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Abstract

Enterprise networks are often large, run a wide variety of applications and protocols,

and operate under strict reliability constraints; thus, they represent a challenging

environment for security management. Security policies in todays enterprise are typ-

ically enforced by regulating connectivity with a combination of complex routing and

bridging policies along with various interdiction mechanisms such as ACLs, packet

filters, and middleboxes that attempt to retrofit access control onto an otherwise

permissive network architecture. This leads to networks that are inflexible, fragile,

difficult to manage, and still riddled with security problems.

This thesis presents a principled approach to network redesign that creates more

secure and manageable networks. We propose a new network architecture in which

a global security policy defines all connectivity. The policy is declared at a logically

centralized Controller and then enforced directly at each switch. All communication

must first obtain permission from the Controller before being forwarded by any of

the network switches. The Controller manages the policy namespace and performs

all routing and access control decisions, while the switches are reduced to simple

forwarding engines that enforce the Controller’s decisions.

We present an idealized instantiation of the network architecture called SANE.

In SANE, the Controller grants permission to requesting flows by handing out ca-

pabilities (encrypted source routes). SANE switches will only forward a packet if it

contains a valid capability between the link and network headers. SANE thus intro-

duces a new, low-level protection layer that defines all connectivity on the network.

We present the design and prototype implementation, showing that the design can

easily scale to networks of tens of thousands of nodes.
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SANE would require a fork-lift replacement of an enterprise’s entire networking

infrastructure and changes to all the end-hosts. While this might be suitable in some

cases, it is clearly a significant impediment to widespread adoption. To address this,

we present Ethane a deployable instantiation of our architecture. Ethane does not

require modification to end-hosts and can be incrementally deployed within an exist-

ing network. Instead of handing out capabilities, permission is granted by explicitly

setting up flows at each switch. We have implemented Ethane in both hardware

and software, supporting both wired and wireless hosts. We describe our experience

managing an operational Ethane network of over 300 hosts.
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Chapter 1

Introduction

Internet architecture was born in a far more innocent era, when there was little need

to consider how to defend against malicious attacks. Many of the Internet’s primary

design goals that were so critical to its success, such as universal connectivity and

decentralized control, are now at odds with security.

Worms, malware, and sophisticated attackers mean that security can no longer be

ignored. This is particularly true for enterprise networks, where it is unacceptable to

lose data, expose private information, or lose system availability. Security measures

have been retrofitted to enterprise networks via many mechanisms, including router

ACLs, firewalls, NATs, and middleboxes, along with complex link-layer technologies

such as VLANs.

Despite years of experience and experimentation, these mechanisms remain far

from ideal and have created a management nightmare. Requiring a significant amount

of configuration and oversight [58], they are often limited in the range of policies

that they can enforce [63] and produce networks that are complex [67] and brittle

[68]. Moreover, even with these techniques, security within the enterprise remains

notoriously poor. Worms routinely cause significant losses in productivity [18] and

increase potential for data loss [44, 49]. Attacks resulting in theft of intellectual

property and other sensitive information are also common [32].

The long and largely unsuccessful struggle to protect enterprise networks con-

vinced us to start over with a clean slate. We aim to design manageable networks

1



2 CHAPTER 1. INTRODUCTION

with security as a fundamental design property rather than an afterthought. Our ap-

proach begins with an idealized network architecture in which we assume that we can

replace every networking component (such as switches, routers, and firewalls) as well

as end-host networking stacks. Once we arrive at a solution that has the appropriate

properties, we address the compatibility issue. We draw from the lessons learned

in designing a new architecture from the ground up and apply them to the design

and implementation of a more practical solution. This second architecture does not

require changes to the end host and can be incrementally deployed within existing

networks.

1.1 Problems with Current Approaches

Before describing our approach, we discuss the shortcomings of the architecture most

commonly used in today’s networks. In particular, we look at the properties that

lead to insecurities or those that contribute to the lack of network manageability.

Loose Address Bindings and Lack of Attribution Today’s networking tech-

nologies are largely based on Ethernet and IP, both of which use a destination based

datagram model for forwarding. The source address of packets traversing the network

are largely ignored by the forwarding elements.1

This has two important, negative consequences. First, a host can easily forge

its source address to evade filtering mechanisms in the network. Source forging is

particularly dangerous within a LAN environment where it can be used to poison

switch learning tables and ARP caches. Source forging can also be used to fake

DNS [15] and DHCP responses. Secondly, lack of in-network knowledge a traffic

sources makes it difficult to attribute a packet to a user or to a machine. At its

most benign, lack of attribution can make it difficult to track down the location of

“phantom-hosts” [13]. More seriously, it may be impossible to determine the source

of an intrusion given a sufficiently clever attacker.

1With the exception of learning in Ethernet switches, however the learnt addresses are short-lived,
inaccessible, and not useful for attribution.
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Complexity of Mechanism A typical enterprise network today uses several mech-

anisms simultaneously to protect its network: VLANs, ACLs, firewalls, NATs, and so

on. The security policy is distributed among the boxes that implement these mech-

anisms, making it difficult to correctly implement an enterprise-wide security policy.

Configuration is complex; for example, routing protocols often require thousands of

lines of policy configuration [68]. Furthermore, the configuration is often dependent

on network topology and based on addresses and physical ports, rather than on au-

thenticated end-points. When the topology changes or hosts move, the configuration

frequently breaks, requires careful repair [68], and potentially undermines its security

policies.

A common response is to put all security policy in one box and at a choke-point

in the network, for example, in a firewall at the network’s entry and exit points. If

an attacker makes it through the firewall, then they will have unfettered access to

the whole network. Another way to address this complexity is to enforce protection

of the end host via distributed firewalls [24]. While reasonable, this places all trust

in the end hosts. End host firewalls can be disabled or bypassed, leaving the net-

work unprotected, and they offer no containment of malicious infrastructure, e.g., a

compromised NIDS [17].

Proliferation of Trust Today’s networks provide a fertile environment for the

skilled attacker. Switches and routers must correctly export link state, calculate

routes, and perform filtering; over time, these mechanisms have become more com-

plex, with new vulnerabilities discovered at an alarming rate [17, 19, 16, 20]. If

compromised, an attacker can take down the network [47, 66] or redirect traffic to

permit eavesdropping, traffic analysis, and man-in-the-middle attacks.

Proliferation of Information Another resource for an attacker is the proliferation

of information on the network layout of today’s enterprises. This knowledge is valu-

able for identifying sensitive servers, firewalls, and IDS systems that can be exploited

for compromise or denial of service. Topology information is easy to gather: switches

and routers keep track of the network topology (e.g., the OSPF topology database)
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and broadcast it periodically in plain text. Likewise, host enumeration (e.g., ping and

ARP scans), port scanning, traceroutes, and SNMP can easily reveal the existence

of, and the route to, hosts. Today, it is common for network operators to filter ICMP

and disable or change default SNMP passphrases to limit the amount of information

available to an intruder. As these services become more difficult to access, however,

the network becomes more difficult to diagnose.

1.2 Solution Requirements

In addition to retaining the characteristics that have resulted in the wide deployment

of IP and Ethernet networks – simple use model, suitable (e.g., Gigabit) performance,

the ability to scale to support large organizations, and robustness aand adaptability to

failure – a solution should address the deficiencies addressed in the previous section.

In particular, a security management architecture solution should conform to the

following central design principles.

• The network should be managed from a single global security policy declared

over mnemonic names. We seek an architecture that supports natural poli-

cies that are independent of the topology and the equipment used e.g., “allow

everyone in group sales to connect to the http server through a web proxy.”.

This contrasts with todays policies, which are typically expressed in terms of

topology-dependent ACLs in firewalls. Through high-level policies, our goal is

to provide access control that is restrictive (i.e. provides least privilege access to

resources) yet flexible, so that the network does not become unusable. Through

logical centralization, we avoid the distributed maintenance problems that are

legion with todays firewalls and ACL configuration files[64].

• Policy should determine the path that packets follow. There are several reasons

for policy to dictate the paths. First, policy might require that packets pass

through an intermediate middlebox; for example, a guest user might be required

to communicate via a proxy, or the user of an unpatched operating system might

be required to communicate via an intrusion detection system [4, 9]. Second,
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traffic can receive more appropriate service if its path is controlled. Directing

real-time communications over lightly loaded paths, important communications

over redundant paths, and private communications over paths inside a trusted

boundary would lead to better service. Allowing the network manager to de-

termine the paths via policy–where the policy is in terms of high-level names–

leads to finer-level control and greater visibility than current designs.

• Minimize the trusted computing base. Today’s networks trust multiple com-

ponents, such as firewalls, switches, routers, DNS, and authentication services

(e.g., Kerberos, AD, and Radius). The compromise of any one component can

wreak havoc on the entire enterprise. Our goal is to reduce the trusted com-

puting base as much as possible; optimally, the architecture would gracefully

manage malicious switches.

• The network should enforce a strong binding between a packet and its origin. It

is difficult to reliably determine the origin of a packet: addresses are dynamic,

change frequently, and are easily manipulated. As eluded to in the previous

section, the loose binding between users and their traffic is a constant target for

attacks in enterprise networks. If the network is governed by a policy declared

over high-level names (e.g., users and hosts), then packets should be identifiable

as coming from a particular physical entity. This requires a strong binding

between a user, the machine they are using, and the addresses in the packets

that they generate. This binding must be kept consistent at all times by tracking

users and machines as they move.

• Authenticated diagnostics. In order to further an attack from a compromised

machine, an attacker will often map out the network’s topology to identify fire-

walls, critical servers, and the location of end hosts as well as to identify end

hosts and services that can be compromised. This reconnaissance is often ac-

complished using the network’s own diagnostic tools, such as SNMP or ICMP.

Turning off such features makes the network opaque to administrators. Rather

than require a trade-off between security and diagnostic transparency, the net-

work should treat network information as it would any other resource and allow
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access controls to be expressed over it.

1.2.1 Threat Environment

In the proposed architecture, we seek to provide protection robust enough for de-

manding threat environments, such as government and military networks, yet flexible

enough for everyday use. We assume a robust threat environment with both in-

sider (authenticated users or switches) and outsider threats (e.g., an unauthenticated

attacker plugging into a network jack). This attacker may be capable of compro-

mising infrastructure components and exploiting protocol weaknesses; consequently,

we assume that attacks can originate from any network element, such as end hosts,

switches, or firewalls.

Our goal is to prevent malicious end hosts from sending traffic anywhere that has

not been explicitly authorized or, if authorized, subjecting the network to a denial-

of-service attack that cannot be subsequently disabled. Our solution also makes an

attempt to maintain availability in the face of malicious switches. Attack resistance

is described in more detail in Section 2.3.

1.3 A Centralized, Default-Off Solution

In order to achieve the properties described in the previous section, we choose to build

our designs around a centralized control architecture. We feel that centralization is

the proper approach to build a secure and manageable network for the enterprise.

IP’s best effort service is both simple and unchanging, which makes it well-suited

for distributed algorithms. Network security management is quite the opposite: its

requirements are complex and require strong consistency, making it quite difficult to

compute in a distributed manner.

Both of the proposed architectures in this thesis are managed from a logically

centralized Controller. In our approach, rather than distributing policy declaration,

routing computation, and permission checks among the switches and routers, these

functions are all managed by the Controller. As a result, the switches are reduced
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Figure 1.1: A traditional, distributed architecture (left) when compared to a cen-
tralized approach. With a centralized architecture, switches are reduced to simple
forwarding elements while high level functions such as routing, name bindings and
address allocations are managed by a single, centralized Controller.

to very simple, forwarding elements whose sole purpose is to enforce the Controllers

decisions. Figure 1.1 shows how, in a centralized architecture, a single Controller

subsumes functionality handled today by routers and special purpose servers.

Centralizing the control functions provides the following benefits. First, it reduces

the trusted computing base by minimizing the number of heavily trusted components

on the network to one. This is in contrast today in which a compromise of any of

the trusted services, LDAP, DNS, DHCP, or routers can wreak havoc on a network.

Secondly, limiting the consistency protocols between highly trusted entities protects

them from attack. Today consistency protocols are often done in plaintext (e.g.

dyndns) can can thus be subverted by a malicious party with access to the traffic.

Finally, centralization reduces the overhead required to maintain consistency.

While there are many standard objections to centralized approaches, such as re-

silience and scalability. As discussed in sections 2.2.5 and 3.3.5 standard replication

techniques can provide excellent resilience. Current CPU speeds make it possible to

manage all control functions on a sizable network (e.g., 25,000 hosts) from a single
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commodity PC.

Another design choice was to make the network “off-by-default” [22]. That is,

by default, hosts on the network cannot communicate with each other; they can

only route to the network Controller. Hosts and users must first authenticate them-

selves with the Controller before they can request access to the network resources

and, ultimately, to other end hosts. Allowing the Controller to interpose on each

communication allows strict control over all network flows. In addition, requiring

authentication of all network principles (hosts and users) allows control to be defined

over high level names in a secure manner.

At first glance, our approach may seem draconian, as all communication requires

the permission of a central administrator. In practice, however, the administrator is

free to implement a wide variety of policies that vary from strict to relaxed and differ

among users and services. The key is that our approach allows easy implementation

and enforcement through centralization of a simply expressed network security policy.

1.4 Why Focus on the Enterprise?

Now that we have described our solution requirements and general architectural de-

sign philosophy, we discuss the reasons why the enterprise is a prime candidate for

such an architecture.

First, enterprise networks are often carefully engineered and centrally adminis-

tered, making it practical (and desirable) to implement policies in a central location.2

Moreover, most machines in enterprise networks are clients that typically contact a

predictable handful of local services (e.g., mail servers, printers, file servers, source

repositories, HTTP proxies, or ssh gateways). Therefore, we can grant relatively little

privilege to clients using simple declarative access control policies.

Furthermore, in an enterprise network, we can assume that hosts and principals are

authenticated; this is already common today with widely deployed directory services

such as LDAP [61] and Active Directory. This allows us to express policies in terms

of meaningful entities, such as hosts and users, instead of weakly bound end-point

2A policy might be specified by many people (e.g, LDAP), but is typically centrally managed.
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identifiers, such as IP and MAC addresses.

Finally, enterprise networks compared to the Internet at large can quickly adopt a

new protection architecture. Fork-lift upgrades of entire networks are not uncommon,

and new networks are regularly built from scratch. Further, there is a significant

willingness to adopt new security technologies due to the high cost of security failures.

1.5 Previous Works

Network Protection Mechanisms Firewalls have been the cornerstone of enter-

prise security for many years. However, their use is largely restricted to enforcing

coarse-grain network perimeters [63]. Even in this limited role, misconfiguration has

been a persistent problem [64, 65]. This can be attributed to several factors; in

particular, their low-level policy specification and highly localized view leaves fire-

walls highly sensitive to changes in topology. A variety of efforts have examined less

error prone methods for policy specification [23] and how to detect policy errors

automatically [48].

The desire for a mechanism that supports ubiquitous enforcement, topology inde-

pendence, centralized management, and meaningful end-point identifiers has led to

the development of distributed firewalls [24, 40, 43]. Distributed firewalls approach

this problem with a centralized authority that manages the firewall rules for all end

hosts. While this provides centralized and topology independent policy, it is based

on substantially different trust and usage models of the network. First, it requires

that some software be installed on the end host. This can be beneficial as it provides

greater visibility into end host behavior, but it comes at the cost of convenience. More

importantly, for end hosts to perform enforcement, the end host must be trusted (or

at least some part of it, e.g., the OS [40], a VMM [36], the NIC [46], or some small

peripheral [55]). Furthermore, in a distributed firewall scenario, the network infras-

tructure itself receives no protection, i.e., the network is still allows connectivity by

default. This design affords no defense-in-depth if the end-point firewall is bypassed,

as it leaves all other network elements exposed.
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Weaver et al. [63] argue that existing configurations of coarse-grain network perime-

ters (e.g., NIDS and multiple firewalls) and end host protective mechanisms (e.g. anti-

virus software) are ineffective against worms when employed individually or in combi-

nation. They advocate augmenting traditional coarse-grain perimeters with fine-grain

protection mechanisms throughout the network, especially to detect and halt worm

propagation.

