
1

Achieving 100% Throughput in an Input-
Queued Switch

Nick McKeown Adisak Mekkittikul
Department of Electrical Engineering

Stanford University, Stanford, CA 94305-9030
{nickm,adisak}@stanford.edu

Venkat Anantharam Jean Walrand
Department of Electrical Engineering and Computer Sciences

University of California at Berkeley, Berkeley, CA 94720
{ananth,wlr}@eecs.berkeley.edu

Abstract —It is well known that head-of-line (HOL) blocking limits the throughput
of an input-queued switch with FIFO queues. Under certain conditions, the
throughput can be shown to be limited to approximately 58%. It is also known that if
non-FIFO queueing policies are used, the throughput can be increased. However, it
has not been previously shown that if a suitable queueing policy and scheduling
algorithm are used then it is possible to achieve 100% throughput for all
independent arrival processes. In this paper we prove this to be the case using a
simple linear programming argument and quadratic Lyapunov function. In
particular, we assume that each input maintains a separate FIFO queue for each
output and that the switch is scheduled using a maximum weight bipartite matching
algorithm. We introduce two maximum weight matching algorithms: LQF and OCF.
Both algorithms achieve 100% throughput for all independent arrival processes.
LQF favors queues with larger occupancy, ensuring that larger queues will
eventually be served. However, we find that LQF can lead to the permanent
starvation of short queues. OCF overcomes this limitation by favoring cells with
large waiting times.
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1  Introduction

Since Karol et al.’s paper was published in 1986, [11], it has become well known that

an  port input-queued switch with FIFO queues can have a throughput limited to

just . The conditions for this to be true are that:

N N×

2 2–( ) 58.6%≈
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1. Arrivals at each input are independent and identically distributed (i.i.d.).

2. Arrival processes at each input are independent of arrivals at other inputs.

3. All arrival processes have the same arrival rate and destinations are uniformly distrib-

uted over all outputs.

4. Arriving packets are of fixed and equal length, called cells.

5. N is large.

When conditions (1) and (2) are true we shall say that arrivals areindependent,and

when condition (3) is true we shall say that arrivals are uniform.

The throughput is limited because a cell can be held up by another cell ahead of it in

line that is destined for a different output. This phenomenon is known as HOL blocking.

It is well documented that this result applies only to input-queued switcheswith FIFO

queues. And so many techniques have been suggested for reducing HOL blocking using

non-FIFO queues, for example by examining the first K cells in a FIFO queue, where K>1

[5][8][10]. In fact, HOL blocking can be eliminated entirely by using a simple buffering

strategy at each input port. Rather than maintain a single FIFO queue for all cells, each

input maintains a separate queue for each output [1][9][15][16][17][18], as shown in Fig-

ure 1. This queueing discipline is often referred to as virtual output queueing. HOL block-

ing is eliminated because a cell cannot be held up by a cell queued ahead of it that is

destined for a different output. This implementation is slightly more complex, requiring N

FIFOs to be maintained by each input buffer. But no additional speedup is required; at

most one cell can arrive and depart from each input in a slot. During each slot a scheduling

algorithm decides the configuration of the switch by finding a matching on a bipartite

graph (described below). A number of different techniques have been used for finding

such a matching, for example using neural networks [2][4][21], or iterative algorithms

[1][13][14]. These algorithms were designed to give high throughput while remaining
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simple to implement in hardware. When traffic is uniform, these algorithms perform well

(>90% throughput). TheiSLIP algorithm [13][14], for example, has been demonstrated

using simulation to achieve 100% throughput when the traffic is independent and uniform.

However, all of these algorithms perform less well and are unable to sustain a throughput

of 100% when traffic is non-uniform.

It is worth asking the question:

What is the highest throughput that can be achieved by an input-queued

switch which uses the queueing discipline shown in Figure 1?

In this paper we prove that for independent arrivals (uniform or non-uniform), a maxi-

mum throughput of 100% is achievable using two  maximum weight matching algorithms.

In Section 2 we describe our model for an input-queued switch that uses virtual output

queueing, as  illustrated in Figure 1. We then consider three graph algorithms that can be

used to schedule the transfer of cells through the switch. First, in Section 3, we describe

the maximum size algorithm. Although this algorithm achieves 100% throughput for uni-

form traffic, we show that it can become unstable, even starve input queues, when arrivals

are non-uniform. Next, in Section 4, we describe two maximum weight scheduling algo-

rithms that overcome this limitation: LQF and OCF. In conjunction with the appendix, we

prove that these two scheduling algorithms are stable for all uniform and non-uniform

independent arrival processes up to a maximum throughput of 100%. It is important to

note that this is a theoretical result — the maximum weight matching algorithms that we

propose are not readily implemented in hardware. However, our result indicates that prac-

tical techniques  approximating these algorithms can be expected to perform well.

