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Chapter 1 

Introduction 

Large scale networks are expensive to operate and service providers are always looking 

for ways to reduce their capital and operational costs. One approach involves reducing 

the number of different types of networks they own. This can be accomplished by 

converging the different services the networks offer on to one network. For example, 

many service providers have eliminated specialized core-telephony networks and 

converged voice services with data services on to IP networks.  

This thesis however, is about the convergence of networks running at two layers. 

Large service providers such as AT&T and Verizon support two infrastructures – a Layer 

3 IP network and an underlying Layer 1/0 optical transport network. Today these 

networks are run separately; they are planned, designed and operated by different groups 

of people, even if they are in the same organization.  

Partly this separation is because of the different heritage of the two networks. 

Transport networks – with their telecom heritage – tend to be tightly managed and over-

engineered for extreme reliability and redundancy. Detailed and sophisticated 

management systems have always been integral to the design of transport networks. On 

the other hand, the Layer 3 networks have precious few management capabilities. The 

general approach is to configure - in a distributed fashion - each large router, with many 

locally created scripts and tools and let automated control mechanisms take over.  
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The network technologies are also quite different - IP networks are packet-switched, 

while transport networks are circuit-switched† - and there is a lack of common control 

mechanisms that support both technologies in a simple, unified way. 

Whatever the reasons are, one thing is clear - operating two networks with two 

completely different mechanisms is clearly more expensive and inefficient than running 

one converged network with a unified control mechanism. There have been other 

attempts to unify the control and management of Layer 3 and Layer 1 networks – in 

particular, GMPLS – which is overly complicated, and seems unlikely to be adopted. 

Even if it was used, GMPLS tends to preserve rather than break down the traditional 

separation between the two networks. 

In this thesis, we propose a simple way to converge both types of networks based on 

an emerging concept known as Software Defined Networking (SDN). We use SDN 

principles to define a common-flow abstraction that fits well with both types of network 

and provides a common paradigm for control; and a common-map abstraction, which 

makes it simpler and easier to insert new functionality into a converged packet-circuit 

network.  

In this chapter, we first introduce the two wide-area network infrastructures and 

highlight their main differences. We then state the problem as one where we wish to 

simplify and unify the management of Layer 3 and Layer 1 networks, so that the network 

can be jointly optimized to provide the best service for customers. We discuss the state-of 

the-art and briefly touch on reasons why previous approaches have not worked. We then 

introduce our unified control architecture by giving details on the two abstractions they 

are based on and discussing their benefits. Finally we summarize our contributions, and 

outline the rest of this thesis. 

† Note that the use of the term ‘circuit’ in this thesis does not imply low bandwidth (kbps) telephony-circuits. 
Circuits in the optical transport network range from several hundred Mbps to tens of Gbps. The use of the term 
‘circuit’ simply implies guaranteed-bandwidth that is provisioned before it is used. This thesis interchangeably uses 
the terms ‘circuit-switching’ and ‘optical-switching’. We consider optical switches in the transport network that 
have digital switching fabrics (eg. time-slot switching) as well as photonic switching fabrics (eg. wavelength-
switching). We do not consider forms of optical-switching that are not circuit-switched (eg. optical packet and 
burst switching).   
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1.1   The Transport Network and the Internet 

Wide area IP networks form the backbone of the Internet today. IP networks are packet-

switched, i.e. packets are individually switched hop-by-hop from source to destination by 

IP routers. However, the packets are physically transported between the routers in an 

underlying nation/world-wide network of optical fibers and circuit switches (Fig. 1.1). 

Collectively this underlying network is known as the Transport Network. We take a 

closer look at the two networks in the following sections. 
 

                 
 

 Figure 1.1: IP and Transport Networks 

1.1.1   Internet Architecture  

Architectural components of the Internet (layers, naming, addressing, protocols etc.) have 

been widely covered in several books. The Internet is a collection of interconnected IP 

networks. The constituent networks that make up the Internet have independent 

ownership, administration and management. To achieve global connectivity these 

networks use E-BGP to advertize IP address reachability and choose routes across routing 

domains known as Autonomous Systems (AS) [1]. 
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This thesis is not about Internet architecture as a whole, but it does deal with the 

architecture of IP networks within an AS in the wide-area (WAN). A closer look at such 

intra-domain† IP core-networks reveal the following: 

•      IP networks have automated, fully-distributed control mechanisms. Such control 

mechanisms involve routing protocols (I-BGP, OSPF etc) and in some cases signaling 

protocols (LDP, RSVP etc) implemented in each router (Fig. 1.2).  An IP router is 

both the control element which makes control decisions on traffic routing, as well as 

the forwarding element responsible for traffic forwarding.   Control mechanisms are 

automated - after a router has been ‘configured’ (either manually or using scripts), the 

router automatically discovers its neighbors, the network topology, exchanges routing 

information, forwards packets, learns of failures and re-routes packets around them. 

 
Figure 1.2: Intra-domain IP Networks  

•     Services (or network functions/features) in IP networks, also tend to have fully-

distributed implementations, which interact in subtle ways with the fully distributed 

control mechanisms (Fig. 1.2). These subtle interactions and the fully-distributed 

†  Intra-AS is sometimes also referred to as intra-domain in routing-protocol terminology. For example, 
OSPF, IS-IS and I-BGP are examples of intra-domain routing protocols while E-BGP is inter-domain. In 
this thesis we subscribe to the use of ‘domain’ from routing protocol terminology. 
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nature of their implementation make the features offered by an IP router-vendor non-

standard (and as a result non-interoperable with other implementations), even though 

the control mechanisms are standardized. As an example, consider the network-

function of traffic-engineering. Such a function today is provided by MPLS-TE 

(Traffic Engineering – discussed in more detail in Chapter 5). It depends on the 

IP/MPLS control plane which comprises of standardized protocols IS-IS and RSVP-

TE.  But the function of engineering traffic itself is proprietary and non-standardized. 

