Flow-Cookies: Using Bandwidth Amplification
to Defend Against DDoS Flooding Attacks

Martin Casado, Pei Cao
Stanford University
{casado,cao} @cs.stanford.edu

I. INTRODUCTION

Flooding attacks, where an attacker attempts to ex-
haust the downstream bandwidth of a server, are par-
ticularly difficult to defend against. Unlike other forms
of DDoS such as SYN-flooding, computation attacks
or request floods, the downstream bandwidth is not
under a web-server’s control. And therefore, while there
exist server side protection mechanisms to protect server
resources, such as syn-cookies [1] and secure admis-
sion control schemes, few practical solutions to defend
against flooding exist today.

Part of the problem is the difficulty in pushing filtering
requests into the network where there is sufficient band-
width to handle the flood. An in-network element cannot
distinguish a single packet as being part of a legitimate
flow without doing flow tracking, a tricky proposition [5]
that traditionally requires per-flow state which may be
untenable for a high-bandwidth link. Other solutions are
easily fooled by source spoofing [2] or require massive
architectural changes [4].

We present “flow-cookies”, a mechanism in which a
website can reliably send filtering requests to a coop-
erating node in the network, leveraging its protection
bandwidth. In this approach, a third party provider
installs a flow-cookies enabled middlebox (Figure 1),
called the cookie box, in the network at a high bandwidth
link. All traffic to or from the protected webserver must
traverse the cookie box. The cookie box guarantees that
all packets that pass between it and the server belong
to a legitimate TCP flow with a valid sender. Further if
a web-server deems a client to be misbehaving, it can
request the cookie box to filter the offending IP.

Flow-cookies, is a simple extension to SYN
cookies[1], wherein the protection middlebox places a
secure, limited lifetime cookie within the TCP times-
tamp of every outgoing data packet from the protected
server. Flow-cookies is lightweight, low-state, does not
require modification to clients, and is resistant to source

Aditya Akella
University of Wisconsin, Madison
akella@cs.wisc.edu

Niels Provos
Google, Inc.
niels@google.com

high bandwidth link|

Cookie-box

Web server

Fig. 1. With flow-cookies, a webserver cooperates with a “cookie box” connected to a high bandwidth
link. The cookie box provides high-bandwidth protection for the web-server by filtering all blacklisted IPs and
only allowing packets that are part of legitimate flows to pass.

spoofing. Further flow-cookies does not have the first-
packet flooding problem [4] and does not require massive
infrastructural changes to be effective.

II. MECHANISM OVERVIEW

Flow-cookies operates using a stand-alone device—
which we call the flow-cookie box, or cookie box for
short—deployed by a third-party service provider. We
assume that the cookie box is deployed in a data center
with a very high speed connection (e.g. a tier-1 ISP). All
traffic to and from the protected web-server must traverse
the cookie box. The cookie box maintains a private
channel to each back-end web-server it is protecting.

Flow-cookies is a defense for TCP services. Therefore,
we assume that incoming packets for other protocols,
such as UDP or ICMP, are placed in a separate queue
and cannot affect TCP flows.

The cookie box and protected web-servers cooperate
to perform the following four tasks:

1) All incoming clients complete the TCP 3-way
handshake with the cookie box. The box uses SYN
cookies for the handshake. SYN cookies does not
require state maintenance at the cookie box and
can be run at gigabit line speeds [3]. This step
ensures that SYN floods cannot traverse the link
between the cookie box and the protected website.

2) Once a client has completed the handshake, the
cookie box hands off the connection request to the
website using a TCP-handoff scheme.

3) For outgoing packets from the web-server to its
clients (this happens after the web-server has
accepted the client connection request), the cookie
box adds a secure flow-cookie. The cookie is
computed using a keyed message authentication
code over a counter and the connection 4-tuple:
cookie = MAC(S,., C,.|src,|srcport|dstip|dstport)
Where S, is a secret known only to the cookie box
and C) is a counter that increments periodically to
time-out the cookie.

4) The flow-cookie is echoed back by the client, and
checked by the cookie box. This is to ensure that
only packets belonging to flows accepted by the
server traverse the link between the cookie box
and the web server.

