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Abstract -- Internet routers and Ethernet switches contain packet
buffers to hold packets during times of congestion. Packet buffers are
at the heart of every packet switch and router, which have a combined
annual market of tens of billions of dollars, and equipment vendors
spend hundreds of millions of dollars on memory each year. Designing
packet buffers used to be easy: DRAM was cheap, low power and
widely used. But something happened at 10Gb/s when packets started
to arrive and depart faster than the access time of a DRAM. Alterna-
tive memories were needed, but SRAM is too expensive and power-
hungry. A caching solution is appealing, with a hierarchy of SRAM
and DRAM, as used by the computer industry. However, in switches
and routers it is not acceptable to have a “miss-rate” as it reduces
throughput and breaks pipelines. In this paper we describe how to
build caches with 100% hit-rate under all conditions, by exploiting the
fact that switches and routers always store data in FIFO queues. We
describe a number of different ways to do it, with and without pipelin-
ing, with static or dynamic allocation of memory. In each case, we
prove a lower bound on how big the cache needs to be, and propose an
algorithm that meets, or comes close, to the lower bound. These tech-
niques are practical and have been implemented in fast silicon; as a
result, we expect the techniques to fundamentally change the way
switches and routers use external memory.

I.  INTRODUCTION 
Internet routers and Ethernet switches need buffers to hold

packets during times of congestion. This paper is about how to
build high-speed packet buffers for routers and switches, particu-
larly when packets arrive faster than they can be written to packet
memory. The problem of building fast packet buffers is unique to
- and prevalent in - switches and routers; to our knowledge, there
is no other application that requires a large number of fast
queues. But unlike other parts of the forwarding datapath (such as
address lookup, packet classification, crossbar arbitration and
packet scheduling which have all received widespread attention
in the literature), the design of packet buffers has not received
much attention. As we will see, the problem becomes most inter-
esting at data rates of 10Gb/s and above. 

Packet buffers are always arranged as a set of one or more
FIFO queues. For example, a router typically keeps a separate
FIFO queue for each service class at its output; routers that are
built for service-providers, such as the Cisco GSR 12000 router
[1], maintain about 2,000 queues per line card. Some edge rout-
ers, such as the Juniper E-series routers [2], maintain as many as

1. This work was done in the Computer Systems Laboratory, when the
authors were at Stanford University.

64,000 queues for fine-grained IP QoS. Ethernet switches, on the
other hand, typically maintain fewer queues (less than a thou-
sand). For example, the Force 10 E-Series switch [3] has 128 -
720 queues, while Cisco Catalyst 6500 series line cards [4] main-
tain 288-384 output queues per line card. Some Ethernet switches
such as the Foundry BigIron RX-series [5] switches are designed
to operate in wide range of environments including enterprise
backbones and service provider networks and hence maintain as
many as 8,000 queues per line card. In addition, switches and
routers commonly maintain virtual output queues (VOQs) to pre-
vent head-of-line blocking at the input, often broken into several
priority levels; it is common today for a switch or router to main-
tain several hundred VOQs. 

It is much easier to build a packet switch if the memories
behave deterministically. For example, while it is appealing to
use hashing for address lookups in Ethernet switches, the com-
pletion time is non-deterministic, and so it is common (though
not universal) to use deterministic tree, trie and CAM structures
instead. There are two main problems with non-deterministic
memory access times. First, it makes it much harder to build
pipelines; switches and routers often use pipelines that are sev-
eral hundred packets long - if some pipeline stages are non-deter-
ministic, the whole pipeline can stall, complicating the design.
Second, the system can lose throughput in unpredictable ways.
This poses a problem when designing a link to operate at, say,
100Mb/s or 1Gb/s - if the pipeline stalls, some throughput can be
lost. This is particularly bad news when products are compared in
"bake-offs" that test for line-rate performance. It also presents a
challenge when making delay and bandwidth guarantees; for
example, when guaranteeing bandwidth for VoIP and other real-
time traffic, or minimizing latency in a storage or data-center net-
work. They are also essential when supporting newer protocols
such as fiber channel and data center ethernet which are designed
to support a network which never drops packets.

Until recently, packet buffers were easy to build: The linecard
would typically use commercial DRAM (Dynamic RAM), and
divide it into either statically allocated circular buffers (one circu-
lar buffer per FIFO queue), or dynamically allocated linked-lists.
Arriving packets would be written to the tail of the appropriate
queue; and departing packets read from the head. For example, in
a linecard processing packets at 1Gb/s, a minimum length IP
packet (40bytes) arrives in 320ns, which is plenty of time to write
it to the tail of a FIFO queue in a DRAM. 
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Things changed when linecards started processing streams of
packets at 10Gb/s and faster.1 At 10Gb/s - for the first time - pack-
ets can arrive or depart in less than the random access time of a
DRAM. For example, a 40 byte packet arrives in 32ns, which
means that every 32ns a packet needs to be written to and read
from memory. This is three times faster than the 50ns access time
of typical commercial DRAMs [7].2

There are four common ways to design a fast packet buffer that
overcomes the slow access time of a DRAM: 

1. Use SRAM (Static RAM): SRAM is much faster than
DRAM, and tracks the speed of ASIC logic. Today, commercial
SRAMs are available with access times below 4ns [6], which is
fast enough for a 40Gb/s packet buffer. Unfortunately, SRAMs
are small, expensive and power-hungry. To buffer packets for
100ms in a 40Gb/s router would require 500Mbytes of buffer,
which means more than 100 SRAM devices, consuming over
500W! SRAM is therefore used only in switches with very
small buffers.

2. Use special-purpose DRAMs with faster access times:
Commercial DRAM manufacturers recently developed fast
DRAMs (RLDRAM [8] and FCRAM [9]) for the networking
industry. These reduce the physical dimensions of each array by
breaking the memory into several banks. This worked well for
10Gb/s as it meant fast DRAMs could be built with 20ns access
times. But the approach has a limited future for two reasons: (1)
As the line-rate increases, the memory has to split into more and
more banks, which leads to an unacceptable overhead per-
bank,3 and (2) Even though all Ethernet switches and Internet
routers have packet buffers, the total number of memory devices
needed is a small fraction of the total DRAM market, making it
unlikely that commercial DRAM manufacturers will continue to
supply them.4

3. Use multiple regular DRAMs in parallel: Multiple DRAMs
are connected to the packet processor to increase the memory
bandwidth. When packets arrive, they are written into any
DRAM not currently being written to. When a packet leaves it is
read from DRAM if, and only if, its DRAM is free. The trick is

to have enough memory devices (or banks of memory), and
enough speedup, to make it unlikely that a DRAM is busy when
we read from it. Of course, this approach is statistical, and
sometimes a packet is not available when needed.

