
STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

Designing Packet Buffers for Router Linecards

Sundar Iyer, Ramana Rao Kompella, Nick McKeown
Computer Systems Laboratory, Stanford University,

Ph: (650)-725 9077, Fax: (650)-725 6949
Stanford, CA 94305-9030

suniyer@cisco.com1, ramana@cs.ucsd.edu1, nickm@stanford.edu

Abstract -- Internet routers and Ethernet switches contain packet
buffers to hold packets during times of congestion. Packet buffers are
at the heart of every packet switch and router, which have a combined
annual market of tens of billions of dollars, and equipment vendors
spend hundreds of millions of dollars on memory each year. Designing
packet buffers used to be easy: DRAM was cheap, low power and
widely used. But something happened at 10Gb/s when packets started
to arrive and depart faster than the access time of a DRAM. Alterna-
tive memories were needed, but SRAM is too expensive and power-
hungry. A caching solution is appealing, with a hierarchy of SRAM
and DRAM, as used by the computer industry. However, in switches
and routers it is not acceptable to have a “miss-rate” as it reduces
throughput and breaks pipelines. In this paper we describe how to
build caches with 100% hit-rate under all conditions, by exploiting the
fact that switches and routers always store data in FIFO queues. We
describe a number of different ways to do it, with and without pipelin-
ing, with static or dynamic allocation of memory. In each case, we
prove a lower bound on how big the cache needs to be, and propose an
algorithm that meets, or comes close, to the lower bound. These tech-
niques are practical and have been implemented in fast silicon; as a
result, we expect the techniques to fundamentally change the way
switches and routers use external memory.

I. INTRODUCTION
Internet routers and Ethernet switches need buffers to hold

packets during times of congestion. This paper is about how to
build high-speed packet buffers for routers and switches, particu-
larly when packets arrive faster than they can be written to packet
memory. The problem of building fast packet buffers is unique to
- and prevalent in - switches and routers; to our knowledge, there
is no other application that requires a large number of fast
queues. But unlike other parts of the forwarding datapath (such as
address lookup, packet classification, crossbar arbitration and
packet scheduling which have all received widespread attention
in the literature), the design of packet buffers has not received
much attention. As we will see, the problem becomes most inter-
esting at data rates of 10Gb/s and above.

Packet buffers are always arranged as a set of one or more
FIFO queues. For example, a router typically keeps a separate
FIFO queue for each service class at its output; routers that are
built for service-providers, such as the Cisco GSR 12000 router
[1], maintain about 2,000 queues per line card. Some edge rout-
ers, such as the Juniper E-series routers [2], maintain as many as

1. This work was done in the Computer Systems Laboratory, when the
authors were at Stanford University.

64,000 queues for fine-grained IP QoS. Ethernet switches, on the
other hand, typically maintain fewer queues (less than a thou-
sand). For example, the Force 10 E-Series switch [3] has 128 -
720 queues, while Cisco Catalyst 6500 series line cards [4] main-
tain 288-384 output queues per line card. Some Ethernet switches
such as the Foundry BigIron RX-series [5] switches are designed
to operate in wide range of environments including enterprise
backbones and service provider networks and hence maintain as
many as 8,000 queues per line card. In addition, switches and
routers commonly maintain virtual output queues (VOQs) to pre-
vent head-of-line blocking at the input, often broken into several
priority levels; it is common today for a switch or router to main-
tain several hundred VOQs.

It is much easier to build a packet switch if the memories
behave deterministically. For example, while it is appealing to
use hashing for address lookups in Ethernet switches, the com-
pletion time is non-deterministic, and so it is common (though
not universal) to use deterministic tree, trie and CAM structures
instead. There are two main problems with non-deterministic
memory access times. First, it makes it much harder to build
pipelines; switches and routers often use pipelines that are sev-
eral hundred packets long - if some pipeline stages are non-deter-
ministic, the whole pipeline can stall, complicating the design.
Second, the system can lose throughput in unpredictable ways.
This poses a problem when designing a link to operate at, say,
100Mb/s or 1Gb/s - if the pipeline stalls, some throughput can be
lost. This is particularly bad news when products are compared in
"bake-offs" that test for line-rate performance. It also presents a
challenge when making delay and bandwidth guarantees; for
example, when guaranteeing bandwidth for VoIP and other real-
time traffic, or minimizing latency in a storage or data-center net-
work. They are also essential when supporting newer protocols
such as fiber channel and data center ethernet which are designed
to support a network which never drops packets.

Until recently, packet buffers were easy to build: The linecard
would typically use commercial DRAM (Dynamic RAM), and
divide it into either statically allocated circular buffers (one circu-
lar buffer per FIFO queue), or dynamically allocated linked-lists.
Arriving packets would be written to the tail of the appropriate
queue; and departing packets read from the head. For example, in
a linecard processing packets at 1Gb/s, a minimum length IP
packet (40bytes) arrives in 320ns, which is plenty of time to write
it to the tail of a FIFO queue in a DRAM.

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

Things changed when linecards started processing streams of
packets at 10Gb/s and faster.1 At 10Gb/s - for the first time - pack-
ets can arrive or depart in less than the random access time of a
DRAM. For example, a 40 byte packet arrives in 32ns, which
means that every 32ns a packet needs to be written to and read
from memory. This is three times faster than the 50ns access time
of typical commercial DRAMs [7].2

There are four common ways to design a fast packet buffer that
overcomes the slow access time of a DRAM:

1. Use SRAM (Static RAM): SRAM is much faster than
DRAM, and tracks the speed of ASIC logic. Today, commercial
SRAMs are available with access times below 4ns [6], which is
fast enough for a 40Gb/s packet buffer. Unfortunately, SRAMs
are small, expensive and power-hungry. To buffer packets for
100ms in a 40Gb/s router would require 500Mbytes of buffer,
which means more than 100 SRAM devices, consuming over
500W! SRAM is therefore used only in switches with very
small buffers.

2. Use special-purpose DRAMs with faster access times:
Commercial DRAM manufacturers recently developed fast
DRAMs (RLDRAM [8] and FCRAM [9]) for the networking
industry. These reduce the physical dimensions of each array by
breaking the memory into several banks. This worked well for
10Gb/s as it meant fast DRAMs could be built with 20ns access
times. But the approach has a limited future for two reasons: (1)
As the line-rate increases, the memory has to split into more and
more banks, which leads to an unacceptable overhead per-
bank,3 and (2) Even though all Ethernet switches and Internet
routers have packet buffers, the total number of memory devices
needed is a small fraction of the total DRAM market, making it
unlikely that commercial DRAM manufacturers will continue to
supply them.4

3. Use multiple regular DRAMs in parallel: Multiple DRAMs
are connected to the packet processor to increase the memory
bandwidth. When packets arrive, they are written into any
DRAM not currently being written to. When a packet leaves it is
read from DRAM if, and only if, its DRAM is free. The trick is

to have enough memory devices (or banks of memory), and
enough speedup, to make it unlikely that a DRAM is busy when
we read from it. Of course, this approach is statistical, and
sometimes a packet is not available when needed.

4. Create a hierarchy of SRAM and DRAM: This is the
approach we take, and is the only way we know of to create a
packet buffer with the speed of SRAM, and the cost of DRAM.
The approach is based on the memory hierarchy used in com-
puter systems: Data that is likely to be needed soon is held in
fast SRAM, while the rest of the data is held in slower, bulk
DRAM. The good thing about FIFO packet buffers is that we
know what data is going to be needed soon - it is sitting at the
head of the queue. But unlike a computer system, in which it is
acceptable for a cache to have a miss-rate, we describe an
approach that is specific to networking switches and routers, in
which a packet is guaranteed to be available in SRAM when
needed. This is equivalent to designing a cache with a miss-
rate under all conditions. This is possible because we can exploit
the FIFO data structure used in packet buffers.
The high-speed packet buffers described in this paper all use the

memory hierarchy shown in Figure 1. The memory hierarchy con-
sists of two SRAM caches: One to hold packets at the tail of each
FIFO queue, and one to hold packets at the head. The majority of
packets in each queue - that are neither close to the tail or to the
head - are held in slow, bulk DRAM. When packets arrive, they
are written to the tail cache. When enough data has arrived for a
queue (either multiple small packets or from a single large
packet), but before the tail cache overflows, they are gathered
together in a large block and written to the DRAM. Similarly, in
preparation for when they need to depart, blocks of packets are
read from the DRAM into the head cache. The trick is to make
sure that when a packet is read, it is guaranteed to be in the head
cache, i.e., the head cache must never underflow under any condi-
tions.

The hierarchical packet buffer in Figure 1 has the following
characteristics: Packets arrive and depart at rate -- and so the
memory hierarchy has a total bandwidth of to accommodate
continuous reads and writes. The DRAM bulk storage has a ran-
dom access time of . This is the maximum time to write to, or
read from any memory location. (In memory-parlance is called

.) In practice, the random access time of DRAMs is much
higher than that required by the memory hierarchy,
i.e., . Therefore, packets are written to bulk DRAM in
blocks of size every seconds, in order to achieve a
bandwidth of . For example, in a ns DRAM buffering pack-
ets at Gb/s, bits. For the purposes of this paper, we
will assume that the SRAM is fast enough to always respond to
reads and writes at the line-rate, i.e. packets can be written to the
head and tail caches as fast as they depart or arrive. We will also
assume that time is slotted and the time it takes for a byte to arrive
at rate to the buffer is called a time-slot.

