
Aster*x: Load-Balancing Web Traffic over Wide-Area
Networks

Nikhil Handigol⋆, Srini Seetharaman†, Mario Flajslik⋆, Aaron Gember‡,
Nick McKeown⋆, Guru Parulkar⋆, Aditya Akella‡, Nick Feamster⋄,

Russ Clark⋄, Arvind Krishnamurthy×, Vjekoslav Brajkovic×, Tom Anderson×

⋆ Stanford University, † Deutsche Telekom R&D Lab USA,
‡ University of Wisconsin-Madison, ⋄ Georgia Tech, × University of Washington

ABSTRACT

Effective load-balancing systems for services hosted in un-
structured networks need to take into account both the con-
gestion of the network and the load on the servers. In this
whitepaper, we propose a comprehensive load-balancing so-
lution that works well for such networks. The system we
propose, called Aster*x, tries to minimize response time by
controlling the load on the network and the servers using
customized flow routing.

We hope to use the GENI infrastructure to understand
how Aster*x works within a combined network and compu-
tation slice spanning multiple campuses across the country;
the GENI infrastructure is well-suited for this purpose be-
cause of the distributed and realistic nature of the comput-
ing and networking substrate. Besides the base behavior,
we plan to investigate the effect of dynamically adding and
removing computing resources to the system, increasing the
request arrival rate, altering the CPU or network load of
each request, and changing load-balancing algorithms.

Keywords:
Load balancing, OpenFlow, Architecture, Unstructured

1. MOTIVATION

It is common for large web sites to balance load over many
HTTP servers, and there exist commercial products to do
this [1, 2]. Load-balancing may be oblivious (e.g., spread-
ing the requests equally over all servers, without regard for
their load), or stateful (e.g., sending requests to the least-
loaded server). In a data-center or a dedicated web-hosting
service, the HTTP servers are connected by a regular, over-
provisioned network; the load-balancer usually does not con-
sider the network state when load-balancing across servers.

However, this simplistic scenario does not hold for un-
structured networks, such as enterprise and wide-area net-
works, that are not custom-built for running server farms.
In such unstructured networks, the substantial background
traffic and the potential topological biases can significantly
affect the performance of network-oblivious load-balancing
(our baseline), and inflate the response time (defined as the
duration from issuing the HTTP request to the complete
receipt of the response).

In our work, we ask the question: “If we host a service
across many HTTP servers spanning multiple campus net-
works, what is the best way to balance load so as to minimize
the client response time?”. In particular, we take into ac-
count the congestion of the network, the location, and the
load on the servers, and, then, control the load on the net-

Figure 1: The frontend GUI shows the up-to-date
state of the system and allows the user to control
various parameters. The state of each server can be
toggled by clicking. OpenFlow channels requests to
different servers, or through different paths to the
same server.

work and the servers to try to minimize response time.
We propose a load-balancer, called Aster*x, that balances

load over arbitrary unstructured networks, and tries to min-
imize the average response time. The system allows oper-
ators to increase the capacity of the web service by simply
plugging in computing resources and switches in an arbi-
trary manner. In response, the Aster*x controller imple-
menting an integrated optimization algorithm we developed,
automatically expands its view of the network, and appro-
priately shares the load over the added devices.

2. DEMONSTRATION

We plan to demonstrate Aster*x in action within a GENI
slice spanning at least 3 university campuses across the coun-
try. Web servers are hosted over PlanetLab nodes intercon-
nected by an OpenFlow network [14, 16]. The OpenFlow
slice is remotely controlled by a NOX-based Aster*x con-
troller that runs on a separate PC [10, 15]. HTTP-based
client requests are generated by several clients from multi-
ple locations.

In our demonstration, we will show the performance of our



Figure 2: A screenshot of the frontend GUI of the
Plug-n-Serve demonstration at GEC-6, 2009.

algorithm and compare it with that of oblivious and stateful
load-balancing approaches. Figure 1 shows a snapshot of the
frontend GUI provided by Aster*x. It captures three main
aspects of the system, namely:

• Up-to-date state of the overall system: The load on
the servers, and the congestion of the network links
and switches.

• The average response time for the requests as a time-
series.

• The effect of dynamically adding or removing servers
and network links on response time.

The GUI allows us to vary the request arrival rate. We can
also vary the work brought by each new request, based on
whether the request adds more load to the CPU (e.g. com-
putation intensive requests) or to the network (e.g. for high
bandwidth data from the servers, such as video). Lastly, the
GUI allows us to change the load-balancing algorithm.

