
Designing a Predictable Internet Backbone Network ∗

Rui Zhang-Shen, Nick McKeown
Computer Systems Laboratory

Stanford University

{rzhang, nickm}@stanford.edu

ABSTRACT
Designing a backbone network is hard. On one hand, users

expect the network to have very high availability, little or

no congestion, and hence little or no queueing delay. On

the other hand, traffic conditions are always changing. Over

time usage patterns evolve, customers come and go, new ap-

plications are deployed, and the traffic matrices of one year

are quite different from the next. Yet the network operator

must design for low congestion over the multiple years that

the network is in operation. Harder still, the network must

be designed to work well under a variety of link and router

failures. It is not surprising that most networks today are

enormously overprovisioned, with typical utilizations around

10%. In this paper we propose that backbone networks use

Valiant Load-balancing over a fully-connected logical mesh.

This is quite a radical departure from the way backbones

are built today, and raises as many questions as it answers.

But it leads to a surprisingly simple architecture, with pre-

dictable and guaranteed performance, even when traffic ma-

trices change and when links and routers fail. It is provably

the lowest capacity network with these characteristics. In

addition, it provides fast convergence after failure, making

it possible to support real-time applications.

1. INTRODUCTION
Network design can be formulated as an optimiza-

tion problem where total cost is minimized subject to
topology, demand, and performance constraints. The
designer chooses where nodes and links are placed, their
capacities, and how traffic is routed. On the face of it,
this seems like a straightforward problem. We first de-
termine the constraints on node and link location, and
the expected demand, and then do our best to design
an optimal network. In this paper, we will focus on
designing a backbone network.

Once deployed, the expense of the infrastructure dic-
tates that the backbone topology (i.e., the set of nodes
and their inter-connectivity) doesn’t change for several
years. As traffic patterns change, and usage grows, a
new topology will eventually need to be deployed, and
∗This research was funded by NSF under ITR award ANI-
0331653, and by the Lillie Family Stanford Graduate Fel-
lowship.

the design process starts over. A well-designed network
should support the traffic matrices presented to it for
as long as possible. In the rest of this section, we will
discuss some of the many challenges this presents to
network designers today.

1.1 Obtaining a Traffic Matrix Estimation
The key to designing a network is to understand how

it will be used. The process starts by measuring how
the network is used today, and then extrapolating based
on estimates of how traffic will grow and change over
time.

Obtaining a traffic matrix – a matrix indicating the
peak short-term average load between any pair of nodes
in the backbone – is not an easy task. It is impractical to
measure it directly, and the best estimation techniques
(from link load measurements) give errors of 20% or
more [1]. Moreover, demand fluctuates over time as a
result of special events or even changes external to the
network [2].

To design a network we need to know what the traffic
matrix will be in the future – years after the topology is
first deployed. Starting with an estimate of the traffic
matrix, and then extrapolating, inevitably leads to a
crude estimate of future demand. Typically, the traffic
matrix is extrapolated based on historical growth rates,
and adjusted according to marketing forecasts and de-
cisions such as addition and elimination of applications
and services. However, it is impossible to predict future
growth rates and new applications. Even if total growth
rate is estimated correctly, the growth rate doesn’t take
into account new applications which may change traffic
patterns. For example, peer-to-peer traffic has demon-
strated how quickly usage patterns can change in the In-
ternet. The widespread use of voice-over-IP and video-
on-demand may change usage patterns again over the
next few years. What’s more, the growth rate does not
take into account large new customers bringing new de-
mand.

1.2 Failures and Routing Convergence
A network must be designed to continue to operate

when there are failures and service or maintenance in-



terruptions in the network.
Failures cause two problems: Loss of connectivity,

which can take several seconds to recover from [3], and
is too slow for real-time applications such as voice and
gaming. Second, failures demand extra capacity to carry
rerouted traffic. Today, rerouting leads to large, coarse
flows suddenly traversing a link, requiring large chunks
of spare capacity.

