A Clean Slate Design of Internet’s
Congestion Control Algorithm
Nandita Dukkipati

(Collaborators: Nick McKeown, Masayoshi Kobayashi, Rui Zhang-Shen)

High Performance Networking Group
Stanford University

Hamilton Institute Workshop on Congestion Control
27 September, 2005

I

o X 100

Qn

//

TCP does not work well

1. Slow additive increase means flows take a long time to
acquire spare capacity

2. Unsustainable large equlhbrlum window; requires extremely
small loss P = 3/(2w?)

3. Puzzled by lossy links -- low throughput in wireless links
4. Unfair bandwidth sharing: Flow throughput & Ril’T
5. Inefficient Slow Start

e Flows made to last multiple round trip times

e Instability -- exponential increase in aggregate traffic

6. Large queueing delay

Explicit Control Protocol (XCP)

* Proposed by Katabi et. al Sigcomm 2002; part of
NewArch project

e Explicit feedback on congestion from the network

* Flows receive precise feedback on window
increment/decrement

* Routers do detailed per-packet calculations

X(CP -- Pros and Cons

e Pros:

 Long-lived flows: Works very well -- convergence to
fair-share rates, high link utilization, small queue
occupancy, low loss.

e (Cons:

e With a mix of flow lengths: Deviates far from
Processor Sharing. Unfair and 1nefficient.

e Flow durations: Makes the flows last two orders of
magnitude higher than necessary. Worse than TCP.

e Complexity: Requires detailed per-packet
computations

Bandwidth-limited vs. Latency-limited

mean flow size >~ “pipe” size

mean flow size << “pipe” size

Example: XCP vs. TCP vs. PS

Flow Duration (secs) vs. Flow Size

100

10 |

0.1

EXCP e
' TCP o

PS unggu;nliﬁ i gzif 8000

H!

- 7000
6000 #

H

.? 5000

4 | 4000
3000
2000

0

1000

2000 4000 6000 8000 10000

Flow Size [pkts]

Active Flows vs. time

XCP —--m-
TCP o
PS [IINIINIINI]]

0O 50 100 150 200 250 300
Time (secs)

Wish List

[. Emulate Processor Sharing
1. Performance is invariant of flow size distribution

2. Mix of flows: Results 1in flows finishing quickly -- close to
the minimum achievable

3. Long flows: Results 1n 100% link utilization -- even under
high bandwidth-delay, lossy links...

4. All flows get fair share of bottleneck bandwidth
II. Want stability -- convergence to equilibrium operating point

III. Want all the above under any network conditions (mix of
RTTs, capacities, topologies) and flow mixes

IV. Without any per-flow state, per-flow queue or per-packet
computation in the routers

RCP: Picking the Flow Rate

* [s there one rate a router can give out to all the flows so
as to emulate Processor Sharing ?

 Rate R(t) = C/N(?)
e RCP 1s an adaptive algorithm to emulate PS:

e R(t) picked by the routers based on queue size and
aggregate traffic

* Router assigns a single rate to all flows

e Requires no per-flow state or per-packet calculation

RCP: The Basic Mechanism

Sender Router 1 Router 2 Receiver
=~ —
SYN Desired '->----{ SYN | Rate=5SMb/s L).- SYN | Rate=5SMb/s
Rate=10Mb/s -"-'"""‘"""------_-_._._._._._,
---------------------------------- SY | Rate=5Mb/s
=z=om" T
Sending Rate = SMbps
N — ¢ =3
T I ——
______ FIN-ACK }-f-------=77
PR

RCP: The Algorithm

Link Capacity
Aggregate Traffic queue

Average RTT y
g \ >C - y(/)) gL

R(t) = R(t — dp) - —
N(t)
| /
Estimate of # flows
— C
i) = R(t — do)

Understanding RCP

* How good 1s the estimate, C/R(t) 9

0.08 RCP (alpha=0.1, beta=1.0) —

CI.CIE:{ ':'3"]'()
Q Cl.ﬂir
Eﬁ 0.03
= 002 Ilfr

0.0

0 v
0 20 40 &0 80 100 120 140 160
simulation time (second)

73]

=

(]

i

1]

=

O

=1

k=]

R

i

E 1 1 1 1 1
> 20 25 30 35 40 45 50

simulation time [second]

* RCP performs well and 1s stable for a broad range of it’s
parameters ¢ and 6

RCP Performance

When traffic characteristics vary

e Different flow sizes

e As mean flow size 1ncreases

e Different flow size distributions
e Non Poisson arrivals of flows

e As load increases

When Network Conditions vary
e As link capacity increases

e As RTT increases

e Flows with different RTTs

e Multiple bottlenecks
E[L]