Commercial Offerings There are a number of Identity-Based Networking (IBN)

solutions available in the industry. However, most lack control of the datapath [7],

are passive [12, 11], or require modifications to the end-hosts [2].

Consentry [5] creates special-purpose bridges for enforcing access control policy.

To our knowledge, these solutions require that the bridges are placed at a choke point

in the network, so that all traffic needing enforcement passes through them. This is

a potential single point of failure and performance bottleneck.

Ipsilon Networks proposed caching IP routing decisions as flows [51]. The goal was

to provide a switched, multi-service fast path to traditional IP routers. Ethane also

uses flows as a forwarding primitive. However, Ethane extends forwarding to include

functionality useful for enforcing security, such as address swapping and enforcing

outgoing initiated flows only.

VLANs are widely used in enterprise networks for segmentation, isolation, and

enforcement of course-grain policies; they are commonly used to quarantine unau-

thenticated hosts or hosts without health certificates [9, 4]. VLANs are notoriously

difficult to use, requiring much hand-holding and manual configuration. Our goal is

to replace VLANs entirely in a unified architecture that gives much simpler control

over isolation, connectivity, and diagnostics.

Dealing with Routing Complexity Often misconfigured routers make firewalls

simply irrelevant by routing around them. The inability to answer simple reachabil-

ity questions in todays enterprise networks has fueled commercial offerings such as

those of Lumeta [8] to help administrators discover what connectivity exists in their

network.
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In their 4D architecture, Rexford et al. [56, 38, 70] argue that the decentralized

routing policy, access control, and management has resulted in complex routers and

cumbersome, difficult-to-manage networks. Similar to our approach, they argue that

routing (the control plane) should be separated from forwarding, resulting in a very

simple data path. Although 4D centralizes routing policy decisions, they retain the

security model of today’s networks. Routing (forwarding tables) and access controls

(filtering rules) are still decoupled, disseminated to forwarding elements, and operate

the basis of weakly-bound end-point identifiers (IP addresses).

Predicate routing [58] attempts to unify security and routing by defining con-

nectivity as a set of declarative statements from which routing tables and filters are

generated. In contrast, our goal is to make users first-class objects, as opposed to

end-point IDs or IP addresses, that can be used to define access controls.

1.6 Organization of Thesis

This first chapter described the current problem with security management in en-

terprise networks. In brief, networks were not designed with security as a primary

design objective. Worse yet, post-facto solutions to add security management and

enforcement have been largely counterproductive, resulting in greater complexity,

architectural deficiencies such as choke points, and failure to provide strong assur-

ances. We propose a default-off, centralized architecture in which a global policy file

dictates all communications. A logically centralized controller contains the network

policy and manages principle authentication, permission checks, and routing, thus

providing complete control of the network.

In the rest of this thesis, we describe two concrete instantiations of this archi-

tecture and show that they not only provide strong security guarantees and simple

management but do so without compromising robustness to failure or performance.

In Chapter 2, we present SANE [29], a clean-slate approach to security management.

SANE is strictly a security-centric architecture designed to provide strong guarantees

in the most extreme threat environments. The mechanisms used by SANE would

require a wholesale upgrade of the router and switches within a network as well as
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changes to the end hosts. Thus, SANE is largely a theoretical proposal intended

to illustrate the properties of an ideal security management architecture. When de-

signing SANE, we explicitly opted not to build backwards compatibility into the

architecture but rather, as is described in section 2.2.4, to support it using special

purpose components.

To address the deployment hurdles presented by SANE and to challenge some

of its usability assumptions, we offer a second architecture, Ethane [28], presented in

Chapter 3. In contrast with SANE, Ethane does not require modification to end-hosts

and can be incrementally deployed into existing networks for incremental benefit. We

describe the design and implementation of Ethane as well as our experience deploy-

ing and managing Ethane within an operational network. We also discuss how our

experience running an Ethane network informed its design.



Chapter 2

SANE: An Idealized Architecture

2.1 Introduction

In this chapter we describe SANE a clean-slate architecture which addresses the so-

lution requirements described in the first chapter. SANE achieves these goals by

providing a single protection layer that resides between the Ethernet and IP layer,

similar to the place that VLANs occupy. All connectivity is granted by handing out

capabilities. A capability is an encrypted source route between any two communicat-

ing end points.

Source routes are constructed by the Controller. By granting access using a global

vantage point, the Controller can implement policies in a topology-independent man-

ner. This is in contrast to today’s networks: the rules in firewalls and other middle-

boxes have implicit dependencies on topology, which become more complex as the

network and policies grow (e.g. VLAN tagging and firewall rules) [24, 65].

2.2 System Architecture

SANE ensures that network security policies are enforced during all end host commu-

nication at the link layer, as shown in Figure 2.1. This section describes two versions

of the SANE architecture. First, we present a clean-slate approach, in which every

network component is modified to support SANE. Later, we describe a version of

13
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Figure 2.1: The SANE Service Model: By default, SANE only allows hosts to com-
municate with the Controller. To obtain further connectivity they must take the
following steps: (0) Principals authenticate to the Controller and establish a secure
channel for future communication. (1) Server B publishes a service under a unique
name B.http in the Network Service Directory. (2) For a client A to get permis-
sion to access B.http, it obtains a capability for the service. (3) Client A can now
communicate with server by prepending the returned capability to each packet.

.

SANE that can inter-operate with unmodified end hosts running standard IP stacks.

2.2.1 Controller

The Controller is the central component of a SANE network. It is responsible for

authenticating users and hosts, advertising services that are available, and deciding

who can connect to these services. It allows hosts to communicate by handing out

capabilities (encrypted source routes). As we will see in Section 2.2.5, because the

network depends on it, the Controller will typically be physically replicated (described

in Section 2.2.5).

The Controller performs three main functions:

1. Authentication Service: This service authenticates principals (e.g., users,
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Figure 2.2: Packets forwarded from client A to server B across multiple switches
using a source-routed capability. Each layer contains the next-hop information, en-
crypted to the associated switch’s symmetric key. The capability is passed to A by
the Controller (not shown) and can be re-used to send packets to B until it expires.

Ethernet SANE header IP header data

Figure 2.3: SANE operates at the same layer as VLAN. All packets on the network
must carry a SANE header at the isolation layer, which strictly defines the path that
packet is allowed to take.

hosts) and switches. It maintains a symmetric key with each for secure com-

munication.1

2. Network Service Directory (NSD): The NSD replaces DNS. When a princi-

pal wants access to a service, it first looks up the service in the NSD (services are

published by servers using a unique name). The NSD checks for permissions—

it maintains an access control list (ACL) for each service—and then returns a

capability. The ACL is declared in terms of system principals (users, groups),

mimicking the controls in a file system.

3. Protection Layer Controller: This component controls all connectivity in

a SANE network by generating (and revoking) capabilities. A capability is a

switch-level source route from the client to a server, as shown in Figure 2.2. Ca-

pabilities are encrypted in layers (i.e., onion routes [37]) both to prove that they

originated from the Controller and to hide topology. Capabilities are included

1SANE is agnostic to the PKI or other authentication mechanism in use (e.g. Kerberos, IBE).
Here, we will assume principals and switches have keys that have been certified by the enterprises
CA.
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in a SANE header in all data packets. The SANE header goes between the

Ethernet and IP headers, similar to the location VLANs occupy (Figure 2.3).

The controller keeps a complete view of the network topology so that it can

compute routes. The topology is constructed on the basis of link-state updates

generated by authenticated switches. Capabilities are created using the sym-

metric keys (to switches and hosts) established by the authentication service.

The controller will adapt the network when things go wrong (maliciously or

otherwise). For example, if a switch floods the Controller with control traffic

(e.g. link-state updates), it will simply eliminate the switch from the network by

instructing its immediate neighbor switches to drop all traffic from that switch.

It will issue new capabilities so that ongoing communications can start using

the new topology.

All packet forwarding is done by switches, which can be thought of as simplified

Ethernet switches. Switches forward packets along the encrypted source route carried

in each packet. They also send link-state updates to the Controller so that it knows

the network topology.

Note that, in a SANE network, IP continues to provide wide-area connectivity as

well as a common framing format to support the use of unmodified end hosts. Yet

within a SANE enterprise, IP addresses are not used for identification, location, nor

routing.

2.2.2 Network Service Directory

The NSD maintains a hierarchy of directories and services; each directory and service

has an access control list specifying which users or groups can view, access, and

publish services, as well as who can modify the ACLs. This design is similar to that

deployed in distributed file systems such as AFS [39].

As an example usage scenario, suppose martin wants to share his MP3’s with his

friends aditya, mike, and tal in the high performance networking group. He sets up

a streaming audio server on his machine bongo, which has a directory
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stanford.hpn.martin.friends with ACLs already set to allow his friends to list

and acquire services. He publishes his service by adding the command

sane --publish stanford.martin.ambient:31337

to his audio server’s startup script, and, correspondingly, adds the command

sane --remove stanford.martin.ambient

to its shutdown script. When his streaming audio server comes on line, it publishes

itself in the NSD as ambient. When tal accesses this service, he simply directs his

MP3 player to the name stanford.martin.ambient The NSD resolves the name

(similar to DNS), has the Controller issue a capability, and returns this capability,

which tal’s host then uses to access the audio server on bongo.

There is nothing unusual about SANE’s approach to access control. One could

envision replacing or combining SANE’s simple access control system with a more

sophisticated trust-management system [25], in order to allow for delegation, for

example. For most purposes, however, we believe that our current model provides a

simple yet expressive method of controlling access to services.

2.2.3 Protection Layer

All packets in a SANE network contain a SANE header located between the Ethernet

and IP headers. In Figure 2.4, we show the packet types supported in SANE, as well

as their intended use (further elaborated below).

Communicating with the Controller SANE establishes default connectivity to

the Controller by building a minimum spanning tree (MST), with the Controller

as the root of the tree. This is done using a standard distance vector approach

nearly identical to that used in Ethernet switches [1], with each switch sending HELLO

messages to its neighbor, indicating its distance from the root. The MST algorithm



18 CHAPTER 2. SANE: AN IDEALIZED ARCHITECTURE

HELLO Payload

Controller Request Capability Authenticator Payload

FORWARD Cap-ID Cap-Exp Capability Payload

REVOKE Cap-ID Cap-Exp SignatureController

Figure 2.4: Packet types in a SANE network: HELLO packets are used for immediate
neighbor discovery and thus are never forwarded. Controller packets are used by
end hosts and switches to communicate with the Controller; they are forwarded by
switches to the Controller along a default route. FORWARD packets are used for most
host-to-host data transmissions; they include an encrypted source route (capability)
which tells switches where to forward the packet. Finally, REVOKE packets revoke a
capability before its normal expiration; they are forwarded back along a capability’s
forward route.

has the property that no switch learns the network topology nor is the topology

reproducible from packet traces.

The spanning tree is only used to establish default routes for forwarding packets

to the Controller. We also need a mechanism for the Controller to communicate back

with switches so as to establish symmetric keys, required both for authentication and

for generating and decoding capabilities. Note that the Controller can initially only

communicate with its immediate neighbors, since it does not know the full topology.

The Controller first establishes shared keys with its direct neighbors, and it re-

ceives link-state updates from them. It then iteratively contacts switches at increasing

distances (hop-counts), until it has established shared keys with all switches to obtain

a map of the full topology.2 To contact a switch multiple hops away, the Controller

must first generate a capability given the topology information collected thus far.

Once established, keys provide confidentiality, integrity, and replay defense for all

subsequent traffic with the Controller via an authenticator header, much like IPsec’s

esp header.

All capability requests and link state updates—packets of type Controller—are

sent along the MST. As packets traverse the MST, the switches construct a request

capability3 by generating an encrypted onion at each hop containing the previous and

2To establish shared keys, we opt for a simple key-exchange protocol from the ike2 [42] suite.
3Request capabilities are similar to network capabilities as discussed in [21, 69]
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next hop, encrypted under the switch’s own key. The Controller uses the request

capabilities to communicate back to each sender. Because these capabilities encode

the path, the Controller can use them to determine the location of misbehaving

senders.

Point-to-Point Communication Hosts communicate using capabilities provided

by the Controller. This traffic is sent using FORWARD packets which carry the capa-

bility. On receipt of a packet, switches first check that the capability is valid, that it

has not expired and that it has not been revoked (discussed later).

Before discussing how capabilities are constructed, we must differentiate between

long-lived names and ephemeral connection identifiers. Names are known to the

service directory for published services and their access control lists. Identifiers enable

end hosts to demultiplex packets as belonging to either particular connections with

other end hosts or to capability requests with the Controller, much like transport-

level port numbers in TCP or UDP. (They are denoted as client-ID and server-ID

below.) So, much like in traditional networks à la DNS names and IP addresses, users

use SANE names to identify end-points, while the network software and hardware uses

connection identifiers to identify unique services.

The Controller constructs capabilities using three pieces of information: the client’s

name and location (given in the capability request), the service’s location (stored in

the service directory), and the path between these two end-points (as calculated from

the network topology and any service policies).

Each layer in the capability is calculated recursively, working backward from the

receiver, using the shared key established between the Controller and the correspond-

ing switches.

1. Initialize:

capability ← EKserver−name (client-name, client-ID, server-ID, last-hop)

2. Recurse: For each node on the path, starting from the last node, do:

capability ← EKswitch−name (switch-name, next-hop, prev-hop, capability)



20 CHAPTER 2. SANE: AN IDEALIZED ARCHITECTURE

3. Finalize:

capability ← EKclient−name (client-name, client-ID, first-hop, capability), IV

Where, Ek(m) denotes the encryption of message m under the symmetric key

k. Encryption is implemented using a block cipher (such as AES) and a message

authentication code (MAC) to provide both confidentiality and integrity.

All capabilities have a globally unique ID Cap-ID for revocation, as well as an

expiration time, on the order of a few minutes, after which a client must request a

new capability. This requires that clocks are only loosely synchronized to within a

few seconds. Expiration times may vary by service, user, host, etc.

The MAC computation for each layer includes the Cap-ID as well as the expiration

time, so they cannot be tampered with by the sender or en-route. The initialization

vector (IV) provided in the outer layer of capabilities is the encryption randomization

value used for all layers. It prevents an eavesdropper from linking capabilities between

the same two end-points.4

Revoking Access The Controller can revoke a capability to immediately stop a

misbehaving sender for misusing a capability. A victim first sends a revocation re-

quest, which consists of the final layer of the offending capability, to the Controller.

The Controller verifies that the requester is on the capability’s path, and it returns a

signed packet of type REVOKE.

The requester then pushes the revocation request to the upstream switch from

which the misbehaving capability was forwarded. The packet travels hop-by-hop on

the reverse path of the offending capability. On-path switches verify the Controller’s

digital signature, add the revoked Cap-ID to a local revocation list, and compare

it with the Cap-ID of each incoming packet. If a match is found, the switch drops

the incoming packet and forwards the revocation to the previous hop. Because such

revocation packets are not on the data path, we believe that the overhead of signature

verification is acceptable.

4We use the same IV for all layers—as opposed to picking a new random IV for each layer—to
reduce the capability’s overall size. For standard modes of operation (such as CBC and counter-
mode) reusing the IV in this manner does not impact security, since each layer uses a different
symmetric key.
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A revocation is only useful during the lifetime of its corresponding capability

and therefore carries the same expiration time. Once a revocation expires, it is

purged from the switch. We discuss protection against revocation state exhaustion

in section 2.3.1.

2.2.4 Interoperability

Discussion thus far has assumed a clean-slate redesign of all components in the net-

work. In this section, we describe how a SANE network can be used by unmodified

end-hosts with the addition of two components: translation proxies for mapping IP

events to SANE events and gateways to provide wide-area connectivity.

