
Building a RCP (Rate Control Protocol) Test Network∗

Nandita Dukkipati, Glen Gibb, Nick McKeown, Jiang Zhu†

Computer Systems Laboratory
Department of Electrical Engineering

Stanford University
{nanditad, grg, nickm, jiangzhu}@stanford.edu

Abstract

We recently proposed the Rate Control Protocol (RCP)
as way to minimize download times (or flow-completion
times). Simulations suggest that if RCP were widely de-
ployed, downloads would frequently finish ten times faster
than with TCP. This is because RCP involves explicit feed-
back from the routers along the path, allowing a sender to
pick a fast starting rate, and adapt quickly to network con-
ditions. RCP is particularly appealing because it can be
shown to be stable under broad operating conditions, and
its performance is independent of the flow-size distribution
and the RTT. Although it requires changes to the routers,
the changes are small: The routers keep no per-flow state
or per-flow queues, and the per-packet processing is mini-
mal.

However, the bar is high for a new congestion control
mechanism – introducing a new scheme requires enormous
change, and the argument needs to be compelling. And so,
to enable some scientific and repeatable experiments with
RCP, we have built and tested an open and public imple-
mentation of RCP; we have made available both the end-
host software, and the router hardware.

In this paper we describe our end-host implementation
of RCP in Linux, and our router implementation in Verilog
(on the NetFPGA platform). We hope that others will be
able to use these implementations to experiment with RCP
and further our understanding of congestion control.

1 Introduction and Motivation

Our goal is to enable others to perform repeatable scien-
tific experiments with RCP (Rate Control Protocol), and to
compare it with other proposed congestion control schemes.
As with any congestion control mechanism, there are many

∗This research is supported by NSF under ITR award ANI-0331653,
the Stanford Clean Slate Program, and NEC Corporation.

†Authors’ names are in alphabetical order.

aspects to be considered when deciding how good it is: Is
it provably stable? Does it work well in simulation under
a broad range of operating conditions? How well does it
behave alongside TCP? How complex is it to implement?
And how well does it work in practice?

In other work, the stability of RCP has been proved, and
thousands of simulations suggest it is very promising un-
der very broad conditions. In this work we are particularly
interested in the last two questions: How difficult is it to
implement RCP, and how well it works in practice with real
users and traffic.

Before explaining how to implement it, we need to un-
derstand what RCP is and how it works.

In the basic RCP algorithm a router maintains a single
rate,R(t), for every link. The router ”stamps”R(t) on ev-
ery passing packet (unless it already carries a slower value).
The receiver sends the value back to the sender so that it
knows the slowest (or bottleneck) rate along the path. In
this way, the sender quickly finds out the rate it should be
using (without the need for slow-start). The router updates
R(t) approximately once per roundtrip time (RTT). Intu-
itively, to emulate processor sharing, the router should offer
the same rate to every flow, try to fill the outgoing link with
traffic, and keep the queue occupancy close to zero. The
RCP rate update equation is based on this intuition:

R(t) = R(t − T )(1 +
T
d
(α · (C − y(t)) − β · q(t)

d
)

C
) (1)

whered is a moving average of the RTT measured across all
packets (each RCP sender maintains its RTT estimate which
it stamps in all outgoing data packets),T is the update in-
terval (i.e., how oftenR(t) is updated) and is less than or
equalsd, R(t − T ) is the last rate,C is the link-capacity,
y(t) is the measured aggregate input traffic rate during the
last update interval,q(t) is the instantaneous queue size, and
α, β are parameters chosen for stability and performance.

There are four main features of RCP that make it an ap-
pealing and practical congestion control algorithm:

1



RCP Software

Router

RCP End-hosts

RCP End-hosts

RCP hardware 

router (NetFPGA)

RCP listening

servers

1 GigE

delay 4 ms

1 GigE

1 GigE

delay 10 ms

1 GigE

delay 50 ms

100 Mbps

100 Mbps

RCP Software

Router

RCP hardware

router

bottleneck router 1

bottleneck router 2

Figure 1. An example RCP test network with
a mix of hardware and software routers, and
RCP end-hosts, running over 100 Mbps/1
GigE links.

