
1

Reconfigurable Networking Hardware: A
Classroom Tool

Martin Casado
Department of Computer Science

Stanford University
Stanford, CA 94305-9030
casado@cs.stanford.edu

Greg Watson
Department of Electrical Engineering

Stanford University
Stanford, CA 94305-9030

gwatson@stanford.edu
Nick McKeown

Department of Electrical Engineering
Stanford University

Stanford, CA 94305-9030
nickm@stanford.edu

Abstract—We present an educational platform for teaching the
design, debugging and deployment of real networking equipment
in the operational Internet. The emphasis of our work is on teach-
ing and, therefore, on providing an environment that is flexible,
robust, low cost and easy to use. The platform is built around
’NetFPGAs’ – custom boards containing eight ethernet ports and
two FPGAs. NetFPGA boards, when used with VNS (Virtual Net-
work System - another tool we have developed), can be integrated
into dynamically configurable network topologies reachable from
the Internet. VNS enables a user-space process running on any re-
mote computer to function as a system controller for the NetFPGA
boards. NetFPGA and VNS are used at Stanford in a graduate
level networking course to teach router implementation in hard-
ware and software.

I. INTRODUCTION

Most college-level digital design classes still use the micro-
processor as a canonical design, yet few students go on to de-
sign microprocessors after they graduate. Instead, an increas-
ing number of our graduates go on to design networking equip-
ment: complex hardware-software systems that must interoper-
ate with existing systems and infrastructure. In general, gradu-
ating students are ill-prepared for this task, and have little expe-
rience with this scale and complexity of project work. And so
the goal of our work is to give students hands-on experience de-
signing, debugging and deploying fully-functional networking
equipment and deploying it into the Internet. In this paper we
describe a low-cost and configurable platform which enables
students, using industry standard design tools, to develop net-
working hardware.

The platform we have created is comprised of two core
technologies, NetFPGA and VNS [7] which, when used co-
operatively, provide the infrastructure to implement network
hardware on rich and varied networks. NetFPGAs are cus-
tom boards with eight Ethernet ports and two on-board pro-
grammable FPGAs (Field Programmable Gate Arrays). A

This work was funded by the NSF, under grant 02-082 and grant EIA-
0305729

canonical design exercise would be for a student to design
an Ethernet switch, or Internet router, by writing Verilog and
downloading their design to the NetFPGA board. NetFPGA
boards can be programmed and debugged over the network and
therefore allow students to build sophisticated hardware, deploy
and test it from the other side of the country, without ever hav-
ing to see the physical board.

VNS (the virtual network system) virtualizes network topolo-
gies at the link layer by mapping between VLANs. With VNS
a small network of commodity PCs running Linux can emulate
thousands of different isolated virtual networks that are reach-
able from the internet and connect to real operating systems
running real services. Any networking device can be included
in a virtual topology emulated by VNS, including NetFPGA
nodes. This allows us to provide an environment using VNS
and NetFPGA where students program their NetFPGAs, and
then insert them into a variety of different topologies. Their
NetFPGA board processes traffic that comes from anywhere in
the Internet, and their design must interoperate correctly with
other nodes in the same topology. VNS supports multiple net-
work topologies at the same time; so while one student is testing
their NetFPGA design in their own private toplogy, another set
of students might be testing how their designs interoperate on a
different topology.

Typically, a student implements the main datapath of the sys-
tem in hardware. For example, in an Ethernet switch, they write
Verilog to implement the header processing, address lookup and
switching in hardware. But the control software, such as a span-
ning tree algorithm, or command line interface, needs to run
on a microprocessor, yet NetFPGA doesn’t have an embedded
CPU. VNS enables the control software to run as a user-space
program running anywhere on the Internet (i.e. the NetFPGA
has a remote virtual cpu). This allows the implementation of so-
phisticated, integrated hardware and software devices. For ex-
ample students could build IP routers with hardware forwarding
paths and complex protocol processing done in software, using
a familiar development and debugging environment.