Traffic engineering on Cisco routers does not interwork with TE on Juniper or 

Huawei routers. And so, core IP networks are typically single-vendor networks.  

•     Networks perform poorly when congested. It has long been recognized that over-

provisioning a packet network helps performance and end-user experience. Even 

though the public Internet remains best-effort end-to-end, Service Level Agreements 

(SLAs) and Quality-of-Service (QoS) guarantees exist between an IP network and its 

customers (such as other IP networks or large enterprises). Over-provisioning helps 

meet SLAs as well. And so we find that intra-domain IP core-networks are typically 

2-4X over-provisioned. 

•     Management functions in IP networks involve configuration (typically via a 

Command Line Interface (CLI)), monitoring (typically via SNMP) and periodic 

maintenance. IP networks are generally perceived as hard to manage [2]. It is fair to 

say that IP management is ad-hoc and labor intensive. Teams of highly qualified 

personnel manually tweak the network, in the hope of achieving a balance between 

the local goals of each provider, and the global need to maintain connectivity. 

To summarize, the Internet today provides a datagram, best effort service end-to-end; 

However the Internet is made up of intra-domain IP networks which are over-provisioned 

for acceptable performance and the need to meet SLAs; have automated, fully distributed 

control mechanisms; implement services in a distributed way making them typically 

single-vendor networks; and remain hard to manage.  
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1.1.2   Transport Network Architecture  

The fundamental goal of a transport network is to provide communication bandwidth 

from one geographic location to another. For example, the IP link between two routers in 

a wide-area intra-domain IP network is a logical one – it may be established with a time-

slotted circuit or with a wavelength-circuit in the transport network (Fig. 1.3). Here the IP 

network is regarded as a client to the transport network.  

 

 

 

 

 

 

 

 

 

 

    

 

 
 Figure 1.4: Transport Network and its Clients 

   

Figure 1.3: IP Router Connectivity in the Transport Network 
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Today transport networks support several “client networks”: IP core networks, the 

Public Switched Telephone Network (PSTN), the cellular network, point-to-point 

private-lines and enterprise private-networks (Fig. 1.4). 

The transport network itself comprises of optical fibers with many (40-160) 

independent wavelength channels terminated at the WDM line-systems. The same 

wavelength in adjacent line systems may be stitched together to form a wavelength 

circuit (or path) via physical cables or via a wavelength-switch (WDM switch). Each 

wavelength channel operates at 2.5, 10 or 40 Gbps; 100Gbps wavelengths will be 

available in the near future. Because the wavelength channels operate at such high line-

rates, the transport service provider often wants to sub-divide it to give sub-wavelength 

granularity connections to clients. Such granularity is provided by TDM switches.  

The generic functional architecture of a transport network is described by the ITU in 

[3]. While we don’t go into deep details of the architecture and its terminology (which is 

substantial), from a high level it consists of several layers and partitions [4].  

We make the following observations on transport networks: 

•      In contrast to IP networks, transport networks are always intra-domain (intra-AS), 

i.e. there is no equivalent to the Internet’s inter-domain (AS to AS) interaction. 

Instead the transport network describes partitions as “domains” (Fig. 1.5). Islands of 

equipment from different vendors, with different control or management procedures 

that do not interoperate, force the transport network to be partitioned into vendor-

specific-islands†. So while the transport network is a multi-vendor network (unlike IP 

networks), they are not automated. In fact, transport networks are highly managed, 

where a hierarchy of Element and Network Management Systems (EMS/NMS) 

together with the OSS (Operations Support Systems) perform all control and 

management tasks (Fig. 1.5). In general, these systems are not programmatic 

interfaces, but full-blown GUIs which are vendor proprietary and triggered manually 

by teams of specialized network operators.  

†  With this definition, the control and management functions within an island are referred to as intra-domain and 
the interactions between islands as inter-domain. In this thesis, we will refrain from using “domain” to refer to 
vendor-islands to avoid confusion with the usage in IP networks. Also within a single vendor-island, there may 
be topological partitioning to improve the scalability of control procedures. 
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Figure 1.5: Transport Network Control & Management (OSS functions from [5]) 

•     Providing a service in a transport network is a lengthy manual process. Consider a 

service supported by circuits in the data plane [4]: First, the path is planned by 

different planning groups in a piece-wise manner from one city to another. Then 

different provisioning groups execute the plan by manually configuring the transport 

network elements and their corresponding management systems along the path, and 

finally testing teams verify that the service is actually working and the associated 

management databases are being updated. It is easy to see why provisioning such a 

service takes weeks to months, and once up, why these circuits are static and stay in 

place for months or years.  

•     Traditionally, transport networks have lacked distributed control planes, but have 

always had a clean separation between data and management planes, where the 

EMS/NMS are physically separate from the data plane switches. They also tend to be 

more centralized in their control and management functions. Even when an automated 

distributed control plane exists, it does so within a vendor island making it proprietary 

and non-interoperable with other islands. Furthermore the automated control plane is 

still typically triggered manually via EMS/NMS. 

•     A transport network always provides hard guarantees in SLAs typically in terms of 

‘big-pipes’ of bandwidth with high availability†, delay and jitter bounds. For example 
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- guaranteed 10Gbps from point A to point B with 99.999% availability – the latter is 

known as five 9s availability which corresponds to about 5mins of downtime in a 

year. The ‘big-pipe’ granularity comes from the fact that in most cases, traffic has 

been aggregated the point where they require big pipes for transport. But it also stems 

from the fact that because it takes so long for a customer to ‘get’ such a service, the 

customer often prefers to get more at one time and keep it for a long time (static) 

without having to ask for more (and be subject to the long provisioning times).   

