STANFORD MCKEOWN GROUP TECHNICAL REPORT TR10-MKG-170910

OpenPipes: making distributed hardware systems
easier

Glen Gibb and Nick McKeown
Dept. of Electrical Engineering
Stanford University
Stanford CA 94305

grg@stanford.edu,

Abstract—Distributing a hardware design across multiple
physical devices is difficult—splitting a design across two chips
requires considerable effort to partition the design and to build
the communication mechanism between the chips. Designers
and researchers would benefit enormously if this were easier
as it would, for example, allow multiple FPGAS to be used
when building prototypes. To this end we propose OpenPipes,
a platform to allow hardware designs to be distributed across
physical resources. OpenPipes follows the model of many system-
building platforms: systems are built by composing modules
together. What makes it unique is that it uses an OpenFlow
network as the interconnect between modules, providing Open-
Pipes with complete control over all traffic flows within the
interconnect. Any device that can attach to the network can
host modules, allowing software modules to be used alongside
hardware modules. The control provided by OpenFlow allows
running systems to be modified dynamically, and as we show in
the paper, OpenPipes provides a mechanism for migrating from
software to hardware modules that simplifies testing.

I. INTRODUCTION

Many applications require dedicated custom hardware, often
to meet performance requirements such as speed or power. For
example, a typical 48-port 1 Gb/s switch/router is capable of
forwarding at more than 100 million packets per second [4],
which requires that the device be capable of completing a
routing table lookup every 10ns.

Unfortunately hardware design is a difficult and time-
consuming process. Many devices today contain in excess of
one billion transistors [7], [19]], making design a major under-
taking. Designers must ensure that not only does their design
work, but that their design meets all constraints imposed upon
it. Power, speed, and size are three commonly encountered
constraints, and trade offs between these dimensions must be
made continually throughout the design process. For example,
speed may be improved at the cost of increased size by
replicating circuitry or increasing the number of pipeline
stages.

Designers require the ability to prototype to evaluate trade
offs and to verify their ideas. Field-programmable gate arrays
(FPGAs) provide a useful mechanism for prototyping, and
in many situations deploying, custom hardware solutions.
FPGAs are reprogrammable, flexible, and low-cost. However
they’re not a perfect solution, in part because they have rigid
constraints on size and the resources (e.g. memories) they
contain. We frequently encounter the problem within our lab
of designs being too complex to fit in a single FPGA; when

nickm@stanford.edu

this occurs we’re faced with the problem of either simplifying
our designs or utilizing multiple FPGAs simultaneously. (Even
a simple IPv4 router with a 32-entry CAM-based routing
table occupies 86% of an FPGA, leaving very little room to
experiment with new features.)

There’s currently no easy way to take advantage of multiple
FPGAs simultaneously. Most prototyping boards host only a
single FPGA; those that host more tend to be prohibitively
expensive and usually require considerable effort to partition
the design. A designer might justifiably ask “Why can’t I
utilize all the FPGAs I have at my disposal?” Designers
should be able to experiment easily with different system
partitioning, enabling design-space exploration for system-on-
chip and multi-chip designs. Furthermore, the tools should
allow experimentation with more advanced ideas, such as
dynamically scaling compute resources—something that could
be achieved by adding FPGAs to a running system. As a
thought exercise, we ask the reader “Why can’t we build an
IP router that’s distributed across multiple chips, in which we
can grow the size of the routing table by adding additional
routing table lookup elements?”

This paper introduces a platform called OpenPipes as a tool
to help researchers and developers prototype hardware sys-
tems. As is common in system design, we assume the design
is partitioned into modules; an important aspect of OpenPipes
is that it is agnostic to whether modules are implemented in
hardware or software. Modules can be implemented in any
way, so long as they use the same OpenPipes module interface:
a module could be implemented in Java or C as a user-level
process, or in Verilog on an FPGA. The benefits of modularity
for code re-use and rapid prototyping are well-known.

OpenPipes plumbs modules together over the network, and
re-plumbs them as the system is repartitioned and modules
are moved. Modules can be moved while the system is “live”,
allowing real-time experimentation with different designs and
partitions. Modules can be implemented in software and tested
in the system, before being committed to hardware. Hardware
modules can be verified in a live system by providing the same
input to hardware and software versions of the same module,
and checking that they produce the same output.

