
Multicast Scheduling for Input-Queued

Switches

Balaji Prabhakar Nick McKeown and Ritesh Ahuja
BRIMS Dept of Elec Engg/Comp Sc

Hewlett-Packard Labs, Bristol. Stanford University.
balaji@hplb.hpl.hp.com nickm@ee.stanford.edu, ritesh@cs.stanford.edu

Abstract

This paper presents the design of the scheduler for an M �N input-queued multi-

cast switch. It is assumed that: (i) Each input maintains a single queue for arriving

multicast cells, and (ii) Only the cell at the head of line (HOL) can be observed and

scheduled at one time. The scheduler is required to be: (i) Work-conserving, which

means that no output port may be idle as long as there is an input cell destined to it,

and (ii) Fair, which means that no input cell may be held at HOL for more than a �xed

number of cell times. The aim of our work is to �nd a work-conserving, fair policy that

delivers maximum throughput and minimizes input queue latency, and yet is simple

to implement in hardware. When a scheduling policy decides which cells to schedule,

contention may require that it leave a residue of cells to be scheduled in the next cell

time. The selection of where to place the residue uniquely de�nes the scheduling policy.

Subject to a fairness constraint, we argue that a policy which always concentrates the

residue on as few inputs as possible generally outperforms all other policies. We �nd

that there is a tradeo� between concentration of residue (for high throughput), strict-

ness of fairness (to prevent starvation), and implementational simplicity (for the design

of high-speed switches). By mapping the general multicast switching problem onto a

variation of the popular block-packing game, Tetris, we are able to analyze, in an intu-

itive and geometric fashion, various scheduling policies which possess these attributes

in di�erent proportions. We present a novel scheduling policy, called TATRA, which

performs extremely well and is strict in fairness. We also present a simple weight based

algorithm, called WBA, that is simple to implement in hardware, fair, and performs

well when compared to a concentrating algorithm.

1 Introduction

Due to an exponential growth in the number of users of the Internet, the demand for
network bandwidth has been growing at an enormous rate. As a result, recent years have
witnessed an increasing interest in high-speed, cell-based, switched networks such as ATM.
In order to build such networks, a high performance switch is required to quickly deliver
cells arriving on input links to the desired output links. A switch consists of three parts:
(i) Input queues to bu�er cells arriving on input links, (ii) Output queues to bu�er the cells
going out on output links, and (iii) A switch fabric to transfer cells from the inputs to the
desired outputs. The switch fabric operates under a scheduling algorithm which arbitrates
among cells from di�erent inputs destined to the same output. A number of approaches
have been taken in designing these three parts of a switch [9, 20, 19, 17, 14, 16], each with
its own set of advantages and disadvantages.

1

It is well known that when FIFO queues are used, the throughput of an input-queued
switch with unicast tra�c can be limited due to HOL blocking [4], [5]. So the standard
approach has been to abandon input queueing and instead to use output queueing - by
increasing the bandwidth of the fabric, multiple cells can be forwarded at the same time
to the same output, and queued there for transmission on the output link. However this
approach requires that the output-queues and the internal interconnect have a bandwidth
equal to M times (for an M � N switch) the line rate. Since memory bandwidth is not
increasing as fast as the demand for network bandwidth, this architecture becomes imprac-
tical for very high-speed switches. Moreover, numerous papers have indicated that by using
non-FIFO input queues and by using good scheduling policies, much higher throughputs
are possible [9, 10, 11, 12, 13, 14, 16, 17]. Therefore, input-queued switches are �nding a
growing interest in the research and development community.

An increasing proportion of tra�c on the Internet is multicast, with users distributing
a wide variety of audio and video material. This dramatic change in the use of the Internet
has been facilitated by the MBONE [1, 2, 3]. A number of di�erent architectures and
implementations have been proposed for multicast switches [6, 7, 8]. However, since we
are interested in the design of very high-speed ATM switches, we restrict our attention to
input-queued architectures. This input-queued switch should schedule multicast cells so
as to maximize throughput and minimize latency. It is important that it be simple to
implement in hardware. For example, a switch running at a line rate of 2.4Gbps (OC48c)
must make 6 million scheduling decisions every second.

In this paper we consider the performance of di�erent multicast scheduling policies
for input-queued switches. Several researchers have studied the Random scheduling pol-
icy [9, 18, 21, 22] in which each output selects an input at random from among those
subscribing to it. But, as may be expected, we �nd that the Random scheduling policy is
not the optimum policy. We introduce three new scheduling algorithms; the Concentrate
algorithm, TATRA and WBA (a weight based algorithm). We show that the Concentrate
algorithm leads to high throughput and low delay. It achieves this by concentrating the
cells that it leaves behind on as few inputs as possible. Unfortunately, Concentrate has
two drawbacks that make it unsuitable for use in an ATM switch; it can starve input
queues inde�nitely, and is di�cult to implement in hardware. But Concentrate serves as
a useful upper-bound on throughput performance against which we can compare heuris-
tic approximations. One such approximation, TATRA, is motivated by Tetris, the popular
block-packing game. TATRA avoids starvation by using a strict de�nition of fairness, while
comparing well to the performance of Concentrate. The second algorithm, WBA is designed
to be very simple to implement in hardware, and allows the designer to balance the tradeo�
between fairness and throughput.

2 Background

2.1 Assumed Architecture

It is assumed that the switch hasM input andN output ports and that each input maintains
a single FIFO queue for arriving multicast cells. The input cells are assumed to contain a
vector indicating which outputs the cell is to be sent to. For anM�N switch, the destination
vector of a multicast cell can be any one of 2N � 1 possible vectors. We assume that each
input has a single queue and that the scheduler only observes the �rst cell in the queue.