2

NetFPGA and VNS are used in ”CS344: Build an Inter-
net Router” - a graduate level class at Stanford. In this class,
students work in teams of two (one proficient in hardware the
other in software) to develop fully-functional, integrated hard-
ware/software IP routers that process live Internet traffic. The
routers support integrated TCP/IP stacks, an OSPF-like routing
protocol and must interoperate with the routers developed by
the other student teams.

Both NetFPGA and VNS are designed for use by other
schools. Our goal is to make both tools available at little or
no cost - and is funded to do so by the National Science Foun-
dation. Initially, both tools are available for remote use. Several
hundred students at different schools have already used VNS re-
motely. NetFPGA is being prepared for remote use starting in
Fall of 2005. We provide pre-packaged assignments (and solu-
tions), remote access to tools, tool support, classroom support,
and will even grade assignments. In short, we plan to remove
any barriers to the adoption of these tools widely in the net-
working curriculum.

This paper is organized as follows. The first two sections
describe NetFPGA and VNS. Section 4 discusses how virtual
topologies are created and managed. Section 5 discusses sys-
tem transparency and debug support. We then present our ex-
periences with NetFPGA and VNS in the classroom in section
6. Finally we end with an overview of our efforts to redesign
NetFPGA and our conclusions.

II. THE NETFPGA PLATFORM

NetFPGA is a complete system for teaching the design of
Ethernet-based network hardware such as routers or firewalls.
The emphasis is on teaching and therefore on providing an en-
vironment that is flexible, robust, low cost and easy to use.

The NetFPGA system comprises some custom hardware, off-
the-shelf design tools, and some additional scripts and libraries.

The current NetFPGA board measures six inches by nine
inches and contains three Altera EP20K400 APEX devices, an
eight-port Ethernet controller, three 1MByte SRAMs and ancil-
lary logic. There is no on-board CPU. The architecture of the
board is shown in figure 1. The Control-FPGA (CFPGA) is pre-
programmed and does two things: it manages the 8-port Ether-
net controller, and it provides a simple packet protocol for the
two User-FPGAs. Each User-FPGA (UFPGA) has one Mbyte
of private SRAM, as well as some on-chip SRAM. Each UF-
PGA is connected to the CFPGA via a common bus, and to each
other via a private bus. The bandwidths of the buses are such
that they are not the bottleneck in the system - the throughput
limitation will be either the user designs or the Ethernets them-
selves. The only external connections are the eight 10Mb/s Eth-
ernet ports and a small connector that provides power and a sin-
gle reset line. Consequently, all communication with the board
is via the Ethernets.

The operation of the board is as follows. The CFPGA buffers
incoming packets in a local SRAM, and asserts a signal to the
UFPGAs indicating that a packet is available from the relevant
Ethernet port. Some time later one of the UFPGAs requests
the packet which is then transferred to the UFPGA. The UF-
PGA(s) contain the student’s design, be it a switch, router, fire-
wall, XML analyzer, whatever. So the UFPGAs process the

Fig. 1. NetFPGA Board Architecture

packet and may need to then send one or more packets. The
UFPGAs pass their packets to the CFPGA, specifying the de-
sired egress Ethernet port. The CFPGA accepts the packet and
then forwards it to the Ethernet controller.

The design resources available to the student are the two UF-
PGAs, each with 1Mbyte of SRAM. Stanford students have im-
plemented several ’obvious’ designs include Ethernet switches
and Internet Routers. Less obvious extensions to these have
included IPSec packet encryption, flow-based rate control, and
switches employing flow-based weighted fair queueing.

Most commercial networking products also include one or
more CPUs to handle the more complex aspects of the device
such as route update messages in an IP router. However the
NetFPGA board has no CPU. Instead it has a mechanism that
allows the ’CPU’ to exist elsewhere. The NetFPGA board rec-
ognizes specially encoded packets called control packets that
enable a process running on an external computer to perform
low level register reads and writes on the student’s design. So
for example a student can run a routing protocol process on
their laptop, and have that process control the actual hardware
that is in their NetFPGA board.

We do not specifically advocate the CPU-less approach; in-
deed our latest version of NetFPGA has a CPU so that we can
explore other architectures. On reflection, the use of these en-
coded packets to perform register accesses has been positive in
that it uses the same basic transport mechanism (packets). On
the negative side, the performance is poor (hundreds of accesses
per second), and the student’s software must deal with the fact
that packets may be lost in transit.

