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Abstract—End-hosts are increasingly equipped with multiple
network interfaces, ranging from smartphones with multiple
radios to servers with multi-homing. These interfaces are diverse;
some are expensive to use (e.g. 4G), some are free (e.g WiFi)
and they have different rates and reliability. On the other hand,
end-hosts now run diverse applications with different priorities,
from relatively less important web browsing to higher priority
VoIP and video calls. Finally, users may have policies that
constrain interface use (e.g. use 4G only for high priority flows).
This paper tackles the question of how different applications
can use different subsets of the available network interfaces,
while ensuring a fair resource allocation among flows, while
satisfying policy constraints. We generalize prior classical work
on processor sharing (GPS) to the case of flows sharing different
subsets of the available interfaces. We show a simple scheduling
scheme for packet-by-packet GPS over multiple interfaces, and
prove that it can provide bounded delay and rate guarantees.

I. INTRODUCTION

Computers frequently have multiple network interfaces. For
example, smartphones commonly have WiFi, 3G, and 4G
interfaces, and the number of interfaces is growing over time.
If the phone uses several interfaces at the same time it can
increase throughput for applications like video streaming and
VoIP, it can increase connectivity, and it can reduce delay.
Similarly, CDN servers often have multiple network interfaces,
or several independent paths to a client, and can benefit from
using several at the same time.

The research community has recently proposed mechanisms
for a computer to stitch multiple interfaces together into a
single high throughput logical connection [1], [2]. While this
approach is a good start, we believe applications need more
flexibility than simply using the logical combination all of
the currently available interfaces. For example, consider a
smartphone user using a video chat application while browsing
the web. The voice channel might prefer to use network
interfaces giving low-latency, continuous connectivity, while
the video might prefer interfaces giving low-cost sustained
high throughput, and the web client might prefer interfaces
giving short bursts of high throughput. This suggests a model
where different applications use different subsets of the avail-
able interfaces. In addition, the user might express policy
preferences on network usage, for example to only use an
expensive 4G connection for VoIP, while using free WiFi
connectivity for large but less important data transfers. Similar
preferences exist at the server, since different pieces of content
might have different priorities, and the server might try to
avoid using a high cost connection except for important traffic.
So a natural question is: How can applications share the set

Fig. 1. Illustration of multiple flows served by multiple interfaces, where
each interface operates at a different rate.

of available network interfaces, meet the individual needs of
each application, and meet the policy constraints on resource
usage?

Current techniques such as multipath TCP give equal pref-
erence to every flow and sub-flow, and do not accommodate
different application preferences or user policies. The focus in
these works is on bandwidth aggregation and congestion con-
trol in the network, and not on how the applications within the
host should share different sets of network interfaces. In this
paper we tackle the question of how multiple application flows
can fairly and efficiently share multiple network interfaces,
provide rate and delay guarantees to each flow, and impose
user policy constraints. Here we define fairness to be the well-
known max-min fair allocation: No flow can get better service
without hurting the service of another flow with a lower level
of service than itself.

A natural starting point is Generalized Processor Sharing
(GPS) [3], which shows how multiple competing flows can
receive their max-min fair share of a bottleneck link, and how
individual flows can have rate/delay guarantees. But all prior
GPS work has been for a single shared interface, or settings
where flows share all of the interfaces without constraint. The
key contribution of this paper is to extend results for packe-
tized GPS (i.e. max-min fairness and rate/delay guarantees) to
a system with multiple interfaces, where each flow is served
by a subset of the interfaces.

Figure 1 shows the model of our system: Each application
flow has its own transmit queue (e.g. socket buffer) where
packets wait until an interface is available. Each flow is as-



sumed to be constrained to use only a subset of the interfaces,
as shown by the edges in Figure 1 connecting the transmit
queues to the interfaces. We call this the routing constraint
because it limits how packets can be routed from the flow
queues to the interfaces, and we represent it by the routing
matrix Π = [πij ] connecting m flows to n interfaces, where
πij = 1 if and only if flow i is willing to be served by interface
j. GPS for multiple interfaces is characterized by the weights
of each flow φ1, φ2, · · · , φm, the service rate of each interface
r1, r2, · · · , rn, and the routing matrix Π.