1. This can happen when a linecard is connected to, say, ten 1-Gigabit Ether-
net interfaces, four OC48 line-interfaces, or a single POS-OC192 or 10GE
line-interface.
2. Note that even DRAMs with fast I/O pins - such as DDR, DDRII and Ram-
bus DRAMS - have very similar access times. While the I/O pins are faster
for transferring large blocks to and from a CPU cache, the access time to a
random location is still approximately 50ns. This is because high-volume
DRAMs are designed for the computer industry which favors density over
access time; the access time of a DRAM is determined by the physical
dimensions of the array (and therefore line capacitance), which stays con-
stant from generation to generation.
3. For this reason, the third generation parts are planned to have a 20ns access
time, just like the second generation.
4. At the time of writing, there is only one publicly announced source for
future RLDRAM devices and no manufacturers for future FCRAMs.

0%

R
2R

T
T

TRC

T 1 2R()⁄»
b 2RT= T

2R 50
10 b 1000=

R

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

Internally, the packet buffer is arranged as logical FIFO
queues as shown in Figure 2. These could be statically allocated
circular buffers, or dynamically allocated linked-lists. It is a char-
acteristic of our approach that a block always contains packets
from a single FIFO queue, which allows the whole block to be
written to a single memory location. Blocks are never broken --
only full blocks are written to, and read from, DRAM memory.
Partially filled blocks in SRAM are held on chip, are never written
to DRAM and are sent to the head cache directly if requested by
the head cache via a “cut-through” path. This allows us to define
the worst-case bandwidth between SRAM and DRAM: it is sim-
ply . In other words, there is no internal speed-up.

To understand how the caches work, assume the packet buffer is
empty to start with. As we start to write into the packet buffer,
packets are written to the head cache first - so they are available
immediately if a queue is read.1 This continues until the head
cache is full. Additional data is written into the tail cache, until it
begins to fill. The tail cache assembles blocks to be written to
DRAM.

We can think of the SRAM head and tail buffers as assembling
and disassembling blocks of packets. Packets arrive to the tail
buffer in random sequence, and the tail buffer is used to assemble
them into blocks and write them to DRAM. Similarly, blocks are
fetched from DRAM into SRAM, and the packet processor can
read packets from the head of any queue in random order. We will
make no assumptions on the arrival sequence of packets - we will
assume that they can arrive in any order. The only assumption we
make about the departure order is that packets are maintained in
FIFO queues. The packet processor can read the queues in any
order. For the purposes of our proofs, we will assume that the
sequence is picked by an adversary deliberately trying to overflow
the tail buffer or underflow the head buffer.

In practice, the packet buffer is attached to a packet processor,
which is either an ASIC or network-processor that processes
packets (parses headers, looks up addresses, etc.) and manages the
FIFO queues. If the SRAM is small enough, it can be integrated
into the packet processor (as shown in Figure 1); or it can be
implemented as a separate ASIC along with the algorithms to con-
trol the memory hierarchy.

A. Our Goal
Our goal is to design the memory hierarchy that precisely emu-

lates a set of FIFO queues operating at rate . In other words,
the buffer should always accept a packet if there is room, and
always be able to read a packet when requested. We will not rely
on arrival or departure sequences, or packet sizes. The buffer must
work correctly under worst-case conditions.

We need three things to meet our goal. First, we need to decide
when to write blocks of packets from the tail cache to DRAM, so
that the tail cache never overflows. Second, we need to decide
when to fetch blocks of packets from the DRAM into the head
buffer so that the head cache never underflows. And third, we
need to know how much SRAM we need for the head and tail
caches. Our goal is to minimize the size of the SRAM head and
tail caches so they can be cheap, fast and low-power. Ideally, they
will be located on-chip inside the packet processor (as shown in
Figure 1).

B. Choices
When designing a memory hierarchy like the one shown in Fig-

ure 1, we have three main choices:

1. Guaranteed versus Statistical: Should the packet buffer
behave like an SRAM buffer under all conditions, or should it1. To accomplish this, the architecture in Figure 2 has a direct-write path for

packets from the writer, to be written directly into the head cache.

Figure 1: Memory hierarchy of packet buffer, showing large DRAM
memory with heads and tails of each FIFO maintained in a smaller
SRAM cache.

Packet Processor/ASIC

R R

R R

Bulk Storage (DRAM)

Arriving stream of
 variable length packets

Departing stream of
 variable length packets

M
em

or
y

H
ie

ra
rc

hy

size b

Tail Cache
(SRAM)

Head Cache
(SRAM)

Q

2R

Arriving
Packets

Departing
Packets

DRAM (Bulk Storage)

Figure 2: Detailed Memory hierarchy of packet buffer, showing large
DRAM memory with heads and tails of each FIFO maintained in
cache. The above implementation shows a dynamically allocated tail
cache and a statically allocated head cache.

1

Q

1

Q
R R

b bytes

cut

path
through

b bytes

static head cache

tail cache

direct-write path

2R

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

allow the occasional miss? In our approach, we assume that the
packet buffer must always behave precisely like an SRAM, and
there must be no overruns at the tail buffer or underruns at the
head buffer. Other authors have considered designs that allow an
occasional error, which might be acceptable in some systems
[30][35][49]. Our results show that it is practical, though inevi-
tably more expensive, to design for the worst-case.

2. Pipelined versus Immediate: When we read a packet,
should it be returned immediately, or can the design tolerate a
pipeline delay? We will consider both design choices, where a
design is either a pipelined design or not. In both cases, the
packet buffer will return the packets at the rate they were
requested, and in the correct order. The only difference is that in
a pipelined packet buffer, there is a fixed pipeline delay between
all read requests and packets being delivered. As to whether this
is acceptable will depend on the system, so we provide solutions
to both and leave it to the designer to choose.

3. Dynamical versus Static Allocation:.We assume that the
whole packet buffer emulates a packet buffer with multiple
FIFO queues, where each queue can be statically or dynamically
defined. Regardless of the external behavior, internally, the head
and tail buffers in the cache, can be managed statically or
dynamically. In all our designs, we assume that the tail buffer is
dynamically allocated. As we'll see, this is simple and leads to a
very small buffer. On the other hand, the head buffer can be stat-
ically or dynamically allocated. A dynamic head buffer is
smaller, but slightly more complicated to implement, and
requires a pipeline delay - allowing the designer to make a
tradeoff.

C. Summary of results
We will first show in Section II, that the tail cache can be

dynamically allocated and contain slightly fewer than bytes.
The rest of the paper is concerned with the various design choices
for the head cache.

The head cache can be statically allocated: In which case (as
shown in Section III) it needs just over bytes to deliver
packets immediately, or bytes if we can tolerate a large pipe-
line delay. We will see in Section IV, that there is a well-defined
continuous tradeoff between cache size and pipeline delay; the
head cache size varies proportional to . If the head
cache is dynamically allocated, its size can be reduced to
bytes as derived in Section V. However this requires a large pipe-
line delay.

In what follows, we prove each of these results in turn, and
demonstrate algorithms to achieve the lower bound (or close to it).
Towards the end of the paper, based on our experience building
high performance packet buffers, we consider how hard the algo-
rithms are to implement in custom hardware.1 Finally, in Section
VIII we compare and contrast our approach to previous work in
this area.

D. What makes the problem hard?
If the packet buffer consisted of just one FIFO queue, life would

be simple: We could de-serialize the arriving data into blocks of
size bytes; when a block is full, write it to DRAM. Similarly,
full blocks would be read from DRAM, and then de-serialized and
sent as a serial stream. Essentially we have a very simple SRAM-
DRAM hierarchy. The block is caching both the tail and the head
of the FIFO in SRAM. How much SRAM cache would be need?

Each time bytes arrived at the tail SRAM, a block would be
written to DRAM. If fewer than bytes arrive for a queue they
are held on-chip, requiring bytes of storage in the tail cache.

The head cache would work in the same way - we simply need
to ensure that the first bytes of data are always available in
the cache. Any request fewer than bytes can be returned
directly from the head cache, and for any request of bytes there
is sufficient time to fetch the next block from DRAM. To imple-
ment such a head cache, a total of bytes in the head buffer is
sufficient.2

Things get more complicated when there are more FIFOs
(). For example, let us see how a FIFO in the head cache
can under-run (i.e. the packet-processor makes a request that the
head cache can’t fulfill) even though the FIFO still has packets in
DRAM.

When a packet is read from a FIFO, the head cache might need
to go off and refill itself from DRAM so it doesn’t under-run in
the future. Every refill means a read-request is sent to DRAM; and
in the worst-case, a string of reads from different FIFOs might
generate lots of read-requests. For example, if consecutively
departing packets cause different FIFOs to need replenishing, then
a queue of read requests will form waiting for packets to be
retrieved from DRAM. The request queue builds because in the
time it takes to replenish one FIFO (with a block of bytes),
new requests can arrive (in the worst case). It is easy to imagine a
case in which a replenishment is needed, but every other FIFO is
also waiting to be replenished, and so there might be
requests ahead in the request queue. If there are too many
requests, the FIFO will under-run before it is replenished from
DRAM.

So, the theorems and proofs in this paper are all about trying to
identify the worst-case pattern of arrivals and departures, which
lets us determine how big the SRAM needs to be to prevent over-
runs and under-runs.

Qb

Qb Qln
Qb

Q Q x⁄()ln
Qb

1. The approaches described here were originally conceived at Stanford Uni-
versity to demonstrate that specialized memories are not needed for Ethernet
switches and routers. The ideas were further developed and made imple-
mentable by Nemo Systems, Inc. as one of a number of network memory
technologies for Ethernet switches and Internet routers. Nemo Systems is
now part of Cisco Systems.
2. When exactly bytes are read from a queue, we need an additional
bytes of space to be able to store the next -byte block which has been pre-
fetched for that queue. This needs no more than bytes.

b

b
b

b 1–

b 1–
b 1–

b

2b

b 1– b
b

b b 1–()+ 2b 1–=

Q 1>

b b

Q 1–

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

II. A TAIL-CACHE THAT NEVER OVER-RUNS

Theorem 1: If dynamically allocated, the tail cache must
contain at least bytes.