 

1.2   Problem Statement 

Service providers such as AT&T and Verizon today separately own and operate two 

distinct wide-area networks: packet-switched IP/MPLS networks and circuit-switched 

TDM/WDM transport networks. In fact, the biggest transport service providers 

(carriers/telcos) in the world are also the biggest Internet Service Providers (ISPs). For 

example, traditional carriers like AT&T, Verizon, British Telecom, Deutsche Telekom, 

NTT, Level 3/Global Crossing, Tata and others are also Tier 1 and Tier 2 ISPs [6]. 

These two networks are typically planned, designed and managed by separate 

divisions even within the same organization. Clearly owning and operating two separate 

networks is inefficient. At the very least, it leads to substantial management overhead 

from two teams of operators trained on different modes of operation and different 

management tools. But more importantly, it has a profound effect in terms of the Total 

Cost of Ownership (TCO). 

Capex: To cope with Internet traffic growth (40-50% per year [7]), carriers would 

like to see lower Capex per Gbps† when upgrading their infrastructure. However, this has 

not been true in practice*. Operating two networks separately typically involves 

functionality and resource duplication across layers. Fault tolerance is a prime example: 

The underlying transport network often operates with 1:1 protection, while the IP 

†  For example, a 2X increase in cost for a 4X increase in capacity 
* Upgrading from 10G to 40G links required more than 4X increase in equipment cost [9] 
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network running on top operates at less than 30% link utilization in preparation for 

unexpected traffic surges and link failures. 

Opex: Operational expenditures can account for nearly 60-80% of the Total Cost of 

Ownership (TCO) of the network^. Such cost involve labor costs; costs for network 

Operations, Administration, Maintenance and Provisioning (OAM&P); equipment rack 

and PoP/CO† building rentals; and power consumption for operation and cooling. 

Separate operation of the two networks also involves time and labor-intensive manual 

coordination between the teams for service provisioning and maintenance tasks.  

Service-Differentiation/Innovation: Service providers find it hard to 

differentiate their service-offerings from other carriers. Networks today are built using 

closed-systems (routers and switches) from the same set of vendors with the same set of 

features. The features are private “secret sauce” created inside each vendor's product. As 

a result, features are frozen inside each box, making innovation slow. The vendors have 

little incentive to innovate and create a barrier to entry for others, in both IP and transport 

networks. 

 Thus it is clear that from a service provider perspective, two separate networks that 

operate differently are inefficient. In networking, two is simply not better than one. In 

this thesis, we ask the question – is there a way to run one network instead of two? The 

problems outlined above led us to define three main goals underlying our work: 

•     To simplify and unify the control and management of IP and transport networks, so 

that the network can be jointly optimized to provide the best service for customers. 

Today, these planes are so different, and so complicated, that this is not feasible.  

•     Allow network operators to create and add new features to their packet and optical 

networks to provide revenue generating services that differentiate them from other 

carriers, thereby enabling a path of continuous innovation in the infrastructure.  

•     To allow network operators to use lower cost, lower power and more scalable optical 

Layer 1 transport switches in places they would use large, complex IP routers today. 

† PoP – Point-of-Presence; CO- Central Office 
^ From private communications with several large carriers. 
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1.3   State of the Art 

In this section, we discuss two topics that are state-of-the-art for IP and transport 

networks. The first involves a viewpoint popularly held by router-vendors. The second 

discusses the only previous attempt at unifying the control of the two networks. 

1.3.1   IP over WDM  

In this viewpoint, running one network instead of two can simply be achieved by 

eliminating circuit switching between the routers.  

Recall that in Section 1.1.2, we stated that the transport network currently supports 

multiple client networks (Fig. 1.4). In recent years, there has been a trend to migrate the 

other client networks to the Internet. For example, traditional voice services are moving 

to IP, both at the end-user and in the service provider’s core.Meanwhile 4G cellular 

networks are also transitioning to all-IP networks for both data and voice. Previously (in 

2G/3G) they used the IP network for data but circuit-switched networks for voice. 

Finally, point-to-point private-lines and enterprise private-network customers are 

increasingly moving to packet-network based solutions (eg. VPNs).  

It is therefore entirely conceivable that in the near future, in contrast to Fig. 1.4, the 

only client for the transport network will be the Internet (Fig. 1.6(a)). In such a scenario, 

it is entirely valid to ask if there is a need for circuit switching in the underlying transport 

network.  

 

 

 

 

 

           
Figure 1.6: Possible Futures 

(a) (b) 
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For example, IP routers could be directly connected by point-to-point optical WDM 

links, in which case the WDM line systems are subsumed by the IP network (Fig. 1.6(b)) 

and transport switching is entirely eliminated – IP over WDM (no circuit switches). 

We don’t believe circuit switching will (or should) be eliminated. On the contrary, we 

believe that circuit switching is here to stay in the core, as it can make the Internet more 

efficient, with the caveat that for this to happen, the two networks must work together 

dynamically. 

Fundamentally, packet switching is always going to be more expensive than circuit 

switching, simply because it performs a lot more functions, and does so at a much smaller 

granularity at much faster time-scales. In Appendix A, we show that our expectations are 

matched by numbers we obtain from real-world packet and circuit switches in the 

industry. Circuit switches are much more scalable; a circuit switch can switch much 

higher data rates, and consume much less power than an electronic packet switch. A 

useful rule of thumb is that an optical circuit switch consumes about 1/10th of the volume, 

1/10th of the power and costs about 1/10th the price as an electronic packet switch with the 

same capacity (Appendix A). As a consequence, they are simpler, lower cost and more 

space efficient than an electronic packet switch.  

