Prototyping Fast, Simple, Secure Switches for Ethane

Jianying Luo, Justin Pettit, Martin Casado, John Lockwood, Nick McKeown
Computer Systems Laboratory, Stanford University
Stanford, CA 94305, USA
{jyluo, jpettit, casado, jwlockwd, nickm} @stanford.edu

Abstract

We recently published our proposal for Ethane: A clean-
slate approach to managing and securing enterprise net-
works. The goal of Ethane is to make enterprise networks
(e.g. networks in companies, universities, and home offices)
much easier to manage. Ethane is built on the premise that
the only way to manage and secure networks is to make sure
we can identify the origin of all traffic, and hold someone
(or some machine) accountable for it. So first, Ethane au-
thenticates every human, computer and switch in the net-
work, and tracks them at all times. Every packet can be
immediately identified with its sender. Second, Ethane im-
plements a network-wide policy language in terms of users,
machines and services. Before a flow is allowed into the
network, it is checked against the policy.

Ethane requires two substantial changes to the network:
Network switches and routers are replaced with much sim-
pler switches, which are based on flow tables. The switch
doesn’t learn addresses, doesn’t run spanning tree, routing
protocols or any access control lists. All it does is permit
or deny flows under the control of a central controller. The
controller is the second big change. Each network contains
a central controller that decides if a flow is to be allowed
into the network. It makes its decisions based on a set of
rules that make up a policy.

One premise of Ethane is that although the network is
much more powerful as a whole, the switches are much
simpler than conventional switches and routers. To explore
whether this is true, we built 4-port Ethane switches in ded-
icated hardware (on the NetFPGA platform), running at
1Gb/s per port. We have deployed the switches in our net-
work at Stanford University, and demonstrated that despite
the simplicity of the switches, Ethane can support a very
feature-rich and easy-to-manage network.

1. Introduction
1.1. Background

Security and management are increasingly important in
enterprise networks. A Yankee Group report found that
62% of network downtime in multi-vendor networks comes
from human-error, and that 80% of IT budgets is spent on
maintenance and operations [7]. Network intrusions rou-
tinely lead to costly down-times [1] and the loss of intellec-
tual property [5].

Industry has responded by building switches and routers
that support increasingly complex functions [12, 4] such
as filtering using ACLs, VLANs, NAT and deep-packet
classification. Through the introduction of middle-boxes,
increasing layers of band-aids are being added to the
network—each one adding another layer of complexity that
makes the network harder to manage. These boxes typically
have to be placed in choke points (to make sure all the traffic
passes through them), making the networking less scalable.

We believe that if we continue to add more and more
complexity in the network, it will make it less scalable,
more power-hungry, harder to manage, less reliable and ul-
timately less secure. Instead, we believe the answer lies in
removing complexity from the switches and routers, reduc-
ing them to the very simplest forwarding devices. We be-
lieve that the decision of who can communicate with whom
should be managed by a network-wide policy running in
software in a central location. As we hope to show, new
high-performance computers are now fast enough to make
this practical for quite large networks. This way, networks
can be managed, controlled and secured more easily, and
can evolve more rapidly.

We call our approach Ethane, a new enterprise security
architecture based on Ethernet. In [3] we described Ethane,
as well as a prototype network that we built and deployed
in the Gates Computer Science building at Stanford Univer-
sity.

Ethane has two main characteristics: First, it always
knows who sent a packet. By keeping track of the loca-

tion of all users and machines, and authenticating all names
and addresses, Ethane can always associate a packet with a
particular user or host. Second, Ethane maintains a central
policy (declared at a central controller) to decide who can
communicate with whom. Whenever a flow starts, Ethane
checks the first packet against the network policy: If the
flow is allowed, the Controller selects a route for the flow
and adds a flow-entry to all the switches along the path. If
the flow is denied, no flow-entry is added and its packets are
not forwarded.

