
Abstract -- Feedback based congestion control —
used by TCP and other transport protocols — causes
the transmission rate of a long-lived flow to oscillate.
This paper is about the tendency of multiplexed flows
on a bottleneck link to oscillate causing “aggregate
periodic behavior”. As a consequence, bottleneck
links can become underutilized, wasting capacity.
One simple way to prevent this is to use larger buffers
in the bottleneck router. We explore how large these
buffers need to be to absorb oscillations. Another
proposed solution is to use a randomized active queue
management algorithm, such as RED. A goal of RED
is to reduce “global synchronization” of TCP flows,
and hence avoid oscillations. Our results suggest that
RED does not reduce aggregate periodic behavior
when compared to Drop Tail. Perhaps surprisingly,
our results and a simple analytical model suggest that
the tendency for aggregate traffic to oscillate is robust
against many forms of disturbances added to the tim-
ing of feedback and reaction, even if each constituent
flow shows little or no sign of periodicity. Different
flows can be in different states and yet conspire to
make their sum have periodic behavior.

I. INTRODUCTION

One reason for the success of TCP and its widespread
usage in the Internet is its ability to control network con-
gestion.

A TCP source uses implicit notification of network
congestion (via packet loss) to control the rate at which it
sends data. The rate is controlled by increasing or
decreasing the window of outstanding, unacknowledged
data. In particular, TCP uses “additive increase and mul-
tiplicative decrease” to increase the rate linearly during
times of no packet loss, and to decrease the rate geomet-
rically when loss occurs. As a consequence, the rate at
which a TCP source transmits tends to be periodic over
time. For example, Figure 1 shows the periodic behavior
of a single TCP source in an otherwise idle network.

When many TCP sources compete for the buffers in a
congested router, packet loss causes each individual flow
to exhibit periodic behavior. A question worth asking is:
Is theaggregate behavior of all of the flows also peri-
odic? For example, consider Figure 2(a) which shows a

number of periodic TCP flows. If these flows were to
pass through a single router over a shared link, will the
aggregate flow be smooth (as in Figure 2(b)) or periodic
(as in Figure 2(c))?

It has been previously observed via simulation
[7][8][9] that the aggregate packet arrival rate at the bot-
tleneck is periodic.

So why should we care if the aggregate rate of traffic
on a link is periodic? Because the average of any peri-
odic signal is lower than its peak, which means that a
link with periodic traffic is under-utilized. For example,
the average data rate in the output link of Figure 2(c) is
significantly lower than that of Figure 2(b).

Many experiments[7] and the intuitive explanations of
these experiments suggest that TCP sources competing
for bandwidth on a congested link will synchronize
through the weak coupling inherent in congestion con-
trol. Intuitively speaking, a population of sources will
synchronize because they all experience loss at roughly
the same time, they all scale back their transmission rate
in the presence of these losses, and then they increase
their transmission rate until the next bout of congestion
occurs.

In order to understand if, and by how much, periodic
behavior affects the performance of individual TCP
flows, we need to examine the bottleneck link. If the bot-
tleneck link is under-utilized then all flows suffer
reduced throughput.

Two possible ways to reduce periodicity on a bottle-
neck link are: (1) Increase the size of the buffers immedi-
ately prior to the link in order to absorb the oscillations
and filter them out, and (2) Use a randomized drop-pol-
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Figure 1: Periodic oscillation shown by a single
TCP connection
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icy in the routers. In particular, it is a stated goal of
RED [4] to desynchronize each of the flows sharing a
congested router buffer so that the periodic behavior of
each individual flow is not synchronized with the others.
RED discards packets randomly in an attempt to cause
different TCP sources to reduce (and hence increase)
their rates at different times. Intuition suggests that if the
flows are not oscillating in phase, then their aggregate
behavior will be smooth (like in Figure 2(b)) and hence
link utilization will be high.

In this paper, using simulation and simple topologies
we set out to explore: (1) How much utilization is lost
due to periodic behavior, (2) How much buffering should
be deployed by network designers in order to filter out
the periodicity, and (3) How effective is RED in reducing
or eliminating periodicity.

Our simulation results (which are based on simple
topologies) suggest that if buffers are too small, periodic
behavior occurs on bottleneck links, both with and with-
out RED, even if sources are distributed at random dis-
tances from the bottleneck. RED does not appear to
reduce periodicity and can, under certain circumstances,
increase it. Perhaps the most surprising finding of this
paper is that simulations suggest that the tendency for
aggregate traffic to oscillate is quite strong, even if each
constituent flow shows little or no sign of periodicity.

