
Towards Software-Friendly Networks

Kok-Kiong Yap Te-Yuan Huang Ben Dodson Monica S. Lam Nick McKeown
Stanford University

{yapkke,huangty,bjdodson,lam,nickm}@stanford.edu

ABSTRACT
There has usually been a clean separation between networks
and the applications that use them. Applications send pack-
ets over a simple socket API; the network delivers them.
However, there are many occasions when applications can
benefit from more direct interaction with the network: to
observe more of the current network state and to obtain
more control over the network behavior. This paper ex-
plores some of the potential benefits of closer interaction
between applications and the network. Exploiting the emer-
gence of so-called “software-defined networks” (SDN) built
above network-wide control planes, we explore how to build
a more “software-friendly network”. We present results from
a preliminary exploration that aims to provide network ser-
vices to applications via an explicit communication channel.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems; Network op-
erating systems

General Terms
Design, Management

Keywords
Software-Defined Networks, OpenFlow, Network OS, Net-
work Services

1. INTRODUCTION
Part of the success of the Internet undoubtedly comes

from the simple and consistent interface between applica-
tions and the network. Most applications use the socket

This research is supported in part by the NSF POMI (Pro-
grammable Open Mobile Internet) 2020 Expedition Grant
0832820, Stanford Clean Slate Program, Google, Xilinx,
Cisco, NEC, Deutsche Telekom, DoCoMo and the Mr. and
Mrs. Chun Chiu Stanford Graduate Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys 2010, August 30, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0195-4/10/08 ...$10.00.

API to request a connection to a remote computer, then
simply send data into and out of the socket. The applica-
tion needs no knowledge of the topology or current state
of the network, and needs no control over how packets are
delivered. The network is a set of dumb pipes.

However, many applications can benefit from a richer in-
terface to the network with more visibility of its state, and
more control over its behavior. In general, past efforts to
increase the richness of the API have not been very suc-
cessful (e.g. RSVP [11]). While many applications could
benefit from the QoS control RSVP offers, few applications
find RSVP optimized for their needs. For example, Skype
employs a number of its own proprietary tricks to figure out
the current quality and state of the network, and then uses
multiple paths and rates to optimize its behavior [12]. This
may be feasible for Skype, but is beyond the reach of many
smaller applications.

One extreme approach to increasing the richness of the in-
terface would be to put application-specific support directly
into the network, as proposed in Active Networking [14].
Active networks exploit the fact that the network knows its
own state, and attempts to expose state and control to user
applications. However, the particular approach proved un-
popular for several reasons, most notably because of security
(preventing malicious use of the network), isolation (protect-
ing one application’s behavior from another) and perfor-
mance (programmable elements slow-down the forwarding
path).

Software defined networks (SDN) are emerging as a new
(but backwardly compatible) way for networks to be archi-
tected. SDNs are being deployed in data centers now, and
we expect them to be deployed in enterprise, campus and
WAN networks in the next few years. It is therefore inter-
esting to think about how, in light of this trend, the interface
between applications and the network may change.

An SDN has the following elements (see Fig. 1):

1. A packet-forwarding datapath controlled by a narrow
open vendor-independent API (e.g. OpenFlow [8]).
These are the switches, routers and access points through
which packets pass.

2. A network-wide operating system to control the dat-
apath. The network OS (e.g. NOX [4]) has a global
view of the network state, and has full programmatic
control of the forwarding.

3. “Network features” are hosted on the network OS, to
implement various network services such as routing

Figure 1: Components of SDN

(e.g. OSPF, BGP, multicast, multipath), mobility man-
agement, QoS control, etc.

An SDN is simply a repartitioning of the way networks are
built. Initially, we expect them to support many of the
features in today’s networks. The key difference is that it is
much easier to add new features to an SDN; the owners and
operators of networks can improve their networks without
having to wait for vendors and standards bodies. We can
therefore expect SDNs to evolve and improve at a much
faster pace than today’s networks.

Current SDN (and NOX in particular) do not specify how
applications should interact with the network. An appli-
cation may continue to use the minimal socket API, and
continue to view the network merely as a means for inter-
connection. The question we are most interested in answer-
ing is: How will applications interact with the network in a
world where owners and operators are free to add new func-
tionality to the control plane? Because SDN is still in its
infancy, our work is just a first step towards answering this
question.

