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Abstract -- High end routers need to store a iurge amount of dntn. 
Dynamic random access memories (DRAMS) are typicdy used.for this 
purpose. However, DMM metnojy devices don’t M c h  the bdwiddh 
requirements, especially in terms of random access speeds. In this 
paper, we analyze a gener&ed memory interleavkg scheme. This 
scheme implements a b e ,  fast memory using muliplo, slower 
DRAMS. In the presence of s m d  mount  of speed-up) we show that 
reosonabk stafktical guarantees &e., low drop probabditks) can be 
provided by using smdl SRAM buffers thot queue redwri te  requests 
to DRAMS. We then r e h e  drop probabilities to SRAM buffer size fur a 
wide range of statistical arrivalpatterns. 

I 

I. INTRODUCTION 
High-performance routers need buffers to store data during 

congestion. These buffers can either be shared by multiple line 
cards (e.g., in a shared memory router) or belong to a single line 
card (e.g., in a distributed memory router). These buffers are typ- 
ically required to store a large amount of data at high rates, which 
translates to using fast, high density memories. 
Though there can be multiple criteria for deciding the amount 

of storage required, a rule of thumb indicates that, in order for 
TCP to work well, the buffer should be able to store an amount of 
(per-port) data equal to the product of the line rate and the aver- 
age round-trip-time (RTTI [lS]. Though this rule of thumb has 
been challenged recently [21, it is still widely used, 

In addition, the arrivingldeparting packets may cause memory 
accesses in an arbitrary and unpredictable (i.e., random) order, 
thus requiring random access guarantees (in packetds) in addi- 
tion to raw bandwidth guarantees (in bitds). 

To get a feel for the size and speed requirements, consider a 
packet buffer on a 4OGb/s (OC76Sc) linecard of a distributed 
memory router, Assuming an average TCP RTT of 0.25s 131, this 
buffer needs to store lOGb of data. In addition, assuming a con- 
stant stream of 40-byte packets, which corresponds to minimum 
size IP packets containing TCP ACKs, the packet buffer must 
read and write a packet every 8ns. This translates to one memory 
operation every 4ns, or a random access speed of 250Mpacketsls 

Note that a packet buffer supporting sixteen 2.5Gbls ports in a 
shared memory router would have the same size and speed 
requirements. We now look at two papular memory devices - 
SRAM and DRAM - to see if they satisfy the above require- 
ments. 

Static random access memories (SRAMs) are relatively fast 
but small, and power-hungry. At the time of writing, state-of-the- 
art commercial SRAM [15] holds 32h4bits, has a random access 

time of 4ns. and consumes 1.6W. This means a 40Gbls linecard 
would require over 300 SRAM devices and consume approxi- 
mately 500W. So, even though SRAMs meet the speed require- 
ment, implementing a packet buffer using only SRAM memories 
would be impractical in terms of area as well as power. 

Dynamic random access memories (DRAMs) are relatively 
large and consume much less power, but are slow. At the time of 
writing, state-of-the-art commercial DRAM [16] holds lGbits, 
has a random access time of 4Ons, and consumes 2W. This means 
that a 40Gbls linecard could be implemented using IO such 
DRAM devices consumng only 20W. 

Size dictates that we use DRAMs in  our 40Gbls linecard exam- 
ple. However, with packets arriving OT departing every 4ns, 
DRAMs are not fast enough. This shortfall in random access 
speed is not going to be solved anytime soon, and illustrates a 
problem that will get worse, rather Lhan better over time. DRAMs 
are optimized for size rather than random access speed, which 
increases by only 10% every 18 months [13]. Line-rate, R ,  
increases 100% every 18 months [5] and hence DRAM will fall 
hrther and further behind the needs of high speed packet buffers. 

A solution to the above problem is to interleave memory 
accesses across multiple slower DRAMs to mimic a large, fast 
memory. The scheme is not new [8][X31, and is already deployed 
in proprietary systems as well as in commercidly available 
DRAM controllers [7][9]. But there is no literature which ana- 
lyzes this technique from a statistical perspective, and we believe 
that existing designs are based on ad-hoc statistical assumptions 
without hard guarantees or bounds on performance 
[1][6][10][ll][I4]. Our main contribution is to analyze this archi- 
tecture in a networking context, and provide performance guaran- 
tees from a statistical perspective. 