We define GPS to be a service discipline for which currently
backlogged flows are served bit-by-bit at their weighted max-
min fair rate, and packetized GPS (PGPS) extends GPS to the
case where whole packets are served at a time. Our definition,
by extending the original result to multiple interfaces, can be
considered a generalized definition of GPS and includes the
prior definition as a special case [3].

With our eventual goal of proving results for packetized GPS
in mind, we follow the usual approach of first proving results
for the idealized and simpler bit-by-bit case. In section II-A
we use lexicographical maximization [4] to find how multiple
interfaces can give weighted max-min service to backlogged
flows when served bit-by-bit. Then in section II-B we show
that this leads to a guaranteed minimum bit-by-bit service
rate for each flow, and in section II-C we extend the results
in [3] to show how the system can give delay guarantees. In
section III we extend our bit-by-bit results to the packetized
case providing both rate and delay bounds.

II. BIT-BY-BIT GPS FOR MULTIPLE SERVERS

We can determine if the system in Figure 1 can emulate
generalized processor sharing (GPS) by asking the equivalent
question: If we allow flows to be divided among servers1

arbitrarily, is it possible to allocate a rate on each interface
to each flow, such that each flow receives its weighted max-
min fair allocation? If it is possible, then the flows could be
served bit-by-bit at this rate, and would emulate GPS.

A. Weighted max-min fair allocation

Our goal is to find rate aij at which interface j should
served flow i, such that the aggregate service rate for each
flow ai =

∑
j aij is the weighted max-min fair allocation.

Using a general approach first described by Megiddo [4],
we find the max-min fair allocation over several iterations.
As we describe in more detail below, in each iteration we
solve several maximum flow problems for the system shown
in Figure 2 where we have added a source and sink node to
our model.2 The capacity of the edges from a flow to a server
are infinite, and the capacity of the edge between server j and
sink is the service rate of server j, rj .

In the first iteration we maximize the minimum flow rate.
In other words, we find the minimum rate that any flow will

1We will use the terms server and interface interchangeably to tie our model
(servers and queues) to the system that motivated our work (multiple network
interfaces).

2This is similar to solving a maximum network flow to find a maximum
match in a bipartite graph [5].

Fig. 2. System in Fig. 1 modeled as a bipartite graph. A source and sink is
added as part of the formulation for the maximum flow problem.

receive, amin = mini ai. To do this, we set the capacity of
the edge from the source to each flow i to be φix, then find
the largest total flow (i.e. the largest value of x) that does not
exceed the rate of the servers. There are a number of ways to
maximize x, and we choose to find it by a binary search; in
each step of the search we find the maximum network flow,
and then increase or decrease x accordingly.3

At the end of the first iteration we have maximized the
minimum rate amin = mini φix. We now fix the rate of this
flow for the remainder of the algorithm. In the second iteration,
the whole process repeats for the remaining flows (keeping the
first flow fixed), to find the second lowest flow rate. In each
of the subsequent iterations, we find the rate of one flow per
iteration, leading to a weighted max-min fair allocation.

B. Rate Guarantee

For GPS with a single server of rate r, we know that the
rate flow i receives, ai(t) ≥ φi/

∑
i φi ∗ r. By picking φi

appropriately, we can guarantee a minimum rate at which each
flow will be served. For example, if we want flow 1 to receive
at least 10% of the link rate, then we simply set φ1 = 0.1 and
make sure

∑
i φi ≤ 1.

Now that we have the weighted max-min fair allocation for
the multiple server case, it is worth asking if we can still
give a rate guarantee for each flow in the system. Theorem 1
tells us that a flow will indeed receive an equivalent rate in a
multi-server GPS system.

