
Analysis of a Memory Architecture for Fast Packet Buffers

Sundar Iyer, Ramana Rao Kompella, Nick McKeown
Computer Systems Laboratory, Stanford University,

Ph: (650)-725 9077, Fax: (650)-725 6949
Stanford, CA 94305-9030

{sundaes, ramana, nickm}@stanford.edu

Abstract --All packet switches contain packet buffers to hold packets
during times of congestion. The capacity of a high performance router is
often dictated by the speed of its packet buffers. This is particularly true for
a shared memory switch where the memory needs to operate at times the
line rate, where is the number of ports in the system. Even input queued
switches must be able to buffer packets at the rate at which they arrive. And
so as link rates increase memory bandwidth requirements grow. With
today’s DRAM technology and for an OC192c (10Gb/s) link, it is barely pos-
sible to write packets to (read packets from) memory at the rate at which
they arrive (depart). As link rates increase, the problem will get harder.
There are several techniques for building faster packet buffers, based on
ideas from computer architecture such as memory interleaving and banking.
While not directly applicable to packet switches, they form the basis of sev-
eral techniques in use today. In this paper we consider one particular packet
buffer architecture consisting of large, slow, low cost, DRAMs coupled with a
small, fast SRAM “buffer”. We describe and analyze a memory management
algorithm (ECQF-MMA) for replenishing the cache and find a bound on the
size of the SRAM.

Keywords--Memory Buffers, Packet Buffers, Memory Banks, Striping, Cell
Interleaving.

I. INTRODUCTION

A fundamental requirement of a packet switch (e.g. an Internet
router or ATM switch) is its need to buffer packets. Often, the
performance of a packet switch is limited by the speed at which it
can buffer packets. This paper is about one practical method to
overcome this limitation. There are, in fact, several approaches to
this problem but due to the proprietary nature of different com-
mercial solutions, we are not aware of any quantitative analysis
or comparison of different techniques. While this paper describes
and analyzes one packet buffer architecture, it is the longer term
goal of our work to quantitatively compare a variety of tech-
niques.

There are certain characteristics common to packet buffers in
almost all types of packet switch. First, as the line rate
increases, the memory bandwidth1 of the packet buffers must
increase. For example, if a packet switch with ports buffers
packets in a single shared memory, then it requires a memory
bandwidth of . If on the other hand, the packet switch main-
tains a separate packet buffer for each input, it requires a memory
bandwidth of . In both cases, the memory bandwidth scales
linearly with the line rate.

1. The memory bandwidth is defined here to be the reciprocal of the
time taken to write data to, or read data from a random location in
memory. For example, a 32-bit wide memory with a 100ns random
access time is said to have a memory bandwidth of 320Mb/s.

N

N

R

N

2NR

2R

Second, interfaces with faster line rates require larger buffers.
As a rule-of-thumb, packet switches employ buffers of size
approximately (where is the round trip time for
flows passing through the packet switch) for those occasions
when the packet switch is the bottleneck for the (TCP) flows
passing through it. With an Internet of approximately 0.25
seconds today, a 10Gb/s interface requires 2.5Gbits of memory.
Because today this is bigger than a reasonably priced SRAM
buffer (and because each successive generation of interface
requires more memory), packet buffers are made from more cost-
effective, lower power, but slower, DRAM whenever possible.

Third, packet buffers are arranged as one or more first-in first-
out (FIFO) queues. For example, a shared memory switch main-
tains at least one FIFO for each output line; and an input-buffered
packet switch usually maintains virtual output queues [1]. If the
packet switch performs per-flow or per-class queueing, the num-
ber of FIFO queues can become very large.2

Fourth, the sequence in which packets are read from the buffer
is determined by a scheduling algorithm. For example, in a
shared memory switch, the time at which each packet is read
from memory is determined by an output-link scheduler (e.g. a
WFQ scheduler [2][3]). Similarly, in a packet switch with input
buffers, the time at which each packet is read from memory is
determined by an arbiter that determines the configuration of a
switch fabric. In both types of switch we can think of there being
an arbiter that requests a particular packet be retrieved from
memory and delivered within a fixed time. Although determinis-
tic, the sequence of requests is not known to the buffer manager
at the time packets are written into memory. As far as the buffer
manager is concerned, the sequence of requests is unpredictable,
yet it is required to retrieve the packet within a fixed time. This is
quite different behavior from how data is read from main mem-
ory in a computer — in a computer, it is considered acceptable if
the time to retrieve data is variable.3

