
Dynamic Route Computation Considered Harmful

Matthew Caesar
University of Illinois at
Urbana-Champaign

caesar@cs.illinois.edu

Martín Casado
Nicira Networks Inc.

casado@nicira.com

Teemu Koponen
Nicira Networks Inc.

koponen@nicira.com

Jennifer Rexford
Princeton University

jrex@cs.princeton.edu

Scott Shenker
University of California at

Berkeley
shenker@cs.berkeley.edu

ABSTRACT
This paper advocates a different approach to reduce routing
convergence—side-stepping the problem by avoiding it in the
first place! Rather than recomputing paths after temporary
topology changes, we argue for a separation of timescale
between offline computation of multiple diverse paths and
online spreading of load over these paths. We believe
decoupling failure recovery from path computation leads
to networks that are inherently more efficient, more scalable,
and easier to manage.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Algorithms, Design

Keywords
Internet architecture, routing, convergence, protocols

1 Introduction
The traditional task assigned to routing is very clear: routing
calculates paths based on the current view of the network
topology. When the network changes, whether due to a
transient failure1 or a permanent change in the topology,
routing recomputes these paths. In fact, the reactive nature
of routing—dynamically computing paths in response to
failures to ensure connectivity—is typically seen as crucial
to the Internet’s resilience. We disagree.
§This article is an editorial note submitted to CCR. It has
NOT been peer reviewed. Authors take full responsibility
for this article’s technical content. Comments can be posted
through CCR Online.
1The term “failure" is overly narrow, since planned link
maintenance is a common source of short-term service
interruption, but for convenience we will use the term failure
for all temporary outages.

In fact, there are several problems with using routing to
respond to failure. First, computing a new set of paths
with a distributed routing algorithm can be slow, leading
to noticeable outages. Attempts to speed up convergence
often risk scalability (by increasing the frequency of message
exchanges) or involve ad hoc modifications (such as route-
flap damping and tuning MRAI timers). Moreover, this
recomputation can be for naught, since equipment failures
and planned maintenance can be extremely transient—
often completing before routing has reconverged—leading to
another recomputation once the link is restored. In addition,
route recomputation involves a complicated distributed
algorithm that: is hard to understand and debug; is often the
source of bugs, vulnerabilities, and misconfigurations; can
lead to “update storms" if not properly tuned; and can only
scalably compute a limited range of routing options (e.g., it
is difficult to compute various sets of disjoint paths with a
scalable distributed algorithm). Lastly, in some cases (such
as spanning tree and BGP), the recomputation of routes
doesn’t just fix broken paths, it also disrupts working ones.
In this paper, we argue that greater path diversity can, and

should, reduce our reliance on failure-driven (i.e., “real-time”)
recomputation of routes. We are motivated by two trends
in network and system design that improve an application’s
ability to tolerate failures:

• Multipath routing lets edge nodes (whether end hosts or
ASes) circumvent failures by explicitly directing traffic
over a different path.

• Data centers often replicate at the application layer,
allowing a load balancer to direct flows to another
server after a (host or network) failure.

We believe these trends should change the end-point’s
relationship with the network from “I’ll accept whatever best-
effort service you give me" to “I’ll take action to improve
my service". In the early days of the Internet, the emphasis
was on end-points passively “adapting" to the current level

of network service (through congestion control and adaptive
coding rates); now the emphasis is moving towards a more
active response. In this paper, we take this trend to its logical
extreme by arguing that the entire burden of responding to
failures should rest on the endpoints, and that routing should
respond only to long-term changes in the underlying topology.
This idea is not new with us. It is implicit in the way MPLS

uses precomputed backup paths, in the recent literature
on multipath routing, in proposals to compute routes at
separate routing-control servers, and in datacenter replication
techniques. Our goal is to articulate the idea independent
of any particular proposal, and generalize it to all network
contexts (interdomain, intradomain, enterprise, datacenter).
This paper, then, is a polemic, not a detailed technical
presentation. However, given the centrality of routing in
network architecture, and the extent to which dynamic route
computation is part of networking lore, perhaps this “wordy
rather than nerdy” paper has a useful role to play.