OpenPipes places several demands on the network. First,
it needs a network in which modules can move around easily
and seamlessly under the control of the OpenPipes platform. If
each module has its own network address (e.g. an IP address),
then ideally the module can move without having to change



STANFORD MCKEOWN GROUP TECHNICAL REPORT TR10-MKG-170910

its address. Second, OpenPipes needs the ability to bicast or
multicast packets anywhere in the system—we may wish to
send the same packet to multiple versions of the same module
for testing or scaling, or to multiple different modules for
performing separate parallel computation. Finally, we want
control over the paths that packets take, so we can pick the
lowest latency or highest bandwidth paths—eventually, we
would like a system with guaranteed performance.

The two key building blocks of the platform are Open-
Flow [12]], [14] and NetFPGA [11]. We use OpenFlow as
the network interconnect for OpenPipes. While other network
technologies meet some of the requirements, OpenFlow allows
the OpenPipes controller to decide the paths taken by packets
between modules. It also allows modules to move seamlessly,
without changing addresses, and provides a simple way to
replicate packets anywhere in the topology. OpenFlow pro-
vides a way to guarantee bandwidth (and hopefully latency
in the future) between modules, and hence for the system as
a whole. NetFPGA is a programmable research platform that
provides a network-attached FPGA.

At a high level, OpenPipes is just another way to create
modular systems, and plumb them together using a standard
module-to-module interface. The key difference is that Open-
Pipes uses commodity networks to interconnect the modules.
This means we can easily plumb modules together across Eth-
ernet, IP and other networks, without modifying the module.

We are not the first to propose connecting hardware modules
together using the network. Numerous multi-FPGA systems
have been proposed, early examples of which include [18],
[8]. These examples use arrangements of crossbar switches
to provide connectivity between multiple FPGAs. Networking
ideas have been making their way into chip design for a
while, with on-chip modules commonly connected together
by switches, and communicating with proprietary packet for-
mats [[16], [1], [17], [L5]. A slightly different approach is taken
by [6]]: daughter cards are connected in a mesh on a baseplate,
and FPGAs on each card are hardwired to provide appropriate
routing. While chip design can usefully borrow ideas from
networking to create interconnected modules, it comes with
difficulties.

It is not clear what network address(es) to use for a module:
should they use Ethernet MAC addresses, IP addresses, or
something else? The usual outcome is a combination of
the two, plus a layer of encapsulation to create an overlay
network between the modules. Encapsulation can provide a
good way to pass through firewalls and NAT devices, but
always creates headaches when the packet is made larger and
needs to be fragmented. It also takes us down the path of
increasing complexity in the network, as we add more layers
and encapsulation formats. It seems to make the network more
fragile and less agile.

A consequence of encapsulation is that it makes it harder
for the modules to move around. If we want to re-allocate a
module to another system (e.g. to another hardware platform,
or move it to software while we debug and develop) then we
have to change the addresses for each tunnel.

In a modular system that is split across the network—
potentially at great distance—it is not clear how errors should

—— Data flow Controller
—— Control flow
) Download &
Configure configure
interconnect module
A
External g
network
<= 5
Interconnect Modules

Fig. 1. Overview of OpenPipes showing the logical connection and data
flow between components.

s {1} e e

Output

Fig. 2. Logical connection of modules within an example system. Modules
A, B and C each have two downstream modules—packets leaving each of
these modules may be sent to one or both of the downstream modules as
determined by the application. The connection between modules is provided
by the OpenFlow interconnect.

be handled. Some modules will require error control and re-
transmissions, whereas others might tolerate occasional packet
drops (e.g. the pipeline in a modular IPv4 router). Introducing
a retransmission protocol into the module interface is clearly
a daunting task, as it would bloat the mechanism.

We specifically address these challenges within this paper.

II. WHAT 1S OPENPIPES?

In designing the OpenPipes platform, we have four main
objectives. First, we want users to rapidly and easily build
systems that operate at line rate. Second, we want to enable a
design to be partitioned across different physical systems, and
to consist of a mixture of hardware and software elements.
Third, we want to test modules in-situ, allowing the behavior
of two or more modules to be compared. Finally, we want the
system to be dynamic, i.e., we would like to be able to modify
the behavior of the system while it is running, without having
to halt the system for reconfiguration.

