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Abstract

Operating networks is hard. When a network goes down, network administrators have

only a rudimentary set of tools at their disposal to track down the root cause of the

outage. As networks have become more complicated, with more network protocols

modifying the forwarding behavior below, and more application types running above,

the debugging toolkit has remained essentially unchanged, with little or no innovation

in years. Today, skilled network administrators frequently use manual, heuristic-

driven procedures to configure and maintain networks. Humans are involved almost

every time something goes wrong, and we are still far from an era of automated

troubleshooting.

In this dissertation, I show how packet histories—the full story of every packet’s

journey through the network—can simplify network diagnosis. A packet history is the

route a packet takes through a network, combined with the switch state and header

modifications it encounters at each switch on the route. Using packet history as the

core construct, I propose an abstraction for systematic network troubleshooting, a

framework with which to express the observed error symptoms and pose questions to

the network.

To demonstrate the usefulness of packet histories and the practical feasibility

of constructing them, I built NetSight, an extensible platform that captures packet

histories and enables applications to concisely and flexibly retrieve packet histories

of interest. Atop NetSight I built four applications that illustrate its flexibility: an

interactive network debugger, a live invariant monitor, a path-aware history logger,

and a hierarchical network profiler.

On a single modern multi-core server, NetSight can process packet histories for

v



the traffic of multiple 10 Gb/s links. For larger networks, NetSight scales linearly

with additional servers. To scale it even further to bandwidth-heavy enterprises and

datacenter networks, I present two optimized NetSight variants using straightforward

additions to switch ASICs and hypervisor-based switches.
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Chapter 1

Introduction

1.1 Motivation

Networks today have reached “utility” status everywhere. Just as the utility of elec-

tricity is required to power our lights and equipment, and oil or gas insures our heat

in the winter, the network infrastructure of an enterprise must always be in place

to maintain its Internet access, phone system, and a host of other mission-critical

applications.

However, operating networks is hard. A network is a distributed system whose

overall behavior is governed by an internal state, called the forwarding state, that is

distributed across switches and routers. The logic that manages this state, called the

control plane, comprises multiple network applications, all changing the forwarding

state simultaneously in complex, distributed, and unpredictable ways.

The network as designed today is essentially a black box. The exact forwarding

state and how it is changing are all hidden under the hood. As a consequence, despite

the increase in protocols modifying the forwarding state in a distributed fashion, the

network debugging toolkit has remained essentially unchanged. When a network

goes down, network administrators have only a rudimentary set of tools at their

disposal (traceroute, ping, SNMP, NetFlow, sFlow) to track down the root cause

of the outage. Network administrators have become “masters of complexity,” [55]

who use their skill and experience to divine the root cause of each bug. Humans
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are involved almost every time something goes wrong, and we are still far from an

era of automated troubleshooting. This, in turn, leads to longer downtimes, higher

operation costs, and slower adoption of new network applications.

As an example, consider the case of the “ghost machine” problem in the Gates

Computer Science Building at Stanford. After every power outage in the building,

a machine at an unknown location would come online with a conflicting, statically

configured IP address, rendering another machine on the network unavailable. Our

admin lacked the tools to time-efficiently track it down, and therefore, chose to log

into the ghost to shut it off every time. This ghost machine was never found. Another

problem encountered recently at Stanford was a broken WiFi handover, where a host

lost its connectivity when it moved from one access point (AP) to another. The

network admins debugged this issue by running pings, periodically logging switch flow

table entries, and parsing logs of control communication. After hours of debugging,

they diagnosed the (surprisingly simple) root cause: upon handover to the AP, the

flow table entries in the upstream wired switch were not properly updated, sending

incoming packets to the original AP.

1.2 Goal: Systematic Network Troubleshooting

Debugging networks is hard for a reason: the tools available today try to reconstruct

the complex and distributed state of the network in an ad-hoc fashion, even as a

variety of distributed protocols, such as L2 learning and L3 routing, are constantly

changing that state. We could easily diagnose many network problems if we could

ask the network about suspect traffic and receive an immediate answer. For example:

• “Host A cannot talk to Host B. Show me where packets from A intended for B

are going, along with any packet header modifications.”

• “I don’t want loops in my network, even transient ones. Show me every packet

that passes the same switch twice.”

• “Some hosts are failing to grab IP addresses. Show me what is happening to

the DHCP traffic in the network.”
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• “One port is experiencing congestion losses. Show me the traffic source con-

tributing the most to the congestion.”

Unfortunately, we cannot “just ask” these questions today, as our network diagno-

sis tools (1) provide no way to pose such a question, and (2) lack access to the depth

of information needed to return a useful answer. My goal is to develop a systematic

method of network troubleshooting by addressing these two shortcomings.

1.3 Solution Requirements

A solution to achieve our goal of systematic network troubleshooting should have the

following characteristics:

• It should be versatile. Network administrators and network application devel-

opers should be able to troubleshoot a wide range of frequently encountered

problems.

• It should impose minimal constraints on the applications, ideally none.

• It should be scalable to a large enterprise or a datacenter network with hundreds

of switches and multiple Gb/s of traffic.

• It should be practical. We should be able to implement it with only simple

changes to the network hardware.

1.4 Solution Overview

My solution is based on the observation that most network bugs manifest themselves

as errant packet behavior in the dataplane, i.e., when there is a problem, there is an

observable symptom in the form of misbehaving packets. For example, when there

is a forwarding loop in the network, packets take a cyclic path, and when there is a

connectivity problem, packets do not reach their intended destination.
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Building on this observation, my solution monitors packet-forwarding events and

state changes in a consistent fashion, so that starting from error symptoms we can

reconstruct the sequence of events that led to the errant behavior. The solution is

divided into three main parts:

• An abstraction to express the observed error symptoms and pose questions to

the network.

• A platform to monitor network events and collect the necessary information to

support the abstraction.

• Applications built on top of the platform to troubleshoot real-world problems.

1.4.1 Packet History: The Troubleshooting Abstraction

A number of network diagnosis questions, including those mentioned in Section 1.1,

could be answered with an omniscient view of every packet’s journey through the

network. I call this notion a packet history. More specifically,

Definition A packet history is the route a packet takes through a network, combined

with the switch state and header modifications it encounters at each switch on the

route.

A single packet history can be the “smoking gun” that tells us why, when, and where

a network failed, evidence that would otherwise be hidden in gigabytes of control

messages, flow records, and data-plane packet logs. To concisely and flexibly specify

paths, switch state, and packet header fields in packet histories of interest, I developed

a regular-expression-like language called Packet History Filter (PHF).

1.4.2 NetSight: The Troubleshooting Platform

To support the packet history abstraction, I built NetSight, an extensible platform

to capture and filter packet histories of interest. With a view of every packet history

in the network, NetSight supports both real-time and postmortem analysis via an

API based on the Packet History Filter (PHF) language. NetSight assembles packet
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histories using postcards—event records created whenever a packet traverses a switch.

Each postcard contains a copy of the complete packet header, the switch ID, the

input/output ports, and a version of the switch forwarding state that is updated on

every change. The challenge for any system offering packet histories is to efficiently

process a stream of postcards into archived, queryable packet histories. Surprisingly,

a single NetSight server suffices to assemble and store every packet history in many

campus and enterprise networks. To support larger networks, NetSight scales out

on general-purpose servers—increasing its assembly, query, and storage capabilities

almost linearly with the number of processing cores, servers, and disks. The NetSight

prototype that I built works by transparently interposing on the control channel

between switches and controllers.

1.4.3 Troubleshooting Applications

Atop NetSight, I built four applications that illustrate its flexibility: (1) ndb, an

interactive network debugger, (2) netwatch, a live network invariant monitor, (3)

netshark, a network-wide packet history logger, and (4) nprof, a hierarchical network

profiler. They all use the PHF-based NetSight API to query for packet histories

of interest. The problems described previously are a small sample from the set of

problems these applications can help solve.

1.5 Dissertation Scope

One “smoking gun” packet history can single-handedly confirm or disprove a hypoth-

esis about the cause of a network problem by showing events that actually transpired

in the network, along with all relevant states. This method of network analysis nicely

complements techniques that model network behavior [35, 37]. Rather than predict-

ing the behavior of the network on hypothetical packets, NetSight shows the actual

behavior of the network on real packets. Thus, the scope of this dissertation spans:

1. a wide range of people associated with the development and operation of networks—

network operators, control program developers, and switch implementers;
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2. a variety of network problems—errors in firmware, hardware, or control proto-

cols; and

3. a variety of network environments—enterprise, wide-area, and datacenter.

1.6 Dissertation Outline

In this first chapter, I have outlined my motivation for seeking a systematic network

troubleshooting solution and my approach of creating the Packet History construct.

In Chapter 2, I will describe the abstraction for systematic network troubleshoot-

ing, a framework to express the observed error symptoms and pose questions to the

network. The framework is centered around the packet history construct, the com-

plete story of a packet’s journey through the network. I will then describe Packet

History Filter (PHF), a regular-expression-like language to flexibly express and re-

trieve packet histories of interest.

In Chapter 3, I will describe the design and implementation of NetSight, an ex-

tensible network troubleshooting platform to capture and filter packet histories of

interest.

In Chapter 4, I will describe the four applications that I built on top of NetSight—

an interactive network debugger, a live invariant monitor, a path-aware history logger,

and a hierarchical network profiler—to help diagnose real-world problems. I will show

how the applications enable diagnostics that would otherwise be impractical, time-

consuming, or impossible for a network administrator using conventional tools.

In Chapter 5, I discuss the scalability and performance of NetSight, and present

two optimized NetSight variants that will help it to scale to bandwidth-heavy en-

terprises and datacenter networks. NetSight-SwitchAssist moves postcard processing

into switch ASICs, while NetSight-HostAssist spreads postcard and history processing

among all virtualized servers.

In Chapter 6, I discuss the limitations of packet histories and those of NetSight,

along with the opportunities to make troubleshooting a fundamental primitive of the

network.
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Finally, I describe related work in Chapter 7 before concluding in Chapter 8.
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Chapter 2

A Troubleshooting Abstraction

2.1 Motivating Packet Histories

In order to build a systematic troubleshooting framework, we first need a construct

to pose questions and describe the errors. A large class of network problems show up

as errant behavior in the dataplane, packets showing unintended behavior such as not

reaching their intended destination or going around in a loop. This errant behavior,

in turn, is caused by the network state. These two observations lead us to the notion

of a packet history.

In this chapter, I define packet histories, give examples of their utility in construct-

ing network diagnosis tools, and show how Software-Defined Networking (SDN) can

help us collect packet histories in a network.

Packet History Definition. A packet history tells the full story of a packet’s

journey through the network. More precisely, a packet history describes:

• what the packet looked like as it entered the network (headers)

• where the packet was forwarded (switches + ports)

• how it was changed (header modifications)

• why it was forwarded that way (matched flow/actions + flow table).

Figure 2.1 shows an example of a packet history.

9
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packet [dl_src: 0x123, ...]:
switch 1: { inport: p0, outports: [p1]

mods: [dl_dst -> 0x345]
matched flow: 23 [...]
matched table version: 3 }

switch 2: { inport: p0, outports: [p2]
mods: []
matched flow: 11 [...]
matched table version: 7 }

...
switch N: { inport: p0

table miss
matched table version: 8 }

Figure 2.1: A packet history shows the path taken by a packet along with the modi-
fications and switch state encountered by it at each hop.

2.1.1 Why Packet Histories?

Put simply, packet histories provide direct evidence to diagnose network problems,

covering what, where, how, and why. One “smoking gun” packet history can single-

handedly confirm or disprove a hypothesis about the cause of a network problem by

showing events that actually transpired in the network, along with all relevant states.

The stream of packet histories enables diagnostics that would otherwise be imprac-

tical, time-consuming, or impossible for a network administrator using conventional

tools—typically, a combination of control message logs, flow records [16, 48], and

passively captured packets [4, 5, 10].

2.1.2 Bug Stories

To show exactly how packet histories can be used to solve real problems, I next walk

through some of the problems encountered in the production network of the Gates

Building at Stanford, which contains a mix of traditional Ethernet/VLAN-based and

OpenFlow-based [45] switches.
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Ghost machine

After every power outage in the building, a machine at an unknown location would

come online with a statically assigned IP address that conflicted with another ma-

chine, rendering it unreachable. Every time, our local network admin, Charlie, would

log into the “ghost machine” and shut it off, restoring access to the right machine.

Charlie could have manually iteratively searched the MAC learning tables in switches

to locate the port the machine is connected to, but the time required led him to use

the SSH-shutdown shortcut instead.

With packet histories: Charlie could have used the packet histories with the

conflicting IP address to locate the ghost machine and permanently shut it off. This

machine, however, remained a ghost, and was never found.

Incomplete handover

In the OpenFlow portion of the network, when a WiFi host B moved from one access

point to another while running a ping to another host A, the ICMP reply stopped

reaching B. To debug this issue, the admin, Masa, inspected the flow tables of all

the involved switches, as well as the logs of the control communication between the

involved switches and the controller, and manually correlated the two. After multiple

hours of debugging, he diagnosed the (surprisingly simple) root cause: after handover

to the new WiFi access point, the flow table entries in the upstream wired switch

were not updated for the ICMP reply flow, causing the ICMP reply packets to be

sent to the old location of the WiFi host B.