2 Jumping to (Logical) Conclusions
Separating failure recovery from path computation takes
several recent research trends to their logical conclusion.

Difficulty of improving routing convergence. Slow
convergence is a perennial problem with today’s dynamic pro-
tocols for both interdomain [17] and intradomain [7] routing.
Beyond imposing a heavy load on the routers, routing conver-
gence is responsible for most serious performance disruptions
for interactive applications [16]. Despite significant progress
on reducing convergence time, current solutions—ranging
from careful tuning of timers to propagating additional
routing information—increase router overhead and protocol
complexity. We view the difficulty of significantly reducing
convergence time as a warning that we should consider
alternative approaches that avoid the convergence process
entirely.

MultiProtocol Label Switching (MPLS). MPLS en-
ables the establishment of label-switched paths, using
signaling protocols like RSVP and LDP. Once paths are
established, routers simply forward packets based on a label.
MPLS has fast-reroute mechanisms that compute and install
backup paths that are used when a primary path (or an
individual link on that path) fails. MPLS also enables
splitting of traffic over multiple paths, and establishment of
label-switched paths that span multiple ASes [5]. In fact,
MPLS could be used as a building block for “offline multipath
routing,” by establishing multiple primary label-switched paths
in advance (based on the designed topology) and keeping these
paths in the forwarding tables (even when failures occur).

Separating routing from routers. Several recent
proposals move route computation from the routers to
separate in-network servers [3, 4, 10]. These architectures
enable better routing decisions (as well as better access-
control policies) by applying network-wide policies to a
network-wide view. The routers simply forward packets

and collect measurement data at the behest of the servers.
The main practical challenge they face is maintaining an
accurate, timely view of the network topology, to adapt
quickly to changes. We argue that these proposals should be
taken one step further by allowing these in-network servers
to compute routes in an offline fashion, based on the designed
topology rather than the current up/down status of the links.

Load balancing over multiple paths. Support for
multipath routing, coupled with flexible load balancing by
edge nodes, is a recurring theme in a wide variety of recent
research. Intelligent route control allows stub ASes to split
traffic over multiple upstream providers [1]. Deflecting
packet through intermediate nodes—whether end hosts [2],
routers [24], or ASes [23]—enables multipath routing on top
of today’s less flexible routing system. Multipath routing
with flexible traffic splitting reduces traffic engineering from
an NP-hard non-convex problem to a tractable convex
one [11]. Multipath transport leads to more effective (and
stable) dynamic load-balancing schemes [11, 13]; in fact,
these papers implicitly assume the existence of multiple
pre-pinned paths. We argue that multipath routing not only
improves performance and reliability, but can obviate the
need to dynamically recompute routes in response to failures.

Theoretical innovations. Numerous theoretical studies
have shed light on how to route more effectively and efficiently.
For example, work in compact routing and game theory give
path assignments that minimize routing state, or maximize
economic objectives. However, these schemes focus on what
routing tables should contain rather than how this state
should be computed and populated in a distributed fashion.
In fact, the algorithms underlying these schemes are likely too
computationally demanding to run in real time, when links
and nodes fail. By decoupling route computation from failure
recovery, we enable the use of more sophisticated algorithms
for computing routes.

Difficulty of making routing protocols secure. To-
day’s interdomain routing system is notoriously vulnerable to
configuration mistakes, malicious attacks, and economically-
driven manipulations. Moving to a secure version of BGP
(e.g., S-BGP [14]) has proven difficult and expensive. Perhaps
more disturbingly, even a ubiquitous deployment of S-
BGP would remain vulnerable to strategic attacks, such
as announcing one path while forwarding data traffic on
another [8]. As an alternative to verifying BGP updates in
the control plane, multipath routing allows each AS to select
a working path based on end-to-end monitoring of integrity
and path performance [21]. We take this argument one step
further by computing these multiple paths offline, while still
relying on online monitoring to select a working path.