Proof: If there are bytes in the tail cache, then at
least one queue must have or more bytes in it, and so a block of
b bytes can be written to DRAM. If blocks are written whenever
there is a queue with b or more bytes in it, then the tail cache can
never have more than bytes in it.

III. A HEAD-CACHE THAT NEVER UNDER-RUNS, WITHOUT
PIPELINING

If we assume the head cache is statically divided into Q differ-
ent memories of size , the following theorem tells us how big
the head cache has to be (i.e.) so that packets are always in
the head cache when the packet processor needs them.

Theorem 2: (Necessity) To guarantee that a byte is always
available in head cache when requested, the head cache must con-
tain at least bytes.

Proof: See Appendix A.

It is one thing to know the theoretical bound; it is another matter
to actually design the cache so as to achieve the bound. We need
to find an algorithm that will decide when to refill the head cache
from the DRAM; which queue should it replenish next? The most
obvious algorithm would be shortest queue first; i.e. refill the
queue in the head cache with the least data in it. It turns out that a
slight variant does the job.

A. The Most Deficit Queue First (MDQF) Algorithm
The algorithm is based on a queue’s deficit, which is defined as

follows. When we read from the head cache, we eventually need
to read from DRAM (or to the tail cache, because the rest of the
queue might still be in the tail cache) to refill the cache (if, of
course, there are more bytes in the FIFO to refill it with). We say
that when we read from a queue in the head cache, it is in deficit
until a read request has been sent to the DRAM or tail cache as
appropriate to refill it.

Definition 1: Deficit: The number of unsatisfied read requests for
FIFO in the head SRAM at time . Unsatisfied read requests
are arbiter requests for FIFO for which no byte has been read
from the DRAM or the tail cache (even though there are outstand-
ing cells for it).

As an example, suppose bytes have been read from queue
in the head cache, and the queue has at least more bytes in it
(either in the DRAM or the tail cache taken together), and if no
read request has been sent to the DRAM to refill the bytes in

the queue, then the queue’s deficit at time , = bytes. If
the queue has bytes in the DRAM or tail cache, its deficit is

 bytes.

 Algorithm: MDQF tries to replenish a queue in the head cache
every time slots.It chooses the queue with the largest deficit, if
and only if some of the queue resides in the DRAM or in the tail
cache, and only if there is room in the head cache. If several
queues have the same deficit, a queue is picked arbitrarily.

In order to figure out how big the head cache needs to be, we
need two more definitions.

Definition 2: Total Deficit : The sum of the deficits of the
queues with the most deficit in the head cache, at time t.

More formally, suppose , are the values of
the deficits , for each of the queues at
any time . Let be an ordering of the queues
such that they are in descending order i.e.

. Then,

. (1)

Definition 3: Maximum Total Deficit, : The maximum value
of seen over all time slots and over all request patterns.
Note that the algorithm samples the deficits at most once every
time slots to choose the queue with the maximum deficit. Thus, if

 denotes the sequence of times at which MDQF
samples the deficits, then

. (2)

Lemma 1: For MDQF, the maximum deficit of a queue,
, is bounded by .

Proof: The proof is based on deriving a series of recurrence rela-
tions as follows.
Step 1:Assume that is the first time slot at which reaches
its maximum value, for some queue ; i.e. . Trivi-
ally, we have . Since queue reaches it
maximum deficit at time , it could not have been served by
MDQF at time , because if so, then either, , or
it is not the first time at which it reached a value of , both of
which are contradictions. Hence there was some other queue
which was served at time , which must have had a larger def-
icit than queue at time , so

.
Hence, we have:

.
This gives,

. (3)

Q b 1–() 1+

Q b 1–() 1+
b

Q b 1–() 1+

w
Qw

Qw Q b 1–() 2 Qln+()>

i t
i

d i
d

d

t D i t,() d
y d<

y

b

F i t,() i

v v1 v2 …vQ, ,()=
D i t,() i 1 2 … Q, , ,{ }=

t π 1 2 3 …Q, , ,()

vπ 1() vπ 2() vπ 3() … vπ Q()≥ ≥ ≥ ≥

F i t,() vπ k()

k 1=

i

∑≡

F i()
F i t,()

b

τ t1 t2 …, ,()=

F i() Max t∀ τ∈ F i t,(),{ }≡

F 1() b 2 Qln+[]

t F 1()
i D i t,() F 1()=

D i t b–,() F 1() b–≥ i
t

t b– D i t,() F 1()<
F 1()

j
t b–

i t b–
D j t b–,() D i t b–,() F 1()≥ b–≥

F 2() F 2 t b–,() D i t b–,() D j t b–,()+≥≥

F 2() F 1() b– F 1() b–+≥

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

Step 2: Now, consider the first time slot when reaches
its maximum value. Assume that at time slot , some queues
and contribute to , i.e. they have the most and second
most deficit amongst all queues. As argued before, neither of the
two queues could have been serviced at time . Note that if
one of the queues or was serviced at time then the sum
of their deficits at time would be equal to or greater than the
sum of their deficits at time , contradicting the fact that
reaches its maximum value at time . Hence, there is some other
queue , which was serviced at time which had the most
deficit at time . We know that and

. Hence,

.

By definition,
.

Substituting the deficits of the three queues and we get,
.

Hence,

. (4)

General Step: Likewise, we can derive relations similar to
Equation (3), and (4) for .

. (5)

A queue can only be in deficit if another queue is serviced instead.
When a queue is served, bytes are requested from DRAM, even
if we only need byte to replenish the queue in SRAM. So every
queue can contribute up to bytes of deficit to other queues.
So the sum the deficits over all queues, .
We replace it with the following weaker inequality,

. (6)
Rearranging Equation (5),

Expanding this inequality starting from , we have,

By expanding all the way till , we obtain,

Since, ,

Therefore,
.

Lemma 2: For MDQF,
, .

Proof: See Appendix B.1

Theorem 3: (Sufficiency) For MDQF to guarantee that a
requested byte is in the head cache (and therefore available imme-
d i a t e l y) i t i s s u f f i c i e n t f o r t h e h e a d c a c h e t o h o l d

 bytes.

Proof: From Lemma 1, we need space for
bytes per queue in the head cache. Even though the deficit of a
queue with MDQF is at most (which is reached at some
time), the queue can lose up to more bytes in the next

 time slots, before it gets refreshed at time . Hence, to
prevent under-flows, each queue in the head cache must be able to
hold bytes. Note that in
order that the head cache not underflow it is necessary to pre-load
the head cache to up to bytes for every queue.
This requires a ‘direct-write’ path from the writer to the head
cache as described in Section I.

B. Near-Optimality of the MDQF algorithm
Theorem 2 tells us that the head cache needs to be at least

bytes for any algorithm, whereas MDQF
needs bytes, which is slightly larger. It is possible
that MDQF achieves the lower bound, but we have not been able
to prove it. For typical values of Q (), and b (
bytes) MDQF needs a head cache within 16% of the lower bound.
For example, an implementation with , and
bytes requires a cache size of Mb which can easily be inte-
grated into current generation ASICs.

IV. A HEAD-CACHE THAT NEVER UNDER-RUNS, WITH
PIPELINING

High-performance routers use deep pipelines to process packets
in tens or even hundreds of consecutive stages. So it is worth ask-
ing if we can reduce the size of the head cache by pipelining the
reads to the packet buffer in a lookahead buffer. The read rate is
the same as before, it is just that the algorithm can spend longer
processing each read. Perhaps it can use the extra time to get a
“heads-up” of which queues need refilling, and start fetching data
from the appropriate queues in DRAM sooner. We will now
describe an algorithm that does exactly that; and we will see it
needs a much smaller head cache.

t F 2()
t m

n F 2()

t b–
m n t b–

t b–
t F 2()

t
p t b–

t b– D p t b–,() D m t b–,()≥
D p t b–,() D n t b–,()≥

D p t b–,() D m t b–,() D n t b–,()+
2

-- F 2() b–
2

--------------------≥ ≥

F 3() F 3 t b–,()≥
m n, p

F 3() D m t b–,() D n t b–,() D p t b–,()+ +≥

F 3() F 2() b– F 2() b–
2

--------------------+≥

i∀ 1 2 …Q 1–, ,{ }∈

F i 1+() F i() b– F i() b–
i

-------------------+≥

b
1

b 1–
F Q() Q 1–() b 1–()≤

F Q() Qb<

F i() F i 1+() i
i 1+
-----------⎝ ⎠
⎛ ⎞ b+≤

F 1()

F 1() F 2()
2

----------- b F 3()2
3
--- b+⎝ ⎠

⎛ ⎞ 1
2
--- b+≤+≤ F 3()

3
----------- b 1 1

2
---+⎝ ⎠

⎛ ⎞+=

F 1() F Q()
Q

------------- b 1
i

i 1=

Q 1–

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

+≤ Qb
Q

------- b 1
i

i 1=

Q 1–

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

+<

F 1() F Q()

N∀

1
i

i 1=

N 1–

∑ 1
i

i 1=

N

∑ 1 Nln+≤< 1. Note that the above is a weak inequality. However we use the closed form
loose bound later on to study the rate of decrease of the function and
hence the decrease in the size of the head cache.