With packet histories: Masa could have uncovered the wrong turn of the mis-

directed ICMP replies by requesting packet histories of all ICMP reply traffic sent

from the IP address of host A.

Race condition bug in a switch

At one point, some users of the OpenFlow deployment observed unexpectedly poor

Web browsing experience. Another admin, Srini, debugged the problem by dumping

the TCP handshake packets—SYN and SYN-ACK—of HTTP sessions at both the
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clients and the servers using tcpdump, then correlated it with the control plane events

using wireshark. The TCP handshake packets showed a surprisingly high drop rate.

The correlation further revealed that the control plane events were as expected. The

packets must not have been properly forwarded by the switches, even though the flow

table of each switch in the network appeared to be accurate.

This loss of the TCP handshake packets caused a poor Web browsing experience,

because the TCP session had to wait for a prolonged TCP timeout before proceeding

further. Since this packet loss behavior was not consistent, Srini hypothesized that

there was a race condition. With this race condition, a packet (the TCP SYN packet)

arriving at the second-hop switch while the switch was in the middle of adding a flow

table entry to forward it, was sometimes dropped. A delay box placed between the

first and the second switch confirmed the diagnosis: packets that were delayed long

enough to give the second switch time to finish adding the flow table entry showed

no SYN drops.

With packet histories: Srini could have used packet histories of all HTTP

traffic from a host to immediately know where the drops were occurring, as well as

to immediately disprove the hypothesis about incorrect flow table configuration. He

could have picked other hosts behind other switches to easily compare their drop rates,

confirm that only one vendor switch suffered the race condition bug, and confirm a fix

from the vendor. A model-based approach would not have been useful in diagnosing

this problem.

FlowVisor Isolation Bugs

FlowVisor [56] is a control-plane proxy that “slices” a network into isolated regions,

by port or by packet headers. Each slice can then be managed by a separate controller

or network application. A load balancer application, Aster*x [25], ran in one such

slice handling all HTTP packets sent to or received from the shared IP address of a set

of replicated web servers. Aster*x required access to ARP packets of its slice, since it

would gratuitously send ARP replies with a dummy MAC address, then dynamically

rewrite the destination MAC address of the subsequent IP packets with that of the

chosen server at the first hop. At one stage in its development, FlowVisor did not have
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the feature to assign ARPs to the right slice because IP addresses are hidden in the

ARP request payload. Consequently, ARP packets were getting handled by another

controller, causing connectivity errors. However, this problem was not immediately

apparent to the administrator, causing him to spend many fruitless hours looking for

bugs in the Aster*x code.

With packet histories: The admin could have used packet histories of the ARP

packets to quickly discover that the requests were being forwarded all the way to

the end hosts, instead of being gratuitously replied to by the Aster*x controller. By

looking at the flow table entries that the ARP packets encountered, the admin could

have figured out that the ARP packets were being handled by the wrong controller.

These examples only touch on the bugs seen in the last few years, and tell the

best stories. The admins encountered many more “standard” errors like improperly

separated VLANs, link failures, and even load balancer bugs [24], all of which could

be diagnosed using packet histories.

2.1.3 Challenges

While the packet history appears to be a useful construct, generating packet histories

in operational networks is not trivial. First, we must be able to view and record the

paths taken by every packet in the network. The bigger challenge is determining the

exact switch state encountered by a packet at each hop. Observing the switch states

from an external vantage point, say by either logging the control messages or querying

the switches for their state, will not guarantee precise state-packet correlation. I argue

that the only place where packets can be correlated with the exact switch state is

the data plane itself. With the lack of concurrency and consistency in distributed

protocols, this problem only gets harder. Finally, the system built to record the

packet histories of all the packets in the network should be scalable. It should be able

to collect, process, and store multiple gigabytes of packet history data per second.
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Figure 2.2: A packet history looks like a string of packet-hop information.

2.1.4 Opportunities with SDN

Software-Defined Networking (SDN), which refactors the relationship between net-

work control and data planes, has a number of useful properties that can aid in

overcoming these challenges: (1) standardized representation of switch state (flow

tables), (2) a standardized interface to manage switch state (e.g., the OpenFlow pro-

tocol), and (3) a logically centralized control plane to manage the state. In Chapter 3,

I show how we can leverage all three properties to precisely correlate packets with the

state used to forward them. Next, I propose a language for specifying and filtering

packet histories of interest.

2.2 Packet History Filter

The next challenge is to provide a framework for troubleshooting applications to

query the network for packet histories of interest. As shown in Figure 2.2, a packet

history essentially looks like a string of packet-hop information. Regular expression

provides a concise and flexible means to “match” (specify and recognize) strings of

text, such as particular characters, words, or patterns of characters [34]. Inspired

by the flexibility of regular expressions at parsing strings, I developed a regular-

expression-like language—Packet History Filter (PHF)—to express interest in packet
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histories with specific paths, encountered switch state, and header fields.

2.2.1 Postcard Filters

The building block of Packet History Filter is the postcard filter (PF). A PF is a

filter to match a packet at a switch. Syntactically, a PF is a conjunction of filters on

various qualifiers: packet headers, switch ID (known as datapath ID, or dpid), input

port, output port, and the switch state encountered by the packet (referenced by a

“version” as described in Chapter 3). A PF is written as follows:

--bpf [not] <BPF> --dpid [not] <switch ID> --inport [not] <input port>

--outport [not] <output port> --version [not] <version>

where, <BPF> is a Berkeley Packet Filter expression. The not’s are optional and

negate matches. A PF must have at least one of the above qualifiers. For example,

a PF for an IP packet with source IP address A, entering switch S at any input port

other than port P is written as:

--bpf "ip src A" --dpid S --inport not P.

2.2.2 Packet History Filter Grammar

A Packet History Filter is a regular expression built with PFs, where each PF is

enclosed within double braces. Appendix A shows the complete PHF grammar. In

addition to the simple regular expressions, PHFs also include extended regex features

such as backreferences [14]. Backreferences (written as \<number>), can be used

to match the same postcards that matched the <number>th group in the PHF. An

example use case of backreferences is in loop detection.

2.2.3 Packet History Filter Examples

The following example PHFs, built using PFs X and Y, match packets that:

• start at X: ^{{X}}

• end at X: {{X}}$
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• go through X: {{X}}

• traverse link XY: {{X}}{{Y}}

• go through X, and later Y: {{X}}.*{{Y}}

• start at X, never reach Y: ^{{X}}[^{{Y}}]*$

• experience a loop: (.).*(\1)

Using PHFs, we can describe a whole range of error conditions commonly encoun-

tered by network operators. For example:

• Error class: Reachability

Symptom: Host A is not able to talk to host B.

PHF: ^{{--bpf "ip src A and dst B" --dpid X --inport p1}}

[^{{--dpid Y --outport p2}}]*$

where, (X, p1) is the location of A and (Y, p2) is the location of B.

• Error class: Isolation

Symptom: Host A should not be able to talk to host B, but it is doing so.

PHF: ^{{--bpf "ip src A and dst B" --dpid X --inport p1}}

.*{{--dpid Y --outport p2}}$

where, (X, p1) is the location of A and (Y, p2) is the location of B.

• Error class: Forwarding Loop

Symptom: Packet going through same switch twice.

PHF: (.).*(\1)

2.2.4 Benefits and Limitations of Packet History Filter

The regular-expression-based Packet History Filter language has the following bene-

fits:

• It is comprehensible. PHF captures semantics understandable to humans (e.g.,

packets not reaching their destination, or packets going through a forwarding

loop).
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• It is expressive. More specifically, it covers the set of languages known as regular

languages [28].

• It is intuitive. Regular expressions are extensively used in scripting and pro-

gramming. Thus, network administrators are already equipped with the neces-

sary skills to use PHFs.

The PHF language also has its limitations. Because it is based on regular expres-

sions, it can not describe richer languages such as context-free languages, also known

as Type-2 languages [28]. However, in practice, Packet History Filter is sufficiently

expressive to describe most error symptoms encountered by network administrators.

In the next chapter, I will describe the design and implementation of a system to

capture and filter packet histories of interest.
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Chapter 3

NetSight: A Troubleshooting

Platform

In this chapter, I present the second major component of the systematic troubleshoot-

ing solution: NetSight, a platform to monitor network events and to collect the nec-

essary information to support the Packet History abstraction. In short, NetSight

collects, stores, and filters all packet histories, and presents a Packet History Filter-

based API to troubleshooting applications, upon which one can build a range of

applications to troubleshoot networks. In the remainder of the chapter, I describe

the design and implementation of NetSight, and how NetSight handles some of the

corner cases of operation. Finally, I describe the NetSight API and show how it

interacts with the troubleshooting applications built on top of it.

3.1 How NetSight Works

The astute reader is likely to doubt the scalability of any system that attempts to

store the header of every packet traversing a network, along with its corresponding

path, state, and modifications, as well as apply complex filters to it. This is a lot of

data to forward, let alone process and archive.

19



20 CHAPTER 3. NETSIGHT: A TROUBLESHOOTING PLATFORM



 


 

Figure 3.1: A postcard contains the packet hearder, switch ID, input/output ports,
and the version of the switch state encountered by the packet.

Hence, NetSight is designed from the beginning to scale out and see linear im-

provements with increasing compute and storage resources. All the processing el-

ements of NetSight, such as table lookups, compression operations, and querying,

are simple enough to enable hardware implementations. As an existence proof that

such a system is indeed feasible, the implementation described in Section 3.2 and

evaluated in Section 5.3 can perform all packet history processing and storage steps

for a moderately-sized network on a single server. For faster networks, this number

increases linearly with the number of servers, as shown in Chapter 5.

3.1.1 NetSight Philosophy

NetSight assembles packet histories using postcards ; event records sent out whenever

a packet traverses a switch. Each postcard contains the packet header, switch ID,

input/output ports, and current version of the switch state, as shown in Figure 3.1.

Combining topology information with the postcards generated by a packet, we can

reconstruct the complete packet history: the exact path taken by the packet along

with the state and header modifications encountered by it at each hop along the path.

An alternative way to assemble packet histories is to use a passport-based ap-

proach, where history information is directly appended to the original packet at each

hop. Unlike the passport-based design, NetSight’s postcard-based design decouples

the fate of packets from the fate of their history information. In addition, placing

minimal trust in the data-plane simplifies the design and does not risk affecting the
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Figure 3.2: NetSight architecture.

actual packet’s forwarding behavior.

Compared to passports, postcards require more network bandwidth and additional

processing to assemble packet history from out-of-order postcards. The challenges are

to avoid (or at least minimize) changes to the forwarding hardware, to keep network

traffic and storage rates reasonable, and to scale these steps using multiple servers. I

first explain how NetSight works in the common case, where:

1. the network does not drop postcards;

2. the network does not modify packets; and

3. all packets are unicast.

Later, Section 3.3 describes how NetSight handles these edge cases.
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3.1.2 System Architecture

Figure 3.2 sketches the architectural components of NetSight. Similar to MapReduce,

NetSight employs a central coordinator to manage multiple workers (called NetSight

servers). Troubleshooting applications issue PHF-based triggers and queries to the

coordinator, which then returns a stream or batch of matching packet histories. The

coordinator connects to each element in the network (e.g., using the switch CLI or by

interposing on the control channel) to (1) set up the transmission of postcards from

the forwarding elements to the NetSight servers and (2) monitor the state changes

in the switches. State change monitoring can be implemented by modifying switch

firmware or interposing on the control channel of externally-controlled switches as

in OpenFlow/SDN [24]. Finally, the coordinator performs periodic liveness checks,

broadcasts queries and triggers, and communicates topology information for the work-

ers to use when assembling packet histories. The network topology can be obtained

from reading a configuration file, asking the control plane, or dynamic learning (e.g.,

using the Link Layer Discovery Protocol (LLDP) [42]).

3.1.3 NetSight Design

In brief, NetSight turns postcards into packet histories. To explain this process, I

now follow the steps performed inside the NetSight servers, as shown in Figure 3.3.

Postcard Generation

Goal: to record all information relevant to a forwarding event and send it for analysis.

As a packet enters a switch, the switch creates a postcard by duplicating the

packet, truncating it to the minimum packet size, marking it with relevant state,

and forwarding it to a NetSight server. The marked state includes the switch ID,

the output port to which this packet is about to be forwarded, and a version ID

representing the exact state of this switch when the packet was forwarded. The

“original packet” remains untouched, and continues on its way.

This design requires that switches implement the above sequence of actions to

generate postcards. Switches already perform similar packet duplication actions to
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Figure 3.3: Processing flow used in NetSight to turn packets into packet histories
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divert flows for security purposes (e.g. DMCA violations), lawful intercept, or intru-

sion monitoring. RSPAN is an example of a mechanism that could be repurposed

because it collects all the traffic on one or more ports, encapsulates it, and forwards

it to a remote destination [31].

Postcard Collection

Goal: to send all postcards of a packet to one server, so that its packet history can

be assembled.

In order to reconstruct packet histories, NetSight needs to collect all postcards cor-

responding to a single packet on a single server. To scale processing, NetSight needs

to ensure that these groups of postcards are evenly spread across the set of avail-

able servers. NetSight achieves this by shuffling the postcards between the NetSight

servers, à la MapReduce, using a hash function that ensures “postcard locality.”

