Analysis of a Statistics Counter Architecture

Devavrat Shah, Sundar lyer, Balaji Prabhakar, Nick McKeown
Computer Systems Laboratory, Stanford University
Stanford, CA 94305-9030
{devavrat, sundaes, balaji, nickm}@stanford.edu

Abstract --Packet switches (e.g., IP routers, ATM switches and Ethernet
switches) maintain statistics for a variety of reasons: performance monitor-
ing, network management, security, network tracing, and traffic engineering.
The statistics are usually collected by counters which might, for example,
count the number of arrivals of a specific type of packet, or count particular
events, such as when a packet is dropped. The arrival of a packet may lead to
several different statistics counters being updated. The number of statistics
counters and the rate at which they are updated is often limited by memory
technology. A small nhumber of counters may be held in on-chip registers or
in (on- or off-chip) SRAM. But often, the number of counters is very large,
and hence they need to be stored in off-chip DRAM. However, the large ran-
dom access times of DRAMs make it difficult to support high bandwidth
links. The time taken to read, update and write a single counter would be too
large, and worse still multiple counters may need to be updated for each
arriving packet. In this paper we consider a specific architecture for storing
and updating statistics counters. Smaller sized counters are maintained in
fast (potentially on-chip) SRAM, while a large, slower DRAM maintains the
full-sized counters. The problem is to ensure that the counter values are
always correctly maintained at line-rate. We describe and analyze an optimal
counter management algorithm LCF-CMA), which minimizes the size of the
SRAM required while ensuring correct line-rate operation of a large number
of counters.

Keywords-packet-switch, statistics, counters, largest counter firsLCF).

. INTRODUCTION

terized as follows: When a packet arrives, it is first classified to

determine what actions will be performed on the packet. For

example, whether the packet should be accepted or dropped,
whether it should receive expedited service or not, and so on.
Depending on the chosen action, some statistics counters are
updated.

The statistics we are interested in here are those which count
events. For example, the number of fragmented packets, the
number of dropped packets, the total number of packets arrived,
the total number of bytes forwarded etc. In the rest of this paper
we shall refer to these &®unters.It is our goal to study and
quantitatively analyze the problem of maintaining these counters.

We are patrticularly interested in applications that maintain a
large number of counters. For example, a routing table that keeps
a count of how many times each prefix is used, or a router that
keeps a count of packets belonging to each TCP connection. Both
examples would require several hundreds of thousands, or even
millions of counters to be maintained simultaneously, making it
infeasible (or at least very costly) to store them in SRAM.
Instead, it becomes necessary to store the counters in off-chip,
relatively slow DRAM.

Furthermore, we are interested in applications in which

Packet switches perform many processing tasks on each arrupdates are frequent. For example, an OC192c link in which mul-
ing packet. These include address-lookup, classification, buffetiple counters are updated upon each packet arrival. These read-
ing, QoS scheduling, header editing and statistics maintenandnodify-write operations must be conducted at the same rate as
Each of these tasks are typically performed on the line cards packets arrive.

switches and routers, and therefore need to be done at line re
With line rates expected to increase beyond OC192 (10Gb/s) is as follows: 1) Read thi! :
OC768 (40Gb/s), each of the above packet processing tasincrementthevl bit value, and 3) write the updavéd

If each counter i®1 bits wide, then a counter update operation
bit value stored in the counter, 2)
bit value

becomes more difficult. There have been several different tecback. If packets arrive atara® Gb/s, the minimum packet size

niques proposed for address-lookup [1], packet-classification [2is P bits, and if we updat€

counters each time a packet arrives,

packet buffering [3][4][5], and QoS scheduling [6]. We are notthe memory may need to be accessed (_either read or written)
aware of papers that describe the problem of maintaining a lar€very P/2CR nanoseconds. Let's consider the example of

number of statistics counters.

40byte TCP packets arriving on a 10Gb/s link, each leading to

Packet switches maintain statistics for many reasons. Thethe updating of two counters. The memory needs to be accessed
include firewalling (especially stateful firewalling), intrusion €very 8ns, é_lbOUt eight times faster than the random-access speed
detection, performance monitoring (e.g. RMON), network tracof commercial DRAMs today.

ing, load balancing and traffic engineering (e.g. policing ani

It is a strict requirement that the counter(s) be correctly

shaping). In addition, most packet switches maintain statisticupdated every time a packet arrives. No packet must be left unac-

counters to facilitate network management.

