
Virtualizing the Network Forwarding Plane

Martín Casado
Nicira

Teemu Koponen
Nicira

Rajiv Ramanathan
Google

Scott Shenker
UC Berkeley

1 Introduction
Modern system design often employs virtualization to decou-
ple the system service model from its physical realization.
Two common examples are the virtualization of computing
resources through the use of virtual machines and the
virtualization of disks by presenting logical volumes as the
storage interface. The insertion of these abstraction layers
allows operators great flexibility to achieve operational goals
divorced from the underlying physical infrastructure. Today,
workloads can be instantiated dynamically, expanded at
runtime, migrated between physical servers (or geographic
locations), and suspended if needed. Both computation and
data can be replicated in real time across multiple physical
hosts for purposes of high-availability within a single site, or
disaster recovery across multiple sites.

Unfortunately, while computing and storage have fruitfully
leveraged the virtualization paradigm, networking remains
largely stuck in the physical world. As is clearly articulated
in [8], networking has become a significant operational bot-
tleneck. While the basic task of routing can be implemented
on arbitrary topologies, the implementation of almost all
other network services (e.g., policy routes, ACLs, QoS,
isolation domains) relies on topology-dependent configu-
ration state [4, 9, 16]. Management of this configuration
state is cumbersome and error prone – adding or replacing
equipment, changing the topology, moving physical locations,
or handling hardware failures often requires significant
manual reconfiguration.

Virtualization is not foreign to networks, as networking
has long supported virtualized primitives such as virtual
links (tunnels), broadcast domains (VLANs), forwarding
contexts (VRF), and component failover (e.g., VRRP).
However, these primitives have not significantly changed
the operational model of networking, and operators continue
to screen scrape CLIs with scripts in order to achieve a
limited degree of automation. Thus, while computing and
storage have both been greatly enhanced by the virtualization
paradigm, networking has yet to break free from the physical
infrastructure.

In this paper, we revisit the notion of network virtualization
and describe how one can fully virtualize the network
forwarding plane. Roughly, the idea is to introduce a

new network-wide software layer that exposes one or more
logical forwarding elements (similar to [10]). To software
written to control the forwarding hardware (i.e., control
software such as routing algorithms) this new software
layer looks like standard forwarding hardware. Instead of
interfacing directly to the networking hardware as is done
today, the control software reads and writes to these logical
forwarding elements. This approach allows network state
(forwarding and configuration) to be largely decoupled from
the underlying hardware, paving the way for migration,
failure resilience, and more complex state management (such
as checkpointing and rollback).

While this approach is generally useful, by far the most
compelling use cases demand a many-to-many mapping
between the logical and physical forwarding elements:
multiple logical forwarding elements may share the same
physical router/switch, and a single logical forwarding
element may span multiple physical routers/switches. In
addition to providing basic support for function mobility
(such as that provided by [16]), this enables a “scale-out”
approach to network design, in which additional hardware
scales-out a single control interface (for example an entire
datacenter can be managed as a single switch instance).
It also provides support for hardware sharing in multi-
tenant environments, which is a crucial enabler for efficient
networking in clouds. Yet despite the many benefits, there has
been little treatment in the literature for a fully generalized
virtualization of the network forwarding plane which would
support such uses.

In this paper, we present a preliminary design and pro-
totype implementation of such a system, describing how to
leverage existing virtualization primitives in today’s merchant
silicon to achieve full data plane virtualization. Further,
we describe a number of target applications for which our
implementation is being designed.

In what follows, we describe in more detail what we mean
by forwarding plane virtualization and how it differs from
traditional approaches to network virtualization (§2). We
then describe the design (§3) and implementation (§4) of our
prototype. In §5 we describe uses cases, follow by related
work in §6. Finally, we conclude with a discussion in §7.

1



2 Virtualization Revisited
As mentioned in the previous section, the disparate collection
of virtualization primitives available in networks today (e.g.,
VLANs, tunnels, VRF contexts) does not provide an adequate
abstraction upon which to build topology-independent control
software. Managing tunnels, VLAN configuration, and VRF
contexts requires significant manual network management,
and component failures can interfere with these virtual
configurations by, for example, disrupting a tunnel end-point,
eliminating VLAN configuration, or VRF forwarding state.

In our proposal, we take advantage of the sophisticated
hardware support for these individual virtualization primitives
to construct a more comprehensive network virtualization
solution in which hardware can be treated generically as a
resource pool of forwarding capacity, and hardware changes
do not disrupt the logical view of the system.