Compared with: AFCT > 1.5RTT + — FCTps = LORTT + Ci—p)

In each case RCP achieves the goals we set out

Example 1: Achieves PS for different Flow Sizes

e XCP (avg.) -~]
: TCP (avg.) ——]
RCF (avg.) -+]

Slow-Start

D 200 400 600 800 1000 1200 1400 1600 1800 2000
flow size [pkis] inormal scale)

100 ¢

Max. FCT

|:|-| 1 1 1 1 1 1 1 1
200 400 ©00 800 1000 1200 1400 1EEICI 1800 2000

100

KCP (avg.) —w- | ' ——
TP (@avg) - i
RCP (avg.) -+ —

i g} e

Slow-Stant

10000 100000

|||'u||mi|liﬂ|iii

=1 .I-:-"f:_.'l':::.l e

flow size [pkts] (log scale)
" XCP (max) e
TCP (max) —=—]
RCP (max) -+]
Slow-Start
PS -

Example 2: Achieves PS for different Flow Sizes

= 24 E = k
C Gbps, E[S] = 500 pkts 1000

1000 ¢

100

10 ¢

XCP (< 10000 pkis) - -
TCP (< 10000 pkts) -
Slow Sta§rt X
RCP < 100Q0°pkt
(T 00Q0 p &* Fads

i
| ¢

Flow Size [pkis]

Do ac 9.4?.10 00 pkts
[S

100 f.

10 ¢

XCP (> 1oooo pkts%

Slow Start
RCP (> 10000 pkts) R
OPT oo

¢

L
£ty o
7

5r+ +~f—+ T # i .jf;L:H~+ll'+'._Ff

0.1
O 1000 2000 350 40n8 5000 5000 7000 8000 9000 10000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Flow Size [pkts]

sequence number

sequence number

230

- M
=]
==

100

o
=

RCP vs. TCP vs. XCP

0.8 1 1.2 1.4 16 1.8
simulation time [sec]
4 5 G T 8 9 10 11 12 13

simulation time [sec]

Example 3: Achieves PS for any flow size distri]

10

" XCP e

) Hggt

s e MO W M T -
Slow Start

PS e

8000
7000
6000
5000
4000
3000
2000
1000

0

50 100 150 200 250 300 350 400
Flow Size [pkis]
= I“H_x_ x;..g_H}clxxx-xwx.x.x;iﬁﬁﬂﬂ-x.rx.lxxx“,{xxx;{q{xxxﬁﬂxlmx-xxxx“*
PN (o] JEEE 2%
' TCP —» -
m PS —— _

=

#
-

¥

— :'p-. -a "t'.'-l--' - i-m-l s L gly sty g by gt tgigge gt gh_Sgay
L}

F++*::H;:;::!!:H!:+::!:H::;y#!::nlr::+;::H:!:+:

0

5

10

15 20 25 30
Time (secs)

35

bution

RCP Stability

RCP System: (o) "
. a(C —y(t)) — ﬁq(—i)
(1) = R(t = T)[gz

d(t) = do + ﬁct,)

y(t) — Clif g(t) >0

.
W= = o it gty =0

y(t) = N x R(t — do)

Equilibrium:

RCP i1s Stable

Stable Independent of C, RTT and # Flows

P o S S

1 i
1.8 2

Q (pkts) output load

R/C

RCP’s weakness

A lot of flows starting at once: N x R(t) >> C

—
il

Lo e
Ok —=

300
250
200
150
100

= 1 -

|

80

0

0 10 20 30 40 50 60 70 80 .
sec Opike can be arbitrarily high
)
I I I I I I I
i] |]] 1 J i
0 10 20 30 40 20 &0 70 8
seC
[1 e I L ! ! ! .
:]]]]]] I :
0 10 20 30 40 a0 60 70 8

0

Intuition: Spectrum of Protocols

e RCP 1s aggressive --- incoming traffic could be unbounded
e Acceleration: Control how aggressively flow-rates converge to R(t)

e Protocol Spectrum:

T T

- acceleration: small - acceleration: large

- bandwidth-limited:
works well, small - bandwidth-limited:

queues, near-zero aggressive
losses, XCP-like

- Latency-limited: long - Latency-limited:
flow completion times finishes flows fast

Best of both: Adaptive Algorithm?

Conclusion

Making network faster doesn’t help; Flow durations and
performance is constrained by protocols

XCP: bold attempt in clean-slate design but there 1s more to do

Network bandwidth increases => more flows capable of completing
in fewer RTTs

Metrics: Flow completion time vs. link utilization

RCP: a simple algorithm that completes flows quickly

