
Building Packet Buffers using Interleaved Memories

Gireesh Shrimali and Nick McKeown
Computer Systems Laboratory, Stanford University

Stanford, CA 943059030
{ gireesh, nickm} @stanford.edu

Abstract -- High end routers need to store a iurge amount of dntn.
Dynamic random access memories (DRAMS) are typicdy used.for this
purpose. However, DMM metnojy devices don’t M c h the bdwiddh
requirements, especially in terms of random access speeds. In this
paper, we analyze a gener&ed memory interleavkg scheme. This
scheme implements a b e , fast memory using muliplo, slower
DRAMS. In the presence of s m d mount of speed-up) we show that
reosonabk stafktical guarantees &e., low drop probabditks) can be
provided by using smdl SRAM buffers thot queue redwri te requests
to DRAMS. We then r e h e drop probabilities to SRAM buffer size fur a
wide range of statistical arrivalpatterns.

I

I. INTRODUCTION
High-performance routers need buffers to store data during

congestion. These buffers can either be shared by multiple line
cards (e.g., in a shared memory router) or belong to a single line
card (e.g., in a distributed memory router). These buffers are typ-
ically required to store a large amount of data at high rates, which
translates to using fast, high density memories.
Though there can be multiple criteria for deciding the amount

of storage required, a rule of thumb indicates that, in order for
TCP to work well, the buffer should be able to store an amount of
(per-port) data equal to the product of the line rate and the aver-
age round-trip-time (RTTI [lS]. Though this rule of thumb has
been challenged recently [21, it is still widely used,

In addition, the arrivingldeparting packets may cause memory
accesses in an arbitrary and unpredictable (i.e., random) order,
thus requiring random access guarantees (in packetds) in addi-
tion to raw bandwidth guarantees (in bitds).

To get a feel for the size and speed requirements, consider a
packet buffer on a 4OGb/s (OC76Sc) linecard of a distributed
memory router, Assuming an average TCP RTT of 0.25s 131, this
buffer needs to store lOGb of data. In addition, assuming a con-
stant stream of 40-byte packets, which corresponds to minimum
size IP packets containing TCP ACKs, the packet buffer must
read and write a packet every 8ns. This translates to one memory
operation every 4ns, or a random access speed of 250Mpacketsls

Note that a packet buffer supporting sixteen 2.5Gbls ports in a
shared memory router would have the same size and speed
requirements. We now look at two papular memory devices -
SRAM and DRAM - to see if they satisfy the above require-
ments.

Static random access memories (SRAMs) are relatively fast
but small, and power-hungry. At the time of writing, state-of-the-
art commercial SRAM [15] holds 32h4bits, has a random access

time of 4ns. and consumes 1.6W. This means a 40Gbls linecard
would require over 300 SRAM devices and consume approxi-
mately 500W. So, even though SRAMs meet the speed require-
ment, implementing a packet buffer using only SRAM memories
would be impractical in terms of area as well as power.

Dynamic random access memories (DRAMs) are relatively
large and consume much less power, but are slow. At the time of
writing, state-of-the-art commercial DRAM [16] holds lGbits,
has a random access time of 4Ons, and consumes 2W. This means
that a 40Gbls linecard could be implemented using IO such
DRAM devices consumng only 20W.

Size dictates that we use DRAMs in our 40Gbls linecard exam-
ple. However, with packets arriving OT departing every 4ns,
DRAMs are not fast enough. This shortfall in random access
speed is not going to be solved anytime soon, and illustrates a
problem that will get worse, rather Lhan better over time. DRAMs
are optimized for size rather than random access speed, which
increases by only 10% every 18 months [13]. Line-rate, R ,
increases 100% every 18 months [5] and hence DRAM will fall
hrther and further behind the needs of high speed packet buffers.

A solution to the above problem is to interleave memory
accesses across multiple slower DRAMs to mimic a large, fast
memory. The scheme is not new [8][X31, and is already deployed
in proprietary systems as well as in commercidly available
DRAM controllers [7][9]. But there is no literature which ana-
lyzes this technique from a statistical perspective, and we believe
that existing designs are based on ad-hoc statistical assumptions
without hard guarantees or bounds on performance
[1][6][10][ll][I4]. Our main contribution is to analyze this archi-
tecture in a networking context, and provide performance guaran-
tees from a statistical perspective.