The question, then, is what representation do we choose for
the service model of the underlying physical infrastructure.
We could have chosen various higher-level abstractions (such
as the security configurations used in [9] or the access-control
policies in [4]), but these are typically limited to particular
service offerings. In order to provide application-independent
virtualization, we chose to virtualize the forwarding plane.
The forwarding plane is traditionally defined in hardware,
so it is a slowly evolving interface whose basic abstractions
(tables, ports, counters, and primitives for modifying and
forwarding packets) have not changed significantly over time.
In addition, this service interface is compatible with existing
control software.

We have chosen the name “network hypervisor” for our
proposed software layer to intentionally call to mind the
concept of virtualization. Our proposed software layer
serves much the same function as a hypervisor on a host:
providing a logical service model to the software above,
and then implementing the desired functionality on the
hardware below. As we note in §6 and §7, the term “network
virtualization” is often used to refer to carving a single
physical network into several logical “slices”. However,
what we propose here is a strict superset of this slicing
functionality, and provides a fuller virtualization of the
network by providing a completely logical interface; network
“slices” are not independent of the underlying physical
infrastructure, but instead are a way of multiplexing that
infrastructure.

3 Design
3.1 Overview

Virtualizing the network forwarding plane presents two
major design challenges; the choice of the forwarding plane
abstraction, and the technology needed to map the logical
forwarding planes into the underlying physical hardware. We
discuss these two issues in turn.

While each forwarding chipset differs in particulars,
networking hardware typically exposes tables, counters, ports

and port groups, and some control over packet manipulation
and forwarding. Our hypervisor maintains these abstractions,
providing the ability to create one or more logical (possibly
interconnected) forwarding elements, where each forwarding
element has a set of logical ports, a set of lookup tables, and
some basic forwarding actions such as counters, forwarding,
header-rewriting, and en/decapsulation. These elements
also have associated capacities (e.g., line speeds, cross-
section bandwidth, table sizes). As with traditional physical
networks, the control plane (i.e., the software system used by
operators to control the network) uses this logical abstraction
to express the desired network functionality.

Note that this logical abstraction is not just used for
static configuration of the network functionality, but instead
can be used by network control software to implement
sophisticated dynamic control over the network. For example,
as we discuss later, one can use such an interface to
turn a collection of physical routers into a single logical
router that is participating in a routing protocol such as
BGP. The “configuration” of the logical router is therefore
programmatically determined by the implementation of BGP
sitting on top of this logical interface.

To map the logical network state into the underlying
hardware interface, we rely on a recent line of research [6, 7,
11, 12] that provides global network control. While there are
many approaches to building such a system, our prototype is
implemented using a control plane that provides a full view
of the physical network topology. Our network hypervisor
is thereby given two network views: from above it is given
(by the control plane) a logical network view of the desired
functionality, and from below it is given (by a centralized
network management system) a view of the physical network
topology. The job of the network hypervisor is to determine
how to implement the desired logical functionality through
configuration of the physical network. Thus, the network
hypervisor should be seen as the point where the logical
network is mapped into the physical network.

3.2 Components
In our proposal the network can be thought of as having
several distinct logical layers:

• Control Plane: This refers to the basic mechanisms
used to express the desired network functionality,
through either manual configuration or programmatic
control (as in routing algorithms).

• Logical Forwarding Plane: This is the logical abstrac-
tion of the network.

• Network Hypervisor: The network hypervisor, which is
the subject of this paper, takes the logical forwarding
plane and maps it into the underlying physical hard-
ware.

• Physical Forwarding Plane: This refers to the set of
physical network forwarding elements.

2



There is one other general concept that is useful in
describing our system: that of a logical context. As a packet
traverses the network, it can be thought of as moving in both
the logical forwarding plane and the physical forwarding
plane. When a switch is making a decision (based on its
physical tables and the packet header) about how to forward
a packet, it is often useful to know where that packet is in the
logical forwarding plane: we call this information the logical
context of the packet.

We now describe the logical forwarding plane, the physical
forwarding plane, and the network hypervisor in more detail.
We do not describe the control plane mechanisms, which
determine the specification of the logical forwarding plane,
in our description below.