Translation Proxies These proxies are used as the first hop for all unmodified end

hosts. Their primary function is to translate between IP naming events and SANE

events. For example, they map DNS name queries to Controller service lookups and

Controller lookup replies to DNS replies. When the Controller returns a capability,

the proxy will cache it and add it to the appropriate outgoing packets from the host.

Conversely, the proxy will remove capabilities from packets sent to the host.

In addition to DNS, there are a number of service discovery protocols used in

today’s enterprise networks, such as SLP [60], DNS SD [6], and uPNP [14]. In order

to be fully backwards-compatible, SANE translation proxies must be able to map all

service lookups and requests to Controller service queries and handle the responses.

Gateways Gateways provide similar functionality to perimeter NATs. They are

positioned on the perimeter of a SANE network and provide connectivity to the wide

area. For outgoing packets, they cache the capability and generate a mapping from

the IP packet header (e.g., IP/port 4-tuple) to the associated capability. All incoming

packets are checked against this mapping and, if one exists, the appropriate capability

is appended and the packet is forwarded.

Broadcast Unfortunately, some discovery protocols, such as uPNP, perform ser-

vice discovery by broadcasting lookup requests to all hosts on the LAN. Allowing



22 CHAPTER 2. SANE: AN IDEALIZED ARCHITECTURE

this without intervention would be a violation of least privilege. To safely support

broadcast service discovery within SANE, all packets sent to the link-layer broadcast

address are forwarded to the Controller, which verifies that they strictly conform to

the protocol spec. The Controller then reissues the request to all end hosts on the

network, collects the replies and returns the response to the sender. Putting the Con-

troller on the path allows it to cache services for subsequent requests, thus having

the additional benefit of limiting the amount of broadcast traffic. Designing SANE

to efficiently support broadcast and multicast remains part of our future work.

Service Publication Within SANE, services can be published with the Controller

in any number of ways: translating existing service publication events (as described

above), via a command line tool, offering a web interface, or in the case of IP, hooking

into the bind call on the local host via SOCKS [45].

2.2.5 Fault Tolerance

Replicating the Domain Controller The Controller is logically centralized, but

most likely physically replicated so as to be scalable and fault tolerant. Switches

connect to multiple Controllers through multiple spanning trees, one rooted at each

Controller. To do this, switches authenticate and send their neighbor lists to each

Controller separately. Topology consistency between Controller’s is not required as

each Controller grants routes independently. Hosts randomly choose a Controller to

send requests so as to distribute load.

Network level-policy, user declared access policy and the service directory must

maintain consistency among multiple Controllers.. If the Controllers. all belong to

the same enterprise–and hence trust each other–service advertisements and access

control policy can be replicated between Controllers. using existing methods for

ensuring distributed consistency. (We will consider the case where Controllers. do

not trust each other in the next section.)

Recovering from Network Failure In SANE, it is the end host’s responsibility

to determine network failure. This is because direct communication from switches to
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end hosts violates least privilege and creates new avenues for DoS. SANE-aware end

hosts send periodic probes or keep-alive messages to detect failures and request fresh

capabilities.

When a link fails, a Controller will be flooded with requests for new capabilities.

We performed a feasibility study (in Section 2.5), to see if this would be a problem

in practice, and found that even in the worst-case when all flows are affected, the

requests would not overwhelm a single Controller.

So that clients can adapt quickly, a Controller may issue multiple (edge-disjoint,

where possible) capabilities to clients. In the event of a link failure, a client simply

uses another capability. This works well if the topology is rich enough for there to be

edge-disjoint paths. Today’s enterprise networks are not usually richly interconnected,

in part because additional links and paths make security more complicated and easier

to undermine. However, this is no longer true with SANE—each additional switch

and link improves resilience. With just two or three alternate routes we can expect a

high degree of fault tolerance [41]. With multiple paths, an end host can set aggressive

time-outs to detect link failures (unlike in IP networks, where convergence times can

be high).

2.2.6 Additional Features

This section discusses some additional considerations of a SANE network, including

its support for middleboxes, mobility, and support for logging.

Middleboxes and Proxies In today’s networks, proxies are usually placed at

choke-points, to make sure traffic will pass through them. With SANE, a proxy can

be placed anywhere; the Controller can make sure the proxy is on the path between a

client and a server. This can lead to powerful application-level security policies that

far outreach port-level filtering.

At the very least, lightweight proxies can validate that communicating end-points

are adhering to security policy. Proxies can also enforce service- or user-specific

policies or perform transformations on a per-packet basis. These could be specified
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by the capability. Proxies might scan for viruses and apply vulnerability-specific

filters, log application-level transactions, find information leaks, and shape traffic.

Mobility Client mobility within the LAN is transparent to servers, because the

service is unaware of (and so independent of) the underlying topology. When a client

changes its position—e.g., moves to a different wireless access point—it refreshes its

capabilities and passes new return routes to the servers it is accessing. If a client moves

locations, it should revoke its current set of outstanding capabilities. Otherwise, much

like today, a new machine plugged into the same access point could access traffic sent

to the client after it has left.

Server mobility is handled in the same manner as adapting to link failures. If

a server changes location, clients will detect that packets are not getting through

and request a new set of capabilities. Once the server has updated its service in the

directory, all (re)issued capabilities will contain the correct path.

Anti-mobility SANE also trivially anti-mobility. That is, SANE can prevent hosts

and switches from moving on the network by disallowing access if they do. As the

Controller knows the exact location of all senders given request capabilities, it can be

configured to only service hosts if they are connected at particular physical locations.

This is useful for regulatory compliance, such as 911 restrictions on movement for

VoIP-enabled devices. More generally, it allows a strong “lock-down” of network

entities to enforce strong policies in the highest-security networks. For example, it

can be used to disallow all network access to rogue PCs.

Centralized Logging The Controller, as the broker for all communications, is in

an ideal position for network-wide connection logging. This could be very useful

for forensics. Request routes protect against source spoofing on connection setup,

providing a path back to the connecting port in the network. Further, compulsory

authentication matches each connection request to an actual user.

What about IP? Note that, in a SANE network, IP continues to provide wide-

area connectivity as well as a common framing format to support the use of unmodified



2.3. ATTACK RESISTANCE 25

end hosts. Yet within a SANE enterprise, IP addresses are not used for identification,

location, nor routing.

2.3 Attack Resistance

SANE eliminates many of the vulnerabilities present in today’s networks through

centralization of control, simple declarative security policies and low-level enforcement

of encrypted source routes. In this section, we enumerate the main ways that SANE

resists attack.

• Access-control lists: The NSD uses ACLs for directories, preventing attack-

ers from enumerating all services in the system—an example of the principle

of least knowledge—which in turn prevents the discovery of particular applica-

tions for which compromises are known. The NSD controls access to services to

enforce protection at the link layer through Controller-generated capabilities—

supporting the principle of least privilege—which stops attackers from compro-

mising applications, even if they are discovered.

• Encrypted, authenticated source-routes and link-state updates: These

prevent an attacker from learning the topology or from enumerating hosts and

performing port scans, further examples of the principle of least knowledge.5

SANE’s source routes prevent hosts from spoofing requests either to the Con-

troller on the control path or to other end hosts on the data path. We discuss

these protections further in Section 2.3.1.

• Authenticated network components: The authentication mechanism pre-

vents unauthenticated switches from joining a SANE network, thwarting a va-

riety of topology attacks. Every switch enforces capabilities providing defence

in depth. Authenticated switches cannot lie about their connectivity to create

arbitrary links, nor can they use the same authenticated public key to join the

5For example, while SANE’s protection layer prevents an adversary from targeting arbitrary
switches, an attacker can attempt to target a switch indirectly by accessing an upstream server for
which it otherwise has access permission.
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network using different physical switches. Finally, well-known spanning-tree or

routing attacks [47, 66] are impossible, given the Controller’s central role. We

discuss these issues further in section 2.3.2.

SANE attempts to degrade gracefully in the face of more sophisticated attacks. Next,

we examine several major classes of attacks.

2.3.1 Resource Exhaustion

Flooding As discussed in section 2.2.3, flooding attacks are handled through re-

vocation. However, misbehaving switches or hosts may also attempt to attack the

network’s control path by flooding the Controller with requests. Thus, we rate-limit

requests for capabilities to the Controller. If a switch or end host violates the rate

limit, the Controller tells its neighbors to disconnect it from the network.

Revocation state exhaustion SANE switches must keep a list of revoked capabil-

ities. This list might fill, for example, if it is maintained in a small CAM. An attacker

could hoard capabilities, then cause all of them to be revoked simultaneously. SANE

uses two mechanisms to protect against this attack: (1) If its revocation list fills, a

switch simply generates a new key; this invalidates all existing capabilities that pass

through it. It clears its revocation list, and passes the new key to the Controller.

(2) The Controller tracks the number of revocations issued per sender. When this

number crosses a predefined threshold, the sender is removed from the service’s ACLs.

If a switch uses a sender’s capability to flood a receiver, thus eliciting a revocation,

the sender can use a different capability (if it has one) to avoid the misbehaving

switch. This occurs naturally because the client treats revocation—which results in

an inability to get packets through—as a link failure, and it will try using a different

capability instead. While well-behaved senders may have to use or request alternate

capabilities, their performance degradation is only temporary, provided that there

exists sufficient link redundancy to route around misbehaving switches. Therefore,

using this approach, SANE networks can quickly converge to a state where attackers

hold no valid capabilities and cannot obtain new ones.
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Figure 2.5: Attacker C can deny service to A by selectively dropping A’s packets,
yet letting the packets of its parent (B) through. As a result, A cannot communicate
with the Controller, even though a alternate path exists through D.

2.3.2 Tolerating Malicious Switches

By design, SANE switches have minimal functionality—much of which is likely to be

placed in hardware—making remote compromise unlikely. Furthermore, each switch

requires an authenticated public key, preventing rogue switches from joining the net-

work. However, other avenues of attack, such as hardware tampering or supply-chain

attacks, may allow an adversary to introduce a malicious switch. For completeness,

therefore, we consider defenses against malicious switches attempting to sabotage

network operation, even though the following attacks are feasible only in the most

extreme threat environments.

Sabotaging MST Discovery By falsely advertising a smaller distance to the Con-

troller during MST construction, a switch can cause additional Controller traffic to

be routed through it. Nominally, this practice can create a path inefficiency.

More seriously, a switch can attract traffic, then start dropping packets. This

practice will result in degraded throughput, unless the drop rate increases to a point

at which the misbehaving switch is declared failed and a new MST is constructed.

In a more subtle attack, a malicious switch can selectively allow packets from

its neighbors, yet drop all other traffic. An example of this attack is depicted in

Figure 2.5: Node C only drops packets from node A. Thus, B does not change its for-

warding path to the Controller, as C appears to be functioning normal from its view.

As a result, A cannot communicate with the Controller, even though an alternate

path exists through D. Note that this attack, at the MST discovery phase, precludes

our normal solution for routing around failures—namely, using node-disjoint paths
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whenever possible—as node A has never registered with the Controller in the first

place.

From a high level, we can protect against this selective attack by hiding the

identities of senders from switches en-route. Admittedly, it is unlikely that we can

prevent all such information leakage through the various side-channels that naturally

exist in a real system, e.g., due to careful packet inspection and flow analysis. Some

methods to confound such attacks include (1) hiding easily recognizable sender-IDs

from packet headers,6 (2) padding all response capabilities to the same length to hide

path length, and (3) randomizing periodic messages to the Controller to hide a node’s

scheduled timings.

Using these safeguards, if a switch drops almost all packets, its immediate neigh-

bors will construct a new MST that excludes it. If it only occasionally drops packets,

the rate of MST discovery is temporarily degraded, but downstream switches will

eventually register with the Controller.

Bad Link-State Advertisements Malicious switches can try to attract traffic by

falsifying connectivity information in link-state updates. A simple safeguard against

such attacks is for the Controller to only add non-leaf edges to its network map when

both switches at either end have advertised the link.

This safeguard does not prevent colluding nodes from falsely advertising a link

between themselves. Unfortunately, such collusion cannot be externally verified. No-

tice that such collusion can only result in a temporary denial-of-service attack when

capabilities containing a false link are issued: When end hosts are unable to route over

a false link, they immediately request a fresh capability. Additionally, the isolation

properties of the network are still preserved.

Note that SANE’s requirement for switches to initially authenticate themselves

with the Controller prevents Sybil attacks, normally associated with open identity-

free networks [35].

6Normally, Controller packet headers contain a consistent sender-ID in cleartext, much like the
IPSec esp header. This sender-ID tells the Controller which key to use to authenticate and decrypt
the payload. We replace this static ID with an ephemeral nonce provided by the Controller. Every
Controller response contains a new nonce to use as the sender-ID in the next message.
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2.3.3 Tolerating a Malicious Controller

Domain controllers are highly trusted entities in a SANE network. This can create

a single point-of-failure from a security standpoint, since the compromise of any one

Controller yields total control to an attacker.

To prevent such a take-over, one can distribute trust among Controllers using

threshold cryptography. While the full details are beyond the scope of this paper, we

sketch the basic approach. We split the Controllers’ secret key across a few servers (say

n < 6), such that two of them are needed to generate a capability. The sender then

communicates with 2-out-of-n Controllers to obtain the capability. Thus, an attacker

gains no additional access by compromising a single Controller.7 To prevent a single

malicious Controller from revoking arbitrary capabilities or, even worse, completely

disconnecting a switch or end host, the revocation mechanism (section 2.2.3) must

also be extended to use asymmetric threshold cryptography [34].

Given such replicated function, access control policy and service registration must

be done independently with each Controller by the end host, using standard ap-

proaches for consistency such as two-phase commit. When a new Controller comes

online or when a Controller re-establishes communication after a network partition, it

must have some means of re-syncing with the other Controllers. This can be achieved

via standard Byzantine agreement protocols [31].

2.4 Implementation

This section describes our prototype implementation of a SANE network. Our im-

plementation consists of a Controller, switches, and IP proxies. It does not support

multiple Controllers, there is no support for tolerating malicious switches nor were

any of the end-hosts instrumented to issue revocations.

All development was done in C++ using the Virtual Network System (VNS) [30].

VNS provides the ability to run processes within user-specified topologies, allowing

7Implementing threshold cryptography for symmetric encryption is done combinatorially [26]:
Start from a t-out-of-t sharing (namely, encrypt a Controller master secret under all independent
Controller server keys) and then construct a t-out-of-n sharing from it.
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us to test multiple varied and complex network topologies while interfacing with

other hosts on the network. Working outside the kernel provided us with a flexible

development, debug, and execution environment.

The network was in operational use within our group LAN—interconnecting seven

physical hosts on 100 Mb Ethernet used daily as workstations—for one month. The

only modification needed for workstations was to reduce the maximum transmission

unit (MTU) size to 1300 bytes in order to provide room for SANE headers.

2.4.1 IP Proxies and SANE Switches

To support unmodified end hosts on our prototype network, we developed proxy

elements which are positioned between hosts and the first hop switches. Our proxies

use ARP cache poisoning to redirect all traffic from the end hosts. Capabilities for

each flow are cached at the corresponding proxies, which insert them into packets

from the end host and remove them from packets to the end host.

Our switch implementation supports automatic neighbor discovery, MST con-

struction, link-state updates and packet forwarding. Switches exchange HELLO mes-

sages every 15 seconds with their neighbors. Whenever switches detects network

failures, they reconfigure their MST and update the Controller’s network map.

The only dynamic state maintained on each switch is a hash table of capability

revocations, containing the Cap-IDs and their associated expiration times.

We use OCB-AES [57] for capability construction and decryption with 128-bit

keys. OCB provides both confidentiality and data integrity using a single pass over

the data, while generating ciphertext that is exactly only 8 bytes longer than the

input plaintext.

2.4.2 Controller

The Controller consists of four separate modules: the authentication service, the

network service directory, and the topology and capability construction service in

the Protection Layer Controller. For authentication purposes, the Controller was

preconfigured with the public keys of all switches.
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Capability construction For end-to-end path calculations when constructing ca-

pabilities, we use a bidirectional search from both the source and destination. All

computed routes are cached at the Controller to speed up subsequent capability re-

quests for the same pair of end hosts, although cached routes are checked against the

current topology to ensure freshness before re-use.