F 1() b 2 Qln+[]<

F i() bi 2 Q i⁄()ln+[]< i∀ 1 2 … Q 1–, , ,{ }∈

F i()

Qw Qb 3 Qln+()=

F 1() b 2 Qln+[]≤

F 1()
t b 1–

b 1– t b+

w b 2 Qln+[] b 1–()+ b 3 Qln+[]<=

w b 3 Qln+[]=

Q b 1–() 2 Qln+()
Qb 3 Qln+()

Q 100> b 64≥

Q 128= b 64=
0.52

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

When the packet processor issues a read, we are going to put it
into the lookahead buffer shown in Figure 4. While the requests
make their way through the lookahead buffer, the algorithm can
take a “peek” at which queues are receiving requests. Instead of
waiting for a queue to run low (i.e. for a deficit to build), it can
anticipate the need for data and go fetch it in advance.

As an example, Figure 4(a,b,c) shows how the lookahead buffer
advances every time slot. The first request in the lookahead buffer
at time slot (request A1 in Figure 4a) is processed at time
slot (as shown in Figure 4b). A new request can arrive to
the tail of the lookahead buffer every time slot (request C2 in Fig-
ure 4b).1

A. The Most Deficit Queue First (MDQFP) Algorithm with
Pipelining.

With the lookahead buffer we need a new algorithm to decide
which queue in the cache to refill next. Once again, the algorithm
is intuitive: We first identify any queues that have more requests
in the lookahead buffer than they have bytes in the cache. Unless
we do something, these queues are in trouble, and we call them
critical. If more than one queue is critical, we refill the one that
went critical first.

 Algorithm Description: Every time slots, if there are critical
queues in the cache, refill the first one to go critical. If none of the
queues are critical right now, refill the queue that — based on cur-
rent information — looks most likely to become critical in the
future. In particular, pick the queue that will have the largest defi-
cit at time , (where x is the depth of the lookahead buffer2)
assuming that no queues are replenished between now and .
If multiple queues will have the same deficit at time , pick an
arbitrary one.

We can analyze the new algorithm in almost the same way as
we did without pipelining. To do so, it helps to define the deficit
more generally.

Definition 4: Maximum Total Deficit when we have a pipeline
delay : the maximum value of for a pipeline delay of

, over all time slots and over all request patterns. Note that in
the previous section (no pipeline delay) we dropped the subscript
i.e. .

In what follows we will refer to time as the current time,
while time is the time at which a request made from the head
cache at time actually leaves the cache. We could imagine that
every request sent to the head cache at time goes into the tail of
a shift register of size . This means that the actual request only

reads the data from the head cache when it reaches the head of the
shift register, i.e. at time . At any time , the request at the
head of the shift register leaves the shift register. Note that the
remaining requests in the shift register have already been
taken into account in the deficit calculation at time , and the
MMA only needs to update its deficit count, critical queue calcu-
lation for time , based on the newly arriving request at time
which goes into the tail of the shift register.

Implementation Details: Since a request made at time leaves
the head cache at time , this means that even before the first
byte leaves the head cache, up to bytes have been requested
from DRAM. So we will require bytes of storage on chip to
hold the bytes requested from DRAM in addition to the head
cache. Also, when the system is started at time , the very
first request comes to the tail of the shift register and all the deficit
counters are loaded to zero. There are no departures from the head
cache till time though DRAM requests are made immedi-
ately from time .

Note that MDQFP-MMA is looking at all requests in the looka-
head register, calculating the deficits of the queues at time by
taking the lookahead into consideration, and making scheduling
decisions at time . The maximum deficit of a queue (as per-
ceived by MDQFP-MMA), may reach a certain value at time ,
but that calculation assumes that the requests in the lookahead
have already left the system, which is not the case. For any queue

, we define:

Definition 5: Real Deficit , the real deficit of the
queue at any time , (which determines the actual size of the
cache) is governed by the following equation,

(7)

where, denotes the number of DRAM services that
queue receives between time and , and denotes
the deficit as perceived by MDQF at time , after taking the loo-
kahead requests into account. Note however that since

, if a queue causes a cache miss at time , that
queue would have been critical at time . We will use this fact
later on in proving the bound on the real size of the head cache.

Lemma 3: (Sufficiency) Under the MDQFP-MMA policy,
and a pipeline delay of time slots, the real deficit of any
queue is bounded for all time by

(8)

Proof: See Appendix C.
This leads to the main result that tells us a cache size that will

be sufficient with the new algorithm.
1. Clearly the depth of the pipeline (and therefore the delay from when a read
request is issued until the data is returned) is dictated by the size of the looka-
head buffer.
2. In what follows for ease of understanding assume that is a multiple
of .

t 0=
t 1=

b

t x+

x b>
b

t x+
t x+

Fx i() F i t,()
x

F0 i() F i()≡

t
t x+

t
t

x

t x+ t

x 1–
t 1–

t t

t
t x+

x
x

t 0=

t x=
t 0=

t

t
t

i

Rx i t x+,()
t x+

Rx i t x+,() Dx i t,() Si t t x+,()–=

Si t t x+,()
i t t x+ Dx i t,()

t

Si t t x+,() 0≥ t x+
t

x b>
i t x+

Rx i t x+,() C≤ b 2 Q b
x b–()

----------------⎝ ⎠
⎛ ⎞ln+⎝ ⎠

⎛ ⎞=

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

Theorem 4: (Sufficiency) With MDQFP and a pipeline delay
of (where) a head cache of size bytes is
sufficient.

Proof: The proof is similar to Theorem 3.

B. Tradeoff between head SRAM size and pipeline delay.
Intuition tells us that if we can tolerate a larger pipeline delay,

we should be able to make the head cache smaller; and that is
indeed the case. Note that from Theorem 4 the rate of decrease of
size of the head cache, (and hence the size of the SRAM) is,

which tells us that even a small pipeline will give a big decrease in
the size of the SRAM cache. As an example, Figure 6 shows the
size of the head cache as a function of the pipeline delay when

 and bytes. With no pipelining, we need
90kbytes of SRAM, but with a pipeline of time
slots, the size drops to 10kbytes. Even with a pipeline of 300 time
slots (this corresponds to a 60ns pipeline in a 40Gb/s line card) we
only need 53kbytes of SRAM: A small pipeline gives us a much
smaller SRAM.1

V. A DYNAMICALLY ALLOCATED HEAD-CACHE THAT
NEVER UNDER-RUNS, WITH LARGE PIPELINE DELAY

Until now we have assumed that the head cache is statically
allocated. Although a static allocation is easier to maintain than a
dynamic allocation (static allocation uses circular buffers, rather
than linked lists), we can expect a dynamic allocation to be more

efficient because it is unlikely that all the FIFOs will fill up at the
same time in the cache. A dynamic allocation can exploit this to
devote all the cache to the occupied FIFOs.

Let us see how much smaller we can make the head cache is we
dynamically allocate FIFOs. The basic idea is that at any time,
some queues are closer to becoming critical than others. The more
critical queues need more buffer space, while the less critical
queues need less. When we use a lookahead buffer, we know
which queues are close to becoming critical and which are not.
We can therefore dynamically allocate more space in the cache for
the more critical queues, borrowing space from the less critical
queues that don’t need it.

A. The smallest possible head cache

Theorem 5: (Necessity) For a finite pipeline, the head cache
must contain at least bytes for any algorithm.

Proof: Consider the case when the FIFOs in DRAM are all non-
empty. If the packet processor requests one byte from each queue
in turn (and makes no more requests) we might need to retrieve
new bytes from the DRAM for every queue in turn. The head
cache returns one byte to the packet processor and must store the
remaining bytes for every queue. Hence the head cache
must be at least bytes.

B. The Earliest Critical Queue First (ECQF) Algorithm
As we will see, ECQF achieves the size of the smallest possible

head-cache; i.e. no algorithm can do better than ECQF.

 Algorithm Description: Every time there are requests made
to the head cache, (if there is a read request in every time slot, this
occurs every time slots) if there are critical queues in the cache,
refill the first one to go critical. Otherwise do nothing.

 Example of ECQF: Figure 4 shows an example for
and . Figure 4a shows that the algorithm (at time)
determines that queues will become critical at time
and , respectively. Since goes critical sooner, it is
refilled. Bytes from queues are read from the head cache
at times . In Figure 4, goes critical first and is
refilled. Bytes from queues leave the head cache at times

. The occupancy of the head cache at time is
shown in Figure 4c. Queue is the earliest critical queue (again)
and is refilled.

To figure out how big the head cache needs to be we will make
three simplifying assumptions (which are described in Appendix
D) that help prove a lower bound on the size of the head cache.
We will then relax the assumptions to prove the head cache need
never be larger than bytes.

Theorem 6: (Su f f i c i ency) I f t he head cache has
bytes and a lookahead buffer of bytes

1. The “SRAM size vs. pipeline delay” curve is not plotted when the pipeline
delay is between 1000 and 10,000 time slots since the curve is almost flat in
this interval.

x x b> Qw Q C b+()=

Figure 3: The SRAM size (in bold) as a function of pipeline delay (x).
The example is for 1000 queues (), and a block size of

 bytes.
Q 1000=

b 10=

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900 1000

S
iz

e
of

 S
R

A
M

 (
K

B
yt

es
)

Pipeline Delay (Time Slots)

Approximate closed-form bound

xd
dC 1

x b–
-----------–=

x
Q 1000= b 10=

Qb 10000=

Q b 1–()

b

b 1–
Q b 1–()

b

b

Q 4=
b 3= t 0=

A B, t 6=
t 8= A

A C B, ,
t 0 1 2, ,= B

D A B, ,
t 3 4 5, ,= t 6=

A

Q b 1–()

Q b 1–() Q b 1–() 1+

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

(and hence a pipeline of slots), then ECQF will
make sure that no queue ever under-runs.