2

6
5
4
3

2
3
4

1

Q
A

Q
B

2 2 2

5 5 5

1

3 3

1 1

3

4

6

4

6

4

6

Figure 1: 2�N multicast crossbar switch with single FIFO queue at each input.

As a simple example of our architecture, consider the 2 input and N output switch
shown in Figure 1. Queue QA has an input cell destined for outputs f1; 2; 3; 4g and queue
QB has an input cell destined for outputs f3; 4; 5; 6g. The set of outputs to which an input
cell wishes to be copied will be referred to as the fanout of that input cell.1 For clarity,
we distinguish an arriving input cell from its corresponding output cells. In the �gure, the
single input cell at the head of queue QA will generate four output cells.

We assume that an input cell must wait in line until all of the cells ahead of it have
departed. A simple way to service the input queues is to replicate the input cell over
multiple cell times, generating one output cell per cell time. However, this approach has
two disadvantages. First, each input must be copied multiple times, increasing the required
memory bandwidth. Second, input cells contend for access to the switch multiple times,
reducing the bandwidth available to other tra�c at the same input. Higher throughput can
be attained if we take advantage of the natural multicast properties of a crossbar switch. So
instead, we assume that one input cell can be copied to any number of outputs in a single
cell time for which there is no conict.

There are two di�erent service disciplines that can be used. Following the description
in [18], the �rst is no fanout-splitting in which all of the copies of a cell must be sent in the
same cell time. If any of the output cells loses contention for an output port, none of the
output cells are transmitted and the cell must try again in the next cell time. The second
discipline is fanout-splitting, in which output cells may be delivered to output ports over
any number of cell times. Only those output cells that are unsuccessful in one cell time
continue to contend for output ports in the next cell time2.

Because fanout-splitting is work conserving, it enables a higher switch throughput [21]
for little increase in implementation complexity. For example, Figure 2 compares the average
cell latency (via simulations) with and without fanout-splitting of the Random scheduling
policy for an 8�8 switch under uniform loading on all inputs and an average fanout of
four. The �gure demonstrates that fanout-splitting can lead to approximately 40% higher
throughput.

1We use the term fanout throughout this paper to denote both the constitution and the cardinality of

the input vector. For example, in Figure 1, the input cell at the head of each queue is said to have a fanout

of four.
2It might appear that fanout-splitting is much more di�cult to implement than no fanout-splitting.

However this is not the case. In order to support fanout-splitting, we need one extra signal from the

scheduler to inform each input port when a cell at its HOL is completely served.

3

0.1

1

10

100

1000

10000

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
ve

ra
ge

 C
el

l L
at

en
cy

Offered Load

Fanout-splitting
No Fanout-splitting

Figure 2: Graph of average cell latency (in number of cell times) as a function of o�ered

load for an 8�8 switch (with uniform input tra�c and average fanout of four). The graph

compares Random scheduling policy with and without fanout-splitting.

2.2 De�nition of Terms

Here we make precise some of the terminology used throughout the paper. Some terms
have already been loosely de�ned, but a few new ones are introduced.

De�nition 1 (Residue): The residue is the set of all output cells that lose contention for

output ports and remain at the HOL of the input queues at the end of each cell time.

It is important to note that given a set of requests, every work-conserving policy will
leave the same residue. However, it is up to the policy to determine how the residue is
distributed over the inputs.

De�nition 2 (Concentrating Policy): A multicast scheduling policy is said to be con-
centrating if, at the end of every cell time, it leaves the residue on the smallest possible

number of input ports.

De�nition 3 (Distributing Policy): A multicast scheduling policy is said to be distribut-
ing if, at the end of every cell time, it leaves the residue on the largest possible number of

input ports.

De�nition 4 (A Non-concentrating Policy): A multicast scheduling policy is said to

be non-concentrating if it does not always concentrate the residue.

De�nition 5 (Fairness Constraint): A multicast scheduling policy is said to be fair if

each input cell is held at the HOL for no more than a �xed number of cell times (this number

4

can be di�erent for di�erent inputs). This fairness constraint can also be thought of as a

starvation constraint.

2.3 Requirements of an Algorithm

Before describing the details of various scheduling algorithms, we �rst look at some require-
ments.

1. Work conservation: The algorithm must be work conserving, which means that no
output port may be idle as long as it can serve some input cell destined to it. This
property is necessary for an algorithm to provide maximum throughput.

2. Fairness: The algorithm must meet the fairness constraint de�ned above, i.e. it must
not lead to the starvation of any input.

3 The Heuristic of Residue Concentration

In this section, we describe two algorithms - the Concentrate algorithm and the Distribute
algorithm, which represent the two extremes of residue placement. We present an intutive
explanation for why it is best to concentrate residue in order to achieve a high throughput.

Algorithm: Concentrate. Concentrate always concentrates the residue onto as few in-
puts as possible. This is achieved by performing the following steps at the beginning of
each cell time.

1. Determine the residue.
2. Find the input with the most in common with the residue. If there is a choice of inputs,

select the one with the input cell that has been at the HOL for the shortest time. This
ensures some fairness, though not in the sense of the de�nition in Section 2.2 (see
remark below).

3. Concentrate as much residue onto this input as possible.
4. Remove the input from further consideration.
5. Repeat steps (2)-(4) until no residue remains.

Remark: Since an input cell can remain at HOL inde�nitely, this algorithm does not meet
the fairness constraint. The purpose of this algorithm is to provide us with a basis for
comparing the performance of other algorithms, since it achieves the highest throughput.
This is demonstrated by our simulation results in Section 7.

Algorithm: Distribute. Distribute always distributes the residue onto as many inputs
as possible.

1. Determine the residue.
2. Find the input with at least one cell but otherwise the least in common with the

residue. If there is a choice of inputs, select the one with the input cell that has been
at the HOL for the shortest time.

