
PhoneNet: a Phone-to-Phone Network for Group
Communication within an Administrative Domain

Te-Yuan Huang Kok-Kiong Yap Ben Dodson Monica S. Lam Nick McKeown
Stanford University

{huangty,yapkke,bjdodson,lam,nickm}@stanford.edu

ABSTRACT
This paper proposes PhoneNet, an application framework to
support direct group communication among phones without
relay nodes. PhoneNet presents the familiar abstraction of
a multi-user chat service to application writers. It performs
two main functions: inviting participants to the chat room
and routing data between participants directly without go-
ing through any intermediaries.

Made possible by a generic chat room service embedded in
the network itself, all application-specific code in PhoneNet
applications runs on the phones themselves. Unlike the con-
ventional server-client model, this design does not require
scalable central servers that can handle all simultaneous in-
teractions.

As a first step, we have created a prototype of PhoneNet
that works within an administrative domain. The multi-
cast functionality among phones is implemented on top of
a software-defined network (SDN). We have developed two
applications using PhoneNet: teleconferencing and photo-
sharing. Our experience suggests that it is easy to develop
PhoneNet applications and PhoneNet appears to be effective
in reducing network traffic.

Categories and Subject Descriptors
C2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Design, Experimentation, Performance

Keywords
Software-Defined Networks, XMPP, OpenFlow, NOX, Phone-
to-Phone

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHeld 2010, August 30, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0197-8/10/08 ...$10.00.

1. INTRODUCTION
Smart phones have made it possible for individuals to

share their experiences and communicate with each other
using multimedia in real time. Imagine attending a confer-
ence with multiple simultaneous group sessions. We can now
drop in virtually on the different talks to decide on the one
to attend. We may wish to attend one, while keeping an eye
on another. Or, an undergraduate may want to check out
the various parties his friends are attending on campus.

It is challenging to implement this kind of multi-party
applications in a server-client model, which is the de facto
standard for multi-party applications today. The challenges
arise from the need to maintain the quality of the multi-
media stream, to deliver the information in real time, and
to support a large number of simultaneous conversations.

An alternative to server-client architecture is the peer-to-
peer architecture, which is used, for example, in the very
successful and popular VoIP service, Skype. Phones how-
ever, due to their mobility and limited power capacity, do
not serve well as relays for group chat. Thus, conference
calls between phones typically go through PCs as relays.

1.1 Direct Communication
It would be ideal if we can eliminate any central server or

relay PC, and let the network multicast the many simulta-
neous real-time streams of high-resolution multimedia data
directly. By eliminating the intermediaries, we can reduce
traffic in the network, improve the quality, lower the latency,
and improve interactivity.

As a first step, this paper focuses on supporting group
communication among phones within an intranet on a cam-
pus or in an event like a conference. We propose the ab-
straction of a phone-to-phone network called PhoneNet. In
this model, a phone-to-phone network is set up by having
all participants join a chat room facilitating the communica-
tion. All subsequent messages are routed to all participants
directly without going through any intermediary servers.

In this model, all application-specific logic runs on phones
directly. Note that the same chat room provider can ser-
vice any multi-party application; conversely, a multi-party
session can be hosted by any chat room server. This elimi-
nates the need for each multi-party application to provide a

This research is supported in part by the NSF POMI (Pro-
grammable Open Mobile Internet) 2020 Expedition Grant
0832820, Stanford Clean Slate Program, Google, Xilinx,
Cisco, NEC, Deutsche Telekom, DoCoMo and the Mr. and
Mrs. Chun Chiu Stanford Graduate Fellowship. The au-
thors would also like to thank Google for its donation of
android phones.

(a) Step 1: Discover the NOX in the network (b) Step 2: Setup a chat room at the server

(c) Step 3: Invite others to join the network (d) Step 4: Install the phone-to-phone network

Figure 1: Steps to setup a phone-to-phone network in PhoneNet

central service—one that needs to scale up to handle all the
simultaneous sessions.

We delegate all the data exchange to the network, elimi-
nating the need for relays, by exploiting the emerging Soft-
ware Defined Networking (SDN) [4, 8]. More specifically,
we utilize the OpenFlow [11] protocol to communicate with
switches in PhoneNet and have NOX [5] as the network op-
erating system to control how the packets route through the
network.

1.2 Contributions
This paper makes the following contributions:

PhoneNet is an application framework that enables pure
phone-to-phone multi-party multimedia applications.
We especially focus on better supporting applications
with high bit-rate requirements. PhoneNet eliminates
the need for relay nodes, which in turn allows resource
constrained phones to communicate as a group effi-
ciently.