4. Create a hierarchy of SRAM and DRAM: This is the
approach we take, and is the only way we know of to create a
packet buffer with the speed of SRAM, and the cost of DRAM.
The approach is based on the memory hierarchy used in com-
puter systems: Data that is likely to be needed soon is held in
fast SRAM, while the rest of the data is held in slower, bulk
DRAM. The good thing about FIFO packet buffers is that we
know what data is going to be needed soon - it is sitting at the
head of the queue. But unlike a computer system, in which it is
acceptable for a cache to have a miss-rate, we describe an
approach that is specific to networking switches and routers, in
which a packet is guaranteed to be available in SRAM when
needed. This is equivalent to designing a cache with a  miss-
rate under all conditions. This is possible because we can exploit
the FIFO data structure used in packet buffers.
The high-speed packet buffers described in this paper all use the

memory hierarchy shown in Figure 1. The memory hierarchy con-
sists of two SRAM caches: One to hold packets at the tail of each
FIFO queue, and one to hold packets at the head. The majority of
packets in each queue - that are neither close to the tail or to the
head - are held in slow, bulk DRAM. When packets arrive, they
are written to the tail cache. When enough data has arrived for a
queue (either multiple small packets or from a single large
packet), but before the tail cache overflows, they are gathered
together in a large block and written to the DRAM. Similarly, in
preparation for when they need to depart, blocks of packets are
read from the DRAM into the head cache. The trick is to make
sure that when a packet is read, it is guaranteed to be in the head
cache, i.e., the head cache must never underflow under any condi-
tions. 

The hierarchical packet buffer in Figure 1 has the following
characteristics: Packets arrive and depart at rate  -- and so the
memory hierarchy has a total bandwidth of  to accommodate
continuous reads and writes. The DRAM bulk storage has a ran-
dom access time of . This is the maximum time to write to, or
read from any memory location. (In memory-parlance is called

.) In practice, the random access time of DRAMs is much
higher than that required by the memory hierarchy,
i.e., . Therefore, packets are written to bulk DRAM in
blocks of size  every  seconds, in order to achieve a
bandwidth of . For example, in a ns DRAM buffering pack-
ets at Gb/s,  bits. For the purposes of this paper, we
will assume that the SRAM is fast enough to always respond to
reads and writes at the line-rate, i.e. packets can be written to the
head and tail caches as fast as they depart or arrive. We will also
assume that time is slotted and the time it takes for a byte to arrive
at rate  to the buffer is called a time-slot.

1. This can happen when a linecard is connected to, say, ten 1-Gigabit Ether-
net interfaces, four OC48 line-interfaces, or a single POS-OC192 or 10GE
line-interface.
2. Note that even DRAMs with fast I/O pins - such as DDR, DDRII and Ram-
bus DRAMS - have very similar access times. While the I/O pins are faster
for transferring large blocks to and from a CPU cache, the access time to a
random location is still approximately 50ns. This is because high-volume
DRAMs are designed for the computer industry which favors density over
access time; the access time of a DRAM is determined by the physical
dimensions of the array (and therefore line capacitance), which stays con-
stant from generation to generation.
3. For this reason, the third generation parts are planned to have a 20ns access
time, just like the second generation.
4. At the time of writing, there is only one publicly announced source for
future RLDRAM devices and no manufacturers for future FCRAMs.
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Internally, the packet buffer is arranged as  logical FIFO
queues as shown in Figure 2. These could be statically allocated
circular buffers, or dynamically allocated linked-lists. It is a char-
acteristic of our approach that a block always contains packets
from a single FIFO queue, which allows the whole block to be
written to a single memory location. Blocks are never broken --
only full blocks are written to, and read from, DRAM memory.
Partially filled blocks in SRAM are held on chip, are never written
to DRAM and are sent to the head cache directly if requested by
the head cache via a “cut-through” path. This allows us to define
the worst-case bandwidth between SRAM and DRAM: it is sim-
ply . In other words, there is no internal speed-up. 

To understand how the caches work, assume the packet buffer is
empty to start with. As we start to write into the packet buffer,
packets are written to the head cache first - so they are available
immediately if a queue is read.1 This continues until the head
cache is full. Additional data is written into the tail cache, until it
begins to fill. The tail cache assembles blocks to be written to
DRAM. 

We can think of the SRAM head and tail buffers as assembling
and disassembling blocks of packets. Packets arrive to the tail
buffer in random sequence, and the tail buffer is used to assemble
them into blocks and write them to DRAM. Similarly, blocks are
fetched from DRAM into SRAM, and the packet processor can
read packets from the head of any queue in random order. We will
make no assumptions on the arrival sequence of packets - we will
assume that they can arrive in any order. The only assumption we
make about the departure order is that packets are maintained in
FIFO queues. The packet processor can read the queues in any
order. For the purposes of our proofs, we will assume that the
sequence is picked by an adversary deliberately trying to overflow
the tail buffer or underflow the head buffer. 

In practice, the packet buffer is attached to a packet processor,
which is either an ASIC or network-processor that processes
packets (parses headers, looks up addresses, etc.) and manages the
FIFO queues. If the SRAM is small enough, it can be integrated
into the packet processor (as shown in Figure 1); or it can be
implemented as a separate ASIC along with the algorithms to con-
trol the memory hierarchy.

A.  Our Goal
Our goal is to design the memory hierarchy that precisely emu-

lates a set of FIFO queues operating at rate . In other words,
the buffer should always accept a packet if there is room, and
always be able to read a packet when requested. We will not rely
on arrival or departure sequences, or packet sizes. The buffer must
work correctly under worst-case conditions.

We need three things to meet our goal. First, we need to decide
when to write blocks of packets from the tail cache to DRAM, so
that the tail cache never overflows. Second, we need to decide
when to fetch blocks of packets from the DRAM into the head
buffer so that the head cache never underflows. And third, we
need to know how much SRAM we need for the head and tail
caches. Our goal is to minimize the size of the SRAM head and
tail caches so they can be cheap, fast and low-power. Ideally, they
will be located on-chip inside the packet processor (as shown in
Figure 1).

B.  Choices
When designing a memory hierarchy like the one shown in Fig-

ure 1, we have three main choices: 

1. Guaranteed versus Statistical: Should the packet buffer
behave like an SRAM buffer under all conditions, or should it1. To accomplish this, the architecture in Figure 2 has a direct-write path for

packets from the writer, to be written directly into the head cache. 

Figure 1: Memory hierarchy of packet buffer, showing large DRAM
memory with heads and tails of each FIFO maintained in a smaller
SRAM cache. 
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allow the occasional miss? In our approach, we assume that the
packet buffer must always behave precisely like an SRAM, and
there must be no overruns at the tail buffer or underruns at the
head buffer. Other authors have considered designs that allow an
occasional error, which might be acceptable in some systems
[30][35][49]. Our results show that it is practical, though inevi-
tably more expensive, to design for the worst-case.

2. Pipelined versus Immediate: When we read a packet,
should it be returned immediately, or can the design tolerate a
pipeline delay? We will consider both design choices, where a
design is either a pipelined design or not. In both cases, the
packet buffer will return the packets at the rate they were
requested, and in the correct order. The only difference is that in
a pipelined packet buffer, there is a fixed pipeline delay between
all read requests and packets being delivered. As to whether this
is acceptable will depend on the system, so we provide solutions
to both and leave it to the designer to choose. 

3. Dynamical versus Static Allocation:.We assume that the
whole packet buffer emulates a packet buffer with multiple
FIFO queues, where each queue can be statically or dynamically
defined. Regardless of the external behavior, internally, the head
and tail buffers in the cache, can be managed statically or
dynamically. In all our designs, we assume that the tail buffer is
dynamically allocated. As we'll see, this is simple and leads to a
very small buffer. On the other hand, the head buffer can be stat-
ically or dynamically allocated. A dynamic head buffer is
smaller, but slightly more complicated to implement, and
requires a pipeline delay - allowing the designer to make a
tradeoff. 

