 94305-9030

casado@cs.stanford.edu

ABSTRACT

We present our experience with the design and teaching of
a graduate-level networking hardware course in which stu-
dents design and build an Internet router. Each team of
two students (one proficient in hardware and one proficient
in software) design and develop a fully functional router that
routes live Internet traffic and inter-operates with other stu-
dents’ routers via a simple routing protocol. Hardware is
designed in Verilog using an industry-standard design flow
on a specially designed platform, called NetFPGA. Software
is written in user-space using a high-level language. Soft-
ware and hardware are combined and tested using real net-
work traffic over arbitrary private topologies using a custom
tool, called VNS. Our approach is distinguished in that both
hardware and software can be designed, tested and deployed
remotely over the Internet. Our goal is to give students ex-
perience in the design of complex networking systems. In
our initial course offering in Spring 2004, all teams success-
fully implemented fully functional routers in less than ten
weeks. We will pilot courses outside of Stanford using the
remote teaching infrastructure presented in this paper.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:
Computer science education; C.2.1 [Computer Commu-
nications Networks]: Network Architecture and Design -
packet-switching networks, Network communications

General Terms

Design, Experimentation

Keywords

Network project, Network internals, Pedagogy.

1. MOTIVATION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ITICSE *05 Universidade Nova de Lisboa

Copyright 2004 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Gregory Watson
Department of Electrical
Engineering
Stanford University
Stanford, CA 94305-9030

gwatson@stanford.edu

Nick McKeown
Department of Electrical
Engineering
Stanford University
Stanford, CA 94305-9030

nickm@stanford.edu

An increasing number of our graduating computer science
students work in the networking industry, where they work
on the design of complex hardware-software systems that
must interoperate with existing systems and infrastructure.
Our goal is to give students a relevant project experience,
in which they design and debug a real piece of networking
hardware and then deploy it into the Internet. Our tradi-
tional classroom and lab teaching doesn’t provide students
with hands-on experience in the subtleties associated with
complex system design. This is in part because of the dif-
ficulty of creating meaningful learning exercises. Labs and
projects based on commercial tools tend to become bogged
down by the vagaries of a particular environment. Normally,
network and link layer functions are buried in kernel space or
specialized hardware. Even with a good user-level kernel de-
bugging environment, development at this level degenerates
into advanced kernel hacking. Furthermore, access to live
Internet traffic has considerable safety and privacy concerns
[6]. For these reasons, many projects rely on simulation and
emulation environments [4, 5, 3.

We set out to develop an environment that allows stu-
dents to implement complex systems built from both hard-
ware and software, and then to test the system in arbitrary
topologies while processing real Internet traffic. Our envi-
ronment needed to be simple to use: for example, the hard-
ware design environment should be based on an industry-
standard design flow, and give students access to raw pack-
ets to process in any way they choose, yet be simple to learn,
and enable designs to be completed in a short time period.

In this paper we describe our experiences with the design
and pilot offering of a graduate networking course on ”Net-
working Hardware”. During the course, two-student teams

designed fully functional, integrated hardware/software routers

that process live Internet traffic. The course is based on two
tools we developed: NetFPGA is a hardware design platform
that was used to implement the main datapath through the
router, and VNS (Virtual Network System) was used to im-
plement the routing protocols and control software. The
students designed their own interoperability tests, and used
VNS to implement arbitrary private topologies that connect
to the Internet via a secure firewall. Both NetFPGA and
VNS can be used remotely over the Internet, allowing stu-
dents to deploy and debug their designs remotely, without
needing to see or touch the hardware platform. We believe
that our environment overcomes many of the hurdles that
make low-level network projects in hardware and software
difficult to support in the classroom. We describe the tools
we have developed and how they are used in the classroom,

course details and feedback both from the students and in-
dustry experts regarding the usefulness and relevance of the
course.

2. COURSE ENVIRONMENT

Our course was developed as part of a larger research effort
to explore educational tools and methodologies for bringing
network infrastructure technologies into the classroom. The
goal is to develop a remote teaching lab that can support
thousands of students in many, geographically distributed
universities, providing them with direct, link-layer access to
the Internet. Providing efficient and safe access to the Inter-
net to a large and geographically disparate group of students
is challenging. For this purpose we’ve developed two new
technologies NetFGPA and VNS, which provide support for
developing networking infrastructure by simplifying access
to the Internet. While the focus of this paper is not to ex-
plain the inner-workings of either tool, we present a high
level overview of their function in supporting the course.