2  Our Model

Consider the “input-queued cell switch” in Figure 1 connectingM inputs to N outputs.

The stationary and ergodic arrival processAi(n) at inputi, 1≤i≤M, is a discrete-time pro-
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cess of fixed sized packets, or cells. At the beginning of each slot, either zero or one cell

arrive at each input. Each cell contains an identifier that indicates which outputj, 1≤j≤N, it

is destined for. When a cell destined for output j arrives at input i it is placed in the FIFO

queueQi,j which has occupancy Li,j(n). We refer toQi,j as a virtual output queue (VOQ).

Define the following vector which represents the occupancy of all queues at slotn:

.  (1)

Similarly, we define the waiting time  to be the number of time slots spent in

the queue by the cell at the head of VOQQi,j at time slotn. And we define the following

vector to represents the waiting time of the head-of-line cells at all VOQs at slotn:

.  (2)

We shall define the arrival processAi,j(n) to be the process of arrivals at inputi for out-

put j at rateλi,j, and the set of all arrival processes A(n) = {Ai(n); 1≤i≤M}.  is consid-

Input 1
Q1,1

Q1,N

A1(n)

Input M
QM,1

QM,N

AM(n)

D1(n)

DN(n)

Output 1

Output N

Matching,M

Figure 1:  Components of an Input-Queued Cell-Switch.
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eredadmissibleif no input or output is oversubscribed, i.e. ,

otherwise it isinadmissible.

The FIFO queues are served as follows. A scheduling algorithm selects amatch, or

matching, M, between the inputs and outputs, defined as a collection of edges from the set

of non-empty input queues to the set of outputs such that each non-empty input is con-

nected to at most one output and each non-empty output is connected to at most one input.

At the end of the slot, if inputi is connected to outputj, one cell is removed fromQi,j and

sent to outputj. Clearly, the departure process from outputj, Dj(n), rateµj is also a dis-

crete-time process with either zero or one cell departing from each output at the end of

each slot. We shall define the departure processDi,j(n), rateµi,j , as the process of depar-

tures from outputj that were received from inputi. Note that the departure rate may not be

defined if the departure process is not stationary and ergodic.

To find a matching,M, the scheduling algorithm solves a bipartite graph matching

problem. An example of a bipartite graph is shown in Figure 2.

If the queueQi,j is non-empty,Li,j(n) > 0, and there is an edge in the graph G between

input i and outputj. We associate a weight  to each such edge. The meaning of the

weights depend on the algorithm, and we consider two classes of algorithm here:

1. Maximum Size Matching Algorithms: Algorithms that find the match containing the
maximum number of edges.

1. Maximum Weight Matching Algorithms:  Algorithms that find the maximum weight
matching where, in this paper, we only consider algorithms for which the weight

is integer-valued, equalling the occupancyLi,j(n) of Qi,j, or the waiting time

 of the cell at the head of line atQi,j.

Clearly, a maximum size match is a special case of the maximum weight matching

with weight  whenQi,j is non-empty.

λi j, 1<
i

∑ λi j, 1<
j

∑,

wi j, n( )

wi j, n( )

Wi j, n( )

wi j, n( ) 1=



6

3  Maximum Size Matchings

The maximum size matching for a bipartite graph can be found by solving an equiva-

lent network flow problem [19]. There exist many algorithms for solving these problems,

the most efficient algorithm currently known converges in  time and is described

in [7].1

It can be demonstrated using simulation that the maximum size matching algorithm is

stable for i.i.d. arrivals up to an offered load of 100%when the traffic is uniform[14]. It is

important to note that a maximum size matching is not necessarily desirable. First, under

admissible traffic it can lead to instability and unfairness, particularly for non-uniform

traffic patterns. To demonstrate this behavior, Figure 3 shows an example of a potentially

unstable 3x3 switch with just four active flows,2 and scheduled using the maximum size

1.This algorithm is equivalent to Dinic’s algorithm [6].

Inputs, I Outputs, J

1

2

3

N

Graph, G Matching, M

a) Example of G forI = M and J = N. b) Example of matchingM on G.