Implementation. We have implemented a fully functional
prototype of PhoneNet, using the XMPP protocol for
the chat room service, and using the OpenFlow proto-
col and NOX to support multicasting in the network.

Case Studies. We have implemented two applications—
teleconferencing and photo sharing. Our experience
suggests that PhoneNet simplifies programming, and
the model greatly reduces the traffic in the network as
well as the latency.

We first present the design of PhoneNet in Section 2. We
then discuss two applications we have implemented using
PhoneNet and investigate how they compare to the current
state of the art in Section 3. Finally, we discuss related work
(Section 4) before concluding (Section 5).

2. THE DESIGN OF PHONENET
PhoneNet is a framework for configuring and running multi-

party applications. It has a control plane and a data plane.
The control plane establishes the parties in the group com-
munication and sets up the data plane for direct commu-
nication between the phones. The former is shown in Fig-
ures 1(a)-1(c); the latter in Figures 1(d). PhoneNet hides
all these details from the application writers, allowing them
to concentrate on the application-specific logic.

2.1 Establishing the Participants
We build the control plane on top of the Junction frame-

work [6], which is a distributed software architecture aiming

Network controller discovery message

{"type": whereisnox"}

Network controller discovery reply

{"type": "whereisnox",
"tcp port": 2703,
"ssl port": 2703,
"ip": [10.79.1.105,192.168.0.1,172.24.74.198]}

Figure 2: A discovery message sent from a user and
the reply message from NOX

to enable ad hoc interactions between devices. In Junction,
interacting devices rely only on a universal, generic switch-
board for routing messages. The current implementation of
Junction is built on top of XMPP (Extensible Messaging
and Presence Protocol), formerly known as Jabber. XMPP
is a popular instant messaging (IM) protocol used by many
IM software, such as Google Talk and Apple iChat. It is a
well-established protocol with several freely available imple-
mentations in different languages. In order for participants
to meet up with each other, an addressable chat room is
set up on the switchboard and used as a rendezvous ser-
vice. The chat room is implemented using the multi-user
chat extension in XMPP.

In PhoneNet, we run the switchboard alongside NOX. In
order to establish participants, one of the participants would
act as an initiator and perform the following three steps: (1)
discover the NOX in the network, (2) set up a chat room on
the NOX, and (3) invite other participants and have them
subscribe to this group communication by sending service
subscriptions to the chat room.

(1) Discover the NOX controller. The communica-
tion initiator’s first step is to discover the NOX controller,
the network operating system, in the network. Similar to
the discovery mechanism in DHCP [3], the initiator sends
a discovery message to a pre-defined multicast address and
port, here being 224.0.0.3:2209. The packets destined for
this multicast address and port will be redirected to NOX.
Upon receiving the discovery message, NOX would reply
with its list of ports and IP addresses, since it might be
connected to more than one network (Figure 1(a)). The ini-
tiator would then decide which IP address is reachable based
on its own address. An example of a pair of discovery and
reply messages is shown in Figure 2.

(2) Set up a chat room. After locating the NOX con-
troller, the initiator creates a multi-user chat service (a.k.a.
chat room), as shown in Figure 1(b). The chat room is
identified by a URI (Uniform Resource Identifier).

(3) Invite participation. The initiator then invites the
participants by sharing the chat room URI with them; par-
ticipants can accept the invitation by subscribing to the
chat room (Figure 1(c)). The subscriptions are expressed
in JSON and an example is shown in Figure 3.

The initiator can share the chat room URI using a va-
riety of methods [6]. For example, participants may share
an application via SMS, email, or IM. This works well for
connecting few participants who are already in each others’
address book. To take advantage of proximity, the initia-
tor can instead present a two dimensional barcode to other
users. We make use of QR codes to achieve this, which
provides a visual channel that gives reasonable privacy for

{"actorID":"afa907b8-0b9b-442a-8a6e-a4ce8426aeb1",
"port":[8081,8082],
"action":"join",
"IP":"10.79.1.132",
"multicastAddr":"225.100.100.100",
"type":"ServiceRequest",
"jx":{"targetRole":"ServiceBot"},
"MAC":"00:18:41:dc:4c:d6"}

Figure 3: A subscription to join a phone-to-phone
network identified by a multicast address.

session creation. A third technique is to broadcast the ap-
plication details using a radio beacon. We do so by setting
the session details as the broadcast name of a bluetooth de-
vice. With this beacon, many participants can join a local
session at the same time. In the extreme case where all
the users of an application interact with each other, there is
only one chat room URI, which can be hardcoded into the
application.

