
Software-defined

Networking

Nick McKeown

nickm@stanford.edu

Infocom, April 2009

Part 1: Inside the box

Switch and Router Design

Part 2: Outside the box

Software-defined networking

Hardware

Datapath

Router

Software

Control

Management: CLI, SNMP

Routing Protocols: OSPF, ISIS, BGP

Per-packet: Lookup, switch, buffer

IP Address Lookup

& Classification

Crossbar

Scheduler

How big should buffers be? [1/ N]

How to build really fast buffers? [Nemo]

Which schedulers give 100% throughput? [MWM]

Which schedulers are practical in hardware? [iSLIP]

How to schedule multicast? [ESLIP]

How to run the scheduler slower? [PPS]

How to avoid scheduling altogether? [VLB]

How to emulate an output queued switch? [MUCFA]

How to lookup quickly in hardware? [24-8]

Heuristic classification algorithms [HiCuts]

Three Open Topics

1. There’s something special about

“2x speedup”

2. Deterministic (instead of probabilistic)

switch design

3. Making routers simpler

Three Open Topics

1. There’s something special about

“2x speedup”

A maximal match crossbar scheduler gives

100% throughput [Dai&Prabhakar]

Makes a Clos network strictly non-blocking

[Clos]

Allows a CIOQ switch to precisely emulate an

output-queued switch [Chuang]

Three Open Topics

1. There’s something special about

“2x speedup” (contd.)

Allows a parallel stack of small switches to

precisely emulate one big switch [Iyer]

Valiant Load-Balanced switch (or network)

can give 100% throughput [Valiant]

Related observations

“2x speedup” is key for both deterministic &

probabilistic systems

A maximum size bipartite match is at most

twice the size of a maximal match

A switch has two simultaneous constraints:

input and output

Local “selfish” routing decisions cost twice as

much as “global” ones [Roughgarden]

Three Open Topics

1. There’s something special about

“2x speedup”

2. Deterministic (instead of probabilistic)

switch design

We need more analytical tools for “mimicking”

Generalized pigeon-hole principles

3. Making routers simpler

Three Open Topics

1. There’s something special about

“2x speedup”

2. Deterministic (instead of probabilistic)

switch design

1. Making routers simpler

Million of lines

of source code

5389 RFCs Barrier to entry

500M gates

10Gbytes RAM

Bloated Power Hungry

Many complex functions baked into the infrastructure
OSPF, BGP, multicast, differentiated services,
Traffic Engineering, NAT, firewalls, MPLS, redundant layers, …

We have lost our way

Hardware

Datapath

Router

Software

Control

Process of innovation

Almost no technology transfer

from academia

Deployment

Idea Standardize

Wait 10 years

Personal regret

I wish I had said it sooner and louder

Our “dumb, minimal”

datapath turned into a

bloated 1960s mainframe!

The essence of my talk (1 of 2)

Hardware Substrate

The PC industry found a simple, common,

hardware substrate (x86 instruction set)

Software-definition

Innovation exploded on top (applications) and

in the infrastructure itself (operating systems,

virtualization)

Open-source

100,000s of developers blew apart the

standards process, accelerated innovation

The essence of my talk (2 of 2)

It is up to us to make it happen.

Until we (someone) does, it remains ossified.

Let’s define the substrate.

Hardware

Substrate

Open Source

Culture

Software-Defined

Network

Part 1: Inside the box

Part 2: Outside the box

The need for a substrate

The inevitability of software-defined

networking

Computer

Application

Computer

Application Application

OS

OS abstracts hardware substrate

 Innovation in applications

x86

(Computer)

Windows

(OS)

ApplicationApplication

Linux
Mac

OS

x86

(Computer)

Windows

(OS)
or or

ApplicationApplication

Simple, common, stable, hardware substrate below

+ Programmability

+ Competition

 Innovation in OS and applications

Linux
Mac

OS

x86

(Computer)

Windows

(OS)
or or

ApplicationApplication Windows

(OS)
Windows

(OS)
Linux

Mac

OS

x86

(Computer)

Windows

(OS)

AppApp

LinuxLinux
Mac

OS
Mac

OS

Virtualization

App

Simple, common, stable, hardware substrate below

+ Programmability

+ Strong isolation model

+ Competition above

 Innovation in infrastructure

A simple stable common substrate

1. Allows applications to flourish

Internet: Stable IPv4 lead to the web

2. Allows the infrastructure on top to be

defined in software

Internet: Routing protocols, management, …

3. Rapid innovation of the infrastructure itself

Internet: er...? What’s missing? What is the

substrate…?