Inputs, I Outputs, J

1

2

3

N

1

2

3

M

1

2

3

M

Figure 2:  Define G = [V,E] as an undirected graph connecting the set of vertices V with the set of edges E.
The edge connecting verticesi, 1≤i≤M and j, 1≤j≤N has an associated weight denotedwi,j. Graph G is
bipartite if the set of inputs I = {i: 1≤i≤M} and outputs J = {j: 1≤j≤N} partition V such that every edge has
one end in I and one end in J. MatchingM on G is any subset of E such that no two edges inM have a
common vertex. Amaximum matching algorithmis one that finds the matchingMmaxwith the maximum
total size or total weight.

w1,1

O N5 2/( )
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matching algorithm. It is assumed that ties are broken by selecting among alternatives

with equal probability. Arrivals to the switch are i.i.d. Bernoulli arrivals and each flow has

arrivals at rate , where . Even though the traffic is admissible, it is

straightforward to show that the switch can be unstable for sufficiently small . Consider

the event that at slotn, both A2,1(n) andA3,2(n) have arrivals (with probability

) and , , in which case input 1 receives service with

probability 2/3. Therefore, the total rate at which input 1 receives service is at most:

But the arrival rate to input 1 is , so if

,

(which holds for ), then the switch is unstable and the traffic cannot be sus-

tained by the maximum size matching algorithm.

Figure 3:  Example ofinstability under admissible traffic using a maximum size matching algorithm for a
3x3 switch with non-uniform traffic.
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Second, underinadmissible traffic, the maximum size matching algorithm can lead to

starvation. An example of this behavior is shown in Figure 4 for a  switch. It is clear

that because all three queues are permanently occupied, the algorithm will always select

the “cross” traffic: input 1 to output 2 and input 2 to output 1.It is worth noting that the

most practical among the scheduling algorithms described earlier attempt to approximate

a maximum size matching [1][2][4][13][21]. It is therefore not surprising that these algo-

rithms perform well when the traffic is uniform, but perform less well when the traffic is

non-uniform.

4  Maximum Weight Matchings

The maximum weight matchingM for a bipartite graph is one that maxi-

mizes  and can be found by solving an equivalent network flow problem. The

most efficient known algorithm for solving this problem converges in running

time [19].

The maximumsizematching algorithm described above knows only whether an input

queue  is empty or non-empty. Therefore, if the traffic is non-uniform and the occu-

pancy of some queues begins to increase, this algorithm does not know to favor those

queues and reduce their backlog.

Figure 4:   Under aninadmissible workload, the maximum size match will always serve just two queues,
starving the flow from input 1 to output 1.
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λ1 2, 1=
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On the other hand, a maximumweight matching algorithm can take into account the

occupancy, , of each VOQ, or the waiting time of the cell at head of line. Such

algorithms can give preference to queues with greater occupancy, or to older cells. In fact,

as our results show, these algorithms can lead to a maximum throughput of 100% for inde-

pendent and either uniform or non-uniform arrivals.

4.1  Our Algorithms

In this paper we consider two maximum weight matching algorithms: the “longest

queue first” (LQF) algorithm, and the “oldest cell first” (OCF) algorithm. LQF considers

the queue occupancy by assigning a weight . Queues with larger occu-

pancy will be assigned a larger weight, and are thus more likely to be served. As we shall

see, LQF results in 100% throughput. However, LQF can lead to the permanent starvation

of a non-empty queue. To understand how this happens, consider a 2x2  switch with

for all i,j , and . In the first time slot, an arrival will occur at  and

so  will remain unserved. In fact, because of the continous arrivals to ,

will remain unserved indefinitely.

Our second algorithm, OCF, overcomes this problem by considering the waiting times

of cells at the head of each VOQ. OCF considers the waiting time by assigning a weight

. Cells that have been waiting the longest time will be assigned a larger

weight, and are thus more likely to be served. It is clear that no queues will be starved of

service indefinitely: if a cell is not served, its waiting time will increase. Eventually, its

weight will increase to a value that ensures that it is served.

5  Main Results

5.1  The LQF Algorithm

Theorem 1: The LQF maximum weight matching algorithm is stable for all admissible i.i.d.

arrival processes.

Li j, n( )

wi j, n( ) Li j, n( )=

Li j, 0( ) 1= λ1 1, 1= Q1 1,

Q1 2, Q1 1, Q1 2,

wi j, n( ) Wi j, n( )=



10

Proof: The proof is given in Appendix A. In summary, we show that for an  switch sched-

uled using the LQF algorithm, there is a negative expected single-step drift in the sum of the

squares of the occupancy. In other words,

where, .

 is a 2nd order Lyapunov function and, using the result of Kumar

and Meyn [12] we show that the system is stable. The term indicates that when-

ever the occupancy of the input queues is large enough, the expected drift is negative;

should  become very large, the downward drift also becomes large.