A. OpenPipes Architecture

Our architecture has three major components: a series of
processing modules, a flexible interconnect, and a controller
that configures the interconnect and manages the location and
configuration of the processing modules. To create a particular
system, the controller instantiates the necessary processing
modules and configures the interconnect to link the modules in
the correct sequence. Figure [I]illustrates the basic components
and the logical connection between them; Figure [2] illustrates
an example interconnection of modules that create a system.

Interconnect: OpenFlow is used to interconnect modules
under the supervision of an external controller. OpenFlow is
a feature added to switches, routers and access points that
provides a standard API for controlling their internal flow
tables. So far, OpenFlow has been added to a number of



STANFORD MCKEOWN GROUP TECHNICAL REPORT TR10-MKG-170910

commercial switches and routers. The OpenFlow protocol
allows an external controller to add/delete flow entries to/from
the flow table, and so decide the path taken by packets through
the network.

In OpenPipes each module has one physical input and
one physical output, although a single physical output may
provide multiple logical outputs. Each connection from a
logical module output to an input is an OpenFlow “flow”.
Packets from an output are routed according to the flow-table
in each switch along the path. A module indicates the logical
output by setting header fields appropriately. OpenPipes places
no restriction on which header fields are used by a module;
the only requirements are that the module and the controller
agree on which fields specify the logical output, and that the
switch can process the fields to route packets correctly.

For example, in Figure [2] module A provides two logical
outputs: one connected to module B and the other to module
F. The logical output is identified by the header fields of
the packet; in this case one output may be identified by
“header=X" and the other by “header=Y”. Relevant header
fields can be any combination of fields that OpenFlow can
match, such as the Ethernet address, IP addresses, and TCP
ports. The connection from each logical output is controlled by
the controller; the controller can choose to route data indicated
by “header=X" to module B, to module F, or to module B and
F simultaneously.

Processing modules: Processing modules perform work on
packets. The amount of work performed by a each module is
chosen by the module’s designer. We expect that, in general,
modules will only perform a single, well-defined function
since it is well known that this tends to maximize reuse in
other systems.

Processing modules require zero knowledge of upstream or
downstream neighbors—they process packets without regard
to the source or destination of those packets, allowing the
controller to make all decisions about how data should flow
within the system. The only requirement placed upon modules
by OpenPipes is that all modules use an agreed-upon protocol.
This ensures that modules can correctly communicate with one
another, regardless of their ordering within the system, and it
enables the controller to extract logical port information from
each packet.

Data flow between modules: Communication between
modules is performed via packet transmission over the Open-
Flow interconnect: modules source packets which the Open-
Flow interconnect routes to one or more sink modules. Packets
consist of data to be processed along with any metadata a
module wishes to communicate. Data flow is always uni-
directional. Bi-directional information exchange between mod-
ules is achieved by establishing two uni-directional flows in
opposite directions.

A module may communicate information about a packet that
it sources by sending metadata with the packet. This metadata
can be used to communicate information to a downstream
module or to inform the routing decision. The method we
use borrows from the internal processing pipeline of the
NetFPGA [11]: with each packet we transmit metadata about
that packet. Doing so eliminates the need for a separate

metadata channel and the need to match metadata with the
associated packet.

Addressing and path determination: Source modules do
not address packets to destination modules; instead, modules
indicate a logical output port for each packet. The OpenPipes
controller uses the logical port together with the desired system
topology to route each packet. The logical port is indicated by
setting a field in each header field.

For example, a checksum validation module may use two
logical outputs to indicate the validity of the checksum within
a packet. One logical output is used for packets with valid
checksums, the other for packets with invalid checksums. The
OpenPipes controller routes each logical output to different
modules: valid packets are routed to modules for further
processing according the needs of the system, while invalid
packets may be routed to an error reporting mechanism.

The controller is the only component in the system that
knows the interconnection between modules. Individual mod-
ules are unaware of the modules they are communicating with.
It is the responsibility of the controller to map the header fields
on packets to logical ports, and then use this information to
route to the appropriate downstream module.

Module hosts: Modules can’t exist by themselves: they
must physically reside on some host. A host can be any device
that can connect to the interconnect. Hosts are commonly
programmable devices, such as an FPGA or a commodity PC,
to which different modules can be downloaded. Hosts can also
be non-programmable devices that hosts a fixed module.

Controller: The controller’s role is three-fold: it interacts
with the user, configures the interconnect, and manages the
modules.