3. Place one output cell of residue onto that input.
4. Remove the input from further consideration.
5. Repeat steps (2)-(4) until no inputs remain.
6. If residue remains, consider all the inputs again and start at step (2).

5

Let us look at an example to see how these two algorithms work. Referring to Figure 1,
consider the options faced by a work-conserving scheduling algorithm at this time (t1). Note
that whatever decision the algorithm makes, the residue will be the same. The scheduling
algorithm just determines where to place the residue. If at time t1, the algorithm concen-
trates the residue on QB then all of a1's (also see �gure 12) output cells will be sent and
cell a2 will be brought forward at time t2. At time t2, the algorithm selects between a2 and

the residue left over from t1. If, on the other hand, the algorithm distributes the residue
over both input queues at t1, then at t2 the algorithm can only schedule the residue left
over from t1. No new cells can be brought forward.

From the example above, we can make the following intuitive argument: it is more likely
that Concentrate will bring new work forward sooner, thus increasing the diversity of its
choice. This enables more output cells to be scheduled in the following cell time. For the
case of a 2�N switch, the following Theorem is true.

Theorem 1 A scheduling policy for a 2�N multicast switch that always concentrates residue

at every possible instant subject to the fairness condition of De�nition 12, performs better

than any other fair policy when subjected to static inputs.

Proof: See Appendix A.2

4 Tetris Models for M �N Switches

This section presents a uni�ed approach to the design and analysis of schedulers for an
M �N multicast switch. It is shown that the general multicast scheduling problem can be
mapped onto a variation of the popular block-packing game Tetris. Within this common
framework, one is able to describe and analyze any multicast scheduling policy in an intuitive
and geometric fashion. The presentation in this section follows earlier work presented in
[24] and [25].

We �rst describe the class of scheduling policies to be considered in this section, all of
which are required to satisfy the following fairness constraint.

De�nition 6 (Fairness Constraint for M �N Switches): A scheduling policy � for a

M �N switch is said to be fair if no cell, from any input, is held at HOL for more than M

cell times.

The class of policies considered: In addition to requiring that policies be fair and work-
conserving, we also require that they assign departure dates to input cells once the cells
advance to HOL. This departure date (DD) is some number between 1 andM specifying how
long, from the current cell time, the input cell will be held at HOL before being discharged.
The DD of a cell is decremented by 1 at the end of each cell time. Clearly, this class of
policies is smaller than the class of fair and work-conserving policies, since fairness allows
one to reassign departure dates to input cells at HOL (but not beyond M cell times).

We use the \static input assumption" to describe the Tetris models. As will become
clear, this description holds equally well for \dynamic inputs" since scheduling is based only
on cells at HOL without look-ahead.

6

4.1 Tetris models: a sketch

Every input cell is mapped onto a Tetris block, each of which is an amalgamation of smaller
blocks, one per output cell. Upon assignment of DDs, the input cells at HOL are dropped
into a compartmentalized box of size M �N , see Figure 3. Each of the N columns of the
box holds cells destined to a speci�c output; i.e., column j holds cells destined to output j.
The label on a cell denotes the input port from which it has arrived; all output cells with
the same label result from the same input cell. The cells in the bottom-most row of the box
in Figure 3 at columns 1, 3 and 5 are all identical copies of a cell from input 1 destined to
outputs 1, 3 and 5. Similarly, the cell at the HOL of input 2 will be delivered to outputs 2,
3, 4 and 5.

5

Input ports

5

Output ports

2

221 1 1

4 5 2

33 4

4

3

3

1 2 3 4

Figure 3: An example. Cells from inputs 1, 2, 3, 4 are assigned DDs 1, 2, 3, 4 respectively,

while the cell from input 5 is assigned a DD of 4.

Suppose that, at time n, the switch is to schedule k input cells which have advanced to
HOL. After the scheduler has assigned DDs to these input cells, they are dropped into the
box which currently holds the cells or residues at the HOL of the other (M � k) inputs3.
Each new output cell may occupy any position in its appropriate output slot as long as (1)
it does not alter the DD of any other cell, and (2) it does not leave any slots beneath it
unoccupied. Note that there are no unoccupied slots between cells in any output column.

At the end of time n, all output cells at the bottom-most layer of the box are discharged
and are assumed to be served. For the example in Figure 3, input 1 is completely served
and can advance a new cell to HOL at time 2. Input 2 discharges cells to outputs 2 and 4
and is left with a residue for outputs 3 and 5. Note that the discharge at any time is the
set of output cells in the bottom-most layer and the residue is everything that's left behind.
It should now be clear that we do not allow unoccupied slots in output columns because of
the restriction to policies which are work-conserving.

At the beginning of time n+ 1, all residue cells drop down one level and their DDs are
decremented by one. Those inputs which have been completely served in the previous cell
time advance a new cell to the HOL. These cells are assigned DDs, and the cycle continues.

This is reminiscent of Tetris where blocks are dropped into a bin and the aim is to
achieve maximum packing. The main di�erence here is that Tetris blocks are rigid and

3The order in which the scheduler assigns DDs to the k new cells is important, because if the cells contend

for the same outputs it may not be possible to assign them DDs in parallel. For example, suppose that two

of the new cells have a fanout of 1 and are the only cells contending for a speci�c output. Then, deciding

who goes �rst is important since no two cells in an output column can have the same DD. In general, the

order of assignment of DDs can either be pre-�xed or made to depend upon some criterion (e.g., size of

fanout). However, for ease of exposition, we will assume a pre-�xed ordering.

7

cannot be decomposed. Note also that there are never more than M input cells in the

box. Thus when an input cell is dropped into the box, it is guaranteed to depart within

M cell times, since input cells arriving in the future do not alter its departure date. This
automatically ensures fairness.