In practice, given that we have a rack of NetFPGA boards, we
need a way to be able to manage the flow of packets between the
NetFPGA boards and the campus internet. This flow is handled
by the VNS system described in the next section, using VLAN
tags [9] to provide isolation between NetFPGA boards.

The next part of the NetFPGA system is the design flow.
For this we use commercially available tools (which are usually
very cheap or free to academic institutions). We use Synopsys’
VCS and FPGA Compiler for logic simulation and synthesis
respectively. Place and route of the design is performed by Al-
tera’s Quartus tool.

Since the external behavior of a NetFPGA system is com-
pletely defined by the sequence of ingress and egress packets,
then verification tests consist of lists of packets. Each test spec-
ifies the sequence of ingress packets at each port, as well as



3

Fig. 2. A Typical setup of VNS. The application servers and firewalls are
configured with multiple virtual interfaces each configured on a unique VLAN.

the sequence of expected egress packets from each port. The
students use a Perl program to specify these packets. The rea-
son for this is that the Perl program generates a test environ-
ment that works in simulation (with VCS) and also on the real
hardware, thus obviating the need for separate hardware tests.
A second script is used to verify that the observed sequence
of egress packets matches the expected sequence. This script
works for both simulation and the actual hardware tests.

Once the students have debugged and synthesized their de-
sign, they need to download it to the hardware. This is accom-
plished using the third part of the system: a Java-based web
interface.

This interface enables students to:
• acquire a board from the rack of boards,
• download their design to the board,
• send packets to the board,
• capture all egress packets from their board.
The NetFPGA tools use the pcap library format [1] for pack-

ets, and so the students can use widely available network packet
analysis tools such as Ethereal[3] for debugging their systems.

III. THE VIRTUAL NETWORK SYSTEM

NetFPGA provides the foundation on which students im-
plement networking devices in hardware. In order to provide
the students with a realistic, dynamic environment for develop-
ment and testing on the operational Internet, we’ve developed a
complementary technology, the Virtual Network System (VNS)
[7]. In short, VNS virtualizes the network allowing the simula-
tion of many complex and configurable network topologies on
which NetFPGA boards can participate. Each of the simulated
topologies is reachable from the Internet and thus carries live
Internet traffic. In this section we present VNS and discuss how
it interoperates with NetFPGA to integrate student projects into
the Internet.

A typical setup of VNS is shown in Figure 2. The firewall
and the application servers are standard PCs running Linux.
Each PC is configured with one or more virtual interface each
of which is on a unique VLAN (and therefore tagged with a
unique VLAN id). The core of the system is the VNS server
which accesses all of the traffic on the network by placing its
interface in promiscuous mode. The server can determine the

Fig. 3. A VNS virtual topology consisting of a hub between three commodity
PCs. Each PC interface is a virtual interface with a unique VLAN identifier.
The VNS server provides the mapping between the VLAN ids so that each
packet that is sent by an interface on the topology is received by the other two.

Fig. 4. VNS system with connected NetFPGA boards. The application servers
and firewalls are configured with multiple virtual interfaces each configured on
a unique VLAN. Packets from all NetFPGA ports are also tagged by the switch
with unique VLAN IDs.

source of any packet by its VLAN ID and the destination by
inspecting the destination address of the Ethernet header.

Because it can access all traffic on the network, the VNS
server is able to to emulate arbitrary network topologies by
mapping between VLANs. Figure 3 shows an example of a
virtual topology emulated by the VNS server using the setup
shown in figure 2. In this case, the virtual topology consists of
the firewall connected to a hub with two connected application
servers. For each packet the VNS server intercepts from one of
the interfaces on the virtual topology (identified by their VLAN
IDs) it will generate two more packets with VLAN IDs of the
two other interfaces, thus emulating a network hub. Note that
the original packet is never intercepted (taken off the wire) by
the VNS server which can only passively listen, however be-
cause it is on a VLAN unique to the sending interface, the other
listening interfaces are unable to process it. A virtual topology
is therefore simply a mapping, performed by the VNS server be-
tween separate VLANs. Each of the connected PCs can be con-
figured with many (hundreds) of virtual interfaces and each of
these interfaces my participate on a different topology in com-
plete isolation.