The rest of the paper is organized as follows. Section I1
describes the packet buffer architecture used to provide the statis-
tical guarantees. Section I11 provides analytically derived statisti-
cal guarantees. Section IV discusses implementation details and
provides a design example in the context of the 40Gb/s linecard
introduced earlier in this section. Section V concludes the paper.

11. INTERLEAVED MEMORY ARCHITECTURE

A. Basic Idea
Memory interleaving has been traditionally used in computer

systems to increase the performance of memory and disk-array
sub-systems [8][13]. The idea is simple (Figure 1) - the band-

mailto:stanford.edu

width R of a single. fast memory is matched using k slower
memories with bandwidth R / b , where k 2 b . Each of these
memories is accessed independently of the others. A memory
management algorithm schedules writes and reads to the
DRAMs.

For sake of simplicity we assume that data is accessed in
fixed-size cells. This cell can be a single byte or more. depend-
ing on the implementation. In case of variable size packets, the
packet can be split into cells and written into multiple DRAMS.

We then define R as the rate at which these cells need to be
accessed from the packet buffer. By our previous definitjon, a
single DRAM memory would be capable of transferring 1 cell
per b cell-times. Similarly, k memories would be capable of
transferring k cells per b cell-times. In this context. we define
the speed-up as s = (k x R / b) / R = k / b .

As an example, consider our 40Gb/s linecard which requires
a random access every 4ns. With 40ns random access time
DRAMs. b turns out to be 10 (= 40/4). Now, if we require a
speedupof1.1,k wouldhavetobe 11(= 1 . 1 ~ 1 0) .

E. SRAM FiFOs
If the packet buffer maintained just one flow, the operation

would be simple: the arriving cells could be written immedi-
ately into the DRAM memories in a round-robin manner, with-
out the need for any intermediate storage. The cells
corresponding to the incoming requests would be read from
the DRAM memories in the same manner. This scheme works
since there is a cell written to (and read from) each memory
every k 2 b cell-times, and no DRAM memory is ever over-
subscribed,

Things get more complicated when there are multiple (say
Q) flows in the system. Let us assume for now that the mem-
ory management algorithm is writing to DRAM memories in a
round-robin manner on a per-flow basis. It could happen that
two consecutive arriving cells (at rate R 1 corresponding to two
different flows get mapped to the same DRAM memory. Since
a DRAM memory can accept only one of them per b cell-
times, the other one has to be queued in a write FIFO (Figure
1). Multiple consecutive cells could be mapped to the same
write FIFO, with most of them waiting for the DRAM mem-
ory.

Given the unpredictable nature of cell arrivals, and the fact
that most realistic packet buffers deal with multiple flows, i t
would be impossible for any memory management algorithm
to avoid short-term overloads on the DRAM memories. On-
chip SRAM FFOs are needed to buffer up these short-term
overloads.

In our discussion above, we focussed on the write FJFOs. It
is interesting to note that the write and read FIFOs are similar
except that write FIFOs store actual cells whereas the read
FIFOs store requests for cells. We expect their behavior to be
identical otherwise.

2

Logical memory with rate R
Set of DRAM memories
m r h w i t h r a r e R h

r - - - - - - - - - - - F - - - - - -

I l i ; ;
I

I AI
I

_ _
Departing 0 Data

I- --
Write FlFOs Read FIFOs

Figure 1: Memory hierarchy of packet buffer with multiple DRAM
memories. DRAM write and read FlfOs are maintained in SRAM.

At this point it is relevant to mention per-flow queues - the
logical queues that keep track of the ordering of cells on a per-
flow basis. The per-flow queues are related to the per-DRAM
FlFOs in the following manner. The write FFOs contain the
cells at the tails of the per-flow queues. Similarly, the read
FIFOs contain the cells at the heads of the per-flow queues,
whereas the DRAM contains the cells in the middle. Since the
actual celllrequest storage happens in the per-DRAM FIFO
queues, the per-flow queues are relevant only from an imple-
mentation point of view, and we focus only on the analysis of
per-DRAM FIFO queues in the remainder of the paper.