Last, it is common for packets to be segmented into fixed size
units prior to storage. This is done for several reasons: (1) Mem-

2. In packet switches that maintain per-flow FIFOs, the number of
queues grows with . This is because a faster line is likely to carry a
larger number of multiplexed flows. OC192c line interfaces for ATM
commonly maintain 256k queues or more.
3. Several factors lead to variations in the retrieval time. The data may
or may not be cached. If cached, it may be in the primary or secondary
cache. If not cached, the data may be retrieved from the same page as
the previous data (which may mean a faster memory access). Alterna-
tively, the data may be held up while the memory is refreshed.

RTT R× RTT

RTT

R

ory can be utilized more efficiently if all buffers are the same
size; (2) Switch fabrics generally operate on fixed size data
units anyway; and (3) Arriving packets may in fact be 53-byte
ATM cells. Throughout this paper, we will refer to the fixed
size segments as “cells” of size , even though they need not
be equal in size to an ATM cell.4

In summary, packet buffers consist of multiple FIFO queues
stored in DRAM that contain fixed sized cells. Given an unpre-
dictable sequence of requests from an arbiter, the packet buffer
must be able to retrieve cells within a fixed time period. The
memory bandwidth and size of the packet buffer both increase
linearly with .

It is worth considering how fast a packet buffer must operate
for different line rates. For example, a packet buffer for a single
10Gb/s interface (OC192c SONET or 10Gb/s Ethernet)
requires a memory bandwidth of at least 20Gb/s. If cells are 64
bytes long and are written to and read from memory in one
transaction (i.e. the memory is one cell “wide”), then one mem-
ory operation is required every 25.6ns, which is faster than the
random access time of DRAMs today. If the line rate is 40Gb/s
(e.g. OC768c SONET), then a memory operation is required
every 6.4ns, much faster than commercial DRAM today, or any
expected in the near future.

In this paper, we will describe and analyze a mechanism in
which memory bandwidth is increased by reading (writing)
multiple cells from (to) memory in parallel (i.e. there is a single
address bus that controls all memory devices in parallel). In
other words, when the unpredictable arbiter requests a cell,
multiple cells are read from DRAM at the same time. The addi-
tional cells are stored temporarily in an SRAM until they are
required. We can think of this memory hierarchy as a large
DRAM containing a set of FIFOs; the head and tail of each
FIFO is cached in a (possibly on-chip) SRAM as shown in Fig-
ure 1. The SRAM is sized so that whenever the arbiter requests
a cell, it is always delivered within a bounded delay, regardless
of the sequence of requests.

In this paper we will describe an algorithm that minimizes
the SRAM size while guaranteeing a bounded latency.5 As we
shall see, the size of the SRAM is dictated by a memory man-
agement algorithm (MMA) that determines the order in which
cells are read from the DRAM.

It should be noted that the general packet buffer architecture
described here is not novel, and we believe it to be in use in
several proprietary, but undocumented packet switches. Some
previous work on a related problem is available in [4][5][6].
Our goal here is to systematically study and analyze this mem-
ory architecture for the benefit of designers who might use it in
their designs. In particular, we will determine how large the
SRAM needs to be, and propose algorithms for deciding when

4. It is common in practice for cells to be 64 bytes long as this is the
first power of 2 above the sizes of ATM cells and minimum length
TCP segments (40 bytes).
5. The special case when the latency is zero is described in [7].

C

R

to replenish the SRAM cache so as to minimize its size, or to
minimize latency.

On the face of it, the scheme is similar to traditional data
striping, banking, interleaving or pre-fetching used in computer
systems [8][9][10][11]. Some other approaches that use Ram-
bus DRAM controllers [12][13] and other techniques that hide
latency are described in [14][15][16][17]. However, unlike
computer systems, packet switches cannot tolerate bank con-
flicts that occasionally allow the data to be delivered at an
unpredictable time. Also, simply striping a cell across multiple
memory banks is not much use when the cell size is quite small.
Another approach is to use statistical memory banking with
pseudo-random functions or hash functions [18][19][20] so that
the probability of the worst case request patterns is low. While
this may work well most of the time, it does not support worst
case patterns and does not guarantee a bound on the access time
for each cell.