3.3 Logical Forwarding Plane
For simplicity, in what follows we focus on the case where
the logical forwarding plane consists of a single logical
forwarding element. The interface of this logical element
includes:

• Lookup tables: The logical forwarding element will
expose one or more forwarding tables. Typically
this will include L2, L3, and ACL tables. Our
implementation is designed around OpenFlow [12] so
we adopt a more generalized table structure built around
a pipeline of TCAMs with forwarding actions specified
for each rule. The forwarding actions correspond to
the actions available in the physical forwarding plane,
notably header overwriting, enqueuing, filtering, and
multicast groupings. This structure provides support for
forwarding rules, ACLs, SPAN, and other primitives.1

• Ports: The logical forwarding element contains a
set of logical ports. These ports can be bound to
physical ports, or to other port abstractions such as
virtual machine interfaces, VLANs, or tunnels. Ports
may appear and leave dynamically as they are either
administratively added, or the component they are
bound to fails or leaves. Logical ports maintain much
of the same qualities of their physical analogs including
rx/tx counters, MTU, speed, error counters, and carrier
signal.

We chose this interface to be both familiar and expressive,
but it also has the added advantage of being compatible with
current hardware capabilities, so that it can be efficiently
implemented. Moreover, it is compatible with current control
plane mechanisms, making integration easier.

3.4 Physical Forwarding Plane
We assume that the forwarding elements are traditional
hardware switches with standard forwarding silicon. As
we discuss below, the network hypervisor is responsible
1Under this model, it is possible to support recursive virtual
instances.

Mapping Lookup

Logical Lookup(s)

Mapping Lookup

Packet in Packet out

Physical Lookup(s)

Logical context

1: Packet forwarding pipeline in a physical switch.

for configuring the physical forwarding elements so that the
network implements the desired behavior as specified by the
logical forwarding plane. In order for the physical forwarding
elements to carry out their assigned tasks, they must do the
following for each packet: (i) map the incoming packet to
the correct logical context, (ii) make a logical forwarding
decision, (iii) map the logical forwarding decision back to
the physical next-hop address, and (iv) make a physical
forwarding decision in order to send packets to the physical
next hop. Figure 1 shows these steps which we describe in
more detail below.

Mapping packets to logical context. Multiple logical for-
warding elements may be multiplexed over the same physical
switch. Thus, on ingress, a packet must be mapped to the
correct logical context. It may be the case that the current
switch does not contain the logical forwarding state for a
given packet, in which case the switch simply performs
a physical forwarding decision. Also, if all the physical
switches are implementing only a single logical forwarding
element, the mapping becomes a no-op because logical
addressing may be used in the physical network.

Conceptually, it does not matter which field(s) are used to
map a packet to a logical context. It could be, for example, an
identifying tag such as an MPLS header, or the ingress port.
However, in order to provide transparency to end systems, the
tag used for identifying logical contexts must not be exposed
to the systems connecting to the logical switch. In general,
this means that the first physical switch receiving a packet
tags it to mark the context, and the last switch removes the tag.
How the first tag is chosen depends largely on the deployment
environment, we discuss this further in Section 4.

Logical forwarding. Once a packet is mapped to its logical
context, the physical switch performs a forwarding decision
which is only meaningful within the logical context. This
could be, for example, an L2 lookup for the logical switch
or a sequence of lookups required for a logical L3 router.
However, if the physical switch executing the logical decision
does not have enough capacity to have all the logical state,
the logical decision executed at that switch may be only a
step in the overall logical decision that needs be executed; in
such a case, the packet may require further logical processing
before leaving the logical forwarding element.

Mapping logical decision to physical. The result of a
logical forwarding decision (assuming the packet wasn’t
dropped) is one or more egress ports on the logical forwarding
element. Once these are determined, the network must send
the packets to the physical objects to which these egress ports

3



are bound. This could be, for example, a physical port on
another physical switch, or a virtual port of a virtual machine
on a different physical server.

Thus, the network must map the logical egress port to the
physical next hop. In our design, the logical and physical
networks share distinct (though potentially overlapping)
address spaces. Thus, once the physical address is found
for the next hop, the (logical) packet must be encapsulated to
be transferred to the next hop physical address.

If a logical forwarding decision is distributed across
multiple physical components, the “next hop” will be the
next physical component that will continue to execute the
logical forwarding decision rather than a logical egress port.

Physical forwarding. Finally, the physical forwarding de-
cision is responsible for forwarding the packet out of the
correct physical egress port based on the physical address
determined by the previous mapping step. This requires a
third (or more) lookup over the new physical header (which
we assume was created in the previous step).