Capabilities use 8-bit IDs to denote the incoming and outgoing switch ports.

Switch IDs are 32 bits and the service IDs are 16 bits. The innermost layer of the

capability requires 24 bytes, while each additional layer uses 14 bytes. The longest

path on our test topologies was 10 switches in length, resulting in a 164 byte header.

Service Directory DNS queries for all unauthenticated users on our network re-

solve to the Controller’s IP address, which hosts a simple webserver. We provide a

basic HTTP interface to the service directory. Through a web browser, users can

log in via a simple web-form and can then browse the service directory or, with

the appropriate permissions, perform other operations (such as adding and deleting

services).

The directory service also provides an interface for managing users and groups.

Non-administrative users are able to create their own groups and use them in access-

control declarations.

To access a service, a client browses the directory tree for the desired service, each

of which is listed as a link. If a service is selected, the directory server checks the user’s

permissions. If successful, the Controller generates capabilities for the flows and sends

them to the client (or more accurately, the client’s SANE IP proxy). The web-server

returns an HTTP redirect to the service’s appropriate protocol and network address,

e.g., ssh://192.168.1.1:22/. The client’s browser can then launch the appropriate

application if one such is registered; otherwise, the user must do so by hand.

2.4.3 Example Operation

As a concrete example, we describe the events for an ssh session initiated within our

internal network. All participating end hosts have a translation proxy positioned
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between them and the rest of the network. Additionally, they are configured so that

the Controller acts as their default DNS server.

Until a user has logged in, the translation proxy returns the Controller’s IP address

for all DNS queries and forwards all TCP packets sent to port 80 to the Controller.

Users opening a web-browser are therefore automatically forwarded to the Controller

so that they may log in. This is similar in feel to admission control systems employed

by hotels and wireless access points. All packets forwarded to the Controller are

accompanied by a SANE header which is added by the translation proxy. Once a

user has authenticated, the Controller caches the user’s location (derived from the

SANE header of the authentication packets) and associates all subsequent packets

from that location with the user.

Suppose a user ssh’s from machine A to machine B. A will issue a DNS request for

B. The translation proxy will intercept the DNS packet (after forging an ARP reply)

and translate the DNS requests to a capability request for machine B. Because the

the DNS name does not contain an indication of the service, by convention we prepend

the service name to the beginning of the DNS request (e.g. ssh ssh.B.stanford.edu).

The Controller does the permission check based on the capability (initially added by

the translation proxy) and the ACL of the requested service.

If the permission check is successful, the Controller returns the capabilities for

the client and server, which are cached at the translation proxy. The translation

proxy then sends a DNS reply to A with a unique destination IP address d, which

allows it to demultiplex subsequent packets. Subsequently, when the translation

proxy receives packets from A destined to d, it changes d to the destination’s true IP

address (much like a NAT) and tags the packet with the appropriate SANE capability.

Additionally, the translation proxy piggybacks the return capability destined for the

server’s translation proxy on the first packet. Return traffic from the server to the

client is handled similarly.
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5 hops 10 hops 15 hops
Controller 100,000 cap/s 40,000 cap/s 20,000 cap/s

switch 762 Mb/s 480 Mb/s 250 Mb/s

Table 2.1: Performance of a Controller and switches

2.5 Evaluation

We now analyze the practical implications of running SANE on a real network.

First, we study the performance of our software implementation of the Controller

and switches. Next, we use packets traces collected from a medium-sized network to

address scalability concerns and to evaluate the need for Controller replication.

2.5.1 Microbenchmarks

Table 2.1 shows the performance of the Controller (in capabilities per second) and

switches (in Mb/s) for different capability packet sizes (i.e., varying average path

lengths). All tests were done on a commodity 2.3GHz PC.

As we show in the next section, our naive implementation of the Controller per-

forms orders of magnitude better than is necessary to handle request traffic in a

medium-sized enterprise.

The software switches are able to saturate the 100Mb/s network on which we

tested them. For larger capability sizes, however, they were computationally-bound

by decryption—99% of CPU time was spent on decryption alone—leading to poor

throughput performance. This is largely due to the use of an unoptimized encryption

library. In practice, SANE switches would be implemented in hardware. We note

that modern switches, such as Cisco’s catalyst 6K family, can perform MAC level

encryption at 10Gb/s.

2.5.2 Scalability

One potential concern with SANE’s design is the centralization of function at the

Domain Controller. As we discuss in Section 2.2.5, the Controller can easily be
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Figure 2.6: DNS requests, TCP connection establishment requests, and maximum
concurrent TCP connections per second, respectively, for the LBL enterprise network.

physically replicated. Here, we seek to understand the extent to which replication

would be necessary for a medium-sized enterprise environment, basing on conclusions

on traffic traces collected at the Lawrence Berkeley National Laboratory (LBL) [52].

The traces were collected over a 34-hour period in January 2005, and cover about

8,000 internal addresses. The trace’s anonymization techniques [53] ensure that (1)

there is an isomorphic mapping between hosts’ real IP addresses and the published

anonymized addresses, and (2) real port numbers are preserved, allowing us to identify

the application-level protocols of many packets. The trace contains almost 47 million

packets, which includes 20,849 DNS requests and 145,577 TCP connections.

Figure 2.6 demonstrates the DNS request rate, TCP connection establishment

rate, and the maximum number of concurrent TCP connections per second, respec-

tively.

The DNS and TCP request rates provide an estimate for an expected rate of

Controller requests by end hosts in a SANE network. The DNS rate provides a

lower-bound that takes client-side caching into effect, akin to SANE end hosts multi-

plexing multiple flows using a single capability, while the TCP rate provides an upper

bound. Even for this upper bound, we found that the peak rate was fewer than 200

requests per second, which is 200 times lower than what our unoptimized Controller

implementation can handle (see Table 2.1).

Next, we look at what might happen upon a link failure, whereby all end hosts

communicating over the failed link simultaneously contact the Controller to establish

a new capability. To understand this, we calculated the maximum concurrent number
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of TCP connections in the LBL network.8 We find that the dataset has a maximum

of 1,111 concurrent connections, while the median is only 27 connections. Assuming

the worst-case link failure—whereby all connections traverse the same network link

which fails—our simple Controller can still manage 40 times more requests.

Based on the above measurements, we estimate the bandwidth consumption of

control traffic on a SANE network. In the worst case, assuming no link failure, 200

requests per second are sent to the Controller. We assume all flows are long-lived, and

that refreshes are sent every 10 minutes. With 1,111 concurrent connections in the

worst case, capability refresh requests result in at most an additional 2 packets/s.9

Given header sizes in our prototype implementation and assuming the longest path

on the network to be 10 hops, packets carrying the forward and return capabilities

will be at most 0.4 KB in size, resulting in a maximum of 0.646 Mb/s of control

traffic.

This analysis of an enterprise network demonstrates that only a few domain con-

trollers are necessary to handle Controller requests from tens of thousands of end

hosts. In fact, Controller replication is probably more relevant to ensure uninter-

rupted service in the face of potential Controller failures.

8To calculate the concurrent number of TCP connections, we tracked srcip:srcport:dstip:dstport
tuples, where a connection is considered finished upon receiving the first FIN packet or if no traffic
packets belonging to that tuple are seen for 15 minutes. There were only 143 cases of TCP packets
that were sent after a connection was considered timed-out.

9This is a conservative upper bound: In our traces, the average flow length is 92s, implying that
at most, 15% of the flows could have lengths greater than 10 minutes.
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Ethane: A Deployable Architecture

3.1 Introduction

This chapter describes Ethane, a deployable alternative to SANE. As described

in 2.2.4, while it is possible to retrofit SANE into existing IP networks using event

translation proxies, this has two significant drawbacks. First, it would require con-

stant maintenance to track changes to end-host protocols. Second, the introduction

of the isolation layer, between the link and network layers, obviates integration with

existing IP routers.

To address these issues we designed a new architecture which contains many of

the same properties offered by SANE and without requiring changes to the end hosts.

Further, Ethane can be incrementally deployed within an existing network and has

full compatibility with existing IP routers.

While Ethane has substantial resemblance to SANE, it bears the following signif-

icant differences.

Security follows management. Enterprise security is, in many ways, a subset of

network management. Both require a network policy, the ability to control connec-

tivity, and the means to observe network traffic. Network management wants these

features so as to control and isolate resources, and then to diagnose and fix errors,

whereas network security seeks to control who is allowed to talk to whom, and then

36
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to catch bad behavior before it propagates. When designing Ethane, we decided that

a broad approach to network management would also work well for network security.

Modified Policy Model. In SANE, network policy is service oriented and enforced

through ACLs on a network directory service that operates similar to a file system.

While a familiar policy model in the context of file systems, today’s networks do

not contain named services. In addition to lack of compatibility, this departure from

traditional firewall declarations could present a usability hurdle to administrators. In

Ethane, we built support for a general policy language that governs all connectivity

via predicates declared over the users, hosts, access points and protocols. However,

the policy does not support named services.

Flow-Based. In Ethane, access is granted to hosts by explicitly setting up flows

within the network. This approach requires storing per-flow state at each switch. As

we show in section 3.6 the state requirements of today’s networks are such that even

large networks of tens of thousands of hosts can be supported by a single SRAM chip.

Further, explicitly defining the flows at the switches allows us to support sophisticated

forwarding functions to granted flows, such as rate limiting.

Significant deployment experience. Ethane has been implemented in both soft-

ware and hardware (special-purpose Gigabit Ethernet switches) and was deployed at

Stanford for over four months, managing over 300 hosts. This deployment experi-

ence provided us insight into the operational issues such a design must confront, and

resulted in significant changes and extensions to the original design.

Despite its differences, Ethane retains many of the same properties as SANE.

Like SANE, the Controller imposes permission checks per-flow and has control over

routes when granting access to communicate. Also like SANE, the policy is topology

independent, can restrict movement on the network, and is declared over high-level

names. Yet Ethane is practical. To demonstrate this, we built and deployed an

Ethane network within Stanford, and used it to manage traffic from roughly 300

hosts for over 4 months.

This chapter is organized as follows. In §3.2 we present a high-level overview of the

Ethane design, followed by a detailed description in §3.3. In §3.4, we describe a policy
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language Pol-Eth that we built to manage our Ethane implementation. We then dis-

cuss our implementation and deployment experience (§3.5), followed by performance

analysis (§3.6). Finally we present limitations in §3.7.

3.2 Overview of Ethane Design

Like SANE, Ethane controls the network by not allowing any communication between

end-hosts without explicit permission. Also like SANE, the network is broadly com-

posed into two main components. The first is then central Controller containing the

global network policy that determines the fate of all packets.

However, unlike in SANE, the Controller uses the first packet of each Flow for

connection setup. when a packet arrives at the Controller (how it does so is described

below), the Controller decides whether the flow represented by that packet1 should

be allowed. The Controller knows the global network topology and performs route

computation for permitted flows. It grants access by explicitly enabling flows within

the network switches along the chosen route. The Controller can be replicated for

redundancy and performance.

The second component is a set of Ethane Switches. In contrast to the omniscient

Controller, these Switches are simple and dumb. While SANE switches are simple

decryption engines with extra state for revocation, Ethane switches consist of a simple

flow-table which forwards packets under the direction of the Controller. When a

packet arrives that is not in the flow table, they forward that packet to the Controller

(in a manner we describe later), along with information about which port the packet

arrived on. When a packet arrives that is in the flow table, it is forwarded according

to the Controller’s directive. Not every switch in an Ethane network needs to be

an Ethane Switch – our design allows Switches to be added gradually; the network

becomes more manageable with each additional Switch.

1All policies considered in Ethane are based over flows—the header fields used to define a flow
are based on the packet type, for example TCP/UDP flows include the Ethernet, IP and transport
headers—and thus only a single policy decision need be made for each such “flow”.
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3.2.1 Names, Bindings, and Policy Language

When the Controller checks a packet against the global policy, it is evaluating the

packet against a set of simple rules, such as “Guests can communicate using HTTP,

but only via a web proxy” or “VoIP phones are not allowed to communicate with

laptops.” If we want the global policy to be specified in terms of such physical

entities, we need to reliably and securely associate a packet with the user, group,

or machine that sent it. If the mappings between machine names and IP addresses

(DNS) or between IP addresses and MAC addresses (ARP and DHCP) are handled

elsewhere and are unreliable, then we cannot possibly tell who sent the packet, even if

the user authenticates with the network. This is a notorious and widespread weakness

in current networks.

With (logical) centralization it is simple to keep the namespace consistent, as

components join, leave and move around the network. Network state changes simply

require updating the bindings at the Controller. This is in contrast to today’s network

where there are no widely used protocols for keeping this information consistent.

Further, distributing the namespace among all switches would greatly increase the

trusted computing base and require high overheads to maintain consistency on each

bind event.

In Ethane, we use a sequence of techniques to secure the bindings between packet

headers and the physical entities that sent them. First, Ethane takes over all the

binding of addresses. When machines use DHCP to request an IP address, Ethane

assigns it knowing to which switch port the machine is connected, enabling Ethane

to attribute an arriving packet to a physical port. Second, the packet must come

from a machine that is registered on the network, thus attributing it to a particular

machine. Finally, users are required to authenticate themselves with the network—

for example, via HTTP redirects in a manner similar to those used by commercial

Wifi hotspots—binding users to hosts. Therefore, whenever a packet arrives to the

Controller, it can securely associate the packet to the particular user and host that

sent it.

There are several powerful consequences of the Controller knowing both where

users and machines are attached and all bindings associated with them. First, the
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Figure 3.1: Example of communication on an Ethane network. Route setup shown
by dotted lines; the path taken by the first packet of a flow shown by dashed lines.

Controller can keep track of where any entity is located: When it moves, the Con-

troller finds out as soon as packets start to arrive from a different Switch port (or

wireless access point). The Controller can choose to allow the new flow (it can even

handle address mobility directly in the Controller without modifying the host) or it

might choose to deny the moved flow (e.g., to restrict mobility for a VoIP phone

due to E911 regulations). Another powerful consequence is that the Controller can

journal all bindings and flow-entries in a log. Later, if needed, the Controller can

reconstruct all network events; e.g., which machines tried to communicate or which

user communicated with a service. This can make it possible to diagnose a network

fault or to perform auditing or forensics, long after the bindings have changed.

In principle, Ethane does not mandate the use of a particular policy language. For

completeness, however, we have designed and deployed Pol-Eth, in which policies are

declared as a set of rules consisting of predicates and, for matching flows, the set of

resulting actions (e.g., allow, deny, or route via a waypoint). As we will see, Pol-Eth’s

small set of easily-understood rules can still express powerful and flexible policies for

large, complex networks.

3.2.2 Ethane in Use

Putting all these pieces together, we now consider the five basic activities that define

how an Ethane network works, using Figure 3.1 to illustrate:

Registration All Switches, users, and hosts are registered at the Controller with the
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credentials necessary to authenticate them. The credentials depend on the authenti-

cation mechanisms in use. For example, hosts may be authenticated by their MAC

addresses, users via username and password, and switches through secure certificates.

All switches are also preconfigured with the credentials needed to authenticate the

Controller (e.g., the Controller’s public key).

Bootstrapping Switches bootstrap connectivity by creating a spanning tree rooted

at the Controller. As the spanning tree is being created, each switch authenticates

with and creates a secure channel to the Controller. Once a secure connection is

established, the switches send link-state information to the Controller which is then

aggregated to reconstruct the network topology.

Authentication

1. UserA joins the network with hostA. Because no flow entries exist in switch 1

for the new host, it will initially forward all of hostA’s packets to the Controller

(marked with switch 1’s ingress port).

2. HostA sends a DHCP request to the Controller. After checking hostA’s MAC

address2, the Controller allocates an IP address (IPA) for it, binding hostA to

IPA, IPA to MACA, and MACA to a physical port on switch 1.