1. RCP is inherently fair (all flows at a bottleneck receive
the same rate).

2. RCP’s flow-completion times are often one to two or-
ders of magnitude better than in TCP and XCP, and
close to what flows would have achieved if they were
ideally processor shared. This is because RCP al-
lows flows to jump-start to the correct rate (because
even connection set-up packets are stamped with the
fair-share rate). Even short-lived flows that perform
badly under TCP (because they never leave slow-start)
will finish quickly with RCP. And equally importantly,
RCP allows flows to adapt quickly to dynamic network
conditions in that it quickly grabs spare capacity when
available and backs off by the right amount when there
is congestion, so flows don’t waste RTTs in figuring
out their transmission rate.

3. There is no per-flow state or per-flow queueing.

4. The per-packet computations at RCP router are simple.

RCP is described in detail in [1], which describes the mo-
tivation behind RCP and why flow-completion time is the
appropriate metric for congestion control. The RCP proto-
col, mechanisms, algorithm and simulations showing short
flow-completion times are described in [2] [3]. And [4] uses
control theory to show that RCP is stable independent of
the link-capacities, number of flows and network round-trip
times.

Although we have many thousands of promisingns2
simulations, we want to find out how well RCP performs
in practice; and how complex it is. We are particularly
interested in how complex the changes are to the routers.
Router vendors are, understandably, very reluctant to add

new features to the forwarding path of their routers, par-
ticularly if they involve complex calculations. Routers are
already overloaded with many features, and are limited by
the power they consume. Great care needs to be given to
bloating the requirements further. So in our work, we try to
analyze the additional complexity of the router.

Once we have a full implementation of RCP, we can
build a test network and see whether it behaves as promised.
To make it realistic, we want to use real implementations of
RCP end-host and routers, real hardware and links, and re-
alistic topologies. Figure 1 illustrates an example of an RCP
test network with a mix of hardware and software routers,
as well as RCP end-hosts on Linux, all connected through
100 Mbps or 1 GigE links. This paper describes our efforts
in building one such testbed, in particular we describe the
design and implementation of each of the testbed compo-
nents - RCP hardware/software router and the end-hosts -
along with a description of some preliminary experiments.

The rest of this paper is arranged as follows: Section 2
describes our goals and nature of experiments we plan to
run on the test network, Section 3 describes RCP end-host
implementation, RCP router implementation is described in
sections 4 (hardware) and 5 (software), we quantify the im-
plementation complexity in Section 6, and go on to describe
some preliminary experiments in Section 7.

2 Nature of Experiments we want to run on
RCP Test Network

We want two kinds of experiments:
1) Experiments to test the RCP router and end-host im-

plementations: These experiments will use deterministic
traffic, for example a set of long-lived flows that have spe-
cific start and end times. The goal is to observe the RCP sys-
tem behavior such as how the RCP rate varies at the routers,
the evolution of queue-sizes at bottlenecked links, and other
statistics.

2) Experiments that demonstrate RCP’s short flow-
completion times and stability under traffic representative
of that in the Internet: These experiments will study RCP’s
performance under more complex traffic patterns and net-
work topologies1. The goal is to verify and explore RCP
properties - its strengths such as short flow-completion
times and stability for a wide range of network and traffic
characteristics, as well as its weaknesses such as transient
queue spikes and buffer overflows.

In the next two sections, we describe the two main com-
ponents of RCP test network, the end-host and router.

