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ABSTRACT
Network operators want additional functionality from the
networks they manage. The current approach to add func-
tionality is to deploy middleboxes. Unfortunately middle-
boxes raise concerns regarding robustness, correctness, and
efficiency due to their need to be deployed at chokepoints.

This paper provides some initial thoughts for solving the
middlebox problem in an architectural way. We believe that
waypoint services are the correct way to add functionality
to a network. Network processing can be modeled as classi-
fication followed by action. Additional functionality should
be added to the network through a service model exposed as
new actions. Services would be implemented at waypoints
which reside off the normal packet path; routers can send
traffic to those services for additional processing.

The waypoint service model allows services to be hosted
anywhere within the network, allows services to be shared by
multiple routers, and is accessible via a simple action API.
Abstracting custom packet processing as waypoint services
provides a systematic way to bring new functionality to the
network.

1. INTRODUCTION
Middleboxes are devices that provide functionality beyond

basic forwarding to a network. Middleboxes are used to
incorporate features such as intrusion detection or address
translation within the network. The name middlebox de-
rives from the requirement to place the device in the net-
work, specifically on a chokepoint through which all traf-
fic of interest flows (Figure 1). Placing middleboxes along
chokepoints raises several problems: how do you identify ap-
propriate locations through which all traffic flows, and how
do you maintain network connectivity if a middlebox fails?
Despite these problems, middlebox deployment is currently
the only viable method for adding additional features to a
network.

Numerous proposals exist to overcome the shortcomings of
chokepoint deployments [?,?,?]. The common idea amongst
these is the waypoint: middleboxes are deployed off the nor-
mal traffic path, with traffic being explicitly routed through
the waypoint before delivery to the destination (Figure 2).
Waypoints eliminate the need to identify an appropriate
chokepoint and allow the network to continue functioning
after waypoint failure.

What is the right partition of functionality between way-
points and the network itself? Routers have clearly been
growing in functionality over the years, unfortunately mak-
ing them bloated in the process. At the other extreme, over-

Figure 1: Middlebox deployment within a network.
The middlebox must be deployed at a chokepoint
within the network.

Figure 2: Waypoint processing within a network.
Waypoint processors are deployed away from choke-
points; traffic is explicitly routed through waypoints
before delivery to their final destination.

lays have been proposed to use the regular internet merely to
bring traffic to complex processing points. But this doesn’t
give much control over the network itself—you have to rely
on the placement of the overlay nodes and the routing im-
posed by the network to get there. Ideally we’d like some
combination of these approaches: we’d like complex pro-
cessing to be performed outside of routers so that routers
remain lean and efficient, and we’d like to have control over
how traffic flows between our processing nodes within the
network.

Recently, several flow-based approaches have been sug-



gested (e.g. OpenFlow [?], 4D [?]) in which the network
datapath is kept very simple. Network primitives in every
switch allow flows to be steered through the network by the
network control plane. The set of primitives is very small,
providing basic operations like forward to a port (or ports),
drop, and add/delete/modify a field in a packet header. In
the OpenFlow model, it is assumed that any complex pro-
cessing is done in waypoints that may be deployed anywhere
in the network. Waypoints can do the things current mid-
dleboxes do, such as NAT, firewalls, and DPI. Our goal is
more than that: we want waypoints to be extensible so new
services can easily be added by an experimenter, or by the
owner/operator of a network to enhance service.

In this paper, we make an explicit case for moving the
processing out of the datapath to waypoints, in an extensible
manner that supports new services. We explain why this is
a good idea, what such a waypoint system should look like,
and how such a system can be controlled.

2. BACKGROUND

2.1 Middleboxes and waypoints
Network operators today deploy functionality within the

network beyond standard IP routing via the use of middle-
boxes [?]. Middleboxes are generally built for a single pur-
pose, for example, an application firewall or a deep packet
inspection device. Middleboxes, as the name implies, are
devices that are deployed within the network. They must
be placed at a “chokepoint” within the network; this is a
location between two routers through which all traffic to
be processed flows (see Figure 1). Placing middleboxes at
chokepoints raises several concerns:

Correctness Administrators must configure routing entries
within the network to guarantee that the traffic of in-
terest traverses the middlebox. This problem is com-
pounded when several middleboxes exist within the
network; ensuring the correct ordering and enforce-
ment of policy is difficult with multiple middleboxes.