The end-to-end argument. The end-to-end argument
states (roughly) that, whenever possible, protocol operations
should occur at the endpoints of the communication rather
than within the network. While routing is often cited as
an operation that must be done within the network, the

recent developments cited above suggest otherwise. Moreover,
certain routing-related operations can be done only at end
hosts, such as dealing with failures that networks cannot
efficiently detect (e.g., application-specific performance issues,
buggy or malicious routers). Today’s single-path routing
protocols leave endpoints vulnerable to such faults, as the
network has no way of knowing it should switch to a different
(working) route. Consistent with the end-to-end argument,
we argue that the data plane (rather than the control plane)
is the right place to detect and react to reachability problems.

3 Offline Routing, Online Load Balanc-
ing

In this section, we present our proposal for separating route
computation (on the deployed topology) from failure handling
(when link status changes). We next present some simple
analysis to motivate our design choices, and then discuss
several implementation approaches.

3.1 Computing Paths on Deployed Topology

Although our idea is conceptually simple, we describe it here
in more detail to clarify our underlying assumptions and the
mechanisms needed to make it a reality. To avoid confusion,
we adopt the following terminology:

• Topology refers to the deployed links, whether physical
links or virtual links representing tunnels or aggregated
links.

• Status refers to the current state of the links, whether
they are up or down.

Armed with this terminology, our proposal is simply to let
routing compute paths based solely on the deployed topology.
That is, routing should ignore all status changes and only
recompute paths when the topology changes. These topology
changes are rare (see below) and often known well in advance.
Thus, the computation of routes can be a lengthy process,
and can be done in a centralized fashion [3] or by third-
parties if desired. This flexibility, in both the length and
location of the computation, allows a wide variety of routes
to be computed (such as k disjoint paths, or computing paths
according to various criteria).
An endpoint A communicating with a remote endpoint

B behind a failed link now has two options. First, if B is
functionally replicated, then A can ignore network status
changes and simply direct packets to substitute endpoints
providing the same service. Modern service implementations
typically replicate their internal state to recover from
hardware failures, allowing the service to continue after an
endpoint fails. Second, if B isn’t replicated, or if maintaining
connectivity to the same endpoint is preferable, A can simply
direct traffic to one of the paths to B that is not affected by
the failure.

3.2 Underlying Assumptions About Failures

Our approach relies on two underlying assumptions, which
may not hold in all settings. First, we assume topology
changes are far less frequent than status changes. If this were
not the case, then our approach would not be significantly
decreasing route recomputation, and our point would be
moot. However, this assumption is supported by a study
[19],2 where failures with time-to-repair longer than 24 hours
were 3.7% of all failures. Thus, only one in 25 routing events
reflects a long-term topological change, and therefore our
approach would decrease the frequency of route computation
by more than an order of magnitude.
Second, we assume the number of alternatives offered

(either endpoint replication or multiple paths to the same
endpoint) is enough to mask link failures. When we say
“mask failures" we mean only to the extent that routing
reconvergence could alleviate the link failures. For instance,
multipath can only mask failures if the topology remains
connected; but that restriction applies to traditional route
recomputation as well. Consider a simple Poisson model
where paths fail at rate f and links are repaired at rate r. In
this case, the probability that all k alternative path options
are unavailable is (1+ r

f
)−k. If the route recomputation takes

time τ , then the average downtime of the route reconvergence
is fτ . Thus, in this trivial model the comparison of the
downtimes of these two approaches reduces to a comparison
of the quantities (1 + r

f
)−k and fτ . As long as the repair

rate is an order of magnitude greater than the failure rate,
we think it is easier to achieve high reliability by increasing k
(which is just adding another endpoint replica or exposing an
additional path) or increasing r (which involves improving
network management) than decreasing τ , which involves
tuning a complicated distributed route selection process so
that it converges faster while still remaining scalable and
correct. Note that improving the failure rate doesn’t favor
route recomputation, since decreases in f favor our approach
over reconvergence as long as k > 1.
We next use simulation to evaluate performance under the

