
Abstract

It has been recently shown that an input-queued switch
with an appropriate buffering policy and scheduling algo-
rithm can achieve 100% throughput for independent
arrival processes. This result was shown to be true for the
longest queue first (LQF) algorithm — a scheduling policy
that finds the maximum weight matching on a bipartite
graph, and gives preference to more backlogged input
queues. Despite its high performance, this algorithm can
lead to the starvation of one or more input queues. In this
paper we introduce an alternative algorithm: the oldest
cell first (OCF), which gives preference to cells that have
been waiting for the longest time. We show that like the
LQF algorithm, the OCF algorithm can lead to 100%
throughput for independent arrivals, and that no queue
can be starved.

1: Introduction
There is a growing interest in input-queueing for high

bandwidth switches. This is because input-queued
switches do not require an internal “speedup”. In an out-
put-queued switch, the switching fabric and the output
buffers must have a bandwidth equal to the line rate multi-
plied by the number of inputs, i.e., the buffers must have a
speedup equal to the number of inputs. This speedup is
necessary because, in the worst case, every input may
have an arrival in the same cell time destined for the same
output. As a result memory bandwidth limits the size and
line rate of the switch. This is not a problem for today’s
commercial ATM switches; they are able to use output-
queueing because line-rates are low and the number of
inputs is small. However, the demand for bandwidth is
growing rapidly and before long memory bandwidth will
be insufficient for output-queueing to be practicable.

For switches with a high aggregate bandwidth, input-
queueing is attractive — each input can accept at most one
cell in a cell time, and can deliver at most one cell to the

switch in a cell time. Despite this advantage, the long-
standing view has been that input-queued switches are
unsuitable because they can suffer a throughput limitation
caused by head-of-line (HOL) blocking. The HOL block-
ing phenomenon occurs when an HOL cell blocks cells
behind it in line that are destined to other outputs. For an
input-queued switch with a single FIFO at each input port.
Karol and et al. [3] have shown that under even benign
traffic assumptions, HOL blocking results in a maximum
throughput of just %.

However, Karol’s result applies only to an input-
queued switchwith a single FIFO at each input port.
Using a simple buffering strategy we can entirely elimi-
nate HOL blocking. Specifically, if each input maintains a
separate queue for each output (Figure 1), HOL blocking
is eliminated because a cell cannot be held up by a cell
queued ahead of it that is destined for a different output.
We call this schemeVirtual Output Queueing (VOQ).

 When VOQ is used, a switch requires a scheduling
algorithm to decide which one of the queues at each input
can forward its HOL cell to the destination output. Finding
a scheduling algorithm that is simple, fair, and efficient is
critical in designing a high-speed input-queued switch.
Through simulation results, a number of scheduling algo-
rithms [1][2] have been shown to provide a high through-
put.

Recent studies [5][6][7] have shown that a suitable
scheduling algorithm can increase the throughput of an
input-queued switch to 100% when arrivals are indepen-
dent. In [6], an iterative algorithm callediSLIP is
described. It can achieve 100% throughput for uniform
traffic, is fair and can be easily implemented in hardware.
However, theiSLIP algorithm cannot achieve 100%
throughput when the traffic is non-uniform, or when arriv-
als are correlated. In [7], it was proved that an algorithm
that finds a maximum weight matching on a bipartite
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graph can achieve 100% throughput for non-uniform traf-
fic by giving preference to queues with a larger occupancy
(the LQF algorithm). This result is a special case of Tassi-
ulas’ analysis in [8]. Unfortunately, the LQF algorithm
may starve a low rate queue under a very heavy load. In
this paper, we consider a different maximum weight
matching algorithm: the oldest cell first (OCF). The OCF
algorithm never starves any queue, and as we will show, is
stable for all independent arrival processes.

 We organize the paper as follows. Section 2 describes
our input-queued switch model. Section 3 explains the two
scheduling algorithms: LQF and OCF. Section 4 outlines
the proofs for the stabilities of the LQF and OCF algo-
rithms. Section 5 concludes our proof and summarizes our
finding. Appendix A contains the detailed proofs of our
theorems.