Proof: See Appendix D.

VI. SUMMARY OF RESULTS

The tables below compare the sizes of the cache for various
implementations. Table 1 compares head cache sizes with and
without pipelining, for static or dynamic allocation. Table 2 com-

pares the tail cache sizes for static or dynamic allocation.

VII. IMPLEMENTATION CONSIDERATIONS

1. Complexity of the algorithms: All the algorithms require
deficit counters; MDQF and MDQFP must identify the queue
with the maximum deficit every time slots. While this is
possible to implement for a small number of queues using ded-
icated hardware or perhaps using a heap data structure [29], it
may not scale when the number of queues is very large. The
other possibility is to use calendar queues, with buckets to
store queues with the same deficit. In contrast, ECQF is sim-
pler to implement. It just needs to identify when a deficit
counter becomes critical and replenish the corresponding
queue.

2. Reducing :The cache scales linearly with , which scales
with line rates. It is possible to use ping-pong buffering [31] to
reduce by a factor of two (from to).
Memory is divided into two equal groups, and a block is writ-
ten to just one group. Each time slot, blocks are read as before.
This constrains us to write new blocks into the other group.
Since each group individually caters a read request or a write
request per time slot, the memory bandwidth of each group
needs to be no more than the read (or write) rate . Hence
block size, . However, as soon as either one of the
groups becomes full, the buffer cannot be used. So in the worst
case, only half of the memory density is usable.

3. Saving External Memory Density and Bandwidth: One
consequence of integrating the SRAM into the packet proces-
sor is that it solves the so-called "65 byte problem". It is com-
mon for packet processors to segment packets into fixed size
chunks, to make them easier to manage, and to simply the
switch fabric; 64-bytes is a common choice because it is the
first power of two larger than the size of a minimum length IP
datagram. But although the memory interface is optimized for

TABLE 1 : Head Cache Sizes

Head SRAM
Pipeline Delay

(time slot)

Head SRAM
(bytes, type, algorithm) Source

0 Qb(3+ln Q), Static, MDQF Theorem 3

x Qb(3+ln[Qb/(x-b)], Static, MDQFP Theorem 4

Q(b-1)+1 Q(b-1), Dynamic, ECQF Theorem 6

TABLE 2 : Tail Cache Sizes

Tail SRAM
(bytes, type, algorithm) Source

Qb(3+ln Q), Static, MDQF By a symmetry argument to Theorem 3

Qb, Dynamic Theorem 1

Figure 4: ECQF with and bytes. The dynamically allocated head cache is bytes and the lookahead buffer is
bytes.

Q 4= b 3= 8 Q b 1–() 1+ 9=

(a) State at t = 0.
Q (A, 0) = 2; Q(A,6) critical.
Q (B, 0) = 2; Q(B,8) critical.
Queue A is requested.

(c) State at t = 6.
Q(A,6) = 3; Q(A, 11) critical.
Q(C,6) = 2; Q(C,13) critical.
Bytes B3, B4, B5 arrive.
Queue A is requested.

B2 A3 A4 B3

A1 C1
A2 C2
B1 D1
B2 D2

D1 A2

Head
Cache

Requests

Lookahead buffer

B1A1 C1

B3 A5 A6 C2

A3 A4
A2 C2
A5 D1
B2 D2

A3 A4

Head
Cache

Requests

Lookahead buffer

B2D1 A2

B1
Returned data

C1 A1

(b) State at t = 3.
Q(A,3) = 4; Q(A,11) critical.
Q(B,3) = 1; Q(B, 9) critical.
Bytes A3, A4, A5 arrive.
Queue B is requested.

From
DRAM

C2 C3 A7 A8

A3 A4
B4 C2
A5 B3
B5 D2

A5 A6

Head
Cache

Requests

Lookahead buffer

B3A3 A4

B2
Returned data

A2 D1

From
DRAM

B1 C1 A1

Q b 1–() 1+

b

b b

b b 2RT= b RT=

R
b RT=

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

64byte chunks, in the worst-case it must be able to handle a
sustained stream of 65-byte packets -- which will fill one
chunk, while leaving the next one almost empty. To overcome
this problem, the memory hierarchy is almost always run at
twice the line-rate: i.e. , which adds to the area, cost and
power of the solution. Our solution doesn't require this
speedup of two. This is because data is always written to
DRAM in blocks of size , regardless of the packet size. Par-
tially filled blocks in SRAM are held on chip, are never writ-
ten to DRAM and are sent to the head cache directly if
requested by the head cache. We have demonstrated imple-
mentations of packet buffers that run at and have no frag-
mentation problems in external memory.

VIII. PREVIOUS WORK

Packet buffers based on a SRAM-DRAM hierarchy are not
new, and although not published before, they have been deployed
in commercial switches and routers. But there is no literature that
describes or analyzes the technique. We have found that existing
designs are based on ad-hoc statistical assumptions without hard
guarantees. We divide the previous published work into two cate-
gories:

Systems which give statistical performance: In these systems,
the memory hierarchy only gives statistical guarantees for the
time to access a packet, similar to interleaving or pre-fetching
used in computer systems [22][23][24][25][26]. Examples of
implementations that use commercially available DRAM control-
lers are [27][28]. A simple technique to obtain high throughputs
using DRAMs (using only random accesses) is to stripe a packet1
across multiple DRAMs [30]. In this approach each incoming
packet is split into smaller segments and each segment is written
into different DRAM banks; the banks reside in a number of par-
allel DRAMs. With this approach the random access time is still
the bottleneck. To decrease the access rate to each DRAM, packet
interleaving can be used [31][32]; consecutive arriving packets
are written into different DRAM banks. However when we write
the packets into the buffer, we don’t know the order they will
depart; and so it can happen that consecutive departing packets
reside in the same DRAM row or bank, causing row or bank con-
flicts and momentary loss in throughput. There are other tech-
niques which give statistical guarantees where a memory
management algorithm (MMA) is designed so that the probability
of DRAM row or bank conflicts is reduced. These include designs
that randomly select memory locations [33][34][35][49], so that
the probability of row or bank conflicts in DRAMs are consider-
ably reduced. Under certain conditions, statistical bounds (such as
average delay) can be found. While statistical guarantees might be
acceptable for a computer system (in which we are used to cache

misses, TLB misses, and memory refresh), it is not generally
acceptable in a router where pipelines are deep and throughput is
paramount.

Systems which give deterministic worst case performance
guarantees: There is a body of work in [38][39][40][41][42]
which analyzes the performance of a queueing system under a
model in which variable size packet data arrives from input
channels and is buffered temporarily in an input buffer. A server
reads from the input buffer, with the constraint that it must serve
complete packets from a channel. In [40][41] the authors consider
round robin service policies while in [42] the authors analyze a
FCFS server. In [38] an optimal service policy is described, but
this assumes knowledge of the arrival process. The most relevant
previous work is in [39], where the authors in their seminal work,
analyze a server which serves the channel with the largest buffer
occupancy, and prove that under the above model, the buffer
occupancy for any channel is no more than ,
where is the size of the maximum sized packet. A similar prob-
lem with an identical service policy, has also been analyzed in
[43][44][45] where the authors show that servicing the longest
queue results in a competitive ratio of compared to the
ideal service policy, which is offline and has knowledge of all
inputs.

Our work on packet buffer design was first described in
[36][37], and has some similarities with the papers above. How-
ever our work differs in the following ways. First, we are con-
cerned with the size of two different buffer caches, the tail cache
and a head cache and the interaction between them. We show that
the size of the tail cache does not have a logarithmic dependency
unlike [39][43][44][45] since this cache can be dynamically
shared amongst all arriving packets at the tails of the queues. Sec-
ond, the size of our caches are independent of , the maximum
packet size because unlike the systems in [38][39][40], our buffer
cache architecture can store data in external memory. Third we
obtain a more general bound by analyzing the effect of pipeline
latency on the cache size. Fourth, unlike the work done in
[43][44][45] which derives a bound on the competitive ratio with
an ideal server, we are concerned with the actual size of the buffer
cache at any given time (since this is constrained by hardware
limitations).

IX. CONCLUSION

Packet switches, regardless of their architecture, require packet
buffers. The general architecture presented here can be used to
build high bandwidth packet buffers for any traffic arrival pattern
or packet scheduling algorithm. The scheme uses a number of
DRAMs in parallel, all controlled from a single address bus. The
costs of the technique are: (1) a (presumably on-chip) SRAM
cache that grows in size linearly with line rate and the number of
queues, and decreases with an increase in the pipeline delay, (2) A
lookahead buffer (if any) to hold requests, and (3) A memory
management algorithm that must be implemented in hardware.

1. This is sometime referred to as bit striping.

4R

b

2R

N

L 2 N 1–()ln+()
L

N()ln

L

x

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

As an example of how these results may be used, consider a
typical 48 port, commercial gigabit ethernet switching line card
which uses SRAM for packet buffering.1 The 12G Ethernet MAC
chip stores 8 transmit and 3 receive ports per 1G port, for a total of
132 queues per MAC chip. With today’s memory prices, the
128Mbytes of SRAM costs approximately $128 (list price). The
total buffer memory bandwidth per Ethernet MAC is approxi-
mately 48Gb/s. With four Ethernet MACs per card, we can esti-
mate the total memory cost to be $512 per line card. If the buffer
uses DRAMs instead (assume 16-bit wide data bus, 400MHz
DDR, and a random access time of), up to 64 bytes2

can be written to each memory per time slot. Conserva-
tively, it would require 6 DRAMs (for memory bandwidth), which
cost (today) about $144 for the linecard. Our example serves to
illustrate that significant cost-savings are possible.