2.1 TheVirtual Network System

The Virtual Network System (VNS) enables the develop-
ment of routers purely in software as user space processes.
With VNS, an educator can create a virtual network topol-
ogy at the edge of the Internet and assign each student (or
group of students) a node in that topology. VNS provides
the infrastructure for tunneling raw packets for each node
to a student-written, user-space program which makes rout-
ing decisions and hands packets back for injection into the
Internet. VNS has been successfully used in undergraduate
networking courses here at Stanford and at Johns Hopkins
to teach router implementation in software.

2.2 NetFPGA

NetFPGA is a platform where students can build net-
working hardware remotely. Each NetFPGA board (figure
1) provides eight Ethernet channels, two programmable logic
devices, and some fast memory for network packet storage.
Students create their designs using industry-standard EDA
tools, and can then download their designs to the NetFPGA
board over the network via a web interface. Once their de-
sign is running in hardware the VNS system is used to route
real network traffic to and from their board such that it
forms part of the campus network.

2.3 Combining VNS and NetFPGA

VNS and NetFPGA were designed so that they can be
used individually and in tandem. When used together, NetF-
PGA and VNS provide seamless communication between the
hardware and software portions of a project. Real-world
networking devices are designed to use fast low-level packet
processing implemented directly in hardware that commu-
nicates with proprietary software to offload complex opera-
tions. Projects which use both NetFPGA and VNS together
allow students to develop the lowest levels of packet handling
in hardware and the higher level functions in software. Both
tools provide a simple raw packet interface to the student,
with very few constraints or system dependencies.

3. COURSE COMPONENTS

Using VNS and NetFPGA, the hardware and software
portions of the router are initially developed separately with

NetFPGA Board:

grammable network device

Figure 1: an 8 port, pro-

periodic integration and testing. There is an interoperabil-
ity requirement for the course; i.e. router must work with
all other routers in the class, for example, by correctly ex-
changing routing tables according to a prescribed protocol.
The course is structured to put the onus on the students to
organize and plan interoperability testing.

3.1 Router Development Overview

Router development during the course can be roughly bro-
ken down into three stages, development of the software
and hardware base, integration and inter-operability and ad-
vanced functionality. The first two stages focus on creating
a functional router base. In the last stage, students can op-
tionally extend the functionality of their router. Each stage
is composed of a number of milestones and deliverables that
the students must complete and submit by predetermined
deadlines. All hardware development is done in Verilog and
industry-standard EDA tools. The software portions are
written in C and can be developed on any standard *nix
system. The groups are also responsible for maintaining two
design documents that detail the design and implementation
decisions for both the hardware and software respectively.

3.2 Deéliverablesand Testing

Deliverables at each milestone may be conceptual designs
submitted as portions of the design document, code imple-
mentations or both. All code submissions are cross-checked
against the design document to ensure the students are rep-
resenting a consistent view of the router within the design
document. Implementation deliverables are tested at each
milestone to ensure correct functionality. Testing is cumula-
tive when applicable. That is, each progressive submissions
must be able to operate successfully on tests for the current
milestone as well as all previous tests. Cumulative testing

FTP Server

HTTP Server

Figure 2: Single router topology used to develop
basic router

is done to verify that continued development does not break
existing functionality.

An important skill in networking is to be able to antici-
pate the many possible configurations and environments in
which an implementation may be run. While we provide
the students with functionality requirements for each deliv-
erable we don’t provide specifics as to what conditions the
submissions will be tested. At the start of the course, each
group is given their own, single router network topology for
development and testing. The topology consists of a single
router and two application servers as shown in figure 2. With
VNS, we can construct network topologies of arbitrary com-
plexity. We encourage the students to think about topology
configurations that would be useful for testing their imple-
mentations, and upon request we set up topologies of their
design. Students must support a routing protocol which re-
quires that they request at least one topology with multiple
routers.

3.3 Basic Router Functionality Requirements

The first two thirds of the quarter are spent developing
a basic Internet router. We provide a minimal code base
for both the software and hardware sub-groups to extend
and integrate into their designs. For the hardware portion,
the students are given a single port ethernet switch which
demonstrates basic packet processing in Verilog. For soft-
ware, we provide code to interface with VNS and a port of
the TCP portion of the lwip [1] protocol stack. Both the
hardware and software portion of the projects have incre-
mental, progressive steps towards the full design. A basic
router must support the following:

o IP forwarding in hardware
e Hardware ARP cache managed by software

e Software TCP stack which can support multiple net-
work applications

e Management of routing table, arp cache and interfaces
through a command line interface (CLI) reachable by
telneting into the router

o IP decoding in hardware including

— Basic header sanity check (version, length etc.)
— TTL decrement on forwarded packets