C. Memory Manugement
A DRAM memory interacts only with its own write and read

RFOs, independendy of the other DRAM memories. As cells
arrive to the packet buffer they are written by the memory
management algorithm (MMA) to the tail of a write FIFO,
where they wait to be written to the corresponding DRAM
memory. Similarly, as requests m i v e to the packet buffer, they
are written to the tail of a read FWO, where they wait for the
corresponding cell to be read from the appropriate DRAM.
The MMA comes into the picture only while writing a cell into
the DRAM memories. For every flow, the order in which the
DRAM memories are accessed is completely determined dur-
ing the write operations. Thus, the per-flow requests must be
queued into the read FPOs in the same order the correspond-
ing cells were written into the write FIFOs.

D, Problem Statement

This scheme is not without its limitations. If the SRAM con-
taining the FIFOs is not big enough, then cells may get
dropped during overload situations. In addition, due to FIFO
queueing, cells may experience variable latency in uaversing
the system.

In Section I11 we provide a memory management algorithm
that ensures that the drop probability is minimized given fixed
size SRAM. Using minimal assumptions on arrivals rand
departures), we also provide statistical guarantees on drop
probabilities and maximum latency. We show that reasonable
performance guarantees, i.e., low drop probabilities and low
maximum latency, can be provided using small values of
speed-up.

111. PROVIDING STATISTICAL GUARANTEES
In this section, we focus on the analysis of the SRAM con-

taining the write FIFOs. As mentioned earlier, the behavior of
the read FWOs is identical to the write FIFOs, and so is the
analysis.

A. Preliminaries
We assume that k = b . This ensures that the SRAM buffer

is rate stable since the cumulative service rate (= 1) is greater
than or equal to the maximum incoming rate. We then analyze
for the effects of speedup by looking at incoming rates that are
less than unity. /

We assume that the SRAM of size S is statically shared
among the b FlFOs of size S/b each (Figure 2). Thus, we
model the SRAM as a collection of b queues corresponding to
the b FIFOs. Each of these b queues are served independently
by a deterministic server with rate 1 / b .

For simplicity, we assume time to be a continuous variable -
a similar analysis could be carried out in discrete time domain
as well. We denote by A (t) the cumulative number of cells
arriving at the SRAM in [0, I] . A(t) is assumed to be the sum
of Q stationary and ergodic arrival processes A’(t) corre-
sponding to Q flows, where i E 11, Ql . A’(r) are assumed to
have rates hi such that the sum of rates is less than 1 (to ensure
rate stability).

We also assume Ai(t) to be independent of each other. We
believe the independence assumption to be a reasonable one

source 1

source Q
Figure 3: The FIFO model

since the traffic on an internet link, especially a high speed
WAN link, usually comprises of traffic generated by thousands
of independent sources.

B. Memory Munagenrent Algorithm

The memory management algorithm (MMA) assigns every
incoming cell to one of the b write FIFOs uniformly and at
random (u,a,r.), We refer to this MMA as the Write At Random

Since each incoming cell is assigned to the write FIFOs
u.a.r., the same holds for cells belonging to a flow. The pattern
of writes, i.e., the order in which the DRAM memories are
accessed, uniquely determines the pattern of reads on a per-
flow basis. Thus, on the read side, the per-flow requests would
also be disuibuted u.a.r. across the DRAM memories.

n e u.a.r. assignment means that each A ‘ (t) can be written
down as the following

MMA (WAR-MMA).

b

A ‘ (t) = x A i t ’ (f) i E [l, Q] (1)
j = I

where A‘?’(t) are $e independent processes generated by the
u.a.r. sampling of A ’ (f) , The arrival process FA’(t) to FIFO
j can now be written as

Q
FA’(l) = C A i 3 j (t) , j ~ [l , b] . (2)

Thus, we can envision FIFO j as shown in Figure 3. It has
Q sources A”’(l) , with rate h , / b , multiplexing into it, and
is work conserving with rate l /b , with total load h . Rate sta-
bility is preserved per FIFO, i.e.