Users interact with the controller to configure the location,
connection between, and configuration of each module. The
configuration of the interconnect must be updated whenever
the location of or connection between modules changes. Users
also interact with the controller when they view the current
state of the system and individual modules.

The controller interacts with modules when the user config-
ures or views the status of a module, and when the user moves
a module within the system. Moving a module within the
system is implemented by creating an instance of the module
in the new location, copying any relevant state from the old
location, and finally rerouting flows to the new location, hence
the need for interaction between controller and module when
the user moves a module.

B. Related architectures

Click [13] is a modular router that, like OpenPipes, al-
lows networking systems to be built by connecting reusable
components. OpenPipes architecture differs in a number of
ways including providing support for mixed hardware/software
systems using the network to interconnect modules.

Clack [21] is a graphical router. It provides a way of visual-
izing network devices by showing the flow of traffic through a
modular router. Clack is designed as a classroom teaching tool
rather than a prototyping tool for high-performance network
systems and as such does not address most of the objectives
identified at the beginning of the section.



STANFORD MCKEOWN GROUP TECHNICAL REPORT TR10-MKG-170910

Grayscale
Conversion

Predominant
Color
Identification

Video
Inversion

Fig. 3. Video processing application tranforms video as it flows through the
system. The OpenPipes application is the region inside the dotted rectangle.

VROOM (Virtual ROuters On the Move) [20] is an archi-
tecture that allows virtual routers to move within the network,
much like we allow modules to move within the network.
VROOM however does not allow users to build networking
systems as it is not a prototyping tool.

III. OPENPIPES IN ACTION

A video processing application was built to demonstrate
OpenPipes. The application itself is simple: it takes a video
stream as input, performs a number of transforms on the video,
and then outputs the transformed video. Despite the simplicity,
the application allows us to demonstrate the main features of
OpenPipes outlined earlier in the paper. This section discusses
the application in detail.

A. Video processing application

The video processing application transforms a video stream
as it flows through the system. The application provides
two transforms: grayscale conversion and vertical inversion
(mirroring about the central x-axis). Also provided is a facil-
ity to identify the predominant color within a video frame;
information about the predominant color is used to selectively
apply the transforms. A high-level overview of the application
is shown in Figure |3] A screenshot of the system in action is
shown in Figure [4]

Each of the transforms and the color identification facility
are implemented as individual modules within the system. This
enables the operator of the application to choose how video
is processed by determining the connection between modules.
It also allows each module to be instantiated on a separate
module host, thereby distributing the application.

Input video is supplied by a video camera connected to
a computer, and the output video is sent to a computer for
display.

B. Implementation

The implementation of each of the main system components
(controller, OpenFlow network, modules, and module hosts, as
explained in § and a graphical user interface (GUI) for
interacting with the system are discussued below.

Controller: The controller is written in Python and runs on
the NOX [5] OpenFlow controller. The code is approximately
2,850 lines in length, of which only 1,800 lines are executable
code. (The remainder is commenting and blank lines.) It is
designed to be application—independenﬂ

! Application independence refers to the ability to use the controller for
applications other than the video processing example.

Much of the controller code is reponsible for processing
commands from the GUI Depending upon the command, the
controller may be required to download a module to a module
host, create or destroy flows (creation requires the calculation
of a path from source to destination), or read and write state in
an instantiated module. Non-GUI command processing code
includes logic for learning the network topology from other
NOX components and responding to events from module hosts
(such as host up/down).

OpenFlow network: Multiple OpenFlow switches are used
in a non-structured topology (see Figure ). The topology was
primarily dictated by the location of switches within our local
network. We did however deploy one remote switch in Los
Angeles; this switch is connected to our local network via
a MAC-in-IP tunnel. (The controller sees the remote switch
connected directly to the local switches.) The distributed non-
structured topology clearly demonstrates OpenPipes’ ability
to geographically distribute hardware. The switches in use
are a mixture of NEC IP8800 switches and NetFPGA-based
OpenFlow switches.

Module hosts: A mixture of NetFPGAs and commodity PCs
are used as module hosts. Hardware modules are hosted by the
NetFPGAs and software modules are hosted by the commodity
PCs. All module hosts are located locally except one NetFPGA
deployed in Houston and connected to the OpenFlow switch
in Los Angeles via a dedicated optical circuit.

