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TCP SWITCHING—WHICH INTEGRATES CIRCUIT SWITCHING BENEFITS IN THE

PACKET SWITCHED INTERNET—DEMONSTRATES THE POSSIBILITIES.

e e 00 oo Circuit switches have simpler data
paths and are potentially much faster than
packet switches. Taking advantage of this dif-
ference makes very high capacity all-optical
circuit switches feasible, whereas all-optical
packet switches are a long way from com-
mercial practicality. Peak-allocation, that is
eliminating the benefits of statistical multi-
plexing, is circuit switches’ main disadvantage,
and what prevents their widespread adoption.
However, the rising amount of already abun-
dant link capacity will eliminate this draw-
back. Our research focuses on how the
existing IP infrastructure can incorporate fast,
simple (and perhaps optical) circuit switches.
Several approaches to this already exist,' but
we propose a technique called transmission-
control protocol (TCP) switching in which
each application flow (usually an individual
TCP connection) triggers its own end-to-end
circuit creation across a circuit switched core.
Based on IP switching,® TCP switching incor-
porates modified circuit switches that use
existing IP routing protocols to establish cir-
cuits. Routing occurs hop by hop, and circuit
maintenance uses soft state, that is, it is
removed through an inactivity timeout.
Many believe that only routers, links, and
end hosts, all using packet switching, com-
prise the Internet. In reality, the Internet uses
circuit switching, both at its core (Sonet,
SDH, dense wave digital multiplexing or

DWDM), and in its last mile (modems,
DSL). Internet Protocol treats these circuits
as static, point-to-point links connecting adja-
cent nodes; the physical circuits and IP belong
to different layers, and they are completely
decoupled since they operate autonomously
and without cooperation. Decoupling of lay-
ers has many advantages. It lets the circuit
switched physical layer evolve independently
of IP—to both Sonet/SDH, and DWDM. IP
runs over a huge variety of physical layers
regardless of the underlying technology. How-
ever, a lot of repetition exists between the
packet-switched IP layer and the circuit-
switched physical layer. For example, a net-
work must route both IP datagrams and
circuit paths, yet, they use different routing
protocols, and their implementations are
incompatible. This makes simple and obvi-
ous operations infeasible. For example, if traf-
fic increases between two neighboring routers,
no simple or standard way exists to automat-
ically increase the capacity between them. The
problem is with how circuit switches interact
with IP routers. TCP switching presents a
method of interaction, promising automatic
and dynamic circuit allocation.

Packet-switched Intemet

With the speed benefits offered by circuit
switching, why does the Internet use packet
switching? Because of data traffic’s bursty
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nature, statistical multiplexing allows heavier
traffic with packet switching than circuit
switching over the same links. In the 1970s
and 1980s, bandwidth efficiency became
paramount because Internet service providers
leased their linked lines—these lines were an
expensive and scarce resource. Packet switch-
ing was also thought to provide more robust-
ness than circuit switching. Because the
routing tables present in the router individu-
ally direct each packet, getting around a link
or node failure only requires an update to
these tables.

Bandwidth efficiency and ease of reconfig-
uration advantages do not hold today. Reports
show that networks only lightly utilize most
links, frequently as low as 10 to 15 percent of
their capacity.” Furthermore, we anticipate
utilization to continue decreasing, due, in
part, to the huge investment in optical fibers
and the glut of capacity in the Internet core.®
Link capacity is no longer a scarce resource.
In terms of robustness, packet-switched rout-
ing protocols do not necessarily lead to sim-
pler and quicker reconfiguration. Routing
protocols in use now are extremely compli-
cated and can take seconds or even minutes
to converge, and reroute around failures.” On
the other hand, most circuit-switched equip-
ment, Sonet for example, must recover in less
than 50 ms.!® Therefore, having per-circuit
state in a network does not necessarily prevent
robustness.

Circuit-switched alternative

Although the original reasons for using
packet switching no longer hold, this does not
automatically make circuit switching the best
option. Understanding the characteristics of
circuit switching is necessary before deploy-
ing it in the Internet core. Circuit switching
offers many advantages.