To do this, when a postcard arrives at a NetSight server, it is temporarily placed in

a data structure called the Postcard Stage. The Postcard Stage consists of a collection
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of lists, one per NetSight server, each containing postcards that will eventually go to

that server. NetSight picks the destination server for a postcard based on a hash

of the postcard’s flow ID (the (srcip, dstip, srcport, dstport, protocol) 5-

tuple) and enqueues it in the corresponding list of Postcard Stage. Thus, all the

postcards of all the packets belonging to a flow are assembled at one NetSight server.

Postcard collection is organized into “rounds,” during which a Postcard Stage fills

up. When a round is over, servers empty their Postcard Stages and send postcard lists

to their final destination, where the corresponding packet histories can be assembled

and archived. The Postcard Stage provides an opportunity to compress postcard data

before shuffling it and sending it across the network, by exploiting the redundancy

of header values, both within a flow and between flows. By sending the postcards of

all the packets belonging to a flow to a single destination server, NetSight improves

the effectiveness of this compression. Section 3.2 details the fast network-specific

compression technique employed by NetSight to reduce network bandwidth usage.

History Assembly

Goal: to assemble packet histories from out-of-order postcards.

Packet histories must be properly ordered for both humans and PHF matching

engines to make sense of them. Postcards arrive without timestamps, obviating the

need for switches to use fine-grained time synchronization methods such as Precision

Time Protocol [30]. They can also arrive out-of-order due to varying propagation and

queuing delays from switches to NetSight servers. Hence, NetSight must use topology

information to make sense of postcard ordering.

When a NetSight server receives the complete round of postcard lists from all other

servers, it decompresses and merges each one into the Path Table, a data structure that

helps combine all postcards for a single packet into a group. To identify all postcards

corresponding to a packet, NetSight combines immutable header fields such as IP ID,

fragment offset, and TCP sequence number fields into a “packet ID,” which uniquely

identify a packet within a flow. The Path Table is simply a hash table indexed by

the packet ID, where values are lists of corresponding postcards.

The NetSight server extracts these postcard groups, one at a time, to assemble
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# Input: pcard_lst (Postcards with a given packet ID)
# Input: topo (Topology)
pcard_table = HashTable(dpid -> pcard)
populate(pcard_table, pcard_list)
for i in (0, len(pcard_lst)):

pcard = pcard_lst[i]
dpid, outport = get_metadata(pcard)
nbr = get_neighbor(topo, dpid, outport)
if nbr in pcard_table:

pcard->next = nbr
nbr->prev = pcard

for i in (0, len(pcard_lst)):
pcard = pcard_lst[i]
if (pcard->prev == NULL):

return pcard

Figure 3.4: Topological sort algorithm to assemble postcards into packet history.

them into packet histories. For each group, NetSight then performs a topological sort,

using switch IDs and output ports, along with topology data. The resulting sorted

list of postcards is the packet history. This sort, shown in Figure 3.4, runs in O(p),

where p is the number of postcards in the path; typically, p will be small.

Filter triggers

Goal: to immediately notify applications of fresh packet histories matching a pre-

installed PHF.

Once the packet history is assembled at a NetSight server, the server matches

it against any “live” PHFs pre-installed by applications, and on a successful match,

immediately triggers notifications back to the application via the coordinator.

History archival

Goal: to efficiently store the full set of packet histories.

Next, the stream of packet histories generated in each round is written to a file.

NetSight compresses these records using the same compression algorithm before the
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shuffle phase to exploit redundancy between postcards of a packet and between pack-

ets of a flow.

Historical query

Goal: to enable applications to issue PHF queries against archived packet histories.

When an application issues a historical PHF query to a specified time region, that

query runs in parallel on all NetSight servers. Compression helps to improve effective

disk throughput here, and hence query completion times, albeit at the cost of extra

CPU resources to perform the compression/decompression. Ideally the filesystem is

log-structured, so that individual rounds can be restored at the full disk throughput

with minimal seeking [52].

3.2 NetSight Implementation

My first NetSight prototype implementation, written entirely in Python, could col-

lect and assemble about a million postcards per second and filter a few thousand

postcards per second—enough to be useful for debugging emulated networks or small

test networks. The implementation had two processes: one interposed between an

OpenFlow controller and its switches to report configuration changes, while another

did all postcard and history processing. To verify that it operated correctly on phys-

ical switches, I tested it on a chain topology of 6 NEC IP8800 switches [44]. To

verify that it ran with unmodified controllers, I tested it on the Mininet emulation

environment [40] with multiple controllers (OpenFlow reference, NOX [23], POX [49],

RipL-POX [51]) on multiple topologies (chains, trees, and fat trees).

This naive prototype demonstrated the potential of NetSight as a platform. Clearly,

for a modest trial deployment in an operational network, the system must run orders

of magnitude faster, and scale out to multiple servers. In addition, I learned from

our network operators that most debugging is not done live, but post-mortem, and

therefore, we needed a way to efficiently store histories.

This section describes the individual pieces of my second prototype, which im-

plements all fast-path processing in C++ and implements the slow-path coordinator
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# Assume postcards are routed to the server via outport C.
# Interpose on the control channel:
while True:

M = next message
S = switch targeted by M
if M is a flow modification message:

F = flow entry specified by M
S.version += 1
tag_actions = []
for action in F.actions:

if action == Output:
tag = pack_to_48bits(one_byte(S.id),

two_bytes(action.port),
three_bytes(S.version))

tag_actions.append(SetDstMac(tag), Output(port=C))
F.actions.append(tag_actions)

S.send_message(M)

Figure 3.5: Pseudocode of the Flow Table State Recorder that rewrites control mes-
sages to generate postcards.

and applications in Python.

3.2.1 Postcard Generation

The NetSight prototype, based on OpenFlow/SDN, leverages the fact that network

state changes are coordinated by a controller, which provides an ideal place to monitor

and intercept switch state changes. The prototype uses a transparent proxy called

the flow table state recorder (recorder for short) that sits on the control path between

the controller and OpenFlow switches.

When a controller modifies flow tables on a switch, the recorder intercepts the

message and stores it in a database. For each OpenFlow rule sent by the controller to

the switch, the recorder appends new actions to generate a postcard for each packet

matching the rule in addition to the controller-specified forwarding.

Specifically, the actions create a copy of the packet and tag it with the switch
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Postcard forwarding algorithm:

The recorder installs two sets of rules at each switch:
(1) Highest priority rules: Forward postcards out of

the spanning tree output port if received on
valid spanning tree input ports.

(2) Lower priority rule: Drops all postcards.

Postcard generation algorithm:

If in_port not wildcarded:
if input_port != spanning_tree_out_port:

output postcard out of spanning_tree_out_port
else:

output postcard out of OFPP_IN_PORT
else:

output postcard out of both
spanning_tree_out_port and OFPP_IN_PORT

Figure 3.6: Algorithm to generate postcards in-band.

ID,1 the output port, and a version number for the matching flow entry. The version

number is simply a counter that is incremented for every flow modification message.

The pseudocode in Figure 3.5 shows how the tags are stored in the postcard. The

tag values overwrite the destination MAC address (the header of the original packet

remains completely unchanged). Once created, postcards are sent to a NetSight server

over a separate VLAN. Postcard forwarding can be handled out-of-band via a separate

network, or in-band over the regular network. In the in-band mode, switches recognize

postcards using a special VLAN tag to avoid generating postcards for postcards.

The out-of-band case is straightforward; postcards simply exit the “collection

port” of each switch and a separate network forwards them to the NetSight servers.

In in-band collection, the postcards can be forwarded either along spanning trees

rooted at the NetSight servers, or using a more general multipath routing mechanism.

However, in-band collection has two caveats:

1
To fit into the limited tag space, NetSight uses a locally created “pseudo switch ID” (PSID) and

maintains an internal mapping from the 8 byte datapath ID to the PSID.
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1. Correctness: The OpenFlow protocol specification makes the seemingly simple

task of in-band postcard collection over spanning tree paths to a single NetSight

server tricky. An OpenFlow rule does not forward a packet back out of the

input port unless explicitly instructed to do so via OFPP IN PORT. Therefore,

if a packet’s input port at a switch is the same as the postcard’s spanning

tree output port, the postcard will never be generated by that switch. The

problem is further complicated if the input port field in the rule is wildcarded,

as the flow table rule will now have to be split into two—one specifying OFPP

IN PORT if the input port is the same as the spanning tree output port, and

another for the remaining input ports. Such naive flow entry splitting can

affect the correctness of the controller logic. NetSight overcomes this problem

by using the algorithm shown in Figure 3.6. In the case where the input port is

wildcarded, the algorithm generates two postcards; one sent out of the spanning

tree output port, and the other out of OFPP IN PORT. This guarantees that at

least one postcard is generated for the packet. An additional low-priority rule

in the neighboring switch drops the duplicate postcard, if generated.

2. Performance: In in-band collection, postcards must share the network with

“regular” packets, and, therefore, may affect the performance of the network.

The impact of postcards on the original packets is minimized by placing the

postcards in low-priority queues. However, these separate queues must be suf-

ficiently well provisioned to ensure that the postcards are not dropped.

3.2.2 Compression

NetSight compresses postcards (devoid of payload) in two places: (1) before shuffling

them to servers, and (2) before archiving assembled packet histories to disk. Com-

pression algorithms work by building a dictionary of repetitive bit-patterns. While we

can use off-the-shelf compression algorithms such as gzip or LZMA to compress the

stream of postcards, we can do better by leveraging the structure in packet headers

and the fact that all the packets in a flow—identified by the 5-tuple flow ID (srcip,

dstip, srcport, dstport, protocol)—look similar.
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The goal of the NetSight compression algorithm is to compress the packets in such

a way that it can later reconstruct the entire packet stream, including the order of

the packets, the complete packet headers, and their timestamps. NetSight compresses

packets by computing diffs between successive packets in the same stream. A diff is

a (Header,Value) pair, where Header uniquely identifies the field that changed and

Value is its new value. Certain fields (e.g. IPID and TCP Sequence numbers) can be

compressed better if we just store the successive deltas. NetSight compresses packets

as follows. The first packet of each flow is stored verbatim. Subsequent packets

are encoded as a DiffRecord that only stores packed (Header,Value) tuples that

change, along with a back-reference to the previous packet in the same stream, with

respect to which the DiffRecord is calculated. The compressor only stores the non-

zero octets of each Value and treats path information, such as the switch ID and flow

version, as if they were header fields in the packet. NetSight (optionally) pipes the

stream of encoded diffs through a standard fast compression algorithm (e.g., gzip at

level 1).

Format

NetSight’s compression outputs three files: a list of “first packets (FP),” a list of

timestamps (TS) (if available, e.g., from a pcap file or a hardware capture device [4])

and a list of packet diffs (DF). FP is the dictionary of packets against which subsequent

packets are diffed. NetSight outputs a DiffRecord for every packet. Figure 3.7 shows

a DiffRecord encoding, it consists of:

1. an index to the previous packet in the same stream or the FP table;

2. the number of diffs in this packet; and

3. a list of FieldRecords for every diff.

A FieldRecord encodes the field name (e.g. IPID, TCPSEQ, etc.), and its new

value with respect to the packet referenced by the DiffRecord.
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Figure 3.7: The NetSight postcard compression format.

Algorithm and Encoding

NetSight makes a single pass through the packet stream. For each packet, NetSight

constructs a flow key2 and inserts it into a hash table. If the flow key is absent in

the hash table, NetSight appends it to FP and notes its position in the list. The

DiffRecord for the first packet of a flow is therefore empty and references the packet

just appended to FP. If the key is present in the hash table, the DiffRecord encodes

a 28-bit index into the same stream, and a 4-bit number denoting the number of

changes. Each FieldRecord contains a 6-bit encoding of the field name that changed;

a 2-bit number indicating the length of the value to follow (1, 2, 3 or 4 bytes). Though

the field length is implicit from the field type, NetSight uses a variable length encoding

2
A flow key is the 5-tuple (srcip, dstip, srcport, dstport, protocol).
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that only stores a value’s non-zero octets. Each packet’s DiffRecord is emitted to

the differences file, DF. Empirical results show that at most 12 fields change within

a packet in many traces, and therefore the 4-bit number suffices. NetSight uses the

all-1 magic number (0xf) to denote the first packet in the stream. Also, there are

only about 40 commonly encountered fields in a packet header, and therefore, 6-bits

suffice.

Compression

The TS file contains the timestamp for the first packet and only encodes 4-byte deltas

between successive records. FP is just a flat record of packets that triggered a new

flow key. These files are by no means efficiently compressed, but NetSight offers a

tunable parameter to select the compression level after generating the above files.

NetSight uses gzip which offers good compression at reasonable CPU cost. The TS,

FP, and DF files are then passed through gzip.

Compressing Packet Histories

Packet histories contain path and switch state information in addition to packet

headers. However, the paths used by networks come from a small set, and switch

state changes are relatively infrequent. NetSight exploits this fact and compresses

packet histories using the same algorithm above by treating paths and switch state

version as additional packet fields.

The NetSight compression algorithm is a generalization of Van Jacobson’s com-

pression of TCP packets over slow links [32]. The compressor (and decompressor) is

implemented in the NetSight prototype in about 2200 lines of C++ code. The pro-

totype implementation has sufficient scope for further optimization using techniques

like Huffman coding [29].