In an attempt to capture and characterize the way that
multiple seemingly non-periodic flows might interact to
cause aggregate periodic behavior, we developed a sim-
ple analytical “toy” model of TCP’s congestion control
algorithm. Although too simple to draw strong conclu-
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Figure 2: Multiple TCP connections; (a)topology, (b)
flat aggregate rate, (c) periodically oscillating aggre-
gate rate

sions from, the model tends to support the simulation
results that there is a strong tendency for traffic to oscil-
late, and that it is likely to be a characteristic of almost
any feedback congestion-control mechanism in which
the buffers are (too) small.

II. SIMULATION RESULTS

A.  Simulation Setup

We use ns-2[1][2] for our simulations, with TCP Reno
sources and the topology shown in Figure 3. Fifty clients
(at the nodes , with ) on one side of a
bottlenecked router retrieve an infinite-length file from a
server, , on the other side. Hence, there are 50 TCP
connections, sharing a single oversubscribed 1.5 Mbps
link between the nodes  and . Each connection
starts at some random time between  and  seconds,
lasting the duration of the simulation (4200 seconds).
Figure 3 shows the data rate and propagation delays for
each link. In our simulations, we choose the propagation
delays between each endpoint ,  and the
node  to be either a single value of 20 msec (which we
call “fixed RTT”), or pick them at random and uniformly
over the range 0 to 1 seconds (which we call “variable
RTT”).

We compare both Drop Tail and RED queue manage-
ment disciplines, with varying buffer sizes and various
threshold values (  and ) for RED.1 When
varying  and  we use two different ways. One
is to fix  to a very small value (equal to five), while
varying the  values. We call this “RED minfix”
throughout the paper. Another is to vary both  and

, while keeping the ratio of  to  a con-
stant value of three. We call this “RED ratiofix”. The
purpose of each is to see whether the phenomena
observed with RED have more to do with the difference

1. Other parameters for RED used in simulations are
in Appendix B.
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between the two threshold values, or the combined effect
of the difference and the value of .

B.  Periodic Behavior with Small Buffers (Impact of
Insufficient Buffer Space)

Our first results show the effect of small buffers in the
router just prior to a bottleneck link. Expecting that small
buffers will exaggerate any periodic behavior, we
explore how much utilization is lost, if any. Specifically,
we keep the total buffer space, or  of RED, at
around 20% of the “bandwidth-RTT product”.

Figure 4 shows the simulation results for DropTail
(Figure 4(a), (b)) and RED ((c), (d)), with fixed RTT of
1340 ms (Figure 4(a),(c)) and variable RTT (Figure
4(b),(d)). Periodic behavior is clearly visible in all four
graphs, which leads us to the definition of wasted utiliza-
tion on the bottleneck link:

.

Drop Tail in Figure 4(a)(b), shows quite noticeable
periodicity, leading to a loss in utilization of approxi-
mately 5-7%. This is to be expected — Drop Tail has
been previously described as leading to “global synchro-
nization”.

Our simulation results for RED in Figure 4(c)(d) chal-
lenge both the term “global synchronization” and the
efficacy of RED in preventing it, at least when the buffer
size is small. In this example, the loss in utilization with
RED is approximately 15% — larger than for Drop Tail.

We shall see that “global synchronization” is not really
a good characterization of the problem for Drop Tail.

We start here by testing the intuition that periodic
behavior comes from synchronized sources. Figure 5
shows that it does not. (We’ll be spending quite a bit of
time in the remainder of this paper trying to understand
how periodic aggregate behavior occurs even when each
individual flow shows little sign of oscillation.) The fig-
ure shows the totalwnd2 values plotted against time,
along with cwnd values for 3 randomly chosen TCP
flows. cwnd represents an individual TCP flow’s con-
gestion ‘state’, while the ‘totalwnd’ represents the
aggregate state of flows on the link.3 The top half of Fig-
ure 5 shows totalwnd oscillating in a sawtooth pattern,
in agreement with the oscillatory behavior of the aggre-
gate packet arrival rate. However, individualcwnd val-

2. Sum ofwnd=min(cwnd, rwnd ) values for all
flows.
3. It has been also checked from simulation results
that the totalwnd values are roughly the same as the
packet arrival rate on the time granularity of
RTT+queueing delay on the path.
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Figure 4:Aggregate Packet Arrival, Departure rates and
queue lengths for (a) DropTail, fixed RTT, (b) DropTail,
variable RTT, (c) RED, fixed RTT, (d) RED, variable RTT

(a)

(b)

(c)

(d)

time

pk
t a

rr
iv

al
 p

er
 1

 s
ec

3000 3020 3040 3060 3080 3100

12
0

16
0

20
0

24
0

avg. arrival rate = 1.46 Mbps
avg. departure rate = 1.41 Mbps

0
25
50
75
100
125

B
uf

fe
r 

O
cc

up
an

cy

period (sec.)