Mid-1990s:

“To enable innovation in the

network, we need to program on

top of a simple hardware

datapath”

Problems: isolation, performance,

complexity

Active networking

Late-1990s:

“To enable innovation in the

network, we need the datapath

substrate to be programmable”

Problem: Accelerated complexity

of the datapath substrate

Network processors

(Statement of the obvious)

In networking, despite several attempts…

We’ve never agreed upon a clean separation

between:

1. A simple common hardware substrate

2. And an open programming environment on top

But things are changing fast in

data centers and service provider networks.

Observations

Prior attempts have generally

1. Assumed the current IP routing substrate

is fixed, and tried to program it externally

Including the routing protocols

2. Defined the programming and control

model up-front

But to pick the right x86 instruction set, Intel

didn’t define Windows XP, Linux or VMware

We need…

1. A clean separation between the substrate

and an open programming environment

2. A simple hardware substrate that

generalizes, subsumes and simplifies the

current substrate

3. Very few preconceived ideas about how

the substrate will be programmed

4. Strong isolation

New function!

Operators, users, 3rd party developers, researchers, …

Step 1:
Separate intelligence from datapath

We need…

1. A clean separation between the substrate

and an open programming environment

2. A simple hardware substrate that

generalizes, subsumes and simplifies the

current substrate

3. Very few preconceived ideas about how

the substrate will be programmed

4. Strong isolation

Step 2: Cache decisions in minimal

flow-based datapath

“If header = x, send to port 4”

Flow

Table

“If header = ?, send to me”

“If header = y, overwrite header with z, send to ports 5,6”

1.

Unicast

2.
Multicast

4.

Waypoints
 Middleware

 Intrusion detection

 …

3.

Multipath
 Load-balancing

 Redundancy

Types of action

 Allow/deny flow

 Route & re-route flow

 Isolate flow

 Make flow private

 Remove flow

What is a flow?

 Application flow

 All http

 Jim’s traffic

 All packets to Canada

…

Packet-switching substrate

Payload
Ethernet

DA, SA, etc

IP

DA, SA, etc

TCP

DP, SP, etc

Collection of bits to plumb flows

(of different granularities)

between end points

Properties of a flow-based

substrate

We need flexible definitions of a flow

Unicast, multicast, waypoints, load-balancing

Different aggregations

We need direct control over flows

Flow as an entity we program: To route, to

make private, to move, …

Exploit the benefits of packet switching

It works and is universally deployed

It’s efficient (when kept simple)

Substrate: “Flowspace”

Payload
Ethernet

DA, SA, etc

IP

DA, SA, etc

TCP

DP, SP, etc

Collection of bits to plumb flows

(of different granularities)

between end points

Payload
Header

User-defined flowspace

Flowspace: Simple example

IP SA

IP DA

Single flow All flows from A

A

All flows

between two

subnets

Flowspace: Generalization

Field 2

Field 1

Single flow
Set of flows

Field n

Properties of Flowspace

Backwards compatible

Current layers are a special case

No end points need to change

Easily implemented in hardware

e.g. TCAM flow-table in each switch

Strong isolation of flows

Simple geometric construction

Can prove which flows can/cannot

communicate

A substrate

Flow-based

Small number of actions for each flow

Plumbing: Forward to port(s)

Control: Forward to controller

Routing between flow-spaces: Rewrite

header

Bandwidth isolation: Min/max rate

External open API to flow-table

OpenFlow as a strawman

flow-based substrate

Our Approach
1. Define the substrate

OpenFlow is an open external API to a flow-table

Version 1.0
Defined to be easy to add to existing hardware
switches, routers, APs, …

Timeframe: Now

Version 2.0
OpenFlow-optimized hardware

General “flowspace”

Timeframe: 2011

Our Approach
2. Deploy

Deploy on college campuses

Deploy in national research backbone
networks

Enable researchers to freely innovate on top

OpenFlow Hardware

Cisco Catalyst

6k

NEC IP8800

HP Procurve

5400

Juniper MX-series
WiMax (NEC)

PC Engines

Quanta LB4G More coming soon...

An OpenFlow Controller

Martin

Casado

Scott

Shenker

“Nicira” created NOX controller

Available at http://NOXrepo.org

Controller

http://NOXrepo.org

OpenFlow Basics

Ethernet Switch

Data Path (Hardware)

Control PathControl Path (Software)

Data Path (Hardware)

Control Path OpenFlow

OpenFlow Controller

OpenFlow Protocol (SSL)

OpenFlow Basics (1)

Rule

(exact & wildcard)
Action Statistics

Rule

(exact & wildcard)
Action Statistics

Rule

(exact & wildcard)
Action Statistics

Rule

(exact & wildcard)
Default Action Statistics

Exploit the flow table in switches, routers, and chipsets

Flow 1.