It is hard enough to design a predictable network
when all links and routers are functioning correctly; it is
even harder to ensure predictable behavior when there
are unpredictable failures.

1.3 Network Design in Practice
While network design can be formulated as an opti-

mization problem, networks are not designed this way in
practice. Juggling the number of constraints, estimates,
and unknowns means that network design is more of an
art than a science, and is dominated by a number of
rules-of-thumb that have been learned over the years.
This explains why each network operator has built a
very different backbone network.

Ad-hoc design makes it hard or impossible to predict
how a network will perform over a wide variety of con-
ditions. To offset the intrinsic inaccuracies in the design
process, it is common to use traffic engineering in which
operators monitor link utilization and route flows to re-
duce congestion [4], especially during failures [5].

Traffic engineering only works if the underlying net-
work is able to support the current traffic matrix. With
the complicated topologies deployed today, it is not gen-
erally possible to determine the set of traffic matrices
that a backbone network can support.

1.4 Problem Statement
In summary, it is extremely hard to design a network.

First, it is nearly impossible to accurately estimate fu-
ture demand, and how nodes will communicate with
each other. Despite inaccurate information, network
designers have to ensure the network will operate when
links and routers fail unpredictably.

We propose a way to design backbone networks that
are insensitive to the traffic matrix (i.e., that work equal-
ly well for all valid traffic matrices), and continue to
provide guaranteed performance under a user-defined
number of link and router failures.

We believe that Valiant Load-balancing is a promising
way to design backbone networks. The approach was
first proposed by Valiant for processor interconnection
networks [6], and has received recent interest for scal-
able routers with performance guarantees [7] [8]. Here
we apply it to backbone network design.

There are several benefits to Valiant Load-balancing.
First, it can be shown that – given a set of boundary
nodes with a fixed maximum capacity – the network
will support any set of traffic matrices. It is provably

1 2

3N

… 4

Figure 1: A hierarchical network with N backbone

nodes, each serving an access network. The backbone

nodes are connected by a logical full mesh.

the most efficient network design (in the sense that it
minimizes total link capacity) that can support an arbi-
trary set of traffic matrices. Furthermore, the network
can be designed to support any traffic matrix under a
pre-defined number of link and router failures.

In what follows, we will describe the general approach,
and how Valiant Load-balancing can be applied to back-
bone network design. We’ll first consider how it works
when the network is homogeneous and all nodes have
the same capacity, and then show how the network can
be designed to work under an arbitrary number of fail-
ures.

In an accompanying paper [9], the authors indepen-
dently arrived at the same conclusion and describe a
slightly different scheme.

2. VALIANT LOAD-BALANCED NETWORKS
The motivation for Valiant Load-balancing is that it

is much easier to estimate the aggregate traffic entering
and leaving a node than to estimate the traffic matrix.
The approach assumes a full-mesh topology among the
nodes, and load-balances traffic over two-hop paths.

2.1 General Approach
Consider a backbone network consisting of multiple

PoPs interconnected by long-haul links. The whole net-
work is arranged as a hierarchy, and each PoP connects
an access network to the backbone (see Figure 1).

Although traffic matrices are hard to obtain, it is
straightforward to measure, or estimate, the total
amount of traffic entering (leaving) a PoP from (to)
its access network. When a new customer joins the
network, we add its aggregate traffic rate to the node.
When new locations are planned, the aggregate traf-
fic demand for a new node can be estimated from the
population that the node serves. This is much easier
than trying to estimate the traffic rates from one node
to every other node in the backbone.

Imagine that we establish a full mesh of logical links
from each node to every other node. They are not nec-



essarily physical links; they could be implemented us-
ing tunneling or an overlay mechanism. Traffic enter-
ing the backbone is spread equally across all the nodes.
Each packet traverses the backbone twice: once from
the ingress node to an arbitrary intermediate node, and
once again to reach the egress node. A flow is load-
balanced across every two-hop path from its ingress to
egress node. This means the capacity requirement on
each link is lower than the node capacity, and we’ll see
that a network designed this way can serve any valid
traffic matrix. What’s more, as will be shown in Sec-
tion 3, it is possible to calculate the exact amount of ca-
pacity needed on every logical link in the load-balanced
network, making network design more systematic.

