
Optimizing a Virtualized Data Center

David Erickson, Brandon Heller,
Shuang Yang, Jonathan Chu,

Jonathan Ellithorpe, Nick McKeown,
Guru Parulkar, Mendel Rosenblum

Stanford University

Scott Whyte, Stephen Stuart
Google

ABSTRACT

Many data centers extensively use virtual machines (VMs),
which provide the flexibility to move workload among physi-
cal servers. VMs can be placed to maximize application per-
formance, power efficiency, or even fault tolerance. However,
VMs are typically repositioned without considering network
topology, congestion, or traffic routes.
In this demo, we show a system, Virtue, which enables the

comparison of different algorithms for VM placement and
network routing at the scale of an entire data center. Our
goal is to understand how placement and routing affect over-
all application performance by varying the types and mix of
workloads, network topologies, and compute resources; these
parameters will be available for demo attendees to explore.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations

General Terms: Experimentation, Measurement,
Performance

Keywords: Data center network, OpenFlow,
Virtualization, Virtue

1. INTRODUCTION
Over the past decade, virtual machines have grown in pop-

ularity as application containers, since they improve server
utilization and support fast provisioning for scale-out ser-
vices. Increasingly, VMs are hosted in “clouds”, large data
centers that host thousands of customer VMs. Amazon
EC2, the leading cloud provider, has approximately 40,000
servers [2], launches 80,000 VMs each day, and has launched
23 million VMs since its inception [7].
Equipment and energy costs provide a strong motivation

for cloud owners to maximize operational efficiency. One
way to improve operational efficiency is through workload
placement algorithms, which map VMs onto physical ma-
chines (PMs). A placement algorithm might squeeze VMs
onto as few servers as possible, then power down the un-
needed servers or sell access to them on a spot market. Al-
ternately, it might spread the VMs as evenly as possible, to
maximize headroom for new VMs or avoid bandwidth bot-
tlenecks. The placement algorithm could even maximize the
performance of individual services, by co-locating their VMs
or considering policy requests from customers.
Currently published workload placement algorithms en-

Copyright is held by the author/owner(s).
SIGCOMM’11, August 15–19, 2011, Toronto, Ontario, Canada.
ACM 978-1-4503-0797-0/11/08.

Experiment

Generator

Initial Routing/ VM 

Placement

Workload Runner

(DNRC)

Data Center Simulator

(Local Machine)

Optimized Routing/

VM Placement

or

HW

Sim

Measured StatisticsVirtue

Figure 1: Experimenter’s workflow using Virtue

force CPU, RAM, and NIC sharing policies [8, 9]; notably
absent from this list is the network fabric interconnecting
PMs in the infrastructure. Given the obvious operational
impact of the network, it is natural to ask the question:
Can a virtualized data center be more efficient if the opera-

tor has visibility into network traffic, as well as control over

packet routing? Answering this question demands a num-
ber of prerequisites: representative workloads, a way to run
those workloads at data center scale, an algorithm to place
VMs and find routes, and a way to evaluate each algorithm’s
optimization metric. Perhaps most importantly, it requires
a way to measure and control network traffic.

The purpose of our demo is to show such a system, named
Virtue. Virtue enables a researcher to run synthetic data
center workloads on both a simulator and a real data cen-
ter. To provide flexibility in VM placement, Virtue offers
an interface to XenServer. To provide network traffic flexi-
bility, Virtue leverages OpenFlow [5]. On this platform, we
can investigate the scalability tradeoffs (state and compu-
tation) between coarse-grained traffic aggregation and fine-
grained, low-level traffic routing. We can try approaches to
VM placement that ignore the network, staged approaches
that optimize for placement first then do routing, or even a
joint optimization with a mixed integer linear program.

Our hope is that this investment in infrastructure and
software will enable realistic comparisons of workloads and
placement algorithms, resulting in both an understanding of
the potential benefits of joint placement, as well as practical
algorithms to achieve them.

2. SYSTEM
Virtue supports experiments targeted to either hardware

or simulation, at the scale of an entire data center; its com-
ponents are shown in Figure 1. The demo will show the
entire Virtue system running live on a remote data center.
Demo attendees can choose a workload and a placement al-
gorithm, then explore the effects on VM placement, network
communication, and service-level performance.

478



2.1 Generating an Experiment
There are many workloads, such as Facebook or Amazon,

which we would love to test, but for which we will never have
equivalent hardware or software. However researchers will
likely have access to some hardware, and the ability to sim-
ulate other environments. These observations motivated the
creation of a software abstraction layer for rapidly develop-
ing synthetic workloads that can run without modification
on both real hardware and in a software simulator. The ab-
straction layer gives applications an API to send and receive
network traffic, consume CPU cycles, access timers, and per-
form other utility methods. For example, an experimenter
could create a 3-tier web workload by creating a simple ap-
plication for each tier plus a client request application. The
experimenter could then easily vary the number of VMs per
tier, the distribution of request/response sizes between tiers,
fan-out and fan-in of network messages, and network bisec-
tion bandwidth. More advanced experiments could intro-
duce clusters of applications using varying numbers of VMs,
similar to what might be seen in a cloud provider such as
Amazon.