C.  Summary of results
We will first show in Section II, that the tail cache can be

dynamically allocated and contain slightly fewer than  bytes.
The rest of the paper is concerned with the various design choices
for the head cache. 

The head cache can be statically allocated: In which case (as
shown in Section III) it needs just over  bytes to deliver
packets immediately, or  bytes if we can tolerate a large pipe-
line delay. We will see in Section IV, that there is a well-defined
continuous tradeoff between cache size and pipeline delay; the
head cache size varies proportional to . If the head
cache is dynamically allocated, its size can be reduced to 
bytes as derived in Section V. However this requires a large pipe-
line delay. 

In what follows, we prove each of these results in turn, and
demonstrate algorithms to achieve the lower bound (or close to it).
Towards the end of the paper, based on our experience building
high performance packet buffers, we consider how hard the algo-
rithms are to implement in custom hardware.1 Finally, in Section
VIII we compare and contrast our approach to previous work in
this area.

D.  What makes the problem hard?
If the packet buffer consisted of just one FIFO queue, life would

be simple: We could de-serialize the arriving data into blocks of
size  bytes; when a block is full, write it to DRAM. Similarly,
full blocks would be read from DRAM, and then de-serialized and
sent as a serial stream. Essentially we have a very simple SRAM-
DRAM hierarchy. The block is caching both the tail and the head
of the FIFO in SRAM. How much SRAM cache would be need?

Each time  bytes arrived at the tail SRAM, a block would be
written to DRAM. If fewer than  bytes arrive for a queue they
are held on-chip, requiring  bytes of storage in the tail cache. 

The head cache would work in the same way - we simply need
to ensure that the first  bytes of data are always available in
the cache. Any request fewer than  bytes can be returned
directly from the head cache, and for any request of  bytes there
is sufficient time to fetch the next block from DRAM. To imple-
ment such a head cache, a total of  bytes in the head buffer is
sufficient.2 

Things get more complicated when there are more FIFOs
( ). For example, let us see how a FIFO in the head cache
can under-run (i.e. the packet-processor makes a request that the
head cache can’t fulfill) even though the FIFO still has packets in
DRAM. 

When a packet is read from a FIFO, the head cache might need
to go off and refill itself from DRAM so it doesn’t under-run in
the future. Every refill means a read-request is sent to DRAM; and
in the worst-case, a string of reads from different FIFOs might
generate lots of read-requests. For example, if consecutively
departing packets cause different FIFOs to need replenishing, then
a queue of read requests will form waiting for packets to be
retrieved from DRAM. The request queue builds because in the
time it takes to replenish one FIFO (with a block of  bytes), 
new requests can arrive (in the worst case). It is easy to imagine a
case in which a replenishment is needed, but every other FIFO is
also waiting to be replenished, and so there might be 
requests ahead in the request queue. If there are too many
requests, the FIFO will under-run before it is replenished from
DRAM. 

So, the theorems and proofs in this paper are all about trying to
identify the worst-case pattern of arrivals and departures, which
lets us determine how big the SRAM needs to be to prevent over-
runs and under-runs. 

Qb

Qb Qln
Qb

Q Q x⁄( )ln
Qb

1. The approaches described here were originally conceived at Stanford Uni-
versity to demonstrate that specialized memories are not needed for Ethernet
switches and routers. The ideas were further developed and made imple-
mentable by Nemo Systems, Inc. as one of a number of network memory
technologies for Ethernet switches and Internet routers. Nemo Systems is
now part of Cisco Systems.
2. When exactly  bytes are read from a queue, we need an additional 
bytes of space to be able to store the next -byte block which has been pre-
fetched for that queue. This needs no more than  bytes.
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II.  A TAIL-CACHE THAT NEVER OVER-RUNS

Theorem 1: If dynamically allocated, the tail cache must
contain at least  bytes. 

Proof: If there are  bytes in the tail cache, then at
least one queue must have  or more bytes in it, and so a block of
b bytes can be written to DRAM. If blocks are written whenever
there is a queue with b or more bytes in it, then the tail cache can
never have more than  bytes in it. 

III.  A HEAD-CACHE THAT NEVER UNDER-RUNS, WITHOUT 
PIPELINING

If we assume the head cache is statically divided into Q differ-
ent memories of size , the following theorem tells us how big
the head cache has to be (i.e. ) so that packets are always in
the head cache when the packet processor needs them. 

Theorem 2: (Necessity) To guarantee that a byte is always
available in head cache when requested, the head cache must con-
tain at least  bytes. 

Proof: See Appendix A. 

It is one thing to know the theoretical bound; it is another matter
to actually design the cache so as to achieve the bound. We need
to find an algorithm that will decide when to refill the head cache
from the DRAM; which queue should it replenish next? The most
obvious algorithm would be shortest queue first; i.e. refill the
queue in the head cache with the least data in it. It turns out that a
slight variant does the job. 

A.  The Most Deficit Queue First (MDQF) Algorithm
The algorithm is based on a queue’s deficit, which is defined as

follows. When we read from the head cache, we eventually need
to read from DRAM (or to the tail cache, because the rest of the
queue might still be in the tail cache) to refill the cache (if, of
course, there are more bytes in the FIFO to refill it with). We say
that when we read from a queue in the head cache, it is in deficit
until a read request has been sent to the DRAM or tail cache as
appropriate to refill it.

Definition 1: Deficit: The number of unsatisfied read requests for
FIFO  in the head SRAM at time . Unsatisfied read requests
are arbiter requests for FIFO  for which no byte has been read
from the DRAM or the tail cache (even though there are outstand-
ing cells for it).

As an example, suppose  bytes have been read from queue 
in the head cache, and the queue has at least  more bytes in it
(either in the DRAM or the tail cache taken together), and if no
read request has been sent to the DRAM to refill the  bytes in

the queue, then the queue’s deficit at time , =  bytes. If
the queue has  bytes in the DRAM or tail cache, its deficit is

 bytes.

 Algorithm: MDQF tries to replenish a queue in the head cache
every  time slots.It chooses the queue with the largest deficit, if
and only if some of the queue resides in the DRAM or in the tail
cache, and only if there is room in the head cache. If several
queues have the same deficit, a queue is picked arbitrarily.

In order to figure out how big the head cache needs to be, we
need two more definitions. 

Definition 2: Total Deficit : The sum of the deficits of the 
queues with the most deficit in the head cache, at time t. 

More formally, suppose , are the values of
the deficits , for each of the  queues at
any time . Let  be an ordering of the queues 
such that they are in descending order i.e.

. Then,

. (1)

Definition 3: Maximum Total Deficit, : The maximum value
of  seen over all time slots and over all request patterns.
Note that the algorithm samples the deficits at most once every 
time slots to choose the queue with the maximum deficit. Thus, if

 denotes the sequence of times at which MDQF
samples the deficits, then 

. (2)

Lemma 1: For MDQF, the maximum deficit of a queue,
, is bounded by .