3.2.3 PHF Matching

The PHF matching engine in NetSight is based on the RE1 regex engine [18] and

uses the Linux x86 BPF JIT compiler [9] to match packet headers against BPF
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filters. RE1 compiles a subset3 of regular expressions into byte codes. This byte

code implements a Nondeterministic Finite Automaton (NFA) which RE1 executes

on an input string. In RE1, character matches trigger state machine transitions; in

NetSight, the character-equality-check function is “overloaded” to match postcards

against postcard filters. The PHF matching engine is implemented in approximately

2000 lines of C/C++ code.

3.3 Relaxing the Assumptions

We now relax three assumptions we made earlier in our description of NetSight.

Assumption 1: The network does not drop postcards. One way to handle

drops is to simply keep incomplete packet histories for further analysis. For instance,

if only a single postcard is missing from a packet history, the topological sorting can

be extended to consider both possible orderings, which can both be matched against

filters.

The other way to handle drops is to avoid them in the first place. Many networks

have dedicated out-of-band links for controlling switches; this additional capacity can

reduce the chances of dropping a postcard. Alternatively, even if postcards are routed

in-band, one can statically reserve bandwidth for postcards on each link by marking

postcards with a special VLAN tag.

Assumption 2: The network does not modify packets. NetSight uses

the flow key to shuffle postcards to their final NetSight server. Network Address

Translation (NAT) boxes modify the header fields that are used in creating the flow

key, causing postcards for the same packet to arrive at multiple NetSight servers and

making it much harder to assemble packet histories. To correctly handle this case,

we must never use a field that gets modified during the course of packet forwarding

in the flow key. For example, using immutable headers, or even a hash of the packet

contents, as the flow key in the shuffle would ensure that all postcards of a packet

3
RE1 supports concatenation, alternation, and the Kleene star operations. NetSight handles

loops separately as a special case.
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arrive at the same server.4 These flow key choices, however, can make the packet

compression for storage less effective, as each of n NetSight servers will then receive

1/n-th of the packets of each flow.

The addition of a second shuffle stage can provide both correctness and storage

efficiency. In the first stage, packet histories are shuffled for assembly using the packet

ID, while in the second stage, they are shuffled for storage using a hash of the 5-tuple

flow key of their first packet. This way, flow locality is maximized at the cost of

additional network traffic and processing. In practice, NAT boxes tend to be at the

edge of a network, making in-network modifications less of a concern.

Assumption 3: Packets are all unicast. Broadcast, multicast, and loop traffic

are all examples of non-unicast paths. In such cases NetSight returns packet histories

as directed graphs, rather than lists. In the case of a broadcast or multicast packet,

it returns a tree. In the case of a loop, it returns the packet history with an arbitrary

starting point and indicates it as a loop.

3.4 Resolving Ambiguity

The NetSight prototype is not perfect. In some cases, flow table and packet ambiguity

may prevent NetSight from unambiguously identifying a packet history.

3.4.1 Flow Table Ambiguity

Postcards generated by the tagging algorithm (Figure 3.5) uniquely identify a switch,

the matching flow entry, and output port(s). In most cases, a packet history con-

structed from these postcards provides sufficient information to reason about a bug.

However, a developer cannot reason about the full flow table state when postcards

specify only the matching flow entry. This gap in knowledge can lead to the ambi-

guity shown in Figure 3.8. Suppose a controller inserts two flow entries, A and B, in

succession. If NetSight sees a postcard generated by entry A, it may either be the

case that entry B was not installed (yet), or that the packet did not match entry B.

4
That is, if middleboxes do not modify packet payloads.
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Figure 3.8: Simple two-entry flow table highlights a possible ambiguity that cannot
be resolved just by knowing the flow entry a packet matched.

Moreover, a switch can timeout flow entries, breaking NetSight’s view of flow table

state.

To resolve such ambiguities and produce the state of the entire flow table at the

time of forwarding, the NetSight recorder should observe and control every change to

flow table state, in three steps.

First, to prevent the switch state from advancing on its own, the recorder must

emulate timeouts. Hard timeouts can be emulated with one extra flow-delete message,

while soft timeouts require additional messages to periodically query statistics and

remove inactive entries.

Second, the recorder must ensure that flow table updates are ordered. An Open-

Flow switch is not guaranteed to insert successive entries in order, so the recorder

must insert a barrier message after every flow modification message.

Third, the recorder must version the entire flow table rather than individual en-

tries. One option is to update the version number in every flow entry after any flow

entry change. This bounds flow table version inconsistency to one flow entry, but

increases the flow-mod rate by a factor equal to the number of flow entries in the

switch. A cleaner option is atomic flow updates. Upon each state change, the recorder

could issue a transaction to atomically update all flow entries to tag packets with the
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Figure 3.9: Ambiguous scenarios for packet identification.

Window % identical pkts Split
10ms 11.34% IP: 11.29%, ARP: 0%, Other: 0.04%

1s 11.46% IP: 11.46%, ARP: ∼ 0%, Other: 0.06%

Table 3.1: Effectiveness of unique packet identification by using a hash of immutable
header fields. Over a time window of 1 second, I observed 7 identical ARP packets,
out of a total of 400K packets.

new version number, either by swapping between two tables or by pausing forwarding

while updating. The preferred option is to have a separate register that is atomically

incremented on each flow table change. This decouples versioning from updates, but

requires support for an action that stamps packets with the register value.

3.4.2 Packet Ambiguity

Identifying packets uniquely within the timescale of a packet lifetime is a require-

ment for unambiguous packet histories. As shown in Figure 3.9, ambiguity arises

when (a) a switch duplicates packets within the network, (b) different hosts generate

identical packets, or (c) a host repeats packets (e.g., ARP requests). For example,

in Figure 3.9(a), a packet duplicated at the first switch, but packet histories along

the upper and lower paths are equally feasible. In these situations, where NetSight

cannot resolve this ambiguity, it returns all possibilities.

To evaluate the strategy of using immutable header fields to uniquely identify

packets and their corresponding postcards, I analyzed a trace of enterprise packet
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headers, consisting of about 400,000 packets [41]. Table 3.1 summarizes the results.

Nearly 11.3% of packets were indistinguishable from at least one other packet within

a one-second time window. Closer inspection revealed that these were mostly UDP

packets with IPID 0 generated by an NFS server. Ignoring these removed all IP

packet ambiguity, leaving only seven ambiguous ARP packets. This analysis suggests

that most of the packets have enough entropy in their immutable header fields to be

uniquely identified.

3.5 NetSight API

NetSight allows applications to specify and query packet histories of interest via the

NetSight API. More specifically, it allows applications to add, delete, and list installed

PHFs.

3.5.1 NetSight API Goals

In addition to providing the above functionality, the NetSight API should also meet

the following goals:

• It should allow multiple troubleshooting applications to run simultaneously.

• It should allow applications to dynamically start and stop without affecting the

NetSight coordinator or the NetSight servers.

• It should not impose any programming language restrictions on the troubleshoot-

ing applications.

• It should be flexible enough to allow each application to scale across multiple

CPU cores or a cluster of machines.

Message queue systems, which provide an asynchronous communication protocol

above low-level transport protocols like TCP, PGM (reliable multicast), inter-process

communication (IPC), and inter-thread communication (ITC), possess the flexibility

and capability to meet all the above goals.
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3.5.2 Using ØMQ

The NetSight API is implemented based on the ØMQ (ZeroMQ) message queue

library [27]. In addition to meeting the API goals listed in Section 3.5.1, ØMQ has

the following advantages:

• It carries messages across a variety of transport protocols: inproc, IPC, TCP,

and multicast.

• It supports a wide variety of N-to-N communication abstractions: fanout, publish-

subscribe, pipeline, request-reply, etc.

• It is supported on most operating systems including Linux, Windows, and OS

X.

• It has bindings for more than 30 languages including C, C++, Java, .NET, and

Python.

• It has a large and active open-source community built around it.

Unlike message-oriented middleware, ØMQ is a messaging library, and can run

without a dedicated message broker. The library is designed to have a familiar socket-

style API.

3.5.3 NetSight API Design

At a high level, NetSight needs to perform two tasks:

1. Exchange control messages with the applications to add, delete, and list installed

PHFs.

2. Communicate matched packet histories to the applications.

These two tasks naturally lead to the NetSight API design. As shown in Fig-

ure 3.10, the NetSight coordinator exposes two message queue sockets5 to the trou-

bleshooting applications:

5
The message queue sockets are not the same as TCP or Unix sockets.
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Figure 3.10: NetSight supports the NetSight API via two message queue sockets:
control socket and history socket.

1. Control Socket : A request-reply (REQ-REP) message queue socket, and

2. History Socket : A publish-subscribe (PUB-SUB) message queue socket

The applications use the control socket to send control messages to add, delete,

and list installed PHFs. NetSight internally maintains a hash table mapping the

application ID (a randomly generated unique ID for each application) to the list of

PHFs added by the application. For each packet history matching any of the added

PHFs, NetSight publishes the packet history (serialized using JSON encoding [8])
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along with the matched PHF over the history socket. The application can get the

matched packet history by subscribing for the corresponding PHF over the history

socket. In ØMQ, clients of a PUB-SUB socket can subscribe to or unsubscribe from

specific types of messages by calling the zmq setsockopt function on the socket.

The NetSight API is available to the troubleshooting applications in the form of

a shared library.

The remainder of this section describes each function of the NetSight API in detail.

3.5.4 Add Packet History Filter

add filter(packet history filter, control socket, subscribe socket,

start time, end time)

Upon calling this function, the API library performs two tasks:

1. It sends an ADD FILTER REQUEST message to the NetSight coordinator over the

control socket. NetSight responds to the ADD FILTER REQUEST message with an

ADD FILTER REPLYmessage that contains a unique ID (PHF ID) that corresponds

to the installed PHF.

2. It subscribes for packet histories corresponding to the PHF ID on the history

socket.

The optional start time and end time arguments can be used for historical

querying. When specified, NetSight matches packet histories archived between start

time and end time against packet history filter and publishes them over the

history socket.

3.5.5 Delete Packet History Filter

delete filter(PHF ID, control socket, subscribe socket)

Upon calling this function, the API library performs the following tasks:
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1. It sends a DELETE FILTER REQUEST message to the NetSight coordinator over

the control socket, and

2. It unsubscribes from packet histories corresponding to packet history filter

on the history socket.

NetSight responds to the DELETE FILTER REQUESTmessage with a DELETE FILTER

REPLY message indicating whether the PHF was successfully deleted from its internal

hash table.

3.5.6 Get Installed Packet History Filters

get filters(control socket)

This function gets the list of all filters installed by an application that are currently

active. Upon calling this function, the API library sends a GET FILTERS REQUEST

message to the NetSight coordinator over the control socket.

NetSight responds to the GET FILTERS REQUEST message with a GET FILTERS

REPLY message which contains a list of all the currently active PHFs installed by the

application.

3.5.7 Send Periodic Heartbeats

send echo request(control socket)

The applications periodically send heartbeat messages to the NetSight coordina-

tor in the form of ECHO REQUEST messages. The NetSight coordinator responds to

them with ECHO REPLY messages. If NetSight does not receive heartbeats for a pre-

defined timeout period, it assumes that the application is dead and erases all data

associated with it—application ID and the installed PHFs. My NetSight prototype

uses a heartbeat interval of 1 second, and a heartbeat timeout period of 5 seconds.

Appendix B enumerates the NetSight API message types and the structure of

each message.
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In the next chapter, I describe the four troubleshooting applications I built on top

of NetSight using the NetSight API. For each application, I describe the motivation

behind it, its design and implementation, and provide example use cases.



Chapter 4

Troubleshooting Applications

To demonstrate the utility of the NetSight API, I built four troubleshooting applica-

tions using it. The two key enablers of these applications are:

1. The ability to access packet histories in real-time or postmortem, and

2. A flexible way to specify packet histories of interest.

Without these two features of NetSight, it would have been either impossible, or

at least very hard, to implement the applications. In this chapter, I describe each

application—the motivation behind it and its design and implementation, and provide

example use cases.

4.1 ndb: Interactive Network Debugger

The first application, as well as the original motivating application for NetSight, is

ndb, an interactive network debugger [24]. The goal of ndb is to provide interactive

debugging features for networks analogous to those provided by gdb for software

programs. Using ndb, network application developers can set PHFs on errant network

behavior. The returned packet histories contain the sequence of switch forwarding

events leading to the errant behavior. The following examples cover common bugs

for which PHFs installed by ndb are a natural fit.

43
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Figure 4.1: A screenshot of the packet history output of ndb.

4.1.1 Reachability Error

Consider the common reachability problem of two hosts, A and B, which are unable

to talk to each other. Using ndb, the developer would use a PHF to specify packets

from A destined for B that never reach the intended final hop, the switch to which B

is attached:

^{{--bpf "ip src A and dst B" --dpid X --inport p1}}

[^{{--dpid Y --outport p2}}]*$

where, (X, p1) and (Y, p2) are the (switch, port) tuples at which hosts A and B

are attached, respectively. The returned sequences of events that led to the observed
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(a) WiFi host B attached to AP Y sends periodic

ICMP ping requests to server A.