particular failure modes and topologies that are commonly
found in networks. Figure 3.2 shows the degree to which
network outages are masked, in terms of the number of flows
affected by one or more failure events. Here, we assume a
failure model based on that of a large tier-1 ISP network,
where links fail with mean time between failures of two days,
mean time to repair of one minute [19]. We then compare
a simple single-path routing scheme (upon failure, routing
discovers a new working path after a convergence delay) with
a multipath scheme (the endpoint utilizes a fixed set of k
disjoint-as-possible available paths) and measure the fraction
of time the path is unavailable. In the network we studied,
the route recomputation averages 1.2 seconds, which is less

2This data is from 2002, but unfortunately we couldn’t find
more recent data. However, we do not expect that the rate
of topology changes has increased over time.

than the average failure duration. Nonetheless, even for a
relatively low value of k (k = 2 or 3), the multipath approach
outperforms the single-path routing approach. This is
because the likelihood of multiple paths failing simultaneously
is far less than the probability of undergoing a convergence
event. While these numbers indicate that our approach works
well, it is important to note that there are environments
where our assumptions do not hold. For example, wireless
systems may have high failure rates and unpredictable outage
durations. However, for many of the “standard” networking
environments (such as interdomain, ISP, enterprise, and
datacenter networking) these assumptions do hold.

 10

 100

 1000

 10000

 1 2 3 4 5

In
te

rr
up

te
d

flo
w

s

Allocated paths

Figure 1: Comparison of single-path dynamic routing (solid
line) and multipath static routing (dashed line).

3.3 Implementation and Deployment Scenarios

Conventional IP routing architectures have two components:
a control plane which is responsible for disseminating routes
and selecting which routes to propagate further, and a data
plane responsible for high-speed packet forwarding. Our
approach continues to rely on conventional mechanisms to
perform packet forwarding, but decouples the route selection
process from routers. In order to make this design practical,
we require endpoints to implement several new (yet tenable)
mechanisms, which we discuss next.

Application-level failure recovery. It has traditionally
been the network’s responsibility to ensure a single end-to-
end path remained available for the duration of the communi-
cation session. Removing dynamic route recomputation from
the network and placing the responsibility of route selection
on the endpoints has implications for applications.
Many datacenter deployments already include service

interruption in their end-to-end failure model, handling it
through application-level load balancing. Large webserver
deployments, for example, must be able to withstand server
failure on the back-end (which we suspect happens more
often then network link failures). Network failures can be
handled with the same recovery characteristics. In both
cases, ongoing sessions may be interrupted, but subsequent
connections will be sent to reachable servers via the load
balancer.
However, this approach assumes the application is tolerant

of service disruption during network failure, which may
not always be the case. For example, in the absence
of a user hitting refresh, today’s HTTP implementations
typically do not issue a new request due to a dropped TCP

connection since that would be necessary only to recover
from server crashes. With our proposal, they should, as
TCP cannot recover from endpoint changes. While this may
seem like introducing a major application requirement, we
note increasingly popular but inherently intermittent wireless
network connectivity has already caused many applications
to become more robust against transient network outages.

Endpoint-based failure detection. We have been
implicitly assuming that endpoints decide which of their
available paths to use to forward data (or which remote
replica to contact). To do this, endpoints independently
monitor the availability and quality of paths, and use this
to inform their choice. While path monitoring can be tricky
(due to, for instance, asymmetric routes), we nonetheless feel
that current failure detection protocols such as Bidirectional
Forwarding Detection are a promising starting point. In
addition, path-quality monitoring techniques can be made
robust in the presence of adversaries that selectively add,
drop, or modify packet [9], in contrast to the simple (and
easily-gamed) failure-detection mechanisms used in most
routing protocols. End-to-end techniques, particularly by
end hosts, can also monitor integrity, such as authenticating
the destination by using IPsec or SSL [21]—something routers
in the middle of the Internet are ill-equipped to do.
Instead of dedicating resources to the selection of a path

(and detecting a failed path) endpoints can implement
an alternative, more elegant strategy as suggested in [22]:
once they use multiple paths simultaneously they can
remain ignorant about path failures and yet have optimal
performance and reaction time to failures. While we
don’t explore this option in detail here, we note multipath
extensions to existing transport protocols are already on
their way (for details see, e.g., [6]).