Theorem 1. Under the weighted max-min fair allocation, the
rate flow i receives is at least its weighted fair share among
all the flows willing to share one or more interfaces with i,

ai(t) ≥
φi∑

j,∃k,πik=1,πjk=1 φj

∑

j,πij=1

rj(t). (1)

Proof: Imagine all the flows willing to share one or more
interfaces with i use exactly the same set of servers. Then the

3In theory, the binary search might not terminate, but in practice, we can
include a small tolerance to allow it to terminate, or use a more complicated
algorithm such as [6].



equation above is an equality, because ai is the weighted max-
min fair allocation. If any flow uses less than this weighted
fair share (because the flow has no more packets to send,
or because the flow uses a server i is unwilling to use, or
because the flow is unwilling to use a server i uses), then it
would increase service rate allocation to the remaining flows,
including flow i.

It follows that under the weighted max-min allocation flow
i will receive is also at least its weighted fair share of the
interfaces it is willing to use,

ai(t) ≥
φi∑
j φj

∑

j,πij=1

rj(t).

because this is smaller than the right hand side of Equation 1.
For simplicity of notation, we denote the guaranteed rate for
flow i as gi where ai(t) ≥ gi, ∀t.4

For example, if in Figure 1 we want flow 1 to receive at
least 20% of r1 + r2, then it is sufficient to set φ1 = 0.2,
and φ1 + φ2 + φ3 + φ4 ≤ 1 because only flows 1 to 4 share
interfaces with flow 1. When we run the algorithm to set the
weighted max-min fair allocation, flow 1 will receive at least
the requested service rate.

C. Leaky Bucket and Delay Guarantee

Another well-known property of single-server GPS is that it
allows us to bound the delay of a packet through the system,
if the arrival process is constrained. The usual approach is to
assume that arrivals are leaky bucket constrained. If Ai(t1, t2)
is the number of arriving packets for flow i in time interval
(t1, t2], then we say Ai conforms to (σi, ρi) (denoted Ai ∼
(σi, ρi)) if

A(t1, t2) ≤ σi + ρi(t2 − t1) ,∀t2 ≥ t1 ≥ 0. (2)

The burstiness of the arrival process is bounded by σi, while
its sustainable average rate is bounded by ρi.

In the classic single-server GPS proof, it can be shown that
the delay of a packet (the interval between when its last bit
arrive to when its last bit is serviced) in flow i is no more
than σi/ρi. Admission control is very simple: If

∑
i ρi < r,

and
∑
i σi ≤ B, where B is the size of the packet buffer, then

flow i can be admitted into the system and the delay guarantee
can be met.

We will now prove that a multi-server GPS system has the
same property, and the delay of a packet in flow i is no more
than σi/ρi (Theorem 2). However, the process of deciding
whether a new flow can be admitted is more complicated than
for the single server case. We have to know which interfaces
the flow is willing to use, and whether the requested service
rate ρi can be met. This means the system has to pick values
for φj ,∀j such that the rate guaranteed by Equation 1, ai(t) >
ρi. If this condition can be met, then the delay guarantee is

4We can bound the service rate ai(t) more tightly by calculating the
weighted max-min fair rate for each flow assuming they are all backlogged.
Let the result be A∗ = [a∗ij ], and gi =

∑
j a

∗
ij . We can prove that

ai(t) ≥ gi , ∀t. However, this does not yield a closed-form solution. The
proof is fairly simple and is omitted here.

τ1 τ2

Ai(τ1, t)
Si(τ1, t)

gi(t− τ1)

σi + ρi(t− τ1)

t

Ai, Si

Fig. 3. Illustration of Ai(τ1, t) and Si(τ1, t) and their respective upper
and lower bounds. Observe that the horizontal distance between Ai and Si

characterizes the delay, while the vertical distance characterizes the backlog
at time t.

accomplished, and the departure process will also be (σi, ρi)-
constrained.

Theorem 2. Imagine we wish to admit (σi, ρi)-constrained
flow i into a multi-server GPS system, and the flow is willing
to use interfaces πij ,∀j. If

∑
j σj ≤ B, and if we can find

values of φj ,∀j such that ai(t) > ρi, then the delay of any
packet in flow i is upper bounded by σi/ρi.