1Including dynamic traffic patterns (such as different flow arrival pat-
terns, flow-size distributions, offered loads, multiple congested bottleneck
links, reverse path congestion, etc.), that represent a work load mix of web
browsing and file downloads.



rcp_bottleneck_rate

rcp_reverse_bottleneck_rate

0 1 2 3 ... ... 30 31..14 15 16..

rcp_rtt

.. 23 24..

rcp_p unused

Figure 2. The 12-Byte RCP header: the
rcp bottleneckrate (4 Bytes) carries the rate
(in Bytes/msec) of the most congested link
along the path; rcp reversebottleneckrate (4
Bytes) is the bottleneck rate (in Bytes/msec)
echoed by the receiver, so the sender can
adapt its rate; rcp rtt (2 Bytes) is the sender’s
estimate of its round-trip time (in msecs);
rcp proto(1 Byte) is the protocol number of the
higher transport layer.

3 RCP End-host

We have implemented the RCP end-system in Linux
2.6.16. An RCP sender maintains a congestion-window
which it modulates based on explicit feedback information
from the network. It also maintains a round-trip time es-
timate of the path and paces a window’s worth of packets
within a RTT. An RCP receiver echoes the network rate
feedback it receives to the sender by piggybacking it in the
reverse DATA/ACK packets. We describe below the key
pieces of an RCP end-system.

3.1 Placement and Format of RCP
Header

RCP is implemented as its own protocol layer between
IP and transport layers, as shown in Figure 3. Other places
to carry RCP information would be IP or TCP options, each
having its pros and cons2. The advantages of having RCP as
a shim layer between IP and transport are: a) routers which
don’t understand RCP will let RCP packets pass through,
and b) the RCP rate information can be used by any trans-
port protocol including TCP for file-transfers, as well as by
UDP for streaming content.

Figure 2 illustrates the 12-Byte RCP congestion header,
with the following four fields:

2Recent studies [6] have shown that 70% of connections are notestab-
lished when SYN segments have a new IP option X and, a third of con-
nections not established even for known IP options. Further, packets with
IP options take the slow-path on routers. TCP options on the other hand
are more widely used and the same study showed only 0.2% connections
failed on introduction of new TCP option. The downside is that routers
would need to modify TCP header and be aware of every new transport
protocol that uses RCP information.

1. rcp bottleneckrate carries the bottleneck rate of the
most congested link along the path. The RCP sender
puts in a zero here - meaning the sender would like
as high a rate as the network gives it. Alternatively,
it can also put in the local interface rate. The routers
overwrite this rate as it passes through the network.

2. rcp reversepath bottleneckrate is filled by RCP re-
ceiver to communicate the bottleneck rate to an RCP
sender.

3. rcp rtt carries the sender’s round-trip time estimate
and is used by routers to update their traffic-averaged
RTT estimate.

4. rcp p is higher layer protocol number such as that of
TCP, UDP.

All Rates are expressed in Bytes/msec, and RTT in msecs.

3.2 RCP End-host Functions

This section describes the RCP implementation at sender
and receiver end-hosts. We will focus here on the case of
TCP transport protocol running over RCP. Figure 3 shows
the placement of RCP in the network stack; there are two
parts: the RCP layer between transport and IP layer, which
carries congestion information from network to the end-
system, and the congestion control component in transport
layer which adapts the flow-rate based on network feed-
back. One can think of congestion control consisting of two
broad parts: a) modulating the flow-rate (and congestion
window), and b) deciding which packets to send among the
three pools of packets - those which have not yet been trans-
mitted, those which have been sent but not yet acknowl-
edged, and finally packets which are known to be lost. RCP
only modifies the first of these functions in TCP, i.e. modu-
lating the flow-rate, and we call this part asR-TCP. Starting
from Linux 2.6.13, the TCP code was re-written to make it
more modular [7], as a result of which the specific TCP con-
gestion control mechanism, for e.g. BicTCP, HTCP, Scal-
able TCP, HighSpeed TCP, can be chosen dynamically ei-
ther using sysctl or on a per-socket basis.R-TCPcan also
be chosen dynamically. The rest of TCP functionality such
as the state-machine and mechanisms for in-order packet
delivery remain unchanged.