The general problem of statistics maintenance can be chararrives and updat€

counted for. If we do an update operation every time a packet
counters per packet, then the minimum

bandwidth R, required on the memory interface where the

*This research was supported by the National Science Foundation, under N&Pumers are stored would be at |§2§ﬂ\/|C/ P. Again this can .
contract ANI-9872761, the NSF CAREER award, the Alfred P. Sloan FoundatioR€COMe unmanageable as the size of the counters and the line

and the Terman Fellowship.

rates increase. bits and that each arriving packet updates a maximud0of

In this paper, we propose an approach which uses DRAMSs counters. Our results indicate that a statistics counter can be
to maintain statistics counters and a small fixed amount of built with a DRAM of access tim&1.2 ns, a DRAM memory
(possibly on-chip) SRAM. We assume thdtcounters of bandwidth of1.25 Gb/s and 9 Mb of SRAM.
width M bits are to be stored in the DRAM, and tist
counters of widthm< M bits are stored in SRAM. The Il. DEFINITIONS

counters in SRAM keep track of the number of updates not \ye will now describe the memory hierarchy used to hold the
yet reflected in the DRAM counters. Periodically, under the gtatistics counters, and in the following sections describe the

control of a counter management algorithm (CMA), the | cF.CMA (Largest Counter First Counter Management Algo-
DRAM counters are updated by adding to them the values in yjtn).

the SRAM counters, as shown in Figure 1. The basic idea is
that by updating the DRAM counters relatively infrequently, A. Memory Hierarchy
the memory bandwidth requirements are reduced.
We are interested in deriving strict bounds on the size of the Definition 1: Minimum Packet SizeP : Packets arriving at a
switch have variable lengths. We shall denotPby the mini-
mum length that a packet can have.

Large DRAM memory witiN counters of widtiM bits Definition 2: Time Slot:— The time taken to receive a mini-

OOoO0||000gioooo|oodd mum-sized packet at a link rafe
OoOoOo|ooog|oooojooad

The SRAM is organized as a statically allocated memory,

OoOoOo|oooOojooaoytood consisting of separate storage space for each ™ the counters.
OOoOO||0ooojoooo DDD% We will assume from here-on that an arriving packet incre-
ments only one counter. If instead we wish to consider the case
ReadM bits write M bits whereC counters are updated per packet, we can consider the
(:L:L:?]fer line rate on the interface to IR
@er Management@ . . .
B andwidth 2CMR Each counter is represented by a large counter ofsize bits

in the DRAM, and a small counter of siza< M bits in
| SRAM. The small counter counts the most recent events, while
B0o8 Booo Dobo oooo _ the large counter counts events since the large counter was last
Amiving gy | oong oooo ooog oopg] COMesponding updated. At any time instant the correct counter value is the

Packets 0000 OO00 0000 00oos Small
Counter sum of the small and large counters.

Small SRAM ithN t f widthm < M bit
ma efmory WI counters of wi s Updating a DRAM counter consists of a read-modify-write

Figure 181R’\"Aehr/|“°?’ hie;ﬁ“’hy fcl’lr the fta“S“ChS, f}oumers-_Adfixe”d'fized operation: 1) Read aM bit value from the large counter. 2)
Ingress stores the small counters, wnich are periodica rans- . .
fe?red to the large counters in DRAM. The memory Eandwidthyon the Add them bit value O,f the CorreSpondm,g small counter to the
DRAM is decreased by a factor large counter, 3) Write the neM bit value of the large
counter to DRAM, and 4) Reset the small counter value.
SRAM such that — irrespective of the arriving traffic pattern |n this paper, we take it as a requirement to decrease the
— none of the counters in the SRAM overflow and the access DRAM bandwidth by a factob i.eR, = 2RM/Pb and
rate and the bandwidth requirements on the DRAM are increase the access time of the DRAMs accordingly, i.e.
decreased, while still ensuring correct operation of the A, = Pb/2R. Thus the CMA will update a large counter only
counters. once everyb time slots. We will derive the minimum size of
We will see that the size of the SRAM, and the access ratethe SRAM as a functiog(.) and show that it is dependent on
of the DRAM both depend on the CMA used. The mainresult N, M and b . Thus the system designer is given a choice of
of this paper is that there exists a CMA (which we call largest trading off the SRAM sizgy (N, M, b) with the DRAM band-
counter firstL CF) that minimizes the size of the SRAM. We idth R, and access tima, 1
derive necessary and sufficient conditions on the sizes of the
counters (and hence of the SRAM which stores all these pefinition 3: Count C (i, t) : At time t, the number of times
counters), and we prove thaCF is optimal. It is interesting that the " small counter has been incremented since %he i
to note that this problem has some similarities with a related |arge counter was last updated.
problem in packet buffering [7].
As an example of how this technique can be used, consider
an OC192c linecard on a router that maintains a million
counters. Assume that the maximum size of a counté4 is

L The variableb (b>1) is chosen by the system designer. If
b = 1, no SRAM is required, but the DRAM must be fast enough
for all counters to be maintained in DRAM.