Proof: The proof is based on deriving a series of recurrence rela-
tions as follows.
Step 1:Assume that  is the first time slot at which  reaches
its maximum value, for some queue ; i.e. . Trivi-
ally, we have . Since queue  reaches it
maximum deficit at time , it could not have been served by
MDQF at time , because if so, then either, , or
it is not the first time at which it reached a value of , both of
which are contradictions. Hence there was some other queue 
which was served at time , which must have had a larger def-
icit than queue  at time , so

. 
Hence, we have:

.
This gives,

. (3)

Q b 1–( ) 1+

Q b 1–( ) 1+
b

Q b 1–( ) 1+

w
Qw

Qw Q b 1–( ) 2 Qln+( )>

i t
i

d i
d

d

t D i t,( ) d
y d<

y

b

F i t,( ) i

v v1 v2 …vQ, ,( )=
D i t,( ) i 1 2 … Q, , ,{ }=

t π 1 2 3 …Q, , ,( )

vπ 1( ) vπ 2( ) vπ 3( ) … vπ Q( )≥ ≥ ≥ ≥

F i t,( ) vπ k( )

k 1=

i

∑≡

F i( )
F i t,( )

b

τ t1 t2 …, ,( )=

F i( ) Max t∀ τ∈ F i t,( ),{ }≡

F 1( ) b 2 Qln+[ ]

t F 1( )
i D i t,( ) F 1( )=

D i t b–,( ) F 1( ) b–≥ i
t

t b– D i t,( ) F 1( )<
F 1( )

j
t b–

i t b–
D j t b–,( ) D i t b–,( ) F 1( )≥ b–≥

F 2( ) F 2 t b–,( ) D i t b–,( ) D j t b–,( )+≥≥

F 2( ) F 1( ) b– F 1( ) b–+≥



STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

Step 2: Now, consider the first time slot  when  reaches
its maximum value. Assume that at time slot , some queues 
and  contribute to , i.e. they have the most and second
most deficit amongst all queues. As argued before, neither of the
two queues could have been serviced at time . Note that if
one of the queues  or  was serviced at time  then the sum
of their deficits at time  would be equal to or greater than the
sum of their deficits at time , contradicting the fact that 
reaches its maximum value at time . Hence, there is some other
queue , which was serviced at time  which had the most
deficit at time . We know that  and

. Hence, 

. 

By definition, 
.

Substituting the deficits of the three queues  and  we get, 
.

Hence,

. (4)

General Step: Likewise, we can derive relations similar to
Equation (3), and (4) for .

. (5)

A queue can only be in deficit if another queue is serviced instead.
When a queue is served,  bytes are requested from DRAM, even
if we only need  byte to replenish the queue in SRAM. So every
queue can contribute up to  bytes of deficit to other queues.
So the sum the deficits over all queues, .
We replace it with the following weaker inequality, 

. (6)
Rearranging Equation (5),

Expanding this inequality starting from , we have,

By expanding  all the way till , we obtain,

Since, , 

Therefore,
. 

Lemma 2: For MDQF,
, .

Proof: See Appendix B.1 

Theorem 3: (Sufficiency) For MDQF to guarantee that a
requested byte is in the head cache (and therefore available imme-
d i a t e l y )  i t  i s  s u f f i c i e n t  f o r  t h e  h e a d  c a c h e  t o  h o l d

 bytes.

Proof: From Lemma 1, we need space for 
bytes per queue in the head cache. Even though the deficit of a
queue with MDQF is at most  (which is reached at some
time ), the queue can lose up to  more bytes in the next

 time slots, before it gets refreshed at time . Hence, to
prevent under-flows, each queue in the head cache must be able to
hold  bytes. Note that in
order that the head cache not underflow it is necessary to pre-load
the head cache to up to  bytes for every queue.
This requires a ‘direct-write’ path from the writer to the head
cache as described in Section I. 

B.  Near-Optimality of the MDQF algorithm
Theorem 2 tells us that the head cache needs to be at least

bytes for any algorithm, whereas MDQF
needs  bytes, which is slightly larger. It is possible
that MDQF achieves the lower bound, but we have not been able
to prove it. For typical values of Q ( ), and b (
bytes) MDQF needs a head cache within 16% of the lower bound.
For example, an implementation with , and 
bytes requires a cache size of  Mb which can easily be inte-
grated into current generation ASICs.

IV.  A HEAD-CACHE THAT NEVER UNDER-RUNS, WITH 
PIPELINING

High-performance routers use deep pipelines to process packets
in tens or even hundreds of consecutive stages. So it is worth ask-
ing if we can reduce the size of the head cache by pipelining the
reads to the packet buffer in a lookahead buffer. The read rate is
the same as before, it is just that the algorithm can spend longer
processing each read. Perhaps it can use the extra time to get a
“heads-up” of which queues need refilling, and start fetching data
from the appropriate queues in DRAM sooner. We will now
describe an algorithm that does exactly that; and we will see it
needs a much smaller head cache. 
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When the packet processor issues a read, we are going to put it
into the lookahead buffer shown in Figure 4. While the requests
make their way through the lookahead buffer, the algorithm can
take a “peek” at which queues are receiving requests. Instead of
waiting for a queue to run low (i.e. for a deficit to build), it can
anticipate the need for data and go fetch it in advance. 

As an example, Figure 4(a,b,c) shows how the lookahead buffer
advances every time slot. The first request in the lookahead buffer
at time slot  (request A1 in Figure 4a) is processed at time
slot  (as shown in Figure 4b). A new request can arrive to
the tail of the lookahead buffer every time slot (request C2 in Fig-
ure 4b).1 

A.  The Most Deficit Queue First (MDQFP) Algorithm with 
Pipelining.

With the lookahead buffer we need a new algorithm to decide
which queue in the cache to refill next. Once again, the algorithm
is intuitive: We first identify any queues that have more requests
in the lookahead buffer than they have bytes in the cache. Unless
we do something, these queues are in trouble, and we call them
critical. If more than one queue is critical, we refill the one that
went critical first. 

 Algorithm Description: Every  time slots, if there are critical
queues in the cache, refill the first one to go critical. If none of the
queues are critical right now, refill the queue that — based on cur-
rent information — looks most likely to become critical in the
future. In particular, pick the queue that will have the largest defi-
cit at time , (where x is the depth of the lookahead buffer2)
assuming that no queues are replenished between now and .
If multiple queues will have the same deficit at time , pick an
arbitrary one.

We can analyze the new algorithm in almost the same way as
we did without pipelining. To do so, it helps to define the deficit
more generally.

Definition 4: Maximum Total Deficit when we have a pipeline
delay : the maximum value of  for a pipeline delay of

, over all time slots and over all request patterns. Note that in
the previous section (no pipeline delay) we dropped the subscript
i.e. .

In what follows we will refer to time  as the current time,
while time  is the time at which a request made from the head
cache at time  actually leaves the cache. We could imagine that
every request sent to the head cache at time  goes into the tail of
a shift register of size . This means that the actual request only

reads the data from the head cache when it reaches the head of the
shift register, i.e. at time . At any time , the request at the
head of the shift register leaves the shift register. Note that the
remaining  requests in the shift register have already been
taken into account in the deficit calculation at time , and the
MMA only needs to update its deficit count, critical queue calcu-
lation for time , based on the newly arriving request at time 
which goes into the tail of the shift register. 