One possible outcome is that every application will pro-
vide its own “plugin” to the network OS to view and control
the network, and to also define its own application-specific
communication protocol to the plugin. For example, a plu-
gin optimized for Skype might interface directly with the
network OS to set up paths, reserve bandwidth, and create
access control rules. Alternatively, over time, a relatively
small number of “de facto standard” plugins might emerge
for common tasks (e.g. a plugin for multicast, another for
multipath routing, and yet another for bandwidth reserva-
tions). A third scenario is where plugins emerge to suit
certain classes of applications (e.g. a plugin for chat ap-
plications, another for real-time video, and a third for low-
latency applications). Of course, all three models can co-
exist: Many applications may choose to use common feature
plugins, whereas others can create their own. Our goal here
is not to propose, or mandate, that any particular model will
emerge. We merely make the observation that SDN allows
all three models, and for each application to choose its own
path. The “winning features” will be picked by adoption,
rather than by standards bodies.

In this short paper we explore one possible path to more
“software-friendly networks”. We propose creating a plu-
gin for the network control plane that allows applications to
query the network state and issue network service requests
directly. Motivated to support applications like multi-way

Figure 2: Architecture of SFNet

high-definition peer-to-peer video conferencing application
for mobile users, we experimented with a novel query to re-
quest the congestion state of the network, as well as classical
services like bandwidth reservation and multicast.

To the best of our knowledge, this is the first paper to pro-
pose creating “software-friendly networks” using SDN. The
paper is distinctive in that it allows applications to commu-
nicate with the network directly.

In the rest of the paper, we present our design in Section
2. Sections 3, 4, and 5 discuss congestion query, bandwidth
reservation, and multicast respectively. We describe related
work in Section 6 and conclude in Section 7.

2. DESIGN
The key role of a software-friendly network is to bridge

the semantic gap between applications and the software-
defined network. While exposing network services to ap-
plication writers can potentially improve application perfor-
mance, low-level operations required, such as route calcula-
tion or discovering network topology, are forbidding for most
programmers. By presenting high-level APIs to the pro-
gram and hiding the details of the implementation, software-
friendly networks reduce the barrier to entry and increase
uptake of network services.

To help with the exploration of software-friendly network
designs, we have created a prototype called SFNet on top
of NOX, as shown in Fig. 2. SFNet allows the applications
to directly interact with the network using a high-level API.
By exploiting the global view provided by NOX, SFNet sup-
ports high-level primitives, such as network status requests
and resource reservation, easily. Data exchanges between
applications and SFNet are represented in JSON (JavaScript
Object Notation), which is a simple and concise data format
supported by most modern programming languages.

As an example, let us describe how an application can dis-
cover the location of SFNet’s controller, an pre-requisite to
using SFNet. The application first sends a discovery request
using an UDP packet addressed to a predefined IP address
and port (e.g., 224.0.0.3:2209 in our case), and the response
is returned directly using another JSON message (Fig. 3).
This avoids any broadcast in the discovery process. Using
the response, the application can set up a TCP socket with
the controller which forms the communication channel for
subsequent JSON messages.

Network controller discovery message

{"type": whereisnox"}

Network controller discovery reply

{"type": "whereisnox",
"tcp port": 2703,
"ssl port": 2703,
"ip": [10.79.1.105,192.168.0.1,172.24.74.198]}

Figure 3: A discovery message sent from a user and
the reply message from SFNet

3. BACKING-OFF DURING TIMES OF CON-
GESTION

SFNet provides network congestion status to applications,
allowing them to backoff if they choose. The application
composes a query as a JSON message to inquire about the
congestion state of the path between two hosts. SFNet
would then determine the switch and port on which the
hosts are connected and the shortest path between them.
The congestion state (i.e., percentage of link bandwidth in
use) of the links, including of those between switches and
hosts, are then determined.

Congestion state information is useful for a variety of
purposes. For example, delay-tolerant backups can be pro-
grammed to back off when the network is congested to in-
crease the performance of delay-sensitive traffic. Today, an
administrator typically schedules backups at night so as not
to interfere with network activities during the day. This
can backfire, however, as it can create congestion for users
pulling an all-nighter for an impending deadline.

To validate our congestion enquiry implementation, we
perform the following experiment. We wrote two applica-
tions, both to transfer a 10 MB file. The first sends it
right away. The second inquires the state of congestion from
SFNet at 10 s interval and transmits the data only if there is
no congestion. To create congestion, we create a background
task using TCP iperf to generate a continuous traffic load
on the network.

Without congestion, the 10 MB file can be transferred in
an average of 18.7 s with standard deviation 0.2 s (Fig. 4).
With congestion, the first program took an average of 38.4
s with standard deviation 1.9 s. The second program, with
the help of SFNet, completed the transfer in an average
of 18.5 s with standard deviation of 0.3 s, showing similar
performance to an uncongested network.

The key takeaway is not how much faster the file transfer
went, but the ability to determine the congestion state of
routes and its utility to enable an application to back off
during congestion.