Definition 4: Empty Counter:A counteri is said to be empty

attimet fC(i,t) = 0. R A LICACS)
We note that the correct value of a large counter may be lost : b/ (b—1))"" T (N-1
if the small counter is not added to the large counter in time, _ ni(Ir(n ([;/ ()t)) 1)() ~1)]

i.e. before an overflow of the small counter. Our goal is to find
the smallest sized counters in the SRAM, and a suitable
CMA, such that a small counter cannot overflow before its

)) Thus, there exists an arrival pattern for which a counter can
corresponding large counter is updated.

In[(N-1) (b/ (b-1)) "7

reach a coun€ (i,t) of n (o’ (b—1))] .0

I1l. NECESSITY CONDITIONS ON ANYCMA

Theorem 1:(Necessity) Under any CMA, a counter can IV. A CMA WHICH MINIMIZES THE SIZE OF THESRAM.

(b-1)
reach a count (i, 1) of LN _Il?(tss/(t()li_l)l ;)

1 A. LCE-CMA

Algorithm Description: Every b time slots, LCF-CMA
Proof: We will argue that we can create an arrival pattern for selects the countdr which has the largest count. If multiple
which, after some tlme there exists such that there will be counters have the same courF-CMA picks one arbitrarily.
(N=1)/ ((b—1)/b)" counters with counk +1 irrespec- | CF- -CMA updates the value of the corresponding cotinter in
tive of the CMA. the DRAM and set€ (i,t) = 0 in the SRAM.

Consider the following arrival pattern. In time slot
t = 1,2 3...N, small countert is incremented. EvelrJyh
time slot one of the large counters is updated, and the corre-
sponding small counter reset@® . So at the end of time slot

B. Optimality

Definition 5: Domination: Let v = (v, V,, ...v) , and

N, there areN (b—1) /b counters with coubt , aNdb u = (uy, U, ...uy) denote the values Gf(i,t) for two differ-
empty counters. During the next time slots Wrgb ent systems dl counters at any timé&et 1, 0 be an order-
empty counters are incremented once more, i’ of ing of the counterg1, 2 3 ...N) such that they are in
these cou;ters a][te no;vNused t:) updateltt:e Iar?he counter a”@escendmg order i.e. for v we have,
reset. o after ime slots ere are

[N(b—1)/b] + [N(b-1)/b] counters which have 'm0 ZVr@2Vn@ 2 2Vrgy and foru we have
count1 . Us(2) 2 Us(2) 2Us(g) 2 - 2 Ugn) -

In a similar way, we can maké—1 counters have a count We say thaty dominates denotedu \jif;) 2u;g), i .
of 1 attime slotN—1 . During the next—1 time slots, all Every arrival can possibly increment any of different
N—1 counters are incremented once &nth of them are counters. The set of all possible arrivals patterns attime can
served and reset to zero. Now assume that all of the remaining, (efined asf), = { (Wy, Wy, Wy, ..., W), 1w, < N, Oi}
approximatelyN/b empty counters are incremented twice in

the next2N/b time slots, whil@N/b° counters become Theorem 2:(Optimality of LCF-CMA) Under arrival
empty due to service. Note that the empty counters decreased f = let
to 2N/b” from N/b (if b = 2, there is no change). In this sequence a() = (apayay ... a) €

way, after some time, we can haN&l counters of cAunt . gq(a(t),Ps) = (4, 0,0, ...,0y) denote the count
By continuing this argument, we can arrange foN\aH 1
counters to have a coubt—1 . Let us denotelby the time
slot at which this first happens. any service policyP , there existsb-1 function
During the interval from time sl (N-1) tB8(N-1) ,
all of the counters are again incremented, art of the
are served and reset@ , while the rest have a count of two. quP Lep (W), pD»q (w, LCPH,O(wOQ), Ot
In the nextN—1 time slots each of the counters with &ize
is incremented and agaitv'b are served and resé to
while the rest have a count of three. Thus there are

2 .
(N-1)/((b-1)/b)" counters with a count of three. Ina ¢ sufficiency conditions on LCF service policy
similar fashion, if only non-empty counters keep being mcre-

mented, after a while there will béN—1) / ((b—1) /b)" Theorem 3:(Sufficiency) Under the LCF policy, the count
counters with counk+ 1 . Hence there will be one counter INbN

with count: C (i, t) of every counter is no more th S0/ (b=1))

C(i,t) of N counters at timé¢ under service poky . For

mftchﬁ(Q—'Qt) for any t such that,

'Proof: See Appendix I

Proof: (By Induction)Letd = b/ (b—1). LetN, (t) denote
the number of counters with count at time at time . We
define:

FO) = Zd N,(t)

i21

We claim that unddrCF policy, F(t) <bN for every time
We shall prove this by induction. At timé¢ =0
F(t) = 0<bN. Assume that at timeé = bk for some
F(t) <bN. For the nexto time slots, sone counters with
counti, 2i,>... 2i, are incremented. Even though not re-

t.