2.2 Setting Up the Data Plane
We use the OpenFlow protocol and NOX to manage our

data plane. OpenFlow [9, 11], supported by multiple ven-
dors, provides an open API and a uniform interface for com-
municating with switches. In PhoneNet, we use NOX [5] as
the network operating system to control and manage the
network through the OpenFlow protocol.

(4) Establish a Multicast Session. In order to easily
collect subscriptions from the invitees, the initiator installs
a service bot as a participant in the chat room. Yap et al.
provide a set of APIs for applications to communicates with
NOX [13, 14]. The service bot would then digest the sub-
scriptions and inform NOX using the APIs. As NOX re-
ceives the subscriptions, it then installs a multicast route be-
tween the participants (Figure 1(d)) and utilizes a multicast
address to represent this personal phone-to-phone network.
We can easily impose further access control by controlling
the approvals of subscriptions, while access control is diffi-
cult in traditional multicast [2]. Note that participants are
allowed to join in even after the session has started. When-
ever a new participant subscribes to the chat room, NOX
would be notified and then install updated routes. Once the
routes are installed, the participants can communicate with
one another directly. The PhoneNet uses a multicast IP to
represent each group, and the participants would use this
address to send and receive messages from one another.

3. CASE STUDIES
To demonstrate and quantify the utility of PhoneNet, we

have implemented two applications. Our experience shows
that we are able to achieve better performance and efficiency
using PhoneNet as compared to current approaches.

3.1 Teleconferencing

3.1.1 Application Description
The implementation of the teleconference application is

relatively simple as all the complexities in setting up the
multicast as discussed in Section 2 are taken care of by the
PhoneNet framework implementation.

For a user to start a teleconference, the user simply brings
up the application and pushes the“initiate”button, as shown

(a) The initiator
initiates a chat-
room

(b) A invi-
tee joins the
chatroom and
subscribes to the
phone-to-phone
network

(c) Once the net-
work is installed,
the participants
can talk and text
with each other
directly

Figure 4: Screenshot of the Teleconferencing Appli-
cation

in Figure 4(a). The application would use PhoneNet to dis-
cover NOX, setup a chat room, and then asks how the user
wishes to invite his friends to participate. The user may
choose to invite his friends via SMS or email, at which point,
the user’s contact information comes up prompting the user
to pick the invitees. Upon receiving the invitation, a invi-
tee simply pushes the “join” button (Figure 4(b)) to send a
subscription to the chat room. After PhoneNet sets up the
multicast route, the users would participate in the telecon-
ference immediately, as shown in Figure 4(c).

3.1.2 Performance Evaluation
We now evaluate the performance of our teleconferencing

application and compare it with the voice conferencing com-
ponent in Skype. Figure 5 shows the experimental setup for
Skype and our application.

We first describe how voice conferencing works in Skype.
Skype has released only one handheld version and the plat-
form it runs on is the iPhone. However, it does not allow
its iPhone version to host a conference call. Thus in our ex-
periment, we made a three-way conference call between two
iPhones and a PC, which also serves as the host of the con-
ference call, as shown in Figure 5(a). We used tcpdump and
collected traffic traces at the wireless AP, to which all the
three devices connected. We analyzed the trace and plotted
the transmission bitrate of each device in Figure 6. From
the figure, we find that the trasmission bitrate of the host
(the PC) is almost twice as high as the iPhones. This is
because the host PC also acts as the relay between the two
iPhones and therefore needs to receive and forward the voice
data between the iPhones. This explains why Skype does
not allow an iPhone to act as a host, since the transmission
requirement of a host is much higher than an ordinary par-
ticipant in a conference call. As the number of participants
increases, the transmission bitrate of the host would also
increase linearly.

We performed a similar experiment, this time with three
Android phones, and collected the traffic trace for the tele-
conferencing application over PhoneNet. The experimental
set up is shown in Figure 5(b). Note that in PhoneNet,
we can perform a conference call between three phones and
therefore no PC is needed in the experiment. We collected
the traffic trace at the wireless AP, to which all the three

(a) Teleconferencing over Skype

(b) Teleconferencing Over PhoneNet

Figure 5: The Experimental Setup for the Two Tele-
conferencing Systems

second

B
itR

at
e(

kb
ps

)