It is worthwhile to note that if the physical switches of the
network have only one logical context, the previous two steps
may become no-ops.

3.5 Network Hypervisor
Given the previous description of the physical network
responsibilities, the following state must be maintained at
each switch in the network: (i) a table to map incoming
packets to their logical forwarding context, (ii) rules for
logical forwarding decisions, (iii) a table to map a logical
egress port to a physical location, and (iv) a physical
forwarding table.

Standard routing protocols such as OSPF or ISIS are well
suited for populating the physical forwarding tables. How-
ever, our system also requires some method for determining
logical to physical mappings, and distributing the logical
forwarding rules across the physical network. This is the
responsibility of the network hypervisor.

The network hypervisor maintains a global view of all
physical resources in the network and all configured logical
forwarding planes. Its primary function is to map the logical
forwarding plane to the underlying hardware efficiently. It
must also maintain these mappings whenever the physical
network changes (component addition, removal, or failure)
or the logical forwarding plane is modified.

4 Prototype Implementation
There are a number of approaches which would be suitable
for realizing the conceptual design presented in the previous
section. In what follows, we describe our hypervisor
implementation which we have built as a distributed system
that manages the switch state through an OpenFlow-based
protocol. While we have tested a prototype, the implementa-
tion of our final design is not yet complete. In what follows,
we discuss some of the practical issues we have considered
in our implementation.

4.1 Physical Switch

In our implementation we use L2 over GRE to provide the
physical to logical and logical to physical mappings. The L2
packets are relevant within the logical context, and the GRE
tunnels provide the physical transport. The lookup which
maps the L2 packets to the tunnels is the logical forwarding
decision and is populated by the network hypervisor. The
decision about which physical port to send a tunneled packet
out of is the physical forwarding decision, and is determined
via a standard routing protocol. To reduce the number of
active tunnels the system has to maintain, we further use
tagging (VLAN or MPLS) within tunnels to indicate the
logical context to which a packet belongs.

We note that all of these functions are available on
merchant silicon chipsets today. Both Broadcom and Marvell
have chipsets that support rule based tunnel lookup for L2
over L3.

4.2 Network Hypervisor

In our implementation, the network hypervisor is being
built as a distributed system that operates as an OpenFlow
controller.2 The network hypervisor connects with every
switch in the network and uses a simple discovery mechanism
to create an in-memory graph of the network.

Given the network graph, it is the responsibility of the
hypervisor to map the logical forwarding plane to the
physical network, and to maintain these mappings as the
physical network changes either through a hardware failure or
component addition or removal. The hypervisor also provides
an API which allows for the creation and configuration of
logical forwarding elements as well as dictating where they
tie into the physical network.

The job of the hypervisor is complicated by the fact that
it must multiplex the logical context over limited physical
bandwidth and lookup table space. We discuss each in turn.

• Bisectional bandwidth: Ideally, logical forwarding
elements can be declared with a given bisectional
bandwidth which is enforced by the hypervisor. This is
difficult to maintain in general over arbitrary topologies.
Our current implementation does not deal with this
problem directly but rather relies on load balancing
of flows at the physical layer to uniformly consume
physical forwarding bandwidth. While it tries to
be efficient and fair, our implementation does not
guarantee a minimum bisectional bandwidth.

• Port bandwidth: A logical port may be implemented
as a tunnel which traverses multiple physical elements.
In order to provide minimum port speed guarantees,
each element must be able to support the capacity
and isolate it from other traffic. Limitations on the
number of queues in standard switching silicon makes
this difficult to enforce in general. Again, our naive

2We omit the discussion of required OpenFlow changes for brevity.

4



implementation assumes over-provisioned end-to-end
physical bandwidth.

• TCAM space: When placing logical forwarding rules,
the hypervisor must consider the finite capacity of
the physical forwarding tables. Unfortunately, unlike
virtual memory in operating systems, the extreme
performance demands of some network environments
limits the practicality of an on-demand approach to
“paging-in” rules on packet misses (such as the approach
used in [5]). Rather, the rules in a logical context should
be in hardware somewhere within the network.

We further simplify the resource optimization problem by
only placing logical forwarding at the edge of the network,
leaving the interior of the network to operate as a simple
physical backplane.3 Thus, the logical forwarding capacity is
limited to that available in the first hop switches.