5.2  The OCF Algorithm

Theorem 2: The OCF maximum weight matching algorithm is stable for all admissible i.i.d.

arrival processes.

Proof: The proof is given in Appendix B. The proof consists of two steps. First, we prove the sta-

bility of the waiting time. Then, we show that the stability of the waiting time implies the stability

of queue occupancy, which proves Theorem 2.

Similar to the LQF proof, we show that for an  switch scheduled using the OCF

algorithm, there is a negative expected single-step drift in the value of a 2nd order

Lyapunov function of the waiting times, .

where .

This in turn implies the stability of the waiting time.

Once we have proved the stability of the waiting time, it is straightforward to prove the

stability of the queue occupancy. Because there can be at most one arrival to any queue in

one slot, the total number of arrivals after an HOL cell, by definition the current queue

M N×

E LT n 1+( )L n 1+( ) LT n( )L n( )– L n( )[ ] ε L n( )– k+≤

k 0 ε 0>,>

V n( ) LT n( )L n( )=

ε L n( )–

L n( )

M N×

V n( ) W
T

n( )TW n( )=

E W
T

n 1+( )TW n 1+( ) W
T

n( )TW n( )– W n( ) ε W n( )– K+≤

K 0 ε 0>,>
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occupancy, is bounded above by the number of slots an HOL cell has been waiting — the

waiting time, i.e., . Clearly, the stability of the waiting time

implies the stability of the queue occupancy.

6  Conclusion

We have shown that if an input-queued switch maintains a separate FIFO queue for

each output at each input, then a throughput of 100% can be acieved for independent

arrivals. If a maximum sized matching algorithm is used to schedule cells, then we dem-

onstrate that a throughput of 100% is possible only when arrivals are uniform. However, if

a maximum weight matching algorithm is used, we have shown that a throughput of 100%

is achievable for both uniform and non-uniform arrivals. In particular, we have described

two maximum weight matching algorithms: LQF and OCF. LQF considers the occupancy

of the input queues, giving preference to queues that contain more cells. When the occu-

pancy is large enough at any queue, it is ensured of service. Furthermore, when the occu-

pancies of all the queues exceed a threshold, the total queue occupancy exhibits an overall

downward drift, ensuring that the total queue occupancy will not become unbounded.

Unfortunately, the LQF algorithm can lead to the indefinite starvation of one or more

inputs. We may overcome this limitation by modifying the weights used by the algorithm.

In particular, OCF assigns the weights to equal the waiting time of the cell at the head-of-

line of each input queue. This is sufficient to ensure that every cell will eventually be

served, and that the system will remain stable.

7  References
[1] Anderson, T.; Owicki, S.; Saxe, J.; and Thacker, C. “High speed switch scheduling for local

area networks,” ACM Trans. on Computer Systems. Nov 1993 pp. 319-352.
[2] Ali, M.; Nguyen, H. “A neural network implementation of an input access scheme in a high-

speed packet switch,” Proc. of GLOBECOM 1989, pp.1192-1196.
[3] Birkhoff, G.; “Tres observaciones sobre el algebra lineal,” Univ. Nac. Tucumán Rev. Ser. A5

(1946), pp. 147-150.
[4] Brown, T.X; Liu, K.H. “Neural network design of a Banyan network controller,” IEEE J.

Selected Areas Communications, Vol.8, pp.1289-1298, Oct. 1990.

Wi j, n( ) Li j, n( )≥ i j n, ,∀,



12

[5] Chen, M.; Georganas, N.D., “A fast algorithm for multi-channel/port traffic scheduling”
Proc. IEEE Supercom/ICC ‘94, pp.96-100.

[6] Dinic, E.A. “Algorithm for solution of a problem of maximum flow in a network with power
estimation,” Soviet Math. Dokl. Vol.11, pp. 1277-1280, 1970.

[7] Hopcroft, J.E.; Karp, R.M. “An  algorithm for maximum matching in bipartite graphs,”
Society for Industrial and Applied Mathematics J. Comput., 2 (1973), pp.225-231.

[8] Huang, A.; Knauer, S. “Starlite: A wideband digital switch,” Proc. GLOBECOM ‘84 (1984),
pp.121-125.

[9] Karol, M.; Eng, K.; Obara, H. “Improving the performance of input-queued ATM packet
switches,” INFOCOM ‘92, pp.110-115.

[10] Karol, M.; Hluchyj, M. “Queueing in high-performance packet-switching,” IEEE J.
Selected Area Communications, Vol.6, pp.1587-1597, Dec. 1988.