3. WHAT’S NEW?

An older version of Aster*x, called Plug-n-Serve, has been
demonstrated in the past at SIGCOMM, 2009 [11] (Fig. 1)
and GEC-6, 2009 (Fig. 2). The previous demos showcased
the Aster*x architecture and its performance in a local area
network. While the proposed demo/experiment builds on
the two successful previous demos, it will differ significantly
from them in the following ways:

• The GENI infrastructure - Aster*x will run on a
GENI slice comprising OpenFlow-based network el-
ements and PlanetLab-based computation elements.
The demo will highlight the benefits of a nationwide
integrated testbed like GENI, as it brings together the
networking and computation substrate under a single
experiment.

• Scale - It will run over a slice spanning at least 3
university campuses across the United States. This
will be at a much larger scale than the previous ones.

• Client diversity - It will also showcase clients using
the load-balanced web-service from multiple locations
in the country.

• Algorithms - It will also evaluate the novel algo-
rithms developed for load-balancing traffic in wide-
area networks.

4. RESEARCH IMPLICATIONS

The Aster*x project has research implications much be-
yond the demonstration itself. Over the past decade there
has been a change in the way content is hosted and served in
the Internet. To meet growing demand, and minimize access
time, service is replicated across multiple servers in possibly
multiple locations. Content Distribution Networks (CDN),
such as those run by Akamai [3], Limelight [13], and Ama-
zon [4] serve content from thousands of servers around the
world. Some large network operators have built their own
CDNs to generate revenues from content customers [5, 7, 12].
Service replication is not limited to just simple web-content.
Novel services like Google DNS [9] (designed to accelerate
browsing experience) replicate and serve DNS records from
many servers. Protocols such as OPES and ESI [6, 8] are
used to allow application servers to cache generated content.
Large cloud service providers, such as Google and Yahoo,
use a global network of datacenters to ensure low latency
for their clients. Replicated content hosting and delivery
and load-balancing over the wide-area is, therefore, an im-
portant area of revenue and research. We are likely to see a
number of projects and publications on both novel systems
and algorithms for wide-area load-balancing in the near fu-
ture. Aster*x is one such proposed project that falls in this
category.

Successful evaluation and adoption of the load-balancing
systems and algorithms faces two major hurdles:

• Infrastructure - Experiments to evaluate the per-
formance of the algorithms need to be run on “real”
wide-area networks. While it is possible to connect
multiple small network islands via tunneled communi-
cation channels (a non-trivial effort in itself), the fact
remains that these are not “real” wide-area networks
and the performance numbers cannot be realistic.

• Reconfigurable topologies - The experiments will
also need to show that the algorithms work on a large
variety of topologies. Building a large number of wide-
area topologies is almost infeasible today - both eco-
nomically and practically. While this problem has
been solved to some extent for distributed systems
with PlanetLab [17] and Emulab [18], there exists no
equivalent solution for networking systems today.

The GENI infrastructure helps systems overcome both
the above hurdles. In fact, we believe the GENI infrastruc-
ture is necessary for the performance evaluation of systems
like Aster*x. With experiments on the GENI infrastruc-
ture, systems like Aster*x can make a strong case for them-
selves, leading not only to research publications but also
faster adoption and evolution.

5. DESIGN AND IMPLEMENTATION

All servers in Aster*x are assigned the same IP alias.
When a request arrives for the server IP address, the con-
troller decides which server to route it to and the path it



Feedback
CPU

Network
State

Requests

OpenFlow
controller

Network of 

OpenFlow switches

Net Manager Host Manager

Flow Manager

Content

Figure 3: The main control logic of Aster*x, imple-
mented as an OpenFlow controller, consists of three
functional units.

should take. Once a flow has been allocated to a server, all
the packets in the flow are forwarded at line-rate to that
server by the datapath of one or more deployed switches.

To implement this, Aster*x does the following:

• It determines the current state of the network and the
servers, including the network topology, network con-
gestion, and load on the servers.

• It chooses the appropriate server to direct requests to,
and controls the path taken by packets in the network,
so as to minimize the response time.

We use the OpenFlow architecture to measure the state
of the network, and to directly control the paths taken by
new HTTP requests. OpenFlow is an open routing plat-
form which provides vendor-independent means to control
the way switches route traffic. The Aster*x controller is ca-
pable of managing a large network of switches and servers.

To allocate web requests, Aster*x relies on the following
three functional units, as illustrated in Figure 3:

• Flow Manager: This module is an OpenFlow con-
troller that manages and routes flows based on the
specific load-balancing algorithm chosen. This con-
troller also handles the necessary Layer 2 protocols
(viz., DHCP, ARP, STP). The load-balancing algo-
rithm is implemented in this module.

• Net Manager: This module is responsible for probing
the network, and keeping track of the network topol-
ogy and its utilization levels. It queries switches pe-
riodically to get link usage and monitors the latency
experienced by packets traversing the links.