Each host (NetFPGA and commodity PC) runs a small
client utility that communicates with the controller. The utility
notifies the controller of it’s presence, provides the ability to
download modules to the host, and processes reads and writes
of module state by the controller. The utility is written in
Python and consists of approximately 150 lines of shared code,
and an additional 100-300 lines of platform-specific code.

Modules: Six versions of modules are implemented: frame
inversion (hardware), grayscale conversion (software, hard-
ware, and hardware with a deliberate error), predominant
color identification (harware), and comparison (software). The
comparison module is used in verification as outline in § [[II-C|

Each hardware module is implemented as a separate bitfile.
As a result, only one hardware module can be active at any
instant in a NetFPGA module host.

GUI: The graphical user interface (GUI), which is built
on ENVI [2], provides a simple mechanism to enable user
interaction with the controller. The GUI provides a view
of the system showing the active network topology and the
connections between module hosts and the network. Users can
instantiate modules on the module hosts by dragging and drop-
ping modules onto the individual hosts. Connections between
modules, the input, and the output, are added and deleted by
clicking on start- and end-points. Individual modules may also
be selected to view the active state of the module. Figure [
shows an image of the GUI.

C. Testing

OpenPipes provides a mechanism for verifying the correct-
ness of a module: a known good instance is run in parallel
with a version under test and the output of the two versions



STANFORD MCKEOWN GROUP TECHNICAL REPORT TR10-MKG-170910

OpenPipes
contraller

Desired system:

1 o

T

*~!"|,,
e

Additional modules:
N
®O

Fig. 4.

Video processing application GUI.

is compared. The demonstration application provides three
versions of the grayscale conversion module and a comparison
module to demonstrate this. The software version of the
grayscale module is considered to be the “correct” module and
the hardware versions are considered as versions under test.
(In a real-life scenario, a software version may be developed
first to prove an algorithm and then converted to hardware to
increase throughput.) The input video stream is bicast to the
software module and the version under test, and the output
of both modules is fed into the comparison module. The
comparison module reports differences between frames when
comparing the output of the fautly hardware module with the
reference.

One point to note is that the comparison module in use
is written specifically for this application. It performs frame-
by-frame comparison by using explicit knowledge of the
packet format to extract and compare the same frame from
both streams. Application-specific comparison modules use
knowledge about the two streams to synchronize the streams;
a generic comparison module would require the use of some
explicit syncronization mechanism.

D. Limitations

The application was written expressly for demonstration
purposes. Two important design decisions were made during
implementation to simplify the process that should be high-
lighted.

First, only one module may be instantiated per host. Open-
Pipes does support the instantiation of multiple modules in a
single host. The transforms used in the application are simple
enough that multiple transforms could be instantiated inside a
single FPGA. § outlines how to enable multiple modules
in a single FPGA.

Second, the modules are implemented without any flow or
rate control. Flow/rate control is not needed for this application
as the modules are able to process data at a much higher rate
than the video source rate. (The video is a 25 Mb/s stream
and the transforms are simple enough that even the software-
version of the grayscale module is able to process this without
dropping frames.) § [V-Aoutlines how to support flow and rate
control.

E. Demonstration

A video of the video processing application in action may
be viewed at: http://openflow.org/wk/index.php/OpenPipes

IV. PLUMBING THE DEPTHS

Applications vary considerably in terms of their require-
ments from the OpenPipes system. Examples of requirements
include flow control and error control. This section addresses
issues to be considered when constructing and deploying
OpenPipes applications.

A. Flow control

Flow control is required by many applications. It is needed
when an application cares about data loss due to congestion
(overflowing of buffers) caused when a source module gener-
ates data at a rate faster than a destination can process it.

Flow control was not required for the video processing
example as all modules process data at a rate much greater
than the source video rate. (The source video rate was 25
Mb/s.)

Rate limiting and credit-based flow control are two schemes
that are appropriate for applications requiring flow control.
Applications may use one scheme or the other exclusively, or
may choose to use a mixture of the two.

Rate limiting: Rate limiting is a simple mechanism that
is applicable for certain applications. The output rate of each
module is limited to a set maximum rate; data loss is prevented
by ensuring the maximum output rate of each module is less
than the rate at which downstream modules can process data.

The simplicity of rate limiting is due to it’s “open-loop”
nature. There is no feedback from downstream modules to
upstream modules to report the current congestion state.