While there are systems for which this technique is inapplicable
(e.g. systems for which the number of queues is too large, or
where the line-rate requires too large a value for , so that the
SRAM cannot be placed on chip), the technique can be used to
build extremely cost-efficient packet buffers which give the per-
formance of SRAM with the density characteristics of a DRAM,
buffers which are faster than any that are commercially available
today, and also enable packet buffers to be built for several gener-
ations of technology to come.

REFERENCES

[1] Cisco GSR 12000 Series Quad OC-12/STM-4 POS/SDH line card, http://
www.cisco.com/en/US/products/hw/routers/ps167/
products_data_sheet09186a00800920a7.html

[2] Juniper E Series Router, http://juniper.net/products/eseries/
[3] Force 10 E-Series Switch, http://www.force10networks.com/products/pdf/

prodoverview.pdf
[4] Cisco Catalyst 6500 series router. http://www.cisco.com/en/US/products/

hw/switches/ps708/products_data_sheet0900aecd8017376e.html
[5] Foundry BigIron RX-series Ethernet switches, http://www.foundrynet.com/

about/newsevents/releases/pr5_03_05b.html
[6] QDRSRAM Consortium, http://www.qdrsram.com
[7] Micron Technology DRAM, http://www.micron.com/products/dram
[8] RLDRAM consortium, www.rldram.com
[9] Fujitsu FCRAM, http://www.fujitsu.com/us/services/edevices/microelec-

tronics/memory/fcram
[10] CAIDA, http://www.caida.org/analysis/workload/byapplication/oc48/

stats.xml
[11] Villiamizar C. and Song C., “High performance tcp in ansnet,” ACM Com-

puter Communication Review (1995).
[12] Cisco 12000 Series Gigabit Switch Router (GSR) Gigabit Ethernet Line

Card, http://www.cisco.com/warp/public/cc/pd/rt/12000/prodlit/
gspel_ov.htm

[13] M-series Routers, http://www.juniper.net/products/dsheet/100042.html
[14] “Packet Length Distributions,” http://www.caida.org/analysis/AIX/

plen_hist
[15] “Round-Trip Time Measurements from CAIDA’s Macroscopic Internet To-

pology Monitor,” available at http://www.caida.org/analysis/performance/
rtt/walrus2002

[16] D. A. Patterson and J. L. Hennessy, Computer Architecture, A Quantitative
Approach, Section 8.4., pp. 425-432, Morgan Kaufmann, 1996,

[17] K.G. Coffman and A. M. Odlyzko, “Is there a “Moore’s Law” for data traf-
fic?,” Handbook of Massive Data Sets, eds., Kluwer, 2002, pp. 47-93.

[18] ESDRAM, http://www.edram.com/products/legacy/ESDRAMlegacy.htm
[19] RDRAM, www.rambus.com/technology/rdram_overview.shtml
[20] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair

queuing algorithm,” ACM Computer Communication Review (SIG-
COMM'89), pp. 3-12, 1989.

[21] A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing Ap-
proach to Flow Control in Integrated Services Networks: The Single Node
Case,” IEEE/ACM Transaction on Networking, Vol. 1, No. 3, pp. 344-357,
June 1993.

[22] J. Corbal, R. Espasa, and M. Valero, “Command vector memory systems:
High performance at low cost,” In Proceedings of the 1998 International
Conference on Parallel Architectures and Compilation Techniques, pp. 68-
77, October 1998.

[23] B. K. Mathew, S. A. McKee, J. B. Carter, and A. Davis, “Design of a paral-
lel vector access unit for SDRAM memory systems,” In Proceedings of the
Sixth International Symposium on High- Performance Computer Architec-
ture, Jan. 2000.

[24] S. A. McKee and Wm. A. Wulf, “Access ordering and memory-conscious
cache utilization,” In Proceedings of the First International Symposium on
High- Performance Computer Architecture, pp. 253-262, January 1995.

[25] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory
access scheduling,” In Proceedings of the 27th Annual International Sym-
posium on Computer Architecture, pp. 128-138, June 2000.

[26] T. Alexander and G. Kedem, “Distributed prefetch-buffer/cache design for
high performance memory systems,” In. Proceedings. of the 2nd Interna-
tional Symposium on High-Performance Computer Architecture, pp. 254-
263, Feb. 1996.

[27] W. Lin, S. Reinhardt, D. Burger, “Reducing DRAM Latencies with an Inte-
grated Memory Hierarchy Design,” In Proc. 7th Int symposium on High-
Performance Computer Architecture, January 2001.

[28] S. I. Hong, S.A. McKee, M.H. Salinas, R.H. Klenke, J.H. Aylor, and Wm.A.
Wulf, “Access order and effective bandwidth for streams on a direct rambus
memory,” In Proceedings of the Fifth International Symposium on High-
Performance Computer Architecture, pp. 80-89, January 1999.

[29] R. Bhagwan and B. Lin, “Fast and scalable priority queue architecture for
high-speed network switches,” In Proceedings of IEEE INFOCOM’00,
2000.

[30] P. Chen and David A. Patterson, “Maximizing Performance in a Striped
Disk Array,” ISCA, pp. 322-331, 1990.

[31] Y. Joo and N. McKeown, “Doubling Memory Bandwidth for Network
Buffers,” Proc. IEEE Infocom 1998, vol. 2, pp. 808-815, San Francisco.

[32] D. Patterson, and J. Hennessy, Computer Architecture: A Quantitative Ap-
proach, 2nd. ed., San Francisco: Morgan Kaufmann Publishers, c1996.

[33] L. Carter and W. Wegman, “Universal hash functions,” Jour. of Computer
and System Sciences 18, 1979, pp. 143-154.

[34] R. Impagliazzo and D. Zuckerman, “How to recycle random bits,” Proc. of
the Thirtieth Annual Symposium on the Foundations of IEEE, 1989.

[35] B. R. Rau, M.S. Schlansker and D.W.L. Yen, “The Cydra 5 stride-insensi-
tive memory system,” In Proc. Int Conf. on Parallel Processing, 1989,
pp.242-246.

[36] S. Iyer, R. R. Kompella, and N. McKeown, “Analysis of a memory archi-
tecture for fast packet buffers,” In Proc. IEEE HPSR, Dallas, Texas, 2001

[37] S. Iyer, R. R. Kompella, and N. McKeown, “Techniques for fast packet
buffers,” In. Proceedings. of GBN 2001, Anchorage, Apr. 2001.

[38] A. Birman, H.R. Gail, S.L. Hantler and Z. Rosberg, “An optimal service
policy for buffer systems,” Journal of the Association for Computing Ma-
chinery, pp. 641-57, vol. 42, no. 3, May 1995.

[39] H. Gail, G. Grover, R. Guerin, S. Hantler, Z. Rosberg, M. Sidi, “Buffer size

1. Our example is from Cisco Systems [50].
2. It is common in practice to write data in sizes of 64 bytes internally as this
is the first power of 2 above the sizes of ATM cells and minimum length TCP
segments (40 bytes).

T 51.2ns=
51.2ns

b

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

requirements under longest queue first,” Proceedings IFIP'92, vol. C-5, pp.
413-24, 1992.

[40] G. Sasaki, “Input buffer requirements for round robin polling systems,” In
Proceedings of 27th Annual Conference on Communication, Control and
Computing, pp. 397-406, 1989.

[41] I. Cidon, I. Gopal, G. Grover, and M. Sidi, “Real-time packet switching: A
performance analysis,” IEEE Journal on Selected Areas in Communica-
tions, SAC-6:1576-1586, Dec. 1988

[42] A. Birman, P.C. Chang, J. Chen, and R. Guerin, “Buffer sizing in an ISDN
frame relay switch,” IBM Research Report, RC14286, August, 1989.

[43] A. Bar-Noy, A. Freund, S. Landa, and J. Naor, “Competitive on-line switch-
ing policies,” Algorithmica, 36:225-247, 2003.

[44] R. Fleischer and H. Koga, “Balanced scheduling toward loss-free packet
queueing and delay fairness,” Algorithmica, 38:363-376, 2004.

[45] Peter Damaschek and Zhen Zhou, "On queuing lengths in on-line switch-
ing," Theoretical Computer Science 339 (2005), 333-343.

[46] Jorge García-Vidal, Maribel March, Llorenç Cerdà, Jesús Corbal, Mateo
Valero, "A DRAM/SRAM Memory Scheme for Fast Packet Buffers," IEEE
Transactions on Computers, vol. 55, no. 5, pp. 588-602, May, 2006.

[47] "High speed memory control and I/O processor system," Sundar Iyer, Nick
McKeown, Patent Application No. 20050240745, Ser. No: 20050240745.

[48] "High speed packet-buffering system," Sundar Iyer, Nick McKeown, Jeff
Chou, Patent Application No. 20060031565, Serial No. 182731.

[49] Sailesh Kumar, Patrick Crowley and Jonathan Turner, “Design of Random-
ized Multichannel Packet Storage for High Performance Routers,” Proceed-
ings of Hot Interconnects, 8/2005.

[50] Cisco Systems Catalyst 6500 Switches, http://www.cisco.com/en/US/prod-
ucts/hw/switches/ps708/products_data_sheet0900aecd801459a7.html

APPENDIX A: Proof of Theorem 2
Theorem 2: (Necessity) To guarantee that a byte is always avail-
able in SRAM when requested for any memory management algo-
rithm, the SRAM must contain at least
bytes.