1 = 1

Q
h, /b = h / b < l / b . (3)

i = l

Now, similar to the arrival processes, we denote by D(r) the
cumulative number of departures from the SRAM i n [O, €1,
where D (t) is the sum of b departure processes d(r) from
the FIOs. We then denote the number of cells present in
queue j , and the total SRAM occupancy at time r as LJ(t) and

b

L (t) = Lj(t) , (4 1
j=1

respectively.

0-7803-8924-7/05/$20.00 (~) 2 0 0 5 EXE. 3

Under WAR-MMA, since each W O j gets a b‘” fraction of
each A’([) via u.a.r. sampling, we can intuitively expect the
FA’(t) to be independent and identically distributed (i.i.d.).
This. combined with the fact that each FIFO is served in an
independent and identical fashion, leads us to expect that the
steady-state occupancy of each of the b FIFOs will be i.i.d..
We formalize his in the following lemma [171.

Lemma I : 771e occupancies L’(t) are i.i.d. under WAR-
MMA.

C. Drop ProbabiEiries

Since the event that the SRAM overflows is equivalent to
any of the FlFOs overflowing, the overflow probability in the
statically partitioned SRAM of size S can be given by

b

p o ~ e r f l a w , S R A M (S) poverplow, F I F O (j) (S / b) ’ (5)
j = i

To find the drop probability from a finite SRAM of size S,
we start by assuming that the SRAM is infinite, i.e.. that each
of the statically partitioned FIFOs are infinite. We then obtain
the steady-state probability of the occupancy of an infinite
FWO exceeding S /b (Le., P(L’ > S / b)) as a surrogate for the
overflow probability in a finite FIFO of size S / b . This s u o -
gate, aIso referred to as the buffer exceedence probability, suf-
fices since it is generally an upper bound to the actual drop
probability, i.e.,

(6) ~ o , , , f l , w , F I F O (j) (S / b) 5 WJ > S / b) ’
Here the left hand term corresponds to the drop probability

from a finite FIFO of size S / b , whereas the right hand term
corresponds to the steady-state buffer exceedence probability
(beyond S / b) in an infinite FIFO. Now Equation (5) becomes

b

P o v e r f l o w , S R A M (S) 2 P(LJ ’ S / b) . (7)

Poverflow, S R A M (S) 5 b x p(L’ > S / b) 1

j = 1

Finally, since Lj(r) are identically distributed (Lemma 11,
we can re-write Equation (7) as

(8)

Equation (8) indicates that it suffices to find the steady-state
distribution of buffer exceedence probability for any FIFO.

D. Bufer Exceedence Probabiliry

occupancy can be given by
We start by noting that using Lindley’s recursion, the FIFO

Lj(t f = maxO,, sr((FA’(t) - FAJ($)) - (t - s) / b) . (9)
This indicates that, given the steady-state distribution of the

arrival processes A ’ (t) , it is theoretically possible to derive the
steady-state distribution of the FIFO occupancy. However, for
general arrival patterns it is often not easy to find a solution.
The good news is that for a broad range of arrival traffic pat-
terns A’(t) , characterized by the following assumptions, i t is

possible to do s0.l
We assume that each ,4‘(f) is a simple point process satisfy-

ing the following properties [41. First, the expected value of
A’(t) in any interval [0, t] is given by A i r . Second, a source
cannot send more than one cell at a rime. And third. the proba-
bility of many cells arriving in an arbitrarily small interval
[0, f] decays fast as I + 0 .

We tackle the problem of finding the exceedence probability
in two steps. We first look at the case where the A ’ (r) are
i.i.d.. Given above assumptions, we derive the following
lemma [17] and our main theorem, as follows.

Leinina 2: Ai’J(t) ore stationary, independent, and iden-
ticallv distribicted simple point processes.

Theorem I : A s the number of flows increases (i.e.,
Q + DO I, the steady-state b&?r exceedence probability, i.e
P(LJ >x) Vx, approaches the corresponding exceedence
probabilio with a Poisson source with the same total load.