[11] Karol, M.; Hluchyj, M.; and Morgan, S. “Input versus output queueing on a space division
switch,” IEEE Trans. Communications, 35(12) (1987) pp.1347-1356.

[12] Kumar, P.R.; Meyn, S.P.; “Stability of Queueing Networks and Scheduling Policies”, IEEE
Transactions on Automatic Control, Vol.40, No.2, Feb. 1995.

[13] McKeown, N.; Walrand, J.; and Varaiya, P.; “Scheduling Cells in an Input-Queued
Switch.” IEE Electronics Letters, Dec 9th 1993, pp.2174-5.

[14] McKeown, N.; “Scheduling Algorithms for Input-Queued Cell Switches,” PhD Thesis. Uni-
versity of California at Berkeley, 1995.

[15] Obara, H. “Optimum architecture for input queueing ATM switches,” IEE Electronics Let-
ters, pp.555-557, 28th March 1991.

[16] Obara, H.; Hamazumi, Y. “Parallel contention resolution control for input queueing ATM
switches,” IEE Electronics Letters, Vol.28, No.9, pp.838-839, 23rd April 1992.

[17] Obara, H.; Okamoto, S.; and Hamazumi, Y. “Input and output queueing ATM switch archi-
tecture with spatial and temporal slot reservation control” IEE Electronics Letters, pp.22-
24, 2nd Jan 1992.

[18] Tamir, Y.; Frazier, G. “High performance multi-queue buffers for VLSI communication
switches,” Proc. of 15th Ann. Symp. on Comp. Arch., June 1988, pp.343-354.

[19] Tarjan, R.E. “Data structures and network algorithms,” Society for Industrial and
Applied Mathematics, Pennsylvania, Nov 1983.

[20] Tassiulas, L.; Ephremides, A. “Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks,” IEEE Trans.
Automatic Control, Vol. 37, No. 12, pp.1936-1948, Dec. 1992.

[21] Troudet, T.P.; Walters, S.M. “Hopfield neural network architecture for crossbar switch
control,” IEEE Trans. Circuits and Systems, Vol.CAS-38, pp.42-57, Jan.1991.

Appendix A:  LQF Proof

A.1  Definitions

In this appendix we use the following definitions for an  switch:

1. The rate matrix of the stationary arrival processes:

and associated rate vector:

n
5/2

M N×

Λ λi j,[ ] where: λi j,
i 1=

M

∑ 1 λi j,
j 1=

N

∑ 1 λi j, 0≥,≤,≤,≡
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.  (3)

2. The arrival matrix, representing the sequence of arrivals into each queue:

where:

,

and associated arrival vector:

.

3. The service matrix, indicating which queues are served at slotn:

, where:

,

and , the set of service matrices.

Note that: , and hence if ,  is apermu-

tation matrix. If , we say that  is aquasi-permutation matrix. We define

the associated service vector:

,

hence .

4. Theapproximate next-state vector:

λ λ1 1, … λ1 N, … λ, M 1, … λM N,, , , , ,( ) T≡

A n( ) Ai j, n( )[ ]≡

Ai j, n( )
1 if arrival occurs atQ i j,( ) at timen

0 else
{≡

A n( ) A1 1, n( ) … A1 N, n( ) … AM N, n( ), , , ,( ) T≡

S n( ) Si j, n( )[ ]≡

Si j, n( )
1 if Qi j, is served at timen

0 else



=

S n( ) S∈

Si j, n( )
i 1=

M

∑ Si j, n( )
j 1=

N

∑ 1= = M N= S n( ) S∈

M N≠ S n( ) S∈

S n( ) S1 1, n( ) … S1 N, n( ) … SM N, n( ), , , ,( ) T≡

S n( ) 2 NM≤
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, which approximates the exact next-state of each queue

.  (4)

A.2  Proof of Theorem.

Before proving the theorem, we first state the following fact and prove the subsequent

lemmas.

Fact 1: (Birkhoff ’s Theorem) The doubly sub-stochastic square matrices form a

convex set, , with the set of extreme points equal to permutation matrices, .

This is proved in [3].

Lemma 1: The doubly sub-stochastic  non-square matrices form a convex set, , with

the set of extreme points equal to quasi-permutation matrices, .

Proof: Observe that we can addN - M rows to any non-square sub-stochastic matrix and intro-

duce new entries so that the row sums of the new rows equal one and further that the column sums

are also each 1. We can use Birkhoff’s Theorem to write the augmented matrix as a convex combi-

nation of  permutation matrices. The firstM rows of the permutation matrix is an

matrix which forms a permutation matrix with someM of theN columns.❒

Lemma 2: , where ,

the service matrix selected by the maximum weight matching algorithm to maximize .

