

High Performance Switching and Routing

Telecom Center Workshop: Sept 4, 1997.

Nick McKeown

Assistant Professor of Electrical Engineering and Computer Science
nickm@ee.stanford.edu
http://ee.stanford.edu/~nickm

Our Group

> Shang-tse "Da" Chuang, Ken Chang, Pankaj Gupta, Youngmi Joo, Steve Lin, Adisak Mekkittikul, Nick McKeown, Rolf Muralt, Kanta Yamamoto (visitor).

1. The Demand for Bandwidth

2. The Shortage of Switching/Routing Capacity
3. The Architecture of Switches and Routers
4. Some (of our) solutions

What's the Problem?

The demand

The San Jose NAP

Source: http://www.mfsdatanet.com/MAE/west.stats.html
High Performance Switching and Routing
Page 5 of 52

The supply

Why we need faster switches/routers

High Performance Switching and Routing Page 7 of 52

Why the growth?

- Exponential growth in the number of users. - Exponential growth in traffic per user per hour.
-Linear growth in hours per user per day.

Dialup Demand

Modem usage at U.C. Berkeley

"America on Hold"

High Performance Switching and Routing Page 9 of 52

Traffic Inversion
 10 years ago

High Performance Switching and Routing Page 10 of 52

Traffic Inversion

High Performance Switching and Routing

Why is this a problem?

High Performance Switching and Routing
Page 12 of 52

The race is on...

1. The Demand for Bandwidth
2. The Shortage of Switching/Routing Capacity
3. The Architecture of Switches and Routers
4. Some (of our) solutions

The Architecture of Switches and Routers

Generic Packet Processor:
(e.g. IP Router, ATM Switch, LAN Switch)

Performance of IP Routers

Performance of IP Routers

The Evolution of Routers

The first shared memory routers

The Evolution of Routers

The first shared memory routers

The Evolution of Routers

Reducing the number of bus copies

> Routing
> CPU

The Evolution of Routers

Reducing the number of bus copies

The Evolution of Routers

Avoiding bus contention

Advantage:
Non-blocking backplanehigh throughput
Disadvantage:
Difficult to provide QoS

Multigigabit Routing

BBN's Multigigabit Router

2.4Gb/s 50Gb/s
Crossbar

Buffer
Memory
MAC

2.4Gb/s

1. The Demand for Bandwidth
2. The Shortage of Switching/Routing Capacity
3. The Architecture of Switches and Routers
4. Some (of our) solutions

Some (of our) Solutions

1. Accelerating Lookups:

- Label-Swapping
- Longest-matching prefixes

2. Switched Backplanes

- Input Queueing
- Theory
- Unicast
- Multicast
- Fast Buffering
- Speedup

3.Our main project: The Tiny Tera

Routing Lookups

Routing Lookups with CIDR ("supernetting")

CIDR uses "longest matching prefix" routing:

212.17.9.4

Hashing, caching and pipelining are hard!

Solution 1: Label Swapping

Direct
Lookup

IP Switching, Tag Switching, ARIS, Cell-switched Router,...

Solution 2:

Perform Lookups Faster!

Observation \#1:

Performing Lookups Faster

Observation \#2:

High Performance Switching and Routing Page 30 of 52

Solution 2 (cont): 20 million lookups per second

16Mbytes of 50ns DRAM
212.17.9.1

1	Port 4
0	look further
1	Port 4
1	Port 3
0	look further
1	Port 3

<1Mbyte of 50ns DRAM

1. Accelerating Lookups:

- Label-Swapping
- Longest-matching prefixes

2. Switched Backplanes

- Input Queueing
- Theory
- Unicast
- Multicast
- Fast Buffering
- Speedup

3.Our main project: The Tiny Tera

Should we use shared memory or input-queueing?

Shared Memory:

9 $\frac{2}{2}$ 2 2

Shared Memory

Input Queueing:

Advantages:

Highest Throughput.
Possible to control packet delay.

Disadvantages:

N-fold internal speed-up

Advantages:
Simplicity High Bandwidth

Disadvantages:

HOL Blocking
Less efficient
Difficult to control packet delay.

Memory Bandwidth

High Performance Switching and Routing Page 34 of 52

An aside: How fast can shared memory operate?

5ns SRAM

Shared
Memory

200byte packet
Route Lookup

How fast can a 16 port switch run with this architecture?

5 ns per packet $\times 2$ memory operations per cell time \Rightarrow aggregate bandwidth is $160 \mathrm{~Gb} / \mathrm{s}$

Should we use shared memory or input-queueing?

Because of a shortage of memory bandwidth, most multigigabit and terabit switches and routers use either:

1. Input Queueing, or
2. Combined Input and Output Queueing.

Head of Line Blocking

The Problem

A Solution....

Input Cell Buffer

"Virtual Output Queueing"

$$
\rho_{\max }=2-\sqrt{2}=58 \%
$$

$$
\rho_{\max }=100 \%
$$

....but requires scheduling...

....which is equivalent to graph matching

> Request Graph
> (Weight = 18)

Practical Algorithms

1. iSLIP - Weight = 1

- Iterative round-robin
- Simple to implement

2. ILQF - Weight = Occupancy
3. IOCF - Weight = Cell Age
4. MCFF - Weight = Backlog

Simple, fast, efficient

Good for non-uniform traffic.
Complex!
Good for non-uniform traffic. Simple!

Multicast Traffic

Queue Architecture

1. Making use of the crossbar
2. Why treat multicast differently?
3. Why maintain a single FIFO queue?
4. Fanout-splitting

Fanout-Splitting

High Performance Switching and Routing Page 42 of 52

Multicast Traffic

1. Residue Concentration

2. Tetris-based schedulers

Gigabit and Terabit Routing

1. Accelerating Lookups:

- Label-Swapping
- Longest-matching prefixes

2. Switched Backplanes

- Input Queueing
- Theory
- Unicast
- Multicast
- Fast Buffering
- Speedup

3.Our main project: The Tiny Tera

Fast Buffering Ping-pong Memory

Fast Buffering Ping-pong Memory

High Performance Switching and Routing Page 46 of 52

Fast Buffering Ping-pong Memory

Gigabit and Terabit Routing

1. Accelerating Lookups:

- Label-Swapping
- Longest-matching prefixes

2. Switched Backplanes

- Input Queueing
- Theory
- Unicast
- Multicast
- Fast Buffering
- Speedup
3.Our main project: The Tiny Tera

Matching Output Queueing with Input- and Output- Queueing

How much speedup is enough?

Combined Input- and Output-Queueing:

Matching Output Queueing with Input- and Output- Queueing

How much speedup is enough?

Conventional wisdom suggests:

$$
\text { A speedup } k=2-4 \text { leads to high throughput }
$$

Matching Output Queueing with Input- and Output- Queueing

Fact To match output queueing, with FIFO input queues:

$$
k=N
$$

Fact To match output queueing, with virtual output queues:

$$
k=4 \text { is sufficient }
$$

Conjecture: To match output queueing, with VOQs:

$$
k=2 \text { is sufficient }
$$

1. Accelerating Lookups:

- Label-Swapping
- Longest-matching prefixes

2. Switched Backplanes

- Input Queueing
- Theory
- Unicast
- Multicast
- Fast Buffering
- Speedup
3.Our main project: The Tiny Tera