5 Use Cases
We now describe some of the practical use cases for a network
hypervisor.

Distributed virtual switch. End-host virtualization requires
switching capability on a host (implemented in the host
hypervisor [13]). This is generally realized as an L2 software
switch (generally termed vswitch) which connects all co-
resident VMs on a physical host. Even with the ability to
control the network at the end-host, the dynamic nature of
virtual environments (which may include end-host migration)
makes network monitoring and configuration difficult. A
preferable approach is to connect VMs to a distributed
logical switch which is topology independent (as is done with
VMware DVS, for example). Our approach trivially allows us
to support a distributed virtual switch (provided the vswitches
support the required table lookups). Further, our approach
allows this to be extended to physical switches allowing for
non-virtualized end-hosts to participate on logical topologies.

Scale-out carrier-grade router. Data-centers and the edges
of the wire-area networks, require a level of capacity and
fan-out in IP routers that is difficult to fulfill with commodity
switching hardware today. Thus, expensive carrier-grade
routers are still the only viable solution.

A network hypervisor based solution can replace a single
carrier-grade router with a rack of commodity switches. In
essence, the commodity switches are used to a form a high
capacity switching backplane that the network hypervisor
then represents as a single logical switch for a standard (open-
source) IGP/BGP routing stack control plane implementation.
In this model, logical ports correspond to the physical ports
used to interconnect this single “router in a rack” to its
next hops, and the routing stack pushes its FIB (we are
not assuming per ingress port FIBs here for simplicity)
3We are currently investigating more sophisticated rule placement,
as in [17].

to the forwarding table of the logical switch, which is
then distributed to the physical switches by the network
hypervisor. Port status information is mapped back to the
logical ports and the routing stack communicates with its peer
by sending/receiving over the logical ports.

The switches are interconnected with a fat-tree-like topol-
ogy to achieve sufficient bisectional bandwidth, and therefore,
the network hypervisor has a simple task to allocate sufficient
bandwidth capacity between any logical port. If the TCAM
capacity of a commodity switch is not sufficient to hold a full
FIB computed by the routing stack, the network hypervisor
can split the FIB over multiple physical switches (exactly as
proposed in [2]).

Multi-tenant network architecture. In a multi-tenant net-
work environment, the physical network is shared among
tenants so isolation between tenant networks is a strict
requirement. While in modestly sized networks this is rather
easily achievable with today’s solutions (such as VLANs),
these solutions are unworkable at the scale already seen in
production multi-tenant networks. For instance, the number
of available VLANs is rather limited and, as the number
of tenant networks grows, the management of the required
configuration state becomes extremely brittle.4

The network hypervisor is perfectly suited to the multi-
tenant challenge; it is sufficient for the hypervisor to allocate
a logical switch per tenant and then map sufficient resources
per logical switch. The isolation is taken care of by the
mappings between physical and logical contexts. In this case,
the logical context just happens to correspond to the tenants.

Tenants may be provided with full (self-service) control
over their dedicated logical switches, freeing further re-
sources from the physical network management. For example,
the tenants can modify per (logical) port ACLs and they
can even see (logical) statistics for their traffic. Similarly,
any constraints due to integration with external networks
can be represented using logical abstractions within the
logical network view the tenants are provided with. For
IP connectivity, a logical router may represent the IP subnet
allocated for the tenant. Then it is the network hypervisor’s
task to provide such IP connectivity for the logical network
by appropriately interconnecting the physical switches to the
IP connectivity.

6 Related Work
As we have already discussed, networking makes heavy use
of virtualization concepts at the lower levels with tunnels and
tags (VLANs or MPLS), and multiple proposals have sought
to virtualize higher-level interfaces to the network (examples
include [4,9]). In our proposal, we argue that the correct layer
at which to virtualize is the full forwarding plane, somewhere
between these two extremes.
4Q-in-Q (stacked VLANs) is a potential solution for the limited
number of VLANs but its use requires even more planning than
plain VLANs.

5



We now describe some recent proposals which relate to
ours while acknowledging that additionally there is a vast
body of prior work on which these ideas are built.

VROOM [16] proposes the use of a hypervisor between
the control and forwarding planes of a router to facilitate
migration. In our model, this is akin to running single logical
forwarding element per physical switch. Our work extends
this idea in two ways. First, we extend the logical view across
multiple physical elements; second, we support multiple
logical contexts sharing the same underlying hardware.
Further, our work focuses on how such an approach can
take advantage of traditional hardware forwarding paths to
implement full forwarding plane virtualization.