Flow 2.

Flow 3.

Flow N.

Flow Table Entry
OpenFlow Protocol Version 1.0

Switch

Port

MAC

src

MAC

dst

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

sport

TCP

dport

Rule Action Stats

1. Forward packet to port(s)

2. Encapsulate and forward to controller

3. Drop packet

4. Send to normal processing pipeline

+ mask what fields to match

Packet + byte counters

Examples

Switching

*

Switch

Port

MAC

src

MAC

dst

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

sport

TCP

dport
Action

* 00:1f:.. * * * * * * * port6

Flow Switching

port3

Switch

Port

MAC

src

MAC

dst

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

sport

TCP

dport
Action

00:2e.. 00:1f.. 0800 vlan1 1.2.3.4 5.6.7.8 4 17264 80 port6

Firewall

*

Switch

Port

MAC

src

MAC

dst

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

sport

TCP

dport
Forward

* * * * * * * * 22 drop

Examples

Routing

*

Switch

Port

MAC

src

MAC

dst

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

sport

TCP

dport
Action

* * * * *
5.6.7.

8
* * * port6

VLAN

*

Switch

Port

MAC

src

MAC

dst

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

sport

TCP

dport
Action

* * * vlan1 * * * * *

port6,

port7,

port9

OpenFlowSwitch.org

Controller

OpenFlow
Switch

PC

OpenFlow Usage
Dedicated OpenFlow Network

OpenFlow
Switch

OpenFlow
Switch

OpenFlow

Protocol

Peter’s code

Rule Action Statistics

Rule Action Statistics Rule Action Statistics

Peter

Usage examples

Peter’s code:
Static “VLANs”

His own new routing protocol: unicast, multicast, multipath, load-
balancing

Network access control

Home network manager

Mobility manager

Energy manager

Packet processor (in controller)

IPvPeter

Network measurement and visualization

…

Separate VLANs for Production

and Research Traffic

Normal L2/L3 Processing

Flow Table

Production VLANs

Research VLANs

Controller

Virtualize OpenFlow Switch

Normal L2/L3 Processing

Flow Table

Flow Table

Flow Table

Researcher A VLANs

Researcher B VLANs

Researcher C VLANs

Production VLANs

Controller A

Controller B

Controller C

OpenFlow
Switch

OpenFlow

Protocol

OpenFlow FlowVisor

& Policy Control

Craig’s

Controller

Heidi’s

Controller
Aaron’s

Controller

OpenFlow

Protocol

Virtualizing OpenFlow

OpenFlow
Switch

OpenFlow
Switch

OpenFlow

Protocol

OpenFlow

FlowVisor & Policy Control

Broadcast
Multicast

OpenFlow

Protocol

http

Load-balancer

Virtualizing OpenFlow

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

Windows

(OS)
Windows

(OS)
Linux

Mac

OS

x86

(Computer)

Windows

(OS)

AppApp

LinuxLinux
Mac

OS
Mac

OS

Virtualization

App

Simple, common, stable, hardware substrate below

+ Programmability

+ Strong isolation model

+ Competition above

 Faster innovation

Controller

1

AppApp

Controller

2

Virtualization (FlowVisor)

App

OpenFlow

Controller

1
Controller

1

Controller

2
Controller

2

OpenFlow Deployment

OpenFlow Deployments

Stanford Deployments

Wired: CS Gates building, EE CIS building,

EE Packard building

WiFi: 100 OpenFlow APs across SoE

WiMAX: OpenFlow service in SoE

Other deployments

Internet2 (NetFPGA switches)

JGN2plus, Japan (NEC switches)

10-15 research groups have switches

OpenFlow Deployments
Plans in 2009-10

Campus deployments

Lab + production use

“Enterprise GENI” (NSF/GPO)

Backbone deployments

National research backbones

Research + Production use

How to get involved (1)

Visit http://OpenFlowSwitch.org

Experiment with reference switches

Linux soft switch

NetFPGA hardware switch

Explore with your network administrator/CIO

about trial production deployment

Look at prototype commercial hardware

http://OpenFlowSwitch.org

How to get involved (2)

Experiment with controllers

Simple test controllers

NOX: http://NOXrepo.org

Add a new experiment/feature

Run a class

http://NOXrepo.org

Thank You!