|ff
t(

pk
t a

rr
iv

al
)-

m
ea

n|
0

10
00

0
20

00
0

Inf. 7.82 3.9 2.6 1.95

period(peak) = 9.38 sec.

time

pk
t a

rr
iv

al
 p

er
 1

 s
ec

3000 3020 3040 3060 3080 3100

15
0

20
0

25
0 avg. arrival rate = 1.41 Mbps

avg. departure rate = 1.39 Mbps

0
25
50
75
100
125
150

B
uf

fe
r 

O
cc

up
an

cy

period (sec.)

|ff
t(

pk
t a

rr
iv

al
)-

m
ea

n|
0

50
00

15
00

0
Inf. 7.82 3.9 2.6 1.95

period(peak) = 15.73 sec.

time

pk
t a

rr
iv

al
 p

er
 1

 s
ec

3000 3020 3040 3060 3080 3100

10
0

15
0

20
0

25
0 avg. arrival rate = 1.32 Mbps

avg. departure rate = 1.27 Mbps

0
25
50
75
100
125
150

B
uf

fe
r 

O
cc

up
an

cy
period (sec.)

|ff
t(

pk
t a

rr
iv

al
)-

m
ea

n|
0

10
00

0
30

00
0

Inf. 7.82 3.9 2.6 1.95

period(peak) = 10.74 sec.

time

pk
t a

rr
iv

al
 p

er
 1

 s
ec

3000 3020 3040 3060 3080 3100

15
0

20
0

25
0 avg. arrival rate = 1.41 Mbps

avg. departure rate = 1.39 Mbps

0
25
50
75
100
125
150

B
uf

fe
r 

O
cc

up
an

cy

period (sec.)

|ff
t(

pk
t a

rr
iv

al
)-

m
ea

n|
0

50
00

15
00

0

Inf. 7.82 3.9 2.6 1.95

period(peak) = 15.73 sec.



ues are not necessarily in sync with one another, as
shown in the bottom half of Figure 5. Instead, at each
congestion epoch somecwnd values continue to
increase while others do not. Note that, although Figure 5
(a) is consistent with the results in [10] which indicates
that the individualcwnd behavior of the sources appears
chaotic, simulation results show that the aggregate
behavior is decidedly deterministic.

Surprisingly, introducing randomness in packet drops
doesn’t change the aggregate periodic behavior, neither
at the input nor at the output of the buffer. The outgoing
line utilization is lower in RED in Figure 2, when com-
pared with Drop Tail.

We note that RED has little room to exercise random-
ness when the buffers are too small. Since  is
small, the majority of the packet drops occur in bursts
that are not much different from Drop Tail. Moreover,
since RED drops packets until thetime-averaged queue
length falls below both of its thresholds, RED tends to
punish flows more severely than Drop Tail. This
becomes clear when we look at how many flows experi-
enced multiple packet drops4 within a burst, or the num-
ber of drops when packet drops come in well-separated
bursts. Figure 6 shows histograms of those counts for
simulation results shown in Figure 4 (a) and (c),
observed at each congestion epoch. Note that RED
forces more flows to reduce theircwnd (and hence trans-
mission rate) compared to Drop Tail. Consequently the

4. We regard this as a congestion notification with a
higher magnitude, since TCP Reno source is likely to
reducecwnd to 1 when this happens [3]. Therefore,
this particular interpretation is closely tied to the
details of the TCP implementation.

(a)

(b)

Figure 5: totalwnd values (top) andcwnd values of
three randomly chosen flows, (a) fixed RTT (1340ms),
(b) variable RTT.
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aggregate arrival rate decreases more with RED, making
the buffer empty for longer periods of time. Also, since
the maximum buffer occupancy is smaller for RED than
Drop Tail, the queues will go empty quicker for RED
once the aggregate arrival rate falls below the outgoing
line rate.

C.  Periodic Behavior with Large Buffers

We can expect that when the router buffer is large
enough, the bottleneck link will no longer exhibit peri-
odic behavior, due to the smoothing effect of the buffer.
Simulations indeed show this to be the case. While the
links immediately prior to the buffer continue to oscil-
late, the output link from the buffer does not regardless
of the queue management algorithm.

It is of practical interest to know how large the buffer
needs to be to prevent periodic behavior from occurring
for both Drop Tail and RED. Armed with some data, net-
work operators may be able to prevent oscillations from
occurring and hence increase link utilization. In what fol-
lows, we provide quantitative answers on buffer sizing
for the network topology considered in our simulations.

