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TCP does not work well

1. Slow additive increase means flows take a long time to
acquire spare capacity

2. Unsustainable large equlhbrlum window; requires extremely
small loss P = 3/(2w?)

3. Puzzled by lossy links -- low throughput in wireless links
4. Unfair bandwidth sharing: Flow throughput & Ril’T
5. Inefficient Slow Start

e Flows made to last multiple round trip times

e Instability -- exponential increase in aggregate traffic

6. Large queueing delay




Explicit Control Protocol (XCP)

* Proposed by Katabi et. al Sigcomm 2002; part of
NewArch project

e Explicit feedback on congestion from the network

* Flows receive precise feedback on window
increment/decrement

* Routers do detailed per-packet calculations




X(CP -- Pros and Cons

e Pros:

 Long-lived flows: Works very well -- convergence to
fair-share rates, high link utilization, small queue
occupancy, low loss.

e (Cons:

e With a mix of flow lengths: Deviates far from
Processor Sharing. Unfair and 1nefficient.

e Flow durations: Makes the flows last two orders of
magnitude higher than necessary. Worse than TCP.

e Complexity: Requires detailed per-packet
computations




Bandwidth-limited vs. Latency-limited

mean flow size >~ “pipe” size

mean flow size << “pipe” size




Example: XCP vs. TCP vs. PS

Flow Duration (secs) vs. Flow Size
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Wish List

[. Emulate Processor Sharing
1. Performance is invariant of flow size distribution

2. Mix of flows: Results 1in flows finishing quickly -- close to
the minimum achievable

3. Long flows: Results 1n 100% link utilization -- even under
high bandwidth-delay, lossy links...

4. All flows get fair share of bottleneck bandwidth
II. Want stability -- convergence to equilibrium operating point

III. Want all the above under any network conditions (mix of
RTTs, capacities, topologies) and flow mixes

IV. Without any per-flow state, per-flow queue or per-packet
computation in the routers




RCP: Picking the Flow Rate

* [s there one rate a router can give out to all the flows so
as to emulate Processor Sharing ?

 Rate R(t) = C/N(?)
e RCP 1s an adaptive algorithm to emulate PS:

e R(t) picked by the routers based on queue size and
aggregate traffic

* Router assigns a single rate to all flows

e Requires no per-flow state or per-packet calculation




RCP: The Basic Mechanism

Sender Router 1 Router 2 Receiver
=~ —
SYN Desired '->----{ SYN | Rate=5SMb/s L).- SYN | Rate=5SMb/s
Rate=10Mb/s -"-'"""‘"""------_-_._._._._._,
---------------------------------- SY | Rate=5Mb/s
=z=om" T
Sending Rate = SMbps
N — ¢ =3
T I ——
______ FIN-ACK }-f-------=77
PR




RCP: The Algorithm

Link Capacity
Aggregate Traffic queue

Average RTT y
g \ >C - y(/)) gL

R(t) = R(t — dp) - —
N(t)
| /
Estimate of # flows
— C
i) = R(t — do)




Understanding RCP

* How good 1s the estimate, C/R(t) 9
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* RCP performs well and 1s stable for a broad range of it’s
parameters ¢ and 6




RCP Performance

When traffic characteristics vary

e Different flow sizes

e As mean flow size 1ncreases

e Different flow size distributions
e Non Poisson arrivals of flows

e As load increases

When Network Conditions vary
e As link capacity increases

e As RTT increases

e Flows with different RTTs

e Multiple bottlenecks
E[L]

Compared with: AFCT > 1.5RTT + — FCTps = LORTT + Ci—p)

In each case RCP achieves the goals we set out




Example 1: Achieves PS for different Flow Sizes
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Example 2: Achieves PS for different Flow Sizes
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Example 3: Achieves PS for any flow size distri]
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RCP Stability

RCP System: ( o) "
. a(C —y(t)) — ﬁq(—i)
(1) = R(t = T)[ gz

d(t) = do + ﬁct,)

y(t) — Clif g(t) >0

.
W= = o it gty =0

y(t) = N x R(t — do)

Equilibrium:




RCP i1s Stable

Stable Independent of C, RTT and # Flows
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RCP’s weakness

A lot of flows starting at once: N x R(t) >> C

—
il

Lo e
Ok —=

300
250
200
150
100

= 1 -

|

80

0

0 10 20 30 40 50 60 70 80 .
sec  Opike can be arbitrarily high
)
I I I I I I I
i ] | ] ] 1 J i
0 10 20 30 40 20 &0 70 8
seC
[ 1 e I L ! ! ! .
: ] ] ] ] ] ] I :
0 10 20 30 40 a0 60 70 8

0




Intuition: Spectrum of Protocols

e RCP 1s aggressive --- incoming traffic could be unbounded
e Acceleration: Control how aggressively flow-rates converge to R(t)

e Protocol Spectrum:

T T

- acceleration: small - acceleration: large

- bandwidth-limited:
works well, small - bandwidth-limited:

queues, near-zero aggressive
losses, XCP-like

- Latency-limited: long - Latency-limited:
flow completion times finishes flows fast

Best of both: Adaptive Algorithm?




Conclusion

Making network faster doesn’t help; Flow durations and
performance is constrained by protocols

XCP: bold attempt in clean-slate design but there 1s more to do

Network bandwidth increases => more flows capable of completing
in fewer RTTs

Metrics: Flow completion time vs. link utilization

RCP: a simple algorithm that completes flows quickly