Keller and Rexford (in [10]) have argued that the typical
approach of overlaying a virtual network of multiple virtual
routers on top of a shared physical infrastructure should be
replaced by the “platform as a service” model of virtualiza-
tion. With this we completely agree, and our focus here is on
articulating the architecture necessary to make this a reality.

Overlay networks (e.g., [1]) build networks on top of other
networks for a variety of purposes. Here, we are proposing to
use a fully logical network abstraction to express the desired
functionality, and then use the network hypervisor to map
this logical abstraction to the underlying hardware. In the
process of mapping the logical to the physical, the network
hypervisor effectively creates an overlay network, but the key
distinguishing factor is the presence of the logical abstraction.

Various proposals (such as [3, 14, 15], and many others
we omit for brevity) “slice” a physical network amongst
multiple control plane instances. While these approaches
are often described as “network virtualization”, but in the
broader systems literature, virtualization refers to the act of
decoupling the (logical) service from its (physical) realization.
In particular, the virtualized service may be implemented by
a single physical component shared by multiple virtualized
services or by using multiple physical resources to implement
a single logical service.

The network hypervisor closely matches with the classic
definition of the virtualization as it can both partition the
physical network and build logical forwarding elements
exceeding the capacity of any physical forwarding element.
Accordingly, our proposal focuses on the problem of partition-
ing a single resource through the use of multiple contexts, as
well as distributing the logical context over multiple physical
elements. In contrast, slicing focuses on the former problem,
by partitioning the physical forwarding space either through
consuming physical ports, or partitioning address or tag space.
Slicing does not provide the means for distributing the logical
state across multiple physical elements, a key component of
our design.

7 Discussion
The approach proposed here is conceptually quite simple:
rather than requiring control planes to deal with the compli-
cated and dynamic nature of physical networks, the network

hypervisor allows them to specify the desired behavior in
terms of a simple logical abstraction that is completely
under their control. This logical abstraction is only as
complicated as needed to express the desired behavior, and
completely shields the control plane from the irrelevant
details of the underlying physical infrastructure. The network
hypervisor then assumes the responsibility of implementing
this abstraction on the underlying physical network.

This approach merits further investigation, as we have only
begun to scratch the surface of this idea.

8 References

[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.
Resilient Overlay Networks. In Proc. SOSP, October 2001.

[2] H. Ballani, P. Francis, T. Cao, and J. Wang. Making Routers
Last Longer with ViAggre. In Proc. NSDI, Apr 2009.

[3] S. Bhatia et al. Trellis: A Platform for Building Flexible, Fast
Virtual Networks on Commodity Hardware. In Proc.
CoNEXT, December 2008.

[4] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking Control of the Enterprise. In
Proc. SIGCOMM, August 2007.

[5] M. Casado, T. Koponen, D. Moon, and S. Shenker. Rethinking
Packet Forwarding Hardware. In Proc. HotNets, October
2008.

[6] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A Clean
Slate 4D Approach to Network Control and Management.
SIGCOMM CCR, 35(5), 2005.

[7] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an Operating
System for Networks. In SIGCOMM CCR, July 2008.

[8] J. Hamilton. Data center networks are in my way. Talk at
Stanford Clean Slate CTO Summit, 2009.

[9] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M.
Smith. Implementing a Distributed Firewall. In Proc. CCS,
2000.

[10] E. Keller and J. Rexford. The “Platform as a Service” Model
for Networking. In Proc. INM WREN, 2010.

[11] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A Distributed Control Platform for
Large-scale Production Networks. In Proc. OSDI, October
2010.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM CCR,
38(2), 2008.

[13] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and
S. Shenker. Extending Networking into the Virtualization
Layer. In HotNets, October 2009.

[14] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar. Can the Production Network
Be the Testbed? In Proc. OSDI, October 2010.

[15] J. S. Turner. A Proposed Architecture for the GENI Backbone
Platform. In Proc. of ANCS, December 2006.

[16] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and
J. Rexford. Virtual Routers on the Move: Live Router
Migration as a Network-management Primitive. In Proc.
SIGCOMM, August 2008.

[17] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable
Flow-Based Networking with DIFANE. In Proc. SIGCOMM,
August 2010.

6


	Introduction
	Virtualization Revisited
	Design
	Overview
	Components
	Logical Forwarding Plane
	Physical Forwarding Plane
	Network Hypervisor

	Prototype Implementation
	Physical Switch
	Network Hypervisor

	Use Cases
	Related Work
	Discussion
	References