Efficiency The placement of middleboxes often forces un-
wanted traffic to traverse the middleboxes. The mid-
dleboxes should be configured to transparently pass
through traffic not of interest, increasing the load on
the middlebox and the delay through the network. The
problem becomes particularly serious when deploying
a middlebox on a network backbone.

Robustness A middlebox residing on the normal data path
introduces a single point of failure. A middlebox that
fails due to hardware failure, misconfiguration, or power
failure can cause catastrophic network failure.

The waypoint model (Figure 2) is an improved model for
deploying processing elements1. Instead of deploying pro-
cessing elements at chokepoints, they are deployed off the
main traffic path. Processing elements can either hang off
a router along the path, or they can be deployed remotely
at any place within the network, provided that any require-
ments for latency through the network are met.

1We use the term “processing elements” (PEs) to represent
middleboxes and other custom packet processing devices in
general, such as PCs, NPUs or programmable hardware. We
give the formal definition of PE in Section 3.3.1

Routers make decisions about where to send packets by
comparing the packet headers and with the entries stored
within the router’s flow tables. Traffic can be redirected
through processing elements for additional processing by in-
stalling the correct entries in the flow tables. Packets are
forwarded along their normal physical path following pro-
cessing and eventually reach their destinations.

The waypoint model solves the problems with middle-
boxes raised above. Robustness is improved as processing
elements are aggregated behind a router, enabling the use of
fail-over modules and fail-over routing rules to ensure con-
tinued network connectivity in the event of device failure.
Efficiency and correctness are both addressed because pol-
icy installed within the routers determines alone what ad-
ditional processing to apply to packets; contrast this with
the middlebox approach where physical location combined
with ad-hoc routing rules determine the processing. Only
the packets requiring additional processing are sent to pro-
cessing elements, and it is easy to determine which order
processing elements will be traversed.

2.2 Related Work
The waypoint model can be classified as indirection in the

networking data plane. Previous studies have shown that
indirection systems can solve different networking problems.

The Internet Indirection Infrastructure (i3 ) [?] uses indi-
rection to add services to the network, including the ability
to perform custom processing along the path from source to
destination. SelNet [?] is a network architecture that uses a
virtualized link layer to support explicit indirection; partic-
ular elements within the network are able to modify packets
that transit them.

Numerous researchers have suggested using the waypoint
model for middlebox deployment. The Delegation-Oriented
Architecture [?] proposes using delegation as a primitive to
realize waypoint indirection and eventually avoid the harm-
ful side-effects of middleboxes. PLayer [?] is a policy-aware
Layer 2.5 network that enable one-hop waypoints designed
for data centers. Similarly, Open Service Framework [?] en-
ables an Ethernet switch to steer packets through middle-
boxes based on user specified rules that consist of fields from
the packet header and the ingress port. Cisco proposes Uni-
fied Network Services/Service Insertion Architecture [?] to
apply services to particular traffic.

Ethane [?] and OpenFlow [?] are flow-based architectures
that both advocate using waypoints to perform complex
processing. Flowstream [?] proposes the use of virtual ma-
chines and OpenFlow for parallel (load balancing) and serial
(pipelining) packet processing. The In-Network Processing
framework [?] takes advantage of the programmability of
OpenFlow and uses virtual machines to replace middleboxes
using the waypoint model.

3. WAYPOINT SERVICES
This section introduces the idea of a service model as a

method of offering additional functionality within the net-
work. We explain the rationale behind the service model,
it’s operation, and the feasibility of implementation today.

3.1 The service model
Functionality is added to the network today via middle-

boxes. The routers that compose the network are unaware
of the middleboxes; middleboxes are placed in the physi-



cal path between routers and “hijack” traffic for additional
processing. We posit that this is the wrong approach. Plac-
ing middleboxes on chokepoints introduces fragility into the
network. Better decisions about when and how to use addi-
tional functionality can be made if the network is aware of
that functionality.