Proof: We have Q sources A ‘ ’ j (t) multiplexing into FIFO j
that, is work conserving with total load h . From Lemma 2,
A”’(t) are stationary, independent, and identically distributed

simple point processes. Thus, all the assumptions stated for
A‘(1) are also true for Ai”([) (for a fixedj), This allows us
to use Theorem 1 in [4] to get the main result.0

Theorem 1 shows that as the number of multiplexed i i d .
sources increases, the steady-state buffer exceedence probabil-
ity approaches the corresponding probability assuming Pois-
son sources, which is known explicitly through the analysis of
the resulting M/D/1 system 1121.

We then look at the case where the A’(!) are independent
but not necessarily identically distributed. Using a large devia-
tion argument [17], we can show that the buffer exceedence
probability in this case is upper bounded by the corresponding
probability for the i.i.d. case. Thus, in order to get the drop
probability from an SRAM, it suffices to analyze for the i.i.d.
case

Iv. IMPLEMENTATION CONSIDERATIONS

WAR-MMA is pretty simple to implement since it only
requires randomly spreading the incoming traffic. This
requires no state to be kept. In addition, statically allocated
SRAM (using circular buffers) and dynamically allocated
DRAM (using linked lists) are common place. Thus, the inter-
leaved memory architecture is fairly easy to implement. We
believe this to be its biggest strength.

We now provide a realistic design example. In Table 1 we
list values of FIFO sizes (i.e., x) needed to guarantee a steady-

’. ’ h s e assumptions are fairly general and apply to a variety of traffic
sources, including Poisson, Gamma, Weibull, Inverse Weibull, ExpOn-
h p 0 f f . and Paretoon-ExpOff. These point processes model a wide
range of observed traffic [4], including wide area network traffic.

0-7803-8924-7/05/$20.00 (C>zOOS IEEE. 4

stale buffer exceedence probability of 1 C 6 as well as lo-’.
These FIFO sizes are independent of Q , and depend only on
h . Q is important as long as it is large enough to guarantee the
convergence indicated in Theorem 1 .2

Load

0.1

x when P(L(i)>x)=le-6 x when P(L(j)>x)=le-9

5 7

0.3
0.5

10.7 122 I 32 I

8 11

12 18

i0.9 168 I101

For example, to achieve a steady-state buffer exceedence
probability of at h. = 0.9, we need a FIFO size of
approximately 101 cells. Since h = 0.9 corresponds to a
speedup of approximately 1.1 (= 1 /0.9), at this speedup an
SRAM of size b x 101 would guarantee that the drop proba-
bility from the SRAM is upper bounded by b x
(Equation (8)).

In our 40Gbls linecard example, with 40ns random access
time DRAMS and 40-byte cells, b turns out to be 10 (Section
1I.A). Now, with b = 10 and speedup 1.1, an SRAM of size
1010 cells (= 40400 bytes) would guarantee a drop probabil-
ity of less than .

This example vdidates our claim that a small SRAM (-40K
bytes) can support extremely low drop probabilities using a
smalI amount of speedup.

v. CONCLUSIONS

Packet switches, regardless of their architecture, require
packet buffers. The general architecture presented and ana-
lyzed here can be used to build high bandwidth packet buffers.
The scheme uses a number of DRAMS in parallel, all con-
trolled independently in an intcrleaved manner, as well as
SRAM FIFOs to absorb short-term overloads on the DRAM
memories.

In this paper, we establish exact bounds relating the SRAM
size to the drop probabihty. In particular, we show that reason-
able performance guarantees, i.e.. low drop probability, can be
provided using small SRAMs as well as a small amount of

The costs of the technique are: (1) a (presumably on-chip)
SRAM cache that grows in size linearly with line rate, and (2)
A memory management algorithm that must be implemented
in hardware.

While there are systems for which this technique is inappli-

sped-up.

*. In practice. we start observing the convergence indicated in Theorem 1
when the numbzr of flow exceeds 100.