— IP checksum verification

I [cu software
I[tcp || pwoser || 1cmp |
I Stack || Stack || Handling
: P =
Classification _ Query I

I Ethemet |
[Classification

read | | write I
I | packet | | packet |
b e o e I
1 hardware
I (13 | TIL
I Farwarding | _daummnn_l._!
TR [tPHeader| [1® |
| Responder | | Check | (checksum
| [Ethernet |
I Clnssiﬂqmun 1

rad wile

L | pac

aciet | | paciet | |

— e o s s s ses sl

Figure 3: Functional components in hardware and
software of completed basic router

e Update forwarding table via simplified inter-domain
routing protocol

During development students can test virtually all func-
tional components using standard network debugging tools
and practices. This includes, interacting with the CLI via
telnet, exercising ICMP support with ping and traceroute
and handling traffic by using standard ftp and http clients
to access content on the application servers.

3.4 Integration

The project is structured so that all router functionality
is developed initially in software and then moved to hard-
ware. This approach has the advantage that the students
themselves develop a functional base reference in software
that they can then use to verify correctness of their hard-
ware design. The movement of functionality from software
to hardware necessitates strong communication within the
team regarding functional components, interfaces and se-
mantics. We require the groups to document their inte-
gration strategy prior to attempting it. The functionality
breakdown of a completed, fully integrated basic router is
illustrated in figure 3.

3.5 Interoperability

It is essential that routers operate cooperatively in a com-
plex, arbitrary and heterogenous environment. A router
must not only strictly adhere to public standards but must
be able to correctly handle traffic generated by varying in-
terpretations of those standards, or packets with errors. A
network pioneer Jon Postel put it:

“Be conservative in what you do, be liberal in
what you accept from others.”

We believe this is a crucial lesson to take away from net-
work system design. From the first day of class, students are
told that their finished routers are expected to interoperate
to build forwarding tables and route traffic on a complex
and dynamic network topology. Furthermore, the students
are responsible for developing the inter-operability testing
plan and executing it. The students must therefore deal
with the problems caused by varying implementations of a
single set of standards. Differences and errors are overcome
by communicating between groups. We also make available
a complete, compiled reference solution for the groups to
test against during development.

3.6 Advanced Functionality

After completing the basic router, students can extend
their implementations to support additional functionality of
their choosing. Providing an open-ended design problem
allows ambitious and creative students to distinguish them-
selves. There are no specific functional requirements for this
portion of the project, however the designs must have both
a hardware and software component. Unlike the base router
design where placement of functionality is rigidly mandated
by the project specifications, the students now are forced
to confront design issues inherent in integrated implemen-
tation. Each group must decide how much functionality to
put in hardware vs software, what interfaces to expose for
communications and what protocol properties the commu-
nications require. Typical functionality includes:

e Adding a managed firewall for network or transport
layer filtering

e Adding NAT support to hosts behind the router
o Building a simple DHCP server

e Providing VPN-like support between two routers

4. CLASSROOM EXPERIENCE

The course was first offered in Spring 2004 at Stanford uni-
versity. Seven MS/PhD students registered for the course,
three with hardware experience and four with software back-
grounds. Enrollment was limited for the first offering.

4.1 Basic Router Designs

All groups successfully completed the basic router. Final
designs ranged from 7,000 to 12,000 lines of C, and 4,000 to
7,000 lines of Verilog. Despite the relatively specific func-
tional requirements for the deliverables, each group uniquely
approached the problems in their designs. For example, each
router used a different mechanism for handling asynchronous
packets, such as multiple threads, polling and signals.

A major component of succesful system design is antici-
pating the conditions under which an implementation may
be used. At the start of the course, the students were in-
formed that their finished routes would be tested on a large
toplogy, but we did not tell them the size or configuration.
To prepare for the final test, students could ask us to create
a topology with a specific configuration. During the course,
the groups requested three to four topologies each ranging
from one to four routers with various subnet sizes on the
connecting links.

The final testing topology consisted of seven routers and
four end hosts. Multiple instances of the students routers

were run on the topology interspersed with a reference so-
lution. During testing we used VNS to virtually disconnect
links between routers in order to determine the convergence
time of the students’ inter-domain routing protocol imple-
mentations. The routers also had to display stability down-
loading over 400 megabytes worth of data across 7 router
instances.

