Rate Based Congestion Control for the Internet

(work in progress)

Rui Zhang-Shen
Nandita Dukkipati
Outline

• Problem Statement
• The Model
• Rate Control Protocol (RCP)
• Future Work
Internet Congestion Control

Goals of a congestion control scheme:

– Limit flow rates to avoid "congestion"
– Use the network resources efficiently to minimize flow durations
– Ensure fairness in resource allocation among flows
Problem Statement

• Finding congestion control scheme for high bandwidth Internet
 – Link capacities will continue to increase
 – Conjecture: Flow sizes remain relatively constant
 – An increasing number of flows could finish within a round-trip time (RTT)

• Current congestion schemes:
 – Feedback based
 – Force flows to last multiple RTTs

• Short flows: flow size/link capacity << RTT
Example: A Short Flow

TCP Congestion Control

But the flow could finish within one RTT!

We want something like this!
Characteristics of the New Scheme

• **Open loop based:**
 – No feedback
 – Flow rate determined at start by interaction between routers and end-host

• **Flow/user centric** instead of packet centric

• Low flow response times

• Fair amongst flows
Assumptions

• Flows arrive according to a Poisson Process
• Flow sizes are independent and identically distributed
• Network consists of short flows only*

*Will be removed later
Optimal Solution

• Single bottleneck link
• Average flow delay minimized when:
 – Flows arrive as single entities
 – Shortest Remaining Processing Time (SRPT)
• Problems
 – Scheduler at output queue
 – Knowledge of flow sizes and per flow state
 – Large buffer
System Model

$M/G/1$ input process to a single server queue
Outline

• Problem Statement
• The Model
• Rate Control Protocol (RCP)
• Future Work
Observations and Intuition

• With an infinite buffer and $\rho < 1$
 – If flows come at maximum rate, they will be served
 – But maximum buffer occupancy may be large

• If flow rates are small
 – Load is smoother
 – Buffer requirement is lower
An Example

R = C

Load
Buffer Occupancy

R = C/2

Load
Buffer Occupancy
Rate Control Protocol (RCP)

Connection setup: 3-way handshake

Data packets sent at granted rate

Sender

Syn+Request Rate

Syn+Ack

+Granted Rate

Ack+Data

Receiver

Request rate granted or decreased by routers

Sender notified of granted rate
Rate Control Protocol: Router

• Router determines “n”
• Router grants rate C/n to each flow
• This provides fairness amongst flows
• Choosing n involves considerations of
 – Buffer requirement
 – And flow response time
RCP in Action

Request Rate
= 100Mb/s

Request Rate
= 20Mb/s

Request Rate
= 20Mb/s
M/G/1 Input Process

- Arrival process (flow start times) and departure process (flow finish times) are both Poisson(λ)
- Number of active flows $N(t)$ is $\text{Poisson}(\lambda \mathbb{E} \tau) = \text{Poisson}(n\rho)$
- $\Pr\{\text{load}(t) > 1\} = 1 - \text{PoissonCDF}(n)$
- Given $\Pr\{\text{load}(t) > 1\}$, n only depends on ρ!
How to Choose “n”

\[\text{Prob}\{\text{load}>1\} = 1 - \text{Poisscdf}(n, n_\rho) \]
Simulation Comparison of TCP and RCP

Single bottleneck link of 100Mb/s; RTT=200ms; $\rho=0.8$; $n=8$; flow size~Uniform[50, 150]kB

*Pr{load(t)>1} from simulation matches theoretical values
Future Work

• Derive buffer distribution with different “G”
• Investigate effects of buffer size on RCP
• Intuitively, RCP should also work for long flows
 – Performance of RCP with long-tailed traffic, etc.
• User models: Interaction of load and network
• Find optimal n which minimizes average delay