The main result of this paper is that if the DRAM contains
FIFO queues, there exists a MMA for which an SRAM of size

 cells for each of the ingress and egress SRAM
caches, is sufficient to bound the time from when the arbiter
requests a cell to when the cell is retrieved. is the number of
cells written to or read from memory in each operation, as
shown in Figure 1. The result holds for any arbiter and for any
packet arrival/departure process. The maximum time from
when a request is received until the cell is retrieved from
DRAM is time slots, where one time slot is the
time for a cell to arrive.

As an example of how these results may be used, consider an

Arriving
Packets

Departing
Packets

Large DRAM memory with access time,T

Ingress SRAM Egress SRAM
cache of FIFO heads

Figure 1: Memory hierarchy of packet buffer, showing large
DRAM memory with heads and tails of each FIFO maintained in a
smaller SRAM cache.

1

Q

1

Q

1

Q

b cells

R R
Arbiter

b cells b cells

Write Access Read Access
 Time = 2T Time = 2T

Memory Management Algorithm

cache of FIFO tails

requests

FIFO tailsFIFO heads

FIFO centers

grants

Q

A Q b 1–()=

b

Q b 1–() 1+

input-queued router with 32 ports, each operating at 40Gb/s
(OC768c). Each input maintains 32 virtual output queues in
DRAM with a random access time of (requiring)
and segments each packet into 64byte cells. Our results indicate
that such a packet buffer could be built with 115Kbits of SRAM
for each of the ingress and egress SRAM caches, and a latency
bound of for each cell.

II. A M EMORY MANAGEMENT ALGORITHM

A. Introduction

There are many alternative algorithms for deciding when to
write data to, and read data from, the DRAM buffer, and the
algorithm will determine the amount of SRAM needed. In what
follows, we will first describe the memory hierarchy in more
detail, then describe the ECQF-MMA (Earliest Critical Queue
First Memory Management Algorithm) and show that it mini-
mizes the size of the SRAM buffer.

B. Memory Hierarchy

Referring again to Figure 1, cells of size arrive at rate
and are buffered in the ingress SRAM buffer, where they wait
for the MMA to write them into a large FIFO in DRAM. All
cells written at one time are written to the tail of the same
DRAM FIFO. Similarly, the MMA reads cells from the DRAM
as needed, and places them into the corresponding FIFO in the
egress SRAM buffer. Again, cells are read at a time, all from
the same FIFO in the DRAM. Each time the arbiter requests a
cell, it is delivered from the SRAM buffer at rate .6

So, the head and tail of each FIFO resides in SRAM, whereas
the middle portion of the FIFO resides in DRAM. Of course, if
the FIFO has few cells, they may all reside in SRAM.

We’ll assume that each DRAM read and write operation
takes seconds, which is the random access time of the
DRAM (i.e. the maximum time taken to access any location in
the memory array). Each cell that is written into DRAM is read
from DRAM sometime later; i.e. the number of write and read
operations are equal (to be contrasted with a CPU in which data
is commonly written once and read many times). We can there-
fore think of the memory operating in cycles of length ,
where each cycle consists of one write and one read. So an
obvious requirement for the packet buffer to sustain the line
rate is that . In this paper, we take it as a require-
ment to minimize the memory width, and so we assume

.

6. For clarification, if a request arrives for a cell that is still in the
ingress SRAM buffer (i.e. because the cell’s FIFO contains fewer
than cells), then the cell is read directly from the ingress SRAM
buffer.

51.2ns b 8≥

2.9us

C R

b

b

R

b

T

2T

R b 2RT C⁄≥

b 2RT C⁄=

C. What affects the size of the SRAM buffer?

If the packet buffer maintained just one FIFO queue, the
operation would be simple: Each time cells arrived at the
ingress SRAM, they would be written into DRAM. This would
require cells of storage in the ingress buffer so as to store
the cells which arrived before the cell. Similarly, the egress
buffers would require cells of storage. When the egress
SRAM buffer receives a request from the arbiter, the MMA
reads cells from DRAM, grants one cell to the arbiter and
stores the remaining cells in SRAM. Every time new
requests arrive from the arbiter, new cells are read from
DRAM.