Implementation Details: Since a request made at time  leaves
the head cache at time , this means that even before the first
byte leaves the head cache, up to  bytes have been requested
from DRAM. So we will require  bytes of storage on chip to
hold the bytes requested from DRAM in addition to the head
cache. Also, when the system is started at time , the very
first request comes to the tail of the shift register and all the deficit
counters are loaded to zero. There are no departures from the head
cache till time  though DRAM requests are made immedi-
ately from time .

Note that MDQFP-MMA is looking at all requests in the looka-
head register, calculating the deficits of the queues at time  by
taking the lookahead into consideration, and making scheduling
decisions at time . The maximum deficit of a queue (as per-
ceived by MDQFP-MMA), may reach a certain value at time ,
but that calculation assumes that the requests in the lookahead
have already left the system, which is not the case. For any queue

, we define:

Definition 5: Real Deficit , the real deficit of the
queue at any time , (which determines the actual size of the
cache) is governed by the following equation, 

(7)

where,  denotes the number of DRAM services that
queue  receives between time  and , and  denotes
the deficit as perceived by MDQF at time , after taking the loo-
kahead requests into account. Note however that since

, if a queue causes a cache miss at time , that
queue would have been critical at time . We will use this fact
later on in proving the bound on the real size of the head cache. 

Lemma 3: (Sufficiency) Under the MDQFP-MMA policy,
and a pipeline delay of  time slots, the real deficit of any
queue  is bounded for all time  by 

(8)

Proof: See Appendix C. 
This leads to the main result that tells us a cache size that will

be sufficient with the new algorithm.
1. Clearly the depth of the pipeline (and therefore the delay from when a read
request is issued until the data is returned) is dictated by the size of the looka-
head buffer.
2. In what follows for ease of understanding assume that  is a multiple
of .
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Theorem 4: (Sufficiency) With MDQFP and a pipeline delay
of  (where ) a head cache of size  bytes is
sufficient. 

Proof: The proof is similar to Theorem 3. 

B.  Tradeoff between head SRAM size and pipeline delay.
Intuition tells us that if we can tolerate a larger pipeline delay,

we should be able to make the head cache smaller; and that is
indeed the case. Note that from Theorem 4 the rate of decrease of
size of the head cache, (and hence the size of the SRAM) is, 

which tells us that even a small pipeline will give a big decrease in
the size of the SRAM cache. As an example, Figure 6 shows the
size of the head cache as a function of the pipeline delay  when

 and  bytes. With no pipelining, we need
90kbytes of SRAM, but with a pipeline of  time
slots, the size drops to 10kbytes. Even with a pipeline of 300 time
slots (this corresponds to a 60ns pipeline in a 40Gb/s line card) we
only need 53kbytes of SRAM: A small pipeline gives us a much
smaller SRAM.1

V.  A DYNAMICALLY ALLOCATED HEAD-CACHE THAT 
NEVER UNDER-RUNS, WITH LARGE PIPELINE DELAY

Until now we have assumed that the head cache is statically
allocated. Although a static allocation is easier to maintain than a
dynamic allocation (static allocation uses circular buffers, rather
than linked lists), we can expect a dynamic allocation to be more

efficient because it is unlikely that all the FIFOs will fill up at the
same time in the cache. A dynamic allocation can exploit this to
devote all the cache to the occupied FIFOs. 

Let us see how much smaller we can make the head cache is we
dynamically allocate FIFOs. The basic idea is that at any time,
some queues are closer to becoming critical than others. The more
critical queues need more buffer space, while the less critical
queues need less. When we use a lookahead buffer, we know
which queues are close to becoming critical and which are not.
We can therefore dynamically allocate more space in the cache for
the more critical queues, borrowing space from the less critical
queues that don’t need it. 

A.  The smallest possible head cache 

Theorem 5: (Necessity) For a finite pipeline, the head cache
must contain at least  bytes for any algorithm. 

Proof: Consider the case when the FIFOs in DRAM are all non-
empty. If the packet processor requests one byte from each queue
in turn (and makes no more requests) we might need to retrieve 
new bytes from the DRAM for every queue in turn. The head
cache returns one byte to the packet processor and must store the
remaining  bytes for every queue. Hence the head cache
must be at least  bytes. 

B.  The Earliest Critical Queue First (ECQF) Algorithm
As we will see, ECQF achieves the size of the smallest possible

head-cache; i.e. no algorithm can do better than ECQF.

 Algorithm Description: Every time there are  requests made
to the head cache, (if there is a read request in every time slot, this
occurs every  time slots) if there are critical queues in the cache,
refill the first one to go critical. Otherwise do nothing.

 Example of ECQF: Figure 4 shows an example for 
and . Figure 4a shows that the algorithm (at time )
determines that queues  will become critical at time 
and , respectively. Since  goes critical sooner, it is
refilled. Bytes from queues  are read from the head cache
at times . In Figure 4,  goes critical first and is
refilled. Bytes from queues  leave the head cache at times

. The occupancy of the head cache at time  is
shown in Figure 4c. Queue  is the earliest critical queue (again)
and is refilled. 

To figure out how big the head cache needs to be we will make
three simplifying assumptions (which are described in Appendix
D) that help prove a lower bound on the size of the head cache.
We will then relax the assumptions to prove the head cache need
never be larger than  bytes.

Theorem 6:  (Su f f i c i ency )  I f  t he  head  cache  has
bytes and a lookahead buffer of  bytes

1. The “SRAM size vs. pipeline delay” curve is not plotted when the pipeline
delay is between 1000 and 10,000 time slots since the curve is almost flat in
this interval. 
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Figure 3: The SRAM size (in bold) as a function of pipeline delay (x).
The example is for 1000 queues ( ), and a block size of
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(and hence a pipeline of  slots), then ECQF will
make sure that no queue ever under-runs.

Proof: See Appendix D. 

VI.  SUMMARY OF RESULTS

The tables below compare the sizes of the cache for various
implementations. Table 1 compares head cache sizes with and
without pipelining, for static or dynamic allocation. Table 2 com-

pares the tail cache sizes for static or dynamic allocation. 

VII.  IMPLEMENTATION CONSIDERATIONS

1. Complexity of the algorithms: All the algorithms require
deficit counters; MDQF and MDQFP must identify the queue
with the maximum deficit every  time slots. While this is
possible to implement for a small number of queues using ded-
icated hardware or perhaps using a heap data structure [29], it
may not scale when the number of queues is very large. The
other possibility is to use calendar queues, with buckets to
store queues with the same deficit. In contrast, ECQF is sim-
pler to implement. It just needs to identify when a deficit
counter becomes critical and replenish the corresponding
queue.

2. Reducing :The cache scales linearly with , which scales
with line rates. It is possible to use ping-pong buffering [31] to
reduce  by a factor of two (from  to ).
Memory is divided into two equal groups, and a block is writ-
ten to just one group. Each time slot, blocks are read as before.
This constrains us to write new blocks into the other group.
Since each group individually caters a read request or a write
request per time slot, the memory bandwidth of each group
needs to be no more than the read (or write) rate . Hence
block size, . However, as soon as either one of the
groups becomes full, the buffer cannot be used. So in the worst
case, only half of the memory density is usable. 