No Buffers

Circuit switching requires no buffers, while
a packet switch maintains buffers to hold
packets during heavy traffic. These buffers
must be both large and fast. Routers maintain
about (R x RTT) bits of packet buffers, where
R is the line rate, and R7T is the typical
round-trip time between any two end hosts
(about 0.25 seconds). For example, a 10-Gbps
line card maintains about 2.5 Gbits (300

Mbytes) of storage. To buffer packets as quick-
ly as they arrive, the buffers must run at least
as fast as the line rate. Commercially available
memory devices are either optimized for stor-
age but not speed (DRAMs), or speed but not
storage (SRAMs), and so are ill suited for
large, fast packet buffers. Designers find it
challenging to build packet buffers for a 10-
Gbps line card, and it is even more difficult
to achieve 40 Gbps, particularly when power
consumption is an issue. Most router capaci-
ty is limited by memory availability. That is,
routers require a fast and large memory, but
need minimum power consumption. Circuit
switching eliminates this problem. Data
arrives for processing on one channel, and the
switch immediately places the incoming infor-
mation flow onto the outgoing channel, there-
fore requiring little memory.

Optical switching

Circuit switches can take advantage of opti-
cal switching technology. Advances in optical
circuit switching technology in space-'"'* and
wave-division switching,'® promise large
increases in switching capacity, and reductions
in power consumption. Several optical circuit
switching products exist already. However,
packet switches using only optics are current-
ly infeasible because of the lack of a viable
optical buffering technology.

Switching capacity

Circuit switching eliminates per-packet
processing. On the other hand, a router must
process each packet as it arrives, performing
an address lookup and modifying the packet
header. A network processor or a dedicated
ASIC might perform this processing. Proces-
sors double in speed about every eighteen
months, but the link capacity in DWDM cur-
rently doubles every seven months. Circuit
switching may offer the only alternative that
takes advantage of the Internet’s growing
capacity.

This reason and the previously discussed
absence of buffering and the advantage of
optical technology, lead us to conclude that,
for a given technology, circuit switches pro-
vide more capacity than packet switches. An
informal survey of commercial routers and
circuit switches shows that the latter (for
example, Ciena’s MultiWave CoreDirector or
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Figure 1. A simple network scenario, which
demonstrates the relative response times
of circuit switching, and packet switching.

Lucent’s WaveStar OLS 1.6T) currently
implement about four to 10 times as much
switching capacity as routers (for example,
Cisco’s 12416 Internet router.)

Quality of service

Circuit switching lends itself to simple,
intuitive (and degenerate) QoS. Bandwidth
is peak allocated, and there is no delay jitter.
In packet switching, there are two ways to pro-
vide bandwidth and delay guarantees: heavy
overprovision of link capacity, essentially,
emulating circuit switching, or use of well-
known algorithms such as weighted fair
queueing,' generalized processor sharing,'
and deficit round robin.'® Emulating circuit
switching offers no advantage in link utiliza-
tion, yet, it still requires per-packet process-
ing. The downside to algorithms is that they
require complex per-packet processing and
the maintenance of large amounts of state, sig-
nificantly increasing router complexity. Fur-
ther, users often find it difficult to understand,
configure, and use these algorithms.

Simple admission control

Circuit switching replaces per-packet sched-
uling, or drop decisions, with per-flow admis-
sion decisions. Deciding whether or not to
admit a flow is simple: if there is a spare circuit
on the outgoing link, then the switch accepts
the low; otherwise the switch blocks the flow.
In addition, because flows consist of multiple
packets, the switch makes decisions less often
than in packet switching.

User response time
In some situations, circuit switching
improves response time (the time from the

point a user’s host first sends a request until
completion of the file download). For example,
Figure 1 illustrates a case in which 100 clients
simultaneously request the same 1-Mbit file
from a remote server viaa 1-Mbps bottleneck
link (to simplify this example we consider 1
Mbit to be 106 bits, not 210 bits). With pack-
et switching, all downloads finish after 100 ms,
whereas with circuit switching the average
response time is 50.5 ms, and all but one of
the individual downloads finish sooner.

However, circuit switching will not always
give a lower response time, particularly when
one flow can dominate the link. If we modi-
fy our example so that the first client begins
the download of a 1-Gbit file slightly before
the other clients, it will take up the link for a
long time. The average response time in this
case for circuit switching is 1049.5 ms, com-
pared to 108.5 ms for packet switching. How-
ever, this example does not represent what
typically occurs in the Internet core. In prac-
tice, one circuit cannot take up the whole link
because a link supports a large number of cir-
cuits. The speed of an application flow’s access
link limits its rate. Simulations of various
topologies (using the ns-2 network simulator;
htep://www.isi.edu/nsnam/ns/) suggest that,
in practice, the response time is very similar
for packet and circuit switching. We have been
able to confirm this using simple analytical
models.