3. UserA opens a web browser, whose traffic is directed to the Controller, and

authenticates through a web-form. Once authenticated, userA is bound to hostA.

Flow Setup

1. UserA initiates a connection to userB (who we assume has already authenticated

in a manner similar to userA). Switch 1 forwards the packet to the Controller

after determining that the packet does not match any active entries in its flow-

table.

2. On receipt of the packet, the Controller decides whether to allow or deny the

flow, or require it to traverse a set of waypoints.

2The network may use a stronger form of host authentication, such as 802.1x, if desired.
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Figure 3.2: An example Ethane deployment.

3. If the flow is allowed, the Controller computes the flow’s route, including any

policy-specified waypoints on the path. The Controller adds a new entry to the

flow-tables of all the Switches along the path.

Forwarding

1. If the Controller allowed the path, it sends the packet back to switch 1 which

forwards it based on the new flow entry. Subsequent packets from the flow are

forwarded directly by the Switch, and are not sent to the Controller.

2. The flow-entry is kept in the switch until it times out (due to inactivity) or is

revoked by the Controller.

3.3 Ethane in More Detail

3.3.1 An Ethane Network

Figure 3.2 shows a typical Ethane network. The end-hosts are unmodified and connect

via a wired Ethane switch or an Ethane wireless access point. (From now on, we will
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refer to both as “Switches”, described next in §3.3.2).3

When we add an Ethane Switch to the network, it has to find the Controller

(§3.3.3), open a secure channel to it, and help the Controller figure out the topology.

We do this with a modified spanning tree algorithm (per §3.3.7 and denoted by thick,

solid lines in the figure). The outcome is that the Controller knows the whole topology,

while each Switch only knows a part of it.

When we add (or boot) a host, it has to authenticate itself with the Controller.

From the Switch’s point-of-view, packets from the new host are simply part of a new

flow, and so packets are automatically forwarded to the Controller over the secure

channel, along with the ID of the Switch port on which they arrived. The Controller

authenticates the host and allocates its IP address (the Controller includes a DHCP

server).

3.3.2 Switches

A wired Ethane Switch is like a simplified Ethernet switch. It has several Ether-

net interfaces that send and receive standard Ethernet packets. Internally, however,

the switch is much simpler, as there are several things that conventional Ethernet

switches do that an Ethane switch doesn’t need: An Ethane switch doesn’t need to

learn addresses, support VLANs, check for source-address spoofing, or keep flow-level

statistics (e.g., start and end time of flows, although it will typically maintain per-

flow packet and byte counters for each flow entry). If the Ethane switch is replacing

a Layer-3 “switch” or router, it doesn’t need to maintain forwarding tables, ACLs, or

NAT. It doesn’t need to run routing protocols such as OSPF, ISIS, and RIP. Nor does

it need separate support for SPANs and port-replication (this is handled directly by

the flow-table under the direction of the Controller).

It is also worth noting that the flow-table can be several orders-of-magnitude

smaller than the forwarding table in an equivalent Ethernet switch. In an Ethernet

switch, the table is sized to minimize broadcast traffic: as switches flood during

3We will see later that an Ethane network can also include legacy Ethernet switches and access
points, so long as we include some Ethane switches in the network. The more switches we replace,
the easier to manage and the more secure the network.
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learning, this can swamp links and makes the network less secure.4 As a result, an

Ethernet switch needs to remember all the addresses it’s likely to encounter; even

small wiring closet switches typically contain a million entries. Ethane switches, on

the other hand, can have much smaller flow-tables: they only need to keep track of

flows in-progress. For a wiring closet, this is likely to be a few hundred entries at

a time, small enough to be held in a tiny fraction of a switching chip. Even for a

campus-level switch, where perhaps tens of thousands of flows could be ongoing, it

can still use on-chip memory that saves cost and power.

In summary, we can expect an Ethane switch to be far simpler than its corre-

sponding Ethernet switch, without any loss of functionality. In fact, we expect that

a large box of power-hungry and expensive equipment will be replaced by a handful

of chips on a board.

Flow Table and Flow Entries The Switch datapath is a managed flow table.

Flow entries contain a Header (to match packets against), an Action (to tell the

switch what to do with the packet), and Per-Flow Data (which we describe below).

There are two common types of entry in the flow-table: per-flow entries describing

application flows that should be forwarded, and per-host entries that describe misbe-

having hosts whose packets should be dropped. For TCP/UDP flows, the Header field

covers the TCP/UDP, IP, and Ethernet headers, as well as physical port informa-

tion. The associated Action is to forward the packet to a particular interface, update

a packet-and-byte counter (in the Per-Flow Data), and set an activity bit (so that

inactive entries can be timed-out). For misbehaving hosts, the Header field contains

an Ethernet source address and the physical ingress port5. The associated Action is

to drop the packet, update a packet-and-byte counter, and set an activity bit (to tell

when the host has stopped sending).

Only the Controller can add entries to the flow table. Entries are removed because

they timeout due to inactivity (local decision) or because they are revoked by the

Controller. The Controller might revoke a single, badly behaved flow, or it might

4In fact, network administrators often use manually configured and inflexible VLANs to reduce
flooding.

5If a host is spoofing, its first-hop port can be shut of directly (§3.3.3).
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remove a whole group of flows belonging to a misbehaving host, a host that has just

left the network, or a host whose privileges have just changed.

The flow-table is implemented using two exact-match tables: One for application

flow entries and one for misbehaving host entries. Because flow entries are exact

matches, rather than longest-prefix matches, it is easy to use hashing schemes in

conventional memories rather than expensive, power-hungry TCAMs.

Other Actions are possible in addition to just forward and drop. For example, a

Switch might maintain multiple queues for different classes of traffic, and the Con-

troller can tell it to queue packets from application flows in a particular queue by

inserting queue IDs into the flow table. This can be used for end-to-end L2 isolation

for classes of users or hosts. A Switch could also perform address translation by re-

placing packet headers. This could be used to obfuscate addresses in the network by

“swapping” addresses at each Switch along the path—an eavesdropper would not be

able to tell which end-hosts are communicating—or to implement address translation

for NAT in order to conserve addresses. Finally, a Switch could control the rate of a

flow.

The Switch also maintains a handful of implementation-specific entries to reduce

the amount of traffic sent to the Controller. This number should remain small to

keep the Switch simple, although this is at the discretion of the designer. On one

hand, such entries can reduce the amount of traffic sent to the Controller; on the

other hand, any traffic that misses on the flow-table will be sent to the Controller

anyway, so this is just an optimization.

It is worth pointing out that the secure channel from a Switch to its Controller

may pass through other Switches. As far as the other Switches are concerned, the

channel simply appears as an additional flow-entry in their table.

Local Switch Manager The Switch needs a small local manager to establish and

maintain the secure channel to the Controller, to monitor link status, and to provide

an interface for any additional Switch-specific management and diagnostics. (We

implemented our manager in the switch’s software layer.)

There are two ways a Switch can talk to the Controller. The first one, which we
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have assumed so far, is for Switches that are part of the same physical network as

the Controller. We expect this to be the most common case; e.g., in an enterprise

network on a single campus. In this case, the Switch finds the Controller using our

modified Minimum Spanning Tree protocol described in §3.3.7. The process results

in a secure channel from Switch to Switch all the way to the Controller.

If the Switch is not within the same broadcast domain as the Controller, the

Switch can create an IP tunnel to it (after being manually configured with its IP

address). This approach can be used to control Switches in arbitrary locations, e.g.,

the other side of a conventional router or in a remote location. In one interesting

application of Ethane, the Switch (most likely a wireless access point) is placed in a

home or small business, managed remotely by the Controller over this secure tunnel.

The local Switch manager relays link status to the Controller so it can reconstruct

the topology for route computation. Switches maintain a list of neighboring switches

by broadcasting and receiving neighbor-discovery messages. Neighbor lists are sent

to the Controller after authentication, on any detectable change in link status, and

periodically every 15 seconds.

3.3.3 Controller

The Controller is the brain of the network and has many tasks; Figure 3.3 gives a

block-diagram. The components do not have to be co-located on the same machine

(they are not in our implementation).

Briefly, the components work as follows. The authentication system is passed

all traffic from unauthenticated or unbound MAC addresses. It authenticates users

and hosts using credentials stored in the registration database. Once a host or user

authenticates, the Controller remembers to which switch port they are connected.

The Controller holds the policy rules which are compiled into a fast lookup table

(see §3.4). When a new flow starts, it is checked against the rules to see if it should

be accepted, denied, or routed through a waypoint. Next, the route computation uses

the network topology to pick the flow’s route. The topology is maintained by the

switch manager, which receives link updates from the Switches.
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Figure 3.3: High-level view of Controller components.

In the remainder of this section, we describe each component’s function in more

detail. We leave description of the policy language for the next section.

Registration All entities that are to be named by the network (i.e., hosts, proto-

cols, Switches, users, and access points6) must be registered. The set of registered

entities make up the policy namespace and is used to statically check the policy (§3.4)

to ensure it is declared over valid principles.

The entities can be registered directly with the Controller, or—as is more likely

in practice and done in our own implementation—Ethane can interface with a global

registry such as LDAP or AD, which would then be queried by the Controller.

By forgoing switch registration, it is also possible for Ethane to provide the same

“plug-and-play” configuration model for switches as Ethernet. Under this configu-

ration the switches would distribute keys on boot-up (rather than require manual

distribution) under the assumption that the network has not yet been compromised.

6We define an access point here as a {Switch,port} pair
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Authentication All Switches, hosts, and users must authenticate with the network.

Ethane does not specify a particular host authentication mechanism; a network could

support multiple authentication methods (e.g., 802.1x or explicit user login) and

employ entity-specific authentication methods. In our implementation, for example,

hosts authenticate by presenting registered MAC addresses7, while users authenticate

through a web front-end to a Kerberos server. Switches authenticate using SSL with

server- and client-side certificates.

Tracking Bindings One of Ethane’s most powerful features is that it can easily

track all the bindings between names, addresses, and physical ports on the network,

even as switches, hosts, and users join, leave, and move around the network. It

is Ethane’s ability to track these dynamic bindings that makes the policy language

possible—-it allows us to describe policies in terms of users and hosts, yet implement

the policy using flow-tables in Switches.

A binding is never made without requiring authentication, so as to prevent an

attacker assuming the identity of another host or user. When the Controller detects

that a user or host leaves, all of its bindings are invalidated, and all of its flows are

revoked at the Switch to which it was connected. Unfortunately, in some cases, we

cannot get reliable explicit join and leave events from the network. Therefore, the

Controller may resort to timeouts or the detection of movement to another physical

access point before revoking access.

Namespace Interface Because Ethane tracks all the bindings between users, hosts,

and addresses, it can make information available to network managers, auditors, or

anyone else who seeks to understand who sent what packet and when.

In current networks, while it is possible to collect packet traces, it is almost impos-

sible to figure out later which user—or even which host—sent or received the packets,

as the addresses are dynamic and there is no known relationship between users and

packet addresses.

An Ethane Controller can journal all the authentication and binding information:

7We acknowledge that this is a weak form of authentication and plan to replace it with 802.1x.
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The machine a user is logged in to, the Switch port their machine is connected to,

the MAC address of their packets, and so on. Armed with a packet trace and such a

journal, it is possible to determine exactly which user sent a packet, when it was sent,

the path it took, and its destination. Obviously, this information is very valuable for

both fault diagnosis and identifying break-ins. On the other hand, the information

is sensitive and controls need to be placed on who can access it. We expect Ethane

Controllers to provide an interface that gives privileged users access to the informa-

tion. In our own system, we built a modified DNS server that accepts a query with

a timestamp, and returns the complete bound namespace associated with a specified

user, host, or IP address (described in §3.5).

Permission Checks and State Upon receiving a packet, the Controller checks

the policy to see if the flow is allowed. Section 3.4 describes our policy model and

implementation.

The Controller can be implemented to be stateful or stateless. A stateful Controller

keeps track of all the flows it has created. When the policy changes, when the topology

changes, or when a host or user misbehaves, a stateful Controller can traverse its list

of flows and make changes where necessary. A stateless Controller does not keep track

of the flows it created; it relies on the Switches to keep track of their flow-tables. If

anything changes or moves, the associated flows would be revoked by the Controller

sending commands to the Switch’s Local Manager.

We leave it as a design choice as to whether a Controller is stateful or stateless, be-

lieving there are arguments for and against both approaches. In our implementation,

we built a stateless Controller to determine its feasibility.

Enforcing Resource Limits There are many occasions when a Controller wants

to limit the resources granted to a user, host, or flow. For example, it might wish to

limit a flow’s rate, limit the rate at which new flows are setup, or limit the number

of IP addresses allocated. The limits will depend on the design of the Controller and

the Switch, and they will be at the discretion of the network manager. In general,

however, Ethane makes it easy to enforce these limits either by installing a filter in a
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Switch’s flow-table or by telling the Switch to limit a flow’s rate.

The ability to directly manage resources from the Controller is the primary means

of protecting the network from resource exhaustion attacks. To protect itself from

connection flooding from unauthenticated hosts, a Controller can place a limit on

the number of authentication requests per host and per switch port; hosts that ex-

ceed their allocation can be closed down by adding an entry in the flow-table that

blocks their Ethernet address. If such hosts spoof their address, the Controller can

disable the Switch port. A similar approach can be used to prevent flooding from

authenticated hosts.

Flow state exhaustion attacks are also preventable through resource limits. Since

each flow setup request is attributable to a user, host or access point, the controller

can enforce limits on the number of outstanding flows per identifiable source. The

network may also support a more advanced flow allocation policies, such as enforcing

strict limits on the number of flows forwarded in hardware per source, and looser

limits on the number of flows in the slower (and more abundant) software forwarding

tables.

3.3.4 Handling Broadcast and Multicast

Enterprise networks typically carry a lot of multicast and broadcast traffic—indeed,

VLANs were first introduced to limit overwhelming amounts of broadcast traffic. It

is worth distinguishing broadcast traffic (which is mostly discovery protocols, such as

ARP) from multicast traffic (which is often from useful applications, such as video).

In a flow-based network like Ethane, it is quite easy for Switches to handle mul-

ticast: The Switch keeps a bitmap for each flow to indicate which ports the packets

are to be sent to along the path.

In principle, broadcast discovery protocols are also easy to handle in the Con-

troller. Typically, a host is trying to find a server or an address; given that the

Controller knows all, it can reply to a request without creating a new flow and

broadcasting the traffic. This provides an easy solution for ARP traffic (which is
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a significant fraction of all network traffic): The Controller knows all IP and Eth-

ernet addresses and can reply directly. In practice, however, ARP could generate a

huge load for the Controller; one design choice would be to provide a dedicated ARP

server in the network to which that all Switches direct all ARP traffic. But there is

a dilemma when trying to support other discovery protocols; each one has its own

protocol, and it would be onerous for the Controller to understand all of them. Our

own approach has been to implement the common ones directly in the Controller, and

then broadcast low-level requests with a rate-limit. Clearly this approach does not

scale well, and we hope that, if Ethane becomes widespread in the future, discovery

protocols will largely go away. After all, they are just looking for binding information

that the network already knows; it should be possible to provide a direct way to query

the network. We discuss this problem further in §3.7.

3.3.5 Replicating the Controller for Fault-Tolerance and Scal-

ability

Designing a network architecture around a central controller raises concerns about

availability and scalability. While our measurements in §3.6 suggest that thousands

of machines can be managed by a single desktop computer, multiple Controllers may

be desirable to provide fault-tolerance or to scale to very large networks.

This section describes three techniques for replicating the Controller. In the sim-

plest two approaches, which focus solely on improving fault-tolerance, secondary Con-

trollers are ready to step in upon the primary’s failure: these can be in cold-standby

(having no network binding state) or warm-standby (having network binding state)

modes. In the fully-replicated model, which also improves scalability, requests from

Switches are spread over multiple active Controllers.