Proof: Let Si(t1, t2) be the service received by flow i in
time interval (t1, t2]. Consider flow i that arrives at τ1 (i.e.,
becomes backlogged) and finishes at τ2 (i.e., becomes non-
backlogged). We observe that Ai(τ1, t) is upper bounded by
(2) and Si(τ1, t) is lower bounded by

Si(τ1, t) ≥ gi(t− τ1) ,∀τ1 ≤ t ≤ τ2
where ai(t) ≥ gi as illustrated in Fig. 3. Since the delay is
the length of horizontal line between Ai and Si, we can find
its maxima through simple calculus.

We begin by deriving the inverse functions of the bounds,

y = σi + ρi(ta − τ1) → ta =
y − σi
ρi

+ τ1

y = gi(ts − τ1) → ts =
y

gi
+ τ1.

The delay of packets must then be upper bounded by

D = ts − ta =
y

gi
− y − σi

ρi
.

Observe that D is an affine function with gradient
dD

dy
=

1

gi
− 1

ρi
,

which is strictly negative constant because ρi < gi. This
means D is monotonically decreasing. In our analysis, we are
interested in the domain of t ≥ τ1. Hence D is maximized at
y = σi. This in turn implies that packet delay

D ≤ σi
gi
<
σi
ρi



because ρi < gi. This maximum delay occurs for the last bit
that arrives at time τ1 for the last bit that arrives in the initial
burst.5

III. PACKET-BY-PACKET GPS FOR MULTIPLE SERVERS

GPS for multiple servers is an idealized service discipline
that assumes flows are infinitely divisible and can be serviced
bit by bit. In practice however, flows transmit in units of packet
which are of different sizes. In this section, we extend GPS
to the packetized case, and prove that we can provide similar
rate and delay guarantees with multiple servers as in the single
server case.

Packet-by-packet GPS (PGPS) approximates GPS by serv-
ing packets with the smallest finishing time first. We show
how the rate and delay guarantees from GPS can be extended
to PGPS. Note that both GPS and PGPS are work-conserving
since a server will be idle if and only if there are no other
flows in the system that it can serve. Further, PGPS is busy
(i.e., there is at least a server servicing a flow) if GPS is
busy. The converse is not true since PGPS is constrained by
the need to schedule packets. Hence, the accumulated service
under GPS S is greater or equal to that under PGPS Ŝ at all
times, i.e.,

∑
i Si(0, t) ≥

∑
i Ŝi(0, t) for all t. We first show

the delay guarantees that PGPS can provide in the multiple
server case.

A. Delay Guarantee

Single-server PGPS is shown to have additional delay of
no more than Lmax/r as compared to single-server GPS,
where Lmax is the maximum length of a packet and r is the
service rate of the server. Our goal is to provide a similar
bound on additional delay for multi-server PGPS allowing
the delay guarantee for multi-server GPS (in Theorem 2) to
be naturally extended to multi-server PGPS. Our approach is
to consider the cases where the packetized nature of PGPS
imposes more delays than GPS, and to bound these delays.
Consider a sequence of packets serviced by server j under
PGPS. Let packet pk be the kth packet in this sequence. If
pk is serviced by server j under GPS, it can suffer additional
delay in PGPS for the following reasons:

1) pk did not arrive in time to be scheduled for service
hence other packets are scheduled for service by server
j, while pk has to wait due to the packet constraint
compared to the GPS case. We denote this delay as dl.

2) Server j can also fall behind because it has to service a
full packet, while under GPS it did not service all the bits
in the packet since the packet can be split and serviced
over multiple servers. Further, the policy of serving the
packet with earliest finishing time first can induce server
j to serve a packet that it did not under GPS. This can
also result in server j falling behind. We denote this
delay as dw.

5 We can further show that σi/
∑

i a
∗
ij is a tight upper bound of packet

delay. This delay occurs in the worst case scenario where σj � σi and
ρj = gj for all j 6= i and flow i experiences the worst possible arrival
process Ai(τ1, t) = σi + ρi(τ1, t).

3) Finally, pk might be serviced at a faster rate across
multiple interfaces under GPS than what an individual
server can offer in PGPS. Hence an extra delay can be
incurred if pk is serviced at a lower rate by server j than
what it receives under GPS. We denote this delay as dr.