Rate limiting is most appropriate when each module is able
to process data at a nearly-constant rate. (Or at least for the
given output rate it is able to process data at a nearly-constant
rate.) It performs poorly in situations where the processing rate
varies considerably based upon the input, as the maximum rate
needs to be set based upon worst-case performance.

Responsibility for assigning the maximum output rates lies
with the controller. Each module reports its maximum input
rate to the controller, allowing the controller to assign rate
limits based upon the active configuration. In addition to
ensuring that the maximum input rate is never exceeded for
any module, care must be taken to ensure that no links in the
network are oversubscribed.

Care must also be taken to “propagate” information about
maximum input rates of modules backward through the sys-
tem. For example, if modules A, B, and C are connected in
a chain, then the output rates of modules A and B must be
limited to ensure that the maximum input rate of module C is
never exceeded. This concept is illustrated in Figure [5] Note
that modules should report their relation between input and
output rate to allow the correct calculation of propagated rate
limits.


http://openflow.org/wk/index.php/OpenPipes

STANFORD MCKEOWN GROUP TECHNICAL REPORT TR10-MKG-170910

Max ouiput
rate = X rate = X

Fig. 5. Rate limit information must “propagate” backward through the
system. Module C has a maximum input rate of X, therefore the maximum
output rates of modules A and B should be limited to X. Buffer overflow
would occur in B if A’s rate was not limited to X. (Note: this assumes that
the output rate of B is identical to it’s input rate.)

Credit-based flow control: Credit-based flow control [9] is
a mechanism in which a downstream element issue credits
to an upstream element. An upstream element may transmit
as much data as it has credits for; once it exhausts it’s set
of credits it must pause until the downstream element grants
more credits.

Credit-based flow control is more complex than rate limiting
as the system runs “closed-loop”: downstream modules must
communicate with upstream modules. The mechanism is ap-
propriate in scenarios where there is considerable variation in
a module’s processing rate depending upon input data. Simple
rate limiting is non-ideal in such situations as the system would
need to operate under worst-case assumptions for processing
rates for each module.

Credit-based flow control requires a sizable buffer at the
input of each module to ensure that buffer never empties due
to the upstream module waiting to receive credits. If a module
is capable of processing data at a rate BW, with a round-trip-
time between modules of RT'T', then the required buffer size is
BUF = BW xRIT'T. This equates to 125 KB if BW = 1Gb/s
and RTT = 1ms. The buffer size requirement increases if the
downstream module doesn’t immediately issue credits to the
upstream module.

Challenge: connections other than one-to-one: Connections
other than one-to-one complicate both flow control mecha-
nisms.

One-to-many scenarios, in which one upstream module is
directly connected to many downstream modules, requires the
processing limits of all downstream modules be considered.
This is not a significant challenge when using rate limiting:
the upstream module is limited to the input rate of the slowest
downstream module. Doing so ensures that the upstream
module never transmits faster than any of the downstream
modules can process.

One-to-many scenarios complicate credit-based flow control
as many downstream modules send credits to the upstream
module. The upstream module must track the credits issued
by each downstream module, restricting it’s output based
upon the downstream module with the fewest issued credits.
This increases the amount of state and the complexity of the
enable/pause logic within each module.

Many-to-one situations, in which many upstream modules
are connected to one downstream module, cause challenges
for both flow control schemes. The combined output of all

upstream modules must not overload the downstream module.
The current solution is to split the rate or credits equally
between all upstream modules. This prevents overloading but
also results in underutilization when the quantity of data
sourced by different upstream modules differs significantly.
The reason is that bandwidth unutilized by one module can
not be given to another module.

B. Error control

Error control within OpenPipes is not required by all
applications: applications may provide end-to-end error control
or be tolerant of errors. The video processing application is
tolerant of errors as dropped or corrupted data packets simply
appear as small visual glitches in the output video. Two types
of error control can be used depending upon needs: error
detection and error correction/recovery.

Error detection is handled via mechanisms like checksums.
It may be part of a recovery mechanism, as discussed below,
or it may be used simply to prevent erroneous data from
progressing through the pipeline. The application must decide
how to respond when errors are detected (assuming it’s not
being used as part of an error recovery system); this will not
be discussed further as it is application specific.