The sender maintains the following variables: a) bot-
tleneck rate of the forward path, b) bottleneck rate of
the reverse path, c) round-trip time estimate for the cur-
rent path, and d) the packet pacing interval. These are
maintained in TCP’stcp sock structure. The sender fills
in RCP fields of an outgoing packet: a) sender’s desired
throughput,rcp bottleneck rate, which can be the speed
of the local interface, b) bottleneck rate of the reverse path,
rcp reverse bottleneck rate, which is zero if the host is



Link

IP

RCP

TCP

Application

 Congestion Control

NewReno R-TCP BIC

Figure 3. RCP is a protocol between the IP
and transport layers.

tcp_v4_send_synack(.)

 

tcp_transmit_skb(.)

net/ipv4/tcp_ipv4.c 

net/ipv4/tcp_output.c 

tcp_v4_send_ack(.)

 net/ipv4/tcp_ipv4.c 

tcp_v4_send_reset(.)

 net/ipv4/tcp_ipv4.c 

ip_build_and_send_pkt(.)

 net/ipv4/ip_output.c 

ip_queue_xmit(.)

 net/ipv4/ip_output.c 

ip_send_reply(.)

 net/ipv4/ip_output.c 

rcp_build_and_send_pkt(.)

 net/ipv4/rcp.c 

rcp_queue_xmit(.)

 net/ipv4/rcp.c 

rcp_send_reply(.)

 net/ipv4/rcp.c 

TCP

RCP

IP

Figure 4. Data path of outgoing RCP packets.
RCP intercepts the function calls from TCP to
IP, to introduce its 12-Byte RCP header and
fill in the rate and RTT fields.

not aware of the rate yet, c) round-trip time estimate, which
is zero for the first packet of the connection (SYN) when
the sender does not have an estimate yet, and d) the pro-
tocol number of TCP. Figure 4 shows the paths that differ-
ent packets take from TCP to the lower RCP layer. SYN,
RESET, DATA, and ACK packets take different paths, and
RCP intercepts all calls from TCP to IP, to attach the 12-
Byte RCP header. The incoming RCP packets from the net-
work have only one path up the stack, where RCP intercepts
the function calls from IP to TCP, to strip of the 12-Byte
header and pass the segment to TCP, as shown in Figure 5.

An RCP receiver echoes the network rate feedback to
the sender by copying thercp bottleneck rate value into
rcp reverse bottleneck rate, and usually piggybacking
on DATA/ACK packets. For a pure ACK packet, the bot-
tleneck rate and RTT fields are set to zero.

On receiving valid rate feedback,R-TCPmodulates its

tcp_v4_rcv(.)

net/ipv4/tcp_input.c 

ip_local_deliver(.)

 net/ipv4/ip_input.c 

rcp_v4_rcv(.)

 
net/ipv4/rcp.c 

TCP

RCP

IP

Figure 5. Data path of incoming RCP packets.
RCP intercepts the function calls from IP to
TCP, to strip of the 12-byte header and pass
the segment to TCP.

congestion window as shown below, overriding the slow-
start and congestion avoidance window changes:

snd_wnd = (rcp_bottleneck_rate * rcp_rtt) /
(MSS + RCP_HEADER_SIZE + IP_HEADER_SIZE)

where MSS is the maximum segment size. Just as other fla-
vors of TCP,R-TCPuses a window which is the minimum
of above window calculation and receiver advertised win-
dow. It also maintains the window size to be least equal
to one Maximum Segment Size.R-TCPkeeps track of the
smoothed round-trip time estimate for this connection.

The sender paces packets from TCP’s send queue at the
following pacing interval:

packet_pacing_interval = MSS/rcp_bottleneck_rate;

The mechanisms that decide which packets to retransmit
upon losses remain the same as in TCP.

4 RCP Router based on NetFPGA

This section outlines the implementation of an RCP
router in hardware, based on the RCP description and spec-
ification in [2] and [13]. Such an implementation demon-
strates the feasibility and simplicity of supporting RCP
within a router. We begin by describing the operation of
a non-RCP router design before elaborating on our RCP de-
sign.