A. Integrating with NetFPGA

VNS allows us the ability to integrate one or more NetF-
PGA boards into multiple complex topologies. Doing so does



4

Fig. 5. A VNS virtual topology with a virtual host interposed between the
firewall and two application servers. The VNS server tunnels all packets to the
virtual host over a TCP connection to a client program executing in user space
on a PC. The client program is therefore able to function as an entity on the
network.

not require any modifications to either NetFPGA nor VNS. As
shown in figure 4, we connect NetFPGA boards to the network
through a switch which marks each port with a unique VLAN
identifier. Using the VLAN identifier, the VNS server can de-
termine which port a packet originates from and thus can be
configured to allow one or more NetFPGA boards to partici-
pate on the topology like any other networking device. Our
experimental setup uses a single, 96 port switch, to connect
8 NetFPGA boards, the VNS server, a firewall and three unix
servers running various services including http and ftp. Using
this setup, VNS can be dynamically configured to include the
NetFPGA boards in arbitrary topologies connected to commod-
ity machines. Figure 6 shows a logical topology with a NetF-
PGA board interposed between the firewall and three applica-
tion servers. The NetFPGA board can then be programmed to
operate as an intermediary networking device such as an Ether-
net hub, a learning switch or an IP router.

B. Providing a User Space ’CPU’

In addition to mapping between VLANs, the VNS server is
able to interpose one or more virtual hosts in the network as
shown in figure 5. Each virtual host is emulated at the link
layer by the VNS server. The goal of supporting virtual hosts in
the VNS server is to provide a mechanism in which user-level
client programs running on standard operating systems can par-
ticipate on the virtual topology. When the VNS server inter-
cepts a packet destined to an interface on a virtual host, instead
of mapping that packet to another VLAN ID and placing it back
on the wire, the server strips of the VLAN header and sends the
packet over a TCP connection to the associated client program.
The client therefore will receive all packets seen by any of the
virtual host’s interfaces on the topology and can send packets
to the server to be injected back into the network specifying,
which of its ’interfaces’ to send the packet out on. The server
will then ensure that the sent packet is tagged with the correct
VLANs for all connecting interfaces. The user level program is
in essence, functioning as an entity on the network.

The ability of the VNS server to support integration of user
space processes into the virtual network topology can be used
to add a virtual ’cpu’ to the NetFPGA cards. The NetFPGA can
be controlled via control packets sent to port zero which read

Fig. 6. VNS allows NetFGPA boards to participate in virtual topologies. A
virtual host connected to port 0 of the NetFPGA board can function as an off-
board control unit. The client program can control the NetFPGA by sending
special packets which can read and write to registers.

and write to all accessible registers. It is possible then, to create
a topology in which a virtual host is connected directly to port
zero of the NetFPGA board, as shown in figure 6. The VNS
server will handle moving packets between the user process as-
sociated with the virtual host and port zero of the NetFPGA
board. In this configuration the virtual host can effectively act
as a ’cpu’ for the NetFPGA. For example, assuming the config-
uration in figure 6, the NetFPGA board can be programmed to
function as a 3 port Internet router. However, the more complex
functions such as OSPF support can be implemented within the
virtual host.

The model of allowing a user-space program to function as
an offboard cpu has a number of advantages. Standard PC op-
erating systems typically provide much richer debugging and
development environments than those for embedded proces-
sors. There is no need to cross compile nor download code to
the board and standard debuggers, such as gdb, can be used to
monitor and debug the program during runtime. Furthermore,
because the main focus of our work is to provide an educational
platform we believe supporting a familiar development and run-
time environment, such as a Unix, greatly eases introduction to
an otherwise complex system.