An FEthane network has two new parts: (1) a central
controller running in software. The Controller checks all
new flows against a network-wide security policy, picks the
route for accepted flows and installs a flow-entry in every
switch along the path. The Controller handles all bindings
(it keeps track of which port machines are connected to, it
hands out all IP addresses, it handles DNS requests, and
it authenticates all users, end-hosts and Switches); and (2)
Ethernet switches (and routers) are replaced with Ethane
Switches. An Ethane Switch consists of a flow table (one
entry per authorized flow), and a secure connection to the
Controller. The first packet of every new flow is sent to the
Controller; if the Controller accepts the flow, it installs a
new flow-entry in the Switch.

Our prototype network ran for three months with over
300 end-hosts and 19 Switches. We deployed a Controller
(running on a desktop PC), and several types of Ethane
Switch: Wireless access points, 4-port Gigabit Ethernet
hardware Switches (running on the NetFPGA platform),
and 4-port software Switches (based on a desktop CPU and
a 4-port NIC). More details of our experimental network
and our experience deploying it can be found in [3].

1.2. This paper

One of the claimed advantages of Ethane is that the
Switches are very simple: They contain only a flow ta-
ble, and they don’t do learning, MAC or IP address lookup,
NAT, ACLs, routing, spanning tree, or source address filter-
ing. Not only does this make them smaller, lower-cost and
consume less power, it means that—by moving the com-
plexity to the central Controller—it is easier to evolve the
network and add more functionality in a single location.

In this paper we describe the implementation of the
Ethane Switch in hardware. Although it is infeasible for
us to develop custom ASICs, we can use the NetFPGA
platform to build a 4-port Gigabit Ethernet-based Ethane
Switch. The Switch is implemented in Verilog using
an industry-standard design flow, allowing us to estimate
the gate and memory count needed to implement a real
Switch—probably with a larger number of ports—in a cur-
rent ASIC process.

In what follows, we provide an overview of the opera-

Controller

)

Network
Policy
computer, computer
., o
- switch 2

user . SWitchl ™ mm = = user

@

Figure 1. Example of communication on an
Ethane network

tion of an Ethane network in §2. §3 describes the design
and implementation of our Ethane Switch in hardware. We
present a performance analysis of our hardware implemen-
tation in §4. Finally we present related work in §5, and our
conclusions in §6.

2. Overview of Ethane

Figure 1 shows a simple Ethane network.'

When a packet arrives, an Ethane Switch checks the
packet against its flow table. If it matches an entry, the
Switch sends the packet to the specified outgoing port; oth-
erwise, it forwards it to the Controller (Step 1).

When the Controller receives a packet from a Switch,
it checks it against the global policy (Step 2). If it’s al-
lowed, the Controller computes the route? (enforcing any
constraints defined in the policy, such as directing specific
traffic through waypoints) and adds a new entry to every
flow table along the path (Step 3). The Controller sends the
packet back to the Switch, which forwards it along the new
path (Step 4). Flow entries are removed after an inactivity
period or if revoked by the Controller.

While basic Ethane Switches only contain a flow table,
one can imagine slightly more sophisticated Switches with
more capabilities (although we need to guard against the
slippery slope that made switches as complex as they are
today). For example, a Switch might contain multiple pri-
ority queues per port; and the Controller could decide which
queue a flow belongs to. Or a Switch could rewrite the
header as directed to by the Controller; e.g. to implement
NAT (or a new variant), or to change MAC addresses at each
hop to confuse eavesdroppers.

Many natural questions arise from using a central Con-
troller: What are the performance requirements of the Con-

!For a more comprehensive description of Ethane, see [3].
2The Controller constructs the full network topology from link-state
information sent by each Switch.

troller? What happens when a Switch or the Controller
fails? How does the Controller protect itself from attacks?
What happens when users move? A complete discussion of
these topics falls outside the scope of this paper, so we refer
interested readers to [3]. However, our testing indicates that
a single Controller can comfortably handle over 10,000 new
flow requests per second—enough to handle a 22,000-host
network.

3. Switch Design
3.1. Overview

The Switch datapath is essentially a managed flow table.
Flow entries contain a Header (to match packets against),
an Action (to tell the Switch what to do with the packet),
and Per-Flow Data (which we describe below).