4.1 Vanilla router functionality

The operation of a router can be subdivided into two
parts – the data path and the control path.

The data path processes incoming packets and routes
them towards their destination. Tasks performed on each



Decode Hardware 
Address

Longest
Prefix
Match

IP

Routing

Table

ARP
Table
Lookup

ARP

Table

Decode IPv4 Header

Identify RCP

RCP statistics
Port 1 Port N...Port 2

TTL Update

Cheksum 

Update

Stamp RCP 

Rate

Packet
Decision
and

New Packet
Creation

Next Hop IP

RCP Packet?

Process Packet?

Destination Port

Dest HW Address

RCP Packet?

RCP Rate

Incoming

Packets

To 

Output 

Queues

RCP Rate Calculations Router CPU

Data Path

Control Path

Figure 6. A generic hardware router with RCP
support

packet include verifying the IP header checksum, extract-
ing the destination address from the IP header, performing
a longest prefix match look-up of the address in the routing
table, decrementing the packet’s time-to-live, updating the
checksum, and forwarding the updated packet out the cor-
rect interface. The data path is implemented in hardware for
speed since it needs to process every packet.

The control path is responsible for a set of tasks that are
performed infrequently such as maintaining the routing ta-
bles and providing a control interface to the router. Since
operations on the control path occur relatively infrequently
they are usually implemented in software and executed on a
CPU inside the router.

4.2 RCP router enhancements

An RCP-enabled router must additionally compute the
fair-share rate (as per Equation 1) and stamp that rate into
the headers of RCP packets. The rate computation requires
the router to maintain an average round-trip time estimate
for outgoing traffic on each interface using the RTT in-
formation carried in RCP packets. The rate is computed
once every control interval which is in the order of a round-
trip time. Statistics (aggregate incoming traffic and average
RTT) are gathered during each control interval which are
then used for the rate computation. When an RCP packet
arrives, the router adds RTT value of packet header to the
running sum it maintains and before departure the packet is
stamped with the RCP rate.

As with the vanilla router functionality, the RCP func-
tionality is split between the hardware data path and the
software control path. Figure 6 shows the RCP enhance-
ments to a vanilla router implementation. The additions to
the data and control paths are summarized below:

1. Per-packet data-path processing in hardware:

Figure 7. A block diagram of the NetFPGA
hardware platform. The platform consists of
a PCI card which hosts a user-programmable
FPGA, SRAM, DRAM, and four 1 Gbps Ether-
net ports.

• Identifying whether an incoming packet is an RCP
packet (RCP Identification)

• Updating a running RTT sum of the outgoing inter-
face, if the packet carries a valid RTT (RCP stats per-
port)

• Updating the aggregate traffic destined to the outgo-
ing interface (RCP stats per-port)

•Stamping the RCP rate in the outgoing packet (Stamp
RCP Rate)

2. Periodic control path computations in software:

The following are calculated approximately once per
average RTT of traffic transiting the router:

• The bandwidth,R(t), allocated to the average data
flow as per Equation 1.

• The moving round-trip time average, as detailed
in [13].

Our hardware implementation utilizes the NetFPGA
programmable hardware platform. NetFPGA is a pro-
grammable hardware platform for network teaching and re-
search [10][11][12]. The platform consists of a PCI card,
which hosts a user-programmable FPGA, SRAM, DRAM,
and four 1 Gbps Ethernet ports, together with associated
software for programming and control. A block diagram of
the platform is shown in Figure 7.

The remainder of this section describes the per-packet
processing and the periodic computations in more detail.



4.3 Per-packet processing in hardware

RCP requires only a small amount of per-packet pro-
cessing – in the worst case 3 integer additions, 2 compar-
isons, and 1 write operation. No multiplications or divisions
are performed in the data path hardware. Pseudo-code of
the data path operations, listed below, clearly illustrates the
modest processing requirements. Upon packet arrival the
router must update counts for the corresponding output port
of the running RTT sum, the number of arriving bytes, and
the number of packets carrying a valid RTT. On packet de-
parture the router overwrites the bottleneck rate carried in
the packet if need be.