4.2 Tetris models: the details

We now make the description of Tetris models mathematically precise. If a plurality of
cells advance to HOL at the beginning of a cell time, we choose, for simplicity, the following
�xed ordering: for i < j the new cell at input i will be assigned its DD before the new
cell at input j. Before proceeding to de�ne a scheduling algorithm, we make the following
de�nitions.

De�nition 7 (Tetris Box): The Tetris box is speci�ed by a matrix Ti;j; 1 � i � M; 1 �
j � N , where the rows are numbered from bottom to top and the columns are numbered

from left to right. Thus T1;1 is the bottom-left slot of the box and TM;N is the top-right slot.

De�nition 8 (Occupancy Set): The occupancy set of the cell or residue at the HOL of

input l at time n is given by Ol(n) = fTi;j : an output cell of l resides at Ti;j at time n.g

De�nition 9 (Peak Cell and Departure Date): An output cell belonging to input l is

said to be a peak cell at time n if it occupies a slot in the row whose number is given by

maxfi : Ti;j 2 Ol(n)g. The corresponding row number is the departure date (DD) of the

input cell at time n.

That is, the peak cell of an input is one which is furthest from the bottom of the box
and the distance from the bottom is its departure date. Note that there may be more than
one peak cell for a given input.

De�nition 10 (Scheduling Policy): Given k � M new cells c1; c2; � � � ; ck at the HOL

of inputs i1 < i2 < � � � < ik at time n, a scheduling policy � is given by a sequence of

decisions f�(n); n 2 Z+g, where �(n) associates to each of c1; c2; � � � ; ck (in that order) the

corresponding occupancy sets Oc1(n); Oc2(n); � � � ; Ock(n) subject to the following rules.

1) No cell should change the DD of a cell that is already scheduled. This means that no

peak cells should be raised or lowered.

2) For every i > 1 and j, if any of Ti;j is occupied, then so are T1;j � � � Ti�1;j; i.e., there

should be no gaps in the output columns.

Algorithm for �. Given the above de�nitions, the algorithm for implementing a policy �
just requires a speci�cation for transitioning from one cell time to the next. The following
steps enumerate the procedure.

a) At the end of time n, all output cells occupying slots in the set fT1;j ; 1 � j � Ng are
discharged. In particular, input cells (or residues thereof) with DDs = 1 are completely
served.

b) Each output cell occupying slot Ti;j for i and j in the set f2 � i � M; 1 � j � Ng is
assigned to the slot Ti�1;j. The occupancy set, peak cell(s), and the departure dates of the
residue are recomputed. For example, the occupancy set of the residue at input l is given
by Ol(n+ 1) = fTi;j : Ti+1;j 2 Ol(n)g. From this peak cells and DDs are easily computed.

8

c) New cells advancing to HOL are then scheduled according to �(n+ 1).

Consider the example of Figure 3 again. The input cells are scheduled in the order 1, 2,
3, 4 and 5. The occupancy sets, peak cells and departure dates at time 1 are given in the
table below.

Input Port Occupancy Set Peak Cells Departure Date
l Ol(1) PCl(1) DDl(1)

1 fT1;1; T1;3; T1;5g O1(1) 1

2 fT1;2; T2;3; T1;4; T2;5g fT2;3; T2;5g 2

3 fT2;1; T3;2; T3;3; T3;4g O3(1)� fT2;1g 3

4 fT2;2; T4;3; T3;5g fT4;3g 4

5 fT4;2; T2;4g fT4;2g 4

As a �nal remark, the discussion in this section presents a uni�ed framework for thinking
about multicast scheduling policies. We have seen how constraints like fairness and work-
conservation translate into rules for placing Tetris blocks in the box. This general framework
allows us to design and evaluate the performance of speci�c scheduling algorithms.

5 TATRA: A multicast scheduling algorithm

Motivated by the Tetris models of the previous section, we now describe a speci�c multicast
scheduling algorithm, TATRA, �rst introduced in [24] and discuss some of its salient features.

Again we assume that the switch has been idle prior to time 0 and that the \static input
assumption" holds. We denote by �� = f��(n); n 2 Z+g the policy TATRA. Since TATRA

schedules input cells solely based on their DDs, we assume that this number is stamped
upon all the output cells belonging to a speci�c input cell (both peak and non-peak cells).

For time n � 1, the algorithm is speci�ed by the following steps.

(1) At the beginning of time n, ��(n) assigns a DD to each new cell at HOL according to
the formula given in Equation 1 below. The order in which the DD is assigned when there
is a plurality of new cells is in increasing order of their input port numbers.

(2) Each new output cell is dropped to the lowest possible level in the appropriate output
slot, without getting ahead of another cell whose DD is less than or equal to its own.

Remark: It follows that a non-peak cell cannot be ahead of a peak cell unless it has the
same DD as the peak cell. If such a non-peak cell exists, we call it a pseudo-peak cell (an
example of a pseudo-peak cell is given below). Corresponding to each output slot, there is
thus a (possibly empty) column of peak/pseudo-peak cells. This column is called the peak

column.

(3) Cells in the bottom-most row are discharged. New DDs are computed for the residue
cells. Time is advanced to n+ 1.

Using the terminology introduced in the remark above, and from the constitution of a
new input cell its DD is computed as follows

DD = maxfheight of peak columns across fanoutg+ 1 (1)

9

5.1 An Example

By applying the above algorithm to the example of Figure 3, it is easy to see that TATRA
schedules the cells as shown in Figure 4a. Assuming that at the end of time 1 the two new
cells at inputs 1 and 5 wish to access ouputs f1; 5g and f2g respectively, Figure 4b shows
how TATRA schedules them. Observe that in Figure 4b, the cell from input 3 at position
T1;1 is a pseudo-peak cell because the cell at input 3 has a DD equal to 2 which is the same
as the cell from input 1. Therefore, the height of the peak column corresponding to output
1 in Figure 4b is equal to 2.