The rest of the paper is organized as follows. Section I1 
describes the packet buffer architecture used to provide the statis- 
tical guarantees. Section I11 provides analytically derived statisti- 
cal guarantees. Section IV discusses implementation details and 
provides a design example in the context of the 40Gb/s linecard 
introduced earlier in this section. Section V concludes the paper. 

11. INTERLEAVED MEMORY ARCHITECTURE 

A. Basic Idea 
Memory interleaving has been traditionally used in computer 

systems to increase the performance of memory and disk-array 
sub-systems [8][13]. The idea is simple (Figure 1) - the band- 
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width R of a single. fast memory is matched using k slower 
memories with bandwidth R / b ,  where k 2 b . Each of these 
memories is accessed independently of the others. A memory 
management algorithm schedules writes and reads to the 
DRAMs. 

For sake of simplicity we assume that data is accessed in 
fixed-size cells. This cell can be a single byte or more. depend- 
ing on the implementation. In case of variable size packets, the 
packet can be split into cells and written into multiple DRAMS. 

We then define R as the rate at which these cells need to be 
accessed from the packet buffer. By our previous definitjon, a 
single DRAM memory would be capable of transferring 1 cell 
per b cell-times. Similarly, k memories would be capable of 
transferring k cells per b cell-times. In this context. we define 
the speed-up as s = (k x R / b ) / R  = k / b .  

As an example, consider our 40Gb/s linecard which requires 
a random access every 4ns. With 40ns random access time 
DRAMs. b turns out to be 10 (= 40/4 ). Now, if we require a 
speedupof1.1,k wouldhavetobe 11(= 1 . 1 ~ 1 0 ) .  

E. SRAM FiFOs 
If the packet buffer maintained just one flow, the operation 

would be simple: the arriving cells could be written immedi- 
ately into the DRAM memories in a round-robin manner, with- 
out the need for any intermediate storage. The cells 
corresponding to the incoming requests would be read from 
the DRAM memories in the same manner. This scheme works 
since there is a cell written to (and read from) each memory 
every k 2 b cell-times, and no DRAM memory is ever over- 
subscribed, 

Things get more complicated when there are multiple (say 
Q ) flows in the system. Let us assume for now that the mem- 
ory management algorithm is writing to DRAM memories in a 
round-robin manner on a per-flow basis. It could happen that 
two consecutive arriving cells (at rate R 1 corresponding to two 
different flows get mapped to the same DRAM memory. Since 
a DRAM memory can accept only one of them per b cell- 
times, the other one has to be queued in a write FIFO (Figure 
1). Multiple consecutive cells could be mapped to the same 
write FIFO, with most of them waiting for the DRAM mem- 
ory. 

Given the unpredictable nature of cell arrivals, and the fact 
that most realistic packet buffers deal with multiple flows, i t  
would be impossible for any memory management algorithm 
to avoid short-term overloads on the DRAM memories. On- 
chip SRAM FFOs are needed to buffer up these short-term 
overloads. 

In our discussion above, we focussed on the write FJFOs. It 
is interesting to note that the write and read FIFOs are similar 
except that write FIFOs store actual cells whereas the read 
FIFOs store requests for cells. We expect their behavior to be 
identical otherwise. 
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Figure 1: Memory hierarchy of packet buffer with multiple DRAM 
memories. DRAM write and read FlfOs are maintained in SRAM. 

At this point it is relevant to mention per-flow queues - the 
logical queues that keep track of the ordering of cells on a per- 
flow basis. The per-flow queues are related to the per-DRAM 
FlFOs in the following manner. The write FFOs contain the 
cells at the tails of the per-flow queues. Similarly, the read 
FIFOs contain the cells at the heads of the per-flow queues, 
whereas the DRAM contains the cells in the middle. Since the 
actual celllrequest storage happens in the per-DRAM FIFO 
queues, the per-flow queues are relevant only from an imple- 
mentation point of view, and we focus only on the analysis of 
per-DRAM FIFO queues in the remainder of the paper. 