 

(b) When host B moves to AP Z, the ICMP reply

packets continue going to AP Y and get dropped

there.

Figure 4.2: Network topology used to emulate the incomplete handover bug.

errant behavior would aid the developer in homing in on the root cause of the problem.

Using the Mininet network emulator [26], I reproduce the incomplete handover

bug encountered at our production OpenFlow network at Stanford described in Sec-

tion 2.1.2. Figure 4.2 shows the topology of the emulated network, with a mobile

host B attached to access point (AP) Y, continuously sending ICMP ping requests to

a server A. The network has a (buggy) OpenFlow controller running as the mobility

manager that manages flows as WiFi hosts move from one AP to another. When the

mobile client moves to AP Z, the controller correctly installs new flow entries for the

ICMP ping request from B to A, but does not do so for ICMP replies coming back

from A to B. Consequently, the ping replies continue going to AP Y and get dropped

there. Thus, when the mobile host moves from AP Y to AP Z, it stops receiving

ICMP ping replies.

Using ndb, I install the following PHF:

^{{--bpf "icmp and ip src A and dst B" --dpid X}} {{--dpid not Z}}*$

The packet history output from ndb shows us the exact path taken by the ICMP

reply packet and the flow table state it encountered at each hop along the path, telling

us why it took that path. This packet history provides direct evidence to show that
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the flow entry for ICMP reply packets was not updated by the controller, helping us

identify the bug in minutes instead of hours.

Figure 4.1 shows an example output from ndb.

4.1.2 Race condition

A controller may insert new flow entries on multiple switches in response to network

events such as link failures or new flow arrivals. If a controller’s flow entry insertions

are delayed, packets can get dropped, or the controller can get spurious “packet-in”

notifications. The following Packet History Filter captures such events, by matching

packet histories that terminate at switch X, port p:

{{--dpid X --inport p}}$

4.1.3 Incorrect packet modification

A packet can be modified at any hop in the network. The presence of a large number

of rules at each hop makes it difficult to diagnose packet modification errors. Packets

reaching the destination with unexpected headers due to incorrect modifications can

be captured by the following Packet History Filter:

^{{--bpf "BPF1"}}.*{{--bpf "BPF2"}}$

Where BPF1 is a Berkeley Packet Filter matching the packet as it entered the network

and BPF2 is the observed (incorrect) packet as it reaches the destination.

4.2 netwatch: Live Invariant Monitor

The second application is netwatch, a live network invariant monitor. netwatch

allows the operator to specify desired network behavior in the form of invariants, and

trigger alarms whenever a packet violates any invariant (e.g., freedom from traffic

loops). netwatch is a library of invariants written using Packet History Filters to

match packets that violate those invariants. Once Packet History Filters are pushed

to NetSight, the callback returns the packet history that violated the invariant(s).

The callback not only notifies the operator of an invariant violation, but the Packet
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History Filter provides useful context around why it happened. netwatch currently

supports the following network invariants:

4.2.1 Isolation

Hosts in group A should not be able to communicate with hosts in group B. An alarm

should be raised whenever this condition is violated. The function isolation(a

host set, b host set, topo) pushes down two Packet History Filters:

^{{ GroupA }}.*{{ GroupB }}$

^{{ GroupB }}.*{{ GroupA }}$

GroupA and GroupB can be described by a set of host IP addresses, or by network

locations (switch, port) where the hosts are attached. This Packet History Filter

matches packets that are routed from group A to group B. Extending isolation to

multiple groups is easy.

4.2.2 Loop Freedom

The network should have no traffic loops. The function loop freedom() pushes down

one Packet History Filter:

(.).*(\1)

This Packet History Filter matches any packet history where the packet goes

through a forwarding loop.

4.2.3 Black Hole Freedom

Packets should start at an edge port and finish at an edge port; they should never

get dropped in the middle. The function blackhole freedom(topo) pushes down

Packet History Filters of type:

{{--outport "core port"}}$

where core ports are the network internal ports derived from the supplied topology.

Such an invariant could be used to correlate edge-to-non-edge packet histories with

drops. If the drop rate at a port is abnormally high, it indicates a silent black hole
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or link failure.

4.2.4 Waypoint routing

Certain types of traffic should go through specific waypoints. For example, all HTTP

traffic should go through the proxy, or guest traffic should go through the IDS and the

firewall. The function waypoint routing(traffic class, waypoint id) installs a

Packet History Filter of the form:

{{--bpf "traffic class" --dpid not "waypoint id"}}{{--dpid not "waypoint

id"}}*$

This Packet History Filter catches packet histories of packets that belong to traffic

class and never go through the specified waypoint.

4.2.5 Max-path-length

No path should ever exceed a specified maximum length, such as the diameter of the

network. The function max path length(n) installs a Packet History Filter of the

form:

.{n+1}

This Packet History Filter catches all paths whose lengths exceed n.

4.3 netshark: Network-wide Path-Aware Packet

Logger

The third application is netshark, a wireshark-like application that allows users to

set filters on the entire history of packets, including their paths and header values at

each hop.

For example, a user could look for all HTTP packets with src IP A and dst IP B

arriving at (switch X, port p) that have also traversed through switch Y. netshark

accepts Packet History Filters from the user, returns the collected packet histories
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Figure 4.3: A screenshot of the netshark wireshark output.

matching the query, and includes a wireshark dissector to analyze the results. Fig-

ure 4.3 shows a screenshot of the netshark wireshark output. The user can then

view properties of a packet at a hop (packet header values, switch ID, input port, out-

put port, and matched flow table version) as well as properties of the packet history

to which it belongs (packet ID, path traversed, and path length).

4.4 nprof: Hierarchical Network Profiler

Software profiling tools like gprof show users where a program spent its time, split at

the granularity of a function, along with which functions called which other functions

while it was executing. This information reveals those pieces of a program that might

yield the most benefit when optimized.
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App ndb netwatch netshark nprof

Lines of Code 32 103 179 111

Table 4.1: Application sizes (lines of code).

The fourth troubleshooting application is nprof, a hierarchical network profiler.

The goal of nprof is to “profile” any collection of network links to understand the

traffic characteristics and routing decisions that contribute to link utilization. For

example, to profile a particular link, nprof first pushes a Packet History Filter spec-

ifying the link of interest:

{{--dpid X --outport p}}

nprof combines the resulting packet histories with the topology information to pro-

vide a live hierarchical profile, showing which switches are sourcing traffic to the link,

and how much. The profile tree can be further expanded to show which particular

flow entries in those switches are responsible.

nprof can be used to not only identify end hosts (or applications) that are con-

gesting links of interest, but also to identify how a subset of traffic is being routed

across the network. This information can suggest better ways to distribute traffic in

the network, or show packet headers that cause uneven load distributions on routing

mechanisms, such as equal/weighted cost multi-path routing.

The Python versions of the 4 applications described above—ndb, netwatch, netshark,

and nprof —are each less than 200 lines of code, as shown in Table 4.1.



Chapter 5

Scalability and Performance

While NetSight supports a versatile and flexible abstraction, to be really useful, it

needs to be able to scale to handle the traffic generated by a large operational network.

It is natural to doubt the scalability of any system that attempts to store the header

of every packet traversing a network along with its corresponding path, state, and

modifications and also to apply complex filters to it. This is a lot of data to forward,

let alone process and archive. In this chapter, I study the cost associated with running

NetSight by evaluating the performance of each component of NetSight, and I suggest

modifications to the NetSight design that will enable it to scale to large networks

handling multiple gigabytes of data per second.

5.1 NetSight Scalability

The analysis of NetSight’s scalability can be divided into two components:

1. Scalability in the control path

2. Scalability in the datapath

5.1.1 Scalability in the Control Path

In the current implementations of software-defined networks (SDN), the control chan-

nel tends to be a scarce resource. It is therefore important for NetSight to impose

51
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minimal cost on the control channel. The two costs that we need to be concerned

about are:

• Latency cost: The extra latency incurred by control messages traversing

through NetSight

• Bandwidth cost: The extra traffic on the control channel caused due to Net-

Sight

Latency Cost

Any control path cost of NetSight is due to the NetSight recorder. Past works—

Flowvisor [56], NetPlumber [36], VeriFlow [38]—have shown that it is feasible to

build an SDN control channel proxy that adds very little extra latency to the control

messages. The task performed by the NetSight recorder involves less computation

than that of Flowvisor, NetPlumber, or VeriFlow; NetSight only records the control

message, adds pre-computed extra actions, and asynchronously stores the message in

a database, as described in Section 3.2.1. Therefore, the latency cost is small.

Bandwidth Cost

In today’s SDN switches, the bandwidth of the control channel (the connection be-

tween the switch datapath and the controller) tends to be a scarce resource. The

current commercial SDN switches support only a few hundred flow insertion mes-

sages (flow-mod) and packet-in messages per second. This bottleneck resource

should not be made scarcer by any new element added on the control channel. The

NetSight recorder adds no additional (expensive) flow insertions on the control chan-

nel; it only adds extra actions to flow insertion messages already created by the SDN

controller. Recent work has demonstrated OpenFlow controllers that scale to mil-

lions of messages per second, beyond the capabilities of entire networks of hardware

switches [60]. In addition, the postcards generated by NetSight are strictly confined

to the datapath; they do not enter the control path. Therefore, the bandwidth cost

is small, too.
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Figure 5.1: NetSight places the bulk of its functionality in dedicated servers, but
switch hardware resources and virtual machine hosts can also be employed to reduce
its bandwidth costs and to increase its scalability. The common element here is the
generation of postcards at switches.

5.1.2 Scalability in the Datapath

Recall that every packet creates a postcard at every hop across which it traverses

in the network. This clearly creates a bandwidth cost in the datapath. If we do

not compress postcards before sending them over the network, we need to send them

each as a min-sized packet. We can calculate the bandwidth cost in the datapath as

a fraction of the data traffic as,

bandwidth cost =
postcard packet size

avg. packet size
∗ avg. number of hops (5.1)

For example, the Stanford campus backbone network has the following character-

istics: 14 internal routers connected by 10 Gb/s links, two Internet-facing routers,

a network diameter of 5 hops, and an average packet size of 1031 bytes. If we as-

sume that postcards are minimum-sized Ethernet packets, they increase traffic by
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64B
1031B × 5(hops) = 31%. 1

The average aggregate utilization of the Stanford backbone is about 5.9 Gb/s, for

which the postcard traffic adds 1.8 Gb/s. If we conservatively add together the peak

traffic of every campus router, it leads to a total of 25 Gb/s of packet data, which will,

in turn, generate 7.8 Gb/s of postcard traffic. This postcard traffic can be handled

by one NetSight server, as I will show later in Section 5.4. If the postcards are sent

in-band, the extra traffic will likely affect the network performance.

For a low-utilization network, especially one in the bring-up phase or a test net-

work, the bandwidth costs may be acceptable for the debugging functionality that

NetSight provides. However, for a live production network with longer paths, or

with smaller packets, or with higher traffic rate, the bandwidth cost of NetSight, as

currently designed, will likely be too high.

To scale NetSight to a large data center or enterprise, I next present two de-

sign modifications to reduce the datapath bandwidth cost while scaling out postcard

collection, packet history assembly, and packet history archival. The modifications

move postcard generation functionality into switch ASICs and end hosts, as shown

in Figure 5.1. These modifications trade off deployment convenience for improved

scalability.

5.2 NetSight Design Modifications for Scalability

5.2.1 NetSight-SwitchAssist

NetSight-SwitchAssist reduces the bandwidth cost of sending postcards in the dat-

apath. In this design modification, postcard processing is directly handled by the

switches; switch ASICs directly generate, compress, and shuffle postcards. History

processing continues to be handled by the NetSight servers.2 Because switches send

1
If we overcome the min-size requirement by aggregating the 40 byte postcards into larger packets

before sending them, the bandwidth cost reduces to 19%.
2
This design is functionally equivalent to directly attaching a NetSight postcard processor to each

switch.
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compressed aggregates of postcards to NetSight servers (rather than individual un-

compressed postcards), the bandwidth requirement diminishes. For example, as I

will show in Section 5.3, with NetSight’s compression algorithm, the average size of

a postcard comes down to 15 bytes per compressed postcard. Using this number in

Equation 5.1 leads to a bandwidth cost of:

15 Bytes

1031 Bytes
∗ 5 hops = 0.07

The additional bandwidth requirement in the datapath reduces from 31% to 7%.

Postcard processing at the switch is simple enough to be implemented in hardware

with relatively few pieces of logic. The first is the logic to extract and hash flow IDs

to index into a small SRAM table and identify the destination NetSight server. This

hardware is identical to Equal-Cost Multi-Path (ECMP), which selects the next hop

for a packet using a hash of its 5-tuple flow ID. The second addition is logic to

compress postcards. The compressor described in Section 3.2 could be implemented

in hardware using a small amount of SRAM to cache recently seen packets and group

them by flow IDs.3 The memory only stores the “diffs” between successive packets

and places them in separate buffers, one each per NetSight server. I believe it would

be practical for future switch chips to incorporate this logic running at line-rate.