2: Input-queued switch model
The input-queued switch model shown in Figure 1

consists of  inputs,  outputs, a nonblocking switch
fabric, and a scheduler. Each input maintains  FIFO
queues to buffer arrivals.  denotes the queue at input
for cells destined to output . Arrivals are sorted and
placed in the corresponding queues, awaiting the sched-
uler’s decision to send them to their destination.

Since arrivals are fixed size cells, time is slotted into
cell times. During any given slot, there is at most one
arrival to and at most one departure from each input and
output.  is the arrival process of cells to input  des-

tined to output  at rate . Consequently,  is the

aggregate process of all arrivals to input  at rate

. An arrival process is said to beadmissible
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Figure 1: Components of an Input-Queued Cell-Switch.
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when no input or output is oversubscribed, i.e., when

.

In this paper, we consider only independent arrival
processes; i.e., during any cell time, an arrival occurs with
fixed probabilityp, independently of whether an arrival
occurred in the previous cell time.

To get permission to send, all non-empty queues make
requests to the scheduler which makes grants based on its
scheduling algorithm. Granting can be viewed as solving a
bipartite graph matching problem, an example of which is
shown in Figure 2. Each edge of the bipartite graph G rep-
resents a request from an input-queue to an output. Each
edge in the matchingM corresponds to a granted request;
each node inM can have at most one edge incident on it.
After scheduling is complete, the queues with granted
requests forward their HOL cells to the destination out-
puts.

3: Scheduling algorithms
The task of the scheduler is to find a conflict-free

matching based on input requests. Our study considers two
types of maximum weight matching algorithms: the previ-
ously described longest queue first (LQF) and the novel
oldest cell first (OCF).

3.1: LQF algorithm

 In the LQF algorithm, each weight  is equal to

its corresponding queue occupancy, . Let  be

a service indicator; a value of one indicates that the
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Figure 2: Define G = [V,E] as an undirected graph connecting the
set of vertices V with the set of edges E. The edge connecting ver-
tices i, 1≤i≤M and j, 1≤j≤N has an associated weight denoted wi,j.
Matching M on G is any subset of E such that no two edges in M
have a common vertex. A maximum matching algorithm finds the
matching Mmax with the maximum total size or total weight.
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request is granted and zero indicates otherwise. The algo-
rithm picks a match such that the sum of serviced queues’
occupanc ies  i s  max im ized ,  i .e . ,

,such that  and

. The LQF algorithm is known to be stable

for all admissible arrival processes [7].

Unfortunately, although the LQF algorithm performs
well, it can lead to starvation. A simple example is illus-
trated in Figure 3 for a  switch. Assume that both

 and  have exactly two cells waiting and that
 and  have only one cell waiting. If there is an

arrival at each input during every slot, but neither is for
 or , these two queues are never served.

3.2: OCF algorithm

The OCF algorithm uses the waiting times of HOL
cells as requesting weights. Let  denote the waiting

time of the cell at HOL of . The OCF algorithm

selects a match such that the sum of all serviced queue
wa i t ing  t imes  i s  max im ized ,  i .e . ,

, such that  and

.
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Figure 3: Example of 2x2 switch for which, using the LQF al-
gorithm, an input queue may be starved.
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Unlike the LQF algorithm, the OCF algorithm does
not starve any queue. Every slot unserved HOL cells get
older and will eventually become old enough to be served.

4: Stability
To prove that the LQF and OCF algorithms can

achieve 100% throughput, we use the notion ofstability.
We define a switch to be stable for a particular arrival pro-
cess if the expected length of the input queues does not
grow without bound, i.e.

.  (1)

Definition: If a switch is stable for all independent and
admissible arrivals, then we say that the switch can
achieve 100% throughput.

In this section we prove that the OCF algorithm is sta-
ble for all independent arrival processes. But first, we
summarize the result from [7] which shows that under
these conditions the LQF algorithm is stable.