We will now analyze each of these delays :
1) Delay due to mis-ordering, dl:

Lemma 1.
dl ≤

Lmax
rmin

,

where Lmax is the maximum size of a packet, and rmin =
mini ri is the minimum service rate among all servers.

Proof: Assume server j only services packets it also
serviced under GPS. Let the length of pk be Lk, its arrival
time be ak, and its departure time under GPS and PGPS be
uk, tk respectively. Consider packet pm where m is the largest
index for which 0 ≤ m < k and um > uk.

For m > 0, pm begins transmission at tm − (Lm/rj) and
packets indexed m+ 1 to k must arrive after this time, i.e,

ai > tm −
Lm
rj
, ∀m < i ≤ k.

Since the packets indexed from m + 1 to k − 1 arrive after
tm − (Lm/rj) and departs before pk under GPS,

uk ≥
∑k
i=m+1 Li

rj
+ tm −

Lm
rj

∴ uk ≥ tk −
Lm
rj

Therefore,

dl = tk − uk ≤
Lmax
rj
≤ Lmax

rmin
.

2) Delay due to mis-serviced packets, dw: Consider the
following example with servers k, l having rate of rk, rl
respectively where rk � rl. If flows i, j ∈ Fk and j ∈ Fl, we
can show that under GPS service server k would only serve
flow i and server l would only serve flow j.

However under PGPS, server k would service flow i because
of the following: The next packet in the queue for server l has
finishing time tl+1 = tl + (Ll+1/rl) where tl is the finishing
time of the current packet being serviced and Lx is the length
of the xth packet. Similarly, the next packet in the queue for
server k has finishing time tk+1 = tk + (Lk+1/rk). Since
rk � rl, tl+1 can be smaller than tk+1 and i ∈ Fk, resulting in
server k choosing to service flow i. This results in an additional
delay dw being added to the packets of flow j being serviced
by server k.

Lemma 2.
dw < dlog2 ne

Lmaxrmax
r2min

,

where n is the number of servers, Lmax is the maximum
size of a packet, and rmin = mini ri, rmax = maxi ri are



the minimum and maximum service rate among all servers
respectively.

Proof: Consider the above example. Server k will con-
tinue to choose to service flow i until the next packet queued
for service in server l has finishing time greater than tk+1.
While the finishing time of packets for server l increases by a
maximum of tk+1 < Lmax/rk, they are sent at a lower rate
on server k delaying server k up to Lmaxrl/r2k.

So server l can delay server k by at most Lmaxrl/r2k.
However, we have n servers in system. Can the other systems
affect server k similarly?

Once server k has been delayed, it can only be further de-
layed by another server which is similarly delayed. Therefore,
this can only happen to server k for dlog2 ne times where n
is the number of servers in the system.

dw < dlog2 ne
Lmaxrmax
r2min

.

Under multi-server GPS, a packet in flow j can also be
split and serviced over multiple servers. Under PGPS, it is
necessary that server k service the entire packet meaning it
has to service the bits in that packet that it does not serve
under GPS. We can think of the above as PGPS servicing
a partial packet it did not serve under GPS, which can be
considered a special of the above lemma.

3) Delay due to different service rate, dr: Under GPS, pk
of flow i would be serviced at its weighted max-min fair rate
ai(t). However under PGPS, a packet must be serviced as an
entity, i.e., by a single server at the service rate of that server,
which is unlikely to be exactly ai(t). This can incur an extra
delay dr which is upper bounded in the following:

Lemma 3.
dr <

Lmax
rmin

,

where Lmax is the maximum length of a packet, and rmin is
the minimum service rate for a server.

Proof: Consider pk in flow i of length Lk serviced at ai(t)
under GPS and rj under PGPS. The difference in transmission
time is

d =
Lk
rj
− Lk
ai(t)

≤ Lk

(
1

rmin
− 1

maxt ai(t)

)

∴ dr <
Lmax
rmin

,

as required by our lemma.

This result is intuitive: A packet cannot be delayed more
than the time it takes for it to be serviced under PGPS.

Equipped with the above lemmas, we can now upper bound
the delay of a packet under PGPS for multiple interfaces.