When there are more FIFOs the system is more complicated.
For example, withQ FIFOs let’s consider what happens as cells
depart from the egress SRAM buffer. When a cell departs it
may trigger the need to replenish the FIFO to prevent under-run
of the FIFO in the future (i.e. a request arrives to find that the
cell is in DRAM). If consecutively departing cells cause differ-
ent FIFOs to need replenishment, then a queue of read requests
will form waiting for cells to be retrieved from DRAM. If a
read request is queued too long, a FIFO in the egress SRAM
buffer might not be replenished before it under-runs. Put
another way, the egress SRAM buffer might have to contain a
very large number of cells for each FIFO so as to hold sufficient
reserves to cover the worst case sequence of departures.

Fortunately, a MMA need not issue read requests to DRAM
in the same order that FIFOs become depleted. If the MMA has
some knowledge of how quickly a FIFO needs to be replen-
ished, it can give priority to FIFOs with a more urgent need for
replenishment. How does the MMA know how urgently a FIFO
needs to be replenished? In the scheme considered here, the
MMA uses alookahead buffer of requests from the arbiter. The
MMA uses the lookahead buffer to peek at which FIFOs are
receiving the most requests. The lookahead buffer increases the
latency from when a request is issued, until the cell is delivered.
We believe that if the latency is small and bounded, it will be
acceptable in most applications. In what follows, it will help if
we clearly define the lookahead buffer and the latency in this
context.

Definition 1: Lookahead (): The lookahead is defined as
the number of time slots in the future for which the arbiter’s
request pattern is known.

Definition 2: Latency, L: The latency of a request is the time
elapsed from when the arbiter issues the request, until the cell
is granted to the arbiter from the SRAM. We assume that the
time to read cells from the SRAM buffer is negligible (i.e. zero).

In our discussion above, we focussed on the egress SRAM
buffer. It is interesting to note that the ingress and egress
SRAM buffers are symmetrical in the sense that the ingress
(egress) buffer has an unpredictable arrival (departure) process,
and predictable departure (arrival) process, respectively. It turns

b

b 1–
b

th

b 1–

b
b 1– b

b

Lt Lt

out that, for a given MMA, the ingress and egress buffers are
the same size. So for brevity, we will only analyze the egress
buffer — the results extend simply to the ingress buffer.

D. Definitions

In what follows, we will use the following definitions.

Definition 3: Occupancy Counter : Queue ‘s occu-
pancy counter at time reflects the number of cells present in
the egress SRAM for FIFO queue .
When a request arrives and a cell is delivered, is dec-
remented by one. When cells are read from DRAM and
placed into the SRAM is incremented by .

Definition 4:Critical Queue: A queue is said to be critical at
time if the queue has more requests in the lookahead buffer
than it has cells in the SRAM.

Definition 5: Earliest Critical Queue:The earliest critical
queue is the queue (from among those that are critical) that
turns critical the earliest.

Definition 6:Dynamic Shared SRAM Buffer:Throughout this
paper we shall assume that the SRAM consists of a buffer space
which can be shared by cells of all queues.

E. A necessity bound on the size of the egress SRAM buffer.

Theorem 1:(Necessity) An egress SRAM buffer of size
 cells is necessary for any MMA to service a sequence

of requests within a bounded latency.

Proof: Consider the case when the FIFOs in DRAM are all
non-empty. Let the arbiter request one cell from each queue in
turn and make no more requests. Assume that each request
leads to the retrieval of new cells from the DRAM. The
egress buffer sends one cell to the arbiter and must store the
remaining cells for every queue. Hence the egress buffer
must be at least of size cells. ❒

III. A N MMA THAT MINIMIZES THE SIZE OF THESRAM
BUFFER.

We now describe an MMA that minimizes the size of the
SRAM buffer while bounding the latency. We call it Earliest
Critical Queue First MMA (ECQF-MMA).