5.2.2 NetSight-HostAssist

The next design modification, NetSight-HostAssist, is suited for environments such as

data centers, where the end hosts can be modified. This design modification reduces

postcard traffic by having a thin shim layer at each end host (e.g., in the hypervisor

or in a software switch such as Open vSwitch [46]) tag packets to help switches to

succinctly describe postcards. The shim layer at the end host tags each outgoing

packet with a sequentially incrementing packet ID and locally stores a copy of the

packet header and a mapping between the packet ID and the packet header. One

way to incorporate packet IDs into the existing packet header structure is by adding

it as an IP option. The shim uses the NetSight compression algorithm to reduce the

3
100,000 postcards would require 4 MB of memory.
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cost of locally storing a copy of the outgoing packet headers. When a switch receives

a packet, it extracts the tag and generates a mini-postcard that contains only the

packet ID, the flow table state, and the input/output ports. This state is appended

to a hash table entry keyed by the source address of this packet. At the end of each

round, the switch dispatches the hash entry (a list of packet IDs and state) to the

source. The hosts, then, locally assemble and archive the packet history (as shown

at the bottom of Figure 5.1).

Because a packet ID is unique to a particular end host, the shim can use fewer

bytes (e.g., 4 bytes) to uniquely identify a packet. For example, for traffic with an

average packet size of 1031 bytes, the amount of data that an end-host can send with

a packet ID of 4 bytes before wrapping around is:

1031 Bytes ∗ 232 Packet IDs = 4428 GBytes

In other words, for a host with a 10 Gb/s link, when sending traffic at full line-rate,

it will take more than 3500 seconds for a 4-byte packet ID field to wrap around.

If, on average, it takes 15 bytes per packet to store compressed headers at the end

hosts (as shown in Section 5.3) and 6 bytes per mini-postcard, the bandwidth cost to

collect postcards in the network reduces to 3%.

6 Bytes

1031 Bytes
∗ 5 hops = 0.03

This is in contrast with a cost of 31% if postcards are naively collected as min-sized

packets, each without any compression. Because each end host stores packet histories

of its own traffic, the mechanism scales with the number of hosts in the network.

The task of the switch is simpler in NetSight-HostAssist than it is in NetSight-

SwitchAssist. For each arriving packet, the switch needs to read a fixed header

value (the packet ID) and create mini-postcards with the stored packet IDs, the

corresponding flow table state, and the input/output ports. This task is simple

enough to be implemented in the switch ASIC. At the end of each round, it needs

to send the mini-postcards to the appropriate end host, a task manageable by the

switch CPU or an attached processing unit.

The NetSight-HostAssist design has a few caveats besides ASIC implementation
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costs:

• The packet ID should be correctly preserved as a packet traverses through the

network.

• The extra packet ID adds a fixed-size cost to every packet.

• The traffic arriving to the datacenter from the Internet needs special handling.

Such traffic should either be forwarded through middleboxes, or through border

routers that can generate full postcards and insert packet IDs into packets.

5.2.3 Distributed Filtering with Two-Stage Filtering

Many troubleshooting applications written on top of NetSight (e.g., netwatch, netshark,

and nprof) only install “live” PHF triggers and are interested only in a subset of all

of the packet histories. One way to reduce the bandwidth cost of the system in such

cases is by efficiently distributing the filtering (PHF matching) itself and by prun-

ing out useless postcards even before they are assembled into packet histories at a

NetSight server. In this context, useless postcards are those that belong to a packet

history that does not match any of the live PHF triggers. This problem is analogous

to distributed string regex matching, when the characters of the string themselves

are dispersed across multiple machines. The goal of distributed PHF matching is

to minimize the number of postcards collected at any centralized location for packet

history assembly. NetSight’s solution, two-stage filtering (TSF), leverages additional

processing elements attached to the network, called secondary servers (secondaries

for short). These can be server-level CPUs on a switch [1, 7], directly attached CPU

linecards [3, 6], virtual machines at the edge, or any commodity server attached to

the network.

As the name suggests, TSF works in two stages.

Stage 1

In the first stage, secondary servers prune out useless postcards using the concept of

imperative predicates. Imperative predicates are the postcard filters (PF) in a PHF
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Figure 5.2: A packet traversing a path from switch 1 to switch N can be represented
by the corresponding sequence of postcards.

that can be verified with local knowledge (i.e., from one switch) and must be matched

by at least one postcard in a matching packet history.

For example, suppose we have a live PHF trigger “^{{--dpid 1}} .* {{--dpid

N}}$” that matches all packet histories starting at switch 1 and ending at switch

N. Suppose we have a packet traversing a path from switch 1 through switch N. Its

packet history can be represented by a set of topologically sorted postcards generated

by the packet along its path, as shown in Figure 5.2. Now, the packet history will

match the PHF only if it contains at least one postcard matching the PF “--dpid

1” and at least one other postcard matching the PF “--dpid N.” Therefore, the

PFs “--dpid 1” and “--dpid N are the imperative predicates. As another example,

in a PHF that looks like “^{{--dpid 1}} {{--dpid K}}* {{--dpid N}}$,” only

“--dpid 1” and “--dpid N” are imperative predicates, as a matching packet history

can have zero or more postcards matching the PF “--dpid K.”

As a secondary collects postcards, it temporarily stores them in a local buffer.4

When a postcard matches any imperative predicate, it immediately sends a small

matched notification to the NetSight server:

matched(pkt id, list(matched imperative predicates))

as shown in Figure 5.3(a). If a PHF contains no imperative predicates, the secondaries

4
This buffer should be sized based on the network RTT, switch data rate, and the round duration.
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(a) Stage-1: The secondary servers send notify

messages to the NetSight server for any postcard

matching an imperative preciate.


































(b) Stage2: If the NetSight server receives notify

messages for all imperative predicates with a par-

ticular packet ID, it gets all the postcards with

that packet ID from the secondaries.

Figure 5.3: Two-Stage Filtering.

send matched notifications for all postcards.

Stage 2

The NetSight server waits for matched notifications from the secondaries, up to a

short configurable collection timeout. If it receives matched notifications for all im-

perative predicates in a PHF for a particular packet ID, it proceeds to query all of

the secondaries for postcards with that packet ID (Figure 5.3(b)). Once the server

receives all of the postcards matching that packet ID, it performs the regular his-

tory assembly and PHF matching, as described in Section 3.1.3 and Section 3.1.3,

respectively.

I next discuss the pros and cons of TSF.

Pros of Two-Stage Filtering

• Simplicity of the architecture: TSF does not depend on the number of secondary

servers or how the switches are assigned to them. In the extreme case, the

operator can choose to have one secondary per switch in the network.

• Simplicity of the communication: There are no complex queries at secondaries,
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and secondaries only interact with the NetSight servers, not one another.

Cons of Two-Stage Filtering

• TSF works only in cases where the network operator is interested only in match-

ing packet histories against live PHF triggers and not in archiving them. In

other words, if TSF is used, the operator cannot run PHF queries on archived

packet histories.

• TSF captures only the presence or absence of postcards matching the imperative

predicate, not their order. This results in false positives, where some “useless”

postcards do not get pruned out at the secondaries.

• TSF becomes ineffective when the PHF contains no imperative predicates.

5.3 NetSight Performance Evaluation

This section quantifies the performance of the mechanisms that comprise NetSight in

an effort to investigate the feasibility of collecting and storing every packet history.

Figure 5.4 show the various computational pieces that comprise NetSight: compres-

sion, decompression, packet history assembly, and PHF matching. From the speed

of each piece, we can estimate the data rate that a single CPU core can process

and determine the number of NetSight servers needed to support deployments in the

enterprise, data center, and wide-area networks (WAN).

In the remainder of this section, I will evaluate the performance of each computa-

tional piece of NetSight and use the combined performance to study the feasibility of

running NetSight in a production network. All of the evaluations are on a single core

of a 3.20 GHz Intel(R) Core(TM) i7 CPU with 12 GB RAM, unless stated otherwise.

5.3.1 Compression

NetSight compresses postcards before the shuffle phase to reduce network bandwidth,

and then it compresses packet histories again during the archival phase to reduce
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Figure 5.4: The mechanisms that comprise NetSight: compression, decompression,
packet history assembly, and PHF matching.

storage costs. This section investigates three questions:

• Compression: How tightly can NetSight compress packet headers, and how

does this compare with off-the-shelf options?

• Speed: How expensive are the compression and decompression routines, and

what are their time vs. size tradeoffs?

• Duration: How does the round length (time between data snapshots) affect

compression properties, and is there a sweet spot?

Traces

To answer performance questions, I use thirteen packet capture (pcap) data sets: one

from a university enterprise network (UNIV), two from university data centers (DCs),
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Compression

Type

Description

Wire Raw packets on the wire

PCAP All IP packets, truncated

up to layer 4 headers

gzip PCAP compressed by gzip

level 6

NetSight (NS) Van Jacobson-style com-

pression for all IP 5-tuples

NetSight +

gzip (NS+GZ)

Compress DiffRecords

with gzip level 1

Table 5.1: Compression techniques.

and nine from a wide-area network (WAN). I preprocessed all traces and removed all

non-IPv4, non-TCP, and non-UDP packets, and I stripped packet headers beyond the

layer 4 TCP header, which accounted for less than 1% of all of traffic.5 UNIV is the

largest trace (31 GB pcap trace) that contains headers with an average packet size of

687 bytes per packet, collected over two hours on a weekday afternoon. The average

flow size over the duration of this trace is 76 packets. The data center traces DC1

and DC2 have a larger average packet size (about 765 bytes and 715 bytes per packet,

respectively) and a larger average flow size (about 333 packets per flow). However,

in the WAN traces, I observed that flows have less than 3 packets over the duration

the trace.

The UNIV trace contains packets seen at one core router connecting Clemson

University to the Internet. The data center traces—DC1 and DC2—are from [13],

whose IP addresses were anonymized using SHA1 hash. Finally, each WAN trace

(from [2]) accounts for a minute of packet data collected by a hardware packet capture

device. IP addresses in this trace are anonymized using a CryptoPan prefix-preserving

anonymization.

5
In a production deployment, such packets can either be ignored, or if necessary for troubleshoot-

ing, used uncompressed without incurring much performance overhead.
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Figure 5.5: NetSight reduces storage relative to PCAP files, at a low CPU cost.
Combining NS with gzip (NS+GZ) reduces the size better than gzip does, at a fraction
of gzip’s CPU costs. The WAN traces compress less as they have fewer packets in a
flow compared with other traces.

Storage vs CPU Costs

Figure 5.5 answers many of the performance questions, showing the tradeoff between

compression storage costs and CPU costs for different traces and compression meth-

ods. This graph compares four candidate methods, listed in Table 5.1: (a) PCAP:

the uncompressed list of packet headers, (b) gzip compression run directly on the

pcap file, (c) NS: the adaptation of Van Jacobson’s compression algorithm, and (d)

NS+GZ: output of (c) followed by gzip compression (level 1, fastest). Each one is

lossless with respect to headers; they recover all header fields and timestamps and

maintain the packet ordering.
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We find that all candidates reduce storage relative to PCAP files by up to 4x and,

as expected, their CPU costs vary. GZ, an off-the-shelf option, compresses well but

has a higher CPU cost than do both NS and NS+GZ, which leverage knowledge of

packet formats in their compression. NetSight uses NS+GZ because for every trace,

it compresses better than pure GZ does, at a reasonably low CPU cost.

We also find that the compressed sizes depend heavily on the average flow size

of the trace. Most of the benefits come from storing differences between successive

packets of a flow, and a smaller average flow size reduces opportunities to compress.

We see this in the WAN traces, which have shorter flows and compress less. Most

of the flow entropy is in a few fields such as IP identification (IP ID), IP checksums,

and TCP checksums, and the cost of storing diffs for these fields is much lower than

the cost of storing a whole packet header.

To put these speeds into perspective, consider our most challenging scenario,

NS+GZ in the WAN, shown by the blue stars. The average process time per packet

is 3.5µs, meaning that one of the many cores in a modern CPU can process 285,000

postcards/sec. Assuming an average packet size of 600 bytes, this translates to about

1.37 Gb/s of network traffic, and this number scales linearly with the number of cores.

Moreover, the storage cost (for postcards) is about 6.84 MB/s; a 1 TB disk array can

store all postcards for an entire day. Most of this storage cost goes into storing the

first packet of a flow. As the number of packets per flow increases (e.g., in datacenter

traces), the storage costs reduce further.

Duration

A key parameter for NetSight is the round length. Longer rounds present opportuni-

ties for better postcard compression, but they increase the delay until the applications

see matching packet histories. On the other hand, smaller rounds reduce the size of

the hash table used to store flow keys in NS compression, which speeds up software

implementations and makes hardware implementations feasible. Figure 5.6 shows

the compression quality of NS+GZ for varying number of packets in a round. This

graph suggests that a round length of 1 million postcards is sufficient to attain most

compression benefits. On most lightly loaded 10 Gb/s links, this translates to about
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Figure 5.6: Packet compression quality for NS+GZ as a function of seen packets in
the trace. In our traces from three operating environments, we find that NetSight
quickly benefits from compression after processing a few 100s of thousands of packets.

Scenario Enterprise WAN Data Center
CPU cost 0.725µs 0.434µs 0.585µs
per packet

Table 5.2: Decompression latency.

a second. In other words, a round size as small as one second is sufficient to derive

most of the compression benefits in NetSight.