Fixing failures. Obviously, one needs a mechanism
to fix failures in the infrastructure, and to do so on a
reasonable time scale since this determines the probability
of experiencing more than k simultaneously failed paths (or
replicas). The balance between the urgency of infrastructure
repairs and the number of alternative paths exposed to
endpoints involves site-specific factors, and service providers
will likely adopt different tradeoffs in this regard.

Optimizations. The high-level design discussed above is a
pure embodiment of our argument in its independence from
the network-based failure recovery. However, even though
endpoints shouldn’t assume that the network will recover
from link failures, the network can still improve the quality
of service it provides for the endpoints by several means. As
discussed above, depending on their customers, it may be in
their interests to do so.
We don’t prevent local link availability improvements, as

long as they scale, and don’t interfere with operating paths.
For instance, one can still use MPLS fast failover mechanisms
to improve availability by masking network element and link
failures. In a similar manner, physical links can be aggregated

together into a single virtual link to improve availability and
performance.
We also don’t prevent network-assisted improvements to

the endpoints’ failure reaction time. If most endpoints don’t
use multiple paths simultaneously, but instead prefer timely
recovery from path failures by selecting an alternative path,
service providers may explicitly inform endpoints about link
failures to help guide them in their choice of alternate paths.
However, it is nontrivial to design an efficient and secure
failure dissemination protocol, which is all the more reason
to promote the simultaneous use of multiple paths.

4 Implications
Removing routing recomputation from the network separates
routing into two simple steps that have few restrictions
and interdependencies in their implementation: topology
discovery and path computation. Each can be done in a
variety of ways and, because they are not done in real time,
do not pose scalability problems. In the following we briefly
discuss some obvious examples of how to take advantage of
this freedom from implementation and scaling constraints.

Improved scalability of routing. Scalability of
Internet routing is largely limited by the overhead of
routing state exchanges (churn). The continuing growth
of the Internet, coupled with the need for multi-homing
and fine-grained traffic-engineering have rapidly increased
routing table size, which in turn has increased churn. Our
proposal, by making route recomputation far less frequent,
greatly reduces churn. As an example of the resulting
possibilities, significantly reduced churn would make the
research community’s various “flat” and name-based routing
proposals slightly less unrealistic. These proposals call for
even greater routing table size requirements than we have
today (see, e.g., [15]). With enormous routing tables, churn-
induced router CPU load becomes a limiting factor, unless
the rate of route updates can be significantly curtailed, as in
our proposal.

Unification of mechanism. Failure detection and
recovery is already an integral part of many systems, such
as datacenters supporting online services. The addition of
dynamic route recomputation to these environments intro-
duces redundant functionality with unnecessary complexity.
In degenerate cases, it is possible for multiple dynamically
adapting systems (such as latency aware load-balancing and
route selection) to create feedback loops with continuous
instability.

Novel path computation procedures. Since we
no longer require that these steps be performed quickly
after a failure, endpoints (or the routing service they use)
may use more advanced algorithms to perform these steps.
For example, offloading route computation to servers (e.g.,
Ethane, RCP, RAS [3, 4, 18]) requires network state to be
quickly propagated to the server for processing, increasing
load and sensitivity to delay. Our approach allows this

to be done without concern for timeliness of interaction
between network elements and the server. Also, in BGP,
routing updates propagate in a single direction (from
destinations back towards sources). Computing routes
on longer timescales may enable use of protocols that
require multiple rounds of message exchanges amongst
participants. For example, adjacent ISPs may negotiate
to determine routes that achieve more mutually beneficial
economic goals. Finally, recent research indicates that
performance and flexibility of route selection may be
significantly improved with some measure of endpoint
participation. By allowing endpoints to participate in route
selection, application-specific performance requirements can
be better accommodated and network-wide performance can
be improved through better congestion control and traffic
engineering [11,13].