C. Memory Manugement 
A DRAM memory interacts only with its own write and read 

RFOs, independendy of the other DRAM memories. As cells 
arrive to the packet buffer they are written by the memory 
management algorithm (MMA) to the tail of a write FIFO, 
where they wait to be written to the corresponding DRAM 
memory. Similarly, as requests m i v e  to the packet buffer, they 
are written to the tail of a read FWO, where they wait for the 
corresponding cell to be read from the appropriate DRAM. 
The MMA comes into the picture only while writing a cell into 
the DRAM memories. For every flow, the order in which the 
DRAM memories are accessed is completely determined dur- 
ing the write operations. Thus, the per-flow requests must be 
queued into the read FPOs in the same order the correspond- 
ing cells were written into the write FIFOs. 



D, Problem Statement 

This scheme is not without its limitations. If the SRAM con- 
taining the FIFOs is not big enough, then cells may get 
dropped during overload situations. In addition, due to FIFO 
queueing, cells may experience variable latency in uaversing 
the system. 

In Section I11 we provide a memory management algorithm 
that ensures that the drop probability is minimized given fixed 
size SRAM. Using minimal assumptions on arrivals rand 
departures), we also provide statistical guarantees on drop 
probabilities and maximum latency. We show that reasonable 
performance guarantees, i.e., low drop probabilities and low 
maximum latency, can be provided using small values of 
speed-up. 

111. PROVIDING STATISTICAL GUARANTEES 
In this section, we focus on the analysis of the SRAM con- 

taining the write FIFOs. As mentioned earlier, the behavior of 
the read FWOs is identical to the write FIFOs, and so is the 
analysis. 

A. Preliminaries 
We assume that k = b .  This ensures that the SRAM buffer 

is rate stable since the cumulative service rate (= 1 ) is greater 
than or equal to the maximum incoming rate. We then analyze 
for the effects of speedup by looking at incoming rates that are 
less than unity. / 

We assume that the SRAM of size S is statically shared 
among the b FlFOs of size S/b  each (Figure 2). Thus, we 
model the SRAM as a collection of b queues corresponding to 
the b FIFOs. Each of these b queues are served independently 
by a deterministic server with rate 1 / b  . 

For simplicity, we assume time to be a continuous variable - 
a similar analysis could be carried out in discrete time domain 
as well. We denote by A ( t )  the cumulative number of cells 
arriving at the SRAM in [0, I ] .  A(t) is assumed to be the sum 
of Q stationary and ergodic arrival processes A’(t) corre- 
sponding to Q flows, where i E 11, Ql . A’(r) are assumed to 
have rates hi such that the sum of rates is less than 1 (to ensure 
rate stability). 

We also assume Ai(t) to be independent of each other. We 
believe the independence assumption to be a reasonable one 

source 1 

source Q 
Figure 3: The FIFO model 

since the traffic on an internet link, especially a high speed 
WAN link, usually comprises of traffic generated by thousands 
of independent sources. 

B. Memory Munagenrent Algorithm 

The memory management algorithm (MMA) assigns every 
incoming cell to one of the b write FIFOs uniformly and at 
random (u,a,r.), We refer to this MMA as the Write At Random 

Since each incoming cell is assigned to the write FIFOs 
u.a.r., the same holds for cells belonging to a flow. The pattern 
of writes, i.e., the order in which the DRAM memories are 
accessed, uniquely determines the pattern of reads on a per- 
flow basis. Thus, on the read side, the per-flow requests would 
also be disuibuted u.a.r. across the DRAM memories. 

n e  u.a.r. assignment means that each A ‘ ( t )  can be written 
down as the following 

MMA (WAR-MMA). 

b 

A ‘ ( t )  = x A i t ’ ( f )  i E [l,  Q ]  (1) 
j =  I 

where A‘?’( t )  are $e independent processes generated by the 
u.a.r. sampling of A ’ ( f ) ,  The arrival process FA’(t) to FIFO 
j can now be written as 

Q 
FA’(l) = C A i 3 j ( t )  , j ~  [ l ,  b ] .  (2) 

Thus, we can envision FIFO j as shown in Figure 3. It has 
Q sources A”’(l) , with rate h , / b  , multiplexing into it, and 
is work conserving with rate l /b  , with total load h . Rate sta- 
bility is preserved per FIFO, i.e. 