A. ECQF-MMA

ECQF-MMA uses a lookahead buffer to hold the unpredict-
able stream of requests from the arbiter.

Algorithm Description: Every cell time, ECQF-MMA has the
opportunity to read from DRAM and decide which, if any,
FIFO queue in the egress SRAM buffer to replenish. The algo-

Q i t,() i
t

i
Q i t,()

b
Q i t,() b

i
t

Q b 1–()

b

b 1–
Q b 1–()

rithms simply reads cells from the earliest critical queue and
places them in the SRAM.

Example of ECQF-MMA: Figure 2 shows an example of
ECQF-MMA with and . Figure 2a shows that
the MMA at time computes that queues will
become critical at time and respectively. Since
is the earliest critical queue, it is chosen for service from the
DRAM. Cells from queues leave the egress SRAM at
times .

In Figure 2b the ECQF-MMA determines that is the earli-
est critical queue and it is chosen for service from the DRAM.
Cells from queues leave the egress SRAM at times

.
The occupancy of the egress SRAM at time is shown

in Figure 2c. Queue is again the earliest critical queue and is
chosen for service from the DRAM.

We now derive the size of the egress SRAM required for
ECQF-MMA. In the following section we shall make three
simplifying assumptions. We shall see later how these assump-
tions can be relaxed.

Assumption 1.(Queues Initially Full) At time ,
the egress SRAM is full and has cells in each
queue i.e. the occupancy counter for each queue is

 and hence the total occupancy of the SRAM is
.

Assumption 2. (Queues Never Empty) Whenever the
MMA decides to refresh a queue, there are always
cells present in the DRAM for that queue.

Assumption 3.(Request Every Time Slot) The arbiter
issues a new request every time slot.

b

A C B D A B A A B A A C C A A

A C B D A B A A B

A C B D A B A A B A A C

Figure 2: The ECQF-MMA algorithm with and
. The size of the egress SRAM is 8 cells and the looka-

head is 9 cells.

Q 4=
b 3=

A A B B

C C D D

B A A B

A C B D

A A A B

A C D D

a) At t=0
Q (A, 0) = 2; Q(A,6) critical
Q (B, 0) = 2; Q(B,8) critical

b) At t=3
Q(A,3) = 4; Q(A,11) critical
Q(B,3) = 1; Q(B,9) critical

c) At t=6
Q(A,6) = 3; Q(A, 11) critical
Q(C,6) = 2; Q(C,13) critical

Egress
SRAM

Egress
SRAM

Egress
SRAM

Lookahead

Lookahead

Lookahead

Q 4= b 3=
t 0= A B,

t 6= t 8= A

A C B, ,
t 0 1 2, ,=

B

D A B, ,
t 3 4 5, ,=

t 6=
A

t 0=
b 1–

b 1–
Q b 1–()

B. Is there always an earliest critical queue to be read?

ECQF-MMA requires that there is always an earliest critical
queue to read from.

Lemma 1: A lookahead of time slots
is sufficient to guarantee at least one critical queue.

Proof: The proof is by the pigeon-hole principle. We start with
an egress SRAM of size . This implies that the sum of
the occupancy counters of all queues is . The sum of
occupancy counters of all the queues remains at ,
since a set of cells arrive after every time slots and exactly

 cells depart the system in this period. Since there are
time slots in the lookahead buffer, deducting the

number of arbiter requests in this lookahead buffer for each
queue would leave at least one queue with no cells and one
arbiter request unsatisfied, making it critical. Hence, there is at
least one critical queue which implies that there is always an
earliest critical queue.❒

Now we are ready to state the main theorem.

Theorem 2:An egress SRAM buffer of size and a
lookahead of size is sufficient for ECQF-MMA
to service any sequence of arbiter requests with a latency of

 time slots.

Proof: The proof is in two parts. First we show that the egress
SRAM buffer does not overflow. Second we must show that
each ce l l is de l ivered wi th in a bounded la tency of

time slots from when its request was issued.

To prove the first part, we know that with the assumptions 2
and 3 made in Section IIIA and from Lemma 1, the ECQF-
MMA always reads exactly cells from the earliest critical
queue every time slots. Thus the total occupancy of the
egress SRAM buffer does not change. Since, this is true for all
time slots the size of the egress SRAM buffer does not grow
larger than .