4. BANDWIDTH RESERVATION
Our SFNet prototype supports bandwidth reservation. The

application can send to SFNet a request for guaranteed band-
width. SFNet determines the route, and provisions the re-
quired bandwidth along the route for the application. SFNet
will grant or deny the request depending on the availability
of the requested bandwidth.

Many interactive applications, such as video on demand
and VoIP calls, are delay intolerant and have a strict band-
width requirement. Even with traffic classification tools, to-

Figure 4: Flow completion time with(out) SFNet’s
congestion enquiry

Figure 5: Available TCP bandwidth with(out)
SFNet’s reservation

day’s network cannot differentiate between a user watching a
random video clip from the web and an important customer
being presented a demonstration video. With SFNet, high-
priority applications can directly indicate the bandwidth re-
quired, so the network can make the bandwidth available.

To validate our implementation, we perform an experi-
ment where a high-priority application (using TCP) runs in
the presence of a low-priority UDP flow that is overwhelm-
ing the link. We create both flows using iperf, where the
UDP flow is specified with a sending rate of 3 Mbps. The
high-priority TCP flow submits a request for a bandwidth
of 3 Mbps to SFNet.

Our results (Fig. 5) show that the TCP flow achieves an
average rate of 280 Kbits/sec without reservation. By re-
serving bandwidth over SFNet, the TCP flow achieves 2.24
Mbits/sec—about 8 times more throughput. We also ob-
serve that the low priority UDP flow is appropriately throt-
tled (Fig. 5). We also observe that this has a dramatic
effect on the quality of the playback of a streamed video.
Such bandwidth reservation allows applications to express

the tacit importance of each flow by explicitly reserving the
appropriate network resources.

5. MULTICAST
SFNet can support a multicast session for an application.

Here, the application indicates to SFNet a set of IP ad-
dresses participating in the multicast with a selected mul-
ticast IP address; SFNet then returns a response (success
or failure). Subsequently, messages sent to that multicast
address will be delivered to the participants. SFNet finds
the shortest network paths between the participants. Each
message sent to the multicast IP address is duplicated where
necessary in-network. To deliver packets among n partici-
pants, SFNet installs n multicast trees—from a host to the
other n − 1 hosts. Each multicast message is carried only
once on each link of the multicast tree. This efficiency is
critical for increasingly important telepresence applications
such as high-definition multi-user video conferencing.

We next describe how we can use this multicasting in
SFNet to improve the implementation of a chat service that
uses XMPP as a rendezvous point to set up chat sessions,
hereafter referred to as P2PChat. Fig. 6 describes a use sce-
nario of P2PChat. To join the service, each user will sub-
mit a join request to P2PChat using the XMPP protocol
(Fig. 6(a)). P2PChat aggregates requests for a chat session
and submits the IP addresses of the participants in a request
to SFNet, which installs the appropriate multicast routes for
the session (Fig. 6(b)). The participant can then communi-
cate with each other by sending messages to the multicast
IP address. The chat messages are forwarded directly in-
network, instead of going through the server (Fig. 6(c)).

Once a chat session is set up, the participants can com-
municate directly with each other using multicast sessions.
This translates to reduced traffic as well as lower latency.
Our results show that by having participants communicate
directly, we can reduce delay from 21 ms to 3 ms compared
to communicating through the XMPP server residing in the
same LAN. In the meantime, relieved of its message rout-
ing duty, the P2PChat server can scale to serve more users.
Moreover, failures of the chat server will not affect any of
the ongoing chat sessions. This opens up interesting possi-
bilities, such as using a transient client in the network as the
chat server.

6. RELATED WORK
Previous work, such as Resource ReSerVation Protocol

(RSVP) [11] and Darwin [2], provided a means for appli-
cations to request service from the network. RSVP allows
applications piggyback QoS request in their packets and re-
quest resources from routers the packets traverse. Although
RSVP is widely implemented in switches and routers, it is
not generally used—perhaps because its service is not easily
tailored to the needs of an application. Darwin uses a global
resource scheduler to handle requests from applications, and
allocates network resources through“active networking”, i.e.,
embedding code into application packets and executing the
code in routers en route.

Application developers have also developed solutions at
the application layer. Numerous methods have been devel-
oped to estimate the end-to-end network capacity and route
quality. Available bandwidth (ABW) estimation is one of
the most well-studied techniques [6, 9, 10, 13]. Real-time

(a) Chat clients issues join requests to P2PChat server. This
is how the chat will be carried out today, i.e., via the server
at all times.

(b) P2PChat server delegates message exchange to the
network through SFNet’s request and SFNet installs n-
multicast routes.

(c) Clients switch to P2P chat where the malfunction of the
XMPP server and/or SFNet controller will not affect the
chat session.