• Host Manager: This component monitors the state
and load at individual servers in the system, and re-
ports it to the Flow Manager. It also detects new
servers plugged into the load-balancer system.

6. CONCLUDING REMARKS

We propose Aster*x, a server load-balancing system that
effectively reduces response time of web services in unstruc-
tured networks built with cheap commodity hardware. Us-
ing OpenFlow to keep track of state and to control the routes

allows the system to be easily reconfigured; the network op-
erator, thus, can add or remove capacity by turning hosts on
or off, and add or remove path diversity by turning switches
on or off.

We plan to deploy Aster*x, with its many tunable options,
within a GENI slice to obtain insights into the effectiveness
of the load-balancing algorithm we developed. Furthermore,
this trial deployment will allow us to identify and under-
stand scenarios where it is beneficial to have information of
the network topology and the level of background load on
the resources. The GENI infrastructure, with its computing
and networking resources, serves as a crucial platform for
experimentation.

7. REFERENCES
[1] Foundry ServerIron Load Balancer. http://www.

foundrynet.com/products/webswitches/serveriron/.
[2] Microsoft’s Network Load Balancing. http://technet.

microsoft.com/en-us/library/bb742455.aspx.
[3] Akamai Content Distribution Service. www.akamai.com.
[4] Amazon tees up content delivery service. http://news.

cnet.com/8301-1023_3-10045350-93.html.
[5] AT&T Announces New Digital Media Solutions Portfolio.

http://www.att.com/gen/press-room?pid=4800&
cdvn=news&newsarticleid=25853.

[6] A. Beck, M. Hofmann, H. Orman, R. Penno, and A. Terzis.
Requirements for open pluggable edge services (opes). RFC
3836, 2004.

[7] T-Mobile parent company launches CDN. http://www.
networkworld.com/news/2009/
012609-deutsche-telecom-cdn-services.html.

[8] Edge server includes (esi) language specification. http://
www.w3.org/TR/esi-lang.

[9] Introducing Google Public DNS. http://googleblog.
blogspot.com/2009/12/introducing-google-public-dns.
html.

[10] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an operating
system for networks. In ACM SIGCOMM Computer
Communication Review, July 2008.

[11] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown,
and R. Johari. Plug-n-Serve: Load-Balancing Web Traffic
using OpenFlow. In ACM SIGCOMM Demo, August 2009.

[12] Level3 Content Delivery Network. http://www.level3.com/
index.cfm?pageID=36.

[13] Limelight Networks - Content Delivery Network. www.
limelightnetworks.com.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review,
38(2):69–74, April 2008.

[15] NOX - An OpenFlow Controller. http://www.noxrepo.org.
[16] The OpenFlow Switch Consortium. http://www.

openflowswitch.org.
[17] An open platform for developing, deploying, and accessing

planetary-scale services. http://www.planet-lab.org/.
[18] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed
systems and networks. In Proc. of the Fifth Symposium on
Operating Systems Design and Implementation, pages
255–270, Boston, MA, Dec. 2002. USENIX Association.

http://www.foundrynet.com/products/webswitches/serveriron/
http://www.foundrynet.com/products/webswitches/serveriron/
http://technet.microsoft.com/en-us/library/bb742455.aspx
http://technet.microsoft.com/en-us/library/bb742455.aspx
www.akamai.com
http://news.cnet.com/8301-1023_3-10045350-93.html
http://news.cnet.com/8301-1023_3-10045350-93.html
http://www.att.com/gen/press-room?pid=4800&cdvn=news&newsarticleid=25853
http://www.att.com/gen/press-room?pid=4800&cdvn=news&newsarticleid=25853
http://www.networkworld.com/news/2009/012609-deutsche-telecom-cdn-services.html
http://www.networkworld.com/news/2009/012609-deutsche-telecom-cdn-services.html
http://www.networkworld.com/news/2009/012609-deutsche-telecom-cdn-services.html
http://www.w3.org/TR/esi-lang
http://www.w3.org/TR/esi-lang
http://googleblog.blogspot.com/2009/12/introducing-google-public-dns.html
http://googleblog.blogspot.com/2009/12/introducing-google-public-dns.html
http://googleblog.blogspot.com/2009/12/introducing-google-public-dns.html
http://www.level3.com/index.cfm?pageID=36
http://www.level3.com/index.cfm?pageID=36
www.limelightnetworks.com
www.limelightnetworks.com
http://www.noxrepo.org
http://www.openflowswitch.org
http://www.openflowswitch.org
http://www.planet-lab.org/

	Motivation
	Demonstration
	What's New?
	Research Implications
	Design and Implementation
	Concluding Remarks
	References