0-7803-8924-7/05/$20.00 (~) 2 0 0 5 IEEE. 5

cable (e.g. where the value of Q is small (<loo), so that the
convergence used in our analysis doesn’t apply), the technique
can be used to build packet buffers faster than any that are
commercially available today, and should enable packet buff-
ers to be built for several generations of technology to come.

REFERENCES

T. Alexander and F. Kedem, “Distributed prefetch-buffedcache design
for high prrformance memory systenls“, In Proceedings. of rhe ZfRd In-
temaiional Symposium UJI High-Peflmmance Computer. Architecfure,
pp. 254-263. Feb. 1996.
G. Appenzzler. I. Keslassy, and N. McKrown. “Sizinp Router Buffers”.
In Proceedings of ACM SIGCOMM W.
Caida. “Round-Trip Time Measurements from CAIDA’s Macroscopic
Internet Topology Monitor”. available at http://www .caida.org/anaIy-
sis/perforniance/rtUwalrusD202.
I. Cao and Kavita Ramanan, “A Poisson Limit for Buffer Ovzrflow
Probabilities”. In Proceedings of IEEE INFOCOM’02. pp. 994-1003.
2001.
K.G. Coffman and A. M. Odlyzko, “Is there a “Moore’s Law” for data
traffic?.” Handbook of Massive Data Sets, eds., Kluwer. 2002. pp. 47-
93.
J, Corbal. R. Espasa, and M. Valero, “Command vector memory sys-
t em: High performance at low cost,” In Proceedings of ihe 1998 h e r -
naiional Conference on Parallel Architectures and Compihrwn
Techniques, pp. 68-77, October 1998.
S . 1. Hong, S.A. McKee. M.H. Salinas, R.H. Klenke, J.H. Aylor, and
Wm.A. Wulf. “Access order and effective bandwidth for streams on a
direct rambus memory,” In Proceedings of the Fifth InremationalSym-
posium on High- Performance Computer Architecture, pp. 80-89, Jan-
uary 1999.
Y. loo and N. McKeown, “Doubling Memory Bandwidth for Network
Buffers,” Proc. IEEE Infocom 1998, vol. 2 , pp. 808-815, San Francisco.
W. Lin. S. Reinhardt, D. Burger, “Reducing DRAM Latencies with an
Integrated Memory Hierarchy Design,“ In Proc. Y h Int synzposim on
High-Perfomnee Computer Architeciure, January 2001.
S. A. McKee and Win. A. Wulf, “Access ordering and memory-con-
scious cache utilization,” In Proceedings ojthe Firstinlemational Sym-
posium on High- P e r f o m c e Computer Architecture, pp. 253-262,
January 1995.
B. K. Mathew, S. A. McKee, J. B. Carter, and A. Davis, “Design of a
parallel vector access unit for SDRAM memory systems, ” I n Praceed-
ings of the Sixth Intemrional Symposium on High- Performance Com-
puter Architecture, January 2000.
U. Mocci, 1. Roberts, and J. Virtamo, “Broadband Network Teletraffic”.
Find Repofl ofAction COST242, Springer, Berlin, 1996.
D. Patterson, and J. Hennessy, Compuier Archirecture: A Qt&tzfative
Approach, 2nd. ed., San Francisco: Morgan Kaufmann Publishers,
1996.
S. Rixner, W- J. Dally, U. I. Kapasi, P. Mattson, and 1. D. Owens,
“MemoIy a w e s scheduling,” In Proceedings ojthe 27th Annual Inter-
national Symposium on Computer Architecture, pp. 128-138, June
2000.
Samsung, “Samsung K7N323645M NtSRAM”. Available at http://
www.samsung.comlProducts/Semiconductor/SRAM/index+htm~
Samsung, “Samsung K4S IG0632M SDRAM- Available at http://
www.samsung.com/Productsfiemiconductor/DRAMhdex~htm.
G. Shrimali and N. McKeown. “Statistical Guarantees far Packet Buff-
ers: The Distributed DRAM Case”, Sranfurd University HPNG Techni-
cal Report. Stanford. CA, 2004.
Villiamizar C. and Song C., “High performance tcp in ansnet,” ACM
Computer Communicatiun Review (1995).

http://www