3. Saving External Memory Density and Bandwidth: One
consequence of integrating the SRAM into the packet proces-
sor is that it solves the so-called "65 byte problem". It is com-
mon for packet processors to segment packets into fixed size
chunks, to make them easier to manage, and to simply the
switch fabric; 64-bytes is a common choice because it is the
first power of two larger than the size of a minimum length IP
datagram. But although the memory interface is optimized for

TABLE 1 : Head Cache Sizes 

Head SRAM 
Pipeline Delay

(time slot)

Head SRAM
(bytes, type, algorithm) Source

0 Qb(3+ln Q), Static, MDQF Theorem 3

x Qb(3+ln[Qb/(x-b)], Static, MDQFP Theorem 4

Q(b-1)+1 Q(b-1), Dynamic, ECQF Theorem 6

TABLE 2 : Tail Cache Sizes 

Tail SRAM
(bytes, type, algorithm) Source

Qb(3+ln Q), Static, MDQF By a symmetry argument to Theorem 3

Qb, Dynamic Theorem 1

Figure 4: ECQF with  and  bytes. The dynamically allocated head cache is  bytes and the lookahead buffer is 
bytes. 
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Q(A,6) = 3; Q(A, 11) critical.
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64byte chunks, in the worst-case it must be able to handle a
sustained stream of 65-byte packets -- which will fill one
chunk, while leaving the next one almost empty. To overcome
this problem, the memory hierarchy is almost always run at
twice the line-rate: i.e. , which adds to the area, cost and
power of the solution. Our solution doesn't require this
speedup of two. This is because data is always written to
DRAM in blocks of size , regardless of the packet size. Par-
tially filled blocks in SRAM are held on chip, are never writ-
ten to DRAM and are sent to the head cache directly if
requested by the head cache. We have demonstrated imple-
mentations of packet buffers that run at  and have no frag-
mentation problems in external memory. 

VIII.  PREVIOUS WORK

Packet buffers based on a SRAM-DRAM hierarchy are not
new, and although not published before, they have been deployed
in commercial switches and routers. But there is no literature that
describes or analyzes the technique. We have found that existing
designs are based on ad-hoc statistical assumptions without hard
guarantees. We divide the previous published work into two cate-
gories:

Systems which give statistical performance: In these systems,
the memory hierarchy only gives statistical guarantees for the
time to access a packet, similar to interleaving or pre-fetching
used in computer systems [22][23][24][25][26]. Examples of
implementations that use commercially available DRAM control-
lers are [27][28]. A simple technique to obtain high throughputs
using DRAMs (using only random accesses) is to stripe a packet1
across multiple DRAMs [30]. In this approach each incoming
packet is split into smaller segments and each segment is written
into different DRAM banks; the banks reside in a number of par-
allel DRAMs. With this approach the random access time is still
the bottleneck. To decrease the access rate to each DRAM, packet
interleaving can be used [31][32]; consecutive arriving packets
are written into different DRAM banks. However when we write
the packets into the buffer, we don’t know the order they will
depart; and so it can happen that consecutive departing packets
reside in the same DRAM row or bank, causing row or bank con-
flicts and momentary loss in throughput. There are other tech-
niques which give statistical guarantees where a memory
management algorithm (MMA) is designed so that the probability
of DRAM row or bank conflicts is reduced. These include designs
that randomly select memory locations [33][34][35][49], so that
the probability of row or bank conflicts in DRAMs are consider-
ably reduced. Under certain conditions, statistical bounds (such as
average delay) can be found. While statistical guarantees might be
acceptable for a computer system (in which we are used to cache

misses, TLB misses, and memory refresh), it is not generally
acceptable in a router where pipelines are deep and throughput is
paramount. 

Systems which give deterministic worst case performance
guarantees: There is a body of work in [38][39][40][41][42]
which analyzes the performance of a queueing system under a
model in which variable size packet data arrives from  input
channels and is buffered temporarily in an input buffer. A server
reads from the input buffer, with the constraint that it must serve
complete packets from a channel. In [40][41] the authors consider
round robin service policies while in [42] the authors analyze a
FCFS server. In [38] an optimal service policy is described, but
this assumes knowledge of the arrival process. The most relevant
previous work is in [39], where the authors in their seminal work,
analyze a server which serves the channel with the largest buffer
occupancy, and prove that under the above model, the buffer
occupancy for any channel is no more than ,
where  is the size of the maximum sized packet. A similar prob-
lem with an identical service policy, has also been analyzed in
[43][44][45] where the authors show that servicing the longest
queue results in a competitive ratio of  compared to the
ideal service policy, which is offline and has knowledge of all
inputs.

Our work on packet buffer design was first described in
[36][37], and has some similarities with the papers above. How-
ever our work differs in the following ways. First, we are con-
cerned with the size of two different buffer caches, the tail cache
and a head cache and the interaction between them. We show that
the size of the tail cache does not have a logarithmic dependency
unlike [39][43][44][45] since this cache can be dynamically
shared amongst all arriving packets at the tails of the queues. Sec-
ond, the size of our caches are independent of , the maximum
packet size because unlike the systems in [38][39][40], our buffer
cache architecture can store data in external memory. Third we
obtain a more general bound by analyzing the effect of pipeline
latency  on the cache size. Fourth, unlike the work done in
[43][44][45] which derives a bound on the competitive ratio with
an ideal server, we are concerned with the actual size of the buffer
cache at any given time (since this is constrained by hardware
limitations). 

IX.  CONCLUSION

Packet switches, regardless of their architecture, require packet
buffers. The general architecture presented here can be used to
build high bandwidth packet buffers for any traffic arrival pattern
or packet scheduling algorithm. The scheme uses a number of
DRAMs in parallel, all controlled from a single address bus. The
costs of the technique are: (1) a (presumably on-chip) SRAM
cache that grows in size linearly with line rate and the number of
queues, and decreases with an increase in the pipeline delay, (2) A
lookahead buffer (if any) to hold requests, and (3) A memory
management algorithm that must be implemented in hardware. 

1. This is sometime referred to as bit striping.
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As an example of how these results may be used, consider a
typical 48 port, commercial gigabit ethernet switching line card
which uses SRAM for packet buffering.1 The 12G Ethernet MAC
chip stores 8 transmit and 3 receive ports per 1G port, for a total of
132 queues per MAC chip. With today’s memory prices, the
128Mbytes of SRAM costs approximately $128 (list price). The
total buffer memory bandwidth per Ethernet MAC is approxi-
mately 48Gb/s. With four Ethernet MACs per card, we can esti-
mate the total memory cost to be $512 per line card. If the buffer
uses DRAMs instead (assume 16-bit wide data bus, 400MHz
DDR, and a random access time of ), up to 64 bytes2

can be written to each memory per  time slot. Conserva-
tively, it would require 6 DRAMs (for memory bandwidth), which
cost (today) about $144 for the linecard. Our example serves to
illustrate that significant cost-savings are possible.

While there are systems for which this technique is inapplicable
(e.g. systems for which the number of queues is too large, or
where the line-rate requires too large a value for , so that the
SRAM cannot be placed on chip), the technique can be used to
build extremely cost-efficient packet buffers which give the per-
formance of SRAM with the density characteristics of a DRAM,
buffers which are faster than any that are commercially available
today, and also enable packet buffers to be built for several gener-
ations of technology to come.
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APPENDIX  A: Proof of Theorem 2
Theorem 2: (Necessity) To guarantee that a byte is always avail-
able in SRAM when requested for any memory management algo-
rithm, the SRAM must contain at least 
bytes. 