Theorem 3.

FP − FG < Lmax

(dlog2 ne rmax
r2min

+
2

rmin

)

Si(0, t)

t

Si

Ŝi(0, t)

d

dS
dt

≤ ∑
j,i∈Fj

rj

Fig. 4. Illustration of cumulative service under GPS and PGPS, with the
relation of the service bound with respect to the delay bound.

where FP , FG are the finishing times of packet under PGPS
and GPS respectively.

Proof: Consider that

FP − FG
≤ dl + dw + dr

<
Lmax
rmin

+ dlog2 ne
Lmaxrmax
r2min

+
Lmax
rmin

< Lmax

(dlog2 ne rmax
r2min

+
2

rmin

)
,

as we can see from Lemmas 1, 2 and 3.

Similar to single-server PGPS, the additional delay incurred
by multi-server PGPS is a function of Lmax, the service rate of
the servers r and the number of servers n. These quantities are
readily available in the process of flow admission, allowing the
delay bound (in Theorem 2) to be easily extended for multi-
server PGPS.

B. Service Bound

The difference in cumulative service under single-server
GPS and single-server PGPS is bounded by the length of the
largest packet Lmax. We can provide a similar bound based
on the delay bounds we have just derived in Theorem 3. This
enables us to upper bound the cumulative service a flow i
receives under multi-server PGPS compared to multi-server
GPS.

Theorem 4. The difference in cumulative service between
PGPS and GPS is

Si(0, t)− Ŝi(0, t)

< Lmax

(dlog2 ne rmax
r2min

+
2

rmin

) ∑

j,πij=1

rj .

Proof: Consider the cumulative service of flow i under
GPS and PGPS, denoted as Si(0, t) and Ŝi(0, t) respectively.
At any point in time, the delay is bounded by Theorem 3 (as



illustrated by Fig. 4). Since the service rate of flow i is upper
bounded by

∑
j,πij=1 rj , we can deduce that

Si(0, t)− Ŝi(0, t)
<

dS

dt
(FP − FG)

< Lmax

(dlog2 ne rmax
r2min

+
2

rmin

) ∑

j,πij=1

rj .

Theorem 4 in turns bound the maximum backlog possible
under multi-server PGPS. This allows us to check if we
have sufficient packet buffers to accommodate the additional
backlog. Again, the service difference is a function of Lmax,
the service rate of the servers r and the number of servers n
which is readily available during flow admission.

Let us consider a system of 12 servers with Lmax = 1500
bytes, rmax = 1 Gbps and rmin = 100 Mbps. The extra
delay incurred by multi-server PGPS is 5.04 ms as compared
to 0.012–0.12 ms in the single server case. This also implies
a maximum service difference of 3.125 MB for a flow with
aggregate bandwidth of 5 Gbps which is significantly more
than the 1.5 KB incurred by single-server PGPS.

IV. RELATED WORK

In [3], Parekh and Gallager defines GPS for the case
of a single node, and proposed packet-by-packet version of
the idealized algorithm. GPS provides a rigorous theoretical
description of the bit-by-bit round robin server proposed
independently by Gallager and Katevenis [7]. PGPS for a
single server—also known as weighted fair queuing—was also
independently proposed by Demers et. al. in [8]. GPS (and
weighted fair queuing) has since been widely used as the
canonical service discipline in many other work published
under the banner of fair queuing.

There are several extensions of GPS in literature. Parekh
and Gallager extends the analysis of GPS to the case of
multiple nodes, i.e., GPS servers working in series [9]. In [10],
Blanquer and Ozden extends GPS to the case where multiple
servers of equal service capacity works in parallel to provide
service to flows without any routing constraints between the
flows and servers.

There are also other work that look at generalizing the no-
tion max-min fairness to different contexts. In [11], Bejerano
et. al. investigate the problem of fair allocation where the load
is non-conserving, i.e., the same task can impose different
load on different servers. In [12], Ghodsi et. al. explore what
it means to be fairly allocated heterogeneous resources, i.e.,
resources of different types.