2.2 Routing and VM Placement
After defining the workload specifics of an experiment,

the “algorithm” stage must define the physical locations on
which to run virtual machines, as well as the physical path of
flows between virtual machines. Here, a range of placement
algorithms are possible, from naive (random placement) to
intelligent (constraint satisfaction), for a range of optimiza-
tion metrics. We have initially created mixed integer pro-
gramming model algorithms that will optimize for perfor-
mance (spread workload and network traffic as evenly as
possible) or energy (collapse workload onto as few machines
and network links as possible). Due to the complexity of
the problem, we expect to also create and evaluate other
approximation algorithms.

2.3 Hardware
To run a workload on hardware, Virtue requires physical

servers running the Xen hypervisor and switches supporting
the OpenFlow protocol. The demo will run on the Data cen-
ter Network Research Cluster (DNRC), a 200-node cluster
developed in a collaboration with Google for research use.
The switches in the DNRC are wired together to provide
three distinct topologies, two different fat-trees and a multi-
rooted tree, while the nodes are virtualized by XenServer.
To run an experiment, the workload runner coordinates

with the XenServer pool master to start the VMs, then
passes the routing table to Beacon, the OpenFlow controller
managing all aspects of the DNRC network. While the work-
load is running, Virtue records utilizations for the CPU,
RAM, NIC, network links, and network traffic matrix, plus
application-level measurements such as responses per second
and completion time. After the workload completes, the ex-
periment description and measurement data are passed back
to the Optimized Routing/VM Placement stage, which can
modify the virtual machine placement and network routes.
The modified experiment can then be run to look for changes
in any metrics of interest.

2.4 Simulation
To explore other network topologies, hardware configura-

tions, and scales, we created a software data center simu-

lator. The simulator is a simple discrete event-driven sim-
ulation based on the DESMO-J framework. It tracks all
the resources available via the application abstraction layer,
namely CPU cycles, network traffic at flow granularity, and
scheduled timers. Although the simulator provides the same
measurements and workflow as the hardware path, we don’t
expect both platforms to provide identical results. Still, the
simulator allows us to explore and characterize unavailable
hardware configurations within a reasonable error margin.

3. RELATED WORK
Several authors have analyzed data center workload place-

ment optimization, focusing on shared resources such as the
CPU, RAM, and NIC. Wood et al. explore hotspot detection
and mitigation in a virtualized data center [9]. A system by
Ruth et al. migrates VMs in clusters to achieve higher per-
formance [8]. Commercial products are also available from
VMware and Citrix; our work expands on all of these tech-
niques by also monitoring and controlling the network.

Prior work on data center networks focuses on routing
algorithms that spread traffic over all available paths, of-
ten via the introduction of scalable topologies [3, 6]. These
papers generally assume traffic follows a path picked by a
routing protocol or by oblivious load balancing. Hedera [1]
uses OpenFlow (alongside ECMP) to detect and re-route
long-lived, high data-rate flows, to achieve higher bi-section
bandwidth than possible with ECMP alone. We make no
assumptions about the network topology or hardware, other
than OpenFlow support. Another example in this vein, Elas-
ticTree, routes traffic through a minimum of switches and
links to save energy by turning off unneeded switches [4].

Acknowledgments
David Erickson is funded by a Microsoft Research PhD
fellowship.

References
[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and

A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In NSDI, San Jose, CA, April 2010. USENIX.

[2] R. Bias. Amazon’s EC2 generating 220M+ annually.
http://cloudscaling.com/blog/cloud-computing/
amazons-ec2-generating-220m-annually, Oct 2009.

[3] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: a
scalable and flexible data center network. In SIGCOMM,
pages 51–62, New York, NY, 2009. ACM.

[4] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis,
P. Sharma, S. Banerjee, and N. McKeown. ElasticTree:
Saving Energy in Data Center Networks. In NSDI, San Jose,
CA, April 2010. USENIX.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: enabling innovation in campus networks.
ACMCCR, 38(2):69–74, April 2008.

[6] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: a scalable fault-tolerant layer 2 data center
network fabric. 39(4):39–50, 2009.

[7] G. Rosen. Presentation at CloudConnect.
http://www.jackofallclouds.com/2010/04/
presentation-at-cloudconnect/, April 2010.

[8] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen.
Autonomic live adaptation of virtual computational
environments in a multi-domain infrastructure. In ICAC,
pages 5–14, Washington, DC, 2006. IEEE.

[9] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif.
Black-box and Gray-box Strategies for Virtual Machine
Migration. In NSDI, Cambridge, MA, April 2007. USENIX.

479