Proof: In what follows we will consider a model where data can
be written/read from the packet buffer in a continuos manner i.e.
1-byte at a time. In reality this assumption results in a conserva-
tive bound on the cache size, than what occurs when discrete
packets (which have minimum size limitations) are taken into
consideration.

Consider the particular traffic pattern with the following pattern
of requests as shown in Figure 5. We will show that regardless of
the memory management algorithm the following pattern is appli-
cable. The pattern progresses in a number of iterations, where iter-
ation number , consists of  time
slots. Each successive iteration lasts fewer time slots than the pre-
vious one. In each successive iteration the pattern focusses on the
queues which have not yet been replenished by the MMA in con-
sideration.

Initially at , each queue has D bytes, where D is the min-
imum number of bytes required so that every byte request can be
satisfied by the SRAM cache.

 1st iteration (Q time slots):In time slots , a
request arrives for FIFO . It takes  time slots to read  bytes
from the DRAM and replenish the SRAM cache of a specific
FIFO. At the end of time slot , at most  FIFOs will have
received  bytes from the DRAM, and so at least 
FIFOs will have . Correspondingly, in the Figure,
we can observe that the number of bytes in the first  queues
is , while the remaining queues have a deficit of 1.

 2nd iteration (  time slots):In the  iteration,
consider the  FIFOs for which . In the
next  time slots, we will assume that a request arrives

t0=0

D-1

D
D
D

D
D

D-1+b

D-1+b }

D-1

D-1

1

t1=t0+Q

D

D-2

D-1+b

D-1+b }

D-2

D-2+b

Q/b

t2=t1+Q(1-1/b)

}Q/b(1-1/b)

D-2+b
D-2

...

D-1+b

D-1+b }

x

D-2+b

Q/b

tx=tx-1+Q(1-1/b)x 

}Q/b(1-1/b)
D-2+b
D-3 +b

Figure 5: Traffic pattern that shows the worst case queue size of the head SRAM. Starting with completely filled queues
with occupancy of D, in every iteration, the arbiter requests one byte from the lowest occupancy queues. At the end of itera-
tion , the last queue has a deficit of .x x Qb b 1–( )⁄( )log=
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for each of these FIFOs. At the end of the  iteration as shown
in the Figure,  of these FIFOs will be replenished,
and  will have . 

 xth iteration (  time slots): 1By continuing this
argument, we can see that at the end of  iterations there will be

 FIFOs with . Solving for
, we get that

,

where . Since, , we get

,

and it follows that .
So far, we have proved that if each FIFO can hold 

bytes, then in  iterations at least one FIFO can have a
deficit of at least  bytes. Imagine that this FIFO is left
with an occupancy of  bytes (i.e. it initially held

 bytes, and 1 byte was read in each of
 iterations). If in successive times slots we proceed to

read  more bytes from the most depleted FIFO i.e. the one with
occupancy  bytes, it will certainly under-run (because it has
never been replenished). Since we do not know a priori the queue
for which this traffic pattern may occur, we require that

 bytes to prevent under-run. But we are
not quite done. Imagine that we initially had a head cache large
enough to hold precisely  bytes for
every FIFO. and assume that the arbiter reads one byte from one
FIFO then stops indefinitely. After the one byte read, the FIFO
now contains  bytes, but is replenished  time
slots later with  bytes from DRAM. Now the FIFO needs to
have space to hold these additional  bytes. However since only
one byte has been read out of the FIFO, it needs to have space for
an additional  bytes. Therefore, the SRAM needs to be able
to hold  bytes per FIFO, and so

 bytes overall. 

APPENDIX  B: Proof of Lemma 2

Lemma 2: Under the MDQF-MMA, which services requests
without any pipeline delay,

, .

Proof: The case when  is already proved in Lemma 1 and
when  it is obvious as mentioned in Equation (6). For

, we again solve the recurrence relation
obtained in Equation (5) to obtain,

, (9)

We can write the second term in the above equation as,

, (10)

Since, 

, , (11)

we can use Equation (10) and Equation (11) to re-write
Equation (9) as a weak inequality,

, 
Thus we can write , .

APPENDIX  C: Proof of Lemma 3

Lemma 3: (Sufficiency) Under the MDQFP-MMA policy,
and a pipeline delay of  time slots, the real deficit of any
queue  is bounded for all time  by 

. 

Proof: We shall derive a bound on the deficit of a queue in the
MDQFP-MMA system in two steps using the properties of both
MDQF and ECQF MMA. First, we limit (and derive) the maxi-
mum number of queues which can cross a certain deficit bound
using the property of MDQF. For example in MDQF, for any 
since the maximum value of the sum of the most deficited 
queues is , there are no more than  queues which have a
deficit strictly larger than  at any given time. We will
derive a similar bound for the MDQFP-MMA with a lookahead of

 time slots, , where  is the maximum deficit that 
queues can reach under the MDQPF-MMA, and we choose

. With this bound we will have no more than 
queues whose deficit exceeds  at any given time. 

Then we will set the size of the head cache to  bytes more than
. By definition, a queue which has become critical has a

deficit greater than the size of the head cache, so the number of
unique queues that can become critical is bounded by . This will
also lead us to a bound on the maximum number of outstanding
critical queue requests, which we will show is no more than .
Since , this gives us sufficient time available to service
the queue before it actually misses the head cache. In what fol-
lows we will formalize this argument.

1. For example when discrete packets, which have constraints on the mini-
mum size are read, there might be fewer queues which reach their maximum
deficit simultaneously and lesser iterations than the worst case mentioned in
this continuos model where one byte can be read at a time.
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Step 1: We are interested in deriving the values of  for the
MDQFP-MMA. But we cannot derive any useful bounds on

 for . This is because MDQFP-
MMA at some time  (after taking the lookahead in the next 
time slots into consideration) may pick a queue with a smaller
deficit if it became critical before the other queue, in the time

, ignoring temporarily a queue with a somewhat larger
deficit. So we will look to find bounds on , for values of

. In particular we will look at , where
. First, we will derive a limit on the number of

queues whose deficits can cross  at any given time. 
We begin by setting the size of the head cache under this policy

to be . This means that a critical queue has reached a
deficit of , where . The reason for
this will become clear later. We will first derive the value of 
using difference equations similar to Lemma 1.

Assume that  is the first time slot at which  reaches its
maximum value, for some  queues. Hence none of these queues
were served in the previous time slot, and either (1) some other
queue with deficit greater than or equal to  was
served, or (2) a critical queue was served. In the former case, we
have  queues for the previous time slot, for which we can say
that, 

 (12)
In the latter case, we have, 

(13)
Since  and ,

, we will use Equation (12), since it is the
weaker inequality.

General Step: Likewise, we can derive relations similar to
Equation (12), i.e. .

. (14)
We also trivially have, . Solving these recurrence
equations similar to Lemma 2, gives us for MDQFP-MMA,

, , (15)
and .