Our work differs from the above work in that we generalizes
GPS for the case where flows with arbitrary routing con-
straints are serviced by servers of varying service capacities.

V. DISCUSSION

This paper shows how the simple idea of servicing flows in
order of their earliest finishing times can provide strong service

and delay guarantees with PGPS even when multiple servers
are being used with routing constraints. While the current
simple scheme bounds the relative difference in delay and
service guarantees between GPS and PGPS, we believe there
is some room for improving PGPS to more closely match GPS.
Specifically as appendix B shows, in GPS flows and servers
are clustered into constant “rate” clusters (CRCs) where flows
in the same CRC are served at the same weighted rate (as
in Theorem 5). Lemma 5 further shows that constraining a
server to only serve flows in the same CRC does not hurt
the rate and delay guarantee, and in fact might help improve
them since there is less contention on that service. Hence, a
better approximation of GPS for multiple servers might be to
constrain each server to serve only flows in their own CRC.

The above heuristic might reduce the average amount of
mis-service in PGPS, but it does not eliminate it. Specifically,
as flows and servers change membership within a CRC when
a flow becomes backlogged or non-backlogged, packets cur-
rently being serviced are “stuck” with the current server. Since
PGPS cannot simultaneously service a flow using multiple
servers unlike GPS, whichever server is chosen to service such
a “stuck packet” under PGPS will be servicing this packet (or
some part of this packet) in place of the other servers that
GPS would have chosen. Hence, while the bounds improve,
we believe there will be some gap between GPS and PGPS
because of the atomicity of a packet under PGPS.

Nonetheless, the current simple PGPS scheduling technique
provides a practical basis for implementing such resource
sharing mechanisms in multiple server systems such as our
multi-radio smartphones, or multi-homed servers with flow
priorities and routing constraints. Our current work includes
designing a low complexity scheduling algorithm that realizes
PGPS, as well as extending to the case where the interfaces
have time-varying rates.
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APPENDIX

A. Consistency with GPS for Single Server

Generalized Processor Sharing (GPS) is defined for a single
server in [3]. For a single server, it is characterized by weights
of each flow φ1, φ2, · · · , φm and rate of the server r, where m
is the number of flows. When φi = φ for all i, GPS reduces to
uniform processor sharing which provide max-min fair service
to the flows. Let Si(t1, t2) be amount of service (in bits) flow i
receives in time interval (t1, t2]. We say the flow is backlogged
at time t if it has packets queued for service at time t. A GPS
server is defined as one for which

Si(t1, t2)

Sj(t1, t2)
≥ φi
φj

,∀j

for flow i that is continuously backlogged in (t1, t2].
Our definition of multi-server GPS can be considered a

generalization of the single-server GPS. In multi-server GPS,
we service the set of currently backlogged flows B at their
weighted max-min fair rate a(t). The service received by flow
i in time interval (t1, t2] is then given by

Si(t1, t2) =

∫ t2

t1

ai(t)dt.

For the case of a single server, the only reasonable routing
matrix is for all flows to be using the only server available.
For any subset of the flows backlogged, the weighted max-
min fair allocation is to service flow i ∈ B(t) at rate
ai(t) = φi/

∑
j∈B(t) φj ∗ r. Consider flow i that is contin-

uously backlogged in (t1, t2]. The service received by flow i

Si(t1, t2) =

∫ t2

t1

φi∑
j∈B(t) φj

rdt. (3)

Now consider flow j with weight φj . If flow j is backlogged
at t, aj(t) = φj/

∑
i∈B(t) φi ∗ r. Else aj(t) = 0. Hence,

Sj(t1, t2) =

∫ t2

t1

aj(t)dt ≤
∫ t2

t1

φj∑
i∈B(t) φi

rdt. (4)

Combining (3) and (4),

Si(t1, t2)

Sj(t1, t2)
≥ φi
φj
,

as per the definition of GPS for a single server.

B. Disjoint Constant “Rate” Clusters

In the following, we will demonstrate two properties of
multi-server GPS:

1) Flows and servers are clustered into constant rate clus-
ters (CRCs) where flows in the same CRC are served at
the same weighted rate.