Error correction is provided by mechanisms that introduce
redundancy in the data, such as error-correcting codes [10].
Provided that errors are relatively minor, the correction mech-
anism can repair data as it is received by each module.

Error recovery is handled via a combination of error detec-
tion and retransmission [3]]. Retransmission requires buffering
of data at the point of transmission, waiting for a confirmation
of reception (or lack of notification of an error) before the data
is discarded.

Error control and flow control mechanisms may be used
simultaneously.

C. Multiple modules per host

The example video application presented in § [ITI] places only
one module within a host at any given time. This is not a
limitation of OpenPipes, it was done to simplify the example.

Multiple modules are supported in a single host via two
mechanisms: an OpenFlow switch is instantiated in the host
alongside the modules, or each module is associated with a
separate physical interface.

Instantiating an OpenFlow switch allows the use of a single
connection between the host and the OpenFlow network. The
internally instantiated switch sits between external switches
and the modules, extending the network into the host. The
internal switch does not need to support the entire set of
OpenFlow matches and actions, only those that are used by
OpenPipes.

Use of multiple physical interfaces eliminates the need to
dedicate resources on the host to implementing an additional
switch. In this scenario, the number of physical interfaces
limits the number of modules that can be instantiated on the
host (in addition to the limits imposed by the computation
resources).



STANFORD MCKEOWN GROUP TECHNICAL REPORT TR10-MKG-170910

/ Internet

Aggregation
OpenFlow switch

FPGA rack / \

= =
Top of rack Top of rack Top of rack
OpenFlow switch OpenFlow switch OpenFlow switch

B i

CPU rack

Z
H
Z

FPGAS CPUs

Fig. 6. Example data center style deployment. FPGAs or CPUs within a rack
are connected to a top-of-rack switch. Racks are connected to an aggregation
switch which may provide external connectivity.

D. Routing

The current implementation uses shortest-path routing be-
tween sources and destinations. Applications are not restricted
to using shortest-path routing; OpenFlow allows them to per-
form routing based upon their individual needs. An application
may choose high-bandwidth paths over low latency paths for
example.

Applications should take into account the utilization of
links when choosing routes. Care should be taken to prevent
oversubscription of individual links.

E. Additional challenges

Some applications may require the synchronization of mod-
ules within the system, other applications may have strict
latency constraints. We have deliberately ignored these issues
in this paper to focus on the challenges that we believe are
applicable to a wider set of applications.

F. Enabling large deployments

We believe that the architecture enables large deployments
as illustrated in Figure [f] It should be possible to distribute the
OpenFlow interconnect over a number of racks and populate
the racks with a large number of FPGA and CPU-based
systems. Users of such a setup would be able to use OpenPipes
to build a highly-scalable networking system.

V. CONCLUSION

OpenPipes is a new platform for building distributed hard-
ware systems. The system to be built is partitioned into mod-
ules, all of which may be physically distributed; what makes
OpenPipes unique is that it uses an OpenFlow network as the
interconnect between modules. Use of an OpenFlow network
affords a number of benefits: (i) any network-attached device
can host modules, allowing the use of varied hardware devices
and the inclusion of software modules within the system, (ii)
running systems may be dynamically modified by instantiating

new modules and updating routes within the interconnect, and
(iii) development and verification is simplified via a migration
path from software to hardware modules in which software
modules may be used as references against which to test
hardware modules.

Distributing hardware does pose a number of challenges.
This paper addresses what we see as the major challenges,
such as flow control and error control. While we don’t yet have
perfect solutions for all challenges, we do lay down a useful
foundation that allows many applications to be built using
OpenPipes. OpenPipes allows designers to easily partition
their systems across multiple physical devices, allowing them
to better make use of the resources at their disposal.

REFERENCES

[1

—

W. J. Dally and B. Towles. Route packets, not wires: on-chip intecon-

nection networks. In DAC ’01: Proceedings of the 38th conference on

Design automation, pages 684-689, New York, NY, USA, 2001. ACM.

[2] ENVI: An Extensible Network Visualization & Control Framework.
http://www.openflowswitch.org/wp/gui/.

[3] G. Fairhurst and L. Wood. Advice to link designers on link Automatic

Repeat reQuest (ARQ). RFC 3366 (Best Current Practice), Aug. 2002.

http://www.ietf.org/rfc/rfc3366.txt,

Forcel0 Networks: S-Series. http://www.forcel0Onetworks.com/products/

sseries.asp.