0 30 60 90 120 150 180

0
10

20
30

40
50

60

Skype Initiator (PC)
iPhone #1
iPhone #2

Figure 6: The comparison of the transmission bi-
trate between the PC (call host) and the iPhones

second

T
ra

ns
m

is
si

on
 R

at
io

 o
f I

ni
tia

to
r

an
d

P
ar

tic
ip

an
ts

0 30 60 90 120 150 180

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Skype
PhoneNet

Figure 7: The transmission ratio between the initia-
tor and the participants

(a) The In-
vite and Join
interface

(b) Receives a
picture from the
sender

Figure 8: Screenshot of the Photo Sharing Applica-
tion

devices connected. We then compared the ratio of trans-
mission bitrate between the call initiator and the rest of the
participants in Figure 7. From the figure, we can see that
the call initiator in Skype needs to transmit twice as much
data as others in a three-way conference call; while in our
application, the call initiator transmits no more data than
others. This is because in PhoneNet, we delegate the traffic
multicasting to the underlying network and no device needs
to act as a relay for others. This is particularly important in
phone-to-phone communication because of the limited bat-
tery life and bandwidth available to a phone. Furthermore,
by eliminating the relay node, the round-trip delay between
a pair of phones decreases from 5 ms to 1.6 ms in our experi-
ment setup. The decrease in delay could potentially improve
the user experience, especially for multimedia applications.

3.2 Photo Sharing

3.2.1 Application Description
Similar to the teleconferencing application, for a user to

share photos, the photo sharing application establishes the
interested parties and sets up the multicast route through
PhoneNet. The application then packetizes the photographs
into UDP datagrams and sends them to the participants.
If the network is lossless, the initiator only sends out one

Loss Rate(%)

N
um

be
r

of
 P

ac
ke

ts
 R

eq
ui

re
d

0 2 4 6 8 10

0
40

00
10

00
0

20
00

0
30

00
0

40
00

0

Fountain−Coded Multicast
Unicast

Figure 9: Number of packet transmission required
to deliver a 891KB photo to 50 devices.

copy, since packets are duplicated in the network to multiple
receivers.

On the other hand, to share photographs or other docu-
ments, the application needs to provide reliable transmission
over multicast even in a lossy network. Instead of keep-
ing track of packets received by individual receivers, our
photo sharing application uses fountain codes (specifically
LT codes [7]) to deal with the cry-baby problem in multi-
cast. “Cry babies” refer to receivers with lossy channels.
With fountain codes, a “cry baby” can reconstruct the pho-
tographs with high probability using any of the coded packet
received, as long as a sufficient number of packets have ben
received. Thus, our application can deliver photographs to
multiple parties by continuously sending coded packets to
the multicast address until all receivers have decoded the
photographs.

3.2.2 Performance Evaluation
To evaluate the performance of photo sharing using PhoneNet,

we compare it with individual unicasts. The task in our ex-
periment is to share a 891 KB file, delivered using 1414-byte
UDP datagrams to 50 other mobile devices.

Since we did not have sufficient phones at the time of the
experiment, we simulated the number of packets needed for
the fountain-coded multicast algorithm in our photo-sharing
application and compared it with the theoretical averages of
unicast sessions.

If the network is reliable, the multicast support in PhoneNet
reduces the number of packets transmitted by 50 times (Fig-
ure 9). This translates to significant savings in energy con-
sumption. Our implementation needs only to keep track of
whether a receiver has decoded the photographs; the state
of the algorithm is much smaller than unicast implemen-
tations, which have to remember the packets received for
each receiver. As the loss rate of the network increases, our
fountain-coded multicast implementation continues to out-
perform unicast by over 20 times.

4. RELATED WORK
The Internet Group Management Protocol (IGMP) [1] is

a communication protocol used to manage multicast group

membership between a host and its directly attached router
in IPv4 system. IP hosts who want to join a multicast group
need to inform their neighboring router through IGMP. Be-
tween multicast routers, multicast routing algorithms, such
as PIM and MOSPF, are used to coordinate the routers
throughout the Internet. However, the current Internet mul-
ticast service is a “open service model”. A host can join a
multicast group by simply sending a IGMP “Host Member-
ship Report” message to its router. The sender does not
have the control over who can receive the datagrams sent
to that group. Similarly, there is no control over who can
send datagrams to the group members. A host can even
send to a multicast group without joining the group. Worse,
senders cannot reserve addresses or prevent another sender
from using the same address. The unmanageability of a con-
ventional IP-multicast group results in very limited number
of multicast applications. Diot et al. provides a detailed
summary on why the IP multicast is not widely deployed in
the Internet [2].

In PhoneNet, since multicast routes are only installed be-
tween the group members, only the members can send and
receive datagrams to/from the multicast address. The ini-
tiator can choose with whom it shares the invitation (the
chat room URI). Further access control can be imposed by
controlling the approvals of subscriptions to the chat room.