InbN 0
Y in/ (b-1))
Theorem 4:(Sufficiency) A counter of size

O InbN

In (b/ (b—1)) DbltS is sufficient.

Iog

Proof: We know that in order to store a valye we need at
mostlog,x bits. Hence the proof follows from Theoren3.

. Choosing the correct value bf

quired for the proof we assume that the counter values are dIS-

tinct for simplicity. After the counters are incremented they
have count$, +1,i,+1, ...,i,+1 respectively, and the larg-
est counter amongst all tlhe
counter has at least a val0¢.) =i, + 1
e Case 1If all the counter values at time were nonzero,
then the contribution of thede counterd=it) was:

iy
a = d +d +...d

After considering the values of these counters after they
are incremented, their contribution Egt + b) becomes
da . But a counter with a cour@ (.) =i, +1 is served
at timet+b and its count becomes zero. Hence, the
decrease toF(t+b) is at leastu/b . Thus, the net
increase is at mostda[l- (L/b)] —a But
d[1-(1/b)] = 1. Hence, the net increase is at most
zero; i.e. if arrivals occur to non-zero queuEg) can
not increase.

Case 2 Now we deal with the case when one or more

counters at timé were zero. For simplicity assumé all
counters which are incremented are initially empyr

these empty counters, their contributior(p) was zero,
and their contribution toF(t+b) isddb . Again, the
counter with the largest count amongstMll counters is

served at time +b . IfF(t) <bN-db , then the induc-
tive claim holds trivially. If not, that isk-(t) >bN—-db
then at least one of tié—b counters, which did not get

incremented, has count+ 1 , such thﬁt, =b ; other-
wise it contradicts the assumptiof(t) >bN-db

Hence, a counter with count at ledast+ 1 is served,

which decreaseB(t + b) bd' *1' = db . Hence the net

increase is zero. One can argue the case when arrivals

occur to fewer thatp empty counters similarly.
Thus, we have shown that, for all tihe when the counters
are servedF(t) <bN . This means that, the counter value can

InbN
Ind

Substituting ford , we get that the counter value is bounded

not be larger than_ wheraﬂ'"‘ = i.€() <

counters is serviced. The Iargest

We can see from Theorem 4 that the size of the counters in

SRAM is bounded byog = (bl/n(bbN) E

our goal is to keep onIy a small sized counter in the SRAM we

InbN O
need thalog N6/ (b—1)) O<M

This glves us an upper bound dén . Also, note that the
access time on the DRAM is nay = Pb/2R . Hence, if the
DRAM technology being used supports a random access time
T, we needPb/2R= T, . This gives us a lower boundoon
Similarly, if the DRAM bandwidth is also a constraint, another
lower bound onb is obtained from the fact ti2RM/ Pb
must be less than the maximum bandwidth available from a
DRAM subsystem. The system designer can choose any value
of b between the lower and upper bounds, and derive a corre-
sponding value for the SRAM size.

We note that for very large values df and small values of
M, it is possible that there is no suitable valuéof ;i.e., one
cannot optimize the system using the above technique. In such
a case, the system designer is forced to store all the counters in
SRAM.

As an example, consider an OC192c linecard. Say that it
maintains a million counters. Assume that the maximum size
of a counter isP = 64 bytes and that each arriving packet
updates a maximum of = 10 counters. Hence the actual
rate arriving rate can be considered tofbe 100 Gb/s. Sup-
pose that the fastest available DRAM has an access time of
T, = 51.2ns. Since we requirb/2R=T, , this means that
b=20.

We will now consider two variants on the requirement of the
size of the counter needed in the system.

However, since

InbN
If M = 64, thenlog N (6/ (b= 1))5

we design the counter architecture with- 20 . We
get that the minimum size of the counters in SRAM
required for the.CF policy is 9 bits and this results
in an SRAM of size 9Mb. The required access rate
can be supported by keeping the SRAM memory on-
chip.

<M and

2. If we requireM = 8 then we can see that

InbN O

Ob, b= 20, Iog NCACE 1))D>M Thus there

is no optimal value ob and all the counters are
always stored in SRAM without any DRAM.