In the cold-standby approach, a primary Controller is the root of the modi-

fied spanning tree (MST) and handles all registration, authentication, and flow-

establishment requests. Backup Controllers sit idly-by waiting to take over if needed.

All Controllers participate in the MST, sending HELLO messages to Switches adver-

tising their ID. Just as with a standard spanning tree, if the root with the “lowest”
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ID fails, the network will converge on a new root (i.e., a new Controller). If a backup

becomes the new MST root, they will start to receive flow requests and begin acting

as the primary Controller. In this way, Controllers can be largely unaware of each

other: the backups need only contain the registration state and the network policy (as

this data changes very slowly, simple consistency methods can be used). The main

advantage of cold-standby is its simplicity; the downside is that hosts, Switches, and

users need to re-authenticate and re-bind upon primary failure. Furthermore, in large

networks, it might take a while for the MST to reconverge.

The warm-standby approach is more complex, but recovers faster. In this ap-

proach, a separate MST is created for every Controller. The Controllers monitor one

another’s liveness and, upon detecting the primary’s failure, a secondary Controller

takes over based on a static ordering. As before, slowly-changing registration and

network policy are kept consistent among the controllers, but we now need to repli-

cate bindings across Controllers as well. Because these bindings can change quickly

as new users and hosts come and go, we recommend that only weak consistency be

maintained: Because Controllers make bind events atomic, primary failures can at

worst lose the latest bindings, requiring that some new users and hosts reauthenticate

themselves.

The fully-replicated approach takes this one step further and has two or more

active Controllers. While an MST is again constructed for each Controller, a Switch

need only authenticate itself to one Controller and can then spread its flow-requests

over the Controllers (e.g., by hashing or round-robin). With such replication, we

should not underestimate the job of maintaining consistent journals of the bind

events. We expect that most implementations will simply use gossiping to provide a

weakly-consistent ordering over events. Pragmatic techniques can avoid many poten-

tial problems that would otherwise arise, e.g., having Controllers use different private

IP address spaces during DHCP allocation to prevent temporary IP allocation con-

flicts. Of course, there are well-known, albeit heavier-weight, alternatives to provide

stronger consistency guarantees if desired (e.g., replicated state machines). There is

plenty of scope for further study: Now that Ethane provides a platform with which

to capture and manage all bindings, we expect future improvements can make the
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system more robust.

3.3.6 Link Failures

Link and Switch failures must not bring down the network as well. Recall that

Switches always send neighbor-discovery messages to keep track of link-state. When

a link fails, the Switch removes all flow-table entries tied to the failed port and sends

its new link-state information to the Controller. This way, the Controller also learns

the new topology. When packets arrive for a removed flow-entry at the Switch, the

packets are sent to the Controller—much like they are new flows—and the Controller

computes and installs a new path based on the new topology.

3.3.7 Bootstrapping

When the network starts, the Switches must connect and authenticate with the Con-

troller.8 Ethane bootstraps in a similar way to [29]. On startup, the network creates a

minimum spanning tree with the Controller advertising itself as the root. Each switch

has been configured with credentials for the Controller and the Controller with the

credentials for all the switches.

If a switch finds a shorter path to the Controller, it attempts two way authenti-

cation with it before advertising that path as a valid route. Therefore the minimum

spanning tree grows radially from the Controller, hop-by-hop as each Switch authen-

ticates.

Authentication is done using the preconfigured credentials to ensure that a misbe-

having node cannot masquerade as the Controller or another Switch. If authentication

is successful, the switch creates an encrypted connection with the Controller which is

used for all communication between the pair.

By design, the Controller knows the upstream Switch and physical port to which

each authenticating Switch is attached. After a Switch authenticates and establishes

a secure channel to the Controller, it forwards all packets it receives for which it does

8This method does not apply to Switches that use an IP tunnel to connect to the Controller—they
simply send packets via the tunnel and then authenticate.
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not have a flow entry to the Controller, annotated with the ingress port. This includes

the traffic of authenticating Switches.

Therefore the Controller can pinpoint the attachment point to the spanning tree of

all non-authenticated Switches and hosts. Once a Switch authenticates, the Controller

will establish a flow in the network between it and a Switch for the secure channel.

3.4 The Pol-Eth Policy Language

Pol-Eth is a language for declaring policy in an Ethane network. While Ethane doesn’t

mandate a particular language, we describe Pol-Eth as an example, to illustrate what’s

possible. We have implemented Pol-Eth and use it in our prototype network.

3.4.1 Overview

In Pol-Eth, network policy is declared as a set of rules, each consisting of a condition

and a corresponding action. For example, the rule to specify that user bob is allowed

to communicate with the HTTP server (using HTTP) is:

[(usrc=“bob”)∧(protocol=“http”)∧(hdst=“web-server”)]:allow;

Conditions Conditions are a conjunction of zero or more predicates which specify

the properties a flow must have in order for the action to be applied. From the

preceding example rule, if the user initiating the flow is “bob” and the flow protocol

is “HTTP” and the flow destination is host “http-server”, then the flow is allowed.

The left hand side of a predicate specifies the domain, and the right hand side gives

the entities to which it applies. For example, the predicate (usrc=“bob”) applies to all

flows in which the source is user bob. Valid domains include {usrc, udst, hsrc, hdst,

apsrc, apdst, protocol}, which respectively signify the user, host, and access point

sources and destinations and the protocol of the flow.

In Pol-Eth, the values of predicates may include single names (e.g., “bob”), list

of names (e.g., [“bob”,“linda”]), or group inclusion (e.g., in(“workstations”)). All

names must be registered with the Controller or declared as groups in the policy file,

as described below.
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Actions Actions include allow, deny, waypoints, and outbound-only (for NAT-like

security). Waypoint declarations include a list of entities to route the flow through,

e.g., waypoints(“ids”,“http-proxy”).

3.4.2 Rule and Action Precedence

Pol-Eth rules are independent and don’t contain an intrinsic ordering; thus, multiple

rules with conflicting actions may be satisfied by the same flow. Conflicst are resolved

by assigning priorities based on declaration order. If one rule precedes another in the

policy file, it is assigned a higher priority.

As an example, in the following declaration, bob may accept incoming connections

even if he is a student.
# bob is unrestricted

[(udst=‘‘bob’’)]:allow;

# all students can make outbound connections

[(usrc=in(‘‘students’’))]:outbound-only;

# deny everything by default (most general)

[] : deny ;

Unfortunately, in today’s multi-user operating systems, it is difficult from a net-

work perspective to attribute outgoing traffic to a particular user.9 In Ethane, if

multiple-users are logged into the same machine (and not identifiable from within the

network), Ethane applies the least restrictive action to each of the flows. This is an

obvious relaxation of the security policy. To address this, we are exploring integration

with trusted end-host operating systems to provide user-isolation and identification

(for example, by providing each user with a virtual machine having a unique MAC).

3.4.3 Supporting Arbitrary Expressions

Pol-Eth also allows predicates to contain arbitrary functions. For example, the pred-

icate (expr=“foo”) will execute the function “foo” at runtime and use the boolean

return value as the outcome. Predicate functions are written in C++ and executed

9Existing mechanisms to provide such transparency, such as identd, are notoriously insecure
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within the Ethane namespace. During execution, they have access to all parameters

of the flow as well as to the full binding state of the network.

The inclusion of arbitrary functions with the expressibility of a general program-

ming language allows predicates to maintain local state, affect system state, or access

system libraries. For example, we have created predicates that depend on the time-

of-day and contain dependencies on which users or hosts are logged onto the network.

A notable downside is that it becomes impossible to statically reason about safety

and execution times: a poorly written function can crash the Controller or slow down

permission checks.

3.4.4 Policy Example

Figure 3.4 contains a derivative of the policy which governs connectivity for our

university deployment. Pol-Eth policy files consist of three parts—group declarations,

expressions, and rules—each separated by a ’%%’ delimiter.

In this policy, all flows are permitted by the first (and most general) rule; we

consider this default-on. Servers are not allowed to make connections to the rest of

the network, providing protection similar to DMZs today. Phones and computers

can never communicate. Laptops are protected from inbound flows (similar to the

protection provided by NAT), while workstations can communicate with each other.

Guest users from wireless access points may only use HTTP and must go through a

web proxy, while authenticated users have no such restrictions.

3.4.5 Implementation

Given how frequently new flows are created - and how fast decisions must be made

- it is not practical to interpret the network policy. Instead, we need to compile it.

But compiling Pol-Eth is non-trivial because of the potentially huge namespace in the

network: Creating a lookup table for all possible flows specified in the policy would

be impractical.

Our Pol-Eth implementation combines compilation and just-in-time creation of

search functions. Each rule is associated with the principles to which it applies. This
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# Groups
# hosts
desktop = [“griffin”,“roo”];
laptops = [“glaptop”,“rlaptop”];
phones = [“gphone”,“rphone”];
server = [“http server”,“nfs server”];
private = [“desktop”,“laptops”,“phones”];
# users
students = [“bob”,“bill”,“pete”];
profs = [“plum”];
group = [students,profs];
# access points
waps = [“wap1”,“wap2”];
%%
%%
# Rules
[]: allow; # Default-on: by default allow flows
# DMZ for servers
[(hsrc=in(“server”)∧(hdst=in(“private”))] : deny;
# Do not allow phones and computers to communicate
[(hsrc=in(“phone”)∧(hdst=in(“private”))] : deny;
[(hsrc=in(“private”)∧(hdst=in(“phone”))] : deny;
# NAT-like protection for laptops
[(hsrc=in(“laptops”)] : outbound-only;
# No restrictions for desktops
[(hsrc=in(“desktop”)∧(hdst=in(“desktop”))] : allow;
# For wireless, non group members can use http with through
# a proxy. Group members have unrestricted access
[(apsrc=in(“waps”))] : deny;
[(apsrc=in(“waps”))∧(user=in(“group”))] :allow;
[(apsrc=in(“waps”))∧(protocol=“http”)] : waypoints(“http-proxy”);

Figure 3.4: A sample policy file using Pol-Eth

is a one-time cost, performed at startup and on each policy change.

The first time a sender communicates to a new receiver, a custom permission

check function is created dynamically to handle all subsequent flows between the

same source/destination pair. The function is generated from the set of rules which

apply to the connection. In the worst case, the cost of generating the function scales

linearly with the number of rules (assuming each rule applies to every source entity).

If all of the rules contain conditions that can be checked statically at bind time (i.e.,

the predicates are defined only over users, hosts, and access points), then the resulting

function consists solely of an action. Otherwise, each flow request requires that the

actions be aggregated in real-time.
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We have implemented a source-to-source compiler that generates C++ from a

Pol-Eth policy file. The resulting source is then compiled and linked into the Ethane

binary. As a consequence, policy changes currently require relinking the Controller.

We are currently upgrading the policy compiler so that policy changes can be dynam-

ically loaded at runtime.

3.5 Prototype and Deployment

We’ve built and deployed a functional Ethane network at our university over the

last four months. At the time of writing, Ethane connects over 300 registered hosts,

and several hundred users. Our deployment includes 19 Switches of three different

types: Ethane wireless access points, Ethane Ethernet switches (in two flavors: one

gigabit in dedicated hardware, and one in software). Registered hosts include laptops,

printers, VoIP phones, desktop workstations and servers. We have also deployed a

remote Switch in a private residence. The Switch tunnels to

We’ve learned a lot by deploying and managing an Ethane network - and many

of these lessons have improved our design and our understanding of how network

policies can be used. In the following section we describe our deployment at a large

university, and try to draw some lessons and conclusions based on our experience.

3.5.1 Switches

We have built three different Ethane Switches: An 802.11g wireless access point

(based on a commercial access point), a wired 4-port Gigabit Ethernet Switch that

forwards packets at line-speed (based on the NetFPGA programmable switch plat-

form [62], and written in Verilog), and a wired 4-port Ethernet Switch in Linux on

a desktop-PC (in software, as a development environment and to allow rapid deploy-

ment and evolution).

For design re-use, we implemented the same flow-table in each Switch design

(even though in real-life we would optimize for each platform). The main table -

for packets that should be forwarded (see Section 3.3.2) - has 8k flow entries and is
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searched using an exact match on the whole header. We use two hash functions (two

CRCs) to reduce the chance of collisions, and we place only one flow in each entry

of the table. We chose 8k entries because of the limitations of the programmable

hardware (NetFPGA). A commercial ASIC-based hardware Switch, an NPU-based

Switch, or a software-only Switch would support many more entries. We implemented

the second table to hold dropped packets which also uses exact-match hashing.

In our implementation, we decided to make the dropped table much bigger (32k

entries). We did this because our Controller is stateless and we wanted to implement

the outbound-only action in the flow-table. When an outbound flow starts, we’d like

to setup the return-route at the same time - because the Controller is stateless, it

doesn’t remember that the outbound-flow was allowed. Unfortunately, when proxy

ARP is used, we don’t know the Ethernet address of packets flowing in the reverse

direction - we don’t know until they arrive. So, we use the second table to hold flow-

entries for return-routes (with a wildcard Ethernet address) as well as for dropped

packets. A stateful Controller wouldn’t need these entries.

Finally, we keep a small table for flows with wildcards in any field. These are

there for convenience during prototyping, while we determine how many entries a

real deployment need. It holds flow entries for the spanning tree messages, ARP and

DHCP.

Ethane Wireless Access Point Our access point runs on a Linksys WRTSL54GS

wireless router (266MHz MIPS, 32MB RAM) running OpenWRT [10]. The data-path

and flow-table is based on 5K lines of C++ (1.5K are for the flow-table). The local

switch manager is written in software and talks to the Controller using the native

Linux TCP stack. When running from within the kernel, the Ethane forwarding path

runs at 23Mb/s—the same speed as Linux IP forwarding and L2 bridging.

Ethane 4-port Gigabit Ethernet Switch: Hardware Solution The Switch is

implemented on NetFPGA v2.0 with four Gigabit Ethernet ports, a Xilinx Virtex-II

FPGA and 4Mbytes of SRAM for packet buffers and the flow-table. The hardware

forwarding path consists of 7k lines of Verilog; flow-entries are 40bytes long. Our

hardware can forward minimum size packets packets in full-duplex at line-rate of
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Packet Size 64 bytes 65 bytes 100 bytes 1518 bytes
Measured 1524Mbps 1529Mbps 1667Mbps 1974Mbps
Optimal 1524Mbps 1529Mbps 1667Mbps 1974Mbps

Table 3.1: Hardware forwarding speeds for different packet sizes. All tests were run with full-
duplex traffic. Totals include Ethernet CRC, but not the Inter-Frame Gap or the packet preamble.
Tested with Ixia 1600T traffic generator.

1Gb/s.

Ethane 4-port Gigabit Ethernet Switch: Software Solution To simplify defi-

nition of the Switch, we built a Switch from a regular desktop-PC (1.6GHz Celeron

CPU and 512MB of DRAM) and a 4-port Gigabit Ethernet card. The forwarding

path and the flow-table is implemented to mirror (and therefore help debug) our im-

plementation in hardware. Our software Switch in kernel mode can forward MTU

size packets at 1 Gb/s. However, as the packet size drops, the CPU cannot keep up.

At 100 bytes, the switch can only achieve a throughput of 16Mb/s. Clearly, for now,

the switch needs to be implemented in hardware.

3.5.2 Controller

We implemented the Controller on a standard Linux PC (1.6GHz Intel Celeron pro-

cessor and 512MB of DRAM). The Controller is based on 45K lines of C++ (with

an additional 4K lines generated by the policy compiler) and 4.5K lines of python for

the management interface.

Registration Switches and hosts are registered using a web-interface to the Con-

troller and the registry is maintained in a standard database. For access points, the

method of authentication is determined during registration. Users are registered using

our university’s standard directory service.

Authentication In our system, users authenticate using our university authentica-

tion system, which uses Kerberos and a university-wide registry of usernames and

passwords. Users authenticate via a web interface - when they first connect to a

browser they are redirected to a login web-page. In principle, any authentication
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scheme could be used, and most enterprises have their own. Ethane access points

also, optionally, authenticate hosts based on their Ethernet address, which is regis-

tered with the Controller.