There are two common types of entry in the flow ta-
ble: per-flow entries for application flows that should be
forwarded, and per-host entries that describe misbehaving
hosts whose packets should be dropped. For TCP/UDP
flows, the Header field covers the TCP/UDP, IP, and Eth-
ernet headers, as well as physical port information. The
associated Action is to forward the packet to a particular in-
terface, update a packet-and-byte counter (in the Per-Flow
Data), and set an activity bit (so that inactive entries can be
timed-out). For misbehaving hosts, the Header field con-
tains an Ethernet source address and the physical ingress
port. The associated Action is to drop the packet, update
a packet-and-byte counter, and set an activity bit (to tell
when the host has stopped sending). Only the Controller
can add entries to the flow table. Entries are removed be-
cause they timeout due to inactivity (local decision) or be-
cause they are revoked by the Controller. The Controller
can revoke a single, badly behaved flow, or a whole group
of flows belonging to a misbehaving host, a host that has
just left the network, or a host whose privileges have just
changed. The flow table is implemented using two exact-
match tables: One for application flow entries and one for
misbehaving host entries. Because flow entries are exact
matches, rather than longest-prefix matches, it is easy to
use hashing schemes in conventional memories rather than
expensive, power-hungry TCAMs.

Other Actions are possible in addition to just forward
and drop. For example, a Switch might maintain multiple
queues for different classes of traffic, and the Controller can
tell it to queue packets from application flows in a particu-
lar queue by inserting queue IDs into the flow table. This
can be used for end-to-end L2 isolation for classes of users
or hosts. A Switch could also perform address translation
by replacing packet headers. This could be used to obfus-
cate addresses in the network by swapping addresses at each
Switch along the path (an eavesdropper would not be able

Figure 2. Photograph of the NetFPGA circuit
board

to tell which end-hosts are communicating) or to implement
address translation for NAT in order to conserve addresses.
A Switch could also control the rate of a flow.

The Switch also maintains a handful of implementation-
specific entries to reduce the amount of traffic sent to the
Controller. This number should remain small to keep the
Switch simple, although this is at the discretion of the de-
signer. On one hand, such entries can reduce the amount of
traffic sent to the Controller; on the other hand, any traffic
that misses on the flow table will be sent to the Controller
anyway, so this is just an optimization.

The Switch needs a small local manager—running in
software—to establish and maintain the secure channel to
the Controller, to monitor link status, and to provide an in-
terface for any additional Switch-specific management and
diagnostics. The software also handles hardware exceptions
(e.g. flow table overflow).

3.2. Hardware Forwarding Path

The job of the hardware datapath is to process as large a
fraction of packets as possible, and leave relatively few to
the slower software. An arriving packet is compared against
the flow table. If it matches, the associated Action is exe-
cuted (e.g. forward, drop, over-write header). If it doesn’t
match, the packet is sent to software.

Our Switch hardware is built on the NetFPGA plat-
form [10] developed in our group at Stanford University.
A NetFPGA card plugs into the PCI slot of a desktop PC,
and the Switch software runs in Linux on the desktop PC. A
NetFPGA board (shown in Figure 2) consists of four Gi-
gabet Ethernet interfaces, a Xilinx Virtex-Pro-50 FPGA,
memory (SRAM and DRAM) and a PCI interface to the
host computer. NetFPGA is designed as an open platform
for research and teaching using an industry-standard design
flow. Packets can be processed at full line-rate in hardware.’

In our hardware forwarding path, packets flow through a
standard pipeline of modules. All the modules run in par-
allel and complete in 16 clock cycles (at 62.5MHz). The

3The implementation described here is running on version 2.0 of NetF-
PGA, and is currently being ported to version 2.1, which runs more than
twice as fast. The functional Switch on version 2.1 of NetFPGA will be
available in summer 2007.

modules check packet lengths, parse packet headers, imple-
ment hash functions, perform lookup functions, track traffic
statistics, maintain a flow table in SRAM, and enable over-
write of packet headers as needed. The main design choice
is how to implement the flow table.