Since each flow is load-balanced over multiple paths
through the network, only a small amount of excess
capacity is required in order to restore from a small
number of failures. More importantly, we can system-
atically determine how much extra capacity is needed
to recover from a given number of failures.

Forwarding packets twice through the backbone net-
work leads to increased average delay. However, we be-
lieve it is a reasonable tradeoff for improved predictabil-
ity, and lower delay variance. And while many network
customers claim they are sensitive to fixed delays, there
are few, if any, applications that would really suffer from
a two-hop traversal of the network. We believe the fix-
ation on delay is only because it is easier to measure
than bandwidth.

The VLB architecture can easily reroute around link
and router failures. When a failure happens, the net-
work doesn’t need to rely on a complicated routing pro-
tocol to discover and converge to new routes. Failure
recovery and restoration in a VLB network can be as
fast as failure detection at a single router.

2.2 Details of the Approach
Consider a homogeneous network of N identical nodes,

each with capacity r, where capacity is the aggregate
capacity of the access network that the backbone node
serves. This means a node can initiate traffic to, or re-
ceive traffic from, other backbone nodes at an aggregate
rate up to r. The analysis can be extended to heteroge-
neous networks but space limitations preclude us from
including it here.

The network has a full-mesh of links among the nodes.
Let the capacity requirement on the link between node
i and node j be cij . A flow is defined by its source and
destination nodes, so there are a total of N2 flows.

A traffic demand matrix Λ is an N ×N matrix where
the (i, j)th entry λij represents the traffic rate from node
i to node j. A valid traffic matrix is one such that no
node is over-subscribed, i.e.,

∑
j λij ≤ r and

∑
j λji ≤

r, ∀i. We will only consider valid traffic matrices in this
paper and our goal is to guarantee 100% throughput to
all valid traffic matrices.

What is the optimal interconnection pattern that can
guarantee 100% throughput to any valid traffic matrix
for this homogeneous network? Keslassy et. al. [10]
show that a uniform full-mesh with each link having ca-
pacity 2r

N is the unique optimal interconnection pattern
which requires the lowest link capacity at each node.

Uniform load-balancing leads to guaranteed 100%
throughput in this network. Packets are forwarded in
two stages. First, each node uniformly load-balances
its incoming traffic to all the N nodes, regardless of the
packet destination. Load-balancing can be done packet-
by-packet, or flow-by-flow. Either way, each node re-
ceives 1/N -th of every node’s traffic. In the second
stage, all packets are delivered to the final destination.
Since the incoming traffic rate to each node is at most r,
and the traffic is evenly load-balanced to N nodes, the
actual traffic on each link due to the first stage routing
is at most r

N . The second stage is the dual of the first
stage. Since each node can receive traffic at a maximum
rate of r, and it receives 1/N -th of the traffic from every
node, the actual traffic on each link due to the second
stage routing is also at most r

N . Therefore, a full-mesh
network where each link has capacity 2r

N is sufficient to
guarantee 100% throughput for any valid traffic matrix.

It may seem counter-intuitive that this is the most
efficient network. After all, almost every packet is for-
warded twice in the network. But note that this net-
work can serve a traffic matrix where a node sends traf-
fic at the maximum rate r to another node, while the
link capacity required between any pair of nodes is only
r · 2

N . If all the traffic were to be sent through direct
paths, we would need a full mesh network of link capac-
ity r. So load-balancing is N

2 times more efficient when
the goal is to serve all valid traffic matrices.