1 = 1  

Q 
h, /b  = h / b <  l / b  . (3) 

i = l  

Now, similar to the arrival processes, we denote by D(r )  the 
cumulative number of departures from the SRAM i n  [O, €1, 
where D ( t )  is the sum of b departure processes d(r) from 
the FIOs. We then denote the number of cells present in 
queue j , and the total SRAM occupancy at time r as LJ( t) and 

b 

L ( t )  = Lj( t )  , (4 1 
j=1 

respectively. 
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Under WAR-MMA, since each W O  j gets a b‘” fraction of 
each A’([) via u.a.r. sampling, we can intuitively expect the 
FA’( t )  to be independent and identically distributed (i.i.d.). 
This. combined with the fact that each FIFO is served in an 
independent and identical fashion, leads us to expect that the 
steady-state occupancy of each of the b FIFOs will be i.i.d.. 
We formalize his in the following lemma [171. 

Lemma I :  771e occupancies L’(t) are i.i.d. under WAR- 
MMA. 

C. Drop ProbabiEiries 

Since the event that the SRAM overflows is equivalent to 
any of the FlFOs overflowing, the overflow probability in the 
statically partitioned SRAM of size S can be given by 

b 

p o ~ e r f l a w ,  S R A M ( S )  poverplow, F I F O ( j ) ( S / b )  ’ ( 5 )  
j =  i 

To find the drop probability from a finite SRAM of size S,  
we start by assuming that the SRAM is infinite, i.e.. that each 
of the statically partitioned FIFOs are infinite. We then obtain 
the steady-state probability of the occupancy of an infinite 
FWO exceeding S /b  (Le., P(L’ > S / b )  ) as a surrogate for the 
overflow probability in a finite FIFO of size S / b  . This s u o -  
gate, aIso referred to as the buffer exceedence probability, suf- 
fices since it is generally an upper bound to the actual drop 
probability, i.e., 

(6) ~ o , , , f l , w , F I F O ( j ) ( S / b )  5 WJ > S / b )  ’ 
Here the left hand term corresponds to the drop probability 

from a finite FIFO of size S / b  , whereas the right hand term 
corresponds to the steady-state buffer exceedence probability 
(beyond S / b  ) in an infinite FIFO. Now Equation ( 5 )  becomes 

b 

P o v e r f l o w , S R A M ( S )  2 P(LJ ’ S / b ) .  (7) 

Poverflow, S R A M ( S )  5 b x p(L’ > S / b )  1 

j = 1  

Finally, since Lj(r) are identically distributed (Lemma 11, 
we can re-write Equation (7) as 

(8) 

Equation (8) indicates that it suffices to find the steady-state 
distribution of buffer exceedence probability for any FIFO. 

D. Bufer Exceedence Probabiliry 

occupancy can be given by 
We start by noting that using Lindley’s recursion, the FIFO 

Lj( t f  = maxO,,  sr( (FA’( t )  - FAJ($))  - ( t  - s ) / b )  . (9) 
This indicates that, given the steady-state distribution of the 

arrival processes A ’ ( t ) ,  it is theoretically possible to derive the 
steady-state distribution of the FIFO occupancy. However, for 
general arrival patterns it is often not easy to find a solution. 
The good news is that for a broad range of arrival traffic pat- 
terns A’(t)  , characterized by the following assumptions, i t  is 

possible to do s0.l  
We assume that each ,4‘(f) is a simple point process satisfy- 

ing the following properties [41. First, the expected value of 
A’(t)  in any interval [0, t ]  is given by A i r .  Second, a source 
cannot send more than one cell at a rime. And third. the proba- 
bility of many cells arriving in an arbitrarily small interval 
[ 0, f ]  decays fast as I + 0 . 

We tackle the problem of finding the exceedence probability 
in two steps. We first look at the case where the A ’ ( r )  are 
i.i.d.. Given above assumptions, we derive the following 
lemma [17] and our main theorem, as follows. 

Leinina 2: Ai’J( t )  ore stationary, independent, and iden- 
ticallv distribicted simple point processes. 

Theorem I :  A s  the number of flows increases (i.e., 
Q + DO I, the steady-state b&?r exceedence probability, i.e 
P(LJ >x) Vx, approaches the corresponding exceedence 
probabilio with a Poisson source with the same total load. 