We propose a service model for introducing functionality
into the network. New functions are deployed as services
which the network is aware of. Network administrators can
“subscribe”to the service by sending traffic from one or more
routers to that service for additional processing. Services
themselves are exposed as additional actions that routers
can perform on packets.

A simple application helps illustrate the model. A network
administrator wishes to encrypt a subset of traffic before it
enters the public internet. In the service model, the network
administrator deploys an encryption service within the net-
work (or requests a service from an external provider). The
network is then configured to send all relevant traffic through
the encryption service before transmission over the internet.
Figure 3 and Figure 4 show the encryption service deployed
within different topologies.

Internet

Encryption
service

HTTP traffic
destined to
corporate

headquarters

Non-HTTP traffic

Flow table in switch:
Match Action
Dst IP = headqtr & HTTP
Default

encrypt, foward-to-port 1
foward-to-port 1

Figure 3: Deployment of a cryptographic service
within a simple topology. Only HTTP traffic des-
tined to the corporate headquarters is encrypted;
all other traffic remains unencrypted.

Figure 4: Deployment of a shared cryptographic ser-
vice. Multiple switches route traffic to the encryp-
tion service for processing.

Services themselves are deployed as waypoint processors

or simply waypoints. A waypoint processor is a device that
attaches to the network that performs the processing neces-
sary to implement the service. The encryption service way-
point from the example could conceptually be implemented
as a process running on a commodity PC that encrypts all
data.

Several fundamental questions arise regarding the service
model. Where should services be deployed? How is traf-
fic routed through a service? We provide answers to these
questions later in this section.

3.2 Requirements of the model
We have identified four key requirements that the service

model must meet:

Location agnostic Services should be locatable anywhere
within the network. Network operators should not be
constrained in where they deploy a service.

Simple API The service API must be intuitive and easy-
to-use.

Sharable Services should be sharable amongst many sub-
scribers. Operators may not wish or be able to provide
dedicated resources for each router desiring a service.

Unmodified endhosts Operators wish to deploy new func-
tionality without modifying endhosts. Operators may
not even be able to modify the endhosts.

3.3 Service components
The waypoint service model consists of three main com-

ponents: processing elements, a programmable interconnect,
and a controller.

3.3.1 Processing elements
The processing element (PE) is the component that per-

forms custom packet processing. A PE may be fixed-function
or programmable. Existing middleboxes, such as NATs and
firewalls, can be incorporated as fixed-function devices, as
too can new custom-designed fixed-function components.
Programmable elements that can be incorporated include
CPUs, NPUs, and FPGAs; these devices allow truly cus-
tomizable processing and enable the available functionality
to change in response to the system’s needs.

PEs are free to implement their specified functionality in
any manner. The implementation of a PE will affect its per-
formance which may have consequences for the performance
of the network as a whole. We deliberately avoid addressing
a number of issues in this paper due to space constraints in-
cluding performance and the details of using programmable
elements.

PEs consist of both data-plane and control-plane compo-
nents. The data-plane component is responsible for packet
processing. The control-plane component interacts with the
controller (Section 3.3.3) to allow configuration of the PE.
In the case of programmable PEs, the control plane provides
the ability to program the device (although this functional-
ity may not be exposed directly to the network operator).

A waypoint may contain more than one PE. A waypoint
that contains multiple PEs may offer multiple services, or
may offer a single service, utilizing the multiple PEs for scal-
ability or construction of complex services.

Services can be shared by multiple switches by routing
traffic from multiple sources to a single waypoint. PEs are



Table 1: Example flow table from a user perspective
Input Port Src IP Dst IP Protocol Action

* 192.168.0.0/24 * TCP IDS, NAT

* 192.168.1.0/24 * * HTTP Proxy

* * 192.168.2.0/24 UDP drop

0 * * * forward Port 1

agnostic to the origin of traffic—if traffic can be routed to a
PE it will process it. Figure 4 shows the encryption service
being shared by multiple switches.

3.3.2 Programmable interconnect
The network must be capable of routing traffic to ser-

vices anywhere within the network without modification to
any endhosts. Only the traffic of interest should be sent
to services for processing; in the context of the encryption
example, only HTTP traffic destined to the corporate head-
quarters should be processed by the encryption service.