1) Preventing Periodic Behavior

First we’ll try and prevent periodic behavior with Drop
Tail. We tested the well-known rule-of-thumb that the
buffers at the bottleneck router should be at least equal in
size to the bandwidth-RTT product. Note, however, that
this value comes from assuming that the aggregate
arrival pattern is a ‘pulse train’, i.e. it consists of bursts
of packet arriving (exactly) every RTT, which we know
from our simulation results is not true. Despite the differ-
ence in behavior, we found that with Drop Tail and one
bandwidth-RTT of buffering, the bottleneck link was
100% utilized for both fixed and variable RTT (for which
we substituted the average RTT of 2300ms). The loss of
utilization as a function of buffer size is shown in Figure
7 for both incoming5 and outgoing links.

For RED, it is less clear how to interpret the band-

(a) (b)

Figure 6: Histogram of number of flows with multiple
packet drops within a burst, (a) DropTail(Figure 4 (a)),
(b) RED (Figure 4 (c)).
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width-RTT guideline: Is it only the  value that mat-
ters, or should the bandwidth-RTT product lie
somewhere between  and ?

So we considered various values of  or
(RED minFix, RED ratiofix). In each case, the loss of
utilization eventually falls to zero, as  increases. A

5. We define the loss of utilization on the ingress link
as .
Since the average arrival rate can be larger than the
outgoing line rate, this value can be negative, which
indicates that packets are being buffered. A positive
value indicates that the arrival process, even without
considering the buffer becoming empty, is ‘ineffi-
cient’ due to its periodic behavior.

100 1 Avg Arrival Rate Egress Line Rate⁄( )–( )

Figure 7: Loss of utilization on ingress and egress
links, (a)long fixed RTT, (b) short fixed RTT, (c)
variable RTT.

(a)

(b)

(c)

0

2

4

6

8

10

12

BW*RTT50 100 150 200 250 300 350 400

Lo
ss

 o
f u

til
iz

at
io

n 
(%

)

Buffer Size or max_th

Loss of utilization vs. Buffer Size (RTT=140m)

DropTail
RED(minFix)

RED(ratioFix)

0

2

4

6

8

10

12

14

16

18

100 200 BW*RTT 300 400

Lo
ss

 o
f u

til
iz

at
io

n 
(%

)

Buffer Size or max_th

Loss of utilization vs. Buffer Size (RTT=1340m)

DropTail
RED(minFix)

RED(ratioFix)

0

2

4

6

8

10

12

14

16

18

100 200 300 400BW*RTT 500 600

Lo
ss

 o
f u

til
iz

at
io

n 
(%

)

Buffer Size or max_th

Loss of utilization vs. Buffer Size (RTTmean=2340m)

DropTail
RED(minFix)

RED(ratioFix)

maxth

minth maxth
minth maxth

maxth

few things to note are:
• Comparing RED minfix and RED ratiofix, it appears

that  has more impact on the loss of utilization.
In Figures 5(a)-(c), RED minfix needs smaller
than ratiofix to achieve 100% utilization, when the
two have roughly the same .

• When RTT is short compared to the transmission
time of onewnd of data, as in Figure 7 (b), RED
requires much larger buffer space than DropTail to
achieve 100% utilization.

2) Changes in Aggregate Behavior with Increasing
Buffer Space

In this subsection, we examine how thecollective
behavior of the sources changes as buffer size and
thresholds increase.

Figure 8 shows totalwnd values as a function of time
for different buffer sizes. For Drop Tail, as buffer size
increases, totalwnd stays constant. This corresponds to
all 50 flows transmitting with theirwnd values set to the

maxth
maxth

maxth minth–

Figure 8: totalwnd values vs. time for different buffer
spaces, (a)DropTail, fixed RTT, (b) DropTail, variable
RTT, (c) RED minfix, fixed RTT, (d) RED minfix,
variable RTT, (e) RED ratiofix, fixed RTT, (f) RED
ratiofix, variable RTT
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maximum possible value, and the buffer size appears to
be large enough to accommodate this. We can verify this
through a simple calculation. If the buffer size is large
enough to satisfy the equality

where, for Drop Tail, the maximum queueing delay is
roughly (buffer size)/(bottleneck bandwidth), then the
network can accommodate all the sources transmitting at
their peak rates without dropping any packets. In one
simulation shown in Figure 7(a) we had RTT(without
queueing delay) of 1340 ms, bottleneck bandwidth 1.5
Mbps, number of flows 50, maximumwnd(=rwnd ) 20
packets, and the packet size of 1000 bytes. This yields
the buffer size of 748 packets, which is in agreement
with the buffer size of 750 packets that was just able to
completely eliminate any aggregate periodic fluctuation
for Drop Tail.