Proof: We have Q sources A ‘ ’ j ( t )  multiplexing into FIFO j 
that, is work conserving with total load h .  From Lemma 2, 
A”’( t) are stationary, independent, and identically distributed 

simple point processes. Thus, all the assumptions stated for 
A‘(1)  are also true for Ai”([) (for a fixedj), This allows us 
to use Theorem 1 in [4] to get the main result.0 

Theorem 1 shows that as the number of multiplexed i i d .  
sources increases, the steady-state buffer exceedence probabil- 
ity approaches the corresponding probability assuming Pois- 
son sources, which is known explicitly through the analysis of 
the resulting M/D/1 system 1121. 

We then look at the case where the A’(!) are independent 
but not necessarily identically distributed. Using a large devia- 
tion argument [17], we can show that the buffer exceedence 
probability in this case is upper bounded by the corresponding 
probability for the i.i.d. case. Thus, in order to get the drop 
probability from an SRAM, it suffices to analyze for the i.i.d. 
case 

Iv. IMPLEMENTATION CONSIDERATIONS 

WAR-MMA is pretty simple to implement since it only 
requires randomly spreading the incoming traffic. This 
requires no state to be kept. In addition, statically allocated 
SRAM (using circular buffers) and dynamically allocated 
DRAM (using linked lists) are common place. Thus, the inter- 
leaved memory architecture is fairly easy to implement. We 
believe this to be its biggest strength. 

We now provide a realistic design example. In Table 1 we 
list values of FIFO sizes (i.e., x )  needed to guarantee a steady- 

’. ’ h s e  assumptions are fairly general and apply to a variety of traffic 
sources, including Poisson, Gamma, Weibull, Inverse Weibull, ExpOn- 
h p 0 f f .  and Paretoon-ExpOff. These point processes model a wide 
range of observed traffic [4], including wide area network traffic. 

0-7803-8924-7/05/$20.00 (C>zOOS IEEE. 4 



stale buffer exceedence probability of 1 C 6  as well as lo-’. 
These FIFO sizes are independent of Q , and depend only on 
h .  Q is important as long as it is large enough to guarantee the 
convergence indicated in Theorem 1 .2 

Load 

0.1 

x when P(L(i)>x)=le-6 x when P(L(j)>x)=le-9 

5 7 

0.3 
0.5 

10.7 122 I 32 I 

8 11 

12 18 

i0.9 168 I101 

For example, to achieve a steady-state buffer exceedence 
probability of at h. = 0.9, we need a FIFO size of 
approximately 101 cells. Since h = 0.9 corresponds to a 
speedup of approximately 1.1 ( = 1 /0.9 ), at this speedup an 
SRAM of size b x 101 would guarantee that the drop proba- 
bility from the SRAM is upper bounded by b x 
(Equation (8)). 

In our 40Gbls linecard example, with 40ns random access 
time DRAMS and 40-byte cells, b turns out to be 10 (Section 
1I.A). Now, with b = 10 and speedup 1.1, an SRAM of size 
1010 cells (= 40400 bytes) would guarantee a drop probabil- 
ity of less than . 

This example vdidates our claim that a small SRAM (-40K 
bytes) can support extremely low drop probabilities using a 
smalI amount of speedup. 

v. CONCLUSIONS 

Packet switches, regardless of their architecture, require 
packet buffers. The general architecture presented and ana- 
lyzed here can be used to build high bandwidth packet buffers. 
The scheme uses a number of DRAMS in parallel, all con- 
trolled independently in an intcrleaved manner, as well as 
SRAM FIFOs to absorb short-term overloads on the DRAM 
memories. 

In this paper, we establish exact bounds relating the SRAM 
size to the drop probabihty. In particular, we show that reason- 
able performance guarantees, i.e.. low drop probability, can be 
provided using small SRAMs as well as a small amount of 

The costs of the technique are: (1) a (presumably on-chip) 
SRAM cache that grows in size linearly with line rate, and (2) 
A memory management algorithm that must be implemented 
in hardware. 

While there are systems for which this technique is inappli- 

sped-up. 

*. In practice. we start observing the convergence indicated in Theorem 1 
when the numbzr of flow exceeds 100. 
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cable (e.g. where the value of Q is small (<loo), so that the 
convergence used in our analysis doesn’t apply), the technique 
can be used to build packet buffers faster than any that are 
commercially available today, and should enable packet buff- 
ers to be built for several generations of technology to come. 
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