Input portsInput ports

5

(b)

Output ports

3

3 2 2

1

2 2

3

4

3

1 2 3 4 5

1

4

Output ports

2

1 1 1

2

3

4

5 5

2

3

4

3

2

1 2 3 4 5

3

4 4

(a)

Figure 4: TATRA schedules: (a) the cells of Figure 3, (b) the new cells from inputs 1 and

5 at time 2.

5.2 Properties of TATRA

In this subsection we discuss some desirable properties of TATRA. For brevity, the properties
are stated and only briey explored.

Property 1: Under TATRA an input cell is guaranteed to be a discharged every cell time.
This is equivalent to the statement that there is a peak cell in every row of the Tetris box.
To see this, merely observe that (1) under every peak cell there is a column of peak (or
pseudo-peak) cells, and (2) the cell furthest from the bottom of the box must be a peak
cell.

Property 2: Residue Concentration. Suppose that we are given the occupancy sets, Ol(n)
and Om(n), of two input cells l and m. If Ti;j 2 Ol(n) and Ti+k;j 2 Om(n) for some j

and for some k > 0, then it is impossible that there exists an output j0 6= j such that
Ti0;j0 2 Ol(n) and Ti0�k0;j0 2 Om(n), where k

0 > 0. That is occupancy sets cannot \criss-
cross". This follows from the fact that output cells are arranged in output columns according
to a monotonic increase of DDs. The \no criss-crossing" property corresponds to residue
concentration.

6 WBA

Although it performs well and is simple to describe, there are two disadvantages to TATRA.
First, it is di�cult to implement, since the assignment of DDs at inputs requires a collective
e�ort and this process cannot be parallelized. Second, the de�nition of fairness is both
rigid (i.e., no input cell should be held at HOL for more than M cell times), and uniformly
the same for all inputs. Treating all inputs uniformly does not help when the inputs are
non-uniformly loaded or when some inputs request a higher priority.

10

These issues motivate us to look for an algorithm that (i) is simple to implement in
hardware, (ii) is fair and achieves a high throughput, and (iii) is able to cope with non-
uniform loading and/or provide di�erent priorities to inputs. A weight based algorithm,
called WBA, is introduced in this section and is shown to meet the above requirements.

It is worth mentioning that if one merely wishes to achieve a high throughput without
regard to fairness, then it is best to always achieve the highest residue concentration. But
this can lead to the starvation of some inputs. For example, in the Concentrate algorithm,
an input cell with maximum fanout may wait forever without being served. Conversely, if
an algorithm aims to be fair, it may not achieve the best possible residue concentration and
therefore sacri�ces throughput.

WBA: The Weight Based Algorithm

This algorithm works by assigning weights to input cells based on their age and fanout
at the beginning of every cell time. Once the weights are assigned, each output chooses
the heaviest input from among those subscribing to it. It is clear that a positive weight
should be given to age in order to achieve fairness. We claim that to maximize throughput,
fanout should be weighted negatively. To see this, recall that at the end of each cell time
the output cells in the bottom-most row of the Tetris box are discharged and all other
cells are left behind as residue. To improve residue-concentration we must therefore ensure
that as many input cells as possible can be placed in the bottom-most row at every cell
time. This automatically ensures that the residue is concentrated on fewer inputs. Since
the bottom-most row can only take N output cells one has to choose input cells with the
smallest fanout to place on this row. Thus, the weight of an input cell should vary inversely
as its fanout.

Algorithm: WBA.

1. At the beginning of every cell time, each input calculates the weight of the new
cell/residue at its HOL based on:

(a) The age of the cell/residue: The older, the heavier.

(b) The fanout of the cell/residue: The larger, the lighter.

2. Each input then submits this weight to all the outputs that the cell/residue at its
HOL wishes to access.

3. Each output grants to the input with the highest weight, independently of other
outputs, ties being broken randomly.

By making a suitable choice of weights based on these two quantities (age and fanout),
one arrives at a compromise between the extremes of pure residue concentration and of
strict fairness. Simple calculations show that if we give weight a to the age of the cell,
and weight (�f) to the fanout, the bound on the time for which a cell has to wait at HOL
is simply (M + f

a
N � 1) cell times. In particular, if we give equal weight to age and to

fanout, no cell waits at the HOL for longer than (M+N�1) cell times. And if the negative
weight of fanout is twice the weight of the age then one increases residue concentration and
decreases fairness, allowing a cell to wait at the HOL upto (M + 2N � 1) cell times.

Many variations of the WBA are possible. In particular, one can use other features to
assign weights to the cells. For example, one can take into account input queue occupancy
while computing weights, or keep track of the utilization of each output link and use negative

11

weight to discourage inputs subscibing to heavily loaded outputs. When dealing with non-
uniform loading or when o�ering di�erent priorities to di�erent inputs, one can use di�erent
formulae to compute weights at di�erent inputs. However, these weights should be within
the proper range to ensure stability, i.e. the range of possible values for the weights should
be the same on all the inputs.

7 Simulation Results

In order to validate our claims in the previous sections, we compare di�erent scheduling
policies through simulation. The switch behaviour is simulated by using a discrete-event
simulator written for the purpose. Our simulated switch is assumed to have in�nite bu�ers
at the inputs so that no cells are dropped due to lack of bu�er space. In each simulation
run, there is a su�cient warmup period (typically half of the total simulation time) to allow
the input bu�ers to be �lled up with cells before statistics about the queue lengths and
cell latencies are collected. The simulation continues for a �xed amount of simulation time
(typically 1 million cell times) unless the switch becomes unstable (i.e. it reaches a stage
where it is unable to sustain the o�ered load).