A programmable interconnect provides the best mecha-
nism for providing the necessary selective and controlled
routing within the network2. A programmable interconnect
is one in which the switches can be programmed through
some means to send traffic matching a given pattern to the
specified interface.

When a router wishes to use a particular service, routing
entries are installed along the path between the switch and
the waypoint to route traffic to and from the waypoint. The
path between the router and the waypoint can be chosen
to optimize for different metrics such as minimizing the hop
count, minimizing latency, or maximizing bandwidth.

It should be noted that a waypoint with multiple PEs will
contain a programmable interconnect element. An internal
interconnect may be treated as an extension of the external
interconnect, or it may be managed transparently to the
operator, depending upon the mode of operation.

3.3.3 Controller
The programmable interconnect and the PEs are managed

by an external controller.
The controller programs the interconnect to provide con-

nectivity between switches and the services. The controller
also programs the switches to provide connectivity between
endpoints—we assume that the switches in the programmable
interconnect are fully managed by the external controller
rather than being controlled in part by local routing agents.

PE management performed by the controller consists of
configuring PEs, and in the case of programmable PEs, pro-
gramming them. The set of available configuration param-
eters varies depending upon the PE; in the encryption ex-
ample, the encryption PE may allow the algorithm to be
chosen and keys to be set.

The service model does not dictate the use of any par-
ticular controller or require any level of intelligence within
the controller. The controller could be extremely simple,
requiring all paths to be manually specified by the opera-
tor. Likewise the controller could be quite intelligent, auto-

2The service model can in theory be used with traditional
IPv4 and other non-programmable networks by manipulat-
ing routing through active participation in the routing pro-
tocol message exchange. However, this approach is more
complicated and error-prone than using a programmable in-
terconnect.

matically discovering the network topology and location of
all services, and automatically installing routes according to
policy without the intervention of an operator. Intelligent
controllers offer considerable scope for further discussion but
we defer that to a subsequent paper.

It should be noted that control may be delegated or parti-
tioned between multiple controllers. As an example, a way-
point service provider may exist that offers waypoint ser-
vices to customer networks. The waypoint service provide
presumably has one or more large waypoints consisting of
many PEs and a programmable interconnect. The way-
point service provider would operate their own controller,
but would likely provide some level of visibility and dele-
gation of control to the customer controller. Again due to
space constraints we will discuss this in a later paper.

3.4 API
The API is a critical element of the service model: a net-

work operator must be able to specify what services to apply
to traffic and when. The API should be intuitive and easy-
to-understand to enable the network operator to focus on
the task of managing the network.

Network processing can be expressed as a combination of
classification and action: for this set of traffic apply this
set of actions. This is a very natural and intuitive way to
think about processing in the network and we believe that
this is the appropriate model for the API. Services should
be exposed to the network as actions.

Considering just the programmable interconnect for a mo-
ment, the classification/action paradigm provides an ap-
propriate API for configuration. Configuration occurs via
the installation and removal of flow table entries from each
switch. A flow table entry consists of a pattern (i.e. a set
of header values) to match against incoming packets and a
set of actions to apply to matching packets. Examples of
actions available to the interconnect are forward and drop.

Services are accessed as additional actions available to
each switch. The encryption service would provide an ac-
tion encrypt; other examples could include IDS and HTTP

proxy. Table 1 provides an example flow table that uses
custom actions in some flows.

Rules with custom actions can’t be installed directly in
the physical switches, since the physical switches don’t im-
plement the custom actions. Flow table entries with custom
actions must be translated into a series of flow table entries
that route the traffic to and from the appropriate waypoint.
This will result in the installation of flows in switches be-
tween the source switch and the waypoint when the way-
point is not directly connected to the switch requesting the
service.

Translation between the desired flow tables and the phys-
ical flow tables can be performed automatically by an in-
telligent controller that knows the topology and location of
services. Translation must be performed manually by the
operator if they are using a non-intelligent controller.



4. FEASIBILITY
The waypoint service can be implemented using emerg-

ing technology today. The service model requires a pro-
grammable interconnect, a controller, and waypoints.