3. FAULT-TOLERANCE IN A VALIANT
LOAD-BALANCED NETWORK

It is easy to design a VLB network to perform pre-
dictably in the presence of failure. In an N node full-
mesh network, node failures will result in a smaller full-
mesh network. When there are no node failures, we
need at least N − 1 link failures to make a cut in the
network. In this sense it has higher tolerance to faults
than any other architecture. In this section, we again
assume a homogeneous network of N identical nodes of
capacity r, and derive the fault tolerance requirements
in the Valiant Load-balanced network.

We will derive the link capacities we need so as to
guarantee 100% throughput under k1 arbitrary node
failures1 and k2 arbitrary link failures2, where k1 and

1If a node fails, we discard the traffic originating from or
terminating at this node, because there is no way this traffic
can be served.
2Here we refer to the logical links. If the underlying physical
layer is unprotected, then a failure in the physical layer could
cause multiple simultaneous failures in the logical network.



k2 are design parameters. Due to the symmetry of the
topology, all links in the fault-tolerant network have
the same capacity. Let C(N, k1, k2) denote the mini-
mum capacity required on each link in an N -node full
mesh network such that 100% throughput is guaranteed
under k1 arbitrary node failures and k2 arbitrary link
failures. We similarly define Cn(N, k) and Cl(N, k) to
be the capacity required to tolerate k node failures and
k link failures in an N -node network, respectively. Ob-
viously, C, Cn, and Cl are increasing functions of k1,
k2, and k. And we have, by definition, C(N, 0, 0) =
Cn(N, 0) = Cl(N, 0) = 2r

N .
In what follows, we derive the link capacity needed

so as to tolerate node failures and link failures sepa-
rately. Then, we combine the two conditions and give
the capacity requirement for general failure scenarios.

3.1 The Path Matrix
Under normal operation, every flow is uniformly load-

balanced over N paths. When there are failures, some
flows have fewer than N paths. Assume that each source
node evenly spreads a flow over all the available paths
for the flow, no matter how many of these paths there
are. This scheme is easy to implement at the node: A
node only needs to keep track of the available paths
for each flow originating from it, and no complex com-
putation is needed. Such a network is also self-healing
because traffic can be rerouted as soon as failure is de-
tected.

Now we introduce a method of counting the number
of available paths between any pair of nodes given a
failure pattern. Let A be the connectivity matrix, that
is, entry Aij = 1 if the link from node i to node j is
up, and Aij = 0 if the link is down. If a node is down,
then all the links connecting to it are down. Since all
links are bi-directional, we have Aij = Aji.3 We also
assume that Aii = 1, ∀i, i.e., a node is always connected
to itself. Let P = A2, then Pst =

∑N
i=1 AsiAit is the

number of available paths from node s to node t, and
we call P the path matrix.

Under normal operation with no failures, the connec-
tivity matrix A is an N × N matrix of all ones. Thus
Pst = N for any (s, t) pair and a flow is load-balanced
over N paths. If we look at the paths taken by the
flowst, linkst is used twice, in path s-s-t and path s-t-t,
while linksi and linkit, i 6= s, t, are used only once. In
other words, the direct link between a pair of nodes ac-
counts for two paths between the nodes, and these two
paths are in fact single hop. This is true even when
some paths fail.

With failures, some entries of A become zero, and the
number of paths between any two nodes can be obtained
from the path matrix P = A2. For flowst, node s knows
the value of Pst and which of the N paths are available.
3The analysis can also apply to networks with uni-
directional links.

So it sends 1/Pst of flowst over each of the available
paths. Thus 2/Pst of flowst traverses linkst, if the link
is up, and 1/Pst of flowst traverses linksi and linkit,
i 6= s, t, if the path is up.