7.1 Tra�c Types

We assume that the stream of arrivals at the inputs are independent of each other. We
compare each scheduling policy for two di�erent arrival processes:

Uncorrelated Arrivals: At the beginning of each cell time, a cell arrives at each input
with probability p (the \arrival rate") independently of whether a cell arrived during the
previous cell time.

Correlated Arrivals: Cells are generated using a 2-state Markov process which alter-
nates between BUSY and IDLE states. The process remains in the busy and idle states for
a geometrically distributed number of cell times, with expected duration E[B] and E[I]
respectively. E[B] is �xed at 16 cells for all the simulations.4 When in this state, cells
arrive at the beginning of every cell time and all with the same set of destinations. The
arrival rate, p = E[B]=(E[B] +E[I]).

For both types of tra�c, each arriving multicast cell has a multicast vector that is
uniformly distributed over all possible multicast vectors. However, the destination vector of
all zeroes is not allowed. As a result, for an M �N switch, the average fanout is (N +1)=2.
The o�ered load is the fraction of link bandwidth used at each input by the incoming tra�c.
Since the average fanout is (N + 1)=2 on each of the M inputs, the total tra�c load of all
outputs combined is p �M � (N +1)=2. Since this tra�c is uniformly divided among all the
outputs, the load as seen on each of the output links is (pM=2)(1 + 1=N). Thus for a 2�N
switch, the o�ered load shown in the graphs is the actual load, whereas for an 8�8 switch,
the total switch load is approximately four times the o�ered load shown in the graphs.

For comparison, we also show the performance of an algorithm, Random , in which each
output randomly selects one input from among those that request it. This algorithm is
motivated by the work of Hayes et al. in [18], which is the multicast version of the unicast

4The choice of an expected duration of 16 cells per burst is arbitrary, but is representative. The same

qualitative results are obtained for di�erent burst lengths.

12

0.1

1

10

100

1000

0.4 0.45 0.5 0.55 0.6 0.65 0.7

A
ve

ra
ge

 C
el

l L
at

en
cy

Offered Load

Concentrate
TATRA

WBA
Random

Distribute

Figure 5: Graph of average cell latency (in number of cell times) as a function of o�ered

load for a 2�8 switch (Uncorrelated arrivals with an average fanout of four).

algorithm described in [4]. The WBA plots are obtained by using a fanout weight equal to
twice the weight for cell age.

7.2 2�8 Switch

Figures 5 and 6 compare the di�erent scheduling policies for a 2�8 switch, with uncorrelated
and correlated arrivals respectively. As predicted by Theorem 1, the Concentrate algorithm
leads to an average cell latency that is lower than for the Distribute algorithm.

The algorithms also di�er in the maximum possible throughput sustainable by the
switch. As expected, the algorithm that leads to lower cell latency through the switch
also provides higher throughput.

7.3 8�8 Switch

Figures 7 and 8 compare the di�erent scheduling policies for an 8�8 switch, with uncorre-
lated and correlated arrivals, respectively. Once again, the Concentrate algorithm leads to
an average cell latency that is much lower than for the Distribute algorithm.

Note that for an 8�8 switch TATRA performs worse than Concentrate. This is because
it does not necessarily concentrate the residue on the minimum number of inputs. WBA

performs a little worse than TATRA for uncorrelated arrivals even though TATRA provides
a stricter bound on the HOL latency. The reason for this relatively poor performance of
WBA is that the outputs make their decision independently. So, if two or more inputs have
the same weight, di�erent outputs will not concentrate the residue onto the same input. As
a result, WBA is not as e�ective in concentrating residue as TATRA. Thus WBA sacri�ces

13

100

1000

10000

0.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535 0.54

A
ve

ra
ge

 C
el

l L
at

en
cy

Offered Load

Concentrate
TATRA

WBA
Random

Distribute

Figure 6: Graph of average cell latency (in number of cell times) as a function of o�ered

load for a 2�8 switch (Correlated arrivals with an average fanout of four).

1

10

100

1000

0.17 0.18 0.19 0.2 0.21 0.22 0.23

A
ve

ra
ge

 C
el

l L
at

en
cy

Offered Load

Concentrate
TATRA

WBA
Random

Distribute

Figure 7: Graph of average cell latency (in number of cell times) as a function of o�ered

load for an 8�8 switch (Uncorrelated arrivals with an average fanout of four). Note that

the total load on the switch is four times the o�ered load at the inputs.

14

100

1000

10000

0.155 0.16 0.165 0.17 0.175 0.18 0.185 0.19

A
ve

ra
ge

 C
el

l L
at

en
cy

Offered Load

Concentrate
TATRA

WBA
Random

Distribute

Figure 8: Graph of average cell latency (in number of cell times) as a function of o�ered

load for an 8�8 switch (Correlated arrivals with an average fanout of four).

some residue concentration for simplicity. Note that for correlated arrivals, the performance
of WBA is almost indistinguishable from TATRA (as seen in Figure 8).

8 Implementation Complexity

Since input-queueing architectures are interesting only at very high bandwidths, it is very
important that the scheduling algorithm for an input-queued switch be simple enough to
implement in hardware. Here, we compare the implementation complexity of the various
scheduling algorithms we have considered.

Concentrate: Even though the Concentrate algorithm provides the best throughput per-
formance, it is not a practicable algorithm. First of all, it could lead to the starvation
of some inputs; and second, the algorithm requires up to M iterations per cell time to
complete. This makes the algorithm di�cult to implement at high speed.