Processing performed upon packet arrival
input_traffic_Bytes += packet_size_Bytes
if (this_packet_RTT < MAX_ALLOWABLE_RTT)
sum_rtt_Tr += this_packet_RTT
num_pkts_with_rtt += 1

Processing performed upon packet departure
if (packet_BW_Request > rcp_rate)
packet_BW_Request = rcp_rate

A quantification of the implementation complexity as
well as achievable clock rates can be found in Section 6.

4.4 The control path in software

The control path performs periodic rate and RTT com-
putations, and since these are performed infrequently they
are implemented in software. In our implementation this
software runs on the host in which the NetFPGA board is
installed – in practice this would run on the CPU of the
router.

The control path only performs work at initialization
when each port of the RCP router is brought online and at
the expiration of each timeslot. The initialization performed
by the control path simply sets the various RCP parameters
within the router to their default values. Upon expiration
of a timer the control path reads the hardware registers to
retrieve the RCP statistics, performs the necessary rate and
RTT computations, writes the updated RCP rate and times-
lot interval to the hardware registers, and then restarts the
timeslot timer.

It should be noted thatall multiplication and division op-
erations required for rate calculations are performed within
the control path. This allows RCP to take advantage of the
multiplication/division operations of the router’s CPU.

The control path software interfaces with the hardware
via the registers provided by the hardware. The number of
registers required per port is small – we provided 7 registers
per-port for input-traffic, queue occupancy, current timeslot
duration, elapsed time within the current time-slot, RCP rate
to be stamped into the packet, sum of RTTs in packets, and
input traffic in bytes carrying valid RTT.

IP_PRE_ROUTING IP_FORWARD

IP_LOCAL_IN

IP_LOCAL_OUT

Process

ROUTING

ROUTING
From 

NIC Driver

Destined to this host

For another
Interface

IP_POST_ROUTING
To

NIC Driver

Locally generate packet

RCP 
Ingress Function

RCP 
Egress Function

Figure 8. Linux NetFilter: Packet processing
paths and the points where RCP is hooked.

5 RCP Router based on commodity Linux
System

We have also implemented a software version of RCP
router that can run on any commodity hardware running
Linux. Our RCP software router is implemented as a Linux
Kernel Module (LKM), namelyrcp-router-driver.ko. This
approach avoids the complication of applying patches to
Linux source distribution and recompiling the whole Linux
kernel.

Similar to RCP router on NetFPGA, RCP soft router
consists of a control plane and data plane. Control plane
is a timer driven function to update RCP rate, moving RTT
average on each outgoing interface, and the next wake-up
interval for this timer. The timer is maintained per network
interface.

The Data plane is built based on Linux’s NetFilter fea-
ture, which allows customized per-packet operations in the
packet processing chain in kernel. The operations consist
of Ingress and Egress functions and are similar to those de-
scribed in Section 4.3 :

• Ingress function is registered with IPFORWARDING
hook in NetFilter. When a packet arrives at the NIC driver
and is destined to one of the outgoing interfaces, this func-
tion updates running RTT sum of the outgoing interface
(only when packet carries valid RTT); it also updates the
aggregate traffic rate to the outgoing interface.

• Egress function is registered with IPPOSTROUTING
hook in NetFilter. When a packet is ready to go to one of the
outgoing interfaces after routing, this function stamps RCP
rate in the header and updates the TX queue occupancy for
that interface.

Figure 8 shows the packet processing chain in NetFilter
and where exactly the RCP functions are hooked up.



6 Quantifying the Implementation Complex-
ity

6.1 Complexity of RCP NetFPGA imple-
mentation

RCP takes 31,000 gates of the 4.1×106 gates used for the IP
router implementation on the NetFPGA platform, amount-
ing to0.75% of the total logic used. This translates to a die
area of0.1 − 0.2 mm2 in a 90nm ASIC. Clearly, RCP is
simple to implement in high-speed routers.

