Should a load-balancer choose the path as well as the server?

Nikhil Handigol Stanford University Joint work with Nick McKeown and Ramesh Johari

Outline and goals

- > A new architecture for distributed load-balancing
 - > joint (server, path) selection
- > Demonstrate a nation-wide prototype
- > Interesting preliminary results

OpenFlow Controller

OpenFlow Protocol (SSL)

Control Path

Data Path (Hardware)

Software Defined Networking

Load Balancing is just Smart Routing

Load-balancing as a network primitive

http://www.openflow.org/videos

So far...

- A new architecture for distributed load-balancing
 - > joint (server, path) selection
- > Aster*x a nation-wide prototype
- Promising results that joint (server, path) selection might have great benefits

What next?

How big is the pie?

Characterizing and quantifying the performance of joint (server, path) selection

Load-balancing Controller

Model

Parameters

Topology

- >Intra-AS topologies
 - ■BRITE (2000 topologies)
 - ■CAIDA (1000 topologies)
 - ■Rocketfuel (~100 topos.)
- >20-50 nodes
- >Uniform link capacity

Parameters

Servers

- >5-10 servers
- >Random placement

Service

- >Simple HTTP service
- >Serving 1 MB file
- >Additional server-side computation

Parameters

Load-balancing strategies?

Design space

Simple but suboptimal

Disjoint-Shortest-Path

Disjoint-Traffic-Engineering

Joint

Anatomy of a request-response

Disjoint-Shortest-Path

➤CDN selects the least loaded server

>Load = retrieve + deliver

>ISP independently selects the shortest path

Disjoint-Traffic-Engineering

>CDN selects the least loaded server

>Load = retrieve + deliver

➤ISP independently selects path to minimize max load ➤Max bandwidth headroom

Joint

Disjoint-Shortest-Path vs Joint

Disjoint-Shortest-Path performs ~2x worse than Joint

Disjoint-Traffic-Engg. vs Joint

Disjoint-Trαffic-Engineering performs almost as well as Joint

Is Disjoint truly disjoint?

Server response time contains network information

The bottleneck effect

A single bottleneck resource along the path determines the performance.

The CDN-ISP game

The CDN-ISP game

- > System load monotonically decreases
- > Both push system in the same direction

Summary of observations

- ➤ Disjoint-SP is ~2x worse than Joint
- Disjoint-TE performs almost as well as Joint
 - (despite decoupling of server selection and traffic engineering)
- Game theoretic analysis supports the empirical observation

Conclusion

- A new architecture for distributed load-balancing
 - > joint (server, path) selection
- > Aster*x a nation-wide prototype
- > Interesting preliminary results
- Future application to other contexts and applications

Let's chat more!

Extra slides...

Sample topologies

BRITE CAIDA