New remedies against failures. While our approach
makes the network less responsible for failures, it simplifies
reaction to correlated failures. Correlated failures occur
when, for example, multiple IP adjacencies traverse the same
optical fiber. Such events can do extreme damage to the
network, unless great care has been taken to ensure these
failures do not take out a set of replicated links. These
“shared risks” are typically not visible to layer-three routers,
making it difficult (if not impossible) to rely on dynamic
routing protocols to selects paths based on this information.
In addition, computing multiple paths that do not share
correlation is computationally expensive. Removing the
need to perform this computation quickly allows us to use
these computationally intense algorithms to select routes less
prone to failure. The fact that our approach does not need
to conflate failure diagnosis (detection) and failure recovery
anymore (as often happens now) could have cost-reducing
implications for network management. Once failure detection
and recovery are decoupled (in routing), failure diagnosis
will be simpler.

5 Discussion
One can read this paper in the spirit of “clean-slate" design,
and ignore all issues of deployment. This would be an
understandable escape, because retooling the entire Internet
to remove dynamic routing protocols represents a massive
undertaking. However, deployment of our design may
be accelerated by several factors. First, our design is
agnostic to any particular underlying protocol, and hence
may be naturally implemented atop a wide variety of existing
protocols and platforms. Systems and protocols to provision
multiple paths across networks have been explored in previous
works (for a small sampling, see [20, 23, 24]), and these
techniques may be directly adapted to our design. Second,
our design is enabled by the increased use of load-balancing
devices and application-layer replication techniques. Finally,
and most importantly, deployment of multipath may happen
naturally – as larger portions of end hosts become capable
of selecting amongst multiple paths, routing protocols like

BGP may become slowly less and less reactive to transient
failures (due to ISPs’ preferences to reduce churn).
We advocate replacing dynamic computation of routes with

two mechanisms, multipath routing and application-layer
replication. Keeping in mind that good network designs place
minimal constraints on the algorithms that implement them
and the applications that operate atop them, we observe that
these mechanisms can be used and implemented in a variety
of ways. Multiple paths may be used to avoid malicious
intermediaries, to select routes according to application-
specific goals, to improve throughput, or may be used as
backups to improve resilience. End hosts may directly specify
which paths to use, they may be decided by network policy, or
some combination of the two. In addition, topology or path
information can be disseminated in several ways, ranging
from periodically updating network maps to routing path
requests to a separate network service responsible for knowing
the network topology.
While our proposal refutes longstanding networking prac-

tice, we are not saying that the past 35 years (or more)
of dynamic route computation has been a mistake. When
networks were in their infancy, the focus wasn’t on high
availability but on extreme recoverability; short outages
were fine, but the ability to recover from serious and
widespread failures was paramount. For this goal, dynamic
computation of routes is necessary, since replication can’t
deal with severe failure scenarios. Now that networks have
become finely-tuned and carefully managed components
of our critical infrastructure, the priorities have changed.
High availability is now the paramount goal, and this
cannot be achieved through dynamic computation of routes.
Distributed routing algorithms can’t respond fast enough,
nor provide flexible enough selection of paths, to preserve
service quality. Instead, the infrastructure should provide
replicated resources, something that network and systems
infrastructures are well suited for. Applications and
endpoints should then leverage this replication to ensure
their own high availability. This separation of concerns
between the infrastructure and endpoints is a familiar theme
in distributed systems, and (similar to [12]) our proposal is
merely a restatement of these longstanding insights.
We are by no means eliminating route computation.