4.1: Stability of the LQF algorithm

Consider the queue occupancy vector, , whose
elements contain all of the queue occupancies, as the state
vector of an input-queued switch. By choosing a 2nd order

Lyapunov function, , it can be shown
for LQF that:

,
where .  (2)

Theorem 1: The LQF algorithm is stable for all admissi-
ble and independent arrival processes.

Proof: The theorem is proved in [7].❒

4.2: Stability of the OCF algorithm

 Our proof has two stages. First, we prove the stability
of the waiting time, and then we show that the stability of
the waiting time implies the stability of the queue occu-
pancy.

4.2.1:  Basic definitions

Consider Figure 4.  is the HOL cell of  at
slot  which arrived at slot , and thus has been
waiting in the queue for  slots. If the cell doesn’t
leave the queue, i.e., doesn’t get served, its waiting time
increases by one every slot:

.  (3)

If the cell leaves the queue, the cell behind advances
to the head of the queue, becoming the new HOL cell.
From Figure 4, it can be seen that the waiting time of the
new HOL is the difference of the previous HOL cell wait-
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ing time and the interarrival time between the two cells,
:

 (4)

In the case that there is no arrival while  is

waiting in the queue, the queue becomes empty when
 leaves the queue. Hence, the waiting time in the

next slot is zero:

 (5)

4.2.2:  Theorems
Theorem 2:  Under the OCF algorithm, waiting times are
stable for all admissible independent arrival processes,
i.e., .

Proof: The theorem is proved in Appendix A. In sum-
mary, the system is said to be stable if the following condi-
tion is met:

 (6)

   where , .❒

In other words, as the size of the waiting time vector
increases, the right side of equation (6) becomes more
negative, as does the expected single step drift represented
by the left side. The negative drift controls the size of the
waiting times, hence keeping the system stable.

Theorem 3: Under the OCF algorithm, queue occupan-
cies are stable for all admissible independent arrival pro-
cesses, i.e., .

Proof: From Fact 2 in Appendix A, any given queue occu-
pancy is always less than or equal to the corresponding
waiting time. Therefore, bounded waiting times imply
bounded queue occupancies; thus the queue occupancies
are stable.❒

Corollary 4:  The maximum throughput of an input-
queued switch under the OCF algorithm is 100%.
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Figure 4: Arrivals and departures time line. Arrivals are shown

below the line, departures are shown above the line.
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5:  Conclusion
Before long, output-queueing will be impracticable

for high bandwidth switches. This is because of the need
for internal speedup, which will quickly surpass the band-
width of commercially available memories. Input-queued
switches have been unpopular until now because, among
other reasons, they have apparently limited throughput.

It has been previously shown that an input-queued
switch employing VOQ and using the LQF algorithm can
achieve 100% throughput for all admissible independent
arrival processes. Unfortunately, the LQF algorithm can
lead to starvation of one or more of the input queues. So
instead, we have introduced the OCF algorithm that gives
preference to cells that have been waiting the longest, and
hence will never starve a queue. We have proved that like
the LQF algorithm, the OCF algorithms can achieve 100%
throughput for all independent arrival processes.
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Appendix A:  Stability proof
A.1  Definitions

  1.  denotes a queue for an arrival at input  for out-

put .

  2.  denotes the HOL cell of  at slotn.

Qi j, i

j

Ci j, n( ) Qi j,



  3.  denotes the interarrival time between
and the cell behind it in line.

  4.  denotes the waiting time of  at slotn.

  5.  denotes the occupancy of  at slotn.

  6. The service indicator:

 (7)

  7. The waiting time vector:
.

 (8)
  8. The queue occupancy vector:

.  (9)

  9. The arrival matrix:

,  (10)

and associated rate vector:

.  (11)

  10.The interarrival time vector:
.  (12)

  11.The service vector, indicating which queues are
served at slotn:

.  (13)

  12.The service matrix, indicating which queues are
served at slotn:

,  (14)

and , the set of service matrices.

Note that: ,

and hence  is apermutation matrix.

  13.The positive-definite diagonal matrix, Q, whose diag-
onal elements are .

  14.  denotes a vector in which each element is
a product of the corresponding elements of the vec-
tors: , , and , i.e., .