We chose to implement the flow table as hash table
(made easy because the flow table requires only exact-
match lookups). In particular, we use double-hashing: we
use two CRC functions to generate two pseudo-random in-
dices for every packet—each index is used to lookup into a
different hash table. This way, we make it very likely that
at least one of the indices will find a unique match. If both
hashes return entries that clash with existing entries, we say
there has been a collision, and rely on software to process
the packet.

A block level diagram of the Ethane datapath is illus-
trated in Figure 3.

M Ethemet MAC FIFO
(R

L .
=848 Undersize Packet
Checker

Drop Undersize

Packet B -+
‘ Facket Header |
E

Farsar

c :

Twa CRC Hash
Functions Comguting

=648

Fram CPU PGl g
-

=]

Ward
azh x Buffer
512K o
SRAM

ft—pe]| Flovw
Table Flow Entry Lookug
bank 0 sRAM [and Upcate |
Ctrl

<
azb =
sizk [+ Packet Header
SRAM Orwenawrite and Enque
bank 1
From CFU FCI
K H 1 J
h 4
Queus Queus Queaus Queue
from o 1o to
cPU Fort 1 Port 2 CPU

Ethernet MAC FIFD
)

Figure 3. Block diagram of Ethane datapath
3.3. Modules in the Datapath

In Block A, received packets are checked for a valid
length, and undersized packets are dropped.

In preparation for calculating the hash-functions, Block
B parses the packet header to extract the following fields:
Ethernet header, IP header, and TCP or UDP header. A
Sflow-tuple is built for each received packet; for an IPv4
packet, the tuple has 155 bits consisting of: MAC DA

(lower 16-bits), MAC SA (lower 16-bits), Ethertype (16-
bits), IP src address (32-bits), IP dst address (32-bits), IP
protocol field (8-bits), TCP or UDP src port number (16-
bits), TCP or UDP dst port number (16-bits), received phys-
ical port number (3-bits).

Block C computes two hash functions on the flow-tuple
(padded to 160-bits), and returns two indices; Block D uses
the indices to lookup into two hash tables in SRAM. In our
design, we use a single SRAM to hold both tables, and so
have to perform both lookups sequentially.* The flow table
stores 8,192 flow entries. Each flow entry holds the 155-bit
flow tuple (to confirm a hit or a miss on the hash table), and
an 152-bit field used to store parameters for an action when
there is a lookup hit. The action fields include one bit to
indicate a valid flow entry, three bits to identify a destina-
tion port (physical output port, port to CPU, or null port that
drops the packet), 48-bit overwrite MAC DA, 48-bit over-
write MAC SA, a 20-bit packet counter, and a 32-bit byte
counter.

Block E controls the SRAM, arbitrating access for two
requestors: The flow table lookup (two accesses per packet,
plus statistics counter updates), and the CPU via the PCI
bus. Every 16 system clock cycles, the module can read
two flow-tuples, update a statistics counter entry, and per-
form one CPU access to write or read 4 bytes of data. To
prevent counters from overflowing, the byte counters need
to be read every 30 seconds by the CPU, and the packet
counters every 0.5 seconds (in our next design, we will in-
crease the size of the counter field to reduce the load on the
CPU, or use well-known counter-caching techniques, such
as [9]).

The 307-bit flow-entry is stored across two banks of
SRAM. Although we have 4MB of SRAM, our current de-
sign only uses 320KB, which means our table can hold
8,192 entries. It is still too early to tell how large the flow
table needs to be—our prototype network suggests that we
can expect only a small number of entries to be active at any
one time. However, a modern ASIC could easily embed a
much larger flow table, with tens of thousands of entries,
giving headroom for situations when larger tables might be
needed; e.g. at the center of a large network, or when there
is a flood of broadcast traffic.

Block F buffers packets while the header is processed in
Blocks A-E. If there was a hit on the flow table, the packet
is forwarded accordingly to the correct outgoing port, the
CPU port, or could be actively dropped. If there was a miss
on the flow table, the packet is forwarded to the CPU. Block
G can also overwrite a packet header if the flow table so
indicates.