Proof: Consider the linear programming problem:

which has a solution equal to an extreme point of the convex set, . Hence,

L̃ n 1+( ) L n( ) S n( )– A n( )+≡

Li j, n 1+( ) Li j, n( ) Si j, n( )–[ ] +
Ai j, n( )+=

N N×
C S

M N× C

S

N N× M N×

LT n( ) λ S* n( )–( ) 0 L n( ) λ,( )∀,≤ S* n( ) arg max
S n( )

LT n( )S n( )( )=

LT n( )S n( )

max LT n( )λ( )

s.t. λi j,
i 1=

M

∑ 1 λi j,
j 1=

N

∑ 1 λi j, 0≥,≤,≤

C
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,

and so,

. ❒

Lemma 3: .

Proof:

where  because  is a real vector, and .

Taking the expected value:

From Lemma 2 we know that , proving the lemma.❒

Lemma 4: ,  where  i s  any  ra te  vec to r  such  tha t

, there exists  such that:

Proof:

max LT n( )λ( ) max LT n( )S n( )( )≤

LT n( )λ max LT n( )S n( )( )– 0≤

E L̃T n 1+( )L̃ n 1+( ) LT n( )L n( ) L n( )–[ ] 2 NM λ∀,≤

L̃T n 1+( )L̃ n 1+( ) LT n( )L n( )–

L n( ) S n( )– A n( )+( ) T L n( ) S n( )– A n( )+( ) LT n( )L n( )–=

2LT n( ) A n( ) S n( )–( ) S n( ) A n( )–( ) T S n( ) A n( )–( )+=

2LT n( ) A n( ) S n( )–( ) k,+=

0 k 2 NM≤ ≤ S n( ) A n( )– S n( ) A n( )– 2 2 NM≤

E L̃T n 1+( )L̃ n 1+( ) LT n( )L n( )– L n( )[ ]

E 2LT n( ) A n( ) S n( )–( )[ ]≤

2LT n( ) λ S* n( )–( ) 2 NM.+=

2LT n( ) λ S* n( )–( ) 0≤

λ 1 β–( ) λm≤ 0 β 1< <,∀ λm

λm
2 min N M,( )= 0 ε 1< <

E L̃T n 1+( )L̃ n 1+( ) LT n( )L n( )– L n( )[ ] ε L n( )– 2 NM.+≤
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where is the angle between and .

We now show that  for some whenever . First, we show that

. We do this by contradiction: suppose that , i.e. and are

orthogonal. This can only occur if , or if for some , both  and

, which is not possible: for arrivals to have occurred at queue , must be

greater than zero. Therefore,  unless . Now we show that is

bounded away from zero, i.e. that  for some . Because  wherever

, and because ,

,  (5)

where , and

.

Also, , and so is bounded by

.  (6)

Therefore,

. ❒

Lemma 5: , there exists  such that:

.

LT n( ) λ S* n( )–( )

LT n( ) λm S* n( )–{ } LT n( ) βλm( )–≤

0 β L n( ) λm θcos⋅–≤

θ L n( ) λm

θcos δ> δ 0> L n( ) 0≠

θcos 0> θcos 0= L n( ) λm

L n( ) 0= i j, λi j, 0=

Li j, n( ) 0> Qi j, λi j,

θcos 0> L n( ) 0= θcos

θcos δ> δ 0> λi j, 0>

Li j, n( ) 0> λ 2 NM<

θcos
LT n( )λ
L n( ) λ

-----------------------=
Lmax n( )λmin

L n( ) NM( ) 1 4/
--------------------------------------≥

λmin min λi j, 1 i M 1 j N≤ ≤,≤ ≤,( )=

Lmax n( ) max Li j, n( ) 1 i M≤ 1 j N≤ ≤,≤,( )=

L n( ) NMLmax
2 n( )[ ] 1 2/≤ NMLmax n( )= θcos

θcos
λmin

NM( ) 3 4/
-----------------------≥

E L̃T n 1+( )L̃ n 1+( ) LT n( )L n( )– L n( )[ ]
βλmin

NM
-------------- L n( )– 2 NM+≤

λ 1 β–( ) λm≤ 0 β 1< <,∀ 0 ε 1< <

E LT n 1+( )L n 1+( ) LT n( )L n( )– L n( )[ ] ε L n( )– NM 2 NM+ +≤
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Proof:

,

therefore

,  (7)

and so

Using Lemma 4 this concludes the proof.❒

Lemma 6: There exists a  s.t. ,

where .