To prove the second part, for every arbiter request in the loo-
kahead buffer the corresponding cell is either present or not
present in the SRAM. No latency is encountered by a cell that is
present in the SRAM. If the cell is not present in the SRAM, the
occupancy counter is smaller than the number of requests in the
lookahead buffer and the queue is critical. Suppose that the
total number of queues that have ever become critical before
this queue is . Then, this cell could not have arrived earlier
than time slots from the start. The DRAM would
have taken no more than time slots to service all these ear-
lier critical queues. At least time slots before this arbiter
request arrives, the ECQF-MMA would have identified this as
the earliest critical queue and would have serviced it, thereby
ensuring that the corresponding cell is present in the egress
SRAM.

Lt Q b 1–() 1+=

Q b 1–()
Q b 1–()

Q b 1–()
b b

b
Q b 1–() 1+

Q b 1–()
Q b 1–() 1+

Q b 1–() 1+

Q b 1–() 1+

b
b

Q b 1–()

p
p 1+() b

pb
b

Hence, by the time a request reaches the head of the looka-
head buffer, the cell is always present in SRAM. Hence, the
latency is bounded by the depth of the lookahead buffer:

time slots.❒

C. Relaxing the assumptions

We now show that Theorem 2 holds when our assumptions
are relaxed. In order to do this we shall look upon the cells in
the previous section as “virtual” cells as defined below.

Definition 7:Cell Placeholder: The space that will be occupied
by a cell that is either in the ingress SRAM or has yet to arrive
to the system. In particular the egress SRAM consists of only
cell placeholders at time .

Definition 8: Virtual Cells: The sum of both “real” cells
present in the DRAM and egress SRAM and cell placeholders.

D. Generalized Scenario

Assumption 1.(Queues Initially Full) At each
queue contains virtual cells; hence this assump-
tion holds for virtual cells.

Assumption 2. (Queues Never Empty) Whenever no
“real” cells are available in the DRAM, assume that

 cell placeholders are read from DRAM. We intro-
duce a slight modification to the memory architec-
ture. Assume that the ingress SRAM always fills the
cell placeholders in the egress SRAM with their cor-
responding cells before writing to the DRAM. Thus
the assumption is true for virtual cells.

Assumption 3.(Request Every Time Slot) Consider an
additional “ghost” queue. When the arbi-
ter has no request, we can consider there to be a
request to the ghost queue. Thus the lookahead buffer
always contains requests and
the size of the egress SRAM buffer is bounded by

 cells (which is more cells
that before). The analysis to derive a tighter bound of

on the size of the egress SRAM is more
complex and for brevity we do not include it here.

IV. CONCLUSIONS

Packet switches, regardless of their architecture, require
packet buffers. The general architecture presented here can be
used to build high bandwidth packet buffers for any traffic
arrival pattern or packet scheduling algorithm. The scheme uses
a number of DRAMs in parallel, all controlled from a single
address bus. The costs of the technique are: (1) a (presumably
on-chip) SRAM cache that grows in size linearly with line rate
and the number of queues, (2) A non-zero, but bounded latency,
from when requests are made until packets are available, (3) A
lookahead buffer to hold requests, and (4) A
memory management algorithm that must be implemented in
hardware.

While there are systems for which this technique is inapplica-

Q b 1–() 1+

t 0=

t 0=
b 1–

b

Q 1+() st

Q 1+() b 1–() 1+

Q 1+() b 1–() b 1–

Q b 1–()

Q b 1–() 1+

ble (e.g. systems for which the number of queues is very large,
or where the line-rate requires too large a value for , so that
the SRAM cannot be placed on chip), the technique can be used
to build packet buffers faster than any commercially available
today. For example, a 100Gb/s shared memory router that
maintains 512 queues might use DRAM operating at ,

 and 1.25Mbytes of SRAM. Or an input queued router
with a 40Gb/s linecard that maintains 512 virtual output
queues, and 0.5Mbytes of SRAM.

REFERENCES

[1] Y. Tamir et al. “Symmetric crossbar arbiters for VLSI communication
switches,” IEEE Transactions on Parallel and Distributed Systems,
vol.4, no.1, Jan 1993, pp. 13-27.