Bind Journal and Namespace Interface Our Controller logs bindings whenever

they are added, removed or when we decide to checkpoint the current bind-state;

each entry in the log is timestamped. We use BerkeleyDB for the log [3], keyed by

timestamp.

The log is easily queried to determine the bind-state at any time in the past. We

enhanced our DNS server to support queries of the form key.domain.type-time, where

“type” can be “host”, “user”, “MAC”, or “port”. The optional time parameter allows

historical queries, defaulting to the present time.

Route Computation Routes are pre-computed using an all pairs shortest path algo-

rithm [33]. Topology recalculation on link failure is handled by dynamically updating

the computation with the modified link-state updates. Even on large topologies, the

cost of updating the routes on failure is minimal. For example, the average cost of an

update on a 3,000 node topology is 10ms. In the following section (§3.6) we present

an analysis of flow-setup times under normal operation and during link failure.

3.5.3 Deployment

Our Ethane prototype was deployed in our department’s 100Mb/s Ethernet network.

We installed eleven wired and eight wireless Ethane Switches. There are currently

approximately 300 hosts on this Ethane network, with an average of 120 hosts active in

a 5-minute window. We created a network policy to closely match—and in most cases

exceed—the connectivity control already in place. We pieced together the existing

policy by looking at the use of VLANs, end-host firewall configurations, NATs and

router ACLs. We found that often the existing configuration files contained rules

no longer relevant to the current state of the network, in which case they were not

included in the Ethane policy.

Briefly, within our policy, non-servers (workstations, laptops, and phones) are pro-

tected from outbound connections from servers, while workstations can communicate
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uninhibited. Hosts that connect to an Ethane Switch port must register an Ether-

net address, but require no user authentication. Wireless nodes protected by WPA

and a password do not require user authentication, but if the host MAC address is

not registered (in our network this means they are a guest), they can only access a

small number of services (HTTP, HTTPS, DNS, SMTP, IMAP, POP, and SSH). Our

open wireless access points require users to authenticate through the university-wide

system. The VoIP phones are restricted from communicating with non-phones and

are statically bound to a single access point to prevent mobility (for E911 location

compliance). Our policy file is 132 lines long.

3.6 Performance and Scalability

By deploying Ethane, we learned a lot about the operation of a centrally managed

network. We have also performed many measurements of its performance—primarily

to understand how an Ethane network can scale with more users, end-hosts and

Switches.

We will start by looking at how Ethane performs in our network; and then, using

our measurements and data from others, we will try to extrapolate the performance

in larger networks. We are mostly interested in answering the question: How many

Controllers are needed for a network of a given size? In this section, we measure the

performance of a Controller as a function of the rate of new flow-requests, and we

then try to estimate how many flow-requests we can expect in a network of a given

size. Second, we consider the question: How big does the flow-table need to be in the

Switch? This helps us decide how practical and low-cost the Switches will be in a

larger network.

Our Ethane prototype is deployed in our department’s 100Mb/s Ethernet network;

we installed eleven wired and eight wireless Ethane switches. There are currently 300

hosts on the Ethane network, with an average of 120 hosts active in a 5-minute win-

dow. We created a network policy to closely match—and in most cases exceed—the

connectivity control already in place (the network used VLANs, ACLs, and manual

configuration). Non-servers (workstations, laptops, and phones) are protected from
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Figure 3.5: Flow-setup times as a function of load at the Controller. Packet sizes
were 64B, 128B and 256B, evenly distributed.

outbound connections from servers, while workstations can communicate uninhibited.

Hosts that connect to an Ethane Switch port must register an Ethernet address, but

require no user authentication. Wireless nodes protected by WPA and a password

do not require user authentication, but if the host MAC address is not registered (in

our network this means they are a guest), they can only access a small number of

services (HTTP, HTTPS, DNS, SMTP, IMAP, POP, and SSH). Our open wireless

access points require users to authenticate through the university-wide system. The

VoIP phones are restricted from communicating with non-phones and are statically

bound to a single access point to prevent mobility (for E911 location compliance).

Our policy file is 132 lines long.

In our 300 host Ethane network, we see 30-40 new flow-requests per second (see

Figure 3.9) with a peak of 750 flow-requests per second.10 Figure 3.5 shows how our

Controller performs under load: up to 11,000 flows per second (larger than the peak

we saw), flows were set up in less than 1.5ms in the worst case, and the CPU showed

negligible load.

Our results suggest that a single Controller could comfortably handle 10,000 new

flow-requests per second. We fully expect this number to increase if we concentrated

on optimizing the design. With this in mind, it is worth asking to how many end-hosts

this load corresponds.

We considered two recent datasets: One from an 8,000 host network at LBL [52]

and one from a 22,000 host network at our university. As is described in [29], the

number of maximum outstanding flows in the traces from LBL never exceeded 1,500

10Samples were taken every 30 seconds.
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Figure 3.6: Active flows for LBL network [52]
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Figure 3.7: Flow-request rate for University network

per second for 8,000 hosts. Our university dataset has a maximum of under 9,000

new flow-requests per second for 22,000 hosts (Figure 3.7).

Perhaps surprisingly, our results suggest that a single Controller could comfortably

manage a network with over 20,000 hosts. Of course, in practice, the rule set would be

larger and the number of physical entities greater; but on the other hand, the ease with

which the Controller handles this number of flows suggests there is room for improve-

ment. This is not to suggest that a network should rely on a single Controller—we

expect a large network to deploy several Controllers for fault-tolerance, using the

schemes outlined in Section 3.3.5.

Next we explore how large the flow-table needs to be in the Switch. Ideally, the

Switch can hold all of the currently active flows. Figure 3.8 shows how many active

flows we saw in our Ethane deployment—it never exceeded 500. With a table of

8,192 entries and a two-function hash-table, we never encountered a collision. The

LBL dataset shows (Figure 3.6) that they did not encounter more than 1500 flows in

their 8,000 host network.

In practice, the number of ongoing flows depends on where the Switch is in the
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Figure 3.8: Active flows through two of our deployed switches
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Figure 3.9: Frequency of flow setup requests per second seen by the Controller over
a ten-hour period (top) and five-day period (bottom).

network. Switches closer to the edge will see a number of flows proportional to the

number of hosts they connect to—and hence their fanout. Our Switches have a fanout

of four and see no more than 500 flows; we can expect a Switch with a fanout of, say,

64 to see at most a few thousand active flows (it should be noted that this is a very

conservative estimate, given the small number of flows in the whole LBL network). A

Switch at the center of a network will likely see more active flows, and so we assume

it will see all active flows.

From these numbers we conclude that a Switch—for a university-sized network—

should have flow-table capable of holding 8-16k entries. If we assume that each entry

is 64B, it suggests the table requires about 1MB; or as large as 4MB if we are using a

two-way hashing scheme [27]. A typical commercial enterprise Ethernet switch today
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Failures 0 1 2 3 4
Completion time 26.17s 27.44s 30.45s 36.00s 43.09s

Table 3.2: Completion time for HTTP GETs of 275 files during which the primary Controller fails.
Results are averaged over 5 runs.

holds 1 million Ethernet addresses (6MB, but larger if hashing is used), 1 million IP

addresses (4MB of TCAM), 1-2 million counters (8MB of fast SRAM), and several

thousand ACLs (more TCAM). We conclude that the memory requirements of an

Ethane Switch are quite modest in comparison to today’s Ethernet switches.

To further explore the scalability of the Controller, we tested its performance with

simulated inputs in software to identify overheads. The Controller was configured

with a policy file of 50 rules and 100 registered principles. Routes were precalculated

and cached. Under these conditions, the system can handle 650,845 bind events per

second and 16,972,600 permission checks per second. The complexity of the bind

events and permission checks is dependent on the rules in use and in the worst case

grows linearly with the number of rules.

3.6.1 Performance During Failures

Because our Controller implements cold-standby failure recovery (see §3.3.5, a Con-

troller failure will lead to interruption of service for active flows and a delay while

they are re-established. To understand how long it takes to reinstall the flows, we

measured the completion time of 275 consecutive HTTP requests, retrieving 63MBs

in total. While the requests were ongoing, we crashed the Controller and restarted

it multiple times. Table 3.2 shows that there is clearly a penalty for each failure,

corresponding to a roughly 10% increase in overall completion time. This can be

largely eliminated, of course, in a network that uses warm-standby or fully-replicated

Controllers to more quickly recover from failure (see §3.3.5).

Link failures in Ethane require that all outstanding flows re-contact the Controller

in order to re-establish the path. If the link is heavily used, the Controller will receive

a storm of requests, and its performance will degrade. We created a topology with
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Figure 3.10: Round-trip latencies experienced by packets through a diamond topology
during link failure

redundant paths (so the network can withstand a link-failure) and measured the

latencies experienced by packets. Failures were simulated by physically unplugging a

link; our results are shown in Figure 3.10. In all cases, the path reconverges in under

40ms; but a packet could be delayed by up to a second while the Controller handles

the flurry of requests.

Our network policy allows for multiple disjoint paths to be setup by the Controller

when the flow is created. This way, convergence can occur much faster during failure,

particularly if the Switches detect a failure and failover to using the backup flow-entry.

We have not implemented this in our prototype, but plan to do so in the future.

3.7 Ethane’s Shortcomings

When trying to deploy a radically new architecture into legacy networks - without

changing the end-host - we encounter some stumbling blocks and limitations. These

are the main ones we have encountered.

Broadcast and Service Discovery Broadcast discovery protocols (ARP, OSPF

neighbor discovery, etc.) wreak havoc on enterprise networks by generating huge

amounts of overhead traffic; on our network, these constituted over 90% of the

flows [54, 50]. One of the largest reasons for VLANs is to control the storms of

broadcast traffic on enterprise networks. Hosts frequently broadcast messages to the

network to try and find an address, neighbor, or service. Unless Ethane can interpret
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the protocol and respond on its behalf, it needs to broadcast the request to all poten-

tial responders; this involves creating large numbers of flow-entries, and it leads to

lots of traffic which—if malicious—has access to every end-host. Broadcast discovery

protocols could be eliminated if there was a standard way to register a service where

it can easily be found. SANE proposed such a scheme [29], and in the long-term, we

believe this is the natural way to go.

Application-layer routing A limitation of Ethane is that it has to trust end-hosts

not to relay traffic in violation of the network policy. Ethane controls connectivity

using the Ethernet and IP addresses of the end-points; but Ethane’s policy can be

compromised by communications at a higher layer. For example, if A is allowed to

talk to B but not C, and if B can talk to C, then B can relay messages from A to C.

This could happen at any layer above the IP layer, e.g., P2P application that creates

an overlay at the application layer, or multihomed clients that connect to multiple

networks. This is a hard problem to solve, and most likely requires a change to the

operating system and any virtual machines running on the host.

Knowing what the user is doing Ethane’s policy assumes that the transport port

numbers indicate what the user is doing: port 80 means HTTP, port 25 is SMPT,

and so on. Colluding malicious users or applications can fool Ethane by agreeing

to use non-standard port numbers. And it is common for “good” applications to

tunnel applications over ports (such as port 80) that are likely to be open in firewalls.

To some extent, these will always be problems for a mechanism, like Ethane, that

focuses on connectivity without involvement from the end-host. In the short-term,

we can, and do, insert application proxies along the path (using Ethane’s waypoint

mechanism).

Spoofing Ethernet addresses Ethane Switches rely on the binding between a user

and Ethernet addresses to identify flows. If a user spoofs a MAC address, it might

be possible to fool Ethane into delivering packets to an end-host. This is easily

prevented in an Ethane-only network where each Switch port is connected to one

host: The Switch can drop packets with the wrong MAC address. If two or more

end-hosts connect to the same Switch port, it is possible for one to masquerade as
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another. A simple solution is to physically prevent this; a more practical solution in

larger networks would be to use 802.11x to more securely authenticate packets and

addresses.



Chapter 4

Conclusions

This thesis described a new approach to dealing with the security and management

problems found in today’s Enterprise networks. Ethernet and IP networks are not well

suited to address these demands. Their shortcomings are many fold. First, they do

not provide a usable namespace because the name-to-address bindings and address-to-

principle bindings are loose and insecure. Secondly, policy declaration is normally over

low-level identifiers (e.g., IP addresses, VLANs, physical ports and MAC addresses)

that don’t have clear mappings to network principles and are topology dependant.

Encoding topology in policy results in brittle networks whose semantics change with

the movement of components. Finally, policy today is declared in many files over

multiple components. This requires the human operator to perform the labor intensive

and error prone process of manual consistency.

Our proposal addresses these issues by offering a new architecture for Enterprise

networks. Our solution was designed around the following principles. First, the net-

work control functions, including authentication, name bindings, and routing, should

be centralized. This allows the network to provide a strongly bound and authenticated

namespace without the complex consistency management required in a distributed

architecture. Further, centralization simplifies network-wide support for logging, au-

diting and diagnostics. Second, policy declaration should be centralized, and over

high-level names. This both decouples the network topology and the network policy,

and simplifies declaration. Finally, the policy should be able to control the route a
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path takes. This allows the administrator to selectively require traffic to traverse mid-

dleboxes without having to engineer choke points into the physical network topology.

From these guiding principles we have designed and implemented two network

architectures, SANE and Ethane. SANE is a clean-slate architecture in which hosts

must acquire capabilities from a central Controller in order to communicate. The

capabilities encode a policy compliant route for the communication to take. All

switches ensure each packet has a valid capability and is on the permitted route.

While providing strong security guarantees and a flexible policy model, deploying

SANE requires modification to all end-hosts and replacement of all switches and

routers.

To overcome the deployment hurdles presented by SANE we designed, built, and

deployed Ethane. Ethane is a backwards compatible architecture that provides similar

security guarantees to SANE yet does not require modification to end hosts, can

coexist with IP routers and Ethernet switches, and can be incrementally deployed

for incremental benefit. Ethane differs from SANE in that rather than relying on

capabilities, requests for communication are provided by explicitly setting up flows

at each switch along the granted path.

To demonstrate the practicality and explore the limits of a centralized architecture

that makes policy decisions per-flow, we built and deployed Ethane within the campus

network at Stanford University. One of the most interesting consequences of building

a prototype is that the lessons you learn are always different—and usually far more—

than were expected. With our deployment, this is most definitely the case: We learned

lessons about the good and bad properties of Ethane, and fought a number of fires

during our deployment.

The largest conclusion that we draw is that (once deployed) we found it much

easier to manage the Ethane network than we expected. On numerous occasions

we needed to add new Switches, new users, support new protocols, and prevent

certain connectivity. On each occasion we found it natural and fast to add new

policy rules in a single location. There is great peace of mind to knowing that the

policy is implemented at the place of entry and determines the route that packets

take (rather than being distributed as a set of filters without knowing the paths that
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packets follow). By journaling all registrations and bindings, we were able to identify

numerous network problems, errant machines, and malicious flows—and associate

them with an end-host or user. This bodes well for network managers who want to

hold users accountable for their traffic or perform network audits.

We have also found it straightforward to add new features to the network: either

by extending the policy language, adding new routing algorithms (such as support-

ing redundant disjoint paths), or introducing new application proxies as waypoints.

Overall, we believe that the most significant advantage of our solution comes from

the ease of innovation and evolution. By keeping the Switches dumb and simple, and

by allowing new features to be added in software on the central Controller, rapid im-

provements are possible. This is particularly true if the protocol between the Switch

and Controller is open and standardized, so as to allow competing Controller software

to be developed. The Controller can be made open-source and run on an open and

widely-used operating system (such as Linux), rather than on the proprietary and

closed OSes used in switches and routers today. Our goal is to put the development

of new Controllers into the hands of network operators and allow them to add new

features they need in a single location, rather than having to replace their whole

network so often.

We are confident that a centralized architecture built around a Controller can

scale to support quite large networks: Our results suggest that a single Controller

could manage over 10,000 machines, which bodes well for whoever has to manage

the Controllers. In practice, we expect Controllers to be replicated in topologically-

diverse locations on the network, yet SANE and Ethane do not restrict how the

network manager does this. Over time, we expect innovation in how fault-tolerance is

performed, perhaps with emerging standard protocols for Controllers to communicate

and remain consistent.