Overall, the hardware is controlled by the CPU via
memory-mapped registers over the PCI bus. Packets are

4A higher performance Switch would, presumably, use two or more
memories in parallel if needed.

transferred using standard DMA.
3.4. Software Control and Management

The Ethane Switch software has two responsibilities:
First, it establishes and maintains a secure channel to the
Controller. On startup, all the Switches find a path to the
Controller by building a modified spanning-tree, with the
Controller as root. The control software then creates an en-
crypted TCP connection to the Controller. This connection
is used to pass link-state information (which is aggregated
to form the network topology) and all packets requiring
permission checks to the Controller. Second, the software
maintains a flow table for flow entries not processed in hard-
ware, such as overflow entries due to collisions in the hard-
ware hash table, and entries with wildcard fields. Wildcards
are used for the small implementation-specific table, and in
our design are used for control traffic with loose speed re-
quirements. The software also manages the addition, dele-
tion, and timing-out of entries in the hardware.

If a packet doesn’t match a flow entry in the hardware
flow table, it is passed to software. The packet didn’t match
the hardware flow table because: (i) It is the first packet of
a flow and the Controller has not yet granted it access (ii)
It is from a revoked flow or one that was not granted ac-
cess (iii) It is part of a permitted flow but the entry collided
with existing entries and must be managed in software (iv)
It matches a flow entry containing a wildcard field and is
handled in software.

In our software design we maintain two flow tables;
one is a secondary hash table for implementation-specific
entries—as an optimization to reduce traffic to the Con-
troller. For example, we used the second table to set up
symmetric entries for flows that are allowed to be outgoing-
only. Because we can’t predict the return source MAC ad-
dress (when proxy ARP is used), we save a lot of traffic
to the Controller if we maintain entries with wildcards for
the source MAC address and incoming port. Because it is
in software, we made the second flow table large—32,768
entries. In practice, as we will see, a much smaller table
would suffice. The other flow table is a small (1500-entry)
associative memory to hold flow-entries that could not find
an open slot in either of the two hash tables. In a dedicated
hardware solution, this small associative memory would be
placed in hardware. Alternatively, a hardware design could
use a TCAM for the whole flow table in hardware.

4. Results

Now that we have a hardware implementation of an
Ethane Switch deployed in our prototype network, we can
ask several performance questions. We are most interested
in three questions: How big does the flow table need to be

for reasonable performance?, How complicated is the hard-
ware of an Ethane Switch, particularly when compared to
a regular Ethernet switch?, and Can our NetFPGA design
process minimum length packets at the Gigabit Ethernet
line-rate?

4.1. How big does the flow table need to
be?

In an Ethernet switch, the forwarding table is sized to
minimize broadcast traffic: as switches flood during learn-
ing, this can swamp links and makes the network less se-
cure.’ As a result, an Ethernet switch needs to remember
all the addresses it’s likely to encounter; even small wiring
closet switches typically contain a million entries in a large,
power-hungry off-chip memory (SRAM or TCAM).

Ethane Switches, on the other hand only need to keep
track of flows in-progress. For a wiring closet, this is likely
to be a few hundred entries at a time, small enough to be
held in a tiny fraction of a switching chip. Even for a
campus-level Switch, where perhaps tens of thousands of
flows could be ongoing, it can still use on-chip memory that
saves cost and power.

To demonstrate, we have analyzed traces from our local
Ethane deployment of 300 nodes as well as public traces
collected from LBL [8]. Figure 4 shows the number of ac-
tive flows at a switch in our Ethane deployment over 10
days—it never exceeded 500. With a table of 8,192 en-
tries and a two-function hash-table, we never encountered
a collision. A dataset collected from LBL (Figure 5) has a
maximum of 1500 simultaneous flows within the 8,000 host
network.

From these numbers we conclude that a Switch for a
university-sized network should have a flow table capable
of holding 8-16K entries. If we assume that each entry is
64B, the table requires about 1MB to 4MB if using a two-
way hashing scheme [2]. In contrast, a typical commercial
enterprise Ethernet switch today holds 1 million Ethernet
addresses (6MB, and larger if hashing is used), 1 million
IP addresses (4MB of TCAM), 1-2 million counters (SMB
of fast SRAM), and several thousand ACLs (more TCAM).
We conclude that the memory requirements of an Ethane
switch are quite modest in comparison to today’s Ethernet
switches.