This is not an attempt to say that packet and circuit switches are equivalent, because 

clearly they are not – while they both provide connectivity, they do so very differently. 

However, there are some functions that circuits can perform exceedingly well in the core 

– functions like recovery, bandwidth-on-demand, and providing guarantees (which we 

discuss in Chapter 3) – such that if circuits are eliminated, and those functions are then 

provided by packets, it comes at the cost of price (Capex), power consumption and size 

(Opex). In Chapter 4, we show the Capex and Opex inefficiencies of designing an IP-

over-WDM network (without circuit switching), when compared to a packet network that 

interacts with a dynamic-circuit-switched network under common control.  

On the other hand, a circuit switch doesn’t have the statistical multiplexing benefits of 

a packet switch. This matters little at the core of the network where flows destined to the 
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same next hop are naturally bundled, and their aggregate is relatively smooth [9]. Closer 

to the edge of the network, however, packet switching offers big benefits due to statistical 

multiplexing and more fine-grain control.  

Thus we believe that packet switching is here to stay at the edge and dynamic-circuits 

offer significant advantages in the core. Indeed others have shown similar benefits [10, 

79, 82-84].We do not know where the boundary between the edge and core lies, but 

preferably it is a flexible one. Diversity in the data plane is beneficial as both packets and 

circuits offer unique capabilities and cost vs. performance benefits in the data plane. But 

there is no real need for diversity in the control plane! And so the only way to run one 

network instead of two is to have a single converged control plane for packet and circuit 

switched networks. This thesis proposes a means for achieving such convergence. 

1.3.2   MPLS/GMPLS  

We are not the first to suggest a unified way to control packet and circuit switches. Most 

notably GMPLS offered an alternative approach [19], which has undergone 

standardization within the IETF (since 2000 [20]), and variations of the protocol suite 

have also gone through standardization at the ITU [21] and the OIF [22]. 

Generalized Multi-Protocol Label Switching (GMPLS) was designed as a superset of 

MPLS, and intended to offer an intelligent and automated unified control plane (UCP) for 

a variety of networking technologies – both packet and circuit. Its origin could be traced 

to the fact that MPLS already enforced a flow abstraction in core IP networks. Since 

circuits could readily be thought of as flows, a common-flow abstraction seemed natural. 

The logical next step involved developing a unified control framework on top of this 

common flow abstraction. And since MPLS already had a well developed control plane 

(derived from a well-developed IP control plane), GMPLS simply extended the same 

distributed  routing and signaling protocols (OSPF-TE, RSVP-TE) to control circuit 

switches [5, 23-25].  
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However, despite a decade of standardization, implementation by transport equipment 

vendors and several interoperability demonstrations, GMPLS has yet to see even one 

significant commercial deployment as a unified control plane across packets and circuits. 

In fact, it isn’t even used as a control plane just for transport networks [26, 27]. 

We do believe that the initial choice to use the concept of a flow in the data plane as 

the common abstraction was the right one. However, the subsequent choices either made 

or overlooked have contributed significantly to its failure. In the rest of this thesis, we 

will offer our perspective on where GMPLS went wrong, by highlighting these choices 

and comparing and contrasting our solution to them [29].  

One fundamental observation we make here is that MPLS/GMPLS networks lack the 

common-map abstraction, and in principle all other deficiencies can be traced back to this 

observation. For example, without the common-map abstraction you lose the ability to 

implement control-functions in a centralized way. As a result features have to be 

implemented in a distributed way and be dependent in subtle ways on distributed 

protocols, increasing complexity and reducing extensibility (which we show in Chapter 

3). Additionally using distributed protocols has its own issues with stability and being 

able to provide a gradual adoption path (Chapter 3). And without the common map you 

lose visibility across packets and circuits, which in turn makes services dependant on an 

interface such as the UNI [22], where the possible service requirements have been pre-

supposed (pre-defined) and baked into the protocols, thereby hurting programmability 

and extensibility (also discussed in Chapter 3). Ultimately we argue that only control 

architectural changes will enable true converged operation. 

 

1.4   Proposed Solution: Unified Control Architecture 

Accomplishing the goal of a unified control plane for packet and circuit networks is not 

trivial. From our discussion in Sec. 1.1, it is easy to see that the control and management 

architectures of the two networks are vastly different (upper half of Fig. 1.7). 
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Furthermore the data plane units of packets and circuits (wavelengths, time-slots etc.) are 

also quite different from a control perspective. 

 

  Figure 1.7: Path to Convergence 

Thus in order to create commonly-operated converged packet and circuit networks, 

we ask ourselves the following questions (lower half of Fig. 1.7):  

1.   Can we find a common data-plane construct that would apply to both packets and 

circuits? Essentially a common data-plane abstraction that would provide a common 

paradigm for simple multi-layer control; one that allows flexible and vendor agnostic 

interfaces that can eliminate vendor islands and proprietary interfaces in running 

multi-vendor networks? 

2.    Can we develop a separate, common control construct that represents the networks in 

a common way? One that eases the development and fast deployment of automated 
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network-functions and services across packets and circuits, while giving the network 

operator the choice of selecting the best mix of technologies for their service needs? 