We are convinced that the Switches are best when they are dumb, and contain

little or no management software. Further, the Switches are just as simple at the

center of the network as they are at the edge. Because the Switch consists mostly of

a flow table, it is easy to build in a variety of ways: in software for embedded devices,

in network processors, for rapid deployment, and in custom ASICs for high volume
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and low-cost. Our results suggest that a SANE or Ethane Switch will be significantly

simpler, smaller, and lower-power than current Ethernet switches and routers.

In the case of Ethane, we anticipate some innovation in Switches. For example,

while our Switches maintain a single FIFO queue, one can imagine a “less-dumb”

Switch with multiple queues, where the Controller decides to which queue a flow

belongs. This leads to many possibilities: per-class or per-flow queueing in support

of priorities, traffic isolation, and rate control. Our results suggest that even if the

Switch does per-flow queueing (which may or may not make sense), the Switch need

only maintain a few thousand queues. This is frequently done in low-end switches

today, and it is well within reach of current technology.



Appendix A

Pol-Eth Description

Overview

An Ethane policy script is composed of three sections:

• Group declarations

• Expressions

• Predicates

Each section is separated by a ’%%’ delimiter on a line of its own. The following

example shows a valid Pol-Eth policy file.

# Group declarations

users = ["jpettit","mfreed"];

%%

# no expressions

%%

# predicates

[(usrc=in("users") ^ (hdst="server") ^ (protocol="ssh_t")] :

allow ;

Declaring Rules

Ethane policy supports groups and nested groups. Groups are simply enumera-

tions of principles, whether users, hosts, protocols or access points. Groups are not

typed and will accept any string value. Group declarations have the following format

74



75

groupname = ["quoted princple name", "quoted princple name" ...

];

Example group declarations are listed below.

laptops = ["martins_laptop","margrets_laptop"];

workstations = ["nity","merced","umpqua","northfork","cranberries"];

computers = [workstations, laptops];

Note that the group “computers” contains all members in groups laptops and

workstations.

Rules

Constraints in Pol-Eth are declared as a set of condition/action rules. Each rule

has a condition which, if true for a given flow, specify that action to apply to that

flow. The format of a rule is:

[(predicate1) ^ (predicate2) ^ predicate3) ... ] : constraint;

Predicates

Rule conditions are defined over a set of predicates, all of which must be true for

the rule to apply to a flow. The general format of a rule is (lhs=rhs), as is shown in

the following examples.

(usrc="username") # user src is "username"

(hdst="nity") # destination host is "nity"

(protocol=["http_t","https_t"]) # protocol is

https or http (hsrc=in("computers")) # source host is in group "computers"

LHS

Pol-Eth supports the following Left Hand Sides (LHS) in predicate declaration.

usrc user source

udst user destination

hsrc host source

hdst host destination
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apsrc source access point

apdst destination access point

datproto datalink protocol

netproto network protocol

transproto transport protocol

bpf accepts an arbitrary bpf expression

expr expression (discussed later)

RHS

With the exceptions noted below, each predicate must have a RHS value that

must match that of a flow for the predicate to be true. Predicate RHS values in

Pol-Eth can have the following forms.

“quoted string” quoted principle name

[“list”,“of”,“quoted”,“strings” ] list of quoted principle names

in(“group”) a member of group “group”

Constraints

For each rule, if the predicate matches a flow, the action associate with the rule

is applied. The following list contains the actions supported in Pol-Eth.

allow/deny Allow or deny the flow without performing any other action.

waypoints=[“list”,“of”,“waypoints” ] require flow to traverse a set of way-

points. Waypoints are traverse in declared order.

protected Only allow outbound-initiated flows from the flow source.

rate-limit=speed Limit flows to the specified rate.

NAT=(pub,priv) Require one of the switches on the flow path to perform L3

address translation.
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isolation-class=“class name” Place the flow in an isolation class. Flows in

a particular isolation class will only share queues with other flows in the

same class, thus allowing full end to end isolation between flows.

MAT Swap MAC headers at each switch with the purpose of hiding the source

and destination identities.

Precedence

Rule precedence, in the case of overlapping rule declarations, is top to bottom. A

rule declared in a Pol-Eth file will take precedence over all following rules that also

apply to a given flow.
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Example Pol-Eth Policy File

# Groups

laptops = ["martins_laptop","margrets_laptop","mfreeds_laptop",

"nicks_laptop", "justins_laptop","nanditas_laptop",

"dericksos_laptop"];

workstations = ["nity","merced","umpqua","northfork","cranberries",

"paralax","tybalt","hpn1","hpn2","hpn3","hpn4",

"hpn5", "hpn6","hpn7","hpn8","hpn9","hpn10","hpn11",

"hpn12", "hpn13","hpn14","hpn15","hpn16","hpn17",

"hpn18","hpn19"];

servers = ["peis_server","doemail","yuba"];

windows = ["mekok","hpnpc","judys_pc"];

phones = ["martins_phone","judys_phone","clays_phone","pauls_phone",

"gregs_phone","ph1","ph2","ph3","ph4","ph5","ph6","ph7",

"ph8","ph9","ph10","ph11","ph12","ph13","ph14","ph15",

"ph16","ph17","ph18","ph19","ph20","ph21","ph22","ph23"];

eos_aps = ["basement1","basement2","basement3","justins_office",

"gregs_office","clays_office"];

students = ["casado","rui","mfreed","chtai","jpettit","derickso",

"nanditad","ptarjan"];
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admins = ["judy"];

staff = ["ccollier","gwatson"];

profs = ["nick"];

standard_protos = ["https_t","http_t","dns_t","dns_u","ssh_t",

"imap_t","imaps_t","pop_t", "pops_t","smtp_t",

"smtps_t"];

nicksgroup = [students,admins,staff,profs];

computers = [workstations, laptops, windows, servers];

%%

# Expressions

# example expression declaration. Currently performs no useful

# function

foo :

{

int j = 0;

// This is a useless expression ..

for(int i = 0; i < 10;++i) {

j = i%10;

}

return (j == 0);

}

%%

# Rules
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#example declarations

[(hsrc="martin_laptop")^(usrc="casado")] : protect ;

[(protocol=["http_t","https_t","smtp_t","ssh_t"])^(usrc=["juan",

in("students")])^ (expr="foo")] : deny ;

[(usrc="casado")^(udst="mfreed")] : allow;

[(usrc="casado")^(hsrc=in("laptops"))] : protect;

# Workstations can talk to anyone

[(hsrc=in("workstations"))^(usrc=in("nicksgroup"))] : allow ;

# Allow sshing into laptops

[(hdst=[in("laptops")])^(protocol="ssh_t")] : allow ;

# Protect windows machines and laptops from incoming connections

[(hdst=[in("windows"),in("laptops")])] : protect ;

# Mike is not allowed to use Martin’s laptop

[(usrc="mfreed")^(hsrc="martins_laptop")] : deny;

# Allow Mike and Martin to ssh anywhere from their laptops

[(usrc=["casado","mfreed"])^(hsrc=in("laptops"))^

(protocol="ssh_t")] : allow;

# phones can never talk to computers

[(hsrc=in("phones"))^(hdst=in("computers"))] : deny;

# servers can talk to computers using ssh

[(hsrc=in("servers"))^(hdst=[in("computers"),in("phones")])^

(protocol="ssh_t")] : allow;

# and servers can’t talk to computers nor phones

[(hsrc=in("servers"))^(hdst=[in("computers"),in("phones")])] :

deny;
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# if from a wireless access point, limit to outbound DNS,

# ssh, ssl, smtp, http etc

[(apsrc=in("eos_aps"))^(protocol=in("standard_protos"))] :

protect;

[(apsrc=in("eos_aps"))] : deny;

# Default

[] : allow;
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Switch Architecture

This appendix describes the software and hardware design of our Ethane switch im-

plementation. A main motivator of the design was portability to multiple platforms

(software, embedded software and hardware) without having to duplicate common

functions such as packet lookup and forwarding.

Figure C.1: Component diagram of Ethane switch implementation

The switch design is decomposed into two memory independent process, the dat-

apath and the control path (Figure C.1). The control path manages the spanning

tree algorithm, and handles all communication with the controller. The datapath

performs the forwarding.

The control path runs exclusively in user-space and communicates to the data-

path over a special interface exported by the datapath. The datapath may run in
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user-space, or within the kernel. When running with hardware, the software data-

path handles setting the hardware flow entries, secondary and tertiary flow lookups

(described below), statistics tracking, and timing out flow entries.

C.1 Switch Datapath

Figure C.2: Decomposition of functional layers of the datapath.

Figure C.2 shows a decomposition of the functional software and hardware layers

making up the switch datapath. We’ve implemented a platform abstraction layer

(PAL) which manages system specific code to interface with the native system for

sending and receiving packets, and for exporting the interface for communicating with

the control path. This code is heavily dependent on the runtime platform (e.g., user

space, or kernel or kernel version). At the time of the writing, the Ethane datapath

has been ported to the Linux kernel (versions 2.4, 2.6.12 and 2.6.20), a user-space

runtime environment in Linux, and to the NetFPGA [62] hardware platform.

For incoming traffic, the port subsystem checks the packets against each of the

looking tables for a match. If one is found, the port subsystem will apply the cor-

responding action and hand the packet to the PAL for transmission. Otherwise the
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Figure C.3: Photograph of the NetFPGA circuit board

packet is passed to the Control path. The properties of the lookup tables are as

follows:

• As described in Section 3.5, the primary table uses hashing with direct match

over 8K entries using two CRC functions. This table directly mirrors our hard-

ware implementation and handles the common case of data forwarding.

• The secondary table contains 32k entries. It performs four hashes, two in which

the source MAC address is included and two in which it is not. This table serves

to two functions. It handles overflow in the case of a collision in the primary

table. Secondly, it supports wildcard entries over the source MAC to handle

cases in which proxy ARP causes layer 2 path asymmetries. This is in order

to support outbound-initiated only protection of hosts, in which reverse routes

are “learned” by switches.

• The tertiary table has 1,500 entries and supports wildcards value in all fields. It

is used for to support the MST algorithm and for filters pushed by the Controller

(e.g., drop all packets from a specific host or physical port). Currently it uses

a linear lookup to find matching entries.

C.2 Hardware Forwarding Path

The job of the hardware datapath is to process as large a fraction of packets as pos-

sible, and leave relatively few to the slower software. An arriving packet is compared

against the flow table. If it matches, the associated Action is executed (e.g. forward,

drop, over-write header). If it doesn’t match, the packet is sent to software.
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Our Switch hardware is built on the NetFPGA platform [62] developed in our

group at Stanford University. A NetFPGA card plugs into the PCI slot of a desk-

top PC, and the Switch software runs in Linux on the desktop PC. A NetFPGA

board (shown in Figure C.3) consists of four Gigabet Ethernet interfaces, a Xilinx

Virtex-Pro-50 FPGA, memory (SRAM and DRAM) and a PCI interface to the host

computer. NetFPGA is designed as an open platform for research and teaching us-

ing an industry-standard design flow. Packets can be processed at full line-rate in

hardware.1

In our hardware forwarding path, packets flow through a standard pipeline of

modules. All the modules run in parallel and complete in 16 clock cycles (at 62.5MHz).

The modules check packet lengths, parse packet headers, implement hash functions,

perform lookup functions, track traffic statistics, maintain a flow table in SRAM,

and enable overwrite of packet headers as needed. The main design choice is how to

implement the flow table.

We chose to implement the flow table as hash table (made easy because the flow

table requires only exact-match lookups). In particular, we use double-hashing: we

use two CRC functions to generate two pseudo-random indices for every packet—each

index is used to lookup into a different hash table. This way, we make it very likely

that at least one of the indices will find a unique match. If both hashes return entries

that clash with existing entries, we say there has been a collision, and rely on software

to process the packet.

A block level diagram of the Ethane datapath is illustrated in Figure C.4.

C.2.1 Modules in the Datapath

In Block A, received packets are checked for a valid length, and undersized packets

are dropped.

In preparation for calculating the hash-functions, Block B parses the packet header

to extract the following fields: Ethernet header, IP header, and TCP or UDP header.

1The implementation described here is running on version 2.0 of NetFPGA, and is currently
being ported to version 2.1, which runs more than twice as fast. The functional Switch on version
2.1 of NetFPGA will be available in summer 2007.
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Figure C.4: Block diagram of the hardware datapath

A flow-tuple is built for each received packet; for an IPv4 packet, the tuple has 155

bits consisting of: MAC DA (lower 16-bits), MAC SA (lower 16-bits), Ethertype (16-

bits), IP src address (32-bits), IP dst address (32-bits), IP protocol field (8-bits), TCP

or UDP src port number (16-bits), TCP or UDP dst port number (16-bits), received

physical port number (3-bits).

Block C computes two hash functions on the flow-tuple (padded to 160-bits), and

returns two indices; Block D uses the indices to lookup into two hash tables in SRAM.

In our design, we use a single SRAM to hold both tables, and so have to perform both

lookups sequentially.2 The flow table stores 8,192 flow entries. Each flow entry holds

the 155-bit flow tuple (to confirm a hit or a miss on the hash table), and an 152-bit

field used to store parameters for an action when there is a lookup hit. The action

fields include one bit to indicate a valid flow entry, three bits to identify a destination

2A higher performance Switch would, presumably, use two or more memories in parallel if needed.
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port (physical output port, port to CPU, or null port that drops the packet), 48-bit

overwrite MAC DA, 48-bit overwrite MAC SA, a 20-bit packet counter, and a 32-bit

byte counter.

Block E controls the SRAM, arbitrating access for two requestors: The flow table

lookup (two accesses per packet, plus statistics counter updates), and the CPU via

the PCI bus. Every 16 system clock cycles, the module can read two flow-tuples,

update a statistics counter entry, and perform one CPU access to write or read 4

bytes of data. To prevent counters from overflowing, the byte counters need to be

read every 30 seconds by the CPU, and the packet counters every 0.5 seconds (in our

next design, we will increase the size of the counter field to reduce the load on the

CPU, or use well-known counter-caching techniques, such as [59]).

The 307-bit flow-entry is stored across two banks of SRAM. Although we have

4MB of SRAM, our current design only uses 320KB, which means our table can hold

8,192 entries. It is still too early to tell how large the flow table needs to be—our

prototype network suggests that we can expect only a small number of entries to be

active at any one time. However, a modern ASIC could easily embed a much larger

flow table, with tens of thousands of entries, giving headroom for situations when

larger tables might be needed; e.g. at the center of a large network, or when there is

a flood of broadcast traffic.

Block F buffers packets while the header is processed in Blocks A-E. If there was

a hit on the flow table, the packet is forwarded accordingly to the correct outgoing

port, the CPU port, or could be actively dropped. If there was a miss on the flow

table, the packet is forwarded to the CPU. Block G can also overwrite a packet header

if the flow table so indicates.

Overall, the hardware is controlled by the CPU via memory-mapped registers over

the PCI bus. Packets are transferred using standard DMA.

C.3 Switch Control Path

Figure C.5 contains a high-level view of the switch control path. The control path

manages all communications with the Controller such as forwarding packets that have
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Figure C.5: Diagram of packet flow through functional layers of the control path.

failed local lookups, relaying flow setup, tear-down, and filtration requests.

The control path uses the local TCP stack for communication to the Controller.

By design, the datapath also controls forwarding for the local protocol stack. This

ensures that no local traffic leaks onto the network that was not explicitly authorized

by the Controller.

All per-packet functions that do not have per-packet time constraints are imple-

mented within the control path. This ensures that the datapath will be simple, fast

and amenable to hardware design and implementation. Our implementation includes

a DHCP client, the spanning tree protocol stack, a ssl stack for authentication and

encryption of all data to the Controller, and support for flow-learning to support

outbound-initiated only traffic.
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