Decompression Speed

Table 5.2 shows NS+GZ decompression latency (decompression time per postcard)

for one trace from each of the environments. In every case, NS+GZ decompression is
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Figure 5.7: History assembly latency microbenchmark for packet histories of increas-
ing length.

significantly faster than compression. These numbers underrepresent the achievable

per-postcard latencies because the implementation loads the entire set of first packets

and timestamps into memory before iterating through the list of DiffRecords. As

with compression, a shorter round duration would improve cache locality and use less

memory.

5.3.2 Packet History Assembly

At the end of the shuffle phase, each NetSight server assembles packet histories by

topologically sorting the postcards it received that may have arrived out-of-order. I
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measure the speed of NetSight’s history assembly module written in C++. Topo-

logical sorting is fast—it runs in O(p) time, where p is the number of postcards in

the packet history, and typically, p will be small. As shown in Figure 5.7 for typical

packet history lengths of 2 to 8, history assembly takes less than 100 nanoseconds.

In other words, a single NetSight server can assemble more than 10 million packet

histories per second per core.

5.3.3 Triggering and Query Processing

NetSight needs to match PHFs against assembled packet histories, either in a live

stream of packet histories or in an archive. In this section, I measure the speed of

packet history matching using both microbenchmarks and a macrobenchmark suite,

looking for scenarios where matching might be slow. The PHF match latency depends

on a number of factors:

• The length of the packet history

• The size and type of the PHF

• Whether the packet history matches the PHF

Microbenchmarks

Figure 5.8 shows the performance of NetSight’s PHF matching engine (described in

Section 3.2.3) for sample PHFs of varying size matching against packet histories of

varying length. The sample PHFs are of the type “.*X,” “.*X.*,” “X.*X,” and

“X.*X.*X,” where each X is a postcard filter and contains filters on packet headers

(BPF), switch ID, and input ports. I match a large number of packet histories awith

each PHF and calculate the average latency per match. In order to avoid any data

caching effects, the evaluation script reads the packet histories from a 6 GB file, and

it ignores the I/O latency incurred while reading packet histories from the disk.

The dashed lines show the latency when the packet history matches the PHF

(“match”), and the solid lines show the latency when the packet history does not
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Figure 5.8: PHF matching latency microbenchmark for various sample PHFs and
packet histories of increasing length.

match the PHF (“no-match”). We see that the “match” latencies are typically smaller

than are the corresponding “non-match” latencies because the program can return as

soon as a match is detected. We also see that the match latency increases with the

number of PFs in the PHF as well as the length of the packet history. Importantly,

the region of interest is the bottom left corner—packet histories of lengths 2 to 8.

Here, the match latency is low—a few hundred nanoseconds.

Macrobenchmarks

The UNIV trace was captured at the core router of the Clemson backbone network

connecting two large datacenters and 150 buildings to the Internet. I reconstruct
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Figure 5.9: Representative results from the macrobenchmark suite of queries run
on the Clemson trace. The most expensive queries were those with complex BPF
expressions.

packet histories for packets in this trace using topology and subnet information.

Then, I run a suite of 28 benchmark PHF queries that include filters on specific

hosts, locations (datacenter, campus, and Internet), paths between the locations,

and packet headers. Figure 5.9 shows the average PHF match time (on a single In-

tel(R) Core(TM) i7 CPU core) for a representative set of queries on hosts, subnets

(campus) and paths (dc hdr–campus hdr). Most matches execute quickly (less than

300 ns/match); the most expensive ones (900 ns/match) are complex BPF queries

that contain a predictate on 24 subnets. PHF matching is data parallel and scales

linearly with the number of cores.

The above results show that even an unoptimized single-threaded implementation

of PHF matching can achieve high throughput. In addition, PHF matching is embar-

rassingly parallel—each packet history can be matched against a PHF independent

of all other packet histories. A future optimized implementation can also perform
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the matching directly on compressed archives of packet histories rather than on each

individual packet history.

5.3.4 Effeciency of Two-Stage Filtering

In this section, I evaluate the efficiency of TSF using both microbenchmark and

macrobenchmark tests.

Efficiency Intuition

Consider a hypothetical application interested in packet histories of all packets that

traverse a switch A. It installs a PHF in the form of “.*{{--dpid A}}.*,” which

has a single imperative predicate “--dpid A.” In this case, the two-stage filtering

method is optimally efficient; it ensures that postcards are requested by the NetSight

server if and only if they are a part of a matching packet history.

However, for filters such as “{{--dpid A}}.*{{--dpid B}},” TSF is not optimal

in that it results in false positives: All paths starting at B and ending at A will also

result in a get request by the NetSight server, but the postcards will never match

the PHF. This example shows the necessity of the final PHF match; all imperative

predicates may match, but the order of the postcards may not, as with this reversed

path.6

Microbenchmarks

The efficiency of TSF depends heavily on the scenario (topology and traffic matrix)

as well as on the installed PHFs. To better understand these effects, I start with

a simple 3-switch, 4-host tree topology as shown in Figure 5.10 with an all-to-all

traffic pattern. Figure 5.11 shows the results, which compare the ratio of postcards

collected at the NetSight server with TSF to those collected without TSF (none) and

the theoretical lower bound (optimal). The figure also shows the number of matched

notification messages generated by TSF. The query suite covers invariant checks (loop,

6
These “useless” postcards can be further reduced by tagging the input/output ports as edge or

core in the PHF to match on direction, not just the switch datapath ID.
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Figure 5.10: A 3-switch, 4-host tree topology used for the TSF microbenchmarks.
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Figure 5.11: Postcard traffic reduction from TSF on a 3-switch, 4-host tree topology
with all-to-all traffic.

path len), tcpdump-style header filters (src ip), path queries (src to dst location), and

their combinations; “src” and “dst” are hosts on opposite edge switches.

When TSF provides no benefit. Starting at the left side of Figure 5.11, TSF

provides no benefit for PHFs that need to see all traffic, or when the PHF has no

imperative predicates (e.g., path len queries). Some of these queries can be improved

with context-specific optimizations, e.g., loops can be checked locally at a secondary,

and path lengths can be checked just by looking at the number of matched notification

messages.

When TSF provides benefit. For all of the other queries, where the PHFs

match a strict subset of the traffic and contain imperative predicates, TSF provides

a significant benefit; it is optimal in many cases. In larger networks, PHF triggers for
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Figure 5.12: Postcard traffic reduction from TSF for sample queries on the Clemson
campus backbone.

individual hosts, links, or switches will yield a much lower matched fraction, pruning

an even larger fraction of “useless” postcards.

Evaluation with Real Traffic Traces

To get a more realistic sense of postcard reductions in practice, I next move to the

UNIV trace. Figure 5.12 shows the results from running the suite of 28 benchmark

PHF queries (same as in Section 5.3.3 Macrobenchmark) on the UNIV trace. The

PHFs include specific hosts, areas (datacenter, campus, and Internet), and paths

between areas, filtering on headers, paths, and both. The results show improvements

for all query types. In this more realistic scenario, the benefits range from a 15%

reduction to more than 95% reduction in the number of postcards assembled, showing

the value of TSF at reducing postcard traffic. If we used more specific filters for

subnets or individual switches rather than areas, these reductions would be even

more significant.

5.4 Provisioning Scenario

In Section 1.1 of this dissertation, I suggested a set of questions, each of which maps

to a PHF in NetSight. With performance numbers for each piece of NetSight, we can

estimate the traffic rate it can handle as it answers those questions.

Adding up the end-to-end processing cost in NetSight—compressing, decompress-

ing, assembling, and filtering with “live” PHFs—yields a per-core throughput of
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240,000 postcards/second. With five hops on the typical path and 1000-byte average

packet size (as in the Stanford University backbone network trace), a single 16-core

server, available for under $2000, can handle 6.1 Gb/s of network traffic. This is

approximately the average rate of the transit traffic in our university network. To

handle the peak, a few additional servers would suffice, and as the network grows, the

administrator can add servers knowing that NetSight will scale to handle the added

demand.

If this network were to get upgraded to NetSight-SwitchAssist, one of the expen-

sive compression steps would go away and yield a higher throughput of 7.3 Gb/s of

network traffic per server. Adding NetSight-HostAssist would yield a throughput of

55 Gb/s per server because mini-postcards require no compression or decompression.

The processing costs are heavily dominated by compression and decompression, and

reducing these costs seem like a worthwhile future direction to improve software-based

NetSight systems.

In summary, NetSight is able to handle the load for an entire campus backbone

with ∼ 20, 000 users, with a small number of servers.



74 CHAPTER 5. SCALABILITY AND PERFORMANCE



Chapter 6

Limitations and Opportunities

NetSight is not a panacea for network troubleshooting. There are a number of is-

sues that it can not diagnose. In this chapter, I discuss the limitations of both

the troubleshooting abstraction (packet histories and Packet History Filter) and the

troubleshooting platform (NetSight) described in this dissertation. I then present a

wishlist of features in future versions of SDN standards (e.g., OpenFlow) to enable

better troubleshooting. Finally, I discuss the exciting opportunities presented by this

line of research and directions for future work.

6.1 Limitations of the Abstraction

The troubleshooting abstraction presented in this dissertation is comprised of packet

histories and the Packet History Filter language. The limitations of the troubleshoot-

ing abstraction are:

• It can not preemptively catch bugs. The packet history abstraction requires

bugs to manifest themselves as errant behavior in the dataplane.

• Packet histories, by themselves, do not reveal the root cause of the problems.

Just like a software debugger (e.g., gdb), they provide the context around the

bugs and the sequence of events that led to the errant behavior. Packet histories

can not look into payloads, measure rates, or (on their own) correlate to control
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plane or application-level data. However, it is possible to build troubleshooting

applications on top to automate some of these tasks.

• The Packet History Filter language, because it is based on regular expressions,

can only describe regular languages. It can not describe more expressive lan-

guages, such as context-free languages (a.k.a. Type-2 languages).

In automata theory, an example of a context-free language that is not regular

is that of strings with well-formed parentheses. A string has well-formed paren-

theses if it has an equal number of opening and closing parentheses and if they

open/close in the right order. An analogous problem in the context of network

troubleshooting could be finding the set of all packet histories that have “well-

formed zone traversal.” Here, the network is divided into zones, and packets

have well-formed zone traversal if and only if:

1. Packets that enter a zone also leave it, and

2. Packets enter and exit zones in the right order.

Because the PHF language is based on regular expressions, the above question

can not be expressed as a PHF. This was a conscious choice made at the design

stage to strike a balance between flexibility (expressibility) and ease of use

(Section 2.2.4).

6.2 Limitations of the Platform

In deploying NetSight, I found that the hardware switch in our lab was process-

ing NetSight’s particular sequences of forwarding actions in software. Talking with

firmware and ASIC implementers [58, 59, 61, 62], I learned practical limitations that

prevent NetSight from reaching its potential today but that appear to be addressable.

The first problem is a lack of forwarding flexibility that directly leads to

issues of scalability. Our vendor contacts were unaware of any network firmware

that uses the “postcard action sequence” [send, modify, send-to-other-port]. Without
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customer demand, the switch vendor understandably turned to software. Fortunately,

Broadcom and Intel (Fulcrum) switch silicon can support this sequence; the switch

can even send a modified and unmodified packet to the same port to enable in-band

postcard generation [59, 62].

Another problem is a lack of flexible modification and encapsulation. Net-

Sight must write bits into a header field to store postcard information, and the current

options are constraining. Some commercial switches implement port mirroring to a

remote host (e.g., [17]) which does [send, encap, send] but can only send to 32 distinct

destinations. Lacking a good encap option in OpenFlow 1.0 (VLAN is only 15 bits),

the NetSight prototype overwrites the destination MAC address field with postcard

data; but, this choice obscures modifications to this field, and possibly bugs [47]. Sup-

port for layer-2 encapsulation, such as MAC-in-MAC, would remove this limitation.

A third problem is an inability to truncate packets. OpenFlow does not expose

this feature, though some switch hardware is capable.

6.3 SDN Feature Wishlist

The NetSight design process has shown that SDN protocols in general, and future

versions of OpenFlow in particular, could greatly ease the design of network trou-

bleshooting platforms if they support a few specific features. As a concrete first step,

I make three suggestions to make OpenFlow networks more “debuggable.”

Atomic flow table updates. As discussed in Section 3.4.1, tagging postcards

with just the matching flow table entry leads to flow table state ambiguity. To

produce a fully deterministic packet history, we need the ability to perform concurrent

updates—either across multiple entries within a single flow table or over a flow table

entry and a register. Modifying SDN protocols to support atomic update primitives

makes returning a fully deterministic packet history possible.

Flexible encapsulation. The current version of NetSight uses the source MAC

address field to tag postcards (Section 3.2). This choice interferes with the trou-

bleshooting process when a bug modifies source MAC addresses [47]. Modifying SDN

protocols to support flexible layer-2 encapsulation, e.g., MAC-in-MAC, would remove
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this limitation.

Flexible actions. To avoid a need for input-port-specific flow entries, the current

prototype of NetSight avoids tagging postcards with the input port and instead infers

a packet’s input port from the output port of the previous hop and knowledge of

the topology. Protocol-level support to more flexibly tag packets with the input

port or register contents, as well as to support packet truncation, would simplify the

construction of NetSight.