5. CONCLUSION AND FUTURE WORK
PhoneNet is an infrastructure which enables group com-

munication between phones within an administrative do-
main. Any phone user can act as a group initiator and
create its own phone-to-phone network through PhoneNet.
With the help of software-defined networks, PhoneNet then
delegates data exchange directly to the underlying network.
Therefore, none of the participants would need to relay traf-
fic for others, which is expensive on phones given limited
bandwidth and power constraints. We implemented two ap-
plications and show the usefulness of PhoneNet.

We plan to deploy PhoneNet in the production OpenFlow
network in our department building [16] and allow users in
the building to form their own phone-to-phone network with
each other. In our previous works [15], we also explored how
to provide lossless handover in software-defined networks for
mobile devices with multiple wireless interfaces. Given the
mobile nature of phones and the increasing number of wire-
less interfaces on each phone, we would like to integrate
the mobility support into PhoneNet. PhoneNet currently
only work inside a single domain, we also plan to extend
the system to work between multiple OpenFlow/NOX ne-
towrks. We will have the opportunity to test a large-scale
deployment in a couple of years, when OpenFlow-enabled
equipment in numerous universities in US and Europe are
deployed [10, 12].

6. REFERENCES
[1] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and

A. Thyagarajan. RFC 3376: Internet group
management protocol.
http://tools.ietf.org/html/rfc3376.

[2] C. Diot, B. Neil, B. Lyles, H. Kassem, B. N. Levine,
and D. Balensiefen. Deployment issues for the ip
multicast service and architecture. IEEE Network,
pages 78–88, January 2000.

[3] R. Droms. RFC 2131: Dynamic Host Configuration
Protocol. http://tools.ietf.org/html/rfc2131.

[4] K. Greene. Software-Defined Networking.
http://www.technologyreview.com/read_article.

aspx?ch=specialsections&sc=tr10&id=22120,
March/April 2009.

[5] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards and
operating system for networks. In ACM SIGCOMM
CCR, July 2008.

[6] Junction Documentation for Application Developers.
http://mobisocial.stanford.edu/junction.

[7] M. Luby. LT Codes. In The 43rd Annual IEEE
Symposium on Foundations of Computer Science,
2002.

[8] N. McKeown. Keynote talk: Software-defined
networking. In IEEE INFOCOM, April 2009.

[9] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, April 2008.

[10] OpenFlow in Europe: Linking Infrastructure and
Applications. http://www.ict-fireworks.eu/
fileadmin/events/FIA_Valencia/Demeester.pdf.

[11] The OpenFlow Switch Consortium.
http://www.openflowswitch.org.

[12] OpenFlow Meso-Scale Deployment.
http://groups.geni.net/geni/wiki/SpiralTwo.

[13] SFNet: Software Friendly Network.
http://openflowswitch.org/wk/index.php/SFNet.

[14] K.-K. Yap, T.-Y. Huang, B. Dodson, M. S. Lam, and
N. McKeown. Towards software friendly networks. In
ACM APSys2010: First ACM Asia-Pacific Workshop
on Systems (in conjunction with SIGCOMM), August
2010.

[15] K.-K. Yap, T.-Y. Huang, M. Kobayashi, M. Chan,
R. Sherwood, G. Parulkar, and N. McKeown. Lossless
handover with n-casting between wifi-wimax on
openroads. In ACM MOBICOM Demo Session,
September 2009.

[16] K.-K. Yap, M. Kobayashi, D. Underhill,
S. Seetharaman, P. Kazemian, and N. McKeown. The
stanford openroads deployment. In WiNTECH,
September 2009.

http://tools.ietf.org/html/rfc3376
http://tools.ietf.org/html/rfc2131
http://www.technologyreview.com/read_article.aspx?ch=specialsections&sc=tr10&id=22120
http://www.technologyreview.com/read_article.aspx?ch=specialsections&sc=tr10&id=22120
http://mobisocial.stanford.edu/junction
http://www.ict-fireworks.eu/fileadmin/events/FIA_Valencia/Demeester.pdf
http://www.ict-fireworks.eu/fileadmin/events/FIA_Valencia/Demeester.pdf
http://www.openflowswitch.org
http://groups.geni.net/geni/wiki/SpiralTwo
http://openflowswitch.org/wk/index.php/SFNet

	Introduction
	Direct Communication
	Contributions

	The Design of PhoneNet
	Establishing the Participants
	Setting Up the Data Plane

	Case Studies
	Teleconferencing
	Application Description
	Performance Evaluation

	Photo Sharing
	Application Description
	Performance Evaluation

	Related Work
	Conclusion and Future Work
	References