Number of flows Maximum cwnd×( )
Bottleneck Bandwidth( )

-----------------------------------------------------------------------------------------------

RTT Maximum Queueing Delay+=

Figure 9: Aggregate packet arrival (a) DropTail with
buffer size of 50, (b) DropTail with buffer size 750,
(c) RED with maxth=15, (d) RED with maxth=1500.
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RED shows different trends in totalwnd values as
 value increases for both ‘minfix’ and ‘ratiofix’

cases; the magnitude of oscillation (of totalwnd)
decreases, eventually staying constant. But the overall
values of totalwnd do not increase as rapidly as in Drop
Tail, although the consequences of this “convergence”
leads to the elimination of periodicity in the aggregate
packet arrival rate. This is verified in Figure 9, which
shows the packet arrival and departure rates for both
Drop Tail and RED ‘minfix’ with varying buffer size (for
Drop Tail) and threshold values of  and

 (for RED). Although the queue length still
fluctuates with , there isn’t any prominent
periodic fluctuation in the aggregate arrival process.

Disappearing fluctuations of totalwnd values as
increases can be explained by changes in timing dynam-
ics of packet drops. As  increases past the band-
width-RTT product and beyond, RED begins to have
enough opportunities to introduce randomness in packet
drops before the time-averaged queue length reaches

maxth

maxth 15=

maxth 1500=

maxth 1500=

Figure 10: Distribution of inter-drop times of
packet, (a) max_th=15, aggregate, (b) max_th=15,
each flow, (c) max_th=1500, aggregate, (d)
max_th=1500, each flow.
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, beyond which point it drops packets deterministi-
cally. As a result, packet drops at the bottleneck no
longer occur in short, clearly delineated bursts, occurring
instead at random intervals. The intervals are typically
longer than the back-to-back inter-drop times, and gener-
ally increase with , as shown on the left half of Fig-
ure 10. Figure 10 (a) and (b) are for  and (c)
and (d) for . For the larger value of ,
the distribution of inter-drop time is centered around 2.0
second, whereas the distribution for the smaller
has two distinctive ‘islands’, one for the back-to-back
packet drops, the other for the packet drops belonging to
neighboring ‘bursts’.

The same trend is observed when we look at inter-drop
times seen by each individual flow, as shown in the right
side of Figure 10, at the top and bottom, respectively. An
important consequence is that the flows are no longer all
driven in to the same state (namely,cwnd=1, as a result
of a burst of packet drops), hindering or eliminating the
aggregate periodic behavior.

III. A “T OY” A NALYTICAL MODEL

Simulation has only limited value — it can only tell us
definitive things about very specific topologies. While
we may convince ourselves that our experiments are rep-
resentative, we cannot, in any scientific way, conclude
that our results extend to more general network or situa-
tions.

So, in an attempt to capture and characterize the way
that a feedback-based congestion control algorithm
might cause aggregate periodic behavior, we created a
very simple analytical model. The model attempts to
crudely capture the feedback behavior of TCP with a ran-
dom drop policy such as RED. Our analysis suggests that
although sources may be placed at different distances
from the bottleneck, and that they may initially start
asynchronously to each other, the feedback congestion
control algorithm will eventually cause the aggregate
behavior to oscillate. Perhaps surprisingly, the model
suggests that the oscillation is quite stable in that it
remains prominent in spite of various irregularities and
perturbations. It appears that it would take quite a drastic
change to the feedback or drop mechanism to prevent the
periodic behavior.

The conclusions derived from this model are valid only
in the regime where buffering is inconsequential, when
the buffer is suitably small. The analytical results show
that the aggregate periodic behavior is an extremely sta-
ble feature of a small buffer network configuration.
However, the model does not accurately predict the
departure process from a large buffer, a situation in
which we in simulations can eliminate oscillatory behav-

maxth

maxth
maxth 15=

maxth 1500= maxth

maxth

ior. A more complete model would have to take such
buffering into account for a more accurate picture.

A.  Description of model

We model a TCP connection as a source with an infi-
nitely long file to transmit to a receiver across a bottle-
neck link. There are  sources or connections sharing
the bottleneck link which has capacity . In the absence
of congestion or feedback from the bottleneck, each
source increases its sending rate linearly over time (i.e.,

 where  is the rate of source  at time ).

