
Carving Research Slices Out of
Your Production Networks with OpenFlow

Rob Sherwood, Michael Chan,Glen Gibb, Nikhil Handigol,Te-Yuan Huang,Peyman Kazemian,
Masayoshi Kobayashi, David Underhill, Kok-Kiong Yap, Guido Appenzeller, and Nick McKeown

Deutsche Telekom Inc. R&D Lab, Stanford University, NEC System Platforms Research Labs

1. SLICED PROGRAMMABLE NETWORKS
OpenFlow [4] has been demonstrated as a way for researchers to

run networking experiments in their production network. Last year,
we demonstrated how an OpenFlow controller running on NOX [3]
could move VMs seamlessly around an OpenFlow network [1].
While OpenFlow has potential [2] to open control of the network,
only one researcher can innovate on the network at a time. What
is required is a way to divide, or slice, network resources so that
researchers and network administrators can use them in parallel.
Network slicing implies that actions in one slice do not negatively
affect other slices, even if they share the same underlying phys-
ical hardware. A common network slicing technique is VLANs.
With VLANs, the administrator partitions the network by switch
port and all traffic is mapped to a VLAN by input port or explicit
tag. This coarse-grained type of network slicing complicates more
interesting experiments such as IP mobility or wireless handover.

Here, we demonstrate FlowVisor, a special purpose OpenFlow
controller that allows multiple researchers to run experiments safely
and independently on the same production OpenFlow network. To
motivate FlowVisor’s flexibility, we demonstrate four network slices
running in parallel: one slice for the production network and three
slices running experimental code (Figure 1). Our demonstration
runs on real network hardware deployed on our production net-
work1 at Stanford and a wide-area test-bed with a mix of wired and
wireless technologies.

Categories and Subject Descriptors: C.2.2 – Computer Systems
Organization [Computer-Communication Networks]: Network
Architecture and Design; C.4 – Computer Systems Organization
[Performance of Systems]

General Terms:
Management, Design, Experimentation

Keywords:
Flowvisor, OpenFlow, Architecture, Virtual networks, Network slic-
ing

2. FLOWVISOR ARCHITECTURE
Architecturally, FlowVisor acts as a transparent proxy. Network

devices generate OpenFlow protocol messages, which go to the
FlowVisor and are then routed by network slice to the appropri-
ate researcher(s) (Figure 1). OpenFlow messages from researcher
controllers are vetted by the FlowVisor to ensure that the isolation
between slices is maintained before being forwarded to switches.

1That is, the network where the authors read their daily mail, surf
the web, etc.

Figure 1: FlowVisor allows multiple researchers to operate in
parallel on slices of an OpenFlow network. FlowVisor acts as
a transparent proxy between network devices, OpenFlow con-
trollers, and other FlowVisor’s.

Thus, the FlowVisor appears as a virtual controller to the switches
and as a network of virtual switches to the researcher controllers.

FlowVisor is intentionally architecturally neutral: it makes no
assumption about the function or operation of the switches or con-
trollers, save that they speak OpenFlow. We architect FlowVisor as
a transparent proxy for three reasons:

Centralized policy enforcement All control traffic, from switch
to controller and from controller to switch, traverses the FlowVi-
sor. This provides FlowVisor a complete view of the net-
work’s state and allows it to enforce policy by dropping or
rewriting OpenFlow control messages. Additionally, central-
izing policy decisions makes it easier to reason about the set
of allowable actions and debug errors should they occur.

Recursive delegation Recursive delegation is the ability to re-delegate
control of a subset of a network slice. Because FlowVisor
acts as a transparent proxy, it is possible to cascade FlowVi-
sor instances, making recursive delegation trivial. We ex-
pect recursive delegation will be an important property for
virtual networks as it eases network administration overhead
and improves resource allocation.

Decouple control and virtualization technologies Rather than build-
ing virtualization support directly into the OpenFlow proto-
col itself, we intentionally keep the control and virtualization



Figure 2: We present a monitoring program that graphically displays flows in real time in their respective network slice. Slices are
defined by union, intersection, and difference of 10 packet fields—three of which are shown here.

aspects orthogonal. This allows each technology to evolve
independently, avoiding new forms of ossification.

We believe that our demonstration highlights these architectural
features.

3. DEMONSTRATION
To visualize our four experiments, we display a custom slice

monitoring tool running on a large screen (Figure 2). The tool
dynamically shows in real time the test-bed topology and color-
coded flows from each experiment . The monitoring tool displays
a simultaneous view of the entire physical network topology (Fig-
ure 2,bottom layer) and the virtual topology corresponding to each
slice.

We further demonstrate that FlowVisor has flexible and fine-
grained network slices control. These slices can be recursively
delegated (Figure 1). In our demonstration, Bob delegates a net-
work slice to Alice, who in turn re-delegates it to the Bicast ex-
periment. Further, FlowVisor allows slices to be defined along
any combination of ten packet header fields (Figure 2), includ-
ing physical layer (switch ports), link layer (src/dst mac addresses,
ether type), network layer (src/dst IP address, IP protocol), and
transport layer (src/dst UDP/TCP ports). Additionally, FlowVisor
slices can be defined with negation (“all packets but TCP packets
with dst port 80”), unions (“ethertype is ARP or IP dst address is
255.255.255.255”), or intersections (“netblock 192.168/16 and IP
protocol is TCP”). We believe that such fine-grained slicing will be
a useful tool for network researchers and administrators alike.

The four slices (two wired and two wireless) are chosen to show
the diversity of experiments that FlowVisor supports, and will each
be running an isolated slice specifically “carved” for its needs.

Learning Switch A controller that performs the standard MAC-
address learning switch algorithm. The learning switch’s net-
work slice is defined as the default, that is, any flow that does
not belong to any other experiment is part of this slice. We
include the learning switch to demonstrate how research and
non-research traffic can safely co-exist.

Mobile VMs In this experiment, a virtual machine (VM) running a
latency-sensitive video game is migrated live between servers
while maintaining the same IP address. The server and video

game software remain unchanged; an OpenFlow controller
performs dynamic re-writing of the traffic so that connectiv-
ity is maintained. This experiment’s slice is defined as all
game traffic on a specific UDP port. This experiment won
the SIGCOMM 2008 Best Demo award [1].

Hard Handover mobility agent This OpenFlow controller man-
ages a pair of mobile laptops running at Stanford. We demon-
strate that with OpenFlow, it is possible to re-route flows dy-
namically and seamlessly hand-off between an 802.11 access
point and a WiMAX base station. Hard handover’s network
slice is defined as the packets destined to the MAC addresses
of the mobile laptops. To visualize the effect of the handover,
we display a video streamed to the laptops.

Bicasting mobility agent Setup similarly to hard handover, this
controller manages the traffic for a second pair of mobile
laptops. In this experiment, we demonstrate the effect of
bi-casting, i.e., duplicating packets along two independent
links. To visualize the effects of bicasting, we display a video
streaming to the laptops.

4. REFERENCES
[1] D. Erickson et al. A demonstration of virtual machine

mobility in an OpenFlow network. In Proceedings of ACM
SIGCOMM (Demo), page 513, Seattle, WA, Aug. 2008.

[2] K. Greene. Special reports 10 emerging technologies 2009.
MIT Technology Review, 2009. http:
//www.technologyreview.com/biotech/22120/.

[3] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards and operating
system for networks. In ACM SIGCOMM Computer
Communication Review, July 2008.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, April 2008.

http://www.technologyreview.com/biotech/22120/
http://www.technologyreview.com/biotech/22120/

	Sliced Programmable Networks
	FlowVisor Architecture
	Demonstration
	References