Proof: In what follows we will consider a model where data can
be written/read from the packet buffer in a continuos manner i.e.
1-byte at a time. In reality this assumption results in a conserva-
tive bound on the cache size, than what occurs when discrete
packets (which have minimum size limitations) are taken into
consideration.

Consider the particular traffic pattern with the following pattern
of requests as shown in Figure 5. We will show that regardless of
the memory management algorithm the following pattern is appli-
cable. The pattern progresses in a number of iterations, where iter-
ation number , consists of time
slots. Each successive iteration lasts fewer time slots than the pre-
vious one. In each successive iteration the pattern focusses on the
queues which have not yet been replenished by the MMA in con-
sideration.

Initially at , each queue has D bytes, where D is the min-
imum number of bytes required so that every byte request can be
satisfied by the SRAM cache.

 1st iteration (Q time slots):In time slots , a
request arrives for FIFO . It takes time slots to read bytes
from the DRAM and replenish the SRAM cache of a specific
FIFO. At the end of time slot , at most FIFOs will have
received bytes from the DRAM, and so at least
FIFOs will have . Correspondingly, in the Figure,
we can observe that the number of bytes in the first queues
is , while the remaining queues have a deficit of 1.

 2nd iteration (time slots):In the iteration,
consider the FIFOs for which . In the
next time slots, we will assume that a request arrives

t0=0

D-1

D
D
D

D
D

D-1+b

D-1+b }

D-1

D-1

1

t1=t0+Q

D

D-2

D-1+b

D-1+b }

D-2

D-2+b

Q/b

t2=t1+Q(1-1/b)

}Q/b(1-1/b)

D-2+b
D-2

...

D-1+b

D-1+b }

x

D-2+b

Q/b

tx=tx-1+Q(1-1/b)x

}Q/b(1-1/b)
D-2+b
D-3 +b

Figure 5: Traffic pattern that shows the worst case queue size of the head SRAM. Starting with completely filled queues
with occupancy of D, in every iteration, the arbiter requests one byte from the lowest occupancy queues. At the end of itera-
tion , the last queue has a deficit of .x x Qb b 1–()⁄()log=

Iteration 0 Iteration 1 Iteration xStart
Read from Q queues Read from Q(1-1/b) queues Read from Q(1-1/b)x queues

Serve

Serve

Serve

Qw Q b 1–() 2 Qln+()>

x 0 1 2 …, , ,= Q 1 1 b⁄–()x

t0 0=

t 1 2 3 …Q, , ,=
t b b

Q Q b⁄
b Q 1 1 b⁄–()

D i Q,() 1=
Q b⁄

D 1– b+

Q 1 1 b⁄–() 2nd

Q 1 1 b⁄–() D i Q,() 1=
Q 1 1 b⁄–()

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

for each of these FIFOs. At the end of the iteration as shown
in the Figure, of these FIFOs will be replenished,
and will have .

 xth iteration (time slots): 1By continuing this
argument, we can see that at the end of iterations there will be

 FIFOs with . Solving for
, we get that

,

where . Since, , we get

,

and it follows that .
So far, we have proved that if each FIFO can hold

bytes, then in iterations at least one FIFO can have a
deficit of at least bytes. Imagine that this FIFO is left
with an occupancy of bytes (i.e. it initially held

 bytes, and 1 byte was read in each of
 iterations). If in successive times slots we proceed to

read more bytes from the most depleted FIFO i.e. the one with
occupancy bytes, it will certainly under-run (because it has
never been replenished). Since we do not know a priori the queue
for which this traffic pattern may occur, we require that

 bytes to prevent under-run. But we are
not quite done. Imagine that we initially had a head cache large
enough to hold precisely bytes for
every FIFO. and assume that the arbiter reads one byte from one
FIFO then stops indefinitely. After the one byte read, the FIFO
now contains bytes, but is replenished time
slots later with bytes from DRAM. Now the FIFO needs to
have space to hold these additional bytes. However since only
one byte has been read out of the FIFO, it needs to have space for
an additional bytes. Therefore, the SRAM needs to be able
to hold bytes per FIFO, and so

 bytes overall.

APPENDIX B: Proof of Lemma 2

Lemma 2: Under the MDQF-MMA, which services requests
without any pipeline delay,

, .

Proof: The case when is already proved in Lemma 1 and
when it is obvious as mentioned in Equation (6). For

, we again solve the recurrence relation
obtained in Equation (5) to obtain,

, (9)

We can write the second term in the above equation as,

, (10)

Since,

, , (11)

we can use Equation (10) and Equation (11) to re-write
Equation (9) as a weak inequality,

,
Thus we can write , .

APPENDIX C: Proof of Lemma 3

Lemma 3: (Sufficiency) Under the MDQFP-MMA policy,
and a pipeline delay of time slots, the real deficit of any
queue is bounded for all time by

.

Proof: We shall derive a bound on the deficit of a queue in the
MDQFP-MMA system in two steps using the properties of both
MDQF and ECQF MMA. First, we limit (and derive) the maxi-
mum number of queues which can cross a certain deficit bound
using the property of MDQF. For example in MDQF, for any
since the maximum value of the sum of the most deficited
queues is , there are no more than queues which have a
deficit strictly larger than at any given time. We will
derive a similar bound for the MDQFP-MMA with a lookahead of

 time slots, , where is the maximum deficit that
queues can reach under the MDQPF-MMA, and we choose

. With this bound we will have no more than
queues whose deficit exceeds at any given time.

Then we will set the size of the head cache to bytes more than
. By definition, a queue which has become critical has a

deficit greater than the size of the head cache, so the number of
unique queues that can become critical is bounded by . This will
also lead us to a bound on the maximum number of outstanding
critical queue requests, which we will show is no more than .
Since , this gives us sufficient time available to service
the queue before it actually misses the head cache. In what fol-
lows we will formalize this argument.

1. For example when discrete packets, which have constraints on the mini-
mum size are read, there might be fewer queues which reach their maximum
deficit simultaneously and lesser iterations than the worst case mentioned in
this continuos model where one byte can be read at a time.

2nd

Q 1 1 b⁄–() b⁄
Q 1 1 b⁄–()2 D i t,() 2=

Q 1 1 b⁄–()x

x
Q 1 1 b⁄–()x D i t,() x=
Q 1 1 b⁄–()x 1=

x Qb b 1–()⁄()log Qln() cln()⁄= =

c b b 1–()⁄= 1 x+()ln x<

cln 1 1
b 1–()

----------------+ln= 1
b 1–()

----------------<

x b 1–() Qln>
b 1–() Qln

b 1–() Qln
b 1–() Qln

b 1–
b 1–() 1 Qln+()
b 1–() Qln

b
b 1–

w b 1–() 1 Qln+()>()

w b 1–() 1 Qln+() 1+=

b 1–() 1 Qln+() b
b

b

b 1–
w b 1–() 2 Qln+()>

Qw Q b 1–() 2 Qln+()>

F i() bi 2 Q i⁄()ln+[]< i∀ 1 2 … Q 1–, , ,{ }∈

i 1=
i Q=

i∀ 2 … Q 1–, ,{ }∈

F i() i b b 1
j

j i=

Q 1–

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

+≤ i∀ 2 … Q 1–, ,{ }∈

1
j

j i=

Q 1–

∑ 1
j

j 1=

Q 1–

∑ 1
j

j 1=

i 1–

∑–= i∀ 2 … Q 1–, ,{ }∈

N∀ Nln 1
i

i 1=

N

∑ 1 Nln+< <

F i() bi 2 Q 1–() i 1–()⁄ln+[]≤ i∀ 2 … Q 1–, ,{ }∈
i∀ 2 … Q 1–, ,{ }∈ F i() bi 2 Q i⁄()ln+[]<

x b>
i t x+

Rx i t x+,() C≤ b 2 Q b
x b–()

----------------⎝ ⎠
⎛ ⎞ln+⎝ ⎠

⎛ ⎞=

k
k

F k() k
F k() k⁄

x Fx j() j⁄ Fx j() j

j x b–() b⁄= j
Fx j() j⁄

b
Fx j() j⁄

j

j
x jb b+≥

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

Step 1: We are interested in deriving the values of for the
MDQFP-MMA. But we cannot derive any useful bounds on

 for . This is because MDQFP-
MMA at some time (after taking the lookahead in the next
time slots into consideration) may pick a queue with a smaller
deficit if it became critical before the other queue, in the time

, ignoring temporarily a queue with a somewhat larger
deficit. So we will look to find bounds on , for values of

. In particular we will look at , where
. First, we will derive a limit on the number of

queues whose deficits can cross at any given time.
We begin by setting the size of the head cache under this policy

to be . This means that a critical queue has reached a
deficit of , where . The reason for
this will become clear later. We will first derive the value of
using difference equations similar to Lemma 1.

Assume that is the first time slot at which reaches its
maximum value, for some queues. Hence none of these queues
were served in the previous time slot, and either (1) some other
queue with deficit greater than or equal to was
served, or (2) a critical queue was served. In the former case, we
have queues for the previous time slot, for which we can say
that,

 (12)
In the latter case, we have,

(13)
Since and ,

, we will use Equation (12), since it is the
weaker inequality.

General Step: Likewise, we can derive relations similar to
Equation (12), i.e. .

. (14)
We also trivially have, . Solving these recurrence
equations similar to Lemma 2, gives us for MDQFP-MMA,

, , (15)
and .