C. Creating Topologies

Creating a virtual topology in VNS requires writing a topol-
ogy description file in XML and copying it to a directory mon-
itored by the VNS server. Topology description files contain
the connectivity of the hosts in the topology, the IP addresses
each interface and the VLAN identifiers assigned to the NetF-
PGA ports that will be participating on the topology. Given a
description file an installation script will create a topology by
performing the following actions:

• Create a virtual interface on each participating PC and as-
sign the interface the given IP addresses and VLAN ids

• Set up routes on each of the PCs to forward packets
• Copy the topology file to the directory monitored by the

server
Once the server determines that a topology file has been

added or has changed it will perform the VLAN mappings spec-
ified by the new file. Because the topology files can be updated
at runtime, the system supports dynamic topologies which may



5

include link failures, changes in connectivity or changes in link
properties.

IV. SYSTEM TRANSPARENCY

Typical use of NetFPGA does not require the developer to
have hands-on access to the hardware. The developer may in
fact develop from anywhere on the Internet. A significant chal-
lenge to supporting remote development is to provide the same
level of debugging transparency into the system as would be
available if the developer had physical access to the board and
the connected network. To provide transparency in the system
via two mechanisms, we provide a remote logic probe and gen-
eration of pcap compatible trace files.

A traditional hardware development system would provide
the capability to capture signals in real time via a logic analyzer.
Indeed Altera provides such a capability with their embedded
logic analyzer. However this capability requires a computer to
be connected to each board which is prohibitively expensive for
NetFPGA.

Instead we provide a logic analyzer that runs on one of the
UFPGAs. In practice this is not much of a restriction because
we found that most student designs only use a single FPGA.
This logic analyzer, while not as sophisticated as commercial
Logic Analyzers, has proven reasonably flexible. The user can
specify a sophisticated four-stage trigger and the local SRAM
can capture up to 256K samples of 32 signals.

Of course the students use the logic analyzer via the web:
they can launch the analyzer and then start a simulation, and
see when the analyzer triggers. The analyzer then automatically
provides the student with the trace file in Value Change Dump
format, and so the student can use commercial or free waveform
viewers to examine the trace dump.

In addition to the logic probe the system provides debug sup-
port by logging all packets processed by the user space program
operating as a NetFPGA cpu. VNS client programs communi-
cate with the server using a simple libarary. This library logs all
packets that are exchanged between it and the server in pcap[1]
trace format. The packet traces are saved client side and can be
used with tcpdump[2] or Ethereal[3] to inspect all traffic pro-
cessed by the client.

V. TEACHING NETWORKING HARDWARE

NetFPGA and VNS are integral to an upper level projects
course here at Stanford in which students learn to design and
develop Internet routers. During the course, two-student teams
design fully functional, integrated hardware/software routers
that process live Internet traffic. Each team consists of a stu-
dent proficient in hardware and a student proficient in software.
At the end of the course, all student routers are tested on a large
shared topology in which they must interoperate to build their
forwarding tables and route traffic correctly despite multiple,
periodic link failures. The students design their own interop-
erability tests, and use VNS to implement on arbitrary private
topologies of their choosing that connect to the Internet.

The students are presented with the verilog code for a two
port, unintelligent layer two switch. Their first job is to ex-
tend this design into a three port learning switch – their switch

must automatically learn where nodes are located based on the
source address of incoming packets. The next step is to provide
control packet support so that an external software process can
perform register accesses on their design. The third step is to
implement ARP functionality - the students’ router must iden-
tify ARP packets and be able to pass them to their CPU process.
Then the main stage is the implementation of the actual IP rout-
ing protocol - the students must add longest-prefix matching
capability, as well as the necessary route tables to their design.

In parallel with the hardware portion of the project, the stu-
dent responsible for the software develops complex function-
ality in C which operates as the router CPU through VNS as
discussed previously. The software must support the following
functionality.

• an integrated TCP stack which exports a bsd/style socket
interface

• a command line interface for managing the router (this
runs on top of the student’s socket interface and TCP
stack)

• malformed packet processing, such as handling fragments
or packets with bad headers

• ICMP support including generation of time exceeded
messages, port and host unreachable messages and echo
replies

• a simplified link state routing protocol (based on OSPFv2)
which must interoperate with the other student routers