2) Constraining a server to only serve flows in the same
CRC does not hurt the rate and delay guarantee.

Recap that given the set of backlogged flows B, their
weights φ and the service rate of the servers r, we can
derive the weighted max-min fair rate using lexicographical
maximization (described in section II-A). The result is A =
[aij ]. From A, we can derive the weighted max-min fair rate
allocation for flow i which is ai =

∑
j aij . We say flow i is

in set Uj if and only if aij > 0.
We can now establish an interesting property of multi-server

GPS: Flows that are serviced by a common interface would
be serviced at the same weighted rate (as shown in Lemma 4).
This result is intuitively pleasing since our goal here is to serve
flows fairly.

Lemma 4.

i, j ∈ Uk =⇒ ai(t)

φi
=
aj(t)

φj
.

Proof: If ai(t)/φi > aj(t)/φj , ai can be decreased to
increase aj—by reducing aik to increase ajk since i ∈ Uk
i.e., aik > 0. This contradicts the fact that ai, aj are from
the weighted max-min fair rate allocation. Therefore, ai(t)/φi
cannot be greater than aj(t)/φj . For the same reason, the
converse is true, i.e., aj(t)/φj cannot be greater than ai(t)/φi.
Hence, ai(t)/φi = aj(t)/φj .

Given the weighted max-min fair allocation, we can con-
struct a bipartite graph between the flows and the servers. In
this bipartite graph, an edge exists between flow i and server
j if and only if aij > 0. We call each connected subgraph
in the resulting graph a constant “rate” cluster (CRC). The
reason for the name would be clear soon. We can now extend
Lemma 4 to all flows within a CRC, showing that flows in the
same CRC are served at the same weighted rate.

Theorem 5. Flows in each CRC are serviced at the same
weighted rate.

Proof: From definition, if flow i is serviced by server k,
i, k must be in the same CRC.
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Consider flow j in the same CRC, which means flow j is
connected to flow i in some way. There are two possibilities:

1) Flow j can be connected to flow i via a common inter-
face k. From Lemma 4, this implies flows i, j would be
serviced at the same weighted rate, i.e., ai/φi = aj/φj .

2) Alternatively, flow j can be connected to flow i via a
series of other flows and interfaces. Let the series of
flows be [x1, x2, · · · , xl]. As with above,

aj
φj

=
ax1

φx1

= · · · = axl

φxl

=
ai
φi
.

Therefore, all flows in the same CRC must be serviced at
the same weighted rate.

Having established that flows in the same CRC are serviced
at the same weighted rate, we can now demonstrate that it
cannot hurt to constrain a server to service a flow in the same
CRC. In other words, if flow i and server j are in the same
CRC, there exists a valid weighted max-min fair allocation in
which flow i is indeed serviced by server j.

Consider a CRC (denoted as C) with m′ flows and n′

servers. The rate is achieved for arbitrary flow i ∈ C via
a subset of the servers in C. The allocation of service rate
between the flows and servers in C is captured by a m′

by n′ matrix AC = [aij ] for all i, j ∈ C. We know from
Theorem 5 that all m′ flows are serviced at the same rate a′ =(∑

j∈C rj

)
/m′, i.e., aC = [a1, a2, · · · , am′ ] = [a′, a′, · · · , a′]

where ai =
∑
j aij .

Lemma 5. Consider flow i and server j in the same CRC
C. If flow i is willing to be serviced by server j, there exists
feasible allocation where i is indeed serviced by j, i.e.,

i, j ∈ C, πij = 1 =⇒ ∃AC , aij > 0.

Proof: Let’s consider an allocation A′
C where flow i ∈ Fk

but i 6∈ Uk. Since i, j ∈ C, there must be a path from i to j in
the subgraph. This means flow i must use a server k in A′

C
which in turns service a flow that is serviced by server j or
yet another server that is indirectly connected to j.

Hence, if we increase aij by ε > 0, we can reduce that
amount of service on server k which cascade this transfer of
allocation until it reaches i. This would be a feasible allocation
for which flow i is serviced by server j, for which service rate
of each flow remains the same.
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