[2] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair
queuing algorithm,”ACM Computer Communication Review (SIG-
COMM'89), pp. 3-12, 1989.

[3] A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing Ap-
proach to Flow Control in Integrated Services Networks: The Single
Node Case,”IEEE/ACM Transaction on Networking, Vol. 1, No. 3, pp.
344-357, June 1993.

[4] A. Birman, H.R. Gail, S.L. Hantler and Z. Rosberg, “An optimal service
policy for buffer systems,”Journal of the Association for Computing
Machinery, pp. 641-57, vol. 42, no. 3, May 1995.

[5] H. Gail, G. Grover, R. Guerin, S. Hantler, Z. Rosberg, M. Sidi, “Buffer
size requirements under longest queue first,”Proceedings IFIP'92, vol.
C-5, pp. 413-24, 1992.

[6] G. Sasaki, “Input buffer requirements for round robin polling systems,”
In Proceedings of 27th Annual Conference on Communication, Control
and Computing, pp. 397-406, 1989.

[7] S. Iyer, R. R. Kompella, and N. McKeown, “Techniques for fast packet
buffers,” In. Proceedings. of GBN 2001, Anchorage, Apr. 2001.

[8] P. Chen and David A. Patterson, “Maximizing Performance in a Striped
Disk Array,” ISCA, pp. 322-331, 1990.

[9] Y. Joo and N. McKeown, “Doubling Memory Bandwidth for Network
Buffers,” Proc. IEEE Infocom 1998, vol. 2, pp. 808-815, San Francisco.

[10] D. Patterson, and J. Hennessy,Computer Architecture: A Quantitative
Approach, 2nd. ed., San Francisco: Morgan Kaufmann Publishers,
c1996.

[11] T. Alexander and G. Kedem, “Distributed Prefetch-buffer/Cache Design
for High Performance Memory Systems,”In. Proceedings. of the 2nd In-
ternational Symposium on High-Performance Computer Architecture,
pp. 254-263, Feb. 1996.

[12] W. Lin, S. Reinhardt, D. Burger, “Reducing DRAM Latencies with an
Integrated Memory Hierarchy Design,”In Proc. 7th Int symposium on
High-Performance Computer Architecture, January 2001.

[13] S.I. Hong, S.A. McKee, M.H. Salinas, R.H. Klenke, J.H. Aylor, and
Wm.A. Wulf, “Access order and effective bandwidth for streams on a di-
rect rambus memory,”In Proceedings of the Fifth International Sympo-
sium on High Performance Computer Architecture, pp. 80-89, January
1999.

[14] J. Corbal, R. Espasa, and M. Valero, “Command vector memory sys-
tems: High performance at low cost,”In Proceedings of the 1998 Inter-
national Conference on Parallel Architectures and Compilation
Techniques, pp. 68-77, October 1998.

[15] B. K. Mathew, S. A. McKee, J. B. Carter, and A. Davis, “Design of a par-
allel vector access unit for SDRAM memory systems,” In Proceedings
of the Sixth International Symposium on High Performance Computer
Architecture, January 2000.

[16] S. A. McKee and Wm. A. Wulf, “Access ordering and memory conscious
cache utilization,”In Proceedings of the First International Symposium
on High Performance Computer Architecture, pp. 253-262, January

b

51.2ns
b 20=

b 8=

1995.
[17] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Mem-

ory access scheduling,”In Proceedings of the 27th Annual International
Symposium on Computer Architecture, pp. 128-138, June 2000.

[18] L. Carter and W. Wegman, “Universal Hash Functions,”Jour. of Com-
puter and System Sciences 18, 1979, pp. 143-154.

[19] R. Impagliazzo and D. Zuckerman, “How to Recycle Random Bits,”
Proc. of the Thirtieth Annual Symposium on the Foundations of Comput-
er Science,Research Triangle Park, NC, Oct. 1989, pp. 248-253.

[20] B.R. Rau, M.S. Schlansker and D.W.L. Yen, “The Cydra 5 Stride-Insen-
sitive Memory System,”In Proc. Int Conf. on Parallel Processing, 1989,
pp. 242-246.