Step 2: Now we are ready to show the bound on the cache size.
First we give the intuition, and then we will formalize the argu-
ment. We know that no more than queues can
have a deficit strictly more than . In particular, since we
have set the head cache size to , no more than queues have
deficit more than , i.e. no more than queues
can be simultaneously critical at any given time . In fact we will
show that there can be no more than outstanding critical queues
at any given time . Since we have a latency of time slots
this gives enough time to service any queue which becomes criti-
cal at time before time . The above argument is similar to
what ECQF does. In what follows we will formalize this argu-
ment.

Proof: (Reductio-Ad-Absurdum): Let be the first time at
which the real deficit of some queue , becomes
greater than . From Equation (7), we have that queue was crit-
ical at time i.e. there was a request that arrived at time to the
tail of the shift register which made queue critical. We will use
the following definition to derive a contradiction if the real deficit
becomes greater than .

Definition 6: : The number of outstanding critical queue
requests at the end of any time slot .

Consider the evolution of till time . Let time
be the closest time in the past for which was zero,
and is always positive after that. Clearly there is such a time, since

.
Then has increased (not necessarily monotonically) from

 at time slot to at the end of time
slot . Since , there is always a critical
queue in this time interval and MDQFP-MMA will select the ear-
liest critical queue. So decreases by one in every time slots
in this time interval and the total number of critical queues served
in this time interval is . What causes to increase in
this time interval?

In this time interval a queue can become critical one or more
times and will contribute to increasing the value of one or
more times. We will consider for every queue, the first instance it
sent a critical queue request in this time interval, and the succes-
sive critical queue requests separately. We consider the following
cases:

Case 1a: The first instance of a critical queue request for a
queue in this time interval, and the deficit of such queue was less
than or equal to at time . Such a queue
needs to request more than bytes in this time interval to create
its first critical queue request.

Case 1b: The first instance of a critical queue request for a
queue in this time interval, and the deficit of such queue was
strictly greater than but less than at time

. Such queues can request less than bytes in this time
interval and become critical. There can be at most such queues
at time .1

Case 2: Instances of critical queue requests from queues, which
have already become critical previously in this time interval.
After the first time that a queue has become critical in this time
interval, (this can happen from either case 1a or case 1b), in order
to make it critical again we require more requests for that queue
in the above time interval.

So the maximum number of critical queue requests created
from case 1a and case 2 in the time interval is ,
which is the same as the number of critical queues served by
MDQFP-MMA. The additional requests comes from case 1b and
there can be only such requests in this time interval. Thus

.

Fx i()

Fx i() i 1 2 … x b–() b⁄, , ,{ }<
t x

t t x+,()
Fx i()

i x b–() b⁄≥ Fx j()
j x b–() b⁄=

Fx j() j⁄

Fx j() j⁄ b+
C Fx j() j⁄ b+> j x b–() b⁄=

Fx j()

t Fx i()
i

Fx i() b–()() i⁄

i 1+

Fx i 1+() Fx i() b– Fx i() b–() i⁄+≥

Fx i 1+() Fx i() b– C+≥

C Fx j() j⁄ b+= i∀ j j 1+ j 2+ …Q 1–, , ,{ }∈
Fx j() j⁄ Fx i() i⁄≥

i∀ j j 1+ … Q, 1–, ,{ }∈
Fx i 1+() Fx i() b– Fx i() b–() i⁄+≥

Fx Q() Qb<

Fx i() bi 2 Q i⁄()ln+[]< i∀ j j 1+ … Q 1–, , ,{ }∈

j x b–() b⁄=

j x b–() b⁄=
Fx j() j⁄

C j
C Fx j() j⁄ b+= j

t
j

t x jb>

t t x+

1. Note that no queues can have deficit greater than at the beginning of
time slot because .

T x+
i rx i T x+,()

C i
T T

t

C

r t()
t

r t() t T= T y–
r T y– 1–()

r t 0=() 0=
r t()

r T y– 1–() 0= T y– 1– r T()
T r t() 0> t∀ T y T,–{ }∈,

r t() b

y b⁄ r t()

r t()

Fx j() j⁄ C b–= T y–
b

Fx j() j⁄ C b–= C
T y– b

j
T y–

C
T y– r T y– 1–() 0=

b

T y– T,{ } y b⁄

j
r T() j≤

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

Since we know that queue became critical at time and
, it gets serviced before time contradicting

our assumption that the real deficit of the queue at time is
more than . So the size of the head cache is bounded by .
Substituting from Equation (15),

. (16)

APPENDIX D: Proof of Theorem 6

Theorem 6: (Su f f i c iency) I f t he head cache has
bytes and a lookahead buffer of bytes

(and hence a pipeline of slots), then ECQF ensures
that no queue ever under-runs.

Proof: The proof proceeds in two steps. First, we make three sim-
plifying assumptions, which yield a simple lemma and proof of
the theorem. Then we relax the assumptions to show that the proof
holds more generally.

Assumption 1. (Queues Initially Full) At time , the
head cache is full with bytes in each queue; the
cache has bytes of data in it.

Assumption 2. (Queues Never Empty) Whenever we
decide to refill a queue, it always has bytes available
to be replenished.

Assumption 3. The packet processor issues a new read
request every time slot.

Lemma 4: If the lookahead buffer has
time slots, then there is always at least one critical queue.

Proof: The proof is by the pigeon-hole principle. We will look at
the evolution of the head cache. At the beginning the head cache
contains bytes (Assumption 1). Because there are
always read requests (Assumption 3) in the looka-
head buffer, at least one queue has more requests than the number
of bytes in head cache and so must be critical. Every b time slots,
b bytes depart from the cache (Assumption 3), and are always
refilled by b new bytes (Assumption 2). This means that every
time slots the number of requests is always one more than the
number of bytes in head cache, ensuring that there is always one
critical queue.

Now we are ready to prove the main theorem.

Proof: (Theorem 6). The proof is in two parts. First we show that
the head cache never overflows. Second we show that packets are
delivered within time slots from when they are
requested.

Part 1: We know from Lemma 4 that ECQF reads bytes from
the earliest critical queue every time slots, which means the
total occupancy of the head cache does not change, and so never
grows larger than .

Part 2: For every request in the lookahead buffer the requested
byte is either present or not present in the head cache. If it is in the
head cache, it can be delivered immediately. If it is not in the
cache, the queue is critical. Suppose that queues have ever
become critical before this queue became critical for byte .
Then, the request for byte which makes queue critical could
not have arrived earlier than time slots from the start.
The DRAM would have taken no more than time slots to
service all these earlier critical queues, leaving it with just enough
time to service queue , thereby ensuring that the corresponding
byte is present in the head cache.

Hence, by the time a request reaches the head of the lookahead
buffer, the byte is in the cache, and so the pipeline delay is
bounded by the depth of the lookahead buffer: time
slots.

A. Removing the assumptions from the proof of Theorem 6.
We need to make the proofs for Theorem 6 and Lemma 4 hold,

without the need for the assumptions made in the previous sec-
tion. To do this, we make two changes to the proofs - (1) Count
"placeholder" bytes (as described below) in our proof, and (2)
Analyze the evolution of the head cache every time ECQF makes
a decision, rather than once every time slots.

1. Removing Assumption 1: To do this, we will assume that at
, we fill the head cache with "placeholder" bytes

for all queues. We will count all placeholder bytes in our queue
occupancy and critical queue calculations. Note that placeholder
bytes will be later replaced by real bytes when actual data is
received by the writer through the direct-write path as described
in Figure 2. But this happens independently (oblivious to the
head cache) and does not increase queue occupancy or affect the
critical queue calculations, since no new bytes are added or
deleted when placeholder bytes get replaced.

2. Removing Assumption 2: To do this, we assume that when
ECQF makes a request, if we don’t have bytes available to be
replenished (because the replenishment might occur from tail
cache from a partially filled queue which has less than bytes),
the remaining bytes are replenished by placeholder bytes, so that
we always receive bytes in the head cache. As noted above,
when placeholder bytes get replaced later, it does not increase
queue occupancy or affect critical queue calculations.

3. Removing Assumption 3: In Lemma 4, we tracked the evo-
lution of the head cache every time slots. Instead, we now
track the evolution of the head cache every time a decision is
made by ECQF, i.e. every time bytes are requested in the loo-
kahead buffer. This removes the need for assumption 3 in
Lemma 4.
In Theorem 6, we replace our argument for byte and queue
as follows: Let queue become critical when a request for byte

 occurs. Suppose queues have become critical before that.
This means that queue became critical for byte , no earlier

i T
r T() j≤ T jb+ T x+<

T x+
C C

C Fx j() j⁄ b+ b 2 Qb x b–()⁄ln+[]≤=

Q b 1–() Q b 1–() 1+
Q b 1–() 1+

t 0=
b 1–

Q b 1–()

b

Lt Q b 1–() 1+=

Q b 1–()
Q b 1–() 1+

b

Q b 1–() 1+

b
b

Q b 1–()

q′
i bi

bi i
q′ 1+()b

q′b

i
bi

Q b 1–() 1+

b

t 0= b 1–

b

b

b

b

b

bi i
i

bi q′
i bi

STANFORD HPNG TECHNICAL REPORT TR02-HPNG-031001

than the time it took for ECQF requests and an additional
time slots. The DRAM would take exactly the same time that it
took ECQF to issue those replenishment requests (to service
all the earlier critical queues), leaving it with at least time
slots to service queue , thereby ensuring that the corresponding
byte is present in the head cache.
So the proofs for Lemma 4 and Theorem 6 hold independent of

the need to make any simplifying assumptions.

q' b

q'
b

i
bi