TATRA: The TATRA algorithm is simpler to implement than the Concentrate algorithm,
but still has a time complexity O(M). To understand why this is so, consider a newly
arriving HOL input cell. Scheduling the cell is equivalent to determining the position of
its peak cell(s), and its non-peak cells. If only one input cell is scheduled per cell time,
the scheduling decision can be broken down into two simple stages: (1) The peak cell
is scheduled by examining the current pro�le, and (2) The non-peak cells are scheduled
independently by each output. Unfortunately, up to M new input cells may need to be
scheduled in a cell time where the positions of their non-peak cells are dependent on the
non-peak cells at other outputs. This results in an algorithm of complexity O(M).5

5However, we have designed an approximation to TATRA, in which the input cells can be dropped in

15

M/U: Multicast/Unicast

age counter

A
d
d
e
r

1

0

d
e
s
t
s

S
u
b
t
r
a
c
t

new cell

M/U
reset

N

N

N N logN

fanout

age

2+logN

1+logN

N

N

grants

+

-
destinations

tx over

(to outputs)
weight

(from outputs)

Figure 9: The hardware required in WBA for computation of weight at each input. The

age counter is reset when a new multicast cell comes to HOL, and is incremented every

cell time thereafter. The bits corresponding to the outputs, which grant to this input, are

selectively reset in every cell time until the entire destination vector (the register dests)

becomes zero. At this point, the input port is signalled that the transmission of the cell is

over, so a new cell can come to HOL. Since the maximum age of a cell at HOL is 2N �1 for

an N �N switch, the age counter needs to be 1+ log(N) bits wide. Subtracting the fanout

(which spans from 1 to N) from the age makes the total range of weights to be 3N � 1,
which can be represented by using 2 + log(N) bits.

Grant
Arbiter

>

weight 1

weight 2

weight N

2+logN

2+logN

1

2

N

ilogN

input i
(from inputs) grants

(to inputs)

Figure 10: The hardware required in WBA for determining the input to grant to, at each

output. The input requesting with the highest weight is selected.

16

weight 1

weight 1

grants 12+logN

2+logN

2+logN

2+logN

weight i

weight i

Block
Input

1

Input
Block

i

1

Output
Block

Output

Block
j

1

i

1

i

1

1

j

j N

N grants i

Figure 11: Connecting N input blocks and N output blocks to form an N�N WBA scheduler.

WBA: This algorithm can be divided into two main parts: (1) Every input computes a
request weight, and (2) Every output chooses the input making a request with the highest
weight. Since calculating an input's weight does not depend on the weight of any other
input, this may be performed in parallel. Similarly, each output may choose the input with
the highest weight independently, and may be performed in parallel. Hence the complexity
of WBA is O(1). Not only is WBA well suited for parallel implementation, the logic required
is relatively simple. To compute its weight, each input subtracts the fanout of the cell at
HOL from its age, see Figure 9. Each output employs an M input magnitude comparator
to select the input with the highest weight, see Figure 10. A WBA scheduler for an N �N

switch can be constructed by using N input blocks and N output blocks as shown in
Figure 11.

References

[1] V. Paxson: \Growth trends in wide-area TCP connections", IEEE Network, vol.8, (no.4):8-17. July-Aug 1994.

[2] H. Eriksson: \MBone: the Multicast Backbone", Communications of the ACM,vol.37, (no.8):54-60. Aug 1994.

[3] S. E. Deering, and D. R. Cheriton: \Multicast Routing in datagram internetworks and extended LANs", ACM
Transactions on Computer Systems, vol.8, (no.2):85-110. May 1990.

[4] M. Karol, M. Hluchyj, and S. Morgan: \Input Versus Output Queueing on a Space Division Switch", IEEE
Trans. Comm, 35(12) pp.1347-1356

[5] S.-Q. Li: \Performance of a nonblocking space-division packet switch with correlated input tra�c", IEEE Trans.
Comm, vol.40, (no.1):97-108. Jan 1992.

[6] T.T. Lee: \Nonblocking copy networks for multicast packet switching", IEEE J. Select. Areas Comm., vol.6,
pp.1455-1467. Dec 1988.

[7] J.S. Turner: \Design of a broadcast switching network", Proc. IEEE INFOCOM '86, pp.667-675.

parallel, leading to O(1) complexity.

17

[8] A. Huang: \Starlite: A wideband digital switch," Proc. IEEE GLOBECOM '84, pp.121-125.

[9] T. Anderson, S. Owicki, J. Saxe, and C. Thacker: \High Speed Switch Scheduling for Local Area Network-

s", Proc. Fifth International Conference on Architectural Support for Programming Languages and Operating
Systems Oct 1992, pp. 98{110.

[10] N. McKeown, P. Varaiya, and J. Walrand: \Scheduling Cells in an Input-Queued Switch", IEE Electronics
Letters, Dec 9th 1993, pp.2174-5.

[11] N. McKeown: \Scheduling Algorithms for Input-Queued Cell Switches", PhD Thesis, University of California
at Berkeley, May 1995.

[12] M. Chen, N.D. Georganas: \A Fast Algorithm for multi-channel/port tra�c scheduling", Proc. IEEE Super-
comm/ICC '94, pp.96-100.

[13] H. Obara: \An E�cient Contention Resolution Algorithm for Input Queueing ATM Switches", Intl. Jour. of
Digital & Analog Cabled Systems, vol. 2, no. 4, Oct-Dec 1989, pp. 261-267.

[14] H. Obara: \Optimum Architecture For Input Queueing ATM Switches", Elect. Letters, 28th March 1991,

pp.555-557.

[15] N. McKeown, and B. Prabhakar: \Scheduling Multicast Cells in an Input-Queued Switch", Technical Report:
Computer Systems Lab, Stanford University.

[16] H. Obara, S. Okamoto, and Y. Hamazumi: \Input and Output Queueing ATM Switch Architecture with Spatial

and Temporal Slot Reservation Control", Elect. Letters, 2nd Jan 1992, pp.22-24.

[17] M. Karol, K. Eng, H. Obara: \Improving the Performance of Input-Queued ATM Packet Switches", INFOCOM
'92, pp.110-115.