[5] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker. NOX: Towards and operating system for networks. In ACM

SIGCOMM Computer Communication Review, July 2008.

S. Hauck, G. Borriello, and C. Ebeling. Springbok: A Rapid-Prototyping

System for Board-Level Designs. In 2nd International ACM/SIGDA

Workshop on Field-Programmable Gate Arrays, 1994.

Intel to deliver first computer chip with two billion transistors,

Feb. 2008. http://afp.google.com/article/ALeqMSipelkeZwHqz3cqmha_|

jD7gNhBI98A.

[8] M. Khalid and J. Rose. A novel and efficient routing architecture for
multi-FPGA systems. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 8(1):30-39, Feb 2000.

[91 N. Kung and R. Morris. Credit-based flow control for atm networks.

Network, IEEE, 9(2):40 —48, mar/apr 1995.

S. Lin and J. D. J. Costello. Error Control Coding: Fundamentals and

Applications. Prentice Hall, Englewood Cliffs, NJ, 2nd edition, 2004.

J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,

R. Raghuraman, and J. Luo. NetFPGA—an open platform for gigabit-

rate network switching and routing. In MSE ’07: Proceedings of the 2007

IEEE International Conference on Microelectronic Systems Education,

pages 160-161, 2007.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation in

campus networks. ACM SIGCOMM Computer Communication Review,

38(2):69-74, April 2008.

R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The click modular

router. In SOSP '99: Proceedings of the seventeenth ACM symposium

on Operating systems principles, pages 217-231, New York, NY, USA,

1999. ACM.

The OpenFlow Switch Consortium. http://www.openflowswitch.org.

J. D. Owens, W. J. Dally, R. Ho, D. N. Jayasimha, S. W. Keckler, and

L.-S. Peh. Research challenges for on-chip interconnection networks.

IEEE Micro, 27(5):96-108, 2007.

C. L. Seitz. Let’s route packets instead of wires. In AUSCRYPT ’90:

Proceedings of the sixth MIT conference on Advanced research in VLSI,

pages 133-138, Cambridge, MA, USA, 1990. MIT Press.

M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and

A. Sangiovanni-Vincentelli. Addressing the system-on-a-chip intercon-

nect woes through communication-based design. In Design Automation

Conference, DAC 01, June 2001.

M. Slimane-Kadi, D.Brasen, and G.Saucier. A fast-FPGA prototyping

system that uses inexpensive high-performance FPIC. In Proceedings of

the ACM/SIGDA Workshop on Field-Programmable Gate Arrays, 1994.

UMC delivers leading-edge 65nm FPGAs to Xilinx, Nov. 2006. http:

/Iwww.umc.com/english/news/2006/20061108.asp.

[4

flnar

[6

=

[7

—

[10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

(19]


http://www.openflowswitch.org/wp/gui/
http://www.ietf.org/rfc/rfc3366.txt
http://www.force10networks.com/products/sseries.asp
http://www.force10networks.com/products/sseries.asp
http://afp.google.com/article/ALeqM5ipelkeZwHqz3cqmha_jD7gNhB98A
http://afp.google.com/article/ALeqM5ipelkeZwHqz3cqmha_jD7gNhB98A
http://www.openflowswitch.org
http://www.umc.com/english/news/2006/20061108.asp
http://www.umc.com/english/news/2006/20061108.asp

STANFORD MCKEOWN GROUP TECHNICAL REPORT TR10-MKG-170910

[20]

[21]

Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford.
Virtual routers on the move: live router migration as a network-
management primitive. SIGCOMM Comput. Commun. Rev., 38(4):231—
242, 2008.

D. Wendlandt, M. Casado, P. Tarjan, and N. McKeown. The clack graph-
ical router: visualizing network software. In SoftVis '06: Proceedings of
the 2006 ACM symposium on Software visualization, pages 7-15, New
York, NY, USA, 2006. ACM.



	Introduction
	What is OpenPipes?
	OpenPipes Architecture
	Related architectures

	OpenPipes in action
	Video processing application
	Implementation
	Testing
	Limitations
	Demonstration

	Plumbing the depths
	Flow control
	Error control
	Multiple modules per host
	Routing
	Additional challenges
	Enabling large deployments

	Conclusion
	References