Our reference router (running on a Xilinx Virtex II Pro
30) used a core clock frequency of 62.5 MHz. The RCP
implementation was not the bottleneck in this design.
Hardware resources:

• 5× 32-bit software accessible registers per port

• 2× 16-bit software accessible registers per port

• 2× 16-bit counters per port (used by timers)

• 2× 32-bit adders per port (packet/queue statistics)

• 1× 32-bit counter per port (packet/queue statistics)

Lines of code (including commenting, data structure decla-
rations, etc.):

• Verilog (data path): approximately 600 lines

• C (control path): approximately 350 lines

6.2 RCP Software Router and End-host

The RCP end-host has 250 lines of C code (including
commenting and declarations), and does not involve any
floating point computations.

For the RCP router, the computations on the control
plane (for periodic RCP rate and average RTT calculations)
and the data plane for each transit packet through the router
are shown in Table 1.

Table 1. Complexity of RCP software router
Control Data Plane
Plane Ingress Egress Total

LOC 28 11 13 24
U32 Comparison 3 3 2 5
U32 Additions 5 4 0 4

U32 Multiplication 26 0 0 0
U32 Assignments 9 5 6 11

To compare the complexities between a standard soft-
ware router that is running linux kernel without RCP sup-
port and that with our RCP data plane, we measured the
time it takes a packet to traverse through the IP forwarding

RCP Router

Eth0:

192.168.1.1/

24

Eth 1: 

192.168.2.1/

24RCP End-Host A1

Eth 0: 

192.168.1.10/

24

RCP End-Host B1

Eth 0: 

192.168.2.10/

24

RCP End-Host B2

Eth 0: 

192.168.2.20/

24

RCP End-Host A2

Eth 0: 

192.168.1.20/

24

Figure 9. A simple experiment topology

path for both cases. For a non-RCP enabled Linux kernel,
each packet processing takes 9.7368 jiffies, while with the
RCP data plane enabled it takes 9.9998 jiffies. Therefore,
RCP-related processing on the software router is only 2.6%
of the total processing for IP packet forwarding in Linux
kernel.

7 Experiments

As an initial step to test and validate our implementation
correctness, we used User Mode Linux, UML [14], for both
RCP end-host and router in a virtual machine environment.
We used a single Linux machine running multiple UML in-
stances, connected via virtual Giga-Ethernet to form cer-
tain topologies. The second approach is to use real equip-
ment running our RCP end-host software and RCP NetF-
PGA router with real Gigabit switches connecting them into
certain topologies.

We start four UML instances running RCP end-host soft-
ware and one UML instance running RCP router as shown
in Figure 9. On one side of the network, we use iperf [15] to
generate multiple continuous traffic flows while on the other
end, we use iperf server to receive flows and collect statis-
tics. The RCP router in between has IP routing turned on;
RCP-router-driver watches for RCP traffic, and if necessary
rewrites the RCP rate in the packets flowing through.

In a typical experimental scenario, the end-host stations
start flows and stamp an initial starting rateR1 in RCP
packets; the RCP router converges to the correct fair-share
rate (which in case of a single flow would be the capac-
ity of links on the RCP router). At the router, we monitor
the RCP rate and traffic-averaged RTT value, while at the
end-hosts we keep track of the congestion window-size, and
sender’s RTT estimate. Figure 10 illustrates the results from
one such experiment.