3.2 Node Failures
When a node fails, it takes down all the links con-

necting to it and stops sending or receiving traffic. So
the network becomes an (N−1)-node uniform full mesh
network, and a link capacity of 2r

N−1 is sufficient to guar-
antee 100% throughput. In general, when there are k
node failures, the network becomes an (N−k)-node uni-
form full mesh network, so the required link capacity to
tolerate k node failures is

Cn(N, k) = C(N − k, 0, 0) =
2r

N − k
. (1)

3.3 Link Failures
Analyzing link failures is more complicated, because

they break the symmetry of the network. In this sub-
section, we assume there are no node failures, and only
consider link failures.

Given the traffic matrix Λ and the path matrix P , we
can obtain Tij , the amount of traffic traversing linkij , in
terms of Λ and P . Note that this can be very different
from λij , the traffic demand from node i to node j.

Before stating the link failure duality theorem, we
introduce one more definition. A symmetric routing
scheme is one which is invariant under the re-numbering
of nodes in a uniform network. The scheme of “uniform
load-balancing over available paths” described in this
section is one example of a symmetric routing scheme.

Theorem 1. In a uniform full mesh network with
a symmetric routing scheme, the minimum link capac-
ity required to guarantee 100% throughput for any valid
traffic matrix under k arbitrary link failures, is equal to
the maximum load on link12 over all valid traffic matri-
ces and under any k link failures, i.e.,

Cl(N, k) = max
Λ, k link failures

T12.

For simplicity of notation, when it is clear from the
context, we will omit the variables over which T12 is
maximized, and simply write max T12.

Proof. Clearly we require Cl(N, k) ≥ maxT12; oth-
erwise link12 would be overloaded and we would not
be able to guarantee 100% throughput for some valid
traffic matrices under some failure scenarios. Thus,
a capacity of max T12 is necessary. Due to the sym-
metry of the network and routing scheme, the maxi-
mum traffic on any link under all valid traffic matri-
ces and any k link failures is at most maxT12. There-
fore, a capacity of max T12 is sufficient. Thus we have
Cl(N, k) = max T12.

Now we derive max T12. Assume link12 does not fail
because otherwise there will be no traffic on it. The



traffic traversing link12 either originates from node 1,
or terminates at node 2, or both. Node 1 spreads flow1i

over route 1-2-i only if link2i is up. Similarly, node i
spreads flowi2 over route i-1-2 only if linki1 is up. We
can also assume λii = 0 because this traffic does not
need to traverse the network. Thus, we have

T12 =
2λ12

P12
+

∑

i≥3

λ1i

P1i
A2i +

∑

i≥3

λi2

Pi2
Ai1. (2)

Since we are only considering valid traffic, the row
and column sums of Λ are bounded by r. It is easy to
see that

T12 ≤ r

mini6=1 P1i
+

r

minj 6=2 Pj2
(3)

≤ 2r

mini6=1,j 6=2(P1i, Pj2)
. (4)

This gives an easy upper bound on T12.
For a given path matrix P , we can maximize T12 over

all valid traffic matrices Λ; i.e., under the constraints∑
i λ1i ≤ r and

∑
i λi2 ≤ r. From Equation (2),

max
Λ

T12

= max
λ12

(
2λ12

P12
+ (r − λ12)

(
max
i≥3

A2i

P1i
+ max

i≥3

Ai1

Pi2

))

= max
{

2r

P12
, r

(
max
i≥3

A2i

P1i
+ max

i≥3

Ai1

Pi2

)}
. (5)

Now we can maximize Equation (5) over all path ma-
trices representing k link failures. We omit the details
here and only give the final result. The amount of ca-
pacity required on each link to tolerate k arbitrary link
failures, for 1 ≤ k ≤ N − 2, is

Cl(N, k) =





r
N−2 + r

N k = 1
r

N−k−1 + r
N−1

k = 2 or N − 2,
or N ≤ 6

2r
N−k otherwise.

(6)
For k ≥ N − 1, in the worst case failure scenario, the
network becomes disconnected, therefore no throughput
guarantee can be given.