We still need it to deal with the (hopefully) rare case of
widespread failures which fundamentally change the network
topology. Thus, route computation remains an important
component of our routing infrastructure. Our proposal does
nothing more than limit route computation to the task for
which it is best suited.

6 References

[1] A. Akella, J. Pang, B. Maggs, S. Seshan, and A. Shaikh. A
comparison of overlay routing and multihoming route
control. In Proc. SIGCOMM, 2004.

[2] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.
Resilient overlay networks. In Proc. SOSP, 2001.

[3] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh,
and K. van der Merwe. Design and implementation of a
routing control platform. In Proc. NSDI, 2005.

[4] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking control of the enterprise. In
Proc. SIGCOMM, 2007.

[5] A. Farrel, J.-P. Vasseur, and J. Ash. A Path Computation
Element (PCE)-Based Architecture, August 2006. RFC
4655.

[6] A. Ford, C. Raiciu, and M. Handley. TCP Extensions for
Multipath Operation with Multiple Addresses. Internet
Draft. draft-ford-mptcp-multiaddressed-02.txt, Oct 2009.

[7] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure.
Achieving sub-second IGP convergence in large IP networks.
ACM SIGCOMM CCR, July 2005.

[8] S. Goldberg, S. Halevi, A. Jaggard, V. Ramachandran, and
R. Wright. Rationality and traffic attraction: Incentives for
honestly announcing paths in BGP. In Proc. SIGCOMM,
2008.

[9] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford.
Path-quality monitoring in the presence of adversaries. In
Proc. ACM SIGMETRICS, 2008.

[10] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an Operating
System for Networks. In ACM SIGCOMM CCR, July 2008.

[11] J. He, M. Suchara, M. Bresler, J. Rexford, and M. Chiang.
Rethinking Internet traffic management: From multiple
decompositions to a practical protocol. In Proc. CoNEXT,
2007.

[12] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson,
and A. Venkataramani. Consensus Routing: The Internet as
a Distributed System. In Proc. NSDI, 2008.

[13] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking
the tightrope: Responsive yet stable traffic engineering. In
Proc. SIGCOMM, 2005.

[14] S. Kent, C. Lynn, and K. Seo. Secure Border Gateway
Protocol (S-BGP). IEEE J. Selected Areas in
Communications, 2000.

[15] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H.
Kim, S. Shenker, and I. Stoica. A Data-Oriented (and
Beyond) Network Architecture. In Proc. SIGCOMM, 2007.

[16] N. Kushman, S. Kandula, and D. Katabi. Can you hear me
now?! it must be BGP. ACM SIGCOMM CCR, April 2007.

[17] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed
Internet routing convergence. IEEE/ACM Trans.
Networking, June 2001.

[18] K. Lakshminarayanan, I. Stoica, and S. Shenker. Routing as
a service. Technical Report CSD-04-1327, UC Berkeley, 2004.

[19] A. Markopoulou, G. Iannaconne, S. Bhattacharrya, C.-N.
Chuah, and C. Diot. Characterization of failures in an IP
backbone. In IEEE/ACM Trans. Networking, October 2008.

[20] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala.
Path splicing. In Proc. SIGCOMM, 2008.

[21] D. Wendlandt, I. Avramopoulos, D. Andersen, and
J. Rexford. Don’t secure routing protocols, secure data
delivery. In Proc. HotNets, 2006.

[22] D. Wischik, M. Handley, and M. B. Braun. The Resource
Pooling Principle. ACM SIGCOMM CCR, October 2008.

[23] W. Xu and J. Rexford. MIRO: Multi-path Interdomain
ROuting. In Proc. SIGCOMM, 2006.

[24] X. Yang and D. Wetherall. Source selectable path diversity
via routing deflections. In Proc. SIGCOMM, 2006.

	Introduction
	Jumping to (Logical) Conclusions
	Offline Routing, Online Load Balancing
	Computing Paths on Deployed Topology
	Underlying Assumptions About Failures
	Implementation and Deployment Scenarios

	Implications
	Discussion
	References