8 Conclusion

We achieved the goals we had started out with – we now
have a working implementation of RCP router and end-host
but most importantly, we demonstrated how it is extremely
simple to implement RCP in router hardware. Coupled



RCP Rate on RCP Router

0

100

200

300

400

500

600

700

800

0:00:00 0:00:17 0:00:35 0:00:52 0:01:09 0:01:26

Experiment Time

by
te

s 
pe

r m
s

Average RTT on RCP Router

0

50

100

150

200

250

300

0:00:00 0:00:17 0:00:35 0:00:52 0:01:09 0:01:26

Experiment Time

m
ili

se
co

nd
s

Congestion Window on RCP End-host

0

20

40

60

80

100

120

0:00:00 0:00:17 0:00:35 0:00:52 0:01:09 0:01:26

Experiment Time

nu
m

be
r o

f p
ac

ke
ts

RTT Estimate on RCP End-host

0

50

100

150

200

250

0:00:00 0:00:17 0:00:35 0:00:52 0:01:09 0:01:26

Experiment Time

m
ili

se
co

nd
s

Figure 10. RCP Experiment Result: The RCP
router was configured to allow a maximum
rate of 700 packets/milisecond initially. When
the traffic started to flow, we adjusted the
rate to be 500 packets/milisecond to monitor
how the RCP router and end-host would re-
act to this change. The above plots show that
the RCP router rate dropped from 700 to 500
pkts/msec (top left plot) and the end-host ad-
justed the congestion window from 95 to 30
pkts (bottom left plot) after the change.

with our previous results on RCP’s performance, the present
work gives us the confidence that RCP congestion control
achieves short flow-completion (close to ideal processor-
sharing)while doing very little work at the routers.

We are now ready to use our implementation and build
a RCP test network. We will use these implementations
to find out how well RCP performs in practice with real
hardware, real links, and realistic topologies and traffic.

References

[1] N. Dukkipati, N. McKeown, Why Flow-Completion
Time is the Right Metric for Congestion Control, in
ACM SIGCOMM Computer Communication Review,
Volume 36, Issue 1, January 2006.

[2] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, N. McK-
eown, “Processor Sharing Flows in the Internet,” in
Thirteenth International Workshop on Quality of Ser-
vice (IWQoS), Passau, Germany, June 2005.

[3] N. Dukkipati, N. McKeown, ”Processor Sharing Flows
in the Internet,” in High Performance Networking
Group Technical Report TR04-HPNG-061604, Stan-
ford University, June 2004.

[4] H. Balakrishnan, N. Dukkipati, N. McKeown, C. Tom-
lin, ”Stability Analysis of Explicit Congestion Control

Protocols,” inStanford University Department of Aero-
nautics and Astronautics Report: SUDAAR 776, Stan-
ford University, September 2005.

[5] D. Katabi, M. Handley, and C. Rohrs, Internet Conges-
tion Control for High Bandwidth-Delay Product Net-
works, in Proceedings of ACM Sigcomm, Pittsburgh,
August, 2002.

[6] A. Medina, S. Floyd, M. Allman, ”Measuring Evolu-
tion of Transport Protocols in the Internet,” inACM
Computer Communications Review, April 2005.

[7] I. McDonald, R. Nelson, ”Congestion Control Ad-
vancements in Linux,” inlinux.conf.au, January 2006.

[8] ”Rate Control Protocol (RCP) Home Page”,
http://yuba.stanford.edu/rcp/.

[9] ”The Network Simulator”,
http://www.isi.edu/nsnam/ns/.

[10] M. Casado, G. Watson, N. McKeown, ”Reconfig-
urable Networking Hardware: A Classroom Tool,” in
Hot Interconnects 13, Stanford, August 2005.

[11] M. Casado, G. Watson, N. McKeown, ”Teaching Net-
working Hardware,” inITiCSE, Monte de Caparica,
Portugal, June 2005.

[12] ”NetFPGA Web Page”,http://NetFPGA.org.

[13] N. Dukkipati, N. McKeown, F. Baker, “Implement-
ing RCP in the IPv6 Hop-by-Hop Options Header,”
http://yuba.stanford.edu/rcp/, Internet Draft (Work in
Progress).

[14] ”User Mode Linux”,
http://user-mode-linux.sourceforge.net/.

[15] ”Network Performance Measuring Tool: iperf”,
http://dast.nlanr.net/Projects/Iperf/.