The system of sources experiences congestion when the

total rate  reaches the link capacity . At

each congestion epoch when , a fraction  of the
 sources (chosen uniformly at random) experiences

losses and these  sources receive a notification of con-
gestion. Each source upon congestion notification, resets
its transmission rate to zero. We assume that these events
signaling congestion and resetting the transmission rate
occur instantaneously when the aggregate rate reaches
the link capacity. After reset, the rates of the sources con-
tinue to grow linearly until the system reaches the next
congestion epoch, at which point the process repeats
with another random fraction  of sources experiencing
losses and adjusting their rates. This model assumes that
there is an entity at the bottleneck link that can measure
the instantaneous aggregate rate, signal, and reset the
sources instantaneously.

B.  Conclusions drawn

Rather than following the possible states of all
sources, we assume that  is large enough for us to
employ a mean-field approximation for the system. We
describe the state of the system at time  by a density

 that represents the percentage of sources with
transmission rate  at time . We let  take on any
real positive value, not necessarily an integer multiple of

. Furthermore, we approximate the result of each
reset upon  as removing a uniform percentage  of
the sources at rate  and time  (i.e., that the approxi-
mate effect upon the population of sources is the mean or
expected effect) and resetting the rates of that percentage

 by placing a point mass of weight  at rate . If
 represents the distribution of sources immediately

before the th congestion epoch, then the mean-field
approximation gives us the representation
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for the distribution of source rates immediately follow-
ing the reset of the sources. In addition, the linear
increase of the sources’ rates between congestion epochs
tells us that the configuration  of the system at
time  is simply the translation of the distribution at
time  by , .

We demonstrate that:
•  there is a configuration  of the source rates that is

invariant under the reset operation at each conges-
tion epoch; i.e., the distribution of source rates
immediately following a reset is the same as the dis-
tribution after the preceding congestion epoch,

•  there is a constant time interval
between congestion epochs,

• the aggregate rate of the sources  is a -periodic
function that oscillates between a maximum value
and a minimum value with an average of

, and
• any initial configuration of the sources will tend to

this invariant exponentially fast in .
The reader interested in technical details will find them

in Appendix A. See Figure 11 for a picture of this config-
uration, where the mean field approximation is plotted in
black for  connections and .

 The invariant distribution of source rates has two
important properties. First, it consists of distinct popula-
tions of sources, each population with one rate, rather
than constraining all  sources to transmit at the same
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Figure 11: The invariant configuration of sources for
the mean-field approximation and a simulated
instance of the model with N = 50 sources, the frac-
tion r = 1/4 of the sources reset randomly at each
epoch, the bottleneck link capacity C=1, and the
epoch duration . The distribution of
50 sources after 1000 cycles in a realization of the
toy model is also plotted in grey.
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rate. These distinct populations point out a slight misno-
mer in the term “synchronization” commonly used to
describe this phenomenon. The sources do not synchro-
nize their rates with respect to one another, they conspire
in groups to produce an aggregate periodic rate, and so
the term “aggregate periodic behavior” is a more accu-
rate description of this phenomenon. The sizes of the rate
populations do decay exponentially, showing that many
of the sources transmit at the lowest rate while very few
sources transmit at a high rate.

The second important property the invariant configura-
tion possesses is stability. To explore the stability of the
invariant distribution, we define a perturbation of the
system at the th congestion epoch to be a random devia-
tion from the time the th reset occurs. We choose  uni-
formly at random in  and jitter the duration of the
th epoch . The time  between the

st reset and when the sources next reach link
capacity  is still , we simply randomly perturb
when this reset occurs as we do in a queueing policy that
attempts to inject a small amount of randomness into the
loss process. At the new time , we reset a uniformly
chosen random fraction  of the sources and let the sys-
tem evolve again until the total rate exceeds capacity .
We repeat this process for each congestion epoch (draw-
ing an independent  each time) and show that the per-
turbed system remains close to the unperturbed system
(which, we emphasize, is converging exponentially fast
to the invariant distribution independent of the initial
conditions). The perturbed system differs from its origi-
nal trajectory with respect to its rates by a maximum
value of  and with respect to its congestion epoch dura-
tions by . On average, the perturbed system does not
stray from its original course, as the perturbation  is a
random variable with mean 0.

C.  Extensions and generalizations

Several aspects of this mathematical model are only
simple abstractions of more complex realistic behavior.
To generate a less artificial picture of the behavior of a
system of  sources, we must change both the manner in
which the sources increase their rates and the rate reset
policy in the face of congestion. However, neither modi-
fication changes the gross behavior of the system and so
we feel reasonably confident drawing conclusions from
the behavior of the simple abstract model.