Circuit-switching disadvantages

Circuit switching does have some disad-
vantages. However we will argue that they are
not significant enough as to prevent the adop-
tion of circuit switching in the Internet.

State maintenance

Circuit switching requires establishing cir-
cuits and the associated state between the
switches before data can be transferred. A large
number of circuits might require a circuit
switch to maintain a lot of state. If this is hard
state, then maintenance is complex. However,
in practice, by observing real packet traces we
have found the number of flows, and the rate
at which they are added and removed, is quite
manageable in simple hardware using soft state.
This holds true even for a high-capacity switch.
The “Typical Internet flows” sidebar discusses
current Internet traffic patterns.



Typical Internet flows

TCP switching establishes a cir-
cuit for each application flow. To

Table1. TCP Flows in the Internet. The figures indicate the range for the 80-
percentile, the average and the median for the different links that we observed.*

understand the feasibility and sen-

sibility of this technology, we need
an understanding of data flows in
the Internet today. Because over 90
percent of Internet traffic is trans-
mission-control protocol (TCP)—
both in terms of packets and
bytes—it is important to under-
stand what a TCP flow is, and how
it behaves. We have studied trace
route measurements, as well as
packet traces from 0C-3 and OC-12

Asymmetrical connections

Traffic characteristics 80-percentile Average Median
TCP flow duration in seconds <4-10 <3-7 <0.5-1.2
Packets per flow <12 < 10-200** <5-9
Bytes per flow <2.5-4 < 9-90** <0.6-1.3
Flow bandwidth (bytes/duration) < 50-100 < 20-140%* <8-15
Percentage of flows with retransmissions <78 <56 <4.7
Percentage of flows experiencing reroute <0.19 <0.39** <0.02

Around 40 percent of the flows transmit an ACK after

the FIN, that is, they acknowledge that a data packet

that was sent in the other direction.

links in vBNS. Table 1 describes the *
typical flow in the Internet.

TCP connections usually last less
than 10 seconds, carry less than 4
Kbytes of data and consist of fewer
than 12 packets in each direction.
Less than 0.4 percent of connec-
tions experience a route change.

The typical user requests a sequence of files for downloading, and wants the fastest possible download for each
file. In most cases, the requested data is not used until the file has completely arrived at the user's machine.

Wasted capacity

Circuit switching requires circuits to be
multiples of a common minimum circuit size.
For example, Sonet commonly cross connects
to provision circuits in multiples of STS-1 (51
Mbps). Having flows whose bandwidth is not
an exact multiple wastes link capacity. There
is a tradeoff between using smaller circuit
granularity and the amount of state main-
tained by the switch.

Blocking under congestion

Circuit switching blocks packets belonging
to a new flow while the new stream of data
waits for a circuit to become available. If no
available circuit exists, the new request waits,
or gets blocked, until a circuit is free. This data
flow system works differently from the link-
sharing paradigm present in the Internet
today, in which packets will still make (albeit
slow) progress over a congested link.

TCP switching in practice
TCP switching consists of establishing fast,
lightweight circuits triggered by application-
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(The data used in the table was made available through the National Science Foundation Cooperative
Agreement No. ANI-9807479, and the National Laboratory of Applied Network Research;
http://moat.nlanr.net/Traces/.)

** These magnitudes present a non-negligible amount of samples with very high values, making the

statistical distribution have long and heavy tails. This is why the average is higher than the 80-percentile.

Figure 2. TCP switching represented as a cloud of circuit switching inside a

packet switched network.

level flows. Figure 2 shows a self-contained
TCP switching cloud inside the packet-
switched Internet. The network’s packet-
switched portion does not change, and circuit
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switches, such as Sonet cross connects make
up the core of the circuit switching cloud.
These circuit switches have simplified mech-
anisms to setup and teardown circuits.
Boundary routers are conventional routers
with circuit switched line cards, which act as
gateways between the packet switching and
circuit switching.

The first arriving packet from an applica-
tion flow triggers the boundary router to cre-
ate a new circuit. An inactivity timeout
removes this circuit later. Hence, TCP switch-
ing maintains circuits using soft state.