We believe that such constructs are indeed possible, but require changes in control 

architecture. And so we propose a unified control architecture which has its 

underpinnings in two abstractions – the common flow abstraction and the common-map 

abstraction [11, 13]. Our work is heavily influenced by an emerging new direction in 

packet networks called “Software Defined Networking (SDN)” [16, 17]. SDN origins lie 

in fostering innovation in campus networks, by enabling researchers and network 

operators to experiment with new ideas ‘in’ the networks they use every day [12]. It was 

born out of related work that looked at security management issues in enterprise networks 

(ETHANE project [18]). We have applied SDN ideas to circuit-switching and carrier 

networks to propose a solution to converged operation of IP and transport networks. 

1.4.1   Common Flow Abstraction 

In a traditional IP backbone network, routers use a ‘datagram’ model, where they deal 

with each packet in isolation, rather than viewing the packets as part of some end-to-end 

communication.  In other words, treatment given to a packet is independent of what 

packets came before or what packets might come afterwards. 

 But data-packets are naturally part of flows – i.e. they are naturally part of some 

communication (not necessarily end-to-end). Packets that are part of the same 

communication have the same logical association. Consider Table 1.1:  it shows multiple 

different definitions of flows (i.e. different logical associations between packets); gives 

examples of what these flows can represent, and in the last column presents ways to 

identify these flows from fields in the packet-headers. The concept of flows is not a new 

one. In core networks today, flows exist as FECs coupled with LSPs (we discuss this in 

more detail in Chapter 5). To define the common-flow abstraction, we define flows in the 

following way: 
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Flow definition: logical 
association of packets  

Packet flow examples Flow-identifiers from 
packet header fields  

End – to – End flows All packets sent when we 
watch a YouTube video 
All packets in a file transfer 
All packets in a VoIP call 
(in one direction) 

Well known 5-tuple of - IP 
source, IP destination, IP 
protocol (payload identifier) 
and Transport layer source 
and destination ( TCP, UDP 
etc. ports) 

Common-destination flow All packets destined to 
China 

IP destination prefix for 
China 

Common-source flow All packets from an 
enterprise branch location 

IP source prefix for 
addresses allocated to 
enterprise branch 

 Common- traffic type flow All web traffic IP protocol (to identify 
TCP) and TCP dest. Port 
numbers to identify HTTP  

 Common- traffic type flow 
from a particular end-host 

All voice traffic from a 
handset 

MAC source (to identify 
end-host), Eth-type (to 
identify IP packets) and IP 
ToS (to identify traffic type) 

Common - source  and  
destination routers 

All traffic between two 
routers 

MPLS label id 

Table 1.1: Packet flow definitions, examples and identifiers 
 

Packet-flows: If a) packets are classified by their logical association and such soft-

state is retained in switches to remember the nature of the flows which are passing 

through them; and b) the same set of actions are performed on all packets that have the 

same logical-association (flow-definition); and c) resource management and accounting 

of packets are done as part of flows; then the fundamental data-plane unit to control is the 

flow (and not the individual packets). Instead of the datagram, the ‘flow’ becomes the 

fundamental building block in packet networks. 

Circuit-flows:  In circuit networks, the fundamental data-plane unit to control is 

the circuit. And circuits are flows too – the circuit itself is the logical association for the 



18 
 

CHAPTER 1.  INTRODUCTION 

data that is being carried in it between two end-points in a network. Only the flow 

identifiers for circuit flows are different from packet-flows. For example a circuit-flow 

could be: 

•    a time-slot on multiple links, making up a TDM signal-path, or 

•    a collection of time slots, on multiple different paths, bound together, or 

•    a single wavelength-path, or 

•    a wavelength path comprising different wavelengths along the path, or 

•    a set of timeslots on a particular wavelength, or 

•    a waveband – i.e. collection of wavelengths along a path. 

Note the similarity of the above example for circuit-flows to the examples for packet 

flows in the middle column of Table 1.1.  

Common-Flow Abstraction:  It is easy to see that in most cases, the 

information identifying the logical association of packets in a packet-flow exists within 

the header fields of all the packets in the flow. And while the identifiers of circuit flows 

are different, both sets of identifiers can be placed in forwarding tables found in both 

packet and circuit switches (Fig. 1.8).  

For packet switches the forwarding tables take the form of lookup-tables which can 

match incoming packet header-fields to ‘rules’ that define the flow. These rules are 

combinations of flow-identifiers (right-most column in Table 1.1) that embody the logical 

association between packets that are part of the same flow. Most packet-switches support 

lookup tables that match on only one kind of identifier – eg. Ethernet switches match on 

MAC addresses, IP routers match on IP addresses etc. But all packet-switches also 

support other tables (eg. Ternary CAMs) which allow flexible rule definitions that 

include combinations of identifiers as well as ‘don’t cares’.  These tables support flexible 

rules-definitions for packet flows, and perform the same actions on all packets that match 

the rule. Thus with a packet-switch abstraction of <matching-rule, actions, statistics>, an 

incoming <packet, port> can be translated to an outgoing <packet’, port’> [12]. 
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Figure 1.8: Packet Switch and Circuit Switch Internals (Appendix A) 

 For circuit switches the forwarding tables are cross-connect tables that control the 

scheduling of the circuit switch fabric to create a circuit within the switch. In circuit 

switches the forwarding table is not in the datapath. Nevertheless, the table supports a 

translation of an incoming wavelength, time-slot or fiber-port (λ, t, port) to an outgoing 

(λ’, t’, port’).  Thus a circuit switch can also be abstracted as a table that supports 

<cross-connect rules, actions, statistics> [13].  