  15.The approximate waiting time next-state vector:

.  (15)

A.2  Analysis

Fact 1: An interarrival time,  is independent of a

waiting time, .

τi j, n( ) Ci j, n( )

Wi j, n( ) Ci j, n( )

Li j, n( ) Qi j,

Si j, n( )
1 if Qi j, is served at slotn

0 otherwise
=

W n( ) W1 1, n( ) …W1 N, n( ) …WM 1, n( ) …WM N, n( ),, ,( )≡

L n( ) L1 1, n( ) …L1 N, n( ) …LM 1, n( ) …LM N, n( ),, ,( )≡

Λ λi j,≡ where λi j,
i 1=

M

∑ 1 λi j,
j 1=

N

∑ 1 λi j, 0≥,≤,≤,

λ λ1 1, …λ1 N, …λM 1, …λM N,,, ,( )≡

τ n( ) τ1 1, n( ) …τ1 N, n( ) …τM 1, n( ) …τM N, n( ),, ,( )≡

S n( ) S1 1, n( ) …S1 N, n( ) …SM 1, n( ) …SM N, n( ),, ,( )≡

S n( ) Si j, n( )[ ]≡

S n( ) S∈

Si j, n( )
i 1=

M

∑ 1 Si j, n( )
j 1=

N

∑, 1≤ ≤

S n( ) S∈

λ1 1, …λ1 N, …λM 1, …λM N,,, ,{ }

a[ b c⋅ ⋅ ]

a b c a
i̇ j,

bi j, ci j,⋅ ⋅

W̃ n 1+( ) W n( ) 1 S n( )[ τ n( )⋅ ]–+≡

τi j, n( )

Wi j, n( ) i j n, ,∀,

Fact 2: . Since there is only at most one arrival
per slot, the arrival time of any two consecutive cells must
be at least one slot apart.

Fact 3:  because there is at most
one arrival per slot.

Fact 4: The sum of the weights of all granted requests,

, is equal to .

Fact 5: For any queue whose arrival rate is zero,
, , thus . Consider-

ing the fact that a zero waiting time does not contribute to

the sum value, , without loss of generality, we
can set the corresponding service indicator,  to zero

for all time, .

Lemma 1: ,

where  is s.t. .

Proof:  Consider the linear programming problem:

 (16)

s.t.  (17)

 is a doubly stochastic matrix and forms a convex
set, C, with the set of extreme points equal to permutation
matrices, S [7]. Therefore, the following are true.

❒  (18)
Lemma 2:

where  is a constant.
Proof: By expansion:

 (19)

Substracting  from both sides:
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 (20)

After imposing the admissibility constraints and the
scheduling algorithm properties, we obtain the following
inequalities:

,  (21)

where  is a non-negative constant.

From (20), we obtain:

 (22)

Recall Lemma 1, . Hence, we

prove Lemma 2, where . ❒

Lemma 3:

, where  is any rate vector

such that , and .

Proof:

 (23)
Applying Lemma 1,

.  (24)

,  (25)
where  is the angle between  and .

Any non-zero waiting time, , can occur iff

the corresponding rate is non-zero, . Hence, it is

sufficient to say that . Furthermore, since

,

 (26)

where  and .

Since ,

 (27)

Using equations (22), (25), and (27).
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where .❒

Lemma 4:

, where  is any rate vector

such that .

Proof: We can draw the following relationship between
the two waiting times:

.  (29)

Since Q is a positive definite matrix, (29) implies:

.  (30)
Hence,

.  (31)

This proves Lemma 4.❒
Lemma 5: There exists a quadratic Lyapunov function,

 such that:

.  (32)

where  is a constant and .

Proo f : From Lemma 4 ,

, and .❒

Theorem 2:Under the OCF algorithm, the waiting times
are stable for all admissible and independent arrival pro-
cesses, i.e., .

Proof: Since there exists a quadratic Lyapunov function
, such that (32) is satisfied, the switch is stable.❒

Theorem 3: Under the OCF algorithm, the queue occu-
pancies are stable for all admissible and independent
arrival processes, i.e., .

Proof: From Fact 3: . Thus,
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