Equation (6) shows that the amount of capacity need-
ed to tolerate k link failures is on the order of 2r

N−k .
This is good news because the curve of 2r

N−k is very flat
for small values of k (see Figure 2). This means that
a small amount of overprovisioning goes a long way to
make the network more fault tolerant. For example, if
the links in a 100 node network are overprovisioned by
just about 5.3%, the network can tolerate any five log-
ical link failures. Compare this with existing backbone
networks that typically use significantly more overpro-
visioning, yet are unable to make any guarantees.

3.4 Combination of Node and Link Failures
Now assume that there are k1 node failures and k2

link failures. This is equivalent to having k2 link failures

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 c
ap

ac
ity

 o
f e

ac
h 

lin
k,

 C
l(N

,k
) 

/ r

Number of link failures, k

Figure 2: The required link capacity vs. number of link

failures in a 100-node network as given in Equation (6).

in a (N − k1)-node network. So

C(N, k1, k2) = Cl(N − k1, k2), (7)

where Cl is given by Equation (6).

4. DISCUSSION
Equation (7) has some interesting consequences. A

network operator can deploy links so that under nor-
mal operation the load on each link never exceeds α,
and with up to k1 node failures and k2 link failures, the
load never exceeds β, where 0 < α < β < 1. Unlike in
a traditional network in which maximum load is deter-
mined by the current traffic condition, and can reach
a very large value, the operator can constrain the load
on every link to be below a threshold. For example,
an operator can keep the load on every link below the
“knee” of the queueing delay vs. utilization curve, even
under failure. Unlike traditional network design meth-
ods, explicit results like Equation (7) enables the design
of a Valiant Load-balanced network with provable per-
formance characteristics.

In this paper we’ve restricted our consideration to a
homogeneous network, in which all N nodes are iden-
tical and connect to access networks of equal capacity.
Our results apply to a more general and realistic net-
work in which each node has a different capacity. In
that case, load-balancing is no longer uniform, and the
optimal load-balancing ratios can be derived.

A common concern with load-balancing is that the
traffic takes longer paths than strictly necessary and so
typically experiences longer delay. In a Valiant Load-
balanced network, the delay is bounded by twice the
network diameter. However, the tradeoff of delay vs.
throughput is always present in network design. This
network architecture is intended for regional networks,
such as the Internet backbone of the United States. In
such a network, the maximum propagation delay due
to two-hop routing is well below 100ms, which is ac-
ceptable for most applications. For the applications to



which low latency is important, if these packets account
for no more than 2/N -th of each flow, we can choose to
send these packets via the direct route. In fact, one can
envisage a scheme in which traffic is only load-balanced
over multiple paths between a pair of nodes when traf-
fic between them exceeds 2r

N . On the other hand, delay
jitters are usually much more important for most appli-
cations. In the VLB architecture, any burst in traffic is
absorbed by multiple paths, mediating the effect of the
burst, and thus reducing possible jitters in delay.

Another concern with load-balancing is packet re-
ordering. When packets from the same flow travel
through different paths with different delays, they may
arrive at the destination out of order. But in the In-
ternet backbone, where tens of thousands of application
level flows share a link, each taking up bandwidth much
smaller than backbone link capacities, it is possible to
ensure that no single application flow is sent over mul-
tiple paths. This can be done, for example, by flow
hashing as in [11].

The Valiant Load-balanced network enables a simple
routing scheme in which the destination of a packet is
looked up only once. The ingress node can forward a
packet immediately to an outgoing link based, for ex-
ample, on a hash of its address. Only the intermedi-
ate node needs to know where the packet is headed,
so that it can deliver it to the correct egress node and
onto the correct access network. Or, alternatively, a
tunnel can be set up for each two-hop path, so only
the ingress router needs to look up the destination of a
packet, upon which it will send the packet onto an ap-
propriate path. Unlike multi-hop routing, where rout-
ing protocols are complex, fragile and converge slowly,
this network allows a simpler, and more robust routing
protocol. The logical links, which may traverse multi-
ple physical links, can be established with some tun-
neling mechanism much simpler than IP. So the VLB
scheme can lower the performance requirement imposed
on routers today, enabling the possibility of simpler and
cheaper routers.