Together, these examples reiterate a key message of this dissertation: SDN proto-

cols (and implementations) should be designed with troubleshooting in mind. Some

features in this direction are already being considered for future OpenFlow versions

(such as layer-2 encapsulation), but not specifically for their debugging benefits. My

hope is that, having demonstrated their utility for debugging, other suggestions will

be prototyped, improved, and maybe one day even considered for standardization.

While we could just use a network processor-based switch, these abilities are

desirable in commodity silicon and the switches based on them. I hope the case for

packet histories in this dissertation will spur the switch vendors to expose the features

that are already present and will motivate ASIC designers to make chips with more

flexible actions so as to make platforms such as NetSight better-performing and easier

to build.

6.4 Extensions and Opportunities

NetSight already supports four network troubleshooting applications, but its extensi-

bility is more exciting. Besides those already implemented, the NetSight API enables

a whole range of other applications and extensions. For example, ndb could be inte-

grated with network control programs or software debuggers, such as gdb and pdb,

to automatically point to a specific line of code that led to the error. Traffic pro-

files from nprof could close the loop to the control plane, enabling real-time traffic

engineering decisions and fault monitoring. Applications could use packet histories

from netshark to replay specific events in the same network, a shadow network, or

a simulator.
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Ideally, we would catch every bug preemptively, before it manifests in the net-

work, with tools incuding model checkers, invariant checkers, languages, and update

abstractions [15, 22, 35, 37, 50]. NetSight nicely complements these tools by address-

ing real problems (such as hardware, firmware, and configuration errors) when they

inevitably occur.

Early SDN practitioners seem more interested in using NetSight for development

than for administration. Few tools available today provide a consistent view of a

packet’s life in spite of a dynamically changing forwarding state. As the SDN ecosys-

tem grows, the number of potential users for such tools will expand—from network

admins debugging their latest scripts to software and hardware vendors wanting im-

mediate, automatic, and detailed bug reports from the field and even to operators

tracking down the sources of misbehavior in a multi-vendor deployment. NetSight

can support each of these users.
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Chapter 7

Related Work

In this chapter, I discuss some of the work—both commercial and academic—that is

most closely related to NetSight. This includes work in the areas of network trou-

bleshooting and also systems and techniques that are not specifically meant for net-

work troubleshooting but have architectural elements similar to those of NetSight.

7.1 Network Troubleshooting

7.1.1 Commercial Work

The most closely related commercial works are tools to provide packet-level visibility,

including packet sampling [16, 48], port mirroring (Switched Port Analyzer (SPAN)

and Roving Analysis Port (RAP)), and dedicated network-visibility boxes [4, 5, 10].

7.1.2 Academic Work

In the academic sphere, plenty of systems have been proposed to enable better network

troubleshooting, many of which exploit the logically centralized visibility and the

programmatic interface to switch forwarding tables provided by SDNs.

OFRewind: The most closely related academic work, OFRewind [64], records

and plays back SDN control plane traffic; like NetSight, it also records flow table

states via a proxy and logs packet traces. However, OFRewind and NetSight differ
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in their overall approach to debugging. OFRewind aids debugging via scenario re-

creation, whereas NetSight helps debugging via live observation. Also, OFRewind

lacks the complete visibility and automatic path inference found in NetSight.

The next class of related work checks or prevents network bugs, often by leveraging

the central control plane visibility of SDNs.

Anteater: Anteater [43] statically analyzes the dataplane configuration to moni-

tor invariant violations such as connectivity and isolation errors. Anteater uses SAT

solvers for invariant checking.

Header Space Analysis: Header Space Analysis (HSA) is a framework designed

to model and check networks for failure conditions in a protocol-independent way. It

is a generalization of the geometric approach to packet classification pioneered by Lak-

shman and Stiliadis [39], in which classification rules for K packet fields are viewed

as subspaces in a K dimensional space. A number of tools have been built using

HSA as the base framework. The Hassel library enables static analysis of the data-

plane configuration, whereas NetPlumber [36] enables real-time policy verification by

incrementally checking compliance of state changes.

VeriFlow: Like NetPlumber, VeriFlow [38] is also designed to check network-

wide invariants in real time by intercepting communication between the OpenFlow

controller and the network. It uses a trie structure to search rules based on equivalence

classes (ECs), and, upon an update, determines the affected ECs and updates the

forwarding graph for that class. This, in turn, triggers a rechecking of affected policies.

Consistent Updates: Consistent Updates [50] provides primitives for consistent

state changes across the network. It prevents inconsistent configuration errors by

ensuring that packets either see the initial configuration state or the final, nothing in

between.

Frenetic and Nettle: Frenetic [22] and Nettle [63] are high-level programming

languages for OpenFlow networks inspired by previous work on functional reactive

programming. They have been designed to reducing programming errors by abstract-

ing aspects of SDNs to improve code correctness and composability.

NICE: NICE [15] combines model checking and symbolic execution to verify

controller codes. It applies model checking to explore the state space of the entire



7.2. ARCHITECTURAL ELEMENTS 83

system to identify representative packets that exercise code paths on the controller.

The above techniques model network behavior, but bugs can creep in and break

this idealized model. NetSight, on the other hand, takes a more direct approach—it

finds bugs that manifest themselves as errantly forwarded packets and provides direct

evidence to help identify their root cause.

7.2 Architectural Elements

Finally, I discuss some other academic works that employ architectural elements sim-

ilar to those of NetSight but use them for a different purpose.

IP Traceback: IP Traceback builds paths to locate denial-of-service attacks on

the Internet [19, 53, 57].

Trajectory Sampling: Trajectory sampling monitors traffic and its distribu-

tion [21] or improves sampling efficiency and fairness [11, 20, 54]. NetSight has a

different goal (network diagnosis) and uses different methods. Rather than inferring

sample path properties to monitor traffic engineering performance, NetSight’s tech-

niques build a consistent picture of the full forwarding state to analyze errant packets.

Still, NetSight can benefit from some of the optimizations used in trajectory sampling

for reducing postcard traffic overhead.

Packet Obituaries: Packet Obituaries [12] proposes an accountability framework

to provide information about the fate of packets. Its notion of a “report” is similar

to a packet history but provides only the inter-AS path information. It also lacks a

systematic framework to pose questions about these reports in a scalable way.

Van Jacobson TCP/IP Header Compression: Van Jacobson TCP/IP Header

Compression (VJ compression) [33] is a data compression protocol designed by Van

Jacobson to improve TCP/IP performance over slow serial links. VJ compression

reduces the normal 40-byte TCP/IP packet headers down to 3-4 bytes for the average

case. It does this by saving the state of TCP connections at both ends of a link and

only sending the differences in the header fields that change. NetSight’s postcard

compression techniques, although used for a completely different purpose, are based

on those of VJ compression.
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In summary, the packet history-based troubleshooting framework and NetSight

borrow techniques from a number of previous systems. They complement the grow-

ing number of troubleshooting systems that exploit the centralized visibility and pro-

grammatic control provided by SDNs to build more predictable and robust networks.



Chapter 8

Conclusion

It is without doubt that debuggers have been an important part of the software devel-

opment toolchain. This dissertation introduces concepts of systematic troubleshoot-

ing to the field of networking analogous to its powerful counterpart in the world of

software programming.

Networks offer notoriously poor visibility into their behavior and performance.

In particular, networks are inherently distributed. They move data at aggregate

rates greater than any single machine can process. Because of concurrency, network

experiments are seldom repeatable. There is no way to pause or “single-step” a

network the way we like with other kinds of systems. Finally, control and data traffic

may compete for the same resources and affect each other in subtle yet pernicious

and hard-to-reproduce ways.

Despite these challenges, NetSight significantly improves network visibility. In

particular, it demonstrates the surprising practicality of collecting and storing com-

plete packet histories for all traffic on moderate-sized networks. Using an ad-hoc,

lightweight compression technique, NetSight archives packet headers and the switch

configurations with which they were processed at an average size as low as 10 bytes

per packet. This makes it possible to aggregate information in dedicated servers that

reassemble full packet histories.

Furthermore, NetSight demonstrates the perhaps less surprising result that, given
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access to a network’s complete packet histories, one can implement a number of com-

pelling new applications. NetSight provides a Packet History Filter (PHF) API for

matching packet histories. Given this API, I implemented four applications—network

debugger, invariant monitor, packet logger, and hierarchical network profiler—none

of which required more than 200 lines of code. These tools manifested their utility

almost immediately when a single, incompletely assembled packet history revealed a

switch configuration error within minutes of NetSight’s first test deployment.

This is just the beginning of an exciting opportunity to build robust, bug-free

networks. While packet history captures the history of a packet in the dataplane,

the programmer could benefit from a more complete trace that is tightly integrated

with controller execution. It remains to be seen how application controllers written at

higher levels of abstraction (e.g., Onix, Frenetic) can benefit from low-level debugging

information from the network.

As shown in Section 3.4, currently used SDN control protocols have limitations

for debugging; the semantics for modifying forwarding state and packets could be

more flexible. Other communities have found support for easier debugging so valu-

able that they have standardized hardware support for it, such as JTAG in-circuit

debugging in embedded systems and programmable debug registers in x86 processors.

As a community, we should explore whether to augment hardware or to use software

workarounds with caveats such as those in Section 6.2. I believe that NetSight is only

one of many SDN-specific tools that, provided sufficient hardware support, will make

networks easier to debug, benefiting networking researchers, vendors, and operators.
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Packet History Filter Grammar

<RE> ::= <union> | <simple-RE>

<union> ::= <RE> "|" <simple-RE>

<simple-RE> ::= <concatenation> | <basic-RE>

<concatenation> ::= <simple-RE> <basic-RE>

<basic-RE> ::= <star> | <plus> | <num> |

<numrange> | <elementary-RE>

<star> ::= <elementary-RE> "*"

<plus> ::= <elementary-RE> "+"

<num> ::= <elementary-RE> "{" <number> "}"

Continued on next page. . .
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<numrange> ::= <elementary-RE> "{" <number> "," <number> "}"

<elementary-RE> ::= <group> | <any> | <bos> |

<eos> | <char> | <set>

<group> ::= "(" <RE> ")" | <backref>

<backref> ::= "(" "\" <num> ")"

<any> ::= "."

<bos> ::= "^"

<eos> ::= "$"

<char> ::= "{{" <postcard-filter> "}}"

<set> ::= <positive-set> | <negative-set>

<positive-set> ::= "[" <set-items> "]"

<negative-set> ::= "[^" <set-items> "]"

<set-items> ::= <char> | <char> <set-items>

Table A.1: Packet History Filter grammar.
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NetSight API Messages

B.1 Control Socket Messages

NetSight API supports control socket messages of the following types:

enum MessageType {

ECHO_REQUEST = 1,

ECHO_REPLY,

ADD_FILTER_REQUEST,

ADD_FILTER_REPLY,

DELETE_FILTER_REQUEST,

DELETE_FILTER_REPLY,

GET_FILTERS_REQUEST,

GET_FILTERS_REPLY

};

A control socket message contains two parts—message type and data—as shown

below:

struct Message {

MessageType type;

void *data;

};
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Figure B.1: The control socket message framing includes the application ID and the
control socket message.

The wire format of the control socket messages sent over the ØMQ REQ-REP

socket consists of three frames, as shown in Figure B.1. The first frame contains the

ID of the application sending the message. The second frame is an empty delimiter

frame, as required by ØMQ. The third frame contains the actual message.

The following is the structure of the individual control socket messages:

struct EchoRequestMessage: Message {

type = ECHO_REQUEST;

data = timestamp;

};

struct EchoReplyMessage: Message {

type = ECHO_REPLY;

data = timestamp;

};

struct AddFilterRequestMessage: Message {

type = ADD_FILTER_REQUEST;

data = packet_history_filter;

};

struct AddFilterReplyMessage: Message {
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type = ADD_FILTER_REPLY;

data = {"filter": packet_history_filter, "id": PHF_ID,

"result": result};

};

struct DeleteFilterRequestMessage: Message {

type = DELETE_FILTER_REQUEST;

data = PHF_ID;

};

struct DeleteFilterReplyMessage: Message {

type = DELETE_FILTER_REPLY;

data = {"filter": packet_history_filter, "id": PHF_ID,

"result": result};

};

struct GetFiltersRequestMessage: Message {

type = GET_FILTERS_REQUEST;

data = NULL;

};

struct GetFiltersReplyMessage: Message {

type = GET_FILTERS_REPLY;

data = vector<{"filter": packet_history_filter,

"id": PHF_ID}>;

};

B.2 History Socket Messages

NetSight publishes packet histories that match installed PHFs over the history socket.

The structure of the packet history message published over the history socket looks
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Frame 
Length JSON(Packet History)Frame 2

Frame 1 Frame 
Length Matched PHF ID

Figure B.2: The history socket message framing includes the matched PHF ID and
the corresponding packet history.

as follows:

struct PostcardList {

int length;

vector<Postcard> postcard_list;

};

struct Postard {

Packet *pkt;

int dpid;

int inport;

int outport;

int version;

};

As shown in Figure B.2, the wire format of the message contains two frames:

1. The ID of the PHF that the packet history matched. ØMQ uses this frame to

route the message to the corresponding application that installed the PHF.

2. The actual packet history (serialized using JSON-encoding).
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