Figure 6: P2P chat via in-network mesh-casting (n-
multicast)

multimedia applications often use the estimation to choose
encoding rate [12]. Peer-to-peer applications uses ABW
estimation for route selection, QoS verification, and traffic
engineering over the overlay network [7]. However, due to
the dynamic nature of Internet traffic, it is difficult to accu-
rately estimate end-to-end available bandwidth [5]. Other
than ABW, applications would also monitor the packet loss
rate and apply different forward error correction mechanism.
However, these techniques can only help applications rem-
edy their performance loss, and not proactively improve it.

On the other hand, network operators are also trying very
hard to understand the traffic from the applications. Traf-
fic classification mechanisms are widely used to help net-
work operators deploy appropriate QoS mechanisms, pre-
vent network congestion, or to defend against network at-
tacks. Many techniques can be used to classify application
traffic from aggregated flows. Some are based on statistical
properties of network traffic, such as packet size, inter-packet
gap and flow duration [1, 3], while others are based on pro-
tocol signatures and deep packet inspection. None of these
would be able to determine the importance of a flow with
certainty.

With software-friendly networks, we aim for applications
to directly request the service they need. The central con-
troller can also authenticate users and tell the network to
encrypt traffic.

7. CONCLUSION
In this short paper, we have presented our preliminary

exploratory foray of how to provide software friendly net-
work in the context of SDN. A first prototype of SFNet has
been deployed in our production network [15], thus allowing
applications to make better use of our network. We are en-
couraged by how easy it is to provide conventional API like
bandwidth reservation and multicasting, while supporting
interesting new API like congestion enquiry.

What we presented is but a small step in the direction of
creating software-friendly networks, using a particular ap-
proach in an early prototype system. There is much more
work to be done.

8. REFERENCES
[1] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and

P. Tofanelli. Revealing skype traffic: when randomness
plays with you. In SIGCOMM ’07: Proceedings of the
2007 conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 37–48, New York, NY, USA,
2007. ACM.

[2] P. Chandra, Y.-H. Chu, A. Fisher, J. Gao, C. Kosak,
T. Ng, P. Steenkiste, E. Takahashi, and H. Zhang.
Darwin: customizable resource management for
value-added network services. volume 15, pages 22
–35, jan/feb 2001.

[3] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli.
Traffic classification through simple statistical
fingerprinting. volume 37, pages 5–16, New York, NY,
USA, 2007. ACM.

[4] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards and
operating system for networks. In ACM SIGCOMM
CCR, July 2008.

[5] C. D. Guerrero and M. A. Labrador. On the
applicability of available bandwidth estimation
techniques and tools. In Computer Communications,
January 2010.

[6] M. Jain and C. Dovrolis. Pathload: A measurement
tool for end-to-end available bandwidth. In Passive
and Active Measurement Workshop, April 2002.

[7] M. Jain and C. Dovrolis. Path selection using available
bandwidth estimation in overlay-based video
streaming. Comput. Netw., 52(12):2411–2418, 2008.

[8] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, 2008.

[9] B. Melander, M. Bjorkman, and P. Gunningberg. A
new end-to-end probing and analysis method for
estimating bandwidth bottlenecks. In Global
Telecommunications Conference, 2000. GLOBECOM
’00. IEEE, volume 1, pages 415 –420 vol.1, 2000.

[10] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil,
and L. Cottrell. pathchirp: Efficient available
bandwidth estimation for network paths. In Passive
and Active Measurement Workshop, April 2003.

[11] RFC 2205: The resource reservation protocol (rsvp).
http://tools.ietf.org/html/rfc2205.

[12] Skype and network management.
http://share.skype.com/sites/en/2009/12/skype_

and_network_management.html.

[13] J. Strauss, D. Katabi, and F. Kaashoek. A
measurement study of available bandwidth estimation
tools. In ACM IMC, October 2003.

[14] D. L. Tennenhouse and D. J. Wetherall. Towards an
active network architecture. SIGCOMM Comput.
Commun. Rev., 37(5):81–94, 2007.

[15] K.-K. Yap, M. Kobayashi, D. Underhill,
S. Seetharaman, P. Kazemian, and N. McKeown. The
stanford openroads deployment. In WINTECH ’09:
Proceedings of the 4th ACM international workshop on
Experimental evaluation and characterization, pages
59–66, New York, NY, USA, 2009. ACM.

http://tools.ietf.org/html/rfc2205
http://share.skype.com/sites/en/2009/12/skype_and_network_management.html
http://share.skype.com/sites/en/2009/12/skype_and_network_management.html

	Introduction
	Design
	Backing-off during times of Congestion
	Bandwidth Reservation
	Multicast
	Related Work
	Conclusion
	References