Step 2: Now we are ready to show the bound on the cache size.
First we give the intuition, and then we will formalize the argu-
ment. We know that no more than  queues can
have a deficit strictly more than . In particular, since we
have set the head cache size to , no more than  queues have
deficit more than , i.e. no more than  queues
can be simultaneously critical at any given time . In fact we will
show that there can be no more than  outstanding critical queues
at any given time . Since we have a latency of  time slots
this gives enough time to service any queue which becomes criti-
cal at time  before time . The above argument is similar to
what ECQF does. In what follows we will formalize this argu-
ment. 

Proof: (Reductio-Ad-Absurdum): Let  be the first time at
which the real deficit of some queue ,  becomes
greater than . From Equation (7), we have that queue  was crit-
ical at time  i.e. there was a request that arrived at time  to the
tail of the shift register which made queue  critical. We will use
the following definition to derive a contradiction if the real deficit
becomes greater than . 

Definition 6: : The number of outstanding critical queue
requests at the end of any time slot . 

Consider the evolution of  till time . Let time 
be the closest time in the past for which  was zero,
and is always positive after that. Clearly there is such a time, since

.
Then  has increased (not necessarily monotonically) from

 at time slot  to  at the end of time
slot . Since , there is always a critical
queue in this time interval and MDQFP-MMA will select the ear-
liest critical queue. So  decreases by one in every  time slots
in this time interval and the total number of critical queues served
in this time interval is . What causes  to increase in
this time interval? 

In this time interval a queue can become critical one or more
times and will contribute to increasing the value of  one or
more times. We will consider for every queue, the first instance it
sent a critical queue request in this time interval, and the succes-
sive critical queue requests separately. We consider the following
cases:

Case 1a: The first instance of a critical queue request for a
queue in this time interval, and the deficit of such queue was less
than or equal to  at time . Such a queue
needs to request more than  bytes in this time interval to create
its first critical queue request.

Case 1b: The first instance of a critical queue request for a
queue in this time interval, and the deficit of such queue was
strictly greater than  but less than  at time

. Such queues can request less than  bytes in this time
interval and become critical. There can be at most  such queues
at time .1 

Case 2: Instances of critical queue requests from queues, which
have already become critical previously in this time interval.
After the first time that a queue has become critical in this time
interval, (this can happen from either case 1a or case 1b), in order
to make it critical again we require  more requests for that queue
in the above time interval. 

So the maximum number of critical queue requests created
from case 1a and case 2 in the time interval  is ,
which is the same as the number of critical queues served by
MDQFP-MMA. The additional requests comes from case 1b and
there can be only  such requests in this time interval. Thus

. 
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Since we know that queue  became critical at time  and
, it gets serviced before time  contradicting

our assumption that the real deficit of the queue at time  is
more than . So the size of the head cache is bounded by .
Substituting from Equation (15), 

. (16)

APPENDIX  D: Proof of Theorem 6

Theorem 6:  (Su f f i c iency )  I f  t he  head  cache  has
bytes and a lookahead buffer of  bytes

(and hence a pipeline of  slots), then ECQF ensures
that no queue ever under-runs.

Proof: The proof proceeds in two steps. First, we make three sim-
plifying assumptions, which yield a simple lemma and proof of
the theorem. Then we relax the assumptions to show that the proof
holds more generally.

Assumption 1. (Queues Initially Full) At time , the
head cache is full with  bytes in each queue; the
cache has bytes of data in it.

Assumption 2. (Queues Never Empty) Whenever we
decide to refill a queue, it always has  bytes available
to be replenished. 

Assumption 3. The packet processor issues a new read
request every time slot. 

Lemma 4:  If the lookahead buffer has 
time slots, then there is always at least one critical queue.

Proof: The proof is by the pigeon-hole principle. We will look at
the evolution of the head cache. At the beginning the head cache
contains  bytes (Assumption 1). Because there are
always  read requests (Assumption 3) in the looka-
head buffer, at least one queue has more requests than the number
of bytes in head cache and so must be critical. Every b time slots,
b bytes depart from the cache (Assumption 3), and are always
refilled by b new bytes (Assumption 2). This means that every 
time slots the number of requests is always one more than the
number of bytes in head cache, ensuring that there is always one
critical queue. 

Now we are ready to prove the main theorem.

Proof: (Theorem 6). The proof is in two parts. First we show that
the head cache never overflows. Second we show that packets are
delivered within  time slots from when they are
requested.

Part 1: We know from Lemma 4 that ECQF reads  bytes from
the earliest critical queue every  time slots, which means the
total occupancy of the head cache does not change, and so never
grows larger than .

Part 2: For every request in the lookahead buffer the requested
byte is either present or not present in the head cache. If it is in the
head cache, it can be delivered immediately. If it is not in the
cache, the queue is critical. Suppose that  queues have ever
become critical before this queue  became critical for byte .
Then, the request for byte  which makes queue  critical could
not have arrived earlier than  time slots from the start.
The DRAM would have taken no more than  time slots to
service all these earlier critical queues, leaving it with just enough
time to service queue , thereby ensuring that the corresponding
byte  is present in the head cache.

Hence, by the time a request reaches the head of the lookahead
buffer, the byte is in the cache, and so the pipeline delay is
bounded by the depth of the lookahead buffer:  time
slots. 

A.  Removing the assumptions from the proof of Theorem 6.
We need to make the proofs for Theorem 6 and Lemma 4 hold,

without the need for the assumptions made in the previous sec-
tion. To do this, we make two changes to the proofs - (1) Count
"placeholder" bytes (as described below) in our proof, and (2)
Analyze the evolution of the head cache every time ECQF makes
a decision, rather than once every  time slots.

1. Removing Assumption 1: To do this, we will assume that at
, we fill the head cache with  "placeholder" bytes

for all queues. We will count all placeholder bytes in our queue
occupancy and critical queue calculations. Note that placeholder
bytes will be later replaced by real bytes when actual data is
received by the writer through the direct-write path as described
in Figure 2. But this happens independently (oblivious to the
head cache) and does not increase queue occupancy or affect the
critical queue calculations, since no new bytes are added or
deleted when placeholder bytes get replaced. 

2. Removing Assumption 2: To do this, we assume that when
ECQF makes a request, if we don’t have  bytes available to be
replenished (because the replenishment might occur from tail
cache from a partially filled queue which has less than  bytes),
the remaining bytes are replenished by placeholder bytes, so that
we always receive  bytes in the head cache. As noted above,
when placeholder bytes get replaced later, it does not increase
queue occupancy or affect critical queue calculations.

3. Removing Assumption 3: In Lemma 4, we tracked the evo-
lution of the head cache every  time slots. Instead, we now
track the evolution of the head cache every time a decision is
made by ECQF, i.e. every time  bytes are requested in the loo-
kahead buffer. This removes the need for assumption 3 in
Lemma 4. 
In Theorem 6, we replace our argument for byte  and queue 
as follows: Let queue  become critical when a request for byte

 occurs. Suppose  queues have become critical before that.
This means that queue  became critical for byte , no earlier
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than the time it took for  ECQF requests and an additional 
time slots. The DRAM would take exactly the same time that it
took ECQF to issue those  replenishment requests (to service
all the earlier critical queues), leaving it with at least  time
slots to service queue , thereby ensuring that the corresponding
byte  is present in the head cache. 
So the proofs for Lemma 4 and Theorem 6 hold independent of

the need to make any simplifying assumptions.
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