The common-flow abstraction (Fig. 1.9) is therefore a common-forwarding 

abstraction (or a common-table abstraction), where we abstract away all kinds of packet 

and circuit switch hardware, by presenting them as forwarding tables for direct 

manipulation by a switch-API. In other words, switches are no longer viewed as Ethernet 

switches, IP routers, L4 switches, MPLS LSRs, SONET switches, OTN switches, 

ROADMS, or multi-layer switches – they are just tables; tables that support the flow 

identifiers irrespective of which traditional layer of networking (L0-L4), or combination 

of them, the flow may be defined with. In Appendix B we describe a switch-API for 

manipulating our common-table abstraction. 
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Figure 1.9: Common-Flow Abstraction 

Benefits of the Common-Flow Abstraction: The main benefits of the 

common-flow abstraction are: 

•     Simple, Flexible Multi-layer Control: Today’s networks require multiple independent 

control planes for switching in different layers – for example Ethernet switching has 

its own set of control-protocols (STP, LACP, LLDP etc); IP has its own (OSPF, 

iBGP, PIM etc); so does MPLS (LDP, RSVP, MP-BGP); as well as SONET(RSVP-

TE, OSPF-TE); OTN and ROADMs have proprietary solutions. The common-flow 

abstraction eliminates the need for multiple independent distributed control planes, by 

giving an external controller the ability to define packet and circuit flows flexibly and 

map them to each other, irrespective of which traditional layer of networking the flow 

identifier may belong to – from Layer 0 to Layer 4. In a way the common flow 

abstraction de-layers networks by treating packets and circuits as part of flows. The 

immense direct benefit is a reduction of complexity in control planes. In Chapter 3 we 

show an example of how we control flows on the basis of Layer 4 (TCP/UDP), 3 (IP), 

2 (VLAN) and 1 (SONET) identifiers and quantify the reduction in complexity of our 

control plane implementation compared to industry solutions. 

•     Vendor-agnostic Control: The common-table abstraction together with the use of the 

switch-API makes our solution independent of vendor-specific solutions. Carriers 

benefit from this as packet-networks need no longer be single-vendor networks (Sec. 
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1.1.1) while remaining fully automated and feature-rich. Similarly carriers can 

eliminate multiple non-interoperable vendor-islands in transport networks (Sec. 

1.1.2). The ability to run multi-vendor automated converged packet-circuit networks 

fully interoperable in the control plane provides an economic benefit which we will 

quantify in Chapter 4. 

To summarize, the common-flow abstraction is a common-forwarding abstraction that 

lets us think of packets and circuits commonly as flows, thereby providing a common 

paradigm for flexible and vendor-agnostic control across multi-layer networks. 

1.4.2   Common Map Abstraction 

We find that in modern networks, there are several functions that we need from the 

network itself– examples of these functions are routing, access-control, mobility, traffic-

engineering, guarantees, recovery, bandwidth-on-demand – the list goes on. Some of 

these may apply to packets-networks, some to circuits-networks, and some to both.  

Ultimately these functions are implemented as control programs.  And these control 

programs are easiest to write when they operate in a centralized way, with a global view 

of the network – both packet and circuit. Thus the second abstraction is a common-map 

abstraction across both packet and circuit switched networks. The global-map is an 

annotated graph of the network topology which we describe next. 

Common-Map: The global-map is a database of the network topology (Fig. 1.10). 

It is a collection of network nodes - both packet and circuit switches. The node’s 

switching capabilities are represented by their forwarding tables (the common-flow 

abstraction) together with the features the tables support (match-fields, cross-connections, 

forwarding actions, mapping actions etc.). The switch information also includes 

collections of entities such as ports, queues, and outgoing link information. Example 

attributes of each entity are listed in Fig. 1.8. This database is created, presented to 

control applications and kept up-to-date by the map-abstraction.  
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Figure 1.10: Annotated Graph (Database) of Network Topology 

Aside from the nodes and links another database for flow-state can be created if the 

control applications need to retain such information. Fig. 1.11 shows the entities involved 

in retaining packet and circuit flow-state and their attributes. While the flow (both packet 

and circuit flows) databases can be a part of the common-map as they reflect network 

state (Fig.1.9), the decision to retain such state is left up to the control application. This is 

because flow-state is typically ephemeral, and knowledge of individual flow-state is 

usually not necessary for making control decisions. What is necessary is the aggregate 

effect the flows have on various parts of common-map. Such aggregates are reflected in 

the statistics maintained in common-map entities (tables, ports, queues etc.). 
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Figure 1.11: Flow Databases 

Common-Map Abstraction: The global map and databases shown above are at 

the heart of the common-map abstraction. It allows control programs to be implemented 

in a centralized way, where they could be implemented to take advantage of both packets 

and circuits, using a network-API which manipulates a global-view of the networks. In 

Appendix C, we describe a network-API for applications across packet and circuits.  

The common-map abstraction abstracts away the following (Fig. 1.12): 

•     The control program need not worry about how the map is being created and how it is 

being kept up-to-date. All it knows is that it has the map as input; it performs its 

control function; and delivers a decision.  

•     The control program also does not need to care about how that decision is compiled 

into forwarding plane identifiers and actions (using the common-flow abstraction), 

and then distributed to the data plane switches. State collection and dissemination 

have been abstracted away from the control program by the common map abstraction. 
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•     Finally, each individual control function does not have to worry about conflicts that 

may arise between decisions it makes and decisions made by other control functions. 

Thus application-isolation is part of the abstraction provided to control functions. 