4.2. How complicated is the hardware?
We measured the NetFPGA resources used by our

Ethane hardware design. In our count, we exclude the
space required to instantiate the Ethernet MACs® on the Xil-

SIn fact, network administrators often use manually configured and in-
flexible VLANS to reduce flooding.
6They are tri-mode GE, 100Mb/s, 10Mb/s MACs.

480 T
400
320
240
160

Active flows

0 5 10 15 20

Time (hours)
Figure 4. Active flows through two of our de-
ployed switches

1200 T T T T T T
1000

o

£ s00

© 600

& 400

[&]

< 200

¢ 5 10 15 20 25 30 35
Time (hours)
Figure 5. Active flows for LBL network [8]

inx Virtex-1I Pro FPGA because these circuits need to be
present for any switch design.

In total, our Ethane Switch (without the MACs) utilized
6,142 of total 27,392 Slice Flip Flops, 8,790 of total 27,392
4-input LUTS, and 49 of total 136 Block RAMs each with
18KD capacity. These utilized resources account for 32.1%
of logic cells and 36.0% of Block RAMs in a Virtex II-
Pro 30 chip. When implemented on the Virtex-II Pro 50
FPGA chip on our newer platform, the datapath (exclud-
ing the MACs) uses 18.6% of the available logic cells and
21.1% of Block RAMs. The 8,192-entry flow table in the
datapath design uses 320KB of the external SRAM.

We also synthesized our hardware using a commercial
65nm ASIC standard cell library. The Ethane hardware
logic, excluding memories and MACs, uses 61,971 gate-
equivalents and would occupy just 0.1289 mm? of die.
The 8,192-entry flow table—if built from on-chip SRAM—
would take up 1.8 mm?. In comparison, a typical modern
Ethernet switch implemented in a 65 nm ASIC would re-
quire millions of gates, its switching table of 1 million en-
tries an area of about 39 mm?2, and its routing table with
250K entries about 37 mm?. As a packet processing datap-
ath, the Ethane hardware would use over 30 times less area
than a typical modern Ethernet switch.

4.3. Can our NetFPGA implementation
process packets at line-rate?

The simple answer is yes. Table 1 shows the forwarding
speed of our design for different packet sizes. Because of

Packet Size 64 bytes 65 bytes 100 bytes 1518 bytes
Measured 1524Mbps | 1529Mbps | 1667Mbps | 1974Mbps
Optimal 1524Mbps | 1529Mbps | 1667Mbps | 1974Mbps

Table 1. Hardware forwarding speeds for dif-
ferent packet sizes. All tests were run with
full-duplex traffic. Totals include Ethernet
CRC, but not the inter-packet gap or the
packet preamble. Tested with an Ixia 1600T
traffic generator.

the required inter-packet gap and preamble, the maximum
data rate is reduced for short packets. As can be seen from
the table, our design achieves full line-rate for Gigabit Eth-
ernet for all packet sizes.

For comparison, we repeated the tests with a software-
only Switch. The Switch ran on a 3.2GHz Intel Celeron
CPU with a 4-port Gigabit Ethernet PCle network inter-
face card. Packet processing was placed in the kernel to
maximize throughput. For 1518 bytes packets, the software
Switch sustained 1Gb/s. But as we reduced the packet size,
the CPU could not keep up. At 100 bytes, the Switch could
only achieve a throughput of 16 Mb/s’. Clearly, for now,
the switch needs to be implemented in hardware.

5. Related Work

In 4D [6], a centralized control plane pushes forward-
ing tables and filters into the network. Our work extends
this approach by providing fine-grained control and com-
plex forwarding functions defined and enforced per flow.

SANE [4], a previous system we designed, used en-
crypted source routes assigned by a central controller to en-
force a network-wide policy. Unlike Ethane, Sane required
modifications to all end-hosts as well as the complete net-
work infrastructure.