V. CONCLUSIONS

Packet switches need to maintain counters for gathering

by (py, P, ..., Py) - It is trivial to check that there exists such a

function fort = 1 . Inductively assume thfq‘; LcF ©xists with

the desired property till timé¢ , and we want to extend it to

time t+ 1. This means that there exists orderirt],g:pt such

statistics on various events. The general method presented in

this paper can be used to build a high bandwidth statistics
counter for any arrival traffic pattern. An algorithm, called
largest counter first CF), was introduced for doing this and
was shown to be optimal in the sense that it only requires a
small optimally-sized SRAM, running at line rate, which tem-
porarily stores the counters, and a DRAM running at slower

than the line rate to store complete counters. For example, a

statistics update arrival rate df00 Gb/s on 1 million
counters can be supported with currently available DRAMs

(having a random access time 6.2 ns) add Mb of
SRAM.

REFERENCES
[1] M. Sanchez, E. Biersack, and W. Dabbous, “Survey and taxonomy of

IP address lookup algorithmslEEE Network pp. 8-23, vol: 15:2,
2001.

P. Gupta, and N. McKeown, “Algorithms for packet classification,”
IEEE Network pp. 24-32, vol: 15:2, 2001.

M. Arpaci, and J. Copeland, “Buffer Management for shared-memory
ATM switches,”IEEE Comm. Surveys and Tutorigdsailable at http:/
/www.comsoc.org/pubs/surveys/1q00issue/copeland.html

S. lyer, R. R. Kompella, and N. McKeown, “Analysis of a memory ar-
chitecture for fast packet bufferdti Proc. IEEE HPSRDallas, Texas,
2001.

M. L. Irland, “Buffer Management in a Packet SwitciZEE Trans.
Communicationvol. COM-26:3, pp. 328-337, Mar. 1978.

R. Geurin, and V. Peris, “Quality-of-Service in packet networks: Basic
mechanisms and directions&Zomputer Networks31:3, pp. 169-189,
Feb. 1999.

H. Gail, G. Grover, R. Guerin, S. Hantler, Z. Rosberg, and M. Sidi,
“Buffer size requirements under longest queue fiRtgceedings IF-
IP'92, vol. C-5, pp. 413-24, 1992.

(2]
(3]

(4]

(5]
(6]

(7]

APPENDIX A

Theorem 2:(Optimality of LCF-CMA). Under arrival
sequence a(t) = (a,a,a,...,a) , let

[(a(t),P;) = (4,0, dg ---, 0y) denote the count (i, t)

of N counters attimé¢ under service pokyy . For any ser-
vice policy P, there exists al-1 function
ftP’ ler (©Q,-9Q), for any t such that,

A, Lcr (W), PE»q (W, LCP, O(w0 Q) Ot

Proof: We prove the existence of such a functiférLCF

inductively over time . Let us denote the counters of.{DE
system by(l, 1, ...,1y) and the counters of thRe system

that, ln‘(i) < pot(i), Oi . Now, at the timé+ 1 , a counter may

be incremented and a counter may be completely served. We
consider both these parts separately below:

Part 1. (Arrival) Let a counter be incremented at time

t + 1 in both systems. Suppose that coumfe(lk)

isin-
cremented in th&CF system. Then extenf;:l,y Lcg for
t+1 by letting an arrival occur in countef (k) forthe
P system. By induction, we ha\lrﬁ(i) <p iy Oi . Let

()

1 6""* be the new ordering of the counters of the

LCF and P systems respectively. Since one arrival oc-
curred to both the systems in a queue with the same rel-
ative order, the domination relation does not change.

Part 2 (Service) Let one of the counters be served at

time t+ 1. Under the_CF policy, the countent (1)
with countlnt(l) will be served and its count is set to

zero i.e. C(nt(l),t+1) = 0, while unde® any
gueue can be served out, depending on the CMA pre-
scribed byP . LetP serve the counter with rdak , i.e.

t .
countero (k) . Then we can create a new ordering

t+1 t+1 .

m ,0 as follows:

a i) =m(i+1),1cisN-1,
TTt+l(N) _ T[t(l)

b.a' (i) =o'(i), 1<i<k—-1,
o) =a'(i+1),ksisN-1,
a""1(N) = 6" (K)

Under this definition, it is easy to check that,
In‘*l(i) < pom(i), i given In‘(i) < pa‘(i), i . Thus we have

shown explicitly how we can exterftgv LCE ttprCF with the

desired property. Hence it follows inductively thaCF is
dominated by any other polidy [l