The rate increase profile in this simple mathematical
model does not reflect the complex behavior of the rate
increase in TCP with its slow-start and congestion avoid-
ance phases. However, if we impose a more complicated
rate increase , we do not change the overall behav-
ior of the sources although we do change the details. The
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congestion epoch duration is different and is given by

but with the same reset policy, the system evolves as
before. The source rate distribution moves according to

the expression . Similarly, if

we choose a different reset policy, perhaps setting the
rates to zero of those sources with higher rates, we
change the congestion epoch duration slightly and the
percentage of sources at a given rate no longer decays
exponentially. In fact, if we adopt a “deterministic” reset
policy where we reset the  sources with the highest
rates, we will get  distinct rate populations of equal size
and a constant epoch duration depending on .

Finally, the mean-field approximation is just that, only
an approximation of the true behavior of the mathemati-
cal model (itself an approximation). However, a more
careful analysis of the behavior of  sources under the
action of this random dynamical system,not assuming
that  is large, reveals that the mean-field approximation
is an excellent approximation of the system in Figure 11.

IV. CONCLUSION

In our work we set out to explore and quantify by how
much RED reduces “global synchronization”. Intuitively,
it is a small step from understanding how sources may
move in lock-step to conclude that a randomized drop
policy will break the synchronization and hence elimi-
nate aggregate periodic behavior.

Our first conclusion is that the intuition is wrong —
while RED may prevent sources moving in lock-step,
this is not enough to prevent the traffic rate on a link
from oscillating, and hence wasting throughput for all
flows.

Our second conclusion — aided by a simple analytical
model — is that there is evidence that when buffers are
small, a feedback-based congestion control algorithm
has a strong propensity to cause aggregate periodic
behavior, regardless of the queue management policy. In
other words, randomized drop policies are unlikely to
reduce aggregate periodic behavior. Even when the sys-
tem is perturbed in a variety of ways, such as placing
sources as very different distances from the bottleneck,
traffic on the bottleneck link can still oscillate. Particu-
larly with small buffers, flows in apparently very differ-
ent states interact — and appear to conspire — to create
aggregate periodicity. However, our results are based on
a simple topology and a toy analytical model — it is pre-
mature to make any strong generalizations from our
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results. Further work is needed to determine how broadly
these results apply.

Fortunately, although traffic on the link prior to the
bottleneck router may continue to oscillate, with large
enough buffers (equal to at least the bandwidth-RTT
product), neither Drop Tail and RED lead to significant
periodic behavior on the bottleneck link itself.
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APPENDIX  A: Analysis of Toy Model

In this section we sketch the proofs of the results dis-
cussed in Section III.



1) Invariant configurations

Theorem 1:There is a unique density  that
describes the state of  sources (for  large) immedi-
ately after resetting the rates of  sources (chosen
uniformly at random) to zero such that after the next
reset, reached at time after the first reset,

 is restored. This density is given by

In addition, the aggregate rate  is a periodic function
with period , oscillating between a maxi-
mum value of  and .

Proof: The aggregate rate at time  is
 where the density

describes the state the system is in at time  and the
capacity constraint gives us the time  at which the rate
reaches capacity

We obtain an iterated map on the density  and
aggregate rate . Assume that  is the time immedi-
ately after the th reset, then the iterated map is

where . The last two conditions on the
aggregate rate tell us that if a density  exists, then
satisfies  or that .

The global attractor for the iterated map on
must therefore satisfy

(1)

Observe that we can translate condition specified in (1)
into a condition on , the Laplace transform of , and
then we can expand in a uniformly convergent power
series

Next we compute the inverse Laplace transform of
 by inverting each term in the power series term-by-

term, giving us

ρ*
N N

r N⋅

t∆ r C⋅( ) N⁄=

ρ*

ρ* x( ) r 1 r–( ) l δ0 x l t∆⋅–( )⋅ ⋅
l 0=

∞

∑⋅ x 0≥,

0 x 0<,





=

A t( )

t∆ r C⋅( ) N⁄=

C 1 r–( ) C⋅

t

A t( ) N x ρ x t,( )⋅( ) xd∫⋅= ρ x t,( )
t

tn
-

C

C A tn
-

 
 

N x ρ x tn,( )⋅( ) xd∫⋅= =

ρ x t,( )

A t( ) tn
+

n

ρ x tn
+, 

 
r δ0 x( )⋅ 1 r–( ) ρ x tn 1+∆– tn 1+

-,( )⋅+=

A tn 1+
-

( ) C A tn
+

( ) N tn 1+∆⋅+= =

A tn
+

( ) A tn 1+
+

( ) 1 r–( ) C⋅= =

tn 1+∆ tn 1+ tn–=

ρ* x( ) t∆
1 r–( ) C⋅ N t∆⋅+ C= t∆ r C⋅( ) N⁄=

ρ x t,( )