5) The webserver understands the accepted usage
policy of its local administration, and is already
keeping per-flow state for each outstanding con-
nection. Therefore, the backend server is in the
best position to determine if a client is misbehav-
ing. IPs (and associated ports) deemed malicious
by the webserver (e.g. deviant flows) are passed
to the cookie box, which filters current and future
packets from the offending clients.

Figure 2 contains psuedo-code of the flow-cookies
algorithm as performed by the cookie box.

To be backward compatible, we exploit the TCP
timestamp option, and place the flow-cookie from step
#3 in the timestamp field of packets (which is echoed
back by the client). Flow-cookies are valid for a limited
period and are non-forgeable. The cookie box verifies
that all packets contain a legitimate cookie thus ensuring
that only packets from clients accepted by the server are
forwarded. All others are dropped. Therefore the cookie
box provides protection proportional to its line-speed for
one or more backend servers which, themselves, have
low speed connections.

III. PROPERTIES

Requiring the cookie box to offload the TCP-
handshake in the network serves a duel purpose. First,
all flows that are passed back to the server must have
completed the three way handshake and therefore are
unlikely to be spoofed. This greatly increases their utility
in making filtering decisions. Second, spoofed SYN
floods, which are difficult to detect in the network, are
handled at a high-bandwidth link raising the resources
requirements of an attacker to launch an effective flood.

Sr: secret

Cr: current counter value
Ts: last server timestamp
FLOW_START: known constant

1 if packet is SYN:

2 if scrIP in IPBlacklist:

3 drop packet and exit

4 syn cookie = HMAC(Sr, Cr | 4-tuple)

5 send back SYN ACK with ISN = syn cookie and
timestamp = FLOW_START

6 else:

7 cookie = HMAC(Sr, Cr | 4-tuple)
8 if timestamp == FLOW_START:

9 if ACK sequence != cookie:
10 drop packet and exit

11 else:

12 if timestmp != cookie:

13 drop packet and exit

14 else:

15 if <srcIP and srcPort> in FlowBlacklist:
16 drop packet and exit

18 forward the packet

Fig. 2.

Per-packet logic at the cookie box for packets destined to the protected web-server.

The use of flow-cookies relieves the cookie box of
having to maintain state during normal operations (how-
ever, the box may store IP filters upon a webserver’s
request). The flow-cookies allow the cookie box to
determine if packet belongs to a legitimate flow. That
is, whether the packet was sent by a host that completed
the three-way handshake (required to get the cookie) and
whether or not flow has been revoked.

The use of the TCP timestamps to carry to cookie
allows flow-cookies to operate without modification to
clients. To demonstrate this, we have implemented flow-
cookies in software and tested our implementation us-
ing live connections between various commodity client
operating systems (WindowsXP, MacOSX, NetBSD,
Linux2.4, Linux2.6) and multiple popular, public web
sites. Our implementation is able to operate at gigabit
speeds including per-packet IP filtering of millions of
addresses. We also found our approach to be very
effective against high volume SYN flooding attacks. Full
details of our implementation can be found in [6].

REFERENCES

[1] D. Bernstein. Syn cookies. http://cr.yp.to/syncookies.html, 1996.

[2] J. Ioannidis and S. M. Bellovin. Implementing pushback: Router-
based defense against DDoS. In Proceedings of Network and
Distributed System Security Symposium, 2002.

[3] Netscaler syn flood protection,
http://www.netscaler.com/docs/library/NetScalerSYNDefense.pdf.

[4] K. Argyraki and D. Cheriton. Network capabilities: The good, the
bad and the ugly. In ACM HotNets 1V, 2005.

[5] M. Handley, C. Kreibich and V. Paxson, Network Intrusion De-
tection: Evasion, Traffic Normalization, and End-to-End Protocol
Semantics In USENIX Security Symposium, 2001.

[6] M. Casado, P. Cao, A. Akella and N. Provos, Flow-Cookies: Us-
ing Bandwidth Amplification to Defend Against DDoS Flooding
Attacks http://yuba.stanford.edu/~casado/flow_cookies.pdf, 2006.

