
MPLS-TE and MPLS VPNs with OpenFlow
Ali Reza Sharafat, Saurav Das, Guru Parulkar, and Nick McKeown

Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA

sharafat, sd2, parulkar, nickm@stanford.edu

ABSTRACT
We demonstrate MPLS Traffic Engineering (MPLS-TE) and
MPLS-based Virtual Private Networks (MPLS VPNs) using
OpenFlow [1] and NOX [6]. The demonstration is the outcome of
an engineering experiment to answer the following questions:
How hard is it to implement a complex control plane on top of a
network controller such as NOX? Does the global vantage point in
NOX make the implementation easier than the traditional method
of implementing it on every switch, embedded in the data plane?

We implemented every major feature of MPLS-TE and MPLS-
VPN in just 2,000 lines of code, compared to much larger lines of
code in the more traditional approach, such as Quagga-MPLS.
Because NOX maintains a consistent, up-to-date topology map,
the MPLS control plane features are quite simple to implement.
And its simplicity makes it easy to extend: We have easily added
several new features; something a network operator could do to
customize their network to meet their customers’ needs.

The demo consists of two parts: MPLS-TE services and then
MPLS VPN driven by a GUI.

Categories and Subject Descriptors: C.2.1 –
Computer Systems Organization [Computer-Communication
Networks]: Network Architecture and Design

General Terms: Management, Design, Experimentation

Keywords: MPLS, MPLS-TE, VPN, Traffic Engineering,
OpenFlow

1. SCIENTIFIC RATIONALE
We claim that while the MPLS data plane is fairly simple, the control
planes associated with MPLS-TE and MPLS VPNs are rather
complicated. For instance, in a typical traffic engineered MPLS
network, one needs to run OSPF, LDP, RSVP-TE, I-BGP, and MP-
BGP to name a few protocols. The distributed nature of these protocols
results in excessive traffic of update messages when there are frequent
changes in the network. This, in turn causes the routers to spend a lot of
CPU time recalculating routing information. Hence, CPU message
queues may get filled leading to incoming hello messages getting
dropped. This leads to false link-state information being distributed
throughout the network. The described vicious cycle causes large
convergence times for the above protocols, meaning excessive control
traffic on the network and stale information on the routers.

In SDN, the Network Operating System (NOS) is responsible for
constructing and presenting a logically centralized map of the
network. Instead of a set of distributed protocols implemented on each
router, we implement these functionalities as simple software modules
that work on the network map in NOS. Implementation of these
functions on a logical map of the network is very simple. Hence, by
pushing the control plane functionality to NOS, we benefit from not
only simplicity of implementation, but also the fact that maintaining
and updating applications are easy as well. This is because new

features are no longer tied to multiple protocols that would normally
have to be changed. In fact, with the controller in charge of the control
plane, there is no need for any distributed protocol running in the
routers as the NOS has complete knowledge of the network.

2. ARCHITECTURE
The architecture of our system is given in Figure 1. Our test-bed
consists of several software and physical switches. The software
switches are instances of Open vSwitch [2] which are hosted within
the Mininet environment [3]. These switches are connected to a
network of physical switches. Both software and physical switches
support the OpenFlow 1.0 specifications [4] as well as the MPLS
related section of the OpenFlow 1.1 specifications [5]. The switches
are designed so that they handle the data plane, and not the control
plane functionality of MPLS.

With the abovementioned network, we emulate a wide area
network for the purpose of our demonstration. All switches are
controlled by a single instance of the NOX [6] controller. The
MPLS-TE and VPN services are managed via an application that
runs in NOX. The control plane and the MPLS features are
exclusively handled by NOX. The data plane simply supports the
push swap and pop actions. When changes are needed in the data
plane, NOX modifies the flow tables in the appropriate switches.

We use multiple GUIs to show the workings of the network and to
dynamically interact and modify the TE-LSPs and/or VPNs.

3. DEMO SCENARIOS
The demonstration consists of two parts, the first pertaining to
MPLS-TE [7] and the second pertaining to MPLS VPNs.