In the most common case, the application
flow is a TCP connection, and the first pack-
et arriving at the boundary router is a TCP
synchronization (SYN) packet. This auto-
matically establishes the circuit, as part of the
TCP connection setup handshake. By trig-
gering the circuit establishment when the
router detects the first packet—whether or not
it is a TCP SYN packet—TCP switching is
also suitable for non-TCP flows, and for TCP
flows that experience a route change in the
packet-switched network.

An examination of each step in TCP switch-
ing, following Figure 2, shows how this type of
network architecture establishes a circuit end
to end for a new application flow. When the
boundary router detects an application flow’s
first packet, it examines the IP packet header
and makes the usual next hop routing decision
to determine the outgoing link. The boundary
router then checks for a free circuit on the out-
going link (for example an empty time slot, or
an unused wavelength). If one exists, the
boundary router begins to use it, and forwards
the packet to the first circuit switch in the TCP
switching cloud. If no free circuits exist, the
protocol can buffer the packet with the expec-
tation that a circuit will become free soon, it
could evict another flow, or it could just drop
the packet, forcing the application to retry later.
Current implementations of TCP will resend a
SYN packet after several seconds, and will keep
trying for up to three minutes (depending on
the implementation).

If the circuit is successfully established on
the outgoing link, the packet is forwarded to
the next hop circuit switch. The circuit switch
will detect that a previously idle circuit is in
use. It then examines the first packet on the
circuit to make a next hop routing decision

using its IP routing tables. If a free outgoing
circuit exists, it connects the incoming circuit
to the outgoing circuit. From then on, the cir-
cuit switch does not need to process any more
packets belonging to the flow.

The circuit establishment process contin-
ues hop by hop across the TCP switching
cloud until, hopefully, the circuit is established
all the way from the ingress to the egress
boundary router. The egress boundary router
receives packets from the circuit as they arrive,
determines their next hop, and sends them
across the packet-switched network toward
their destination.

In its simplest form, TCP switching allows
all boundary routers and circuit switches to
operate autonomously. They can create cir-
cuits, and remove (timeout) circuits, inde-
pendently. Obvious alternative approaches
include buffering the first packet while send-
ing explicit signals across the circuit-switched
cloud to create the circuit. However, this
removes autonomy and soft state, and so we
prefer to avoid this method.

Our research finds that circuit switch and
the boundary router complexity is minimal.
The ingress boundary router performs most
packet processing. It has to inject incoming
packets from existing flows into the corre-
sponding outgoing circuits, like any regular
router would. Additionally the ingress bound-
ary router must recognize the first packetin a
flow, decide which outgoing link to use (rout-
ing), and then determine if the outgoing link
has sufficient capacity to carry the new circuit.
On the other hand, core circuit switches only
need to perform processing once per flow,
rather than once per packet.

Recognizing the first packet in a new flow
requires the boundary router to use a four-
field, exact-match classifier. When packets
arrive for existing circuits, the ingress bound-
ary router must determine to which flow and
circuit the packet belongs (using the classifi-
er). The size of the classifier depends on the
number of circuits on the outgoing link. For
example, an OC-192c link carrying 56-Kbps
circuits requires 178,000 entries in its table.

The short life of most flows requires fast cir-
cuit establishment and tear down. Given the
simplicity of the signaling in TCP switching,
we believe that we can achieve this in hard-
ware.



Choice

Table 1. Design choices in TCP switching.

Option 1

Option 2

Notes

Circuit establishment

Circuit release

Handling of non-TCP flows

Signaling

Circuit routing

Circuit granularities

Triggered by first packet seen

in a flow (can be any packet type).

Triggered by inactivity timeout

(soft state).

Treats user datagram protocol
(UDP) and TCP flows the
same way.

None. Circuit establishment is
implicit based on observed
packets.

Hop-by-hop routing.

Flat, that is, all switches have
the same granularity.

Triggered by TCP SYN
packets only.

Triggered by a finish (FIN)
signal

(hard state).

Multiplex UDP traffic into
permanent circuits between
boundary routers.

Explicit in-band or out-of-band
signaling to establish and
remove circuits.

Centralized or source routing.

Hierarchical, that is, fine
circuits are bundled in coarser
circuits in the inner core.

If there is a path reroute outside
the TCP switched cloud, the
switch will not detect the SYN
packet. This is rare in practice.
Neither option is perfect. The
switch might sever connections
that have asymmetrical closings
or long inactivity periods.

UDP represents a small (but
important) amount of traffic.

In-band signaling requires no
additional exchanges, but it is
more complex.