[18] J.F. Hayes, R. Breault, and M. Mehmet-Ali: \Performance Analysis of a Multicast Switch", IEEE Trans.
Commun., vol.39, no.4, pp. 581-587. April 1991.

[19] K. Eng, M. Hluchyj, and Y. Yeh: \Multicast and Broadcast services in a Knockout packet switch", INFOCOM
'88, 35(12) pp.29-34.

[20] J. Giacopelli, J. Hickey, W. Marcus, D. Sincoskie, and M. Littlewood: \Sunshine: A high-performance self-

routing broadband packet switch architecture", IEEE J. Selected Areas Commun., 9, 8, Oct 1991, pp.1289-1298.

[21] J.Y. Hui, and T. Renner: \Queueing Analysis for Multicast Packet Switching", IEEE Transactions on Com-
munications, vol.42, no.2/3/4, pp.723-731, Feb 1994.

[22] M. Mehmet-Ali, and S. Yang: \Performance Analysis of a Random Packet Selection Policy for Multicast

Switching", IEEE Transactions on Communications, vol.44, no.3, pp.388-398, Mar 1996.

[23] N. McKeown, B. Prabhakar: \Scheduling Multicast Cells in an Input-Queued Switch", INFOCOM '96, pp.271-
278.

[24] B. Prabhakar, and N. McKeown: \Designing a Multicast Switch Scheduler", Proc. of the 33rd Annual Allerton
Conference, Urbana-Champaign. 1995.

[25] B. Prabhakar, N. McKeown, and J. Mairesse: \Tetris Models for Multicast Switches", Proc. of the 30th Annual

Conference on Information Sciences and Systems, Princeton. 1996.

A Proof of Optimality for 2�N Switches

We now present a proof to show that for a 2�N switch a residue concentrating algorithm,
subject to a fairness constraint, outperforms all other fair algorithms. We use the following
class of inputs for comparing scheduling policies.

De�nition 11 (Static Input Assumption): Following [23], we make the \static input

assumption" for switches. That is, it is assumed that at time 0 an in�nity of cells has been

placed in each input bu�er according to some (possibly random) con�guration.

The next two de�nitions give a fairness constraint for 2�N switches and a criterion used
to judge the performance of scheduling policies.

18

De�nition 12 (Fairness Constraint for 2�N Switches): A scheduling policy � for a

2�N switch is said to be fair if no cell, from either of the two inputs, is held at HOL for

more than one cell time.

De�nition 13 (Performance Criterion): A fair scheduling policy �1 for a 2�N multi-

cast switch is said to perform better than another fair policy �2 if every input cell, belonging

to either input, departs no later under �1 than under �2.

Under the above conditions a proof of Theorem 1 was given in [23]. For the sake of
completeness, a brief sketch of the proof is included here.

A sketch of the proof of Theorem 1: At time 0 we are given an in�nity of packets in
each input queue, placed according to some con�guration. Fix one such con�guration and
label the cells at inputs 1 and 2 as faigi=1;2;::: and fbigi=1;2;::: respectively (Figure 12).

l4l6 l2

l5l7 l3 l1

1234b b b b

a a 1a23a4

Q

Q

A

B

Figure 12: 2�N multicast crossbar switch. The links show the order in which cells are

released.

As a consequence of De�nition 12, every fair scheduling policy discharges the cell (or
residue) at the HOL of each input bu�er alternately. This orders all input cells according to
their departure times as follows: (1) a1 �d b1 �d a2 �d b2 � � � if a1 is the �rst cell to depart,
and (2) b1 �d a1 �d b2 �d a2 � � � if b1 is the �rst cell to depart. Here a �d b is to be read as
\a departs no later than b".

Without loss of generality, we assume the �rst ordering for cells and link them in a
vertical or oblique fashion as shown in Figure 12. The directions of the arrows on the
links denote where the residue is to be concentrated, should a policy choose to concentrate
residue at some time. The vertical link between ai and bi is labelled l2i�1 and the oblique
link between bi and ai+1 is labelled l2i. The following facts now follow easily.

Fact 1 All scheduling policies work their way through links l1; l2; l3; : : : in that order. In

one cell time, the policies release no links when there is contention between cells at HOL and

residue is distributed, one link when there is contention between cells at HOL and residue

is concentrated, or two links when there is no contention between cells at HOL in one cell

time.

Fact 2 The time at which an input cell is completely served is exactly equal to the time at

which the link emanating from it is released.

In light of Fact 2, Theorem ?? is proved if we show that the fair concentrating policy
�� releases each link i no later than any other fair policy �. To this end, consider the plots
in Figure 13. Each plot is a \time-link graph" showing the time a policy releases a certain
link. Thus, proving Theorem ?? is equivalent to showing that the time-link graph of the
residue concentrating policy �� lies below that of any non-concentrating policy. In other
words, it is su�cient to prove the following assertion.

19

∗π

π

45

26.57

T
im

e

Link #

Figure 13: Time-link graphs of a non-concentrating policy, �, and the concentrating policy,

��.

Assertion 1 The time-link graph of the optimal scheduling policy �� is never above that of

any other scheduling policy.

A proof of the above assertion (and a complete proof of Theorem ??) may be found in
[23].

Remark: The above proof sample path proof cannot be adapted to prove an analogous
result for M � N (M > 2) switches. This is because cells at di�erent inputs cannot be
ordered in such a way that all fair, work-conserving policies release them in that speci�c
order. Thus, the simple performance criterion used above cannot be used to compare policies
for M � N switches when M > 2. Indeed, counter-examples suggest that by deliberately
distributing residue at certain times it is possible for a non-concentrating policy to achieve
a higher throughput than a concentrating policy (see [25]).

20