• setting up and managing the hardware forwarding table
and ARP cache

Designing an integrated software and hardware router re-
quires students to face complex design issues such as the per-
formance flexibility tradeoff of moving functionality between
hardware and software. These issues become particularly im-
portant in the final portion of the project in which the students
must implement advanced functionality of their own design into
their routers. Including an open-ended design component to the
project allows students to explore areas of interest to them while
tackling an integrated hardware/software design problem with-
out the guidance of detailed specifications. The only require-
ment to this portion of the project is that the implemented fea-
tures have both a hardware and software component that oper-
ate cooperatively. We have been delighted by the sophistication
and inventiveness of the students in coming up with advanced
functionality. During the pilot offering of the course during the
Spring quarter of 2004, student projects included MAC level
encryption, flow rate limiting, VPN support, NAT and a web
programmable hardware firewall. In our latest class (spring ’05)
one team used their router to implement a man-in-the-middle
security attack on SSH connections, and used it to demonstrate
how to capture passwords. A more detailed description of the
course is presented in [8].

Ultimately, it is our goal to host remote courses at other in-
stitutions and Universities. The full router project can be done
remotely without requiring the students to have direct access
with the test network or the NetFPGA boards. All course ma-
terials are publicly available online at the course website which
is included in the conclusion of this paper. We provide all tools
support and grading. Funding is provided by NSF and comes at
no cost to the participating institution.



6

VI. REDESIGNING NETFPGA

After using NetFPGA for three years we have feedback from
our users, and we are now in the process of developing new ver-
sions of hardware (and software). The issues we are addressing
next are:

• The biggest problem with the current system is that the
hardware is awkward to distribute to others. The NetF-
PGA boards use a proprietary backplane that distributes
power and reset. The new board will use standard 3.3V
PCI and will fit into a personal computer. Indeed we are
designing the system to have up to five boards per com-
puter, with one board as the control board and the remain-
ing four for use by the students. Thus the entire NetFPGA
system can be delivered ’shrink-wrapped’ for installation
on a standard x86-based personal computer.

• The networks are too slow. NetFPGA uses eight 10Mbit/s
ports. While suitable for teaching they are too slow for
interesting research projects. Consequently our new board
will provide four Ethernet ports each operating at 10, 100
or 1000 Mbps. This will require us to upgrade the VNS
server and infrastructure to use 1.0Gbps links also; for-
tunately they are now very affordable. Already two re-
searchers have expressed interest in using the board to ex-
plore new transport protocols - their protocols require cus-
tom network interfaces which, of course, is the main at-
tribute of NetFPGA.

• The new board also has two 3.0Gbps duplex serial links
which can be used to interconnect multiple boards to form
a larger system.

• The mechanism used to provide low-level register access
to the hardware is awkward for students and slow, as men-
tioned earlier. Currently, the students’ control unit running
within VNS must send ethernet frames conforming to a
particular format over an unreliable network to issue reg-
ister reads and writes. The new board will address this by
using the PCI bus to map the board’s registers directly into
memory thus providing a much faster access mechanism.
The cost of this is added complexity to the system as we
will need a way to provide students with restricted access
to their board.

• While the basic functionality of the boards is still provided
by a CFPGA (as in the first iteration) the new board will
have an on-chip CPU (PowerPC). It is our hope that the
students can use these in future projects. Note that the
presence of a CPU does not mean that we are moving away
from the remote CPU approach that we have used so effec-
tively. Rather the presence of an onboard CPU provides
new avenues to explore. For example it might provide the
opportunity for some simple per-packet computations re-
quired by emerging variants of TCP. The cost of using the
onboard CPU is a significantly more complicated tool flow
and thus might be limited to more advanced projects.

• The current tool flow is outdated, slow and only runs on
non-MSWindows operating systems. The new board will
use a single tool for synthesis and place-and-route and is
supported on MSWindows as well as Linux and other ver-
sions of UNIX. We also intend to support several commer-

cial Verilog simulators, including VCS and ModelSim.
• The FPGA technology is now dated. We will be using

newer FPGA devices (Virtex II Pro 30) and SRAMs with
greater speed and capacity. This will provide the resources
for more interesting student projects.

• Logic Analyzer support will be continued. The new board
has two independent SRAMs, with one that can be dedi-
cated for use by the Analyzer. However we have observed
that students rarely use the Analyzer. We believe there are
two reasons for this: first, the simulation environment is
sufficient to identify almost all bugs. Second, it requires
some work: deciding which signals to capture, hooking
those signals to the analyzer block, and then setting up
trigger definitions.