The reader may recognize similarities between the
proposed load-balanced network and an MPLS network.
But they are fundamentally different. The proposed
network architecture requires no dynamic routing, and
the network is effectively self-healing through load-ba-
lancing. In an MPLS networks, there is rarely any load-
balancing. A label-switched path needs to be estab-
lished and torn down on the fly, requiring a complex
protocol.

The architecture raises an interesting question of eco-
nomic policy. It is not obvious how a Valiant Load-
balanced network can support multiple competing net-
work operators. For example, how could they peer so as
to maintain end-to-end performance guarantees? Per-
haps one or more nodes could be devoted to peering
points, with known, bounded amounts of traffic between

network operators. Or perhaps it would be better to
build a single national shared grid of wavelengths to
which all network operators connect and compete by
building their own nodes, and share the capital cost of
the grid. These, and many more economic and social
questions all need to be addressed, and are beyond the
scope of this paper.

5. CONCLUSION
The goal of our work is to develop methods for net-

work design, so that backbone networks can be more
reliable, operate more predictably, and be provisioned
more efficiently over the lifetime of deployment. We
strongly believe that some form of explicit and man-
aged load-balancing goes a long way to achieving this.
It improves availability, removes hot-spots and reduces
congestion. Load-balancing is, in general, simple and
intuitive. The appealing characteristic of Valiant Load-
balancing is that it provides a way to quantify, analyze
and then guarantee performance.

There are many ways to load-balance, and many al-
ternatives to consider; and there is much more work to
be done to answer some of the questions raised here.
Our goal here is to point out the potential power of
load-balancing, and to start a discussion.

6. REFERENCES
[1] Y. Zhang, M. Roughan, N. Duffield, A. Greenberg, “Fast

accurate computation of large-scale IP traffic matrices
from link loads,” Proc. ACM SIGMETRICS, June 2003.

[2] R. Teixeira, A. Shaikh, T. Griffin, J. Rexford, “Dynamics
of hot-potato routing in IP networks,” Proc. ACM
SIGMETRICS, June 2004.

[3] Anindya Basu, Jon Riecke, “Stability issues in OSPF
routing,” Proc. ACM Sigcomm, August 2001.

[4] B. Fortz, J. Rexford M. Thorup, “Traffic engineering with
traditional IP routing protocols” IEEE Communications
Magazine, 40(10):118-124, 2002.

[5] A. Nucci, B. Schroeder, S. Bhattacharyya, N. Taft,
C. Diot, “IGP Link Weight Assignment for Transient Link
Failures,” 18th International Teletraffic Congress, 2003.

[6] L. Valiant, G. Brebner, “Universal schemes for parallel
communication,” Proc. of the 13th Annual Symposium on
Theory of Computing, pp. 263277, May 1981.

[7] C.-S. Chang, D.-S. Lee, Y.-S. Jou, “Load balanced
Birkhoff-von Neumann switches, part I: one-stage
buffering,” IEEE HPSR ’01, Dallas, May 2001.

[8] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz,
O. Solgaard, N. McKeown, “Scaling Internet Routers
Using Optics,” Proc. of ACM SIGCOMM ’03, Karlsruhe,
Germany, August 2003. Also in Computer Communication
Review, Vol. 33, No. 4, pp. 189-200, October 2003.

[9] M. Kodialam, T.V. Lakshman, S Sengupta, “Efficient and
Robust Routing of Highly Variable Traffic,” HotNets III,
San Diego, Nov. 2004.

[10] I. Keslassy, C.-S. Chang, N. McKeown, D.-S. Lee,
“Optimal Load-Balancing”, Infocom 2005, Miami, Florida.

[11] G. H. Gilmer, “Composite Links - A Tool for Bandwidth
Optimization,” Avici white paper.
http://www.avici.com/technology/whitepapers/