The Shunt project [11] also proposes a flow-based ap-
proach to enforcing network security policy from a single
network appliance. However, Ethane does not require a
single choke point to exact control over the network since
it subsumes both security policy and network forwarding.
Additionally, Ethane provides rich forwarding mechanisms
such as isolation and NATing.

6. Conclusion

Several factors suggest that there will be a trend away
from adding more complexity on the datapath of Switches
and routers—and there might be a tendency towards sim-
plicity and streamlining. Obvious reasons include the desire

"The drastic degradation in performance appears to be partially due to
interrupt handling overheads. Better throughput could likely be achieved
via polling in the network driver.

for higher port density, lower cost and lower power con-
sumption. We anticipate that the need for reliability and
manageability will drive down complexity; and the desire
to make networks easier to evolve—coupled with higher
performance computers - will lead to functionality being
moved from the datapath to central controllers running in
software. Last, but perhaps first, the increasing attention
paid to security (and accountability) suggests that network
functions will be brought together in a single controller, in-
cluding routing, topology management, address allocation
and DNS.

Ethane is our proposal for moving complexity off the
datapath, and to centralize the management and control of
networks.

The success of Ethane does not particularly depend on
the Switches being simpler and lower cost—we believe the
main advantage is the control it gives to the network admin-
istrator. However, it is still worth understanding how simple
the Ethane Switches will be. Our results presented here sug-
gest that an Ethane Switch can be considerably simpler than
a conventional Ethernet switch or router.

7. Acknowledgments

We thank Greg Watson for his valuable input. This pa-
per is based upon work supported by the National Science
Foundation under Grant No. CNS-0627112 (The 100x100
Clean Slate Program), from the FIND program with funding
from DTO. The research was also supported in part by the
Stanford Clean Slate program. Martin Casado was funded
by a DHS graduate fellowship.®

References

[1] Sasser worms continue to threaten corporate productivity.
http://www.esecurityplanet.com/alerts/article.php/3349321,
2004.

[2] A. Z. Broder and M. Mitzenmacher. Using multiple hash
functions to improve IP lookups. In Proc. INFOCOM, Apr.
2001.

[3] M. Casado, M. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking control of the enterprise. In
SIGCOMM Computer Comm. Rev., Aug. 2007.

[4] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman,
D. Boneh, N. McKeown, and S. Shenker. SANE: A pro-
tection architecture for enterprise networks. In USENIX Se-
curity Symposium, 2006.

[5] D. Cullen. Half life 2 leak means no launch for Christmas.

http://www.theregister.co.uk/2003/10/07/half_life_2_leak_means/,

Oct. 2003.

8Disclaimer: Any opinions, findings, conclusions, or recommendations
expressed in this article are those of the authors and do not necessarily
represent the views of the sponsors supporting this project.

(6]

(7]

(8]

(9]

(10]

(11]

[12]

A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean
slate 4D approach to network control and management. In
SIGCOMM Computer Comm. Rev., Oct. 2005.

Z. Kerravala. Configuration management delivers business
resiliency. The Yankee Group, Nov. 2002.

R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and
B. Tierney. A first look at modern enterprise traffic. In Proc.
Internet Measurement Conference, Oct. 2005.

D. Shah, S. Iyer, B. Prabhakar, and N. McKeown. Maintain-
ing statistics counters in line cards. In /IEEE Micro, Jan-Feb
2002.

G. Watson, N. McKeown, and M. Casado. NetFPGA: A
tool for network research and education. In Workshop on
Architecture Research using FPGA Platforms, Feb. 2006.
N. Weaver, V. Paxson, and J. M. Gonzalez. The shunt: an
FPGA-based accelerator for network intrusion prevention.
In FPGA "07: Proceedings of the 2007 ACM/SIGDA 15th in-
ternational symposium on Field programmable gate arrays,
pages 199-206, 2007.

G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, and
G. Hjalmtysson. Routing design in operational networks: A
look from the inside. In Proc. SIGCOMM, Sept. 2004.