VII. RELATED WORK

The FPX project [4] [5] at Washington University provides
FPGA hardware that can be attached to a single OC-48 ATM
port. As such it is not aimed at providing a complete networking
system, but rather on providing programmable hardware assist
for functions that are too complex to be done in software (such
as on-the-fly JPEG encoding at Gbit/s rates).

Also at WU is the Open Network Laboratory project [6] This
is a collection of open-source, extensible routers built using
their FPX technology. They plan to have four of these con-
figurable routers interconnected a programmable switch. This
is primarily a research project, providing a high-speed flexible
environment for use in router research.

VIII. CONCLUSIONS

University networking classes often contain projects, but
these projects generally operate at the socket-layer and above.
To operate below a socket might involve dabbling with operat-
ing system structures, dedicated hardware, kernel hacking, and
security nightmares as students generate corrupt packets and in-
ject them into the network. As a result, few networking classes
are able to give hands-on experience at a lower level - where,
arguably, the real networking infrastructure exists. Our goal is
to give students hands-on experience with the Internet infras-
tructure. We don’t expect our approach to replace traditional
system design classes anytime soon, but we do hope to make it
possible to include meaningful, low-level networking projects
in a standard curriculum.

To this end, we produced two tools: NetFPGA and VNS,
each of which aids in the development of networking hardware
on configurable network topologies. Our approach allows users
to build network devices out of custom boards that can be pro-
grammed and tested over the Internet. We provide a remotely
accessible logic probe to aid in development and testing. In
addition, the environment supports the emulation of multiple,
complex network topologies that can integrate with commodity
operating systems and arbitrary networking hardware. These
topologies are reachable from the Internet and therefore allow
testing of network devices on real traffic in real time. In ad-
dition, the system provides a method for adding a cpu to the
network device as a user space process thus simplifying proto-
typing, developing and testing complex functionality.



7

The focus of our work has been to provide a robust, low-
cost environment for teaching the implementation of network-
ing hardware in relation to Internet infrastructure. We are us-
ing both NetFPGA and VNS in a graduate level projects course
in computer networks in which students develop sophisticated
routers in hardware and software. All use of NetFPGA and
VNS can be done remotely. We are thus able to support remote
courses in network hardware design and it is our goal to support
such courses at other universities. If you are interested in learn-
ing more about NetFPGA, VNS or the course we offer, please
visit the following websites or contact us directly by e-mail.

• NetFPGA Website: http://klamath.stanford.edu/NetFPGA/
• NetFPGA 2 Website: http://klamath.stanford.edu/nf2/
• VNS Website: http://yuba.stanford.edu/vns/
• Course Website: http://yuba.stanford.edu/cs344 public/

IX. ACKNOWLEDGEMENTS

This work was funded by the NSF, under grant 02-082 and
grant EIA-0305729. Special thanks to Alan Swithenbank and
Jim Weaver for their time spent on board design. We also ac-
knowledge the tremendous support provided by Altera, Xilinx
and Synopsys.

REFERENCES
[1] libpcap packet capture library. http://www.tcpdump.org.
[2] tcpdump network sniffer. http://www.tcpdump.org.
[3] The ethereal network analyzer. http://www.ethereal.com.
[4] John W. Lockwood, An Open Platform for Development of Network Pro-

cessing Modules in Reprogrammable Hardware, IEC DesignCon 2001,
Santa Clara, CA, Jan. 2001, Paper WB-19.

[5] the FPX project page. http://www.arl.wustl.edu/arl/projects/fpx/
[6] Open Network Laboratory project http://www.arl.wustl.edu/projects/onl/
[7] Martin Casado, Nick McKeown. The Virtual Network System ACM

SIGCSE Bulletin, Volume 37, Pages 76 - 80, 2005
[8] Martin Casado, Gregory Watson, Nick McKeown. Teaching Networking

Hardware To appear in ACM ITiCSE, 2005
[9] IEEE 802.1Q VLAN Specification http://www.ieee802.org/1/pages/802.1Q.html