Proof:  and  in Lemma 5.❒

We are now ready to prove the main theorem.  in the main Theorem is a qua-

dratic Lyapunov function and, according to the argument of Kumar and Meyn [12], it fol-

lows that the switch is stable.

Li j, n 1+( ) L̃i j, n 1+( )
1 if Li j, n( ) 0 Si j, n( ), 1= =

0 else



+=

LT n 1+( )L n 1+( ) L̃T n 1+( )L̃ n 1+( )– NM≤

E LT n 1+( )L n 1+( ) LT n( )L n( )– L n( )[ ]
E L̃T n 1+( )L̃ n 1+( ) LT n( )L n( ) L n( )–[ ] NM.+≤

V L n( )( ) E V L n 1+( )( ) V L n( )( ) L n( )–[ ] ε L n( )– k+≤

k ε, 0>

V L n( )( ) LT n( )L n( )= k NM 2 NM+=

V L n( )( )
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Appendix B:  OCF Proof

B.1  Definitions

In addition to the definitions defined in Appendix A, the following definitions are nec-

essary in this appendix. Consider Figure 5.

1.  denotes the HOL cell of  at slotn.

2. The interarrival time vector:

,  (8)

where  is the interarrival time between  and the cell behind it in line.

3. The waiting time vector:

,  (9)

where  is the waiting time of  at slotn.

Figure 5:  Arrivals and departures time line for the VOQ . Arrivals are shown below the line,

departures are shown above the line.  is the current HOL cell at which may or may not

depart in the current slot, and  is the cell that will replace  as HOL cell after it

departs.

Qi j,
Ci j, n( ) Qi j,

Ci j, n l+( ) Ci j, n( )

n

Ci j, n( )

Ci j, n( ) Ci j, n l+( )

Ci j, n l+( )

τi j, n( )

Wi j, n( )
timen+l

Ci j, n( ) Qi j,

τ n( ) τ1 1, n( ) …τ1 N, n( ) …τM 1, n( ) …τM N, n( ),, ,( )≡

τi j, n( ) Ci j, n( )

W n( ) W1 1, n( ) …W1 N, n( ) …WM 1, n( ) …WM N, n( ),, ,( )≡

Wi j, n( ) Ci j, n( )
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4. The positive-definite diagonal matrix, , whose diagonal elements are

.

5.  denotes a vector in which each element is a product of the corresponding

elements of the vectors: , , and , i.e., .

6. The approximate waiting time next-state vector:

.  (10)

B.2  Proof of Theorem

The proof consists of two steps. First, we prove the stability of the waiting time. Then,

we show that the stability of the waiting time implies the stability of queue occupancy. But

before proving the theorem, we first state the following facts and prove the subsequent

lemmas.

Fact 2: An interarrival time, , is independent of a waiting time, .

Fact 3: . Since there is only at most one arrival per slot, the arrival time of any

two consecutive cells must be at least one slot apart.

Fact 4:  because there is at most one arrival per slot.

Fact 5: For any queue,  whose arrival rate is zero, , , thus

. Considering the fact that a zero waiting time does not contribute to the

sum value, , without loss of generality, we can set the corresponding service

indicator, , to zero for all time, .

Lemma 7: , where  is such that:

.

T

λ1 1, …λ1 N, …λM 1, …λM N,,, ,{ }

a[ b c⋅ ⋅ ]

a b c ai j, bi j, ci j,⋅ ⋅

W̃ n 1+( ) W n( ) 1 S n( )[ τ n( )⋅ ]–+≡

τi j, n( ) Wi j, n( ) i j n, ,∀,

τi j, n( ) 1≥

Wi j, n( ) Li j, n( )≥ i j n, ,∀,

Qi j, λi j, 0= Li j, n( ) 0=

Wi j, n( ) 0 n∀,=

W
T

n( )S n( )

Si j, n( ) Si j, n( ) 0 n∀,=

W
T

n( )λ W
T

n( )S∗ n( )– 0 W n( ) λ,∀,≤ S∗ n( )

W
T

n( )S∗ n( ) max W
T

n( )S n( ) 
 

=
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Proof:  The proof is similar to the proof of Lemma 2 in Appendix A.❒

Lemma 8: ,  where  i s  any  ra te  vec to r  such  tha t

, there exists  such that:

.

Proof: By expansion:

 (11)

Substracting  from both sides and taking the expected value:

 (12)

After imposing the admissibility constraints and the scheduling algorithm properties,

we obtain the following inequalities:

,  (13)

where  is a non-negative constant.