 

Figure 1.12: Common-Map Abstraction 

Benefits of the Common-Map Abstraction: The main benefits of the 

common-map abstraction are: 

•     Programmability: Instead of defining network behavior up-front and baking it into the 

infrastructure, the common-map abstraction helps networks become programmable. It 

eases the path to innovation by offering a network API to programs for controlling 

network behavior. What does the network API include? Today, the three networking 

tasks of: i) configuring switches; ii) controlling forwarding behavior; and iii) 

monitoring network state; are performed separately. Configuration typically uses a 

CLI or NMS/EMS, forwarding state is determined by distributed routing/signaling or 

other special purpose protocols, and monitoring is done via SNMP, NMS/EMS, 

Netflow, sFlow etc. The network API can present calls for all three tasks together to 

network applications. 

•     Simplicity & Extensibility: The common-map abstraction breaks the chains that bind 

together today’s distributed-implementation of network services to the state- 
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distribution mechanisms that support them. With the common-map abstraction the 

distribution mechanisms are abstracted away, so the control function can be 

implemented in a centralized way. Centralization makes implementing individual 

control functions simpler; but just as importantly the abstraction makes inserting new 

control functions into the network easy (extensible). This is because the state-

dissemination problem has been solved once and abstracted away, so new control-

programs do not have to worry about it by creating new distribution mechanisms or 

changing existing ones. We will show examples of simplicity and extensibility in 

writing control-programs in Chapter 3. 

•     Joint & Global Optimization: The common map-abstraction offers full visibility 

across packets and circuits. In other words it offers applications the ability to perform 

joint-optimization of network functions and services across both technologies; 

leveraging off the different-benefits of both packet and circuit switching; and doing 

so with a global view of the network.    

•     Choice: With the common-map abstraction and its global view, new features can be 

supported that take advantage of both packets and circuits. Additionally it allows the 

network programmer the choice of writing control programs in a variety of ways in 

the context of packet and circuit networks. A particular control program could still 

treat the packet and circuit flows as if they were in different layers, where they would 

have separate topologies, but still be commonly controlled. A different control 

program could treat them as part of the same layer with a single topology (and still 

commonly controlled). Yet another control program could go further and treat them 

as separate topologies while completely ignoring one of them. The common-map 

abstraction does not preclude any of the cases, and we will give examples of all of 

these cases in Chapters 3 and 5. In other words, with the common-map abstraction, 

the control function programmer/network operator has maximum flexibility to choose 

the correct mix of technologies for the services they provide. 
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1.4.3   Unified Control Architecture 

 
Figure 1.13: Unified Control Architecture 

To summarize, our control architecture has its underpinnings in the two abstractions 

we have discussed in the previous two sections. If we combine Fig. 1.9 & Fig. 1.12, we 

can develop a more complete picture of the unified control architecture in Fig. 1.13. 

The job of the unified control plane that sits between the common-map and the 

switches is three-fold. First, it provides the functions of state collection/dissemination and 

conflict resolution, which were abstracted away from the control functions by the 

common-map. Second, it includes the interface that instantiates the common-flow 

abstraction by providing the switch-API. Third the control plane should be engineered so 

it can scale to large carrier networks without suffering from poor performance and 

reliability. In the next chapter, we discuss how we have instantiated the common-flow 

and common-map abstractions using an interface called OpenFlow [14] and a Controller 

(external to the data-plane switches) running a Network Operating System (NOX [15]).  
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1.5   Contributions of Thesis 

This thesis makes the following contributions: 

Architecture:  We have proposed and defined a unified control architecture for the 

converged operation of packet and circuit switched networks. The architectural 

underpinnings of our proposal include:  

•     A common-flow abstraction:  that provides a common paradigm for flexible control 

across packet and circuit switches. We instantiated the common-flow abstraction by 

first creating a flow-table based abstraction for different kinds of circuit switches. We 

took into account switching-fabric types and port/ bandwidth representations, as well 

as various ways in which packet and circuit switches can be interconnected based on 

interface-type, framing method and line-rates (Ch.2). We also developed a switch-

API for creating, modifying and deleting circuit flows; mapping packet-flows to 

circuit-flows and back with suitable adaptations; neighbor discovery and recovery 

messages; and finally error and statistics messages for circuit ports, links and flows 

(Ch.2 and Appendix B). OpenFlow v1.0 [28] was extended to include this API.     

•     A common-map abstraction: that liberates network control functions from the task of 

distributed state collection and dissemination. We extended an existing Controller 

called NOX [15] to simultaneously control both packet and circuit switches, thereby 

creating an instance of the common-map abstraction. We also developed link-

discovery methods that do not preclude a layering choice and created a network-API 

for applications to manipulate the common-map (Ch.2 and Appendix C). 

Validation of Architectural Benefits: We implemented our architectural 

approach in several prototypes (named pac.c for packet and circuit .convergence) to 

validate the simplicity and extensibility of our approach:    

•     We built three pac.c prototypes - the first two systems demonstrated common control 

over packet switches and two different kinds of circuit switches – a TDM based one 
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and the other a WDM based one. The more complete pac.c prototype, was used to 

emulate an inter-city wide-area network structure, with packet switches in 3 cities 

interconnected by circuit switches in the backbone, all under unified operation. 

•   We validated the simplicity of our proposed solution by: 

o    Implementing and demonstrating a network-application across packets and 

circuits on top of our prototype emulated WAN – the network-application’s goal 

was to treat different kinds of network-traffic differently.  

o   Comparing our work to existing network control solutions - we found that 

implementation of the defined control-function in our control architecture takes 2 

orders of magnitude less lines-of-code compared to existing solutions.  

•     We validated the extensibility of network-control functions in our architecture by:  

o    Identifying and demonstrating multiple networking-applications across packets 

and circuits on our pac.c prototype. Examples include: Variable Bandwidth 

Packet Links; Dynamic Optical Bypass; Unified Routing & Recovery. The 

applications suggested are by no means the only possible applications, as service 

providers can define their own applications to meet their service needs. 

o   Comparing our work to existing network control solutions – we show how 

existing rigid control interfaces cannot reproduce our network applications 

exactly, nor can they easily add new services given the tight coupling between 

applications and state distribution mechanisms.     