3.1. MPLS-TE
The first part of the demo is visualized via two GUIs, both
showing the topology of the entire physical network. The first
GUI displays the IP flows in the network and the second GUI
displays the LSPs and the flows routed through them. All the
flows and LSPs are color-coded to distinguish between various

Copyright is held by the author/owner(s).
SIGCOMM’11, August 15–19, 2011, Toronto, Ontario, Canada.
ACM 978-1-4503-0797-0/11/08.

Software

Switch

Physical

Switch

Physical

Switch

NOX

Software

Switch
Software

Switch

mininet

MPLS API GUI API

MPLS‐TE VPN
GUI

GUI

Figure 1. The architecture of the physical network and the
controller used in our demonstration.

452

types. The demonstration starts with all the flows in the IP plane,
and as we step through the demo, we create TE-LSPs and reroute
some of the IP flows through the LSPs. By creating TE-LSPs of
different characteristics, we demonstrate the following features:

Constrained Shortest Path First (CSPF) The CSPF algorithm
allows us to find the shortest path for a TE-LSP that satisfy its
bandwidth and priority requirements.

Auto-route When a TE-LSP is created, we automatically reroute
any flow whose path goes through the head-end and the tail-
end router of the created LSP onto the LSP.

Traffic Aware LSPs We can create TE-LSPs that carry a specific
type of traffic. These can include VOIP, HTTP, etc.

Priority LSPs can have different levels of priority. When the
reservable bandwidth of a link is fully allocated, we reroute
LSPs of lower priority to alternative paths.

Auto-bandwidth The auto-bandwidth feature allows for the
bandwidth reservation of a TE-LSP to dynamically adjust to
its actual bandwidth usage (as opposed to the bandwidth
being statically set at the creation of the LSP).

Interactive Management Users can create custom TE-LSPs from
the GUI. That is, the user specifies the head-end and tail-end
routers and the characteristics of the desired TE-LSP, which
is then created in the network and shown in the GUI.

3.2. MPLS VPNs
The second part of the demo is visualized using multiple GUIs as
well. In this case, all GUIs show the physical network, and each
GUI pertains to a VPN and its associated flows and LSPs.
Screenshots of working versions of this part of the demo are given
in Figure 2. Our MPLS-VPN network has a simpler backbone
topology compared to the previous section, but with some
customer nodes added to the edge of the backbone network.

The backbone network is MPLS-TE enabled and so when LSPs
are created to support a VPN, they are accompanied with all the
TE features mentioned in Section 3.1.

We configure multiple VPNs with overlapping private IP address
spaces. Each VPN comes with different characteristics which
enables us to demonstrate the following:

Isolation of VPNs We demonstrate that multiple VPNs can coexist in a
single backbone network where different VPNs may have
overlapping address spaces. The flows associated with different
VPNs are routed through their respective LSPs and do not
aggregate with each other.

Custom Topologies The logical topology of each VPN can be specified
by the customer. The topology can be anything from the traditional
hub-and-spokes to full-mesh.

TE Services Since the backbone network is MPLS-TE enabled, we can
readily offer TE services to the customers. We demonstrate the
Priority and Auto-bandwidth features of TE. This allows for a high
priority VPN to force others to reroute when it requires more
bandwidth along its LSPs.

Interactive Management Users can create a new VPN by specifying
the connection between the customer and provider routers as well
as the topology and other characteristics of the network. After the
specifications are given, we create the desired VPN network and
display the results in the GUI.

4. REFERENCES
[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.

Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, April 2008.

[2] Open vSwitch [Online]. Available: http://openvswitch.org/

[3] B. Lantz, B. Heller, and N. McKeown. A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks. In ACM
SIGCOMM HotNets Workshop, 2010.

[4] OpenFlow Switch Specification: Version 1.0.0 [Online]. Available:
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf

[5] OpenFlow Switch Specification: Version 1.1.0 Implemented
[Online]. Available:
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf

[6] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker. NOX: Towards and operating system for networks.
In ACM SIGCOMM Computer Communication Review, July 2008.

[7] S. Das, A. R. Sharafat, G. Parulkar, and N. McKeown MPLS with a
Simple OPEN Control Plane. In Optical Fiber Communication
Conference, March 2011.

(a) (b)
Figure 2. Sample GUIs corresponding to the MPLS VPN demonstration. Two VPNs with their corresponding flows and LSPs are
shown in (a) and (b)

453