Programmable interconnects are known under the more
common term today of software-defined network (SDN). Open-
Flow [?] is an SDN technology that is currently available in
commercial switches [?,?]. OpenFlow controllers exist [?,?]
that can be easily adapted to support services and configure
waypoints.

Waypoints can be built in several ways using CPUs, GPUs,
NPUs, programmable hardware, and existing middleboxes.
A simple waypoint may be constructed from an existing mid-
dlebox by connecting the middlebox to an OpenFlow switch.
This allows off-path processing similar to the topology de-
scribed in [?]. With this approach, network operators can
reuse their existing resources by incorporating unmodified
middleboxes into waypoints.

Waypoint
Router

PCs

To network

Figure 5: A waypoint processor containing an Open-
Flow switch (Waypoint Router) and commodity
PCs.

Waypoints can be built using commodity PCs as PEs (Fig-
ure 5). Any custom packet processing function can be im-
plemented purely in software. Open Source implementations
are available for many functions that may be desired from
the network including firewalls [?], load balancers [?], proxies
and caches [?], monitoring and measurement [?], intrusion
detection [?, ?], and ubiquitous NAT. Concerns are often
raised over the performance of software; the performance
of a software service can be improved by utilizing a faster
CPU (moving the service from a slow PE to a fast PE) or
by running multiple instances of the software (utilizing mul-
tiple PEs). Spreading the processing load across multiple
instances of the software requires the network to be capable
of performing load balancing.

PC-based PEs can be used in a number of modes of oper-
ation. In the simplest mode, the entire PC is dedicated to
a single service. In more complex modes, multiple services
may be hosted on a single PC. Multiple services may be
hosted in a single operating system using process isolation,
or may be hosted in different virtual machines (Figure 6).
Xen [?] and Open vSwitch [?] allow VMs be connected to a
virtual OpenFlow switch, enabling VMs to be connected to
the wider OpenFlow network. In addition to enabling mul-
tiple services to be hosted on a single PC, VMs also offer
the ability to migrate services via VM migration, allowing
services to be moved to lightly loaded machines in response

Open
vSwitch

VMs

Waypoint
Router

To network

Figure 6: A waypoint processor with virtual ma-
chines, Open vSwitch (OVS) and Xen hypervisor.

to demand, and allowing services to be moved closer to the
locations where they are used.

Programmable hardware devices such as the NetFPGA [?]
are also ideal candidates for hosting services. Programmable
hardware devices typically offer greater performance than is
available in software, albeit at the cost of implementation
complexity. Multiple services may be hosted on a single
programmable hardware device when space permits; doing
so requires either a dedicated port per service or a switch
implemented inside the device to route traffic to the correct
service.

Services can be hosted in other programmable devices,
such as network processors (NPUs) and graphic coprocessors
(GPUs). The primary requirement for hosting a service is
the ability to communicate with the network.

Waypoints may consist of one or more processing elements
and the processing elements need not be the same type (Fig-
ure 7). Network operators are free to choose whether they
want to deploy a small waypoint at every node in the net-
work, a small number of large waypoints shared throughout
the network, or some hybrid of these.

Waypoint
Router

To network

CPU

GPU

NPU

FPGA

Figure 7: A waypoint processor with a mix of CPUs,
GPUs, NPUs, and FPGAs.

5. CONCLUSION
Applications within the Internet, data center networks,

and other computer networks are evolving rapidly. Many
new applications require network functionality what was
not forseen by designers [?]. Engineers have responded to



this need by deploying middleboxes that implement the new
functionality. We believe that ad-hoc middlebox deployment
is problematic, and is neither sustainable nor economical in
the long term. In this paper, we proposed the waypoint
service, a new class of network service that routers can sub-
scribe to that enables new functionality to be incorporated
into the network. We discussed desired features of the ser-
vice, the main building blocks, illustrated how today’s net-
work application can benefit from this service, and showed
that the service model is feasible using current technologies.

We are currently implementing a prototype waypoint ser-
vice system using OpenFlow switches, NetFPGAs, and com-
modity PCs.
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