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ABSTRACT 
We demonstrate MPLS Traffic Engineering (MPLS-TE) and 
MPLS-based Virtual Private Networks (MPLS VPNs) using 
OpenFlow [1] and NOX [6]. The demonstration is the outcome of 
an engineering experiment to answer the following questions: 
How hard is it to implement a complex control plane on top of a 
network controller such as NOX? Does the global vantage point in 
NOX make the implementation easier than the traditional method 
of implementing it on every switch, embedded in the data plane?  

We implemented every major feature of MPLS-TE and MPLS-
VPN in just 2,000 lines of code, compared to much larger lines of 
code in the more traditional approach, such as Quagga-MPLS. 
Because NOX maintains a consistent, up-to-date topology map, 
the MPLS control plane features are quite simple to implement. 
And its simplicity makes it easy to extend: We have easily added 
several new features; something a network operator could do to 
customize their network to meet their customers’ needs.  

The demo consists of two parts: MPLS-TE services and then 
MPLS VPN driven by a GUI. 

Categories and Subject Descriptors: C.2.1 – 
Computer Systems Organization [Computer-Communication 
Networks]: Network Architecture and Design 

General Terms: Management, Design, Experimentation 

Keywords: MPLS, MPLS-TE, VPN, Traffic Engineering, 
OpenFlow 

1. SCIENTIFIC RATIONALE 
We claim that while the MPLS data plane is fairly simple, the control 
planes associated with MPLS-TE and MPLS VPNs are rather 
complicated.  For instance, in a typical traffic engineered MPLS 
network, one needs to run OSPF, LDP, RSVP-TE, I-BGP, and MP-
BGP to name a few protocols. The distributed nature of these protocols 
results in excessive traffic of update messages when there are frequent 
changes in the network. This, in turn causes the routers to spend a lot of 
CPU time recalculating routing information. Hence, CPU message 
queues may get filled leading to incoming hello messages getting 
dropped. This leads to false link-state information being distributed 
throughout the network. The described vicious cycle causes large 
convergence times for the above protocols, meaning excessive control 
traffic on the network and stale information on the routers. 

In SDN, the Network Operating System (NOS) is responsible for 
constructing and presenting a logically centralized map of the 
network. Instead of a set of distributed protocols implemented on each 
router, we implement these functionalities as simple software modules 
that work on the network map in NOS. Implementation of these 
functions on a logical map of the network is very simple. Hence, by 
pushing the control plane functionality to NOS, we benefit from not 
only simplicity of implementation, but also the fact that maintaining 
and updating applications are easy as well. This is because new 

features are no longer tied to multiple protocols that would normally 
have to be changed. In fact, with the controller in charge of the control 
plane, there is no need for any distributed protocol running in the 
routers as the NOS has complete knowledge of the network. 

2. ARCHITECTURE 
The architecture of our system is given in Figure 1. Our test-bed 
consists of several software and physical switches. The software 
switches are instances of Open vSwitch [2] which are hosted within 
the Mininet environment [3]. These switches are connected to a 
network of physical switches. Both software and physical switches 
support the OpenFlow 1.0 specifications [4] as well as the MPLS 
related section of the OpenFlow 1.1 specifications [5]. The switches 
are designed so that they handle the data plane, and not the control 
plane functionality of MPLS. 

With the abovementioned network, we emulate a wide area 
network for the purpose of our demonstration. All switches are 
controlled by a single instance of the NOX [6] controller. The 
MPLS-TE and VPN services are managed via an application that 
runs in NOX. The control plane and the MPLS features are 
exclusively handled by NOX. The data plane simply supports the 
push swap and pop actions. When changes are needed in the data 
plane, NOX modifies the flow tables in the appropriate switches. 

We use multiple GUIs to show the workings of the network and to 
dynamically interact and modify the TE-LSPs and/or VPNs. 

3. DEMO SCENARIOS  
The demonstration consists of two parts, the first pertaining to 
MPLS-TE [7] and the second pertaining to MPLS VPNs. 

3.1. MPLS-TE 
The first part of the demo is visualized via two GUIs, both 
showing the topology of the entire physical network. The first 
GUI displays the IP flows in the network and the second GUI 
displays the LSPs and the flows routed through them. All the 
flows and LSPs are color-coded to distinguish between various 
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Figure 1. The architecture of the physical network and the
controller used in our demonstration. 
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types. The demonstration starts with all the flows in the IP plane, 
and as we step through the demo, we create TE-LSPs and reroute 
some of the IP flows through the LSPs. By creating TE-LSPs of 
different characteristics, we demonstrate the following features: 

Constrained Shortest Path First (CSPF) The CSPF algorithm 
allows us to find the shortest path for a TE-LSP that satisfy its 
bandwidth and priority requirements. 

Auto-route When a TE-LSP is created, we automatically reroute 
any flow whose path goes through the head-end and the tail-
end router of the created LSP onto the LSP. 

Traffic Aware LSPs We can create TE-LSPs that carry a specific 
type of traffic. These can include VOIP, HTTP, etc. 

Priority LSPs can have different levels of priority. When the 
reservable bandwidth of a link is fully allocated, we reroute 
LSPs of lower priority to alternative paths. 

Auto-bandwidth The auto-bandwidth feature allows for the 
bandwidth reservation of a TE-LSP to dynamically adjust to 
its actual bandwidth usage (as opposed to the bandwidth 
being statically set at the creation of the LSP). 

Interactive Management Users can create custom TE-LSPs from 
the GUI. That is, the user specifies the head-end and tail-end 
routers and the characteristics of the desired TE-LSP, which 
is then created in the network and shown in the GUI.  

3.2. MPLS VPNs 
The second part of the demo is visualized using multiple GUIs as 
well. In this case, all GUIs show the physical network, and each 
GUI pertains to a VPN and its associated flows and LSPs. 
Screenshots of working versions of this part of the demo are given 
in Figure 2. Our MPLS-VPN network has a simpler backbone 
topology compared to the previous section, but with some 
customer nodes added to the edge of the backbone network. 

The backbone network is MPLS-TE enabled and so when LSPs 
are created to support a VPN, they are accompanied with all the 
TE features mentioned in Section 3.1. 

We configure multiple VPNs with overlapping private IP address 
spaces. Each VPN comes with different characteristics which 
enables us to demonstrate the following: 

Isolation of VPNs We demonstrate that multiple VPNs can coexist in a 
single backbone network where different VPNs may have 
overlapping address spaces. The flows associated with different 
VPNs are routed through their respective LSPs and do not 
aggregate with each other. 

Custom Topologies The logical topology of each VPN can be specified 
by the customer. The topology can be anything from the traditional 
hub-and-spokes to full-mesh. 

TE Services Since the backbone network is MPLS-TE enabled, we can 
readily offer TE services to the customers. We demonstrate the 
Priority and Auto-bandwidth features of TE. This allows for a high 
priority VPN to force others to reroute when it requires more 
bandwidth along its LSPs. 

Interactive Management Users can create a new VPN by specifying 
the connection between the customer and provider routers as well 
as the topology and other characteristics of the network. After the 
specifications are given, we create the desired VPN network and 
display the results in the GUI. 
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(a) (b) 
Figure 2. Sample GUIs corresponding to the MPLS VPN demonstration. Two VPNs with their corresponding flows and LSPs are
shown in (a) and (b) 
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