ρ* x( )
r δ0 x( )⋅ 1 r–( ) ρ* x t∆–( )⋅+ x 0≥,

0 x 0<,



=

ρ* ρ*

ρ* s( ) r

1 1 r–( ) e
s t∆⋅( )–⋅–

--------------------------------------------------- r 1 r–( ) l
e

s l t∆⋅ ⋅( )–⋅
l 0=

∞

∑⋅= =

ρ* s( )

ρ* x( ) r 1 r–( ) l δ0 x l t∆⋅–( )⋅ ⋅
l 0=

∞

∑⋅=

when  and  for .
Note that if we take an iterative approach, we find the

following theorem:

Theorem 2:If a fraction  of a system of  sources
whose states are initially described by the density
follows the dynamics outlined above, then the density

 converges weakly to the global attractor ,
independent of the initial conditions of the system. The
density at time  after the -th reset is

and the congestion epoch length is , after
the first congestion epoch (whose length depends on the
initial state of the system).

The careful reader might argue that allowing even an
infinitesimal percentage of the sources’ rates to grow
arbitrarily large is not a physically relevant result. Let us
now assume that the sources’ rates cannot grow larger
than a maximum rate . That is, once a source increases
its transmission rate to , its rate remains fixed there
until it experiences a loss. We have to assume that

 to avoid trivial and physically meaningless
situations. We express this condition upon the source rate
distribution mathematically by placing a point mass at
rate  whose weight is the total percentage of source
rates that at time  are larger than  and leaving
unchanged the distribution for smaller rates. Let  be the
largest integer such that  for

. Then we may conclude using arguments
similar to the above theorems that there is an invariant
distribution  for -bounded sources.

Corollary 1:The invariant distribution for -
bounded sources has the form

(2)

where  is the per-

centage of sources at rate .

2) Stability of invariant configurations

We work with the more physically meaningful rate-
bounded model as in Corollary 1 and assume

 for ease of calculation (if not, then the
summation in (2) ends at ).

Lemma 1:If we jitter the duration of the th conges-
tion epoch by  for  a uniformly distributed value in
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, then only the duration of the st epoch is
affected and , where

.

Proof: Because we reset the source rates after an epoch
duration , the total rate immediately before
reset is allowed to grow to  and immedi-
ately following reset is . We let
the system of sources evolve as before until their total
rate reaches capacity . The duration of the st epoch
is the time interval given by

 or
. At this time (with no jit-

ter), we reset a fraction  of the source rates and proceed
as usual. Because at the st epoch, the total rate is

and we use the same evolution procedure and reset pol-
icy at the nd epoch, the duration
remains unaffected by the perturbation at the  th epoch.

Note that if we jitter the st epoch duration by
, then the total rate before reset is

 (and this rate is not affected by the jit-
ter at the  th epoch). We may then apply the lemma to
the st epoch. Applying this lemma inductively, we
may conclude:

Theorem 3:If we jitter each congestion epoch dura-
tion independently and let the system evolve, these per-
turbations do not propagate and force the system away
from the invariant configuration with respect to the dura-
tion of the epochs. That is, the duration of each epoch
varies only by , the amount by which we perturb the
duration, and on average .

These calculations do not tell us if the rates of the per-
turbed system remain close to those of the original sys-
tem however. We return to the setting of Lemma 1 and
assume that the system has evolved long enough in time
to have the form immediately after a reset

where the mass  at the rate bound  is

Lemma 2:If we jitter the duration of the th conges-
tion epoch by  for  a uniformly distributed value in

, then the source rates change by
.

Proof: The reader is asked to verify that if
 and , then before

the st reset, the first rate population is at rate
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 while all the others are at rate
. In addition, for

 iterations after the perturbation at the th epoch,
the source rates have wandered from their original trajec-
tory by at most . After
iterations proceeding the perturbation, the system returns
to its initial trajectory.

By applying this lemma inductively, we may conclude:

Theorem 4:If we perturb each congestion epoch
duration independently and let the system evolve, then
the maximum deviation of the source rates from integer
multiples of  is , for  i.i.d. uni-
form random variables on .

We observe that if the maximum source rate  is on
the order of , then  is approximately . Hence the
maximum deviation is roughly  and on aver-
age this deviation is zero since  is a uniformly distrib-
uted random variable with mean zero.

APPENDIX  B: RED parameters used in simulations

We use the same notation for the parameters as [4].
• Queue occupancy is measured in number of packets.
• Dropping probability is NOT increased slowly when

average queue length exceeds maxthresh.
• When the algorithm decides to drop a packet, it

drops from the tail.
• The algorithm doesn’t favor any packet based on its

type(control or data) or size.
• (queue weight given to current queue size

sample).
•  (Maximum probability of dropping a

packet).
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