All finished routers were able to perform the basic func-
tions on three host topologies however only one of the groups
routers was able to scale to the seven router topology with-
out fault. The other two groups had minor shortcomings
and were then given access to the testing topology to fix
their implementations.

4.2 Advanced Functionality

All groups implemented advanced functionality in their
routers. The final designs were presented to a panel of
industry experts (router architects from local networking
companies) who voted on the best overall router. Two of
the teams based their extensions on ideas offered by us, but
transformed them into their own designs that went far be-
yond what we had intended. The third team created an
original project. Completed routers with advanced func-
tionality ranged from 9,000 to 18,000 lines of C and 5,000
to 10,000 lines of Verilog.

4.2.1 Team1: IP-in-IP tunneling and hardware ACLs

The team implemented a subset of a network firewall,
by extending their router to support software configurable,
hardware access control lists (ACLs). Access controls could
be based on source IP, destination IP, source port, desti-
nation port and transport layer protocol. The group also
implemented VPN-like IP tunnels between a pair of cooper-
ating routers.

4.2.2 Team2: Hardware flow control and web server

The team implemented source/destination filtering in hard-
ware for flow control between IP address pairs. The flow
control mechanism allowed software to set a maximum rate
for each flow. The team also extended their router to sup-
port a functional web server from that allowed access and
configuration of all modifiable internal parameters.

4.2.3 Ethernet encryption

Perhaps the most novel functionality involved link-layer
encryption between cooperating routers. The implementing
group developed an integrated hardware/software solution
for encrypting the data portion of Ethernet packets prior to
transfer between interfaces. The software was responsible
for establishing a shared secret between the routers which
was then used by the hardware as a DES key for symmetric
encryption of the Ethernet data.

4.3 Student Response

We solicited feedback through an anonymous online ques-
tionnaire. Most students found the workload to be heavy
(average 12 hours per week, peak 25 hours for the most
complex portions). Overall, feedback was positive, and we
plan to offer the class every year, with larger enrollment.

4.4 Responsefrom Industry Experts

Students presented their routers to a panel of five industry
experts with backgrounds in hardware and software router

design (thanks to architects from Cisco Systems and the
XORP project[2]). The panelists were impressed by the level
of sophistication of the base routers and advanced function-
ality. They found the material to be highly applicable to
network system design and implementation. A number of
the panelists commented on the lack of graduating students
with sufficient backgrounds in network infrastructure tech-
nologies and inquired as to the availability of the students
for positions after the course ended!

5. CONCLUSIONSAND APPLICATION

We presented our experiences designing and teaching a
projects course in integrated router development. We be-
lieve that the course bridges a gap in current CS curricula
by providing real-life hands-on experience with the design
of network systems.

Offering the course at Stanford was a first step towards our
goal of supporting remote classes at other colleges and uni-
versities. We are currently looking for schools who may be
interested in offering this course. To support remote classes
we have available all curriculum, specifications and refer-
ence implementations, host all support technologies (VNS
and NetFPGA) and will offer full support for the duration
of the course. To learn more about the course, VNS or
NetFPGA, please visit their respective websites or contact
us directly by e-mail.

e Course Website: http://yuba.stanford.edu/cs344_public/
e NetFPGA Website: http://yuba.stanford.edu/NetFPGA/
e VNS Website: http://yuba.stanford.edu/vns/

6. ACKNOWLEDGMENTS

This work was funded by the NSF, grant 02-082. We
would like to thank the students who took CS344 during
Spring Quarter 2004. We would also like to thank Dan
Wendlandt and Guido Apenzeller for help in developing and
maintaining NetFGPA and VNS.

7. REFERENCES

[1] lwip - a lightweight tcp/ip stack.
www.sics.se/ adam/lwip/.

[2] Xorp the extensible open router platform.
http://www.xorp.org/.

[3] C. N. Davis, C. S. Ransbottom, and L. C. D. Hamilton.
Teaching computer networks through modelling. ACM
SIGAda Ada Letters, XVIII(5):104-110, Sept/Oct 1998.

[4] M. W. Dixon and T. W. Koziniec. Using opnet to
enhance student learning in a data communication
course. IS2002 Proceedings of the Informing Science +
IT Education Conference, pages 0349 — 0355, July 2002.

[6] R. D. Enrico Carniani. The netwire emulator : a tool
for teaching and understanding networks. ACM
SIGCSE Bulletin, 33(3):153-156, 2001.

[6] J. M. Mayo and P. Kearns. A secure unrestricted
advanced systems laboratory. The proceedings of the
thirtieth SIGCSE technical symposium on Computer
science education, pages 165-169, 1999.