Design & Analysis:  We designed WAN infrastructures and performed Capex  and 

Opex analyses on them to validate cost-savings from operating a network with both 

packet and circuit switching if done from a single control viewpoint -- i.e. using our 

unified control architecture.  

•     We outlined a design procedure for IP over WDM networks (reference design) and 

applied a cost-model to the components. Our Capex analysis for this reference design 

is more detailed than previous attempts, as we include access routers and dimension 



29 
 

the IP network for recovery and traffic uncertainty. We accounted for static optical 

bypass in our IP over WDM reference design and showed a 10-15% decrease in 

Capex. We have also shown that this gain levels off as we add more bypass. 

•     Next, we outlined a design procedure that modeled a converged packet-circuit 

network based on our unified control architecture. Overall Capex and Opex savings 

of nearly 60% and 40% respectively are achieved in comparison to today’s IP-over-

WDM core networks. Furthermore such savings are found to be insensitive to varying 

traffic-matrices; and scale better (at a rate of $11m/Tbps vs. $26m/Tbps) as the 

overall traffic grows to five times the original aggregate. 

Introduced Map-Abstraction into MPLS based Networks: We have 

mentioned before that MPLS networks have the flow-abstraction but lack the map-

abstraction. We further validated our architectural approach, by introducing the map-

abstraction into MPLS networks, and replicating services offered by MPLS today.   

•     We identified how we can replace all MPLS control plane functionality like 

signaling (RSVP) and routing (OSPF) within a controller’s domain by writing 

network applications on top of OpenFlow/NOX. We have replicated discovery, 

recovery, label distribution, bandwidth reservation, and admission control via 

Constrained SPF calculations, while still using the standard MPLS data-plane.   

•     We built another prototype to demonstrate an MPLS - Traffic Engineering service 

that traffic engineered LSPs based on bandwidth-reservation and admission control. 

We have also shown how our TE-LSPs can have all the features they have today 

such as auto-bandwidth, priority, and explicit routes. Our solution again involved 2 

orders of magnitude lesser line-of-code compared to the existing MPLS control.  

•     Finally we have identified opportunities where our control architecture can 

potentially solve problems that the existing MPLS control cannot.  

 

 



30 
 

CHAPTER 1.  INTRODUCTION 

1.6   Organization of Thesis  

This chapter is essentially an extended summary of the thesis. We briefly described the 

significant differences in IP and transport network architectures, how they are separately 

designed and controlled today, and then defined the problem statement as one where we 

need to find a way to run one network instead of two. We discussed an alternative 

viewpoint in which the goal of running one network can be achieved by eliminating 

circuit switching in transport networks; but showed why both packets and circuits belong 

in future networks and a better idea would be to converge their operation. 

We proposed our solution to convergence – unified control architecture – as a 

combination of two control abstractions: a common-flow abstraction and a common-map 

abstraction. We showed how the former fits well with both types of network and provides 

a common paradigm for control, while the latter makes it easy to insert new functionality 

into the network.  We briefly discussed a previous attempt at unified control (GMPLS) 

and identified reasons for its failure, the fundamental one being the lack of a map 

abstraction. And finally we summarized our contributions in the previous section. The 

rest of this thesis is organized as follows. 

In Chapter 2, we describe the common-flow and common-map abstractions in more 

detail.  We describe how packets and circuits can be abstracted as flows; and then delve 

into abstractions for different kinds of circuit switches and requirements for a common-

switch API. Next we detail the representation, construction and maintenance of a 

common-map as well as the requirements of a common-network-API. We present three 

prototypes (named pac.c) we built to validate our architectural and control plane 

constructs. We explore the extensions we have made to the OpenFlow interface to create 

a common API for both kinds of switches, and the changes we made to a network-

operating-system (NOX) to have it present a common-map and network-API to network-

control-functions. 
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In Chapter 3, we demonstrate the simplicity and extensibility of our proposed unified 

control architecture. First we demonstrate an implementation of a control function across 

packets-and-circuits using our full pac.c prototype in an emulated-WAN structure. Then 

we compare our implementation to one which would use existing control-solutions in the 

industry today. Then we give examples of more new control applications across packet 

and circuits, and show how our work is far more extensible than existing control-solution 

in the industry. Finally we discuss solutions to three deployment challenges faced by any 

unified control solution for packet and circuit networks. 

In Chapter 4, we give a detailed example of today’s IP over WDM design 

methodology, which we model as a reference design. We then propose a core network 

that benefits from both packet-switching and dynamic circuit switching under an SDN 

based unified control architecture. We perform a comprehensive Total Cost of Ownership 

(TCO) analysis to judge the economic impact of our proposed changes. More 

importantly, we provide technical solutions to practical issues that have hampered the 

adoption of some of these ideas in the recent past.  

In Chapter 5, we show how existing MPLS applications and services can be offered 

by an IP/MPLS network based on our control architecture. We show that by introducing 

the map-abstraction and retaining the MPLS data plane (flow abstraction) we can replace 

all MPLS control-plane functionality. We present implementation details of our prototype 

system where we have shown applications like MPLS Traffic Engineering on top of the 

map abstraction. Finally, we discuss how introducing the map-abstraction in MPLS 

networks fits well with our unified-control architecture for packet and circuit networks- a 

fact that makes our control architecture ideal for multi-layer networks 

We conclude in Chapter 6, and present related work and future research directions in 

this area. 
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