Congestion Control in 100x100: Why TCP is a poor choice and how to redesign it from scratch

Nandita Dukkipati

Collaborated with Rui Zhang-Shen, Masayoshi Kobayashi and Nick McKeown

High Performance Networking Group
Stanford University
The 100x100 Network

High link speeds
End-to-end RTT ~ 100 ms
Mix of flow lengths
TCP does not work well

1. **Slow additive increase** means flows take a long time to acquire spare capacity

2. **Unsustainable** large equilibrium window; requires extremely small loss \(p = 3/(2w^2) \)

3. **Confused** by lossy links -- low throughput in wireless links

4. **Unfair** bandwidth sharing: Flow throughput \(\propto \frac{1}{RTT} \)

5. **Inefficient** Slow Start
 - Flows made to last multiple round trip times
 - Instability -- exponential increase in aggregate traffic

6. **Large** queueing delay
Explicit Control Protocol (XCP)

- Proposed by Katabi et. al Sigcomm 2002; part of NewArch project
- Explicit feedback on congestion from the network
- Flows receive precise feedback on window increment/decrement
- Convergence of fair share rates could take many round trip times
- Routers do detailed per-packet calculations
XCP -- Pros and Cons

- **Pros:**
 - **Long-lived flows:** Works very well -- convergence to fair-share rates, high link utilization, small queue occupancy, low loss.

- **Cons:**
 - **With a mix of flow lengths:** Deviates far from Processor Sharing. Unfair and inefficient. All promises for long-lived flows no longer hold.
 - **Flow durations:** Makes the flows last two orders of magnitude higher than necessary. Worse than TCP.
 - **Complexity:** Requires detailed per-packet computations
Example: XCP vs. TCP vs. PS

Flow Duration (secs) vs. Flow Size # Active Flows vs. time
List of qualities we are looking for

I. Emulate Processor Sharing
 1. Performance is invariant of flow size distribution
 2. Mix of flows: Results in flows finishing quickly -- close to the minimum achievable
 3. Long flows: Results in high throughput -- even under high bandwidth-delay, lossy links...
 4. All flows get fair share of bottleneck bandwidth

II. Want stability -- convergence to equilibrium operating point

III. Want all the above under any network conditions (mix of RTTs, capacities, topologies) and flow mixes

IV. Without any per-flow state, per-flow queue or per-packet computation in the routers
RCP: Picking the Flow Rate

- Is there one rate a router can give out to all the flows so as to emulate Processor Sharing?
- Rate $R(t) = \frac{C}{N(t)}$
- RCP is an adaptive algorithm to emulate PS:
 - $R(t)$ picked by the routers based on queue size and aggregate traffic
 - Router assigns a single rate to all flows
 - Requires no per-flow state or per-packet calculation

$$R(t) = \frac{C}{N(t)}$$
RCP: The Basic Mechanism
RCP: The Algorithm

Average RTT

$$R(t) = R(t - d_0) + \frac{\alpha(C - y(t)) - \beta \frac{q(t)}{d_0}}{\hat{N}(t)}$$

Link Capacity

$$\hat{N}(t) = \frac{C}{R(t - d_0)}$$

Aggregate Traffic queue

$$R(t) = R(t - T)[1 + \frac{T}{d_0} \left(\frac{\alpha(C - y(t)) - \beta \frac{q(t)}{d_0}}{C}\right)]$$

Estimate of # flows
Understanding RCP

- How good is the estimate, $C/R(t)$?

- Handling packet losses

- RCP performs well and is stable for a broad range of its parameters α and β
RCP Performance

• When traffic characteristics vary
 • Different flow sizes
 • As mean flow size increases
 • Different flow size distributions
 • Non Poisson arrivals of flows
 • As load increases

• When Network Conditions vary
 • As link capacity increases
 • As RTT increases
 • Flows with different RTTs
 • Multiple bottlenecks
• Compared with: \(AFCT \geq 1.5RTT + \frac{E[L]}{C}; FCT_{PS} = 1.5RTT + \frac{L}{C(1 - \rho)} \)

• In each case RCP achieves the goals we set out
Example 1: Achieves PS for different Flow Sizes

Max. FCT
RCP vs. TCP vs. XCP
Example 2: Achieves PS for any flow size distribution
Example 3: Achieves PS irrespective of offered load
Example 4: Achieves PS for any RTT
RCP is Stable

Stable Independent of C, RTT and # Flows
Conclusion

- TCP is unsuitable for high bandwidth-delay network such as the 100x100
- XCP is a bold attempt but hasn’t achieved what it set out to do
- Making network faster doesn’t help; Flow durations and performance is constrained by protocols
- Consequences of RCP’s close emulation of PS:
 - Scales naturally with link capacities, RTTs, network conditions
 - Won’t matter anymore what mix of flows, applications generate
 - Will have a network whose performance is predictable and close to the best achievable