A centralized algorithm can
provide global optimization and
path diversity.

A coarser granularity means that
the switch can go faster,
because it has to process less.

Design options

We have experimented with TCP switching
networks via prototypes (in Linux) and simu-
lation (using ns-2). We considered several vari-
ables to make design choices in our experiments.
Table 1 shows some of the options.

Circuit characteristics

We assume in our experiments that the core
circuit switches carry 56-Kbps circuits to
match the access links of most network users.
High capacity flows use multiple circuits. In
our design, we use implicit signaling, that is,
the arrival of a packet on a previously inactive
circuit triggers the switch to route the packet
and create a new circuit. Alternatively, a design
could use explicit out-of-band signaling in
which the first packet is sent over a separate
circuit (or even a separate network) to the sig-
naling software on the circuit switch. In this
case, hardware changes to the switch are not
necessary.

Flow detection

The exact-match classifier detects new flows.
The classifier compares the headers of arriving
packets against a table of active flows to check

if the flow belongs to an existing circuit, or
whether to create a new circuit. Given the
duration of measured flows, we expect about
31 million lookups and 52,000 new connec-
tions per second for an OC-192¢ link. This is
quite manageable in dedicated hardware.

We use soft state and an inactivity timer to
remove connections. For TCP flows, we might
remove circuits when the router detects a FIN
signal, but in about 40 percent of TCP flows,
an acknowledgement (ACK) packet arrives
after the FIN because the communication in
the other direction is still active. The timeout
duration is a tradeoff between efficiency in
bandwidth and signaling; if the circuit is timed
out too quickly, the bandwidth becomes free
for another flow, but a new circuit must be
established again by the boundary router when
the inactive flow resumes. Our simulations
suggest that a 60 second timeout value will reli-
ably detect flows that have ended (which is
similar to results for IP switching).® But the
cost of using such a long timeout value is high
because the circuit remains unused for long
time. We are exploring dynamic timeout val-
ues and policies for circuit reuse, such as hav-
ing a new flow take over the circuit of the
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least-recently-active flow. By default, all flows
receive a circuit of the same size (56 Kbps in
our prototype and simulations). Even though
the boundary router can allocate different
numbers of circuits to different flows, these
techniques are beyond the scope of the basic
operation of TCP switching.

Experimentation

We have implemented an ingress boundary
router as a kernel module in Linux 2.4 on a
1-GHz Pentium III. We measured the
increased forwarding delay for each packet.
Regular IP forwarding takes 17 ps, whereas in
TCP switching forwarding a packet in the
boundary router takes 17 to 25 ps. In our
nonoptimized software, the circuit setup time
is approximately 57 ps, fast enough to handle
new connection requests of an OC-48c link.
We expect these numbers to drop dramati-
cally if we implement part of our software in
dedicated hardware.

Approaches

Recently several researchers have described
the integration of IP and circuit switching in
the Internet core. Three main approaches
define signaling mechanisms that will add
dynamism to the circuit linking process in
Sonet/SDH circuits: Generalized Multipro-
tocol Label Switching,' Optical Internet-
working Forum,? and Optical Domain
Service Interconnect.® These three working
groups provide the control mechanisms for
managing circuits, and vendors define how to
monitor traffic, what triggers circuit estab-
lishment, and how to allocate bandwidth.

Two architectures try to address this deci-
sion-making. Optical burst switching® queues
packets up to a threshold and then establishes
a circuit with an explicit connection release
time (also known as a burst). Veeraraghavan
et al.> define an end-to-end, circuit-switched
network that is parallel to the packet-switched
Internet. This model only transmits large file
transfers through the circuit-switched network.

Our approach differs in that TCP switch-
ing (usually) piggybacks the creation of a cir-
cuit on the setup phase of a TCP connection.
In this respect, TCP switching is similar to IP
switching®in which user flows triggered the
establishment of asynchronous transfer mode
virtual circuits.

he Internets current over provisioning of

link capacity and the difficulty in building
high-performance packet switches point out the
need for research into alternatives. One obvi-
ous approach is to use very high capacity circuit
switches that already incorporate new optical
technology. While these switches replace Sonet
switches, it is not yet clear how the network
should control them. Research into answering
this question is still far from complete. TCP
switching provides one path to exposing circuits
to IP. Our experiments suggest that circuit
switching yields similar response times for net-
work users and that TCP switching is relative-
ly easy to implement in boundary routers and
core switches. HICRD
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