From (12) and (13), we obtain:

 (14)

λ∀ 1 β–( ) λm≤ 0 β 1< <, λm

λm
2

min N M,( )= NM≤ 0 ε 1< <

E W̃
T

n 1+( )TW̃ n 1+( ) W
T

n( )TW n( )– W n( ) ε W n( )– K+≤

W̃
T

n 1+( )TW̃ n 1+( )

W n( ) 1 S∗ n( )[ τ n( )⋅ ]–+( )
T

= T W n( ) 1 S∗ n( )[ τ n( )⋅ ]–+( )

W
T

n( )= TW n( ) 2W
T

n( )λ 2W
T

n( ) S∗ n( ) τ n( ) λ⋅ ⋅[ ]–+

λi j, 2 S∗
i j, n( ) τi j, n( ) λi j, S∗

i j, n( ) τi j,
2

n( ) λi j,⋅ ⋅
i j,
∑+⋅ ⋅

i j,
∑–

i j,
∑+

W
T

n( )TW n( )

E W̃
T

n 1+( )TW̃ n 1+( ) W
T

n( )TW n( )– W n( )

2= W
T

n( )λ W
T

n( )S∗ n( )– 
 

λi j,
i j,
∑ 2 S∗

i j, n( )
i j,
∑

S∗
i j, n( )

λi j,
-----------------

i j,
∑+–+

λi j,
i j,
∑ N S∗

i j, n( )
i j,
∑ 0

S∗
i j, n( )

λi j,
----------------- L ∞<≤

i j,
∑,≥,<

L

E W̃
T

n 1+( )TW̃ n 1+( ) W
T

n( )TW n( )– W n( )

≤ 2 W
T

n( )λ W
T

n( )S∗ n( )– 
 

L N.+ +
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From the relationship of the arrival vector,

.  (15)

Applying Lemma 7,

.  (16)

,  (17)

where  is the angle between  and .

Using the same approach as in Lemma 4, it follows that:

.  (18)

Using equations (14), (17), and (18),

,  (19)

where .❒

Lemma 9: ,  where  i s  any  ra te  vec to r  such  tha t

, there exists  such that:

.

Proof: We can draw the following relationship between the two waiting times:

.  (20)

W
T

n( )λ W
T

n( )S∗ n( )– W
T

n( ) 1 β–( ) λm W
T

n( )S∗ n( )–≤

W
T

n( )λ W
T

n( )S∗ n( )– βW–
T

n( )λm≤

W
T

n( )λ W
T

n( )S∗ n( )– β W n( )– λm θcos⋅ ⋅≤

θ W n( ) λm

θcos
λmin

NM( ) 3 4⁄-----------------------≥

E W̃
T

n 1+( )TW̃ n 1+( ) W
T

n( )TW n( )– W n( ) β
λmin

NM
------------- W n( )– K+≤

ε β
λmin

NM
-------------=

λ∀ 1 β–( ) λm≤ 0 β 1< <, λm

λm
2

min N M,( )= NM≤ 0 ε 1< <

E W
T

n 1+( )TW n 1+( ) W
T

n( )TW n( )– W n( ) ε W n( )– K+≤

Wi j, n 1+( )
W̃i j, n 1+( ) W̃i j, n 1+( ) 0≥,

0 W̃i j, n 1+( ) 0<,



=
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Since  is a positive definite matrix, (20) implies:

.  (21)

Hence,

 (22)

This proves the Lemma .❒

Lemma 10:There exists a quadratic Lyapunov function,  such that:

.  (23)

where  is a constant and .

Proof: From Lemma , , and .❒

Theorem 3:Under the OCF algorithm, the waiting times are stable for all admissible and inde-

pendent arrival processes, i.e., .

Proof: . Similar to the argument in the LQF proof.❒

Theorem 4: Under the OCF algorithm, the queue occupancies are stable for all admissible and

independent arrival processes, i.e., .

Proof: From Fact 4: . Thus,

. ❒  (24)

T

W
T

n 1+( )TW n 1+( ) W̃
T

n 1+( )TW̃ n 1+( ) n∀,≤

E W
T

n 1+( )TW n 1+( ) W
T

n( )TW n( )– W n( )

E≤ W̃
T

n 1+( )TW̃ n 1+( ) W
T

n( )TW n( )– W n( ) .

V W n( )( )

E V W n 1+( )( ) V W n( )( )– W n( )[ ] ε W n( )– K+≤

K ε 0>

V W n( )( ) W
T

n( )TW n( )= ε β
λmin

NM
-------------= 0> K L N 0>+=

E W n( )[ ] ∞<( )

E L n( )[ ] ∞<( )

Wi j, n( ) Li j, n( )≥ i j n, ,∀,

E L n( )[ ] E W n( )